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Abstract

Approximate boundary conditions are constructed to simulate the
scattering from an opaque body covered with a layer of inhomoge-
neous dielectric whose inner and outer boundaries are coordinate sur-
faces in an orthogonal curvilinear coordinate system. Two different
situations are considered. The first is a low contrast material for
which an expansion in powers of the layer thickness r is appropri-
ate. Approximate boundary conditions through the third order are
derived and these illustrate the general form of higher order boundary
conditions for a non-planar surface. The second is a high contrast ma-
terial, and the technique developed in Part I of this report is used to
obtain boundary conditions accurate to the second order in % where
N is the complex refractive index of the material. In the special case
of a circular cylinder covered with a layer of homogeneous dielectric
of uniform thickness, the results are confirmed by starting with the
known modal expansion for the scattered field.



1 Introduction

Approximate boundary conditions are frequently employed to simulate the
material properties of a scattering object, and the standard impedance
boundary condition has been in use for many years. In principle at least,
the accuracy can be improved by including higher derivatives of the field
components, and the application of such generalized impedance boundary
conditions (GIBCs) is now being considered [Volakis and Senior, 1989]. For
a planar surface it is relatively easy to construct a hierarchy of conditions in
terms of the normal derivatives of the normal field components, and meth-
ods are available [Senior and Volakis, 1989] to determine the coefficients.
By tangential integration, the conditions can also be expressed in terms of
the tangential field components. For a curved surface, however, a natural
hierarchy is less apparent.

In Part [ of this report, hereafter referred to as I, a method developed by
Rytov [1940] was used to derive a series of approximate boundary conditions
applicable at the curved surface of a body whose material properties may
vary continuously, both laterally and in depth. The approximations are
based on the assumption that |[N| 3> 1 where N is the complex refractive
index of the material, and the order of the condition is determined by the
highest power of | N|~! which is retained. For a body whose surface is v = v,
where ¢, 3,7 are orthogonal curvilinear coordinates, boundary conditions
through the second order were derived.

We now turn our attention to the practically important case of a coated
body, and seek approximate boundary conditions to simulate the scattering
properties of an opaque (typically metallic) body covered with a layer of
dielectric material. In Sections 2 and 3 a method proposed by Weinstein
[1969] is used to obtain boundary conditions for a thin layer of “low con-
trast” material whose complex refractive index is not large in magnitude.
Although this is not the situation of most practical interest, the procedure
is very simple and leads to a natural hierarchy of conditions. The analo-
gous problem of a “high contrast” material is treated in Sections 4-6 using
an extension of the analysis in I. For maximum generality, the dielectric is
assumed to be inhomogeneous, and boundary conditions through the sec-
ond order are constructed. Finally, in Section 7 we consider the case of a
circular cylinder with a homogeneous coating of uniform thickness and use



the modal solution to derive approximate boundary conditions for low and
high contrast materials. These are in agreement with the preceding results.

2 Low Contrast Coating, Second Order

A metallic or other opaque body is covered with a layer of dielectric material
whose properties may vary laterally as well as in depth, and is illuminated
by an electromagnetic field. In terms of the orthogonal curvilinear coor-
dinates a, 8,y with metric coefficients h,, hg, h.,, respectively, the region
¥, — T < ¥ < ¥, consists of a dielectric material with permittivity ¢ and
permeability u. The lower surface ¥ = v, — 7 1s that of the body itself,
and to preserve duality it is assumed that a standard impedance boundary
condition is imposed here. Thus, at y =7, — 7

&x(’yxE‘):—nm&xH‘
implying
E,=-nnHy, Ej=n.H, (1)

where the affix 7 denotes the field in the dielectric and #,, is specified. The
region ¥ > 7, is free space having propagation constant k, and intrinsic
impedance Z,, and we seek boundary conditions which can be applied to the
exterior field components at v = 7, to simulate the scattering properties.
Following Weinstein [1969] the fields in the dielectric are expanded in
Taylor series in 4. In particular
. )

Ei(t0=7) = By = 752 + 0(r) ¢l
for small 7, where we show only the 4 dependence and the fields on the
right hand side are evaluated at ¥ = 4, — 0. From Maxwell’s equation with
a time factor e~**
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and therefore

Ei(y,—71) = {1 +T%(lnha)} E - ik,Z, rﬂ hyH}
—hiaﬂ(h E})+0(r%). (4)
Similarly
Eiy,—7) = {1 + T%(ln h[,)} E} + ikozorﬁ%hyH;
- 5B + 0. 5

and by duality
Hi(v,-7) = {1+7—(Inhy)p H, + ik,Y,7—h,E}
8’7 €
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On applying the boundary conditions (1) at the lower surface of the
dielectric, we obtain
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and by imposing the boundary conditions at the dielectric-air interface
Y = 9,, (8) can be expressed in terms of the exterior fields as

T 0 T 0 (o
Ea—ﬁ—é——< hE> r{Hg-EaLg( hH)}+O(T2)

(9)
T 0 T 0 [t )
Eg—-—gg( o E) r, {Hc,—aga (-;hJL)}%—O(r )
where
14715 (lnhﬁ) — 1k, T-“——ﬂh
1-+—7'a (Inhy) — zkorc‘)Yonmh.,
(10)

1+ 74 (Inhy) - ikor £ Z2h,
1+T 5 (Inhg) - ikorz‘;Yonmh,'

We note that 'y = 1/T'* where the asterisk denotes the dual quantity.
In the context of GIBCs, (9) are second order boundary conditions, and
correct to the first order in 7 they can be written as

5 x (a x {E —rv (E:-lsz.,)}) = _F.4x {H _ v (%u,)} (11)

with
D GPe
=Faa+ =88

It can be verified that (11) satisfies the duality condition and its general
form is consistent with (1.53).



In the particular case of a perfectly conducting substrate, 7,, = 0 and
(10) reduce to

[ =T, = —ikr 2, (12)
Ho
to the first order in 7. The impedance is now isotropic in spite of the
curvature of the surface, and with this change (9) is unaffected, but because
of the factor 7/nn, in (8), equations (9) and (11) are no longer correct in
the limit as n,, — 0. Indeed, from (8) we have

5 x (:, x {E _ v (%hﬁ,)}) ihor & z hi x H (13)

when 7, = 0.

3 Low Contrast Coating, Third Order

The third order boundary conditions can be found by retaining the terms
O(7?) in the Taylor series expansions of the fields in the dielectric. Thus

; _ . _OE, r'Q'E, 3
Eito-7)= By =52 + 552 +0(r) (14)
and from (3)
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and therefore

l.e.

Ei(yo—7)= {1+T§(lnh) 2[662(1nha)-{3(1nha)}
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and for a perfectly conducting substrate the left hand sides of (15) and (16)
are both zero. On applying the boundary conditions at the dielectric-air

interface and using (A.1) we then obtain
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and correct to the second order in 7 the boundary condition for the exterior

field is
A ) € T 0 hahg €,
7X(7X{E—TV[?}1E {1+287(ln h, e)}

. ) o sem)o

7=Taa+ 88

where



with

I

. H T 0 ha Ko
—tkoT—2Z,hy{1+ == |In .

" { 2 ( hah, u)}
To this order the effective surface impedance is anisotropic, but if terms
O(r?) are negligible, the impedance becomes isotropic are (17) reduces to
the second order condition (13).

For an impedance substrate we require also the expressions for H' and
H} at ¥ =4, — 7. From (15) and (16) using duality,

Hi(y,—71)= {1+raa(lnh) [;zz(mh) {-a_(lnha)z}

‘ : 9] 1
2a7212 L _
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oy oy
222 | i 19 i
+k,N°hY| pHy — 1 1+7'— (In hg) 71—_0_ (hyH)

T 1 0 i . € T 0 hahg € ;
2 hgaﬁa (h H) 2koT;;Y {1+§—6—“; (l h :)}hﬁEa

+ikT Yo aa(

h E')+O(T ), (20)



and from (15), (17) and the boundary condition (1),
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When the boundary condition at the dielectric interface is imposed we find,

using (A.1) and (A.2),
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and correct to the second order in T,
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)
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and we observe that I' and I'; differ only in having o and § interchanged.
More significantly, I'y = 1/I'* where the asterisk denotes the dual quan-
tity, and (21) and (23) can be expressed in vector form as

~ o (s L TE € T 0 hohg €
(3 {mer (g imin) v S0 {14 5 (522
= . Ty Z, )
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The boundary condition (25) is a third order one which satisfies duality and
reduces to the second order condition (11) when terms O(7?) are neglected.
However, as was true with (11), we cannot recover the result for a perfectly
conducting substrate (see (17)) by simply putting n,, = 0.

A case of particular interest is a circular cylinder with a homogeneous
dielectric coating. Putting a = ¢, 8 = 2,7 = p where p, ¢, z are cylindrical
polar coordinates so that hy, = p,hg = h, = 1, (25) becomes

p X </3 X {E—TV [{1 + z (£+ikoi}’onm>}e—°E‘,+ ZV,-E]})
2 \p € € 2

=7 px {H_Tv [{1+g(l+iko-‘ié)}&ﬂp+1v,-ﬂ}} (27)

2\p toTim )} b 2
with
Bz, 1 2
I' = T]m{l—T <1+:2—’) lkol—‘:n—m—g(koTN) }
2 -1
o1+ Z) (i Sy, - 1) = T (eeve = L)L (o5
2p € p) 2 p?

Finally, we note that (25) has the general form

5 x (ﬁ y {E _v [A%hWE, +BY,. E]}) - (raa + %;BB)
3 X {H -V [A'-‘;ih,m + B, H]} (29)
where I’y A and B are geometry and material dependent, and as befits a

third order boundary condition, there are three quantities at our disposal
to simulate the scattering properties of the surface.

4 High Contrast Coating, Zeroth Order

We now consider the problem of a high contrast coating consisting of a
dielectric having |N| > 1. The treatment is based on the method of Rytov
[1940] and makes use of the analysis in I, but in addition to the inward

13



propagating field considered there, we must also include an outward prop-
agating fleld produced by reflection at the dielectric-substrate boundary
¥ = 9, — 7. The properties of such a field are given in Appendix B. For
generality, we again assume that the standard impedance boundary condi-
tion (1) is imposed at ¥ = v, — 7, and we start by considering the zeroth
order approximation.

For the inward propagating field

E=Ae*Y1  H=Be*v/ (30)
with
Ay =—-K\Bs, As=K,;Bs (31)
at any point in the dielectric, and to the zeroth order
Ki=K,=1. (32)

Since ¢ =0 at y = v,,

¢(7)=—/:vd7=—q/

o 8/

5
Ndvy

where the integral is simply the optical path length, and for brevity we
write

L " Ndy=-L

o

so that

Y(ro—7)=4qL. (33)

In the particular case of a homogeneous dielectric, L = N7.
Similarly, for the outward propagating field,

T = Ae*¥'ls T = Bekv'/a (34)
with

A, =KB,, Ay=-K,B, (35)
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and to the zeroth order

Ki=K,=1. (36)
Also
, Yo Y
() = q(/ +/ >Nd7
Yo=T Yo—=T
Y
= qL+q / _ Ndy
so that
(v —7)=4qL (37)
and
V'(7,) = 2¢L . (38)
The total field in the dielectric 1s
; 1 - = : 1 - -
E*=—(€¢+¢), H"=—(H+H). 39
\/g( ) \/;7( ) (39)
At v = 4, — 7 the boundary condition (1) requires that
Ex+E = —-n.Y(Hs+ ’Hb)

&+ Sé = T]mY('HO, + 'H;)
and therefore

Age®¥1 4 Al eVl = _p Y (Bﬁefkow/q + B’ﬁe”‘"'ﬁ'/")

Age™Vl 4 Apev'le = gy ( B.e*¥le 4 B! ex’kaw'/q)

where the phases are evaluated at ¥ = v, — 7. Hence, from (31)-(33), (35),
(36) and (38),

B,=1=10n,,
1+n,Y
(41)
1-n,Y
/ —_—
By = 1+ n,Y g



At the upper surface v = v,

Er= \/ig (o + ALe*E)

and using (31), (32), (34), (35) and (41),

i 1 1-n,Y 2ikoL
EM=—<{-14+——¢""")Bj.
* \/E{ +1+ane g

Similarly
Eiﬁn — _1_ {1 _ 1- nmyezikoL} Ba
€

and

H{i}n _ _1_{1+ 1 _nmyezikoL}Ba’

VE 1+nmY
i 1 1=n0Y L
Hr = —{14-—Tm_ctklip,
g ﬁ{ LT AR e

On matching to the exterior fields we then have
E, E} > tan k,L + 10, Y

Hy, Hr "“T—ig.Y tank,L
and
E; Eg‘ ., tank,L + 1, Y
—_— ===
Ha H&n 1 - ian tan koL ’

and the resulting boundary condition can be written as
¥x(yxE)=-nyxH
with
., tank,L + 1, Y
n=-12 : .
1 -1n,Y tank,L

(44)

(45)

We observe that the boundary condition is entirely local in character and
independent of any transverse variation in the properties of the dielectric.
Any normal variation enters in only through the optical path length L, and
(44) is identical to the boundary condition obtained by considering a plane

wave at normal incidence on a locally flat structure.
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5 High contrast Coating, First Order

The procedure is very similar to that for the zeroth order case. To the first

order
1 0 ha
R (“ hgz)
(46)
1 0 hg
KZ = 1+ QikOJVh.Y—a; (ln EZ)
s 1 a hor
B= - SN 5y (lnzgz>
(47)
1 0 hg
i — _ il 1 ok
R o= = Vi 5y (n he Z)
and from the boundary condition at y =+, — 7
~K\Bge*¥/1 4 K| Bje*¥'/1 = Y (Bpe't¥/t 1 Bettov'la)
KBoe*V/ — KiBle*V'/? = .Y (Bae™V/* + Ble*v'l%)
giving
K; —n,Y
B, = _f__l__ .
K2 + an
(48)
K1 - T]mY
B, = ———B;.
o T K{+naY "’

At the upper surface y = v,

in __ 1 ~ 1 ! 2tkoL
S =7 {~KiBg + K{Bje**"}
and when the expression (48) for Bj is inserted, we obtain

. 1 K]“T] Y ,
Ern_- —_l_K KI_____ﬂ_ 2tkoL B
= oK R e B
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Similarly

in _ 1 Ky —nnY 2ik,L
; 1 Ky —nnY 4 L}
H} = — {1+ 5——=¢""" B,
ﬁ{ Kj+mmY
, T D ORI S
H]n — —_— 1 tKo B ,
s = FlETer e

and on matching to the exterior fields we find

E& _ EPr _ ZKl(K{ +nmY) = KI(K) = npY)etkol
Hy -

Hi K| +0nY + (Ky = 1Y )e2ikeL

By _ Ef _ Eo(Kj+nnY) - Kj(Kp = nn¥ et

H, Hin — K} +nnY + (Ky — Y )e¥kol

which can be written as

(2K, K! + .Y (K, — KD} tan koL + inn Y (K1 + K)

E, = iZ ,
! Ko+ K| +i(K, — K| — 2pmY ) tan k, L

Hp

(49)
—iZ{2K2K£ + Y (K, — Kj)} tank,L + in, Y (K, + K3)

B = K: + K+ i(Kz — Kb — 2pmY ) tan k, L H.
But
Ki+K =K, +K;=2,
and to the first order in |N|™!,
KK = KK, =1
The boundary conditions are therefore
E,=-TH;, Ez=T,H, (50)
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where

MY 0 Ry .
{1+ Sk, N 57 (ln Z)}tankoL+zan

[ = —iZ hy
, Z/nm 0 [, ha
- - In — tan k,
1 zan{l %k, Nh. 87( ﬁZ)} ank,L
(51)
mY 0 hg
tan k,L + in,Y
| {1+92k Nk, 37(“ Z)} ankol +um
ho= -z Z/1m 0 [, hg !
l—zan{l 2k, N 87( aZ)}tankoL
and (50) can be expressed as
§x(7xE)=-7-4x H (52)
with
7=Taa+T168. (53)

Since I'; = 1/T™* where the asterisk denotes the dual quantity, the boundary
condition (52) satisfies duality, and reduces to (44) when terms O(|N|™?)
are neglected. Here again, any lateral variation in the dielectric properties
has no effect.

In the particular case of a planar surface z = constant we choose a =
z,f =y,y = z and then

{1+ ""‘Y;
F=T, =—-iZ &V

Z/nm
1—inn, { %k Naz (In Z)}ta.nkoL

(an)} tank,L + 1, Y

) (54)

but for the cylindrical surface p = constant (a = ¢, = z,7 = p implying
ho = p,hg =hy=1)

19



mY
1+ 7 an tank,L + 19, Y
2tk,N
' = —-iZ
. Z/nm 1 0
1 -mnY 1— - é—(an) tan k,L
p

(35)

g 1 0 .
-4 — tan k, mY
. {1+2ikoN ( p+ ap(an))} ank,L + 17
—1

. Z/nm ( 1 0 )} .
11—, Y<{1- —--+—(InZ)|tank,L
n { p 6p(n )| ¢ tan

F1=

Finally, for an arbitrary surface with a perfectly conducting (9,, = 0) sub-
strate,

. 1 8 ( he \)1"
r = —zZ{cotkL+2th 6'7 (1 BZ)}
(56)
. 1 0 hg
ry = —zZ{cotkoL+2k N, 0—7 (l oIZ)}

6 High Contrast Coating, Second Order

This is important in order to demonstrate the practical advantages of a
higher boundary condition, and it is unfortunate that the analysis is signif-
icantly harder than in the previous two cases.

For the inward propagating field the expressions analogous to (31) but
accurate to the second order are

1 0B 1 64
Ay = -KBy—L—22 422
KiBg — Ly thaﬂ
(57)
' 1 6B 1 04
A = KiBo-Li-zo+ Moo
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(see (1.43) and (1.47)) where

1 9 ( h 1
(, = _ 1 —aZ [
=1+ o h o (n R ) (2, NE,)?

v \"hs) Oy \ k") By
(58)
- 1 8 ([ hg 1 1(8 ( hs \)°
b=l o v 5y (m E:Z) " BkNR Y [2 {87 (l haz)}
0? hs 0 hs, \ O
+ 7 IHEZ) - 6—7' (lnEZ) a—(lnh,N)]
0B ve 01z . B
Lo = wmvma vV ﬁ}
(59)
oA a1 | A
Mo = smnma|znm VX ﬁ] |
Similarly, for the outward propagating field
1 0B’ 1 04’
"o K'B e - ua
Al lBﬂ+Lhaaa +thaﬂ
(60)
;o ) 1 0B 104
Ay = KzBa'*'Lhﬁ 8 Mha %
(see (B.14) and (B.16)) where
. 1 0 ha
K ' ik,Nh, 0y (I“ hs
(61)

1 8 h
- A2—2‘koNh,75;<ln’—z:Z)’

gl
!
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and to the required order it is sufficient to insert the zeroth order approxi-
mations to the fields in the derivative terms in (57) and (60).
At any point in the dielectric

1

in _  * ikow/ 1 ikoy!/
EF;, = NG )
. 1 : )
Hn» = Ba etko#’/? + B; elkow /q
a,l \/ﬁ { B B }
and when the boundary condition (1) is imposed, we obtain
. 1 OB 1 04\ /e 1 0B
(—I\IB@—-L—h——aa thaﬁ) + KB[,+Lh P
1 04"\ vy ikow/ 1 ko)
MEEO—,B—) 1= —T]mY (Bge 9 + Bﬁe q)
1 0B 1 0A\ vl | , 1 0B’
S [ M etke ~-K! [——
(K2B° "mos TV, 8a) ’ ot Ly 55
- M_l_aa_‘j_[_) eikow'/q — T]mY (Baeikow/q + B;eikow/q>
giving
(K! +1mY)B, = (K1 — nn¥)Bo + L= L (B - B) - ML 2 (4 + 4)
1 Mm 8 = 1 Mm ¢ ha aa hﬁ aﬂ

1
(K} +1nY)B, = (K; ~ 1Y )B, L——(B B) - Mh—gia(Am)

(63)
At the upper surface v = v,
in 1 1
E.p = E™ = 7 {Aaﬂ + A, 5¢* koL}
(64)
in 1 1
Ha,ﬁ = O,ﬁz\/—ﬁ{Baﬂ'f'B’ 2ko}.
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Hence, from (57), (60) and (62),

. 1 0B 1 0A
\/EEQ = —AlBg—Laa—a'f'M;l;a—ﬂ"{"

104" ik
+ Mhﬂ ﬁ} €

.y 1 0B’
{AlBﬁ Lo

= —K,Bs - L'hl:g_f + M;:g—? + {Wﬁm—lf[(m ~mY)Bg
+Li%(3 _B- M%%(A - A')]
= ml—nm_l’{ [K;(K1 —naY)er ol — K(K| + an)] By
+[Kie¥tel — (K] +naY)| (th_ag_f - Mh%%)
Y el <th0%% + M}:—ﬁ%%') }
giving
R T e i een g (AR
— [K{ezi’“[‘ - (K| + an)] (th_ag_f - Még—‘;)
and similarly
Ba = Ky(K; - an)e""°1L — Ky(K; + an){ = (Kot n¥)Veby
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. 1 B 1 94
-1 2ikol __ (1! - SR
+[Ke (K +7mY)] (L IR M- aa.>
gk [, 1 OB 104
+imYe (L o Miaa) | (66)

Also
(2ikoL

10
H. =B+ —— (K3 = nY)Ba — L— (B~ B
= Bt i (=008 - L (B B)
1o
—IM'};—E(A“*'A)}

giving
1
(K3 = mY )e2*el + (K3 + 1Y)

2ikoL _}__8_ _n L_a_ '
+e {thaﬂw B)+1 haaa(AJrA) (67)

B, = {(K; + MY )VpHa

and

1
(Ki = nmY)e*l + (Ki +nmY)
10 10

— etk [Laa—a(B - B)- ME@(A + A’)] } : (68)

Bs = {(K{ +nmY)ViHp

On equating the expressions for Bg and rearranging the terms, we obtain

(Ki4nY)e*i-1) 1 1B

(Ky — nmY)e¥*L 4+ (K] + MmY) Ve  haOa
(Kl _ T)mY)(eﬁk"L _ 1)e2ikoL _1- _1_?—?_/
(Ky — Y )eBkol + (K| + nmY) e he Oa

KKy - Y )erl - (K + an)z{H
(K1 — nnY )e¥ol + (K} +1mY) ’

E.—
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(K] + 0 Y)(e™" — 1) 1,104
K{(K: — Y )e¥* L —Ky(K| +1nY) & h 0B

_ mY 2ikoL_1 2tkoL 1 1 HA’
(Ki —mmY)(e e d }(69)

+

: - M=
K{(Kr — mY)e%L — Ky(K + 1Y) i h3 O3

and from the analogous expressions for B,

(K} 4+ nmY )(e¥%L — 1) 1 0B
(K2 = nnY)etbol + (K3 + 1Y) f hs 98
(K2 _ nmy)(ezikoL _ 1)62ikoL _L }_a‘_B:
(K2 =Y )etkl + (K3 +nnY) e~ hg 08
Kj(Ky = nnY )e? ol — Ko( K +n,Y) 7 { q
(K = nnY)etkel + (K; + 1Y) °
(K + mmY)(eE - 1) RISVRS
Kj(K; = nmY )e¥*l — Ky(K} + 1Y) /& ho O

(Ko — nnY)(e¥kol — 1)e2ikol Y 0A’} (70)
Ky(Ky — nmY)e¥kol — Kp(Ky +nnY) /B ha Oa |

Es—

+

In the terms involving L and M is is sufficient to replace all quantities
by their zeroth order approximation, and since K; = K; = K] = Kj =1
to this order, (69) and (70) reduce to

; 1 0B . . 1 1 3B'
Ea _ 2tkoL L—— — ab 2ikoL( 2tkoL __ 1 [—
a(e )\/- » abe”™"(e )\/_
; 1 04
__r‘ * 2zkoL_
{Hg-f'a (e 1)\/__ hﬁ 6[3
wps 2ikoL( 2kl _ 1y L _1_3A'
+ a"b"e™™" (e 1)—\/ﬁMhﬁ_6ﬂ (71)
' 1 0B - 1 0B’
Ejs — a(e¥*L — 298 o 2keLy 2ikoL _ 1
5 —a(e )\/_Lhﬂ % abe?**L (e )\/—Lhﬂ——aﬁ
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. 1 1 0A
_ «( 2tkoL _ —_—
=T {Ha+a (e 1)—-—\//7 h. da
4 : 1 1 04’
tbt 2tkoL 2ikoL _ 1 —_M——— 7
+ a"bre?Ll(e )\/ﬁMha % (72)

where
_ K = Y )erte — Ey(K] +nnY)
(K; — Y )edkel + (K} +1,,Y)

Ry(Kz = 1Y )eP ol — Ky(Kj 4 naY)
(K2 = nmY el + (K3 + nmY)

1=nmY ol -
= 1 —_— _pttho
‘ {+1+an€

P1=—Z

(74)
1-n.Y
1+ n,Y

and the asterisk denotes the dual quantity. Thus
1-mY gik,L -
T=1 - ————e 75

and
b* =-=b.

We remark that the admittance Y appearing in these quntities is evaluated
at the surface ¥ = 4, — 7 of the substrate. To this same order (67) and (68)
give

B.,
Vi

»

=aH,3. (76)

Also, from (31) and (32)
Ay=-Bs, A;=B,



and since (see (65) and (66))

we have
Awp
\/—6- =a Eaﬁ . (77)
Moreover, from (41)
B, 5 ="0B,;
implying
B s
- =abHa, (78
VA ? )
and (see (35))
A,=B,, A4;=-B,
so that
AL s
Qa, — tb: .
e =TV Eas (79)
Thus
1 108 1 10(2
ikt T WaNmmat [V (“H)]
1 1012
= a3 | 7Y _'ko 0 - \Y
2k2Nh. by Ot [Nh” {~ikoYoaE — H x a}}
1 107 e 1 )
- 2ikoNh~,h_té; [a:h,, {Ew - EZOH Y X V(lna)}]
and similarly
—L— = — —_— b_f.h - ‘.—ZOH° A Y(ln ab }]
Ve hy Ot 21k,Nh., h, Ot [a p 'Y{E'r ik ¥ X V(Inab)
1 104 1 10 [, u 1 A . }
ﬁ h, Ot " 2ik,Nh, h, Ot _a " ‘Y{H‘V'*'ﬁ(::)/oE"yx V(lna®) }
1. 104" 1 10 [, . po 1 ) }
VA RO T TukNmRe |t {HﬁmYoE 7 x V(lna"b%) }
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Equation (71) then becomes

a ; 10 1 .
W(62 koL l)h—a—a' [a h {E-y - ;E-ZOH Y X V(lna)}

ab 2ikoL 2;1:,,1,1 8[ { _L LA }
—QikoNha,(e e 3 ab=h,{ E, ikoZOH ¥ x V(lnab)

_ . a 2kl _ 4 _L_a_ «Fo
- F{H" RS )hﬁaﬂ[ o Uy

a*b e2ikoL 2ik,L L 9
— ol _ 1)e¥kel . 2
+ kYE 7x V(nd H SN, AT

[‘b‘ °h, {H + IICYE 7><V(lnab)}]}

with an analogous result for (72) , and these can be written as
5 x (3 x {E = —2—(e¥hL _ 1)V [af"-h {E _ 1z H 5« V(lna)}]
T 2%k, Nh, e T\ TR

_ab ik 2ikoL [ € { 1 ) }]
Zz'koNh,,(e eV abeh., E, ikoZOH 4 x V(lnab)

_ = s __« 2ikol « o
= -7 *yx{H 2ikoNh7(e 1)V [a 'uh,,,{H,Y

+ .LYOE A X V(lna')}] - —.C-l—é——(ezi"°l‘ — 1)etkly [a‘b‘ﬁﬁh.,{H.,
p

i, %k, Nh,
+ %YE .5 x V(In a‘b‘)}} } (30)
with
7=Taa+T,88. (81)

It can be verified that (80) satisfies duality and I'; = 1/I'™.
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For a homogeneous dielectric coating of constant thickness, a, b, a* and
b* are independent of @ and 3, and the boundary condition reduces to

w € —
5 x (4 x {E - Cop ) - _F.5x{H
7 (”{E 2ikoNh,V(e v }) 1 7"{

s (Sha)]
where
w = a’ (1 + b2ezik°[‘) <ezik°L - 1) . (83)
We observe that if
koL =k,Nt=mnm
where m is an integer, then
[=T1=1nm

(see (73)), and the boundary condition becomes
4% (3 xE) = —nui x H. (84)

The coating is now invisible, and as we shall see later, this is a consequence
of ignoring the thickness 7 in all amplitude factors.

To illustrate the boundary condition (82), consider the special case of
a circular cylinder of outer radius p,. Putting & = ¢,8 = 2,7 = p so that
ha = p,hs = h, = 1, the expressions for K, and K, computed from (58)
are

K = 14— 4 !
1= 2ik,Np, ' 2(2k,Np,)?
1 3
K, = 1- ~ :
2 2k,Np, 2(2k,Np,)?
Hence, from (61),

, | 1 ,
K= N, T iy
Ky=1+ ! ]

2ik,Np,  2(2k,Np,)?
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and (73) now give

mY 3 }
1- 213,Np° + 2(2koN po)? } tank, Nt + MY

= -iz { i1 1
1- mmY{l + N 2(2,%1\,00)2}t:<111 k., Nt

mY 1 ’
Iy = VA {1 + 2kZNPo B 2(2koNpo)2}ta.n koNT + “7mY
o . ‘ 1 3 — .
1- anY {1 T nmY 2koNpo + NN } tan k,N T

As expected, I'y = 1/I'*. Finally, from (74),

1+ (nnY)? - 2in, Y tank,Nt
(1 = mnY tank,NT1)?

w=1tank,N1

and therefore

1+ (mmY)? - 2in,Y tank, N7
(tan ko, NT + 19, Y)?

=

w'=—i1tank, N1

In the particular case of a perfectly conducting substrate (7,, = 0)

cotk, Nt +

3 1 ™
b= 2 {1+2(2k0Np0)2}{ 2koNpo}

1 I
I, = —iZ{l-———\eotk,N7 -
1 1z {1 2(2koNpo)2} {co T 2/€0Npo}

and

1 .
w=—=1tank,N1.
w.

(87)

For a first order boundary condition, terms O(|N|~?) are neglected, and

the expressions (88) for I and I'; reduce to (56).

7 Coated Circular Cylinder

From the modal series solution for a circular cylinder covered with a homo-
geneous dielectric layer of constant thickness, it is relatively easy to derive
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approximate boundary conditions of almost any order corresponding to low
and high contrast coatings, and these can serve to check the preceding re-
sults.

A circular cylinder of outer radius p, consists of a core (or substrate)
of radius p; where an impedance boundary condition is imposed and a ho-
mogeneous dielectric coating of thickness 7 = p, — p;. If the cylinder is
illuminated with an H polarized plane wave incident in a plane perpendic-
ular to its axis, the non-zero components of the field are H,,E,, E4, and
these can be expressed as:

p 2 Po

H, = fjen(-i)n{J (kop) + RaHM(k,p)} cosne

E, = i )'n {Ja(kop) + RaH ) (k,p)} sinng
B, = =iZ, Y, ex(=i) {Ti(kop) + BaHY(kup)} cosns
Po2 P2 P
Ho = 3 en(oif {anu(Vhop) + b HY (Nhp)} cosng
E = =i 2 el n {an (V) + b (nkyp)snng
E, = —zZZe,, )" {anJo(Nkop) + b HY'(Nkop) } cos nd

where the prime denotes the derivative. At p = p; the boundary condition
18

Ey=-nnH,
and this gives

bn = Qan
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with

JI(s) + 1Y nmJa(s)
= — 8
v HY(s) + iV B () (89)

and s = Nk,p,. By enforcing the continuity of H, and E, at p = p, we
then obtain

Ja(kopo) + 1Yo PJu(kopo)
HY (kopo) + 1Y, PHV (k,p,)

R, = - (90)

where

Ji(t) + QH'(¢)
T.(t) + QHIM(t)

P=1iZ (91)
and t = Nk,p,.

The quantity P can be used to specify an approximate boundary con-
dition which is imposed at p = p, and reproduces R, to some desired
accuracy. Consider, for example, the third order boundary condition (29)
which can be written as

5% <px{E—v[A%E,,+Bv,-E]})

a1 .
—_ (r¢¢ + Féé) B {H _v [A'“—H,, +B'Y,. H]} (92)
m
For H-poalrization this reduces to

( B & ) A, 0F,
¢

pZ 9¢?

and when the expressions for the field components in p > p, are inserted
we find that R, is as shown in (90) with

—;:3¢S—= —FHZ (93)

b

2, €
'+ —l—-—e—An2
kop? €
P = o . (94)
)
1+ B;;
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A third order boundary condition suffices to the extent that (91) can be
written in this form. For a second order condition B = 0 and for a first (or
zeroth) order, A = 0 as well. In the latter case P is independent of n.

We consider first a low contrast coating for which |6| is small where

§=t—-s=Nk,r.
Then
52
Ju(s) = Ja(t) = 8J.(t) + 5],'1'(t) + 0(63)
and since

s == (1= 5 ) 5o - 150

from Bessel’s equation, we have

Jo(s) = {1 - ‘-i; (1 - %‘;)} Ja(t) =6 (1 + %) JH(t) +0(8°).
Also
T4(s) = Ji(0) = 6140 + S0 + 08

and because

e =1 (1- §—) ni- (1-2 %) e,

we have

There are similar expressions for H{})(s) and H{"(s), and when these are
inserted into (89) and then into (91) we obtain
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2 2 2 § 2
efio§ ) oo 3)
P=-iZ +0(8°%).

6 & n?+2 4 6
- [|1= —iYn, .6 hal
1+t 2(1 m ) Y (1+2t>

(95)
To identify the coefficients in (94) we rewrite (95) as
LI YV B SR OIS )
Y1 2) 2 2 Y 2t) " 2 .
P = 1n ) - 252 0(¢%)
1 6<'Y 1) 5—<1+m’"‘ 3)#’-1
M Y) T t 1) o
PR DRI A B
B Y, 2t 2 ,Zn25 )
T L S N
(- g) -3 (525
5 n??)7
* 5(”’%*“)} [ Wz‘} o)
and to the second order in é
o 1
l1-71 <1 + QL) iko—ﬂ—Z— — =(k,N7)?
Po Ko Mm
F = Nm r € 771 T2 1 (96)
-7{14+ — | |tho—Ynm — — | — — [ K2N? -
e (g (- 2) -5 (-
A = r{1+%(—+iko‘e Yonm)} (97)
B = i (98)
= 5

These agree with the results in Section 3 (see (27) and (28)) and also reduce
to the solution for a perfectly conducting substrate (see (17) and (18)) on
putting 7, = 0.
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To include terms in &° leads to an expression for P involving n* and
this requires a fourth (or higher) order boundary condition, but it is worth

? using only a second

noting that we can actually reproduce the terms in n
order boundary condition. This is evident since B is proportional to * and
if we put B = 0 correpsonding to a second order condition, the expression

(96) for I is unaffected, but (97) is replaced by

“~“rro

1
A—_—r{1+‘r(5—+ik0€iYonm)} : (99)

We now turn to the more difficult problem of a high contrast coating
for which |s|, |t| > 1. For large arguments

2 .
H7(11)(t) — \/;_;exmfl

us s
ar=t-n-——

2 4

with

where f; is a series in powers of 1/t. Similarly

H1(11)'(t) _ éeiacgl
2 .
HV(s) = [=€*f
s
) 2 .
Hy(zl)(s) = || —€%g
)
with
T T
Ay =8—n—— —
2 4

where f; and g, differ from f; and ¢; in having ¢ replaced by s. Since

I(0) = 5 (B0 + BP0}
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1t follows that

Ja(t) = \/—%‘% (fleia' + ?180')

where the bar denotes the complex conjugate. There are analogous expres-
sions for J/(t), J.(s) and J.(s), and when these are substituted into (89)

we find
1 7, + 1Y f, ~2ia }
= —=<¢]1 4+ —=—"¢ y
Q 2 { g2 + lYUmf?
and hence
p iz 0@tV nf)e? (92 + iV Infr)e™

-0
f(G2+iYnmfo)e? = filge + 1Y nmfr)e™
where, as before, é§ =t — s = a; — a;,.

From Bowman et al [1987, p. 53]

: 4n’ -1 (4n® -1)(4n?-9)
8it 128¢2

fio=

(4n? — 1)(4n® - 9)(4n? - 25)
3072:¢3 +0

(t™)

and

_ L 4n?+3  (4n® —1)(4n® +15)
o= 8it 128¢2

(4n? — 1)(4n?® - 9)(4n? + 35)
3072:¢3

If we ignore the difference between s and ¢ except in the phase,

. . , 1 .
015,6° —Gyg2e™® = % {1 - 87(4712 -3)+ O(t“‘)} sin é

+ O(t“‘)} :

(100)

- . : 1
0 f.e° =g, fre = 2 {cosé - — [1 + —3—(4722 —1)|sind + O(t"‘)}
2t 8t?
e —i6 . 1 3 2 ; -4
f19,€* = fig2€ = -2 {cos& + 5 [1 + @(471 - 1)] siné + O(t )}
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and

AT = Fifae® =2 {14 —(4n? = 1) + O(t™*) b sin4
322

giving
812 8t?

1 -1Ynn,tané {1 + g5(4n? - 1) + 2Y;mt [1 + 5%(4n2 - 1)]}

P _iz tané{l__l_(4n2_3)__i}’%n_[1+ 3(4n2‘1)]}+iY77m

+0(t™*). (101)

Comparison with (94) now shows that to the third order in 1/¢,

tand {1 + mwim — 7 [1 = mvgr] | + 1Y
1-1Yn, tané{l

['=-iZ :
SRS U S S [1 — _3___]}
2(2Nkopo)? Ynm 2Nkopo 2(2Nkopo)?

1 tan o 1 tan o
4= 1 Y — —————— | { (102
4= vk T, tana{ * Nkops (3’ L 2 tané)}( )

B 1 1Y, tand N 1 BT} tan o
"~ 2(Nk,)? 1-1iYnytané 2Nkopo \Y1m 1—1Ynntané

with 6 = Nk,7, and these complete the specification of the third order
boundary condition (92).

To include terms in 1/t* would require a boundary condition of fourth
(or higher) order, but even a second order condition (having B = 0) is
sufficient to reproduce terms through the third order in 1/¢t. Putting B =0
in (94) the expression for A becomes

1 tané ) ‘
A= 2Nk, (1 -1Ynn, tan5)2{1 + (Ynm)" —2tYn, tané
' ~ tané +:Ynp,
9 —
+2Nkopo [2Ynm(~ 1Ynntand) + IV, tan&} } (103)
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with [ as before, and obviously the same boundary condition is sufficient
to match terms through the second order in 1/¢t. When the third order
terms are omitted from (102) and (103) we obtain

1Y nm 3 ;
tand {1 - i + iy} + 1Y

. 2nkopo
[ = —iZ ; i1 1
1—1iYnntané {1 T Vo INkops 2(2Nkopo)’}
1 14+ (Yng)?: - 2iYn, tané
= tan o : )
2Nk, (1 =1Ynn,tané)?

and the boundary condition is then identical (see (82), (85) and (86)) to
the one derived in Section 6.

For all of the above contrast conditions, if § = m7 where m is an integer,
then tané =0 and I' = n,, with A = B = 0. In other words, the incident
field sees only the substrate and the coating is invisible. As we shall now
show, this is a consequence of ignoring the difference between s and t in
the amplitudes.

If the coating thickness is too large to be ignored,

1

~
m

1

tm

; (1+mA)
to the first power of A = 7/t. Since A is of the zeroth order in 1/N, the
retention of terms through the third order in 1/t now leads to an expres-
sion for P involving n* that demands a fourth (or higher) order boundary
condition. On the other hand, through the second order in 1/t,

‘ . A
017,60 =Gy g2e = % { [1 - 1;;?(4712 - 3)] siné — -8—t-(4n2 + 3) cos 5}

. : . 3A
01f,€° =G, fre = 2i {[1 + W(‘an - 1)] cos d

- 51; [1 - %(zm? - 1)] siné}

5 T . 3A
f17,6° = Fige™ = -2 { [1 - @(4712 - 1)] cosd
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1

+2t

A
[1 + —4—(4n2 +3)

siné}

- . = : A A
fife® = Fifae™ = ‘22’{[14— 1;2 (4n2—1)] sin5—§(4n2—1)c056}

and when these are substituted into (100) we find

_ . iY?]m[ A 2 ] 1+A 2 }
P = —zZ(tané{l— I [1- 2(an - 1)) - = (dnt - 3).
| i A 3A
—_— —(4n* -1
+’Y’7’”{1+Ynm i +3)+ elén )})
A, 3A
-<1+1Ynm§£(4n —1)- (dnt - 1)

, i1 A, 1+4A, , -
_lYnmtané{lerE [1+Z(4n +3)J+ 372 (4n —1)}) .

(104)
If A = 0 this reduces to (101) with the terms in % omitted, but if § = m~
(so that tané = 0)

A 3A
1+ ———(4n? +3) + ——(4n? - 1)

Y 8t 1622
e T (105)
1 + zYnmé;(4n - 1) - W(‘ln - ].)

and the coating is no longer invisible. Equation (104) can be used to con-
struct second and third order boundary conditions analogous to those given
by Senior and Volakis [1989] for a planar layer.

8 Conclusions

A problem of considerable practical interest is the scattering from a body
covered with a layer of dielectric, and one way to simplify it is to simu-
late the surface using an approximate boundary condition of appropriate
order. For an inhomogeneous dielectric whose inner and outer boundaries
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are coordinate surfaces in an orthogonal curvilinear coordinate system, two
different situations have been considered, and in each instance, boundary
conditions of three different orders have been derived. At least for a ho-
mogeneous dielectric the results are sufficiently simple to be usable, and in
the special case of a circular cylinder with a coating of uniform thickness,
the boundary conditions have been confirmed by starting from the known
modal expansion for the scattered field.
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Appendix A: Matching 5 J (h,E!)

At the boundary of the layer the boundary conditions give
E. =E,, E;=Es, EL:%"EV

and we must use these to match = ( h,H) to the exterior field.
Since

i 1 0 i a 1 a '
V.E'= Pk {6 (hgh,E.) + aﬁ(hah.,Eg) 5 —(hahsE", )}
and
0 N _ a hahg "
hohg 0 ; . 0 [hohg
= 5—(hE)+hE"8( ),
we have
10 Ei 5 hohg
V H —_— 1 -
E h%@v(h"E’) h., Oy (1 h, )
1 0 ; 0 ;
i | b ED) + p(hatn )
But
V- (eE)=0
and therefore
V.-E'= ——E’ V-—
€ €

Hence
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sE) =2 B () 25 () g ()
h

: 6 h ﬁ h7 a i 3 :
—h,E — m (1 . ) hoh {0 (hgh,E!) B-B(hahﬂ,Eﬁ)
_ &,y [Ed O ( ) Es 0 (e
=-2h {h 3a\e) " 7,58
€ a hahg h,y 8 8 :
——h,E,— - h :
€ 1E10’y (ln h., ) hohg {aa(hﬁ E)+ aﬂ(hahwEﬁ)

}
}
(5)}- (&) me ()
|
}

_ €, 1 6( a< €
N eh"hahgh‘,{aa 1oty E) 55 \fah Eﬁ)

and if the surface divergence is defined as

— 1 0 0
V,-P= hohoh, {3 (hghyPy) + aﬂ(hathg)} ,
then
0 iv €9 € E, 0 hohg €
87(h7E7)_—€h7{V,-(;E)+-—;5:Y-<ln 5 ?)} (A1)
Similarly
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Appendix B: Outward Propagating Fields

To apply the analysis in I to the problem of a high contrast coating, it is
necessary to determine the properties of an outward propagating field in
the dielectric, accurate to the second order in |N|™!.

For such a field V¢ = v¥ and therefore

- ‘/ﬁ v x Bt
1k,v Vi

A, +9xB,=

(B.1)

\/E V x An-i
tkov Ve

forn=0,1,2,... with A_, = B_; = 0. Hence, to the zeroth order,

B,.-9xA,=

Ao = Bog, Ap=—-DBou, Aoy =DB,y=0 (B.2)
For the first order fields

0 (hgB,
Ala"'BIB:Z- \/ﬂ ___(5 ﬂ)




The expressions for A;, — By are identical if

0B,s 0 ( hy hg)
= Bo In B.5
5 55, = (B.3)
and then
1 8 [ hy \
.410, - Blﬁ = —W—Boga’y <h’1 "—Z) (BG)

Similarly, the expressions for 4,5 + B, are identical if

8B,y 1. 8 [. hohs
=—=-B,a7|! B.1
Oy 2 07(]“\/6#) (B.7)
and then
1 0 [ hg
Am + Bla = 22,—1%0}1—730&% (ln h_QZ> . (BS)

Thus, to the first order in ¢

5} ho
Aa = Aoa + qua = Bog + QBlﬁ - ﬂ%h—Bog% (hl ;L——Z>
o i

g

1e.
1 0 ha
Ay =1¢1—- = — , .
{1 2k, Nh, Oy (1“ hgz)} Bs (B.9)

and

0 h

Aﬁ = Aog + QAw =-B,, - qua + mq—v-};—Boa-é; (ln h—ﬁ'Z)

LlRoU Ny a

1.e.

_ 1 0 [ hs
Ag——{1—2ikoN a—(ln Z)}B (B.10)
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For the second order fields

A, — B - _ \//—‘ {_a_(thlw)__a__(hﬂBlﬁ }

te T T tkowhshy 08\ vE ) v\ V&
1 (0By d( hs\ EO (hBy,
- ikovhq{ 5y TPy, (h’\/p) hs 08 \ Vi
_ \/;l7 _8_ haBla

Aot B = e\ E

1 aBla a ha 2 h'vBl‘Y
——ikovhy{ oy +Bla37 (ln ,u) hq Oa ( Vi )}

| (B.11)
By = () 2 ()

B2ﬁ —44201 = _[L{_?_ (haAla) _ _0__ <h7A17)

tkovhohy |0y \ Ve da \ /e }
_ 1 [0, 0 he Ve (hyAy
T ikovhs | Oy o\ ")  haba\ e
Hence
1 9 8 (. hg
Aaa = Bap = 5 {67(B‘ﬁ = ha) Bwa— (m ﬁ)
a2 (he) JVED (hBu)  VED (hA
oy \ Ve hydB\ & he Oa \ /e

1 1 8[1 _ 0 ha By 0 [, ha
~ 2ik,vh, {m‘ko% [JEB By (ln EZ )J ~ 2ik,vh, Oy (1“ hg Z )

2 (i) - (ko) - E2 (1) D ()]
07<1“¢E> Bwa’Y(lnhﬁz) haaﬂ(\/ﬁ AN
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giving

___By 0 ha By [1 _q_ h_ :
Aza = By = ~ 2k,vh., By (1“ th ) (2k,vh.)? |2 | Oy ln Z
8 he [ ha.\ O
9y <ln h—@Z) & (ln ——-Z) 8‘7(ln vh )}
} %)

/e hZ. _ B,
T kb dal v Y A

+

2
+ \//'7 a _]1‘7_‘ éﬁ
NG

.V
vZ’y X v Vi

(B.12)

and

1 i}
Ay + By = ~Zikooh, {6—7(3101 + Aig) + Bra 5 ( )

v a0 (s _VED (hBn\ _VEd (h
Yoy\" Ve) hada\ i ) hs08 \/z
_ 1 1 0 1 6 hﬂ Boa a hG
= " 2ik,uh, {Qikoa—‘y [vth""E (m Ez)} * %ikyoh, By (m EZ>

B)-ngbd £2(52)-£3 ()

B, 8 1({8 (. hs \)°
%ik,0hy Oy (m ha’ ) T ko) [5 {5; (l“ hal )}

giving

A‘Zﬁ + BQa -

T 2%Ivhoh, 0a \vZ Y X Je) T 2ktuhoh, 08 N

(B.13)

N/ ?_{ﬁmv Ao} Ve a{hqzﬁ_VxBo}.

It follows that to the second order in ¢

Aa = Aoa + qua + q2A2a
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hy \
= By +qBis+ q2320 - —ﬁz) (Bog + ¢Bi13)

2 (k] 2 ok

0 ( ha,\ 0 VB O [hy, A,
87(1n Z)av(lnvh)] SkTuhyh %{vz‘/ Vx\/g}

q

q2

"~ (2k,oh, )2

2
3

2
2k2vhyhy Oa | v Vi
so that
st \/ﬁ i 1 5. é?.
o= KiBs + 2WINRA, 08 \NZWT VX
N R B,
¥ WENhh, 3a \N T VX 1
where
1 8/ h 1 1(0 [ ha \)’
I/I - — _a ——— —_—
¢ 2k, Nh. Oy (ln hﬁZ> BRNRE |3 [ { (In hBZ)}
ke 0 he 0
( Z— ) - 5— (ln —Z) 87 (In A, N)] (B.15)
and

Ag = Aws+ qAip + ¢ Ay

0
= B qua —q Bga q 'a— ( h_ﬂ' ) oa + qua)
+ __.__q2 1 2 hﬁZ : 6— ’—1—
(2k,0h, )2 |2 | By T

h
_ 9 (i he,) 0 ¢’ "‘ Ve O ke I o Ao
5 (ln haZ) 67(lnvh7)J 3 b 9a { 77 \/E



T Sk2oh kg 98 | v VE
so that
- _ ! _ \/ﬁ _a_ _1_ 5 . éf'.
Ao = ~R:Be = 35Nk h, Ba Nz VX
Je oz, ., B,
_ 2l ZhA VX — B.16
* NmA 08 \N VR (519
where
sl 1 a hg 1 1 a hﬁ :
Re= 1= 5% Nh, oy (1 ha Z) (2koNhy)? [2 {87 (m haz)}
2 h h
3 GZ 0 1n_" i(mh,N) . (B.17)
By og
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