RL-863

UNIFORM ASYMPTOTIC EXPANSIONS

Thomas B.A. Senior

January 1991

RL-863 = RL-863



28 January 1991

1 Introduction

In studying the physical optics solution for the bistatic scattering of a plane
wave by an infinite, two-dimensional, perfectly conducting, S-shaped sur-
face, it is necessary to develop a uniform asymptotic expansion of the inte-

gral

r= _\/;_’?; / Z [f'(z)cos ¢ — sing] e*¥C=+S/@ gy (1)

where

C =cosp +cos¢,, S =sing+sindg, (

o
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with 0<m—-9<7.
The surface is y = f(z), and as a typical example consider
fz) = A/ et dt (3)
where A and 1/c have dimensions (length)!. Then
f'(z) = Ac e=(c=)?
which is positive for all real x;
f(z) = —24c° ze~
which is negative (positive) for z > (<) 0, and
f(z) = —24¢° (1 - 202:52) e=(e=)
which is negative for |z| < .
In this particular example the surface is an odd function of z, but it is

convenient to carry out the analysis for a more general surface having the
following properties:

f(z) is a monotonic function of z, ~oc0< z < 00



flz) >(<)0for z > (<)0, implying f(0)=0
f'(z) >0 with max f'(z) = f'(0)
f'(z) <(>)0forz > (<)0, implying f"(0)=0

and
f"(z) < 0 over the range spanned by the stationary phase (SP)
points for the angles ¢, ¢, of interest to us. The SP points are such that

C+S5f(x)=0 (4)
implying
oy C 1
fle) =~ = —cot 5 (84 ). )
and 1f
o1 o
T —¢ > 2tan [f—l(ﬁj]—(ﬂ'—%), (6)

(5) defines the two distinct SP points z;,z, with z; > 0 and z, < 0.
However, when

-1 1
T — ¢ =2tan [?I(—O—)}—(W—m) (7)
the two points merge at the origin, and for smaller values of © — ¢ the
SP points correspond to pure imaginary values of z. For given 7 — ¢, the
angular region (6) is that where specular contributions to the field exist,
and the boundary is defined by (7). Beyond this there are no specular
contributions, and only a small field is expected. We seek asymptotic eval-
uations of the integral expression (1) that are uniform in angle throughout
the specular and non-specular regions.

2 Specular Region

At angles well within the specular region there are two distinct real SP
points z1,z, at which S|f"(z)|/k >> 1, and the dominant contributions



to the integral come from small ranges of integration about these points.
Since

cos 3(¢ — o)

fl(x)cos¢—sin¢=—sinl(¢+¢)
2 o

(8)

at the SP points, we have

N k cosi(o—a,)
F-\/;—;m’ )

where
I'=5L+1 (10)
with
I = /$1+61 eIkCz+S1(2)] 7,0 (11)
r1-61 ‘
L= / R CHTTE (12)
.’52-52

Consider first I;. Expanding f(z) in a Taylor series about z = z;(> 0)
and using (4),

s
I, ~ eHCm+Si@)] / b e g
_(51

(13)
. 2 4y 2
— Jk[Cz14+Sf(z1)] —jt dt
¢ VRS (=f"(z1)] /_Al ‘
where
1
AI = \/5k5{—f”($1)} 51. (14)

Recalling that f”(z;) < 0, the leading term in the asymptotic expansion of
I, is obtained by allowing A; — oo, giving

. 2 00 2
I, ~ Oz +Si(@)] / o=t gt
! VES{=f"(z1)} J-o



and therefore

. 27r -
I, ~ klCo+Sf(@)) [ =7 -if, 15
1 V kS {=f"(z1)} 1)

I, ~ tCT2+Sf(z2)] /52 oI = f(@2) gy (16)
-6,

Similarly

and since f"(z3) > 0,

9 27 -
I ~ ]k[Cz‘g+Sf(x2)] _ ]I‘ 17
PEe kSf(za) © (117)

Hence, to the leading order,

9 .
[~ kCm4Si@)) [ =T i}

ES{=f(z)}

. 27T -
Jk[Czo+Sf(z2)) [__ 27 % 18
Te \ kS F(zs) © 18)

which can be written more compactly as

o _ 27 1 " Fd
I~ 6ch[C’z‘.+.S‘j(::.)] e 6—2[argf (z:)- %] (19)
,-—_-21:,2 kS| f"(xi)|

where —7 < arg f"(z;) < .

3 Non-specular Region

In this region the values of = specified by (4) are pure imaginary, and if z,
is such that Im.zy > 0, then Im.zy < 0 and Im.f"(z;) < 0, Im.f"(z,) > 0.
The path of integration runs from ¢ = —c0 to £ = oo but can be deformed
to pass through either z; or z,, and when this is done, the dominant con-
tribution to the integral comes from the immediate vicinity of the point.
For I, expansion of f(z) about z; produces an integrand (see (13))

e%k5|f”(r1)lr2
)



whereas I, gives (see (16))
e~ 5kSIf" (z2)l?
The points ;, 2, are now saddle points, and clearly z; is at a lower level

than z;. Accordingly, the saddle point appropriate for a steepest descent
evaluation is r, and

[ ~ HCE+SI(z) /’5’ e
-5,
(20)
. 2 42 2
(IKC2+51(x2)] \/ ' / et di
kS {=jf"(z2)} J-a,
where
1 : :
Ag = \/;)—kS{“]f”(l'Q)} 62. (21)

The leading term in the asymptotic expansion is obtained by allowing A, —
oo and is

: 2w
I ~ kCz2+Sf(z2)] \/ : (22)
kS {=jf"(z2)}

where z; is such that Im.z; < 0. With the previous definition of arg f”(z;),
(22) can be written alternatively as

2T
kS|f"(z2)|

and the result is equivalent to retaining only that term in (19) corresponding
to the SP point whose imaginary part is negative.

[ ~ HCo2+51(22) ¢~ 3loras"(z2)-5] (23)

4 Boundary

The boundary separating the specular and non-specular regions is defined
by (7), and corresponds to the merger of z; and z, at the origin where
f"(z) = 0. Accordingly, (19) and (23) fail when the observation point



is on the boundary, but it is a trivial matter to develop an asymptotic
approximation valid in this case.
Since there is now only a single SP point at z = 0,

I~ /6 HCz+S1(@) 4 (24)
-5
and by expanding f(z) in a Taylor series about 2 = 0, we obtain

§
I~ ¢i*S10) / el 5= 1"0) gy (25)
-5

where we have used the fact that f(0) = f”(0) = 0. By assumption
f"(0) < 0 and hence

9 A 3
[~ kSO = / —J'—dt
‘ ES{=F0)) Ja O

where
1 :
A= 3oy (26)
On allowing A — oo the leading term in the asymptotic expansion is found
to be
) 92 00 43
[ ~ ¢ikS1(0) - / i gt
T VESEO) S
that 1s
[~etsio |2 27 4i(0) (27)
kS {-f"(0)}
where
1 00 3
Ai(z) = — eI T+ 4t (28)
27 J-o

is the Airy integral of the first kind. We note that [Abramowitz and Stegun,
1964]

Ai(0) = 0.355028....



5 Uniform Asymptotic Expansion,

Specular Region

The asymptotic expressions (19) and (23) in the specular and non-specular
regions respectively are valid only in those parts of the regions which are
bounded away from the boundary at which (27) applies, and we now seek
expressions which are uniform in angle and which match (27) into (19) and

(23). We consider the specular region first.

Since f"(z) vanishes at the SP point(s) corresponding to the boundary,
it is necessary to retain an additional term in the Taylor series expansion

of f(z) about z = z; and z. In the case of I}, (13) is replaced by

5
I, ~ 6jk‘[CI‘l+Sf(l‘1)] /1ej1‘2_51'2[f”(-’171)+§f’”(1‘1)]dx
-6

(KO +51(z1)] / T i a ey ma) @) gy
—5+€;

Choosing
_ (=)

€ =
1 F(zy)
the exponent in the integrand becomes

kS 1 » {f”(ml)}2 z{f”(ih)}
]_2__[§ny (xl)_y f’”(xl) +§{f”’($l)}2 !

3

and therefore
I, ~ *CntSi@Hi{f @)Y " @)Y
e]
=614 f"(21)/ " (1)
Recognizing that f”(z1) <0 and f”(z,) < 0, this can be written as

‘ /81+f (Il)/f (Il) 1;2_5' %y"’f"'(rx)—y{f"(rx)}2/f”'(r1)]dy_

: 2.} 2 3
I, ~ 6Jk[021+5f(1?1)]—]§71
kS {=f"(21)}
A l+—l-f“1‘ f”’x . .ti_
. / 1[ 51" (@1)/ (1)] . J(J ‘nt)dt

8 [-14d (@) 1)

(29)

(30)



where

Ay Bks {—f’"(xl)}} 6

wio

kS TR
W = [m] (—F ) (31)

To ensure that the range of integration does not include negative values of
t we now choose .,
f(z1)

0 iy 9

Then, for S|f"(z;)|/k >> 1 the leading term in the asymptotic expansion
1s

I ~ 6jk[cac1+5f(z:1)] [—2__]%6#%7? /OO e'j(%z_'“”dt (32)
kS{"f’”(Il)} o )

which can be expressed in terms of Airy integrals as

- 2 3 ™ ;
I ~ Jk[CI1+Sf(-‘01)][ } e~ IEM
e ES{=f"(1))
- {Ai(-m) =1 Bi(-m) + jHi(-n)} (33)
where
. 1 oo (8 1o 2.,
Bz(z):—/ sin [ — + zt dt+—/ e”TTHAL (34)
™ Jo 3 m™ Jo

is the Airy integral of the second kind and [Abramowitz and Stegun, 1964]

Hi(z) = * / Yoy, (35)

s

The treatment of the integral I, is similar. In place of (16) we now have

I, o MG +S1(z) / AR )+ R )] g (36)
-6 '



which can be written as

I, ~ eHCotSHel+i ()P [ )

Sa+f"(z2)/ f""(z2)

' /—62+f”(r2)/f”’(r2)

Recognizing that f”(z;) > 0 but f”(z2) < 0 we choose
f= -1 (5

f(z,)

to ensure that the integration is confined to negative values of y, and then

e 2 f”'(l‘z y{f” 1'2 } /fm I;’)]dy (37)

I, ~ eJ'k[Cr2+Sf(x2)] _____2_____ _]372 f—mz ’2‘)d2
kS {=f"(x1)}

where

a = [Bis (-] s (38)

Wi

kS 9
2 = | T 2 (22 39
, [2{_f,,,(xl)}] (')} (39)

The leading term in the asymptotic expansion is obtained by allowing A, —

00, giving

1
. 2 3 -2 g‘ 0 3
I, ~ IKlCz2+5f(22)] [_______} eI3 / eI (T —mt) gy 40
2 Sy ¢ )

which can be expressed in terms of Airy integrals as

. 2 .
~ pJKCz24+Sf(z)] = J57;
b [kS{—f"m)}J 6
T {A(~y2) + jBi(~72) — JHi(-72)} - (41)

The desired uniform asymptotic expression for I is therefore

1

: 2 3%
[ ~ I*Cz1+51(x1)] [_____} =35 L Ai(—=~+) — 1 Bi(—
kS {—f"(xz1)} ¢ m {Ai(-n) — jBi(-n)

iHi(- + 7k[Cz2+S5f(z2)] [____“___}
JHi(-m)} +e kS {=f"(z2)}

&bl x {Ai(—) + 1 Bi(—) - Hi(-1) (42)



where v; and 7, are given in (31) and (39) respectively. On the boundary of
the specular region, ; = z; = 0, and since f”/(0) = 0 we have y; = v, =0
there. The expression (42) for I then reduces to that in (27). Well within
the specular region, 71,72 >> 1, and for y >> 1

(1)

1€
Y1

m {Ai(=y) F jBi(—v) £ jHi(=7)} ~

[Abramowitz and Stegun, 1964]. When this is substituted into (42), we
recover (18) precisely.

(43)

6 Uniform Asymptotic Expansion,

Non-specular Region

The final task is to develop a uniform expression which matches (27) into
the formula (23) in the non-specular region, and the procedure is similar
to that given above.

The relevant SP point is now the saddle point z5, and by including an
additional term in the Taylor series expansion of f(z) about z = z, we again
obtain (37). However, f”(z,) is now pure imaginary with Im.f(z9) > 0,
and therefore

A 2 T, 3
I ~ ¢FCz245f(z2)] l:___} e3(-m)
kS {—f"(z2)}
/A2 [1—%%,,7(%%] =105 =mt) 4
Az [‘1‘3157"‘;! ((112))]
where A, is given in (38) and
2
kS r o 2
n=-|7—3| {(-if(=)} <O (44)
[2 {=f"(z2)}*
An asymptotic expression is obtained by allowing A, — 00, and the result
18
5
[ ~ klCz2+5f(z2)] {__.E__J % )} / _. ——‘nt dt,
kS {—f"(z,)}
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which can be expressed in terms of an Airy integral as

. 2 2(_)? :
~ klCxa4Sf(z2)] | < 5(=m)29, A;(— 4
I~e [k‘S{—f”/(.’L‘z)}} ¢ T Ai(—72) (45)

with v, as shown in (44).

On the boundary between the non-specular and specular regions, z, = 0
with f(z9) = f"(z3) = 0. Thus, 7, = 0 and (45) is then identical to (27).
On the other hand, well within the non-specular region where v, < 0,
the Airy integral can be replaced by the leading term in its asymptotic
expansion, viz

‘ 1 “L_20 .3
Ai(=v2) ~ ﬁ(_’ﬁ) i e 3(-m) : (46)

and when this is inserted into (45) we recover (22).

7 Summary

In the specular region a uniform asymptotic expression valid up to and
including the boundary with the non-specular region is

) 2 g .
[ ~ eI k(Cai+S(zi)] [.."—] eFI5
i=21,2 kS| f"(z:)|
- {A(=y) FiBi(—v) £ jHi(—v)} (47)
with

2 % e \12
Yi = [W} {f"(z:)} (48)

and the upper (lower) signs for z; > (<)0. The analogous result for the
non-specular region is

0 2 3, 3 .
I ~ kCz2+5f(z2)] [ J e3(=12)29 As_ 49
kS| f"(z2)| (=72) (49)

11



with
1

2 3 /i 2
Yo =— [W] {=5f"(z2)} (50)

where ; is the pure imaginary saddle point having Im.z, < 0 and Im. f"(z,) >
0.
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