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SUMMARY

This report describes the theoretical development and numerical implementa-
tion of a domain-boundary integral equation (DBIE) for two-dimensional electro-

magnetic scattering. More specifically, it contains the following:
e Derivation of the DBIE using two different approaches;
¢ Interpretation of the DBIE from a physical point of view;

e Moment method solution of the DBIE using pulse basis expansion and point-

matching technique (code included);

o Moment method solution of the DBIE using isoparametric elements and

point-matching technique (code included).

Of particular importance are the two distinct properties of the DBIE: it is
based on only one field component and does not involve derivatives of the field.
The first property allows the use of a minimum number of discretized unknowns.
The second allows an easy application of pulse basis expansion functions. The
further development of isoparametric elements for the moment method results in

a numerical solution of high accuracy.



PREFACE

This report consists of three papers and two numerical codes which represent
our research work conducted during October 1987-October 1988 on the domain-
boundary integral equation. In order to maintain consistency with the frequently-
used phrases “Volume Integral Equation (VIE)” and “Surface Integral Equation
(SIE)”, we had originally named our new equation the “Volume-Surface Integral
Equation (VSIE)”. Though the phrases VIE and SIE are often used for the two-
dimensional case, strictly speaking they belong to the three-dimensional case. On
the other hand, the phrase “Domain-Boundary Integral Equation (DBIE)” is suited
for both two- and three-dimensional cases. Since this report primarily deals with
two-dimensional scattering, we decided to use DBIE for its title. It is, therefore,
understood that the DBIE used in the title and summary is equivalent to the VSIE
in the text.

The authors wish to acknowledge the discussions and suggestions of Professors

C. T. Tai and J. L. Volakis in relation to this work.
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A VOLUME-SURFACE INTEGRAL EQUATION FOR ELECTROMAGNETIC
SCATTERING BY INHOMOGENEOUS CYLINDERS

Jian-Ming Jin, Valdis V. Liepa, and Chen-To Tai

Radiation Laboratory
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Ann Arbor, Michigan 48109

(published in The Journal of Electromagnetic Waves and Applications, vol. 2, no. 5/6)

ABSTRACT

This paper presents an integral equation formulation for electromagnetic scat-
tering by inhomogeneous infinite cylinders having arbitrary scalar permittivities
and permeabilities. The formulation involves both volume and surface integrals
with only one unknown field component, and is applicable to both transverse elec-
tric and transverse magnetic cases. This volume-surface integral equation is well-
suited for numerical implementation. In this paper, the integral equation is first
derived by integrating the wave equation with the aid of the free-space Green’s
function, and then analyzed from the physical point of view, resulting in a new
interpretation for the scattering mechanism. Finally, the equation is programmed

using the method of moments with pulse expansion functions and point-matching.
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Numerical results are shown to demonstrate the validity of the formulation and

the new interpretation of the scattering mechanism.

1. Introduction

The problem of electromagnetic scattering by inhomogeneous cylinders can
be formulated in terms of equivalent polarized currents (see, e.g., [1]-[4]). The
formulation leads to a volume integral equation which involves three unknown
current components for a scatterer having both permittivity e and permeability p
different from their free-space values. If the cross section of a cylinder is divided
into N cells for numerical analysis, one has 3N unknowns; consequently a matrix
equation of size 3N x 3N needs to be solved. However, the three unknown current
components are not independent; they are related by Maxwell’s equations. Using
such relations, one should be able to reduce the number of unknowns. Recently,
a compact formulation has been developed by modifying the equivalent currents,
reducing the three current components to two and thus resulting in 2N unknowns
for numerical analysis [5].

In this paper, the problem is formulated directly using the field concept, in-
stead of the equivalent polarized currents, by integrating the wave equation with
the aid of the free-space Green’s function. The resultant equation contains both
volume and surface integrals but involves only one unknown field component. This
volume-surface integral equation provides an alternative physical interpretation for
electromagnetic scattering, and is well-suited for numerical implementation. Using

this equation, if the circumference of the cylinder is divided into M segments, we
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have only N+ M unknowns and thus the resultant matrix size is (N+M)x (N+M).
It is noted that a similar idea has been employed by Tai to formulate the scattering
by a homogeneous electromagnetically permeable body and by an inhomogeneous

dielectric body for the general three-dimensional case [6].

2. Derivation of the Integral Equation

Consider transverse electric (TE) and transverse magnetic (TM) wave scat-
tering by an inhomogeneous cylinder having its infinite dimension along the z-
direction (see Figure 1). The complex relative permittivity e,(7) and permeability
{t,(7) are continuous functions of position, where 7 is the position vector in the
zy-plane. Let Q denote the region inside the cylinder, Q, the region outside the
cylinder, and T' the boundary of the cylinder separating Q and Q... In the region €,

the z-directed electric or magnetic field, denoted by F, satisfies the wave equation

€0, Ho

Source %

Scatterer

Figure 1: Geometry of wave scattering by an inhomogeneous cylinder.
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V- [w(F)VE(@)] + koo(7) F(7) = 0 (1)

where for TM incidence

F7) = B, u()= ol = (0
and for TE incidence
F) = H(F), uf)=—=, off)=pu7)

In the above, V is a two-dimensional operator defined in the rectangular coordinate
system by V = £(0/0z) + (9/dy) and ky is the free-space wavenumber.

To find an integral equation for F', we integrate (1) over the region ) with the
aid of the two-dimensional free-space Green’s function Go(7|7"), which satisfies the
equation

V2Go(7|7) + k2Go(F ) = —6(7 — ) ()
This leads to the equation
/ /Q {7V - [PV ()] + k() GolFI) F(7) } ds = 0 (3)
Then, using the identity
V- (GouVF) = GoV - (uVF) + uVF - VG,

and the two-dimensional divergence theorem, (3) can be written as




where 7 is the outward unit vector normal to the cylinder’s surface. Substituting

the identity
V- (uFVGy) = uFV*Gy+uVF -VGy + Vu - (FVGy)

into (4) and applying again the two-dimensional divergence theorem, we obtain

/ / Ko (F)Go(FIF")F(F) + u(7) F(F)VAGo(|") + Vu(F) - [F(F)VGiol )]} ds
i [ 2~ a0 2l ar=o 6)

on

Substitution of (2) into the above equation gives

2 / /Q [0(7) — u(F) F(F) Go(F[7)ds + / / Vu(F) - [F(F)VGol|F)]ds

+ ﬁ [u(f)ao(flf') m;(f) — wW(F)F(F )aGOB(n" )] dl

u(F)F(7) for 7 € Q

= 1 su(™)F(7) for 7 onT (6)

0 for 7 € Q.

Note that the line integral is understood to be a principal value integral when r’
is on I', i.e., the singular point r = r’ is excluded from the integration.
Interchanging the unprimed and primed coordinates and using the symmetry

property of the Green’s function Go(7|i') , the above equation can be written as

zﬁ// — ()| F(F) Gy ds+//Vu V' Go(F )] ds
+4 [ 7| 81;,(;) u(F)F (7 )aGg;’r>} ar
u(7) F(7) for 7€ Q
= { u(F)F(F) for Fon T (7)

0 for r € Qg



This is the equation resulting from the integration over the interior region .
Now let us consider the exterior region Q. In this infinite region the field is

governed by the wave equation
VEF(F) + k3F(F) = jwS(7) (8)

and the radiation condition at infinity. The function S(7) is related to the 2-
directed electric or magnetic current by S(7) = poJ,(F) for E-polarization and
S(7) = eoM(F) for H-polarization. Let us assume that the source distribution is

confined within a region Q. Integrating (8) over ., with the function Go(F|F),

we obtain

o L NOF(F)  G(F|)
INC _ / _ N2 1/ !
F (T) .%}‘ {GO(TV) on' F(?‘ ) on' di
0 for 7€ Q
- %F(F) for ron T (9)
F(7) for 7€ Qg

where FINC is the incident field given by

FINO(7 ]w// ) Go(F|i")d

Equation (9) is the well-known surface integral equation.
Since the boundary conditions require the field F and the quantity u(0F/on) to
be continuous across I, we can combine (7) and (9) to obtain an integral equation

which does not involve the normal derivative of the field. The resultant equation

1s then

FINCE) 48 [ [ 106) = u ) PE)Go(rlr)ds



+//VU V' Go(F|7)]ds’ +?{ (#)) F( )QC%%@CH,

u(7)F(F) for 7 € Q
= {1l +u@))F(F)  for FonT (10)
F(7) for 7 €

and we call it the Volume-Surface Integral Equation (VSIE). It should be noted
that the above method is not the only way to derive this equation; it can be also
derived using the method of equivalent polarized currents. Such a derivation is

given in Appendix I to show the difference between the two methods.

Figure 2: A cylinder consisting of two inhomogeneous media.

The above integral equation (10) is valid for problems with u(7) continuous in
2. For cylinders consisting of two or more continuous inhomogeneous media, but

having step discontinuities in u(7) at their interfaces denoted by T (see Figure 2),

a line integral

A et~ e )0G§id” Lar (11)



where 74 points from the — side to the + side, must be included in the left-hand

side of equation (10).

€, U

r'a
Conductor

Q

Figure 3: A conducting cylinder coated with inhomogeneous material.

To deal with scatterers containing perfect conductors, such as coated cylinders
(see Figure 3), a line integral

OF ()

. et 2L Lo

on!

a

— §pu(F)F(7) dl (12)

/
along the conducting surface I, must be included, where 7, points toward the

inside of the conductor, and é, and &, are polarization factors defined as

{ 0r, =0 for E-polarization; 1 for H-polarization

6. =1 for E-polarization ; 0 for H-polarization

3. Physical Interpretation
In this section, we use the concepts of electric currents and dipoles to gain
insight into the individual terms of the volume-surface integral equation and in-

terpret it from the physical point of view. For this, let us rewrite (10) for the TM
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case as follows

& [ [lel) = 0B Golrl)as' + 8 /] ﬂ—r~—)1Ez(F’)G0(f #)ds

+// V'[ } E,(¥)V'Go(|F"))ds' +% S ) S E(7)V'Go(r[) - A'dl'
) B9 o e

FEINOG) = § ML+ 1/ (B(F)  for FonT (13
E,(7) for 7€ Qo

Recalling that a z-directed two-dimensional electric current, denoted by J;, pro-

duces a field

E.(7) = —juono [ [ J(F)GolrI)ds' (14

and a volume distribution of electric dipole moment, denoted by p,, produces a

field [7]

-—]wyo//pu - VGo(7|7)ds' (15)

and also that a surface distribution of electric dipole moment, denoted by p,,

produces a field

F) = jwio / By(7) - VGo(F|7)dl | (16)

by comparing these with (13) we see that the scattered field results from the
superposition of the fields produced by four sources. The first source term is an

equivalent electric current

JW = jweg(e, —1)E, (17)
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the second is another equivalent electric current

pr — 1

J? = jwe E, (18)

the third is an equivalent volume electric dipole

P— Y (i) (19)

Jwito fir

and the fourth is an equivalent surface electric dipole

r 1 ~
Py =~ E.n (20)
JWHofr

The second electric current J(*) differs from the first one J{*) in that it produces

an additional term at the source; the Green’s function, denoted by G(7|7'), applied

to J?) is

ﬂ%%ﬁ+&ﬁW) (21)

G(r[r) =
rather than Go(F|7') that is applied to J{). From (17) - (20), we see clearly how
each source is introduced.

We believe that the above interpretation offers a more physically realistic pic-
ture for wave scattering than the picture that follows from the conventional volume
integral equations which interpret the scattered field as the superposition of the
fields produced by equivalent electric and magnetic currents.

To interpret equation (10) for the TE case, it is convenient to use magnetic

current and magnetic dipole concepts. The interpretation is similar to that for the

TM case; the scattered field results from the superposition of the fields produced
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by magnetic current sources and magnetic dipole moments of volume and sur-
face distributions. Such an interpretation, however, falls back to the nonexistent

magnetic sources again as do the conventional volume integral equations.

4. Numerical Implementation and Results

This section deals with the programming of equation (10), which is solved by
the method of moments in a straightforward manner. Since the equation does not
involve any derivative operation on the unknown (as usual, for scatterers containing
perfect conductors with TM incidence the quantity dF/0n in (12) is treated as an
unknown rather than the normal derivative of an unknown), the pulse expansion
and point-matching technique [1]-[3] can be easily applied to give accurate results.
This is in contrast to the conventional volume integral equations, which contain
derivatives operating on unknowns for the general case, and thus pulse functions are
inappropriate for use in expanding the unknowns [3]. Hence, the volume integral
equation approach requires more effort in selecting expansion functions to obtain
accurate results [8].

Since the method of moments is well documented, here we only give the result
of discretization. We also only consider the problem illustrated in Figure 1; the
problems of Figures 2 and 3 can be treated in a similar manner. Assume the region
Q is divided into N cells and the boundary I is divided into M segments. If we

use ¢; to denote the discretized fields in © and ¢, the fields on T', the application
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of the pulse expansion and point-matching technique gives the matrix equation

. INC
A B || ¢ _|# (22)

¢ pll|e Ive.

where A, B, C, and D are submatrices with dimension of N x N, N x M, M x N,
and M x M, respectively. The expressions for their elements are given in Appendix
II. On the right-hand side of (22) is the discretized incident field. The solution
of the problem is obtained by solving (22) for ¢; and ¢,. Once these discretized
fields are found, the far field is calculated using (10) with the large-argument
approximation for Go(7|r).

We next present two numerical examples. The first one is the bistatic scattering
from a homogeneous circular cylinder with a radius of 0.32) (A is the free-space
wavelength), a relative permittivity of ¢, = 2.5 — j0.5, and a relative permeability
of pr = 1.5 - j0.5. The computed scattering cross sections, o/ as defined in [9],
are shown in Figure 4, along with the exact eigenfunction solution. In the figure,
VSIEM stands for the formulation presented in this paper, 1.e., the Volume-Surface
Integral Equation Method. Note that the two results are almost identical.

The second example is the backscattering from an inhomogeneous rectangular
cylinder of size 0.4\ x 0.8\. Its relative permittivity is a function of position given
by € = [1 + cos(mz/0.4A)][1 + cos(ry/0.8))]; and its relative permeability is a
constant, p, = 1.5. The results are shown in Figure 5, and are compared with
those obtained using the Hybrid Finite Element Method (HFEM) [10], [11]. Again

excellent agreement is observed.
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o/A (dB)

Y PN U I S W B R B P
Y0, 20, 40. 60. 80. 100. 120. 140. 160. 180.

¢ (degrees)

(a)

o/A (dB)

| M . "

40'...1...|...1...|...1.“.. —
. 20. 40. 60. 80. 100. 120. 140. 160. 180.
¢ (degrees)
(b)

Figure 4: Bistatic scattering pattern of a homogeneous circular cylinder, a = 0.32),

€ =2.5—70.5, u, =1.5—70.5. (a) TE case; (b) TM case.

13



2. F

4. =
g
N -6 -
S

go
—
fe——b—+f

-10.:‘
2'....1...,1..,.1....1..L.|. e | !
1207000 300 400 500 60, 70, 80, 90
O (degrees)
(a)
IO.P
0. }
a -10._—
Z
<
© 20 F
-30.
(1
“40- 5070,
¢ (degrees)
(b)

Figure 5: Backscattering pattern of an inhomogeneous rectangular cylinder, ¢ =
0.4X, b= 0.8, €, = [1 4 cos(rz/a)][1 + cos(my/b)], u, = 1.5. (a) TE case; (b) TM

case.

14



It should be noted that the above VSIEM results were obtained with a sampling
criterion of 12 points per material wavelength.

Although the program we developed can be applied to arbitrary two-dimensional
geometries and configurations, the above two examples, we believe, are sufficient
to demonstrate the validity of equation (10) and the corresponding computer pro-

gram.

To show the contribution of various terms in (10) to the scattered field, we also
made a computation for scattering by an inhomogeneous circular cylinder, whose
geometry is the same as that illustrated in Figure 4. The cylinder has a radius
of a = 0.4\, a relative permittivity of €, = 2 — (r/a)?* which is that of a slice
through the center of a Luneberg lens, and a relative permeability of y, = 1.2. For
the TE case, the scattered field is due to an equivalent volume magnetic current
(2nd term in (10)) and an equivalent volume magnetic dipole moment (3rd term
in (10)). There is no surface dipole moment, since ¢, becomes one at the surface of
the cylinder, making the 4th term vanish in (10). The results are shown in Figure
6 in terms of the amplitude and phase of the scattered far-field coefficient P(¢) [9].
For the TM case, the scattered field is due to an equivalent volume electric current
(2nd term in (10)) and an equivalent surface electric dipole moment (4th term
in (10)). In this case there is no volume dipole moment, since x, is a constant.
The results are shown in Figure 7. From both Figures 6 and 7, we see that in
the forward scatter region the field due to the volume currents is dominant and

in-phase with the field that is due to the volume and surface dipoles; while in
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Figure 6: Bistatic scattered field of an inhomogeneous circular cylinder for the TE

case, a = 0.4, &, =2 — (r/a)?, g, = 1.2. (a) Amplitude; (b) Phase.
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Figure 7: Bistatic scattered field of an inhomogeneous circular cylinder for the TM

case, a = 0.4, ¢, =2 — (r/a)?, p, = 1.2. (a) Amplitude; (b) Phase.
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the backscatter region both fields due to currents and dipoles have comparable

magnitudes and they are out of phase.

5. Conclusion

In this paper, an integral equation is derived for the analysis of two-dimensional
electromagnetic scattering by inhomogeneous cylinders. The equation contains
both volume and surface integrals but involves only one field component. From its
physical interpretation it is seen that the field scattered by a cylinder is produced
by a set of equivalent electric (or magnetic) current and dipole sources for TM
(or TE) wave scattering. In regards to numerical analysis, the equation has two
advantages: first, the equation contains only one unknown component, and thus is
numerically more efficient than the volume integral equation formulation; second,
the equation does not contain any derivative operation on the unknown, and hence

the simple pulse expansion and point-matching technique can be used without loss

of accuracy.

Appendix I
Derivation of (10) using the Method of Equivalent Polarized Currents
In the method of equivalent polarized currents, the scatterer is replaced by an

equivalent polarized electric current

J = jweple, — 1)E (23)

and an equivalent polarized magnetic current

M = jeopo(p. — 1)T (24)
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where E and H are the total electric and magnetic fields, which are related by

Maxwell’s equations

V x E = —jwpop, H
(25)

VxH-= jwe()eTE
Let E, and H, represent the fields produced by J, and E,, and H,, the fields

produced by M. They obey the free-space Maxwell’s equations

V X Ee = —jwuoﬁe
. L (26)
VxH.=jwek.+J
and
VxE,= —jw,uo_ﬁm -M
. _ (27)
Vx H, =jwek,

Let us consider TM wave incidence first. For this case, the electric field has

only a z-component. The field due to J is

B.(7) = _]WO// ) GolF|7)ds’
= 28 [ [ [6l) = 0B Golrl7)ds' (28)
and the field due to M is
En(i) = =V [ [ T()Golr)ds
- vx[[ [1—/%( } oFIF) V' x B(F)ds’
- Vx//QV'x{[l ]00 (7| E ()}ds’
~vx [

+V x //QGO(F f’)V’{ ! } x E()ds' (29)

()

]VGO(TI " x B(7)ds'
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Noting that VGo(7|7') = —V'Go(7|'), we can show that (29) can be expressed as

— 2 / /Q v {[1 - ﬁ”] E,(F’)V’GO(FIF’)}ds’
[ [1 _ ;—1—J E.(F)VGo(7li)ds’

e //V/LT } E(7)V'Go(7[)] ds’ (30)

Using equation (2) and the two-dimensional divergence theorem, we can also write

the above equation as

En(f) = 3 yi [1— L ]EZ(F’)MCII’

on'

+ 2k§//ﬂ [1 - HTEF/)} E.(#)Go(F|F")ds'
+3 / /Q v'[ ! ] (E(F)V'Go(F|7)] ds”
2[1 =1/ p.(7)] EL(7) for 7€ Q

+ $ 21— 1/p, (F)E.(F) for ronT (31)
0 for 7 € O

The total electric field is the superposition of the incident field, the field due

to the electric current J, and the field due to the magnetic current 3
E.(F)= ENC@) +2-Eu(7) + 2 - BlF) (32)

Substituting (28) and (31) into the above equation, we thus obtain

EINO() 4 12 / / [q — W}EZ(F’)GO(HF’)(ZS
A RO
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*” o)

} S )8G0(F|F’) dl’

on’
[1/ pr (F)] E:(T) for 7€ 0
— —E[l + 1/ o (F)] E.(T) for ron T (33)
E,(F) for 7 € Q4

This equation is the same as (10) for TM incidence. The derivation for TE in-
cidence is similar. Note that the boundary conditions on I' are automatically
satisfied in this method, while in the derivation of Section 2 they are explicitly

enforced.

Appendix IT
Matrix Element Expressions for (22)
The element expressions for submatrices A, B, C, and D in equation (22) are

given below:

J i i Si
Ay = TR = u(FIH (kolr; - 75)s;

4 0 J ? J
. i - _; y? @)/, ;
o T+ ) ] Pl - e
iaj:1a2a3a"'a-N; 274\7
Ai = u(f) + [v(fl) — u(7 )] [1 +j Z koa; H (Loa )]
i=1,23,-- N
. 1 b i b
_ ) i Ty —Z; Vi Y5 2 -
By = Tholl - u()] [nar) 2= -gl n Y] APt -

i=1,2,3,---N; j=1,2.3,- -, M

J —i» —i - —i
Cij = Jhalo(F) = u(IH (kalrt = 7i1)s;
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. b 1 b 1
). iy LT I Y @ gmb i
+Zl‘0 [ur(rj) lff _ ’f‘;| + uy(rj) lf;ll? _ F;Ijl Hl (kolri - rj‘)sj
1= 1,2,3,"',]‘4; .7 =1,2,3,-- N
J _p N N @)/ =b b
D;; = Zko[l — u(F;)] ngc(rj)lf{J 7 + ny(7;) E— H" (kolr; — 7211
1 7 ¢ J

iaj = 1,2,3,"',]\{; 274.7

[+ ur)]

i=1,23, M

The superscripts ¢ and b are used to distinguish those variables in {2 and on T',
respectively. In the above expressions, s; denotes the area of the jth cell, I; the
length of the jth segment, a; = \/.m, u, and u, are defined by Vu = u, & + u,j,
and n, and n, by 7 = n,Z + n,y. Héz) and Hlm are the Hankel functions of the

second kind, of the zeroth and first order, respectively.
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ABSTRACT

This paper describes a moment method program for computing electromagnetic
scattering (for both E- and H-polarization) from multiple perfectly conducting and
penetrable inhomogeneous cylinders (The latter can be lossy and have both per-
mittivity and permeability different from their free-space values). The program is
a numerical implementation of a recently derived volume-surface integral equation
and uses the pulse expansion and point-matching technique. The main feature of
this program is its simplicity in generating the model and transforming the integral

equation into a linear system of equations. Using this program, we explore and
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demonstrate the usefulness as well as the limitations of the volume-surface integral

equation formulation.

I. Introduction

In the frequency domain the problem of open region electromagnetic scatter-
ing is usually treated using integral equation methods (see e.g., [1]-[4]), partial
differential equation methods (see e.g., [5]), and hybrid techniques which combine
the partial differential equation methods with a surface integral equation or an
eigenfunction expansion (see e.g., [6]-[9]). The integral equation methods have
the advantages of simple numerical implementation and minimum discretization
region, since the formulations incorporate the radiation condition by means of the
free-space Green’s function. However, they have the disadvantage of rather diffi-
cult formulation for complex media and result in full matrices which are costly to
solve when they are very large. The partial differential equation methods have the
advantages of simple formulation even for complex media and simple numerical im-
plementation, and produce sparse matrices which are much easier to solve. Their
major disadvantage, however, is the need of extending the discretization region to
the far field region in order to enforce the radiation condition, which usually leads
to an extremely large number of unknowns'. The hybrid techniques represent a
synthesis of these two methods: their advantages remain while their disadvantages
are eliminated. As a result, they are more powerful especially for treating large

scatterers. However, the formulations and especially the numerical implementation

ICurrently, much attention is aimed at employing more complicated radiation conditions to
reduce the discretization region.
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of the hybrid techniques usually require more effort.

This paper deals with two-dimensional electromagnetic scattering via the inte-
gral equation approach. The purpose of this paper is to describe a simple moment
method program which is based on the formulation of a recently derived volume-
surface integral equation (VSIE) [10]. Using this program, we will explore and
demonstrate the usefulness as well as the limitations of the VSIE, and answer
some questions raised about this new formulation and its applications.

Electromagnetic scattering from and interaction with complex cylindrical ob-
stacles of arbitrary cross section has recently attracted much attention from re-
searchers due to its applications such as the control of radar cross section and the
design of microwave devices. A surface integral equation solution has been pre-
sented by Arvas et al. for multiple perfectly conducting and homogeneous, lossy
dielectric cylinders for transverse magnetic (TM) wave scattering [11]. A similar
solution has also been presented recently by Yuan et al. for a homogeneous di-
electric cylinder partially covered by conductors for both TM and TE (transverse
electric) wave scattering [12]. Earlier, Newman treated a special case involving
TM and TE scattering from a dielectric cylinder in the presence of a perfectly con-
ducting half-plane using a volume integral equation with the half-plane Green’s
function as its kernel [13]. We will show that the formulation and its numerical
implementation presented in this paper can effectively handle the most general case
— TM and TE scattering from multiple cylinders which include perfectly conduct-

ing cylinders and lossy inhomogeneous penetrable cylinders with both permittivity
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and permeability different from their free-space values.

In Section II, the VSIE is presented for both E-polarization (TM) and H-
polarization (TE) fields in such a way that the physical meaning of the terms in
the equation is more obvious. The application of the method of moments with
pulse basis functions and point-matching to the VSIE is described in detail in
Section III. Section IV gives some numerical examples to demonstrate the validity
and versatility of the computer program. Following this is Section V discussing
the limitations of the VSIE and the program. It is the authors’ intent that with
the description given in this paper the interested reader can easily develop his/her

own program and further explore the VSIE application from different perspectives.

II. Volume-Surface Integral Equation

The volume-surface integral equation (VSIE) is an integral equation govern-
ing two-dimensional electromagnetic radiation and scattering phenomena. This
equation has been recently derived by Jin, Liepa, and Tai [10]. It differs from
the conventional integral equations in that: (i) the VSIE contains both line and
area integrals while the conventional integral equations usually contain only area
integrals for inhomogeneous obstacles [2], [3] or line integrals for homogeneous ob-
stacles [4]; (ii) the VSIE has only one scalar unknown variable regardless of the
material properties of the obstacles and the polarization of the fields, while the
conventional volume integral equations have one or two or three scalar unknown
variables depending on the permittivity and permeability of the obstacles and the

polarization of the fields (see Table 1); and more importantly (iii) the VSIE does
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Table 1. Numbers of Scalar Variables in the Volume Integral Equations (VIE)

and Volume-Surface Integral Equation (VSIE)

Material | € # €o, t = po | €= €0, p # fio | €# €0, it F o

Field E-pol. | H-pol. | E-pol. | H-pol. | E-pol. | H-pol.

VIE 1 2 2 1 3 3

VSIE 1 1 1 1 1 1

not involve any derivative operation on the unknown while the conventional vol-
ume integral equations have derivatives operating on the unknowns for the general
case. The second and third differences give the VSIE a notable advantage over the
conventional volume integral equations. In this section, we will present, without

derivation, the VSIE while the detailed formulation can be found in [10].

The problem under consideration is illustrated in Figure 1, where a source
excites an electromagnetic field in the presence of some obstacles which consist of
inhomogeneous dielectrics? and perfect conductors. The source and the obstacles
are of infinite extent in the z-direction, and have no variation of any kind with
respect to the z-coordinate. Thus, the resultant field under such circumstances

has no variation with respect to the z-coordinate.

In the two-dimensional case which we consider here, an arbitrary electromag-

netic field can be expressed as the sum of an E-polarized field which has only a z-

By the word dielectric, in this paper we refer to the general penetrable material rather than
a kind of particular material with p, = 1.
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Figure 1: An illustration of the problem under consideration.
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component of electric field and an H-polarized field which has only a z-component
of magnetic field. Therefore, we can solve the problem by treating the E-polarized
and H-polarized fields separately. In the following, we state the VSIE for these two
fields separately. A unified presentation of the VSIE for the two fields is possible

if appropriate notations are used [10].

E-polarization (TM)
The total z-directed electric field, E,, is a superposition of the incident field,
E!, due to the excitation and the scattered field, E?, due to the presence of the

obstacles:
E.(F) = E,(F) + E3(F). (1)

For the problem under consideration, the scattered field consists of five parts due

to five different sources:
5 .
Ey(r) =Y B39(7). (2)
1=1

1. The first source is a volume electric current due to the non-unity of the permit-

tivity in the region, §2, occupied by the dielectric obstacles:
J(7) = jweole, (7) — 1JE(7). (3)
The Green’s function® applied to this source is

G(F|r') = —jwpoGo(F|r) (4)

3By the phrase Green’s function, here we mean the electric field produced by a unit source.
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where Gy(7|7) = ——('j/4)H(()2)(k0]F — 7). Thus, the source produces a field

B = 1 [ [ o) = 1B Galrl)ds'. (5

2. The second source is also a volume electric current; but, it is due to the non-

unity of the permeability:

3(7) = a1 = = B(7), o

The Green’s function applied to this source is

G@WﬁpﬁmmFWéth%ﬁFﬂ (7)

and the field produced by the source is then

@mwzb— {}am+%/éb——%ﬂ@wmwwmc (s)

pr(7) o

3. The third source is a volume electric dipole moment due to the continuous

variation of the permeability:

which is a transverse vector. Its Green’s function is also a transverse vector:
G(7|7") = —jwuoV'Go(F|i) (10)

and gives

@Wm:/éawwil ]vammw. (11)

NT(F,)
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4. The fourth source is a surface electric dipole moment induced on the interfaces
denoted by I'; where the permeability changes abruptly (including the air-dielectric

interface):

S B 0 U U MO
R o e "

where 7/} is a unit vector normal to 'y and pointing from the “—” side to the “4”
side. The Green’s function for this source is the same as (10). Thus, the source

produces a field

B0 = |

[ L }EZ(F’)T‘LQ-V’GO(HF’)dl’. (13)
Tq | fir

(™) wa(TL)
5. The last source is a surface electric current induced on the conductors’ surfaces

denoted by I'.:

1

[(z(F/ =T~
Jwitopts ()

nl - V'E,(7) (14)

where 7! is the outward unit vector normal to I'.. This current produces a field

1
B0 () = — /F e GolF - VBl (15)

Note that in this case (E-polarization) the variation (either continuous or abrupt)
of the permittivity does not induce any kind of dipole source.

When all the above sources are combined, the VSIE for the E-polarization case

becomes

2 [e.,(f")— ! }Ez(F’)Go(flf’)ds’—% /] EZ(F')V'[ ! }~V’G0(F #)ds'

pr (') pr(7')
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*ZédLul - )]EAT)OG“}Tcu' / Loy 22 g

(74)  pe(e Onyy e r(T) on;
(1/ 1, (F)] E.(F) for 7 in dielectrics
+E(7F) =40 for 7 in conductors (16)
E.(F) for  everywhere else.

H-polarization (TE)
The formulation for the H-polarization case is dual to the above for the FE-

polarization case. For brevity, we only give the equations:

H,(F) = Hi(F) + H3(F) (17)
where
5 .
7) = HO(F) (18)
=1
with

= k2 [ [ (o) = ML) Gol 1) ds (19)

(volume magnetic current contribution)

100 = 1= |+ f | 1 | G

livolume magnetic current contrlbutlon)

o7 j/H [ )JV%H)d (21)

(volume magnetic dipole contribution)

34



HZS(")(F):/Fd Lr(lfﬁ,)_@(lf'_)]ﬂ’(_/)” V' GolF|)dl (22)

(surface magnetic dipole contribution)

ol 1
() = /F e

(surface electric current contribution).

H,(F")AL - VGo(7|7)dl (23)

In contrast to the E-polarization case, here the variation of the permeability does
not introduce any kind of dipole source.

The VSIE for the H-polarization case can then be written as

] i1 g maercaseras s | [ || v

1 BGO (7|7 1 i aGo( ™)
- () =R 4 [ () =
>y L, ) el '_)] I TR S e e U
[1/e.(F)] H.( for 7 in dielectrics
+Hi(F) =40 for 7 in conductors (24)
H,(7) for 7 everywhere else.

III. Application of the Method of Moments

The VSIE of (16) for E-polarization and (24) for H-polarization can be nu-
merically solved using the method of moments (MM) [14]. To ensure an easy
generation of the model, we adopt the simple pulse expansion (basis) functions
and delta testing (weighting) functions (point matching) for the MM solution. In
this section, we will describe the procedure of applying this pulse expansion and

point matching technique to the VSIE.
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Discretization of Obstacles
The first step of the application is to discretize the obstacles, i.e., to divide the
obstacles into a set of cells and segments. Such is illustrated through an example

shown in Figure 2.

Figure 2(a) shows an obstacle consisting of a half-circular dielectric cylinder
and a rectangular dielectric cylinder with a smaller rectangular conducting cylin-
der embedded inside. At the interface between the half-circular cylinder and the
rectangular cylinder, there exists a step discontinuity in both permittivity and
permeability.

Figure 2(b) shows a discretization model of the obstacle. The region £, occu-
pied by the dielectrics, is divided into a set of triangular and quadrilateral cells,
and the interface of discontinuity I'y and the conductor’s surface I'. are divided
into a set of line segments.

The number of discrete points determines the number of the discretized un-
knowns in the final system of equations. Assume the number of cells in  is N,
the number of segments on I'y is M, and the number of segments on I'. is L. The
total number of discretized unknowns is given in Table 2 for different properties of

the materials and different polarizations of the incident fields.
The above discretization model is easy to generate. Since, as we will show later,
the discretization of the VSIE only needs the area and the center-point position

of each cell, one does not have to be concerned with the shape of the cell. This

substantially simplifies the generation of models.
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Figure 2: (a) An original problem; (b) Its discretization model,
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Table 2. Number of Discretized Unknowns in the System Matrix Equation

Material € # €, it = flo €= €, L F o € # €0, L F flo

Field E-pol. | H-pol. E-pol. | H-pol. | E-pol. H-pol.

Unknowns | N+L | N+M+L | N+M+L | N+L | N+M+L | N+M+L

N — Number of cells in the regions () occupied by dielectrics
M — Number of segments on the interfaces (I'y) between dielectrics
L — Number of segments on the surfaces (I',) of conductors
To generate the points on the interfaces and the conductors’ surfaces, we first
break the curves of the interfaces and the surfaces into several arcs with straight
lines as a special case. We then input the end-point coordinates of and the angle
subtended by each arc, and the number of segments we wish to put on the arc.
The program generates the length, the mid-point coordinates, and the normal sine
and cosine of each segment. To generate the points inside the dielectrics, we first
divide the cross-sections of the dielectrics into a number of curved or planar strips
each of which has a constant thickness. Then we input the thickness of each strip,
the end-point coordinates of and the angle subtended by the center-line of the
strip, and the number of cells we wish to use. The program will generate the area
and the center-point coordinates of each cell. Such a model generation can be
accomplished by a rather small program.
We found that the above input format is very convenient, and with care we
can generate a quite accurate model for an arbitrary geometry. This is one of the

reasons for our choice of pulse expansion and point matching. Other expansions
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such as linear expansion requires generating more complicated models such as the
triangular patch model. Such models are usually difficult to generate, since they
need detailed information about the shape of each cell. Though there are some
methods which are capable of doing such a job, they usually require quite large

program packages.

Discretization of the VSIE

The second step of applying the MM is to discretize the VSIE of (16) for
E-polarization and (24) for H-polarization. For brevity, we only consider the E-
polarization case here. The discretization of (24) for the H-polarization case is
similar.

Let us consider the formulation for the discretization model shown in Figure
2(b). We first approximate the continuous unknown field in terms of a set of pulse

functions. For the field in §, we have

E(F) =) P, (25)

where P; is a pulse function which equals 1 in cell s; and equals 0 everywhere else,

and a; is an unknown coefficient. For the field on T'y, we have

M
E, (") = Z&Pj (26)

where P; is a pulse function which equals 1 on segment /; and equals 0 everywhere

else, and f; is an unknown coefficient. Similarly, for the field on T',, we have

1 9E,(7) &
pr(7)  On! _,;%Pk (27)

39



where Py is a pulse function which equals 1 on segment c; and equals 0 everywhere
else, and ~ is an unknown coefficient.

Substituting (25)-(27) into (16), we have

1

Z // {ké [er e )} Gol7|7) + V' [MF’)J 'V’Go(flf’)}ds'
+Zﬂ ]L 1“’)— 1‘/)} angJr dr’ - ka/c Gol | dl

lj lt"(r+ ur(r_
[1/ (7)) Zfil a;P; for7in Q)

HELT) = § (1/2) [V po(Fy) + 1/ e(72)] i B;P;  for7onTy (28)

0 for7onl.

where f denotes the Cauchy principle value integral with singularities removed.
By satisfying (28) at each center-point of N cells and mid-point of M and L

segments, we obtain N + M + L linear algebraic equations whose solution gives

values for the N + M + L unknown cofficients. The scattered far field coeflicient,

P(¢) defined in [15], is then obtained by

_ 1 ke | 0 1
@;5; { —=k2 [q 7 — ] + — cos ¢
- oG- ] + | 2]
_«fj_ 1 sin¢ ejko(ricos¢+y,'sin¢)
Ay pr(T) |- .
+Zﬁ [1 1](9 $ + sin 0, sin ¢)
— - — COS COS Sin sin
S () (o) ’ ’
L .
,ejko(x‘j cos ¢+y; sin ¢) + kacklejko(xk cos ¢+yj sin @) (29)

k=1 4

where ¢ is the observation angle, S; is the area of cell s;, L; is the length of segment

l;, Cy is the length of the segment ¢y, and 0, is defined by 7y = & cos 0 + 7 sin 0.
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For a two dimensional geometry the radar cross section (RCS) per wavelength is

A0 _ 2 b (30

with A being the free-space wavelength.
Before we close this section, we would like to address the evaluation of some of
the integrals. To cast (28) into the final system matrix equation form, one needs

to evaluate the following integrals

L= / / k2 [q(r")— Nr(lf,)} Go(Fml7)ds' (31)

L= / / V’[ ! }-V’Go(Fm]F')ds' (32)

MT(F/)
1 1| 0Go(Fm|7)
b=, [um) - ur<f'_>] o (%3)
I = / Go(Fnl)dl! (34)

where 7, = 7 (i = 1,2,-- - N), or 7p, =7 (j = 1,2,-- -, M), or 7, = 7 (k =
1,2,--+ L).

For evaluating the area integrals I; and I, if 7; # 7,,, we use the approximation

L=#2 [e,(ﬁ) - ﬂr(lm} GolFnlFs) - S (35)
L= {v [—,ul(_r)] - vag(fmm}m . S; (36)

If 7; = 7, we first approximate cell s; as a circular cell of an area equal to that of

the original cell and then evaluate the integrals analytically. The results are

T ),
m(ﬂ)] [1+ J= hoai TP (ko) (37)

]2 = 0 (38)
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where a; = (S;/7)/*. It may be worth pointing out that (35) and (36) are approx-
imate from the perspective of the pulse function expansion. However, if we use the

delta function expansion
N
EL(F) =) aiSib(F — ;) (39)
1=1

for the non-self or off-diagonal elements, (35) and (36) become exact. Therefore,

to be more precise, the expansion we use is a pulse function expansion for the

diagonals (F; = 7,,) and a delta function expansion for the off-diagonals (7; # 7).
The line integrals I3 and I can be approximately evaluated as

{ [/ e (Fis) = 1/ pa(752)] 0Go(T|7) [ Onal s - Ly for 75 # T

0 forr; =7y,
Go(7m|Fe) - Cp for 7y # 7
(—7/4) [1 — j2log (FykoCk/Zle)] <Oy for 7 = 7y

I = (40)

where v = 1.781 and e = 2.718.

It should be pointed out that the above integral evaluation is a crude approxi-
mation. However, it has the advantage of resulting in simple analytical expressions,
and more importantly, the evaluation of I; and I, needs only the central point co-
ordinates and the area of each cell, rather than detailed information about the
shape of the cell. As pointed out earlier, such an approach substantially simplifies
the work of the discretization of the obstacles.

The discretization of (24) for H-polarization is similar to that described above,

since (24) is dual to (16), except for the last integral which is along the conductors’
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surfaces. This integral requires the evaluation of
= 1=
I, = / M—)dl' (42)
Ck ¢
and the result is
{ IGo(Tm|F)[Onclpey, - Ok for 7y # Ty
Iy =

—% for 7y = 7.

IV. Numerical Results

In this section, we present some numerical results computed using the mo-
ment method (MM) program based on the formulation and discussion given above.
Seven different geometries are considered to demonstrate the validity and versatil-
ity of the program.

The first geometry is a coated conducting circular cylinder, which can be solved
analytically using an eigenfunction expansion technique. Such an exact solution
can then be used to verify our VSIE MM results. In Figure 3 we present both
eigenfunction and VSIE MM solutions for the backscattering radar cross section
of the cylinder as a function of the coating thickness for three different coatings.

Overall, the VSIE MM solutions agree quite well with the eigenfunction solutions.

The second and third geometries are related to radar targets. The second
geometry is an inhomogeneous dielectric circular cylinder backed by a conducting
strip, as shown in Figure 4(a). The cylinder has the permittivity variation in
radius the same as that of a spherical Luneberg lens. The third geometry, as

shown in Figure 5(a), is an inhomogeneous dielectric half-circular cylinder backed
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Figure 3: Backscattering cross section (o) of a coated conducting circular cylinder
vs coating thickness (¢). The radius of the conducting cylinder equals 0.2A. The

lines represent the eigenfunction expansion solutions. The circles respresent the

VSIE MM solutions. (a) E-polarization; (b) H-polarization.
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Figure 5: Backscattering pattern of a half cylindrical Maxwell fish eye backed
by a conducting strip. a = 0.6\, a = 60°, ¢, = 4/[1L + (r/a)*]?, ur = 1. (a)
E-polarization; (b) H-polarization.
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by a conducting strip. This cylinder has the permittivity variation in radius same
as that of a Maxwell fish eye. In the figures we show the computed backscattering
radar cross sections of the dielectric cylinder, conducting strip and the combined
structure.

The fourth geometry, shown in Figure 6(a), is a 3\ wide conducting strip having
its edges loaded with dielectric circular cylinders. The results presented are the
backscattering radar cross section of the strip with and without loadings.

We should note that for the E-polarization computations shown in Figures
4(a), 5(a) and 6(a) the conducting strips are infinitely thin, while for the H-
polarization computations of Figures 4(b), 5(b) and 6(b) the strips are assumed
to have a finite thickness of 0.06) in order to allievate the difficulty encountered
in the H-polarization formulation for thin strips of zero thickness.

We should also note that the problem of electromagnetic scattering from mi-
crostrip structures, such as those treated in [11] and [12], is similar to that of

I'igures 4 and 5, and thus can be treated in the same manner.

The last three geometries concern the application of the program to the calcu-
lation of the scattering from arbitrarily shaped conducting cylinders coated with
dielectrics. The geometries are shown in Figures 7(a), 8(a) and 9(a), and they are
coated square, ogival and wedge cylinders, respectively. The results shown are the
backscattering radar cross sections of the cylinders for different coating thicknesses
and for different permittivities and permeabilities of the coatings. Also given in

Figures 7 and 8 are the results obtained using the hybrid finite element method
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Figure 6: Backscattering pattern of an edge-loaded conducting strip. w = 3.0),

d=0.3)\ e =4.0—74.0, ur = 2.0 — j2.0. (a) E-polarization; (b) H-polarization.
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Figure 8: Backscattering pattern of a coated ogival cylinder. w = 1.2X; a = 60°,
t = 0.06X. The lines represent the VSIE MM solutions. The circles represent the

HFEM solutions. (a) E-polarization; (b) H-polarization.
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Figure 9: Backscattering pattern of a coated wedge cylinder. a = 0.3A, a = 40°,

= 0.06). (a) E-polarization; (b) H-polarization.
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(HFEM) [9]. A generally good agreement between the VSIE MM and HFEM
solutions is observed.

Before closing this section, we would like to point out that though we have
not encountered any major problem in obtaining the above results, we found that
for the H-polarization computations of thinly coated structures the number of
discrete points or cells needed to produce a given accuracy is usually larger than
that for the F-polarization computations for the same accuracy. This fact is due
to the existence of surface waves for the H-polarization case which may produce
a complicated field distribution along the circumference of the cylinder. As an
example, for a coated circular cylinder with a coating thickness of 0.03), a coating
permittivity of €, = 2 and permeability of u, = 2, computations show that for the
E-polarization case a sampling rate of 12 points per free-space wavelength along
the circumference is enough to obtain the backscattered far field with an accuracy
of 0.1dB in magnitude and 1 degree in phase, while for the H-polarization case one
would increase the sampling rate to 22 points per free-space wavelength to achieve

the same accuracy.

V. Some Limitations

Like any other integral equation and numerical method, the VSIE and the
program described in this paper also have some limitations. Regarding the main
limitations, we note the following four points.
o For using the VSIE, one needs to specify the gradient of permeability for E-

polarization and the gradient of permittivity for H-polarization. For some prob-
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lems where such a specification is difficult or impossible, the VSIE cannot be used.
For such a case, one would turn to the volume integral equation method where
only the values of permittivity and permeability are required.

¢ Because of the presence of the line integral in the VSIE, the resulting linear
system of equations does not inherit the convolutional form; hence, the conjugate
gradient-fast Fourier transform method, which is an efficient means of solving the
pulse expansion-moment method linear system, may not be applied easily.

e The discretization model used here requires calculating the field values on the in-
terfaces of all discontinuities as unknowns. For cylinders containing many internal
step discontinuities, the number of unknowns will increase significantly.

e The program is not suited for the calculation of internal fields of cylinders with
large values of permittivity for the TE or H-polarization case, though it is very
efficient for the TM or E-polarization case.

Of the above four points, the first and second and partly the fourth result from
the integral equation itself. The third would not be a drawback if one uses patch
models where unknowns are assigned on the patch boundaries. The fourth could
be possibly removed if one adopts more accurate models and evaluates the integrals

more accurately. More work needs to be done for such cases.

VI. Conclusion
In this paper, a moment method program is described for computing electro-
magnetic scattering from multiple perfectly conducting and penetrable inhomoge-

neous cylinders for both TM and TE wave incidence. The program is based on the
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formulation of the volume-surface integral equation, and has the advantages of easy
generation of the model and simple discretization of the integral equation. These
two advantages result from the employment of the pulse and delta expansion and
point-matching technique. The pulse and delta functions are in the domain of the
VSIE operator, while they are not in the domain of the volume integral equation
operator for the general case. The program is useful for solving the complicated
two-dimensional scattering problems involving perfect conductors and lossy inho-
mogeneous materials, and may find applications in the areas of scattering control,
radar identification and remote sensing.

Concerning the three-dimensional case, we note that a similar equation has
been formulated by Tai for scattering by homogeneous, electrically and magnet-
ically permeable bodies and inhomogeneous bodies with p, = 1 [16]. It would
be beneficial if one would derive a similar VSIE for the general three-dimensional

case.
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ABSTRACT
It is shown that traditional subdomain elements such as rectangles and triangles
with pulse expansion basis could lead to considerable inaccuracies when simulat-
ing biological scatterers having high permittivities. In this paper, isoparametric
elements are used in a moment method implementation to remove modelling inac-
curacies of fields and boundaries associated with traditional elements. Numerical
results are also given that show the improvement achieved in the scattering solution

for high contrast circular cylinders.
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1. Introduction

A .Volume-SurfaJC.e Integral Equation (VSIE) was recently presented [1], [2] for
electromagnetic scattering by inhomogeneous cylinders. A moment method im-
plementation of the VSIE was also considered using rectangular and /or triangular
subdomains (elements) with pulse expansion basis functions and point-matching.
Recently, however, we observed that such a moment method solution becomes in-
accurate in the case of scatterers having high permittivity with transverse electric
(TE) incidence or high permeability with transverse magnetic (TM) incidence.
This is primarily true for cylindrical scatterers associated with curved boundaries
such as those encountered in biological models. Under these circumstances, the
simple rectangular and/or triangular elements with pulse expansion basis do not
render an accurate modelling of the internal fields and the scatterers’ boundaries.
This model inaccuracy is generally forgiving in the case of scatterers with nominal
values of refractive indices but it will be shown to be too compromising when the
refractive index becomes large as is usually the case with biological scatterers. Al-
ternative discretization elements are therefore required to improve the scatterer’s
modelling accuracy. The isoparametric elements [3] are found to be capable of
serving this purpose and in this paper we present a numerical solution of the VSIE
by employing such elements.

The isoparametric elements were first introduced in finite element analysis [3]
and refer to discretization elements of the geometry having the same order (shape)

as the field representation within them. That is, the field expansion/basis over a
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quadratic line element, for example, is also quadratic. The main advantage of us-
ing isoparametric elements is to allow an accurate modelling in the case of curved
arbitrarily shaped geometries. However, it appears that only recently [4] they have
been employed in applications related to solutions of integral equations for elec-
tromagnetics. Below we first discuss the inaccuracy associated with traditional
solutions of integral equations for penetrable scatterers having high refractive in-
dices. This is followed by the introduction of the isoparametric elements and the
presentation of a moment method solution of the VSIE using such elements. Re-
sults are subsequently presented which reveal the stability of the solution in the

case of cylindrical geometries associated with high refractive indices.

2. Discussion of Integral Equations for TE Scattering
In this section we examine the three integral equations for the computation of
the internal fields in a dielectric cylinder for the TE incidence. Assume that the

cylinder has its infinite dimension along the z-axis. The VSIE for this case is [1]

HINC(F) + ké//ﬂ [1 - e,.(lf’)} Hz(f’)Go(f|f’)ds’+//QV’ [Cr(lf,)J

[H.(7)V'Go(7|)]ds" + F[fr(l - 1lHz(f')—————-aao(ﬂfl)dl’

) (L) an’
[1/e.(7)] H,(7) for 7 not on T

= 1
(1/2) [1/ex(7) = 1/e,(F)| Hu(7) ~ for FonT )

where HINY denotes the z-component of the incident magnetic field, H, represents
the z-component of the total magnetic field, ¢, denotes the relative permittivity of
the scatterer and G(7|r’) is the two-dimensional free-space Green’s function. In

addition, Q denotes the region occupied by the cylinder, I' denotes the interface
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where ¢,(7) has a step discontinuity, 7 is the unit vector normal to I' pointing from
the “=” side to the “4” side and f denotes the Cauchy principle value integral.
Alternative integral equations for this problem were also given by Borup et al.

[5] as

Ema=E?%a+%//kmﬂ_uawwmﬂw@'

~ [ [V (&) - DB VGl s (2)

(W)

and recently by Peterson and Klock [6] as
H,(F) = HNC(7) + //[2 V' x T(7))Go(7|)ds’ (3)

with

ﬂa:b_ JvXpm@n

1
€ (7)
= : . . —=INC
and F, denoting the electric field transverse to the z-axis. As usual, £, repre-
sents the incident electric field transverse to the z-axis.

Let us now examine the numerical implications which may arise when either of
the three integral equations are implemented in the case of large |¢,|. Referring first
to (1), we may assume without loss of generality that the incident wave, HINC
has unity amplitude. As a result the total internal field, H,, will also have an
amplitude around unity and thus the value of the right hand side of (1) will be
about 1/[e,| for a field point inside the cylinder. For large |¢,| this implies that the
integrals over {} and I' must together give a value nearly equal to and negative of

HINC. That s, if |e,| = 100 and we demand a 1% solution accuracy for the internal
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fields, the integrals must be computed with a corresponding accuracy of 0.01%. In
general, the presence of e, | acts as an error amplifier and we may conclude that
for a solution accuracy of §% the integral must be evaluated with a corresponding
accuracy of §/|e,| percent. This statement has been experimentally verified and,
clearly, for large |e,| a crude discretization of the scatterer is unlikely to produce
the accuracy demanded here.

A similar examination of (2) also reveals that for a desired solution accuracy of
6%, the integral must be evaluated with a corresponding accuracy of §/m percent,

—INC
where m = |E,

|/|E\| =~ 1/\/c;. Thus, even though (2) is slightly less demanding
in accuracy, it is still unstable for scatterers with large refractive indices. This
exposition satisfactorily explains the difficulties encountered in [5] as well as the
success of their modified approach. Also, the results given by Boyes and Kennedy
[7] can be explained in this manner.

At first glance, (3) appears to be the most attractive of all three integral equa-
tions. It is certainly more stable than (1) and (2); however, it involves a second
derivative of the unknown field quantity and as a result demands higher order basis
functions than (1) and (2). In particular, (1) can be implemented with pulse basis
and (2) with linear basis but (3) requires quadratic basis'. Since the introduction
of quadratic basis in (1) and (2) will improve their accuracy, there is no clear

choice which of the three is more attractive for numerical implementation. Each is

certainly associated with its own advantages and disadvantages for large refractive

Yf €, is uniform within each element, the corresponding hasis functions can be one order
lower.
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indices but for nominal values of €, the VSIE given in (1) is generally superior over
the others.

In the next section we consider an implementation of the VSIE using isopara-
metric elements. As stated in the introduction these provide a more accurate
geometrical simulation of the scatterer and representation of its interior field dis-
tribution. They are, therefore, expected to provide the required accuracy for the

simulation of high contrast dielectrics.

3. Formulation of Isoparametric Elements and Point-Matching
Technique

In this section we describe a numerical solution of the VSIE using isoparametric
elements with point-matching. Let us consider both TE and TM wave scattering

by an inhomogeneous cylinder having non-unity permittivity and permeability.

From [1], the field satisfies the general VSIE

FINC( +L2// (%) Go(7|)ds »
IGo(7|r

+// V(") - )V'Go(7|)]ds' +7[ u(F) u(F’_)] F(F )@_ndl/
{u 7)F(7) for 7 not on I'

) o ) (4)
%[U(H) + u(F_)|F(7) for ronT

where

FIF) = E7), u(f) = ==, o(7) = &(7)
for TM incidence and

F(F) = H{7), u(7) = = () = ()



for TE incidence, in which F, represents the z-component of the electric field and
it denotes the relative permeability of the scatterer as usual. For convenience, we

can write (4) as

FINC(F) +// #)ds' + ]LB (7|7 ) F(7")dl

{u() (7) for 7noton T’

) o ) ()
%[u(m) + u(r_)]F(F) for ronT

where the expressions for A(7|7') and B(7|') are determined by direct comparison
with (4).

In a numerical solution of (4) or (5) using isoparametric elements, the two-
dimensional region (? is broken up into a number of quadrilaterals whose sides can
be curved, as shown, for example, in Figure 1. A usual rule for this subdivision
is that the interface I' coincides the with boundries of the quadrilaterals. Assum-
ing now that the discretization results in M2 quadrilaterals and that M1 curved
segments make up the contour(s) I', equation (5) becomes

M2 n2 M1 nl

FINC + ZZ¢6// lr Ve dS + S“Z(ﬁs?[ )Uis(fl)dll
u(7)F(7) for #not on T
B { : i (6)
su(Fy) + u(F2)]F(F) for 7on .

In (6), the field in the eth quadrilateral has been expanded as

F(r) = VA6 0

where V(7) (¢ = 1,2,...,n2) are a set of known expansion basis functions and ¢¢

(¢ =1,2,...,n2) are the corresponding unknown coefficients. Similarly, the field in
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(a) (b)

Figure 1: Two examples for breaking a circular region. (a) A 5 quadrilateral
element model with 20 nodes. (b) A 12 quadrilateral element model with 45

nodes.
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the sth segment was expanded as
nl
F*(r) = Z} Ui (r)é; (8)
where UZ(7) (i = 1,2,...,nl) represent the known expansion basis functions and
¢3 (1 =1,2,...,n1) are the unknown constants.

Before proceeding with a solution of (6) it is first necessary to choose the basis
functions V¢(7) and U?(7) in accordance with the definition of the isoparametric
elements. A possible method of constructing U’ and V7 is to choose them so
that ¢? ( = 1,2,...,nl) represent the field values at nl nodes on the sth segment
and likewise @¢ (2 = 1,2,...,n2) represent the field values at n2 nodes of the eth
quadrilateral. A point-matching procedure applied to (6) will then lead to a matrix

equation for the solution of the nodal field values.

To find U? as described above it is convenient to introduce the transformation

3 3
=Y L&z, y=3 L)y 9)

=1 1=1
allowing a linearization of a quadratically curved segment as shown in Figure 2.

In (9), L? (¢ = 1,2,3) are the shape functions which take the well-known form [3]

1
L= —5(1-0) L=

L

(L+8)¢ Ly=1-¢

O | —

In addition, (9) implies the relation

_ % 2 -a_y_ 2 B .
dl_J(@ﬁ) * (05) #=a (10)

and the unit vector n is now given by

n_<$0§—ya§>u| . (11)
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(a) (b)

Figure 2: A quadratically curved segment in the zy-plane (a) can be transformed

into a straight segment lying on the ¢-axis (b).
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It is observed that L$(£) is unity at the ith node and thus by choosing U = L¢,
¢; will coincide with the nodal values of the field F*(7). This actually is the
definition of the isoparametric elements since L describe the geometrical shape
of the discrete elements. When this expansion is substituted in (6), it leads to

integrals of the form

¢ = /Fs B(FIF,)Lf(é,)dl/ _ /_11 B(fIF,)Lf(fl)IJS(fl)ldfl (12)

and these can be evaluated via a four point Gaussian integration formula giving
4
I =3 WiB(#|7) L (€)1 °(&)] (13)
3=1
where §; = —0.8611363116, £, = —0.3399810436, £ = 0.3399810436, £, = 0.8611363116,
Wy = Wy = 03478548451, Wy = W3 = 0.6521451549, and 7 = 2(&;)2 + y(;)7 in

which z(¢;) and y(¢;) are given by (9).

The treatment of the area integral over Q follows a similar procedure. We can

again introduce the transformation

8 8
z = ZNf(f,n)xi, y = ZNf(é,n)yi (14)

allowing the representation of an arbitrarily shaped quadrilateral with quadrati-
cally curved sides in the zy-plane to a square in the ¢n-plane as shown in Figure 3.

The shape functions are now Nf (i = 1,2, ...,8) and they take the known form 3]

Ni === =m(E4n+1), Ny = 21400 —n)e—n-1)

N§ = 204 4m)(E 0 -1), N = 21 - )1+ n)(~ 47— 1),
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Figure 3: A quadrilateral element with quadratically curved sides in the zy-plane

(a) can be transformed into a square in the local én-plane (b).
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Sa+O1-7),

Np =20 - €)(14n), Ni=3(1- 81 -1

1
Ni= (- €)1-), N =

With this transformation the area element ds can be expressed as

ds = |J¢|dédn (15)
in which
|| = Oz dy e dy
9&on  on ot

is the determinant of the Jacobian transformation matrix. Similarly to the one
dimensional case, the shape function Nf(¢,n) is unity when £ = ¢ and n = 7;.
Thus, in accordance with the definition of the isoparametric elements we choose
Vi® = N{ and as such the coefficients ¢¢ will coincide with the nodal values of the

field (7). When this expansion is substituted in (G) we obtain integrals of the

form

= [ AN = [ [ AGHINE el (16)

and by using a nine point Gaussian integration formula, I¢ can be written as

3 3
= 22 2 WiWRA(FIF)NE (5 mi) | 7(&5,me), (17)

j=1k=1
where & =y = —0.7745966692, & = 0, = 0.0, €3 = n3 = 0.7745966692, W, =
W3 = 0.5555555556, W, = 0.8888888889, and i = (&) + y(&5,mk)7 with

2(&5,me) and y(&;,mx) as given in (14).
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We remark that the above formulation overcomes difficulties associated with
singularities in the integrand. The numerical implementation is also rather straight-
forward and substantially simpler than those employed in traditional formulations.
Most importantly the accuracy of the solution will be seen to be remarkable and
to render accurate results for the internal fields for a scatterer having a large value

of u.

4. Numerical Results

To validate the above moment method formulation and show its usefulness, we
performed a few numerical experiments. For the results shown below, the incident
field is assumed to be a plane wave propagating in the z-direction and the axis of
the cylinder is coincident with the z-axis.

We first consider the problem of plane wave scattering by a dielectric circular
cylinder with a radius 0.05\ (free-space wavelength) and relative permittivity as
high as €, = 72.0—7162.0 corresponding to a muscle cylinder at 100 MHz. Figures 4
and 5 show, respectively, the electric and magnetic fields inside the cylinder for the
TM and TE cases. Also, Table 1 gives the bistatic radar cross section, all compared
with the exact eigenfunction solutions. As seen, there is an excellent agreement
when the element size is chosen sufficiently small. We note that our previous
moment method codes [1] ,[2] employing rectangular and triangular elements with
pulse basis functions are unable to predict the correct TE result shown in Figure
5. A similar conclusion was also reached by Peterson and Klock [6] when they

examined Richmond’s [8] formulation where pulse basis functions were employed
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Table 1. Bistatic Radar Cross Section (¢/)) for a Homogeneous
Dielectric Circular Cylinder with Radius Equal to 0.05)

and Relative Permittivity 72.0 — 7162.0

TM case TE case

Angle (deg.) || 20 unk | 45 unk | Exact || 45 unk | 76 unk | Exact
0 -4.03 -3.96 | -3.95 | -20.44 | -20.46 | -20.54

30 -4.19 -4.12 | -4.11 | -22.23 | -22.49 | -22.26

60 -4.63 -4.56 | -4.55 || -30.28 | -28.93 | -28.99

90 -5.25 | -5.19 | -5.18 || -28.35 | -26.92 | -26.73

120 -5.89 | -5.83 | -5.82 || -19.99 | -19.72 | -19.65

150 -6.38 -6.31 | -6.31 | -16.77 | -16.64 | -16.60

180 -6.56 -6.49 | -6.49 || -15.85 | -15.75 | -15.71

for the solution of the electric field integral equation.

In [6], Peterson and Klock presented an improved magnetic field integral equa-
tion formulation by employing triangular elements with linear basis functions in
the TE case. Here we compare our results with those in [6] for a dielectric cylinder
with a radius 0.05\ having a relative permittivity ¢, = 4.0 — 7100.0. The results
are shown in Figure 6 and as seen the isoparametric elements provide a higher
accuracy.

In addition to the extreme situation described above, we also compared results

obtained using isoparametric elements with those attributed to pulse expansion
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Figure 4: The electric field along (a) the z-axis and (b) y-axis inside a homogeneous

dielectric circular cylinder of radius @ = 0.05) and ¢, = 72.0 —7162.0 for TM wave

mcidence.
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Figure 5: The magnetic field along (a) the z-axis and (b) y-axis inside a homoge-
neous dielectric circular cylinder of radius @ = 0.05\ and ¢, = 72.0 — 7162.0 for

TE wave incidence.
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Figure 6: The magnetic field along the z-axis inside a homogeneous dielectric

circular cylinder of radius @ = 0.05) and €, = 4.0 — j100.0 for TE wave incidence.
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A comparison with exact data and those given in [6].
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functions for the case of nominal refractive indices. Overall, it was observed that
the solution with isoparametric elements is more accurate and efficient than those
employing pulse expansion basis. The improvement in these cases, though, is not

as pronounced.

5. Conclusion

In this paper, we examined three integral equations for TE scattering by di-
electric cylinders having large values of permittivity. A moment method solution
of the volume-surface integral equation was then developed by employing isopara-
metric elements and point-matching. Differing from the traditional solutions using
pulse basis, the one presented here was shown to be more accurate and stable,

particularly in the case of scatterers having large refractive indices.
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DESCRIPTION AND LIST OF CODE VSIEM

Jian-Ming Jin

Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan /8109

ABSTRACT

A FORTRAN program named as VSIEM and developed by the author is

described briefly and listed thereafter.

1. Objective of VSIEM

VSIEM is a computer code written in FORTRAN language and developed
for computing electromagnetic scattering from perfectly conducting and inhomo-
geneous penetrable cylinders for both TE and TM incidence.

VSIEM uses the pulse expansion functions and point-matching technique to
solve the volume-surface integral equation (VSIE). For the formulation of VSIE,
please read the first paper in this report. For the description of the numerical

implementation, please read the second paper. VSIEM was used to generate the

data presented in the two papers.
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2. Input Data
All input data are provided by file INPUT except for relative permittivity and
permeability and their derivatives which are specified by subroutines EMFUN and

DRFUN. A detailed description of the input data is given in the main program.

A sample file of INPUT is listed below.

COATED CIRCULAR CYLINDER

o 2.
1 0 0. 180. 30. 0.
10 -0.4 0.0 0.4 0.0 180.
10 0.4 0.0 -0.4 0.0 180.
0
10 -0.44 0.0 0.44 0.0 180.
10 0.44 0.0 =0.44 0.0 180.
0
10 -0.42 0.0 0.42 0.0 180. 0.04
10 0.42 0.0 -0.42 0.0 180. 0.04
0

3. Output Data
The output data are written in file OUTPUT. The data contain the geometry
and discretization information and the computed result. Following is a sample

output.

COATED CIRCULAR CYLINDER

SEG  NUM ENDPOINTS OF THE SEGMENT SEGMENT PARAMETERS
NUM CELLS XA YA XB YB ANGLE RADIUS LENGTH
1 10 -0.40000  0.00000  0.40000 0.00000 180.00 0.400 1.2566
2 10 0.40000  0.00000 =-0.40000 0.00000 180.00 0.400 1.2566
SEG  NUM ENDPOINTS OF THE SEGMENT SEGMENT PARAMETERS
NUM CELLS XA YA XB YB ANGLE RADIUS LENGTH
1 10 -0.44000 0.00000 0.44000 0.00000 180.00 0.440 1.3823
2 10 0.44000  0.00000 =-0.44000 0.00000 180.00 0.440 1.3823
LAY NUM ENDPOINTS OF THE LAYER LAYER PARAMETERS
NUM CELLS XA YA XB YB ANGLE RADIUS LENGTH
1 10 -0.42000  0.00000  0.42000 0.00000 180.00 0.420 1.3195
2 10 0.42000  0.00000 =-0.42000 0.00000 180.00 0.420 1.3195
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KEY PARAMETERS

INCIDENT POLARIZATION E
NUMBER OF POINTS ON SURFACE(C) 20
NUMBER OF POINTS ON SURFACE(D) 20
NUMBER OF POINTS INSIDE DIELE 20
NUMBER OF INCIDENT FIELD DIRECTIONS 1
NUMBER OF BISTATIC DIRECTIONS 7
WAVELENGTH 2.00000

BISTATIC SCATTERING CROSS SECTION
FOR INCIDENT FIELD DIRECTION= 0.00
THETA  10+LOG(SIGMA/LAMBDA)  PHASE

0.00 -1.33 -93.0
30.00 -1.39 -98.1
60.00 -1.63 -114.1
90.00 -1.70 -143.6

120.00 0.15 -179.9
150.00 2.91 158.0
180.00 4.05 151.7

4. Program Description
Following is a brief description of the main program and subroutines developed

for VSIEM. All others not described here are standard subroutines.

VSIEM - Main program acting as a driver for subroutines.

EMFUM - Specifies €, and g, at a given point (z,y).

DRFUN - Specifies Ve, and Vg, at a given point (z,y).

GEOMS - Discretizes the surfaces of conducting and dielectric cylinders.
GEOMI - Discretizes the cross section of the dielectric cylinder.
MATX1 - Generates the system matrix for E-polarization.

MATX2 - Generates the system matrix for H-polarization.

FARF1 - Computes the far field and RCS for E-polarization.

FARF2 - Computes the far field and RCS for H-polarization.
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Coraaokdkokok ok ok ook ok koK ok ok ok ok ok kokokokokokok skokok sk ok ok sk ok ok sk ok ok ok koK ok Kok Kk kR k% G

PROGRAM VSIEM
Cokaokk ik Aok ok kokok ko ok Rk kR kR kR ok kR ok ok ok ook Kk kKR KKk Kk kK C

C IKPUT FORMAT FOR PROGRAM VSIEM----VERSION OF JAN 21, 1988 C
C MODIFIED JAN 21, 1988 C
C THIS IS A GENERALIZED VERSION OF VSIEM EXTENDED TO TREAT CONDUCTING C
C SURFACE. --- APRIL 23, 1988 C
[ S e e e e L e L L Tl
C CARD 1 FORMAT (18A44) TITLE CARD; USE UP TO 72 COLUMNS C
Cokkk ok ok ook ok kR ok ok ok kool okk R ok ok ok ok ok kK ok ok ok ok ok ok koK ok Kok Kok G
C CARD 2 FORMAT (I2,F10.5) KODE,WAVE C
C KODE=0 COMPUTES BISTATIC SCATTERING PATTERN C
C KODE=1 COMPUTES BACKSCATTERING PATTERN C
C WAVE WAVELENGTH C

Cookokok ok ok ok ok koK ok ok ok ok ook ok ok ook ok ok ok okokok ook kok ook ok ok ok kokokok ok kok K koo ok ok ok kK kx G

C CARD 3 FORMAT (I12,I13,4F10.5) IPP,IOPT,FIRST,LAST,INK,CANG C
C IPP=1 E-POLARIZATION C
C IPP=2 H-POLARIZATION C
C I0PT=0 PARAMETERS NOT PRINTED C
C I0PT=1 PARAMETERS PRINTED C
c FIRST INITIAL SCATTERING AND INCIDENCE ANGLE C
C LAST FINAL ANGLE C
c INK ANGULAR INCREMENT c
C CANG ANGLE FOR BISTATIC COMPUTATION C
o R e T T
C FORMAT FOR INPUT CONDUCTING SURFACE C
[ e e T T
C CARD 4 FORMAT (I5,5F10.5) N,XA,YA,XB,YB,ANGLE C
C N NUMBER OF SAMPLING POINTS ON THIS SEGMERNT C
C XA,YA,XB,YB SEGMENT ENDPOINTS C
C ANGLE ANGLE SUBTENDED BY THE SEGMENT C
(e
C REPEAT CARD 4 FOR EACH SEGMENT C
Cookkok ook ok KoKk ok ok ok kKRR ok ok ok ok okokolokak ok ok ok okl skok ok ok ko okok ok ok Kok Kok ok k%
C CARD 5 FORMAT (I2) INTEGER ZERO IN COLUMN 5; SHUTS C
C OFF READING OF SEGMENT PARAMETERS C
[ T P S T T
C FORMAT FOR INPUT DIELECTRIC SURFACE C
[ S e T P T e
C CARD 6 FORMAT (I5,5F10.5) N,XA,YA,XB,YB,ANGLE C
C N NUMBER OF SAMPLING POINTS ON THIS SEGMENT C
C XA,YA,XB,YB SEGMENT ENDPOINTS C
C ANGLE ANGLE SUBTENDED BY THE SEGMENT C
[ e P P T T
C REPEAT CARD 6 FOR EACH SEGMENT C
Cokokok Rk ORI K Ok KRk ok kR kKRR ok Kk Kok Kk kK Kok Kk
C CARD 7 FORMAT (I2) INTEGER ZERO IN COLUMN 5; SHUTS C
C OFF READING OF SEGMENT PARAMETERS C
Coakokokok ook koK oR kR Rk KRk KRR oKk kR Kok KKK kK R K kK kK Kk
c FORMAT FOR INPUT DIELECTRIC LAYERS C

C#t********t#tt*tt*l#*#**#t*tt*ti#tt*'#*#‘*t**#tttttt**t#**#*#**t*tttttc

C CARD 8 FORMAT (I2,6F10.5) N,XA,YA,XB,YB,ANGLE,DL C
c N NUMBER OF SAMPLING POINTS ON THIS LAYER C
4 XA,YA,XB,YB LAYER ENDPOINTS c
C ANGLE ANGLE SUBTENDED BY THE LAYER C
c DL THICKNESS OF THE LAYER C

C#***#*t#*#*t#**t**#*t#ﬁ*##***#**t**#*#t*t**t#*t***l*tt#t##t*#**t#**#**c
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c REPEAT CARD & FOR EACH LAYER c
Cok s ook ook ok o o o ok kR o ook ok ok ok #t#titt*t##t#***#*t#‘******ttt#****t*ttt**#*t*tc
C CARD 9 FORMAT (I2) INTEGER ZERO IN COLUMN 5; SHUTS c
C OFF READING OF LAYER PARAMETERS c
Ctt#**tttt‘##*#tt“lttl*##t‘#t#l#‘#‘lt##***#*‘#t*t#******#t*#t****tttiic
ct***#t*tittit#'#itt*l“*#tt**#**‘*ltt##***i*t*t#*******tt*******tt****c
COMPLEX A(500,500) ,FINC(500)
COMPLEX EPS(100) ,MU(100) ,EPSI(300) ,MUI (300)
COMPLEX DXEPS (300) ,DYEPS(300) ,DXMU(300) ,DYMU(300)
REAL LAST,INK
DIMENSION XC(100),YC(100),XNC(100),YNC(100),5C(100),DSQC(100),
& ANGC(100)
DIMENSION XS(100),YS(100),XN(100),YN(100),S(100),DSQ(100) ,ANG(100)
DIMENSION XI(300),YI(300),SI(300),DSQI(300),ANGI(300)
DIMENSION ID(18),LUMPC(100,2),LUMPS(100,2),LUMPI(300,2),IPOL(2)
DIMENSION THEA(361),SCATA(361),FASEA(361),KPVT(500)
DATA RED,DIG,PIF,IPOL/0.01745329,57.29578,0.07957747151,
&4HEEEE , 4HHHHH/
OPEN(UNIT=5,FILE=’INPUT’)
OPEN(UNIT=6 ,FILE=>QUTPUT’)
C..... READ INPUT DATA AND GENERATE BODY PROFILE
5 READ (5,100) ID
READ (5,125) KODE,WAVE
READ (5,200) IPP,IOPT,FIRST,LAST,INK,CANG
WRITE (6,150) ID
WRITE (6,300)
CALL GEOMS(LUMPC,XC,YC,XNC,YNC,SC,DSQC, ANGC,EPS ,MU,MC,LLC)
IF(IOPT.EQ.0) GOTO 8
WRITE (6,500)
D0 6 I=1,MC
6 WRITE(6,250)(LUMPC(I,J),J=1,2),XC(I),YC(I),XNC(I),YNC(I),
£5C(I),DSQC(I)
8 WRITE (6,300)
CALL GEOMS(LUMPS,XS,YS,XN,YN,S,DSQ,ANG,EPS,MU,MS,LLS)
IF(IOPT.EQ.0) GOTO 20
WRITE (6,500)
D0 10 I=1,MS
10 WRITE(6,250) (LUMPS(I,J),J=1,2),XS(I),YS(I) ,XN(I),YN(I),
&S(I),DSQ(I),EPS(I),MU(I)
20 WRITE (6,310)
CALL GEOMI(LUMPI,XI,YI,SI,DSQI,ANGI,EPSI,MUI,DXEPS,DYEPS,
&DXMU,DYMU,MI,LLI)
IF(IOPT.EQ.0) GOTO 40
WRITE (6,510)
D0 30 I=1,MI
30 WRITE(6,260) (LUMPI(I,J),J=1,2),XI(I),YI(I),S(I),DSQI(I),
&EPSI(I),MUI(I)
40 CONTINUE
C..... GENERATE SYSTEM MATRIX
XK=6.283185/WAVE
IF(IPP.EQ.2) GOTO 50
CALL MATX1(A,MC,MS,MI,XC,YC,XS,YS,XN,YN,XI,YI,DSQC,DSQ,DSQI,
&EPS ,MU,EPSI ,MUT ,DXMU,DYMU, XK)
GOTO 60
50 CALL MATX2(A,MC,MS,MI,XC,YC,XS,YS,XNC,YNC,XN,YN,XI,YI,DSQC,
&DSQ,DSQI,MU,EPS,MUT ,EPSI,DXEPS ,DYEPS, XK)
60 CONTINUE
N=MC+MS+MI
CALL CGECO(A,500,H,KPVT,RC,FINC)
IF (KODE.NE.0) GO TO 70
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NINC=1
NBIT=1+IFIX((LAST-FIRST)/INK)
GO TO 80
70 XNBIT=0
NINC=1+IFIX((LAST-FIRST)/INK)
80 WRITE (6,400) IPOL(IPP),MC,MS,MI,NINC,NBIT,WAVE
IF(KODE.EQ.1) WRITE(6,600)
IF(KODE.EQ.1) CANG=FIRST
..... COMPUTE INCIDENT FIELD
82 TETA=RED*CANG
CT=C0S(TETA)
ST=SIN(TETA)
DO 84 I=1,MI
HOLD=XK* (CT#XI(I)+ST*YI(I))
84 FINC(I)=CMPLX(COS(HOLD),SIN(HOLD))
DO 85 I=1,MS
HOLD=XK#* (CT*XS (I)+ST*YS(I))
85 FINC(I+MI)=CMPLX(COS(HOLD),SIN(HOLD))
D0 851 I=1,MC
HOLD=XK* (CT*XC(I)+ST*YC(I))
851 FINC(I+MI+MS)=CMPLX(COS(HOLD),SIN(HOLD))
..... COMPUTE NEAR FIELD (NODAL FIELD VALUES)
CALL CGESL(A,500,N,KPVT,FINC,0)
DO 98 I=1,K
98 WRITE(6,99) I,FINC(I),CABS(FINC(I))
99 FORMAT(5X,15,10X,2E16.6,10X,F16.8)
..... CALL SUBROUTINE TO COMPUTE FAR FIELD
IF (KODE.EQ.0) GOTO 88
IF(IPP.EQ.2) GOTO 86
CALL FARF1(FINC,MC,MS,MI,XC,YC,XS,YS,XN,YN,XI,YI,DSQC,DSQ,DSQI,
&EPS ,MU,EPSI ,MUI,DXMU,DYMU,XK,CARG,CANG,1)
GOTO 87
86 CALL FARF2(FINC,MC,MS,MI, XC,YC,XS,YS,XNC,YNC,XN,YN,XI, YI,DSQC,
#DSQ,DSQI,MU,EPS,MUI ,EPSI ,DXEPS,DYEPS,XK,CANG,CANG,1)
87 CANG=CANG+INK
IF(CANG.LE.LAST) GOTO 82
GOTO 1000
88 WRITE(6,610) CANG
IF(IPP.EQ.2) GOTD 90
CALL FARF1(FINC,MC,MS,MI, XC,YC,XS,YS,XN,YN,XI,YI,DSQC,DSQ,DSQI,
&EPS ,MU,EPSI ,MUI,DXMU,DYMU,XK,FIRST,INK,NBIT)
GOTO 1000
90 CALL FARF2(FINC,MC,MS,MI,XC,YC,XS,YS,XNC,YNC,XN,YN,XI,YI,DSQC,
&DSQ,DSQI,MU,EPS,MUI ,EPSI ,DXEPS ,DYEPS,XK,FIRST,INK,NBIT)

100 FORMAT (18A4)

125 FORMAT(I2,F10.5)

150 FORMAT (1X,18A4)

200 FORMAT (I2,I3,4F10.5)

250 FORMAT (2I5,10F10.5)

260 FORMAT (2I5, 8F10.5)

300 FORMAT (/,/10H SEG  NUM,11X,24HENDPOINTS OF THE SEGMENT,11X,
&> SEGMENT PARAMETERS °/11H NUM CELLS,6X,2HXA,8X,2HYA,8X,2HXB,8X,
&2HYB,6X,21HANGLE RADIUS LENGTH)

310 FORMAT (/,/10H LAY NUM,11X,24HENDPOINTS OF THE LAYER ,11X,
&> LAYER PARAMETERS ’/11H NUM CELLS,6X,2HXA,8X,2HYA,8X,2HXB,8X,
&2HYB,6X,21HANGLE RADIUS LENGTH)

400 FORMAT (//25X,14HKEY PARAMETERS//
£10X,21HINCIDENT POLARIZATION,22X,1A1/
£10X ,34HNUMBER OF POINTS ON SURFACE(C) ,110/

83



500

510

600

610

700

710
1000

210X ,34HNUMBER OF POINTS ON SURFACE(D) , 110/
210X ,34HNUMBER OF POINTS INSIDE DIELE , 110/
210X ,35HNUMBER OF INCIDENT FIELD DIRECTIONS,I9/
£10X,29HNUMBER OF BISTATIC DIRECTIONS,I15/

£10X ,10HWAVELENGTH,F34.5)

FORMAT (/,/11H I  SEG,4X,4HX(I),6X,4HY(I),5X,5HXN(I),
&5X,5HYR(I),6X,4HS(I),5X,6HDSQ(I),3X,7HEPSR(I) ,3X,7HEPSI(I),
&4X,6HMUR(I) ,4X,6HMUI(I))

FORMAT (/,/11H I SEG,4X,4HX(I),6X,4HY(I),6X,4HS(I),4X,
&7HAREA(I) ,3X,7HEPSR(I) ,3X,7HEPSI(I),4X,6HMUR(I) ,4X,6HMUI(I))

FORMAT (///,20X,28HBACKSCATTERING CROSS SECTION/17X,
&36HTHETA  10*LOG(SIGMA/LAMBDA)  PHASE/)

FORMAT (///,19X,33HBISTATIC SCATTERING CROSS SECTION/18X,
&20HFOR INCIDENT FIELD DIRECTION=,F7.2/17X,

&36HTHETA  10+LOG(SIGMA/LAMBDA)  PHASE/)

FORMAT(///,18X,35HFIELD DISTRIBUTION INSIDE SCATTERER/15X,
&£53HPONIT NUM COMPLEX FIELD MAG(FIELD)/)

FORMAT (15X ,16,5X,E11.4,4X ,E11.4,5X,F9.4)

STOP

END
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SUBROUTINE EMFUN(X,Y,EPS,MU)
COMPLEX EPS,MU

C..... SPECIFY PERMITTIVITY AND PERMEABILITY
EPS=(2.4,0.0)
MU=(1.2,0.0)

cc EPS=2.~ (X*X+YxY)/(.4%.4)

cc EPS=4./(1+(X*X+Y+Y)/(0.36)) **2
RETURN
END

SUBROUTINE DRFUN(X,Y,DXEPS,DYEPS,DXMU,DYMU)
COMPLEX DXEPS,DYEPS,DXMU,DYMU
C..... SPECIFY THE DERIVATIVES OF PERMITTIVITY AND PERMEABILITY
DXEPS=(0.,0.)
DYEPS=(0.,0.)
cc DXEPS=-2.%X/(0.4%0.4)
cc DYEPS=-2.%Y/(0.4%0.4)
cc DXEPS=-16./ ((1+(X*X+Y*Y)/(0.36))**3)*X/0.36
cc DYEPS=-16./((1+(X*X+Y*Y)/(0.36))*+3)*Y/0.36
DXMU=(0.,0.)
DYMU=(0.,0.)
RETURN
END
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Cttt*****#t#***tt#i##*it*t‘it***#***t**#****t*ttt#***t*t#****#t********c

c
C

TTHIS SUBROUTINE READS DATA AND GENERATE POINTS OF THE SURFACE

OF THE CYLINDER

C
C

Cttt***#t#ttt*ti#tit*t#‘###*t*#li‘#***tiit*****ttt‘*t*t*t***tt#tt*****tc

20

40

120

SUBROUTINE GEOMS(LUMP,X,Y,XN,YN,S,DSQ,ANG,EPS,MU,M,LL)

COMPLEX EPS(100) ,MU(100)

DIMENSION X(100),Y(100),XN(100),YN(100),DSQ(100),S(100),ANG(100)

DIMENSION LUMP(100,2)
DATA RED/0.01745329/
1=0
L=0

READ INPUT PARAMETERS AND PREPARE TO GENERATE SAMPLING POINTS

READ (5,200) N,XA,YA,XB,YB,ANGLE
IF (N.EQ.0) GO TO 120

LIM=2%N-1

TX=XB-XA

TY=YB-YA

D=SQRT (TX*TX+TY*TY)

IF (ANGLE.EQ.0.0) GO TO 20
T=0.5%RED*ANGLE

TRX=TX+TY/TAN(T)

TRY=TY-TX/TAN(T)

RAD=0.5%D/SIN(T)

ARC=2,0%RAD*T

ALF=T/N

DID=2.0*RAD*ALF

GO TO 30

RAD=999.999

ARC=D

DID=D/N

START GENERATINRG

CONTINUE

L=L+1

D0 100 J=1,LINM,2

I=I+1

LUMP(I,1)=I

LUMP(I,2)=L

IF (ANGLE.EQ.0.0) GO TO 40
SINQ=SIN(J*ALF)

C0SQ=C0S (J*ALF)
X(I)=XA+0.5%(TRX*(1.0-C0SQ)-TRY*SINQ)
Y(I)=YA+0.5%(TRX*SINQ+TRY*(1.0-C0SQ))
XN(I)=-0.5%(TRX*COSQ+TRY*SINQ) /RAD
YN(I)= 0.5%(TRX*SINQ-TRY*C0SQ) /RAD
ANG(I)=(ANGLE/N)*RED

GO TO 50

X(I)=XA+0.5%J*TX/X
Y(I)=YA+0.5%I*TY/N

XN(I)=-TY/D

YN(I)= TX/D

ANG(I)=(ANGLE/N)*RED
S(I)=0.5%J%DID

COMPUTE THE PERMITTIVITY AND PERMEABILITY
CALL EMFUN(X(I),Y(I),EPS(I),MU(I))
DSQ(I)=DID

WRITE (6,300) L,N,XA,YA,XB,YB,ANGLE,RAD,ARC
GO TO 10

M=I

LL=L
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200
250
300

FORMAT (I5,5F10.5)

FORMAT (5X,5F10.5)

FORMAT (I3,16,3X,4F10.5,F8.2,F8.3,F8.4)
RETURN

END
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Cxrkkkk
c
C
CHkdkokk

Aok ook ok ook kR kok sk okok ok ok Rk ok ok ok ok ok ok ok ok akokokok ok skok sk skok okok ok skok ok sk ok ok ok ok ok ok ok

TTHIS SUBROUTINE READS DATA AND GENERATE POINTS INSIDE THE C
CYLINDER ¢
kR ok KRR okok Rk kR ok ok kKR kKRR kR Kk ok kR Rk ok ok kK C

SUBROUTINE GEOMI(LUMP,X,Y,S,DSQ,ANG,EPS,MU,DXEPS,DYEPS,

&DXMU,DYMU,M,LL)

20

40

100

120

200
250

COMPLEX EPS(300) ,MU(300) ,DXEPS (300) ,DYEPS(300) ,DXMU(300) ,DYMU(300)
DIMENSION X(300),Y(300),DSQ(300),S(100),ANG(100)
DIMENSION LUMP(300,2)

DATA RED/0.01745329/

1=0

L=0

READ INPUT PARAMETERS AND PREPARE TO GENERATE SAMPLING POINTS
READ (5,200) N,XA,YA,XB,YB,ANGLE,THICK

IF (N.EQ.0) GO TO 120

LIM=2%N-1

TX=XB-XA

TY=YB-YA

D=SQRT (TX*TX+TY*TY)

IF (ANGLE.EQ.0.0) GO TO 20
T=0.5*RED*ANGLE

TRX=TX+TY/TAN(T)

TRY=TY-TX/TAR(T)

RAD=0.5*D/SIN(T)

ARC=2.0*RAD*T

ALF=T/N

DID=2.0*RAD*ALF

GO TO 30

RAD=999.999

ARC=D

DID=D/X

START GENERATING

CONTINUE

L=L+1

D0 100 J=1,LIN,2

I=I+1

LUMP(I,1)=I

LUMP(I,2)=L

IF (ANGLE.EQ.0.0) GO TO 40
SINQ=SIN(J*ALF)

C0SQ=CO0S (J*ALF)
X(I)=XA+0.5%(TRX*(1.0-C0SQ)-TRY*SINQ)
Y(I)=YA+0.5%(TRX*SINQ+TRY*(1.0-C0SQ))
ANG(I)=(ANGLE/N)*RED

GO TO 50

X(I)=XA+0.5%J*TX/N

Y(I)=YA+0.5%J*TY/N

ANG(I)=(ANGLE/N)*RED

S(I)=0.5%J*DID

COMPUTE THE PERMITTIVITY AND PERMEABILITY
CALL EMFUN(X(I),Y(I),EPS(I),MU(I))

CALL DRFUN(X(I),Y(I),DXEPS(I),DYEPS(I),DXMU(I),DYNU(I))
DSQ(I)=DID*THICK

WRITE (6,300) L,N,XA,YA,XB,YB,ANGLE,RAD,ARC
GO TO 10

M=I

LL=L

FORMAT (I5,6F10.5)

FORMAT (5X,5F10.5)
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300 FORMAT (I3,16,3X,4F10.5,F8.2,F8.3,F8.4)
RETURN
END
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Cookkokkok ok koo kR ok koo ok kR Kok KKk ook Kok ok oKk ok okok kKoK ok Kk ok kkkkkkC

C
C

SUBROUTINE FORMS SYSTEM MATRIX [A] FOR E-POLARIZATION;
FOR H-POLARIZATION, USE MATX2.

C
C

Coaoioiok ok ko ok kR ok kR kR ok Rk ok ko ok ok ok Kok ok Kok kR ook dok ok ok ok k
SUBROUTINE MATX1(A,MC,MS,MI,XC,YC,XS,YS,XN,YN,XI,YI,DSQC,DSQ,DSQI,

&EPS ,MU,EPSI ,MUI,DXMU,DYMU,XK)

COMPLEX A(500,500),EPS(100) ,MU(100) ,EPSI(300) ,MUI(300) ,DXMU(300),

&DYMU(300) ,HZERO,HONE

DIMENSION XC(100),YC(100),XS(100),YS(100),XN(100),YR(100),XI(300),

&YI(300),DSQC(100),DSQ(100) ,DSQI(300)
PI=3.141592654

DO 20 I=1,MI

D0 20 J=1,MI

IF(I.EQ.J) GOTO 10

XJI=XI(J)-XI(I)

YII=YI(J)-YI(I)

RIT=SQRT (XJI*XJI+YJI*YJI)

RRO=XK*RJI

CALL HANKZ2(RKO,2,HZERO,HONE)
A(T,J)=(XK+XK*(EPSI(J)-1./MUI(J))*HZERO+(DXMU(J) *XJI/RIT+

&DYMU(J)*YJI/RII)/(MUI(J)*MUI(J))+XK*HONE)*CMPLX (0. ,0.25)*DSQI(J)

GOTD 20
10 RKA=SQRT(DSQI(J)/PI)#*XK
CALL HANKZ2(RKA,1,HZERO,HONE)
A(I,I)=1./MUI(I)+0.5%(EPSI(I)-1./MUI(I))*(2.+CMPLX(0.,1.)
&+PI+RKA*HONE)
20 CONTINUE
D0 30 I=1,MI
DO 30 J=1,MS
XJIT=XS(J)-XI(I)
YII=YS(J)-YI(I)
RIT=SQRT (XJT*#XJI+YJI*YJI)
RKO=XK+RJI
CALL HANKZ2(RKO,1,HZERO,HONE)
30 A(I,J+MI)=(1./MU(J)-1.)*(XJI/RIT*XN(I)+YII/RIT+YN(J))
&*CMPLX(0.,0.25)*XK+HONE*DSQ(J)
DO 40 I=1,MS
DO 40 J=1,MI
XIT=XI(J)-XS(I)
YII=YI(J)-YS(I)
RII=SQRT (XJT*XJI+YJI*YJI)
RKO=XK*RJI
CALL HANKZ2(RKO,2,HZERO,HONE)
40  A(T+MI,J])=(XK#XK*(EPSI(J)-1./MUI(J))+HZERO+(DXMU(J)*XJI/RIT+

&DYHU(J)*YJI/RJI)/(HUI(J)*HUI(J))*XK*HUNE)*CHPLX(O,,0.25)*DSQI(J)

D0 60 I=1,MS
D0 60 J=1,MS
IF(I.EQ.J) GOTD 50
XJI=XS(J)-XS(I)
YJI=YS(J)-YS(I)
RIT=SQRT(XJI*XJI+YJI*YJI)
RKO=XK#RJI
CALL HANKZ2(RKO,1,HZERO,HONE)
A(T+MI,J+MI)=(1./MU(J)-1.)*(XJT/RIT*XN(J)+YJI/RIT+YN(]))
&*CMPLX(0.,0.25)*XK*HONE*DSQ(J)
GOTO 60
50 A(I+MI,J+MI)=0.5%(1.+1./MU(I))
60 CONTINUE
DO 70 I=1,MI
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D0 70 J=1,MC
XJI=XC(J)-XI(I)
YJI=YC(J)-YI(I)
RII=SQRT(XJI*XJI+YJI*YJII)
RKO=XK*RJI
CALL HANKZ2(RKO,O,HZERO,HONE)
70 A(I,J+MI+MS)=-CMPLX(0.,0.25)*HZERO*DSQC(J)
DO 80 I=1,MS
DO 80 J=1,MC
XJI=XC(J)-XS(I)
YJI=YC(J)-YS(I)
RII=SQRT (XJI*XJI+YJI*YJI)
REKO=XK*RJI
CALL HANKZ2(RKO,O,HZERO,HONE)
80 A(I+MI,J+MI+MS)=-CMPLX(0.,0.25)*HZERD*DSQC(J)
DO 90 I=1,MC
D0 90 J=1,MI
XJI=XI(J)-XC(I)
YJI=YI(J)-YC(I)
RIT=SQRT (XJI*XJI+YJI*YJI)
RKO=XK*RJI
CALL HANKZ2(RKO,2,BZERO,HONE)
90 A(T+MI+MS,J)=(XK*XK*(EPSI(J)~1./MUI(J))*HZERO+(DXMU(J)*XJI/RII+
&DYMU(J)*YJI/RJII) /(MUI(J)*MUI(J))*XK*HONE)*CMPLX(0.,0.25)*DSQI(J)
DO 100 I=1,MC
D0 100 J=1,MS
XJI=XS(J)-XC(I)
YJI=YS(J)-YC(I)
RII=SQRT (XJI*XJI+YJI*YJI)
RRO=XK*RJI
CALL HANKZ2(RKO,1,HZERO,HORE)
100 A(T+MI+MS,J+MI)=(1./MU(CJ)-1.)*(XJI/RII*XN(JI)+YJI/RII*YN(J))
&*CMPLX(0.,0.25)*XK+HONE*DSQ(J)
DO 120 I=1,MC
D0 120 J=1,MC
IF(I.EQ.J) GOTO 110
XJI=XC(J)-XC(I)
YJI=YC(J)-YC(I)
RII=SQRT (XJI*XJI+YJI*YJI)
RRO=XK*RJI
CALL HANKZ2(RKO,0,HZERO,HONE)
A(I+MI+MS, J+MI+MS)=~CMPLX(0.,0.25)*HZERO*DSQC(J)
GOTO 120
110 A(I+MI+MS,J+MI+MS)=-CMPLX(0.,0.25)*(1.0-CMPLX(0.,2.)/PI*
&AL0G(0.1638+XK*DSQC(J)))*DSQC(J)
120 CONTINUE
RETURN
END
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C*#t*t*****#*ttt‘t“t*#tt#*t‘t#ttttt**tt#tt#******#t#**i*t**ttttttt*tt*c

C

SUBROUTINE FORMS SYSTEM MATRIX [A] FOR H-POLARIZATION; C

C**ttt*‘**#*tt#t*tttt*##t*t‘t***t*#*tttt#*tt#ttt#i*tt#*********tt#*****c

10

20

30

40

50
60

SUBROUTINE MATX2(A,MC,MS,MI,XC,YC,XS,YS,XNC,YNC,XN,YN,XI,YI,DSQC,
&DSQ,DSQI,EPS,MU,EPSI,MUI,DXMU,DYMU,XK)

COMPLEX A(500,500) ,EPS(100) ,MU(100) ,EPSI(300) ,MUI(300) ,DXMU(300),
&DYMU(300) ,HZERO,HONE

DIMENSION XC(100),YC(100),XS(100),YS(100),XN(100),YN(100),
&XNC(100) ,YNC(100),XI(300),YI(300),DSQC(100),DSQ{100),DSQI(300)
PI=3.141592654

D0 20 I=1,MI

DO 20 J=1,MI

IF(I.EQ.J) GOTO 10

XIT=XI(J)-XI(I)

YJI=YI(J)-YI(I)

RII=SQRT (XJI*XJI+YJI*YJI)

RKO=XK*RJI

CALL HANKZ2(RKO,2,HZERO,HONE)
A(TI,X)=(XK*XK*(EPSI(J)-1./MUI(J))*HZERO+(DXMU(J)*XJI/RII+
&DYMU(J)*YJI/RJII)/(MUI(J)*MUI(J))*XK+*HONE)*CMPLX(0.,0.25)*DSQI(J)
GOTO 20

RKA=SQRT(DSQI(J)/PI)*XK

CALL HANKZ2(RKA,1,HZERO,HONE)
A(I,I)=1./MUI(I)+0.5%(EPSI(I)-1./MUI(I))*(2.+CMPLX(0.,1.)
&+PI*RKA*HOBE)

CONTINUE

D0 30 I=1,MI

D0 30 J=1,MS

XJI=XS(J)-XI(I)

YJII=YS(J)-YI(I)

RII=SQRT (XJI*XJI+YJI*YJI)

RRO=XK+*RJI

CALL HANKZ2(RKO,1,HZERO,HONE)
A(T,J+MI)=(1./MU(J)-1.)*(XJI/RIT*XN(I)+YII/RII*YN(J))
&*CMPLX(0.,0.25)*XK+HONE*DSQ(J)

DO 40 I=1,MS

DO 40 J=1,MI

XJI=XI(J)-XS(I)

YII=YI(J)-YS(I)

RIT=SQRT(XJI*XJI+YJI*YJI)

RRKO=XK*RJI

CALL HANKZ2(RKO,2,HZERO,HONE)
A(T+MI,J)=(XK+XK*(EPSI(J)-1./MUI(J))+HZERO+(DXMU(J)*XJI/RIT+
&DYMU(J)*YJI/RJII)/(MUI(J)*MUI(J))+XK+HONE)*CMPLX (0. ,0.25)*DSQI (J)
DO 60 I=1,MS

DO 60 J=1,MS

IF(I.EQ.J) GOTO 50

XJII=XS(J)-XS(I)

YJI=YS(J)-YS(I)

RII=SQRT(XJI*XJI+YJI*YJI)

RRO=XK*RJI

CALL HANKZ2(RKO,1,HZERO,HONE)
A(T+MI,J+MI)=(1./MU(J)-1.)*(XJI/RIT*XN (J)+YII/RIT*YN(J))
&+CMPLX(0.,0.25)*XK*HONE*DSQ(J)

GOTO 60

A(I+MI,J+MI)=0.5%(1.+1./MU(I))

CONTINUE

DO 70 I=1,MI

DO 70 J=1,MC
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XJI=XC(J)-XI(I)

YJII=YC(J)-YI(I)

RII=SQRT (XJI*XJI+YJI*YJI)
REO=XK*RJI

CALL HANKZ2(RKO,1,HZERO,HONE)

70 A(I,J+MI+MS)=-(XJI/RII*XNC(J)+YII/RIT*YNC(J))

&*CMPLX(0.,0.25)*XK+xHONE*DSQC(J)
D0 80 I=1,MS

DO 80 J=1,MC

XJI=XC(J)-XS(I)

YJI=YC(J)-YS(I)
RII=SQRT(XJI*XJI+YJI*YJI)
RKO=XK*RJI

CALL HANKZ2(RKO,1,HZERO,HONE)

80 A(I+MI,J+MI+MS)=-(XJI/RII*XNC(J)+YJI/RII*YNC(J))

&*CMPLX(0.,0.25)*XK+*HONE*DSQC(J)
D0 90 I=1,MC

D0 90 J=1,MI

XJI=XI(J)-XC(I)

YJI=YI(J)-YC(I)
RII=SQRT(XJI*XJI+YJI*YJI)
RKO=XK*RJI

CALL HANKZ2(RKO,2,HZERO,HONE)

90 A(I+MI+MS,J)=(XK+XK*(EPSI(J)-1./MUI(J))*HZERO+(DXMU(J)*XJI/RII+
&DYMU(J)*YJI/RJII)/(MUL(J)*MUI(J))+XK+HONE)*CMPLX (0.,0.25)*DSQI(J)

D0 100 I=1,MC
DO 100 J=1,MS
XJI=XS(J)-XC(I)
YJI=YS(J)-YC(I)
RII=SQRT(XJI*XJI+YJI*YJI)
REKO=XK*RJI
CALL HANKZ2(RKO,1,BZERO,HONE)
100  A(T+MI+MS,J+MI)=(1./MUCJ)-1.)*(XJI/RIT*XN(JI)+YJI/RIT*YN(J))
&*CMPLX(0.,0.25)*XK*HONE*DSQ(J)
D0 120 I=1,MC
D0 120 J=1,MC
IF(I.EQ.J) GOTO 110
XJI=XC(J)-XC(I)
YJI=YC(J)-YC(I)
RII=SQRT(XJI*XJI+YJI*YJI)
RKO=XK*RJI
CALL HANKZ2(RKO,1,HZERO,HONE)
A(T+MI+MS , J+MI+MS)=-(XJI/RII*XNC(J)+YII/RIT*YNC(J))
&*CMPLX(0.,0.25)*XK+HONE*DSQC(J)
GOTO 120
110 A(I+MI+MS,J+MI+MS)=0.5
120 CONTINUE
RETURK
END
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C**ttt**ttttt#t*#ttt‘i‘t##‘#t##*##*#t“**ttit##‘t#****#tt#tt*t*t#t#tt**c

C

THIS SUBROUTINE CALCULATE FAR FIELD AND RADAR CROSS SECTION C

C***#t*t**#t*tt#t*#**tttt##*#*t**t#***ﬁ‘****t***#**t****tt#tit*t******tc

20

30

40

50

100

SUBROUTINE FARF1(FINC,MC,MS,MI XC,YC,XS,YS,XN,YN,XI,YI,DSQC,DSQ,
&DSQI,EPS,MU,EPSI ,MUI,DXMU,DYMU,XK,FIRST,INK,NBIT)
COMPLEX FINC(500),EPS(MS),MU(MS) ,EPSI(MI),MUI(MI)
COMPLEX PSCAT,HZERO,HONE,DXMU(MI) ,DYMU(MI)

REAL IRK

DIMENSION XC(MC),YC(MC),XS(MS),YS(MS) ,XN(MS),YN(MS),XI(MI),YI(MI),
&DSQC(MC) ,DSQ(MS) ,DSQI(MI)

PI=3.141592654

RED=0.01745329

CANG=FIRST

DO 100 I=1,NBIT

PSCAT=CMPLX(0.,0.)

TETA=RED*CANG

COT=COS(TETA)

SIT=SIN(TETA)

DO 20 J=1,MI

RP=SQRT(XI(J)*XI(J)+YI(J)*YI(J))

COP=XI(J)/RP

SIP=YI(J)/RP

HOLD=XK*RP*(COT*COP+SIT*SIP)
HZERO=CMPLX (COS (HOLD) ,SIN(HOLD))
HONE=CMPLX (0. ,1.)*HZERO

PSCAT=PSCAT~(XK#XK# (EPSI(J)-1./MUI(J))*HZERO- (DXMU(J)*COT+
&DYMU(J)*SIT)/(MUI(J)*MUI(J))*XK+HONE)*CMPLX(0.,0.25)*DSQI(J)
&+FINC(J)

CONTINUE

D0 30 J=1,MS

RP=SQRT(XS(J)*XS(J)+YS(J)*YS(J))

COP=XS(J)/RP

SIP=YS(J)/RP

HOLD=XK*RP* (COT*COP+SIT*SIP)
HZERO=CMPLX (COS (HOLD) , SIN(HOLD))
HONE=CMPLX (0. ,1.)*HZERD
PSCAT=PSCAT+(1./MU(J)-1.)*(COT*XN(J)+SIT*YN(J))
&*CMPLX (0.,0.25)*XK*HONE*DSQ(J) *FINC (MI+J)

D0 40 J=1,MC

RP=SQRT(XC(J)*XC(J)+YC(J)*YC(J))

COP=XC(J)/RP

SIP=YC(J)/RP

HOLD=XK*RP*(COT*COP+SIT*SIP)

HZERO=CMPLX (COS(HOLD) ,SIN(HOLD))
PSCAT=PSCAT+CMPLX(0.,0.25) *HZERO*DSQC (J) *FINC (MI+MS+J)
PMAG=CABS(PSCAT)

PPHS=ATAN2 (AIMAG (PSCAT) ,REAL(PSCAT))*180./PI
SIGMA=10.*L0G10(2.*PMAG*PMAG/PI)

WRITE(6,50) CANG,SIGMA,PPHS

FORMAT (9X,F13.2,F15.2,F16.1)

CANG=CANG+INK

CONTINUE

RETURK

END
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Ctt******#**#*tt*i‘##*t#t***##tttt******tt#*t*#*********t******tttt****c

C

THIS SUBROUTINE CALCULATE FAR FIELD AND RADAR CROSS SECTION C

C****#**t#*t*t****ttt***#t##t********#tt*********i*t********t*********tc

SUBROUTINE FARF2(FINC,MC,MS,MI,XC,YC,XS,YS,XNC,YNC,XN,YN,XI,YI,
&DSQC,DsQ,DSQI,EPS,MU,EPSI,MUI ,DXMU,DYMU, XK ,FIRST,INK,NBIT)
COMPLEX FINC(500),EPS(MS),MU(MS) ,EPSI(MI),MUI(MI)

COMPLEX PSCAT,HZERO,HONE ,DXMU(MI),DYMU(MI)

REAL INK

DIMENSION XC(MC),YC(MC),XS(MS),YS(MS) ,XN(MS),YN(MS),XI(MI),YI(MI),
&DSQC(MC) ,DSQ(MS) ,DSQI(MI) ,XNC(MC),YHC (MC)

PI=3.141592654

RED=0.01745329

CANG=FIRST

DO 100 I=1,NBIT

PSCAT=CMPLX(0.,0.)

TETA=RED*CANG

COT=COS(TETA)

SIT=SIN(TETA)

DO 20 J=1,MI

RP=SQRT(XI(J)*XI(J)+YI(J)*YI(J))

COP=XI(J)/RP

SIP=YI(J)/RP

HOLD=XK*RP* (COT*COP+SIT*SIP)
HZERO=CMPLX (COS (HOLD) , SIN(HOLD) )

HONE=CMPLX(0.,1.)*HZERO
PSCAT=PSCAT-(XK*XK+(EPSI(J)~1./MUI(J))*HZERO-(DXMU(J)*COT+
&DYMU(J)*SIT)/(MUI(J)*MUI(J))*XK+HONE)*CMPLX(0.,0.25)*DSQI(J)

&*FINC(J)

20 CONTINUE

30

40

50

100

D0 30 J=1,MS
RP=SQRT(XS(J)*XS(J)+YS(J)*YS(J))
COP=XS(J)/RP

SIP=YS(J)/RP

HOLD=XK*RP*(COT*COP+SIT*SIP)

HZERO=CMPLX (COS(HOLD) , SIN(HOLD))
HONE=CMPLX(0.,1.)*HZERO
PSCAT=PSCAT+(1./MU(J)-1.)*(COT*XN(J)+SIT*YN(J))
&*CMPLX(0.,0.25)*XK+HONE*DSQ(J) *FINC (MI+J)

DO 40 J=1,MC
RP=SQRT(XC(J)*XC(J)+YC(I)*YC(J))
COP=XC(J)/RP

SIP=YC(J)/RP

HOLD=XK*RP* (COT*COP+SIT*SIP)
HZERO=CMPLX (COS (HOLD) , SIN(HOLD))
HONE=CMPLX(0.,1.)*HZERO
PSCAT=PSCAT-(COT*XNC(J)+SIT*YNC(J))
&+CMPLX(0.,0.25)*XK*HONE*DSQC(J) *FINC(MI+MS+])
PMAG=CABS (PSCAT)

PPHS=ATAN2 (ATIMAG (PSCAT) ,REAL(PSCAT) ) *180./PI
SIGMA=10.*L0G10(2.*PMAG*PMAG/PI)

WRITE(6,50) CANG,SIGMA,PPHS

FORMAT (9X,F13.2,F15.2,F16.1)

CANG=CANG+INK

CONTINUE

RETURN

END
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C*ti**#**##**#*tt*******t#*#*t**t#t##******#*#*t****#*******#*#*‘!**C

C C
SUBROUTINE HANKZ2(R,N,HZERO,HONE)

C C

Corokkkokok kool okk ook koo KRk oKk bk kK Rk ok ok ok Kk

C C

c Called by subroutines MATXE and MATXH to compute Hankle C

C functions of the second kind for orders one and zero. The C

C argument is variable R and must be positive. C

C C

C..... HANKEL FUNCTIONS ARE OF FIRST KIND--J-iY

C..... =0 RETURNS HZERO (H-zero)

C..... §=1 RETURNS HONE (H-one)

C..... §=2 RETURNS HZERO AND HONE

Covun SUBROUTINE REQUIRES R>0
Covun. SUBROUTINE ADAM MUST BE SUPPLIED BY USER
DIMENSION A(7),B(7),c(7),D(7),E(7),F(7),G(7),H(7)
COMPLEX HZERO,HOKNE
DATA A,B,C,D,E,F,G,H/1.0,-2.2499997,1.2656208,-0.3163866,
£0.0444479,-0.0039444,0.00021,0.36746691,0.60559366 ,-0.74350384,,
£0.25300117,-0.04261214,0.00427916,-0.00024846,0.5,-0.56249985,
£0.21093573,-0.03954289,0.00443319,-0.00031761,0.00001109,
£-0.6366198,0.2212091,2.1682709,-1.3164827,0.3123951,~0.0400976,
£0.0027873,0.79788456,~0.00000077 ,-0.0055274 ,-0.00009512,
£0.00137237,-0.00072805,0.00014476,-0.78539816 ,-0.04166397,
£-0.00003954,0.00262573,-0.00054125,-0.00029333,0.00013558,
&0.79788456,0.00000156,0.01659667 ,0.00017105,-0.00249511 ,
£0.00113653,-0.00020033,-2.35619449,0.12499612,0 . 0000565 ,
&-0.00637879,0.00074348,0.00079824,-0.00029166/
IF (R.LE.0.0) GO TO 50
IF (N.LT.0.0R.N.GT.2) GO TO 50
IF (R.GT.3.0) GO TO 20
X=R*R/9.0
IF (N.EQ.1) GO TO 10
CALL ADAM(A,X,BJ)
CALL ADAM(B,X,Y)
BY=0.6366198%AL0G(0.5%R) *BJ+Y
HZERO=CMPLX (BJ,-BY)
IF (N.EQ.0) RETURN
10 CALL ADAM(C,X,Y)
BJ=R*Y
CALL ADAM(D,X,Y)
BY=0.6366198+AL0G(0.5%R) *BJ+Y/R
HONE=CMPLX (BJ,-BY)
RETURN
20 X=3.0/R
IF (F.EQ.1) GO TO 30
CALL ADAM(E,X,Y)
FOOL=Y/SQRT(R)
CALL ADAM(F,X,Y)
T=R+Y
BJ=FOOL*COS (T)
BY=FOOL*SIN(T)
HZERO=CMPLX (BJ,~-BY)
IF (N.EQ.0) RETURN
30 CALL ADAM(G,X,Y)
FOOL=Y/SQRT(R)
CALL ADAM(H,X,Y)
T=R+Y
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50
90

BJ=FOOL*CO0S(T)
BY=FOOL*SIN(T)
HONE=CMPLX (BJ,-BY)
RETURN
WRITE(6,90) K,R

FORMAT(32HOSICK DATA IN HANKZ2

CALL SYSTEM
END

*QUIT* N§=,I2,2X,2HR=,E11.3)

Cokokokok gk ok ok kok ook ok ok ok dkokok ok ok ok kil ok ks ok ok Rk ok kokok Kok ok kKooK R Kok ok Rk Kk kR ok G

C

c

SUBROUTINE ADAM(C,X,Y)

c

c

Coookok koo ok ok ok ko ok ok ok ok ook ok ok ok okokok okl okokok ok ok ok kokokokokokdkokok ok okok koo ok ok ok kG

C

C
C
C

10

Called by subroutine HANKZ2 to compute the value of a 7th
order polynomial whose argument is X and coefficients are

contained in vector C.

DIMENSION C(7)

Y=X*C(7)
D0 10 I=1,5
Y=X*(C(7-I)+Y)
CONTINUE

Y=Y+C(1)

RETURE

END
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Ct******#ttt#*#****ltttt**t***#ﬁ*i*****#*t*i#i#******t#**********ttc

C

C

C
SUBROUTINE CGEFA(A,LDA,N,IPVT,INFO)
C

C**tt**tt**tt*#**##**t##*#****t#*###t****t#it*t********t******##***c

C

C

C NAASA 2.1.043 CGEFA FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C

c

oo acacaaaa

INTEGER LDA,N,IPVT(1),INFO
COMPLEX A(LDA,1)

CGEFA FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION.
CGEFA IS USUALLY CALLED BY CGECO, BUT IT CAN BE CALLED

DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
(TIME FOR CGECO) = (1 + 9/H)*(TIME FOR CGEFA)

ON ENTRY
A COMPLEX(LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
.| INTEGER
THE ORDER OF THE MATRIX A .
OF RETURN
A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS

WHICH WERE USED TO OBTAIN IT.

THE FACTORIZATION CAN BE WRITTEN A = LxU WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT INTEGER(N)
AN INTEGER VECTOR OF PIVOT INDICES.

IRFO INTEGER
= O NORMAL VALUE.
=K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT CGESL OR CGEDI WILL DIVIDE BY ZERO
IF CALLED. USE RCOND IN CGECO FOR A RELIABLE
INDICATION OF SINGULARITY.

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIORS

BLAS CAXPY,CSCAL,ICAMAX
FORTRAN ABS,AIMAG,CMPLX,REAL

INTERNAL VARIABLES

COMPLEX T
INTEGER ICAMAX,J,K,KP1,L,NM1
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COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))

c
CCC  Gaussian elimination with partial pivoting
c
INFO = 0
FM1i =N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
c
C FIND L = PIVOT INDEX
c
L = ICAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
¢
cce Zero pivot implies this column already triangularized
c
IF (CABS1(A(L,K)) .EQ. 0.0E0) GO TO 40
c
ccC Interchange if necessary
c
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
AK,K) = T
10 CONTINUE
c
cceC Compute multipliers
c
T = -CMPLX(1.0E0,0.0E0) /A(K,K)
CALL CSCAL(N-K,T,A(K+1,K),1)
c
cce Row elimination with column indexing
c
DO 30 J = KP1, N
T = A(,J)
IF (L .EQ. K) GO TO 20
AL,D) = AK,D)
A(K,J) =T
20 CONTIRUE
CALL CAXPY(N-K,T,A(K+1,K),1,A(K+1,]1),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = ¥
IF (CABS1(A(N,N)) .EQ. 0.0E0) INFO = §
RETURN
END
c c
O T LRt s L LT T
C C
SUBROUTINE CGESL(A,LDA,N,IPVT,B,JOB)
c c
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C*ttt**t*t*****t*##tlkt***#**i‘**#t#t********#t*tt#******ttt***##***c

c

c

C NAASA 2.1.044 CGESL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C

C

TR R R R e e e e e e e e R e e R R R e e e R e e e B e e e s e e e e e e e e e s s e e s s e e I e I e N e BN 2]

INTEGER LDA,N,IPVT(1),J0B
COMPLEX A(LDA,1),B(1)

CGESL SOLVES THE COMPLEX SYSTEM
A*X=B OR CTRANS(A) * X =B
USING THE FACTORS COMPUTED BY CGECO OR CGEFA.

ON ENTRY
A COMPLEX(LDA, N)
THE OUTPUT FROM CGECO OR CGEFA.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
)| INTEGER

THE ORDER OF THE MATRIX A .

IPVT INTEGER(N)
THE PIVOT VECTOR FROM CGECO OR CGEFA.

B COMPLEX(N)
THE RIGHT HAND SIDE VECTOR.

JOB INTEGER
=0 TO SOLVE A*X =B ,
NONZERO TO SOLVE CTRANS(A)*X = B WHERE
CTRANS(A) IS THE CONJUGATE TRANSPOSE.

OF RETURN
B THE SOLUTION VECTOR X .
ERROR CONDITION

A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY
BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER
SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE
CALLED CORRECTLY AND IF CGECO HAS SET RCOND .GT. 0.0

OR CGEFA HAS SET INFO .EQ. O .

TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
WITH P COLUMES
CALL CGECO(4,LDA,N,IPVT,RCORD,Z)
IF (RCOND IS TOO SMALL) GO TO ...
DO 10 J =1, P
CALL CGESL(A,LDA,N,IPVT,C(1,]),0)
10 CONTINUE

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS CAXPY,CDOTC
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10

20
30

40

50

60

70
80
90
100

FORTRAN COKJG
INTERNAL VARIABLES

COMPLEX CDOTC,T
INTEGER K,KB,L,NM1

NMi = § -1
IF (JOB .EE. 0) GO TO 50

JOB =0, SOLVE A *X =B
FIRST SOLVE L#*Y =B

IF (§M1 .LT. 1) GO TO 30
DO 20 K =1, M1
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TD 10
B(L) = B(K)
B(K) =T
CONTINUE

CALL CAXPY(N-K,T,A(K+1,K),1,B(K+1),1)

CONTINUE
CONTINUE

NOW SOLVE UsX =Y

DO 40 KB =1, ¥
K=N§+1-KB
B(K) = B(K)/A(K,K)
T = -B(K)
CALL CAXPY(X-1,T,A(1,K),1,B(1),1)
CONTINUE
GO TO 100
CONTINUE

JOB = NONZERO, SOLVE CTRANS(A) * X = B

FIRST SOLVE CTRANS(U)*Y = B

D060 K=1, K
T = CDOTC(K-1,A(1,K),1,B(1),1)
B(K) = (B(K) - T)/CONJG(A(K,K))
CONTINUE

HOW SOLVE CTRANS(L)*X = Y
IF (NM1 .LT. 1) GO TO 90

DO 80 KB = 1, NM1
K=N-KB

B(K) = B(K) + CDOTC(N-K,A(K+1,K),1,B(K+1),1)

L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) =T
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
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END

C c
Corrkk ok iokk kR ok ook kR ok Rk Rk ok kR kKR kR Kk C
C c
SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
c C
Coookk ook ok ok kR ok oKk ko Kk ok ok ook ok ok ook Rk ok ok kK ok Kk C
c c
C NAASA 1.1.014 CAXPY FTH-A 05-02-78 THE UNIV OF MICH COMP CTR C
C
c CONSTANT TIMES A VECTOR PLUS A VECTOR.
c JACK DONGARRA, LINPACK, 6/17/77.
c
COMPLEX CX(1),CY(1),CA
INTEGER I,INCX,IKCY,IX,IY,N
C
IF(N.LE.O)RETURN
IF (ABS(REAL(CA)) + ABS(AIMAG(CA)) .EQ. 0.0 ) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
C
cce Code for unequal increments or equal increments
ccc Not equal to 1
C
IX =1
Iy =1
IF(INCX.LT.0)IX = (-H+1)*INCX + 1
IF(INCY.LT.0)IY = (-H+1)*INCY + 1
DO 10 I =1,8
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTIRUE
RETURN
C
cce Code for both increments equal to 1
C
20 D0 30 I =1,¥
CY(I) = CY(I) + CA*CX(I)
30 CONTINUE
RETURN
END
C c

Coteaek ko ok ok ok oKk ok ko Kk oKk Rk ok Kk Kok KRRk ok kR kR KoK kKRR KRRk K kR Rk Rk Rk R kR k C

COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)

Coeatokokok o ok ok ok ok ok ok oKk ko Kok kR ok ok ok ok ok okok ok ko ok oKk kR KRk oKk ok R ok Rk kR k ok % C

aaoaoaoaaan

FORMS THE DOT PRODUCT OF TWO VECTORS, CONJUGATING THE FIRST

VECTOR.
JACK DONGARRA, LINPACK, 6/17/77.

COMPLEX CX(1),CY(1),CTEMP
INTEGER I,INCX,INCY,IX,IY,N

CTEMP = (0.0,0.0)
CDOTC = (0.0,0.0)
IF (N.LE.O)RETURN
IF (INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
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cce Code for unequal increments or equal increments
cce NHot equal to 1
C
IX=1
Iy = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I =1,
CTEMP = CTEMP + CONJG(CX(IX))*CY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
CDOTC = CTEMP
RETURN
C
cce Code for both increments equal to 1
C
20 D0 30 I = 1,¥
CTEMP = CTEMP + CONJG(CX(I))*CY(I)
30 CONTINUE
CDOTC = CTEMP
RETURN
END
C c
Corkorioioo ok kol kol k ok kok kR kR ook Kook Rk Rk C
C c
SUBROUTINE CSCAL(¥,CA,CX,IECX)
c c
Ct‘#tt#t**tt#i*““tt‘#*t#t##*‘*i‘*t#ﬁtt*#***ttt*#tt#*******t**t**tc
¢ c
C NAASA 1.1.019 CSCAL FTH-A 05-02-78 THE UNIV OF MICH COMP CTR C
c
C SCALES A VECTOR BY A CONSTANT.
C JACK DONGARRA, LINPACK, 6/17/77.
c
COMPLEX CA,CX(1)
INTEGER I,INCX,N,NINCX
C
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO 20
C
cce Code for increment not equal to 1
c
NINCX = E*INCX
DO 10 I = 1,KINCX,INCX
CX(I) = CA*CX(I)
10 CONTINUE
RETURN
c
cce Code for increment equal to 1
C
20 D0 30 I =1,K
CX(I) = CA*CX(I)
30 CONTIRUE
RETURN
END
c C

C oo s ok s ok ok ok ook ok o ok ok Aok ok ok ok kokokoR ok Rk oKk Rk ok Kok koK okkkokok ok kokok ok ok okok ok Rk G

C

SUBROUTINE CSSCAL(HN,SA,CX,INCX)
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C

C

C***tt##**tt*t###*lttt*ttt**ititttt#****#t*#i*******#**t*t****#****C

C

C

C NAASA 1.1.018 CSSCAL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C

C

aQaaa

CCC

10

ccC

20

30

c

SCALES A COMPLEX VECTOR BY A REAL CONSTART.
JACK DONGARRA, LINPACK, 6/17/77.

COMPLEX CX(1)
REAL SA
INTEGER I,INCX,N,NINCX

IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO 20

Code for increment not equal to 1

BINCX = N*INCX
DO 10 I = 1,NINCX,INCX
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
CONTINUE
RETURN

Code for increment equal to 1

DO 30I=1,
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
CONTINUE
RETURN
END

C

C***ttt#“*##ttt*‘#t#tt#‘t#*1t*##t#*#*tt*##t*****#**i******t***t***c

INTEGER FUNCTION ICAMAX(E,CX,INCX)

Ctit***t##t‘t*t##‘t#t*t#*t*titt##*t*t*t*********##******#**********C

c

C

C NAASA 1.1.021 ICAMAX FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C

c

QaaQ

ccC

FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.

JACK DONGARRA, LINPACK, 6/17/77.

COMPLEX CX(1)

REAL SMAX

INTEGER I,INCX,IX,N

COMPLEX ZDUM

REAL CABS1

CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))

ICAMAX = 1
IF(N.LE.1)RETURN
IF(INCX.EQ.1)GOTO 20

Code for increment not equal to 1

X =1

SMAX = CABS1(CX(1))

IX = IX + INCX

D0 10 I = 2,K
IF(CABS1(CX(IX)).LE.SMAX) GO TO 5
ICAMAX = I
SMAX = CABS1(CX(IX))

104



5 IX = IX + INCX
10 CONTINUE
RETURN
c
cce Code for increment equal to 1
c
20 SMAX = CABS1(CX(1))
D0 30 I =2,K
IF(CABS1(CX(I)).LE.SMAX) GO TO 30
ICAMAX = I
SMAX = CABS1(CX(I))
30 CONTINUE
RETURN
END
c c
Codok ok ok ko okok ook ook ok ok Kok kKK R KKKk ok kR ok kb Kok R C
REAL FUNCTION SCASUM(N,CX,INCX)
e T T
C
NAASA 1.1.010 SCASUM FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C

TAKES THE SUM OF THE ABSOLUTE VALUES OF A COMPLEX VECTOR AND
RETURNS A SINGLE PRECISION RESULT.
JACK DONGARRA, LIRPACK, 6/17/7T.

aaogaoaaaan

COMPLEX CX(1)
REAL STEMP
INTEGER I,INCX,N,NINCX

SCASUM = 0.0EO0

STEMP = 0.0EO
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO 20

ccC Code for increment not equal to 1

NINCX = N+INCX
DO 10 I = 1,NINCX,INCX
STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I)))
10 CONTINUE
SCASUM = STEMP
RETURK

cce Code for increment equal to 1

20 D0 30 I = 1,X
STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I)))
30 CONTINUE
SCASUM = STEMP
RETURN
END
C**tit***t#t****tt#t**t#t**t*tt*t*t*t#**t*##tttt*t***tttt**#tttt#*#C

The following subroutines are standard LINPACK routines
to perform L-U decomposition and back substitution on a
single precision complex matrix. See CC-Memo 407 sec 2.1
for documentation on these routines.

aaoaoacaaan
aaoaoaacaa

C**t*tt#**!t**ttt*‘**t#tt‘***t****t*t#*t#t**#*#****#*##t**t*t****ttc
[ C
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SUBROUTINE CGECO(A,LDA,N,IPVT,RCOND,Z)

C C
C*ttt#**t*#ttt****#tt*****t*tt‘******tti******t#t*#*****#******t‘#ttc
C C

C NAASA 2.1.042 CGECO FTN-A 05-02-78 THE UNIV OF MICH COMP CTR C
C

INTEGER LDA,N,IPVT(1)

COMPLEX A(LDA,1),Z(1)

REAL RCOND

CGECO FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION
AND ESTIMATES THE CONDITION OF THE MATRIX.

IF RCOND IS NOT NEEDED, CGEFA IS SLIGHTLY FASTER.
TO SOLVE A*X = B , FOLLOW CGECO BY CGESL.

TO COMPUTE INVERSE(A)*C , FOLLOW CGECO BY CGESL.
TO COMPUTE DETERMINANT(A) , FOLLOW CGECD BY CGEDI.
TO COMPUTE INVERSE(A) , FOLLOW CGECO BY CGEDI.

ON ENTRY

A COMPLEX(LDA, N)
THE MATRIX TO BE FACTORED.

LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .

N IRTEGER
THE ORDER OF THE MATRIX A .

ON RETURKE

A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
WHICH WERE USED TO OBTAIN IT.
THE FACTORIZATION CAN BE WRITTEN A = LsU WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT INTEGER(N)
AN INTEGER VECTOR OF PIVOT INDICES.

RCOND  REAL
AN ESTIMATE OF THE RECIPROCAL CONDITIOR OF A .
FOR THE SYSTEM A+X = B , RELATIVE PERTURBATIONS
IN A AND B OF SIZE EPSILON MAY CAUSE
RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
IF RCOFD IS SO SMALL THAT THE LOGICAL EXPRESSION

1.0 + RCOND .EQ. 1.0

IS TRUE, THEN A MAY BE SINGULAR TO WORKING
PRECISION. 1IN PARTICULAR, RCOND IS ZERO IF
EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
UEDERFLOWS.

Z COMPLEX(N)
A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
IF A IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
NORM(A*Z) = RCOND*NORM(A)*NORM(Z)

OOQOOQOOQQQOOOOOOQOOQOOOGQOOOOOOOOOOOOOQOOQGOOQOQOO

LINPACK. THIS VERSION DATED 07/14/77 .
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CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.
SUBROUTINES AND FUNCTIONS

LINPACK CGEFA

BLAS CAXPY,CDOTC,CSSCAL,SCASUM

FORTRAN ABS,AIMAG,AMAX1,CMPLX,CONJG,REAL

INTERNAL VARIABLES

aaoaoaoaaaoacaaaaaQ

COMPLEX CDOTC,EK,T,WK,WKM
REAL ANORM,S,SCASUM,SM,YNORM
INTEGER INFO,J,K,KB,KP1,L

COMPLEX ZDUM,ZDUM1 ,ZDUM2,CSIGN1

REAL CABS1

CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))

CCC  Compute 1-NORM of A

ANORM
DO 10
ANORM
10 CONTINUE

0.0E0
=1, ¥
AMAX1 (ANORM,SCASUM(N,A(1,J),1))

[ ]

ccc Factor
CALL CGEFA(A,LDA,N,IPVT,INFO)

RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A4))))
ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z =Y AND CTRANS(A)*Y = E .
CTRANS(A) IS THE CONJUGATE TRANSPOSE OF A .

THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.

SOLVE CTRANS(U)*W = E

oo aa

EK = CMPLX(1.0E0,0.0E0)
DO 20 J =1, ¥
Z(J) = CMPLX(0.0E0,0.0E0)
20 CONTINUE
DO 100 K =1, ¥
IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
IF (CABS1(EK-Z(K)) .LE. CABS1(A(K,K))) GO TO 30
S = CABS1(A(K,K))/CABS1(EK-Z(K))
CALL CSSCAL(N,S,Z,1)
EK = CMPLX(S,0.0EO)*EK
30 CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = CABS1(WK)
SM = CABS1(WKM)
IF (CABS1(A(K,K)) .EQ. 0.0EO) GO TO 40
WK = WK/CONJG(A(K,K))
WEM = WKM/CONJG(A(K,K))
GO TO 50
40 CONTINUE
WK = CMPLX(1.0E0,0.0EO0)
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WKM = CMPLX(1.0E0,0.0EO)

CONTIRUE
KP1 = K + 1
IF (KP1 .GT. N¥) GO TO 90
DO 60 J = KP1, N
SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,J)))
2(J) = Z(J) + WK*CONJG(A(K,J))
S = S + CABS1(Z(J))
CONTINUE
IF (S .GE. SM) GO TO 80
T = WKM - WK
WK = WKM
DO 70 J = KP1, ¥
2(J) = Z(J) + T*CONJG(A(K,J))
CONTINUE
CONTINUE
CONTINUE
Z(K) = WK
CONTINUE

S = 1.0EO/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)

Solve CTRANS(L)*Y = V

DO 120 KB = 1, ¥
K=N+1-KB
IF (K .LT. ) Z(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,Z(R+1),1)
IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110
S = 1.0E0/CABS1(Z(K))
CALL CSSCAL(N,S,Z,1)
CONTINUE
L = IPVT(K)
T = Z(L)
Z(L) = Z(K)
Z(K) =T
CONTINUE
S = 1.0EO/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)

YNORM = 1.0EO
Solve LxV =Y

DO 140 K = 1, ¥
L = IPVI(K)
T = Z(L)
2(L) = Z(K)
Z(K) = T
IF (K .LT. N) CALL CAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 130
S = 1.0EO/CABS1(Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM
CONTINUE
CONTINUE
S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)
YNORM = S+YNORM

Solve U*Z =V
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DO 160 KB = 1, ¥
K=§+1-KB
IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 150
S = CABS1(A(K,K))/CABS1(Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YEORM
150 CONTINUE
IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K)
IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K)
T = -Z(K)
CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
160 CONTINUE
C MAKE ZNORM = 1.0
S = 1.0EO/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM

Z2(K)/A(K,K)
CMPLX(1.0E0,0.0E0)

C
IF (ANORM .FE. 0.0EO) RCOND = YNORM/ANORM
IF (ANORM .EQ. 0.0EO) RCOND = 0.0EO
RETURN
END
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DESCRIPTION AND LIST OF CODE VSIE-ISO

Jian-Ming Jin

Radiation Laboratory
Department of Electrical Engineering and Computer Science
The Unwversity of Michigan

Ann Arbor, Michigan 48109

ABSTRACT

A FORTRAN program named as VSIE-ISO and developed by the author is

described briefly and listed thereafter.

1. Objective of VSIE-ISO

VSIE-ISO is a computer code written in FORTRAN language and developed
for computing electromagnetic scattering from an inhomogeneous penetrable cylin-
der for both TE and TM incidence.

VSIE-ISO uses quadrilateral isoparametric elements and point-matching tech-
nique to solve the volume-surface integral equation (VSIE). For the formulation of
VSIE, please read the first paper in this report. For the description of the numeri-
cal implementation, please read the third paper. VSIE-ISO was used to generate

the data presented in the third paper.
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Due to the success of VSIE-ISO, we will extend it to include the treatment of
conducting surfaces and discontinous interfaces. The resulting program should be

able to treat complex problems as VSIEM does, but with a much higher accuracy.

2. Input Data

All input data are provided by file INPUT except for relative permittivity and
permeability and their derivatives which are specified by subroutines EMFUN and
DRFUN. A detailed description of the input data is given in the main program.

A sample file of INPUT for the geometry shown in Figure 1 is listed below.

Figure 1: A five quadrilateral element model with 20 nodes for a circular region.

DIELECTRIC CIRCULAR CYLINDER
0 20.0
1 1 0. 180. 30. 180.
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N
o
w

8 4

1 1. 0.

2 0.70711 0.70711
3 oO. 1.

4 -0.70711 0.70711
5 -1. 0.

6 -0.70711 -0.70711
7 0. -1

8 0.70711 -0.70711
9 0.65 0.

10 0. 0.65

11 -0.65 0.

12 0. -0.65

13 0.3 0.

14 0.21213 0.21213
15 0. 0.3

16 -0.21213 0.21213
17 -0.3 0.

18 -0.21213 -0.21213
19 0. -0.3

20 0.21213 -0.21213

1513 1 314 9 210
17 16 3 516 10 4 11
19 17 5 7 18 11 6 12
1319 7 12012 8 9

7 19 14 16 18 20

1
2
3
4
5§ 13151
1
2
3
4

= N w
00 O N

3. Output Data
The output data are written in file OUTPUT. The data contain the geometry
and discretization information and the computed result. Following is a sample

output.

DIELECTRIC CIRCULAR CYLINDER

TOTAL NUMBER OF DISCRETE POINTS 20
I (I Y(D
1 1.00000 0.00000
2 0.70711 0.70711
3 0.00000 1.00000
4 =0.70711 0.70711
5 =1.00000 0.00000
6 -0.70711 -0.70711
7 0.00000 -1.00000
8 0.70711 -0.70711
9 0.65000 0.00000

112



NODE

W 00N U W -

10
11
12
13
14
15
16
17
18
19
20

TOTAL NUMBER OF AREA ELEMENTS 5
L §(1,L) N(2,L) N(3,L) N(4,L) N(5,L) N(6,L)
1 15 13 1 3 14 9
2 17 15 3 5 16 10
3 19 17 5 7 18 11
4 13 19 7 1 20 12
5 13 15 17 19 14 16
TOTAL NUMBER OF LINE ELEMENTS 4
L §(1,L) N§(2,L) KE(@,L)
1 1 3 2
2 3 5 4
3 5 7 6
4 7 1 8
KEY PARAMETERS
INCIDENT POLARIZATION E
NUMBER OF INCIDENT FIELD DIRECTIONS 1
RUMBER OF BISTATIC DIRECTIONS 7
WAVELENGTH 20.00000
FIELD VALUES AT NODES
REAL IMAGINARY MAGNITUDE
0.1071E-01  -0.8549E-01 0.0862
0.3847E-01  -0.7804E-01 0.0870
0.1417E+00  -0.1951E-01 0.1431
0.1945E+00 0.2023E-01 0.1956
0.1983E+00 0.9312E-01 0.2191
0.1945E+00 0.2023E-01 0.1956
0.1417E+00  -0.1951E-01 0.1431
0.3847E-01  -0.7804E-01 0.0870
-0.5831E-01  -0.9881E-02 0.0591
0.1395E-01  -0.6613E-01 0.0676
0.7612E-01  -0.8084E-01 0.1110
0.1395E-01  -0.6613E-01 0.0676
-0.6544E-01 0.2954E-01 0.0718
-0.6291E-01 0.1555E-01 0.0648
-0.5218E-01  -0.1739E-01 0.0550
-0.4194E-01  -0.4392E-01 0.0607
-0.3658E-01  -0.5415E-01 0.0653

.00000
.65000
.00000
.30000
.21213
.00000
.21213
.30000
.21213
.00000
.21213

0.65000

0.00000
-0.65000
0.00000
0.21213
0.30000
0.21213
0.00000
=0.21213
-0.30000
=-0.21213
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0 O BN

18

N(8,L)

10
11
12
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20



18 -0.4194E-01  -0.4392E-01 0.0607
19 -0.5218E-01  -0.1739E-01 0.0550
20 -0.6291E-01 0.1555E-01 0.0648

BISTATIC SCATTERING CROSS SECTION
FOR INCIDENT FIELD DIRECTION= 180.00
THETA  10%LOG(SIGMA/LAMBDA)  PHASE

0.00 ~-4.03 -41.2
30.00 -4.19 -40.8
60.00 -4.63 =-39.7
90.00 =-5.25 ~-37.9

120.00 -5.89 -35.8
150.00 -6.38 -34.0
180.00 -6.56 -33.3

4. Program Description

Following is a brief description of the main program and subroutines developed
for VSIE-ISO. All others not described here are standard subroutines and since
they are already listed in VSIEM they will not be listed here. Note that the

equations referenced below are referred to those in the third paper.

VSIE-ISO - Main program acting as a driver for subroutines.

EMFUM - Specifies €, and p, at a given point (z,y).

DRFUN - Specifies Ve, and Vy, at a given point (z,y).

MATRIX1 -  Computes the contribution of the area integral to the system matrix.

MATRIX2 - Computes the contribution of the line integral to the system matrix.

FRAF1 - Computes the contribution of the area integral to the far field.
FRAF2 - Computes the contribution of the line integral to the far field.
CALAE - Computes A(7|F') in (5).

CALAE1 -  Computes A(7|r') in (5) for 7 at infinity.
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CALBE-  Computes B(7|") in (5).

CALBEL - Computes B(7|") in (5) for 7 at infinity.
CALNE-  Calculates NF(¢,7) in (14).

CALNEXI-  Calculates ON¢/d¢.

CALNETA - Calculates ON¢/dy.

CALNEL - Calculates L5(¢) in (9).

CALNEXII - Calculates dL$/0¢.
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ook ko ook o ook ok o ok ok o 3 ook ook ok ok ok ok ko ok ok ok kol ok Kok Kok ok koK R ks ok kKoK ok Rk ok akokok R kok Rk k kK G

C PROGRAM VSIE-ISO C
Corookriok ok kokok ook ookokk ook ok ook ok okok ok ok ok ok okokok koo ook ok ok ok okokkokok ko k k% C
c C
C  THIS PROGRAM USES QUADRILATERAL ISOPARAMETRIC ELEMENTS AND POINT- C
C  MATCHING TECHNIQUE TO SOLVE VOLUME-SURFACE INTEGRAL EQUATION FOR C
C  ELECTROMAGRETIC SCATTERING BY A DIELECTRIC CYLINDER. C
C C

C ok ok ook ko Kok o ok ok ok o K R Kok koK Kk koK R kok oK Ok R ok ok dok Rk ok kokok kK Rk oKk kR KoKk Kok kG
C ke ok ok ok ook ok ok o ok ok ok ok ok ok ok oK ok ok ok ok kol sk ok ik ook ok sk okok ok kokokokak kok ok kR ko kol kokok ok ok okok kKR ok k G

C INPUT FORMAT FOR PROGRAM VSIE-ISO----VERSION OF AUG. 20, 1988 C
G ok o ok o o k3 ok ok o ok 3ok o ok o ok oKk o ok ok ok ok ok ok ok ok ok ok ook ok ok ok ki ok ook ki ok ok skok sk kok sk okok ok ok ok Kok ok ok kG
C CARD 1 FORMAT (18A4) TITLE CARD; USE UP TO 72 COLUMNS C
Gk o o ok o ok o o ko ok ok ok ook ok ok ok ook o ok ok ok ok ok ok ok ok o ook ok sk sk ok ok ko sk ok ok sk ok ok okokok ok kokok ok ok ok kok Rk G
C CARD 2 FORMAT (I3,F10.5) KODE,WAVE c
C KODE=0 COMPUTES BISTATIC SCATTERING PATTERN c
c KODE=1 COMPUTES BACKSCATTERING PATTERN c
c WAVE WAVELENGTH c
C ok ko ook ok ook ok oK Kk o oKk ok ook o ko ok o o ok ok Kok ok ook o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok G
C CARD 3 FORMAT (I3,I3,4F10.5) IPP,IOPT,FIRST,LAST,INK,CANG c
c IPP=1 E-POLARIZATION c
c IPP=2 H-POLARIZATION [4
[4 I0PT=0 INTERIOR FIELDS NOT PRIRTED c
[4 I0PT=1 INTERIOR FIELDS PRINTED c
c FIRST INITIAL SCATTERING AND INCIDENCE ANGLE C
¢ LAST FINAL ANGLE c
C INK ANGULAR INCREMENT c
c CANG ANGLE FOR BISTATIC COMPUTATION c
Gk o ke ook ook ok ok ok ok o ok oo ok o oo ook o o o ook o ok o ok o ook ok ok o ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok skok ok ok ok ok ok ok ok G
C FORMAT FOR INPUT NUMBER OF NODES AND ELEMENTS c
C ok o ok ok ok ok ok ok ok ok ok ook ok ok o ok o ook o o o ok o ok o ok ok ok ook ok ok ok oo ok ook Kok ok ok ok Kok ok ok sk kok ok Kok ok ok ok ok k G
C CARD 4 FORMAT (213) K ,M c
c | NUMBER OF NODES c
c M NUMBER OF QUADRILATERAL ELEMENTS c
Cttt#t***tt*t***#*tt*tt**tt*tt#tt#tt#tttt*t**t**t*******t**t**t**t*t*ttc
c FORMAT FOR INPUT NUMBER OF SURFACE NODES AND SEGMENTS c
C*tttt**t**tttt*t**t***t*#t*tt#t*t*#tttt#tttttt*tttt***‘tt***t******ttic
C CARD 5 FORMAT (2I3) N1,M1 c
c N1 NUMBER OF NODES ON THE SURFACE c
c M1 NUMBER OF QUADRATIC SEGMENTS ON THE SURFACE C
Coek ok ok o ook ok ok ook ok ok ok ok ok a8 oo o ok o o ok ok o ok ok o ook ok ok Kok ok koK koK ok ok ok Rk ko ok kok kK G
c DO I=1,§ TO READ THE NODE POSITION C
C#*tt**tt*tttt##ttt**tt#titt#t#t*t#ttttt*t#*#**t******#**tt###*t*t*#**tc
C CARD 6 FORMAT (I3,2F10.5) I,X(I),Y(I) c
C I NODE NUMBER c
c X(I) HODE X-COORDINATE c
C Y(I) NODE Y-COORDINATE c
Ct**#*tt*#*#*tttt*ttt*t#*tt**tt#tt#*#ttt#ttttt*tt*t****tt*t*#t#*xt*t#*tc
¢ REPEAT CARD 6 FOR EACH NODE C
Ctiti#t#**t*#*ttt#ttttt*tt*tt*t**#ttl#t#t‘#*t*#*tt*#*t#tttttt#*#*******C
4 DO I=1,M TO READ THE NODE-ELEMENT RELATION c
Cttttt##*#ttt*t#tt#t*ttt#t##t*t*tt#ttttt*tttt**ttt*tttt**tttt**t**t*#ttc
C CARD 7 FORMAT (I3,2X,8I3) I,(NUM(J,I),J=1,8) c
c I ELEMENT NUMBER c
C NUM(J,I) GLOBAL NUMBER OF N<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>