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ABSTRACT

A unified approach is presented to formulate various boundary and domain-boundary
integral methods for electromagnetic scattering. Beginning with the weighted residual
form of the wave equation, a variety of integral methods, including some well-known ones,
are obtained by choosing different weighting and trial functions. Formulating different
methods under such a common framework is important for instructional purposes and
enables us to better understand their relationships. In fact, all known integral meth-
ods can be derived from the proposed general representation by choosing appropriate
weighting and trial functions. To illustrate the approach, while maintaining simplicity,

this paper deals only with the two-dimensional case.



I. INTRODUCTION

Many numerical methods have been developed in the past for scattering computa-
tions. Interestingly, although the intent with all methods is to solve Maxwell’s equations
subject to given boundary conditions, their development has followed many different
approaches. For example, the volume and/or surface integral equation methods are de-
veloped by invoking the equivalence principle [1], [2]. In contrast, the finite element
methods have traditionally been based on variational principles which are closely related
to the concept of conservation of energy [3], [4]. Clearly, although one should expect
that all methods be inter-related, this is not apparent.

In this paper, we employ a unified approach to formulate various integral and finite
element methods. The approach begins with the weighted residual equations for the fields
inside and outside the scatterer(s). By choosing appropriate weighting and trial field
expansion functions we then derive a variety of numerical formulations including some
of the most well-known. This type of derivation is important for instructional purposes
because it places all popular numerical formulations under a common framework. As a
result, one can compare the similarities and differences of the methods making possible
an evaluation of their effectiveness for a given application. In the following, we illustrate
the unified approach by restricting our attention to the two-dimensional case for the
only purpose of retaining the simplicity of the presentation. Extensions to the three-
dimensional case are possible but are not considered.

In the next section we consider the scattering by a homogeneous cylinder whose
formulation involves only boundary integrals. This is followed by the formulation for

inhomogeneous cylinders which, as expected, involves both domain and boundary inte-



grals.

II. BOUNDARY INTEGRAL FORMULATIONS

Consider the scattering problem illustrated in Figure 1, where a harmonic electro-
magnetic wave, having an angular frequency w, impinges upon a homogeneous, infinitely
long cylinder immersed in an unbounded homogeneous medium. We shall assume that
the cylinder has constitutive constants e; and p, and its axis is parallel to the z-axis.
The constitutive constants of the surrounding medium will be denoted as ¢; and ;.

The electromagnetic field outside the cylinder, to be denoted as ¢, is comprised of
the incident and scattered fields generated by the induced currents and charges in the

volume and surface of the cylinder. It can be expressed as

Gr=0""+¢"  inQy (1)
in which ¢ and #° denote the incident and scattered fields, respectively, and
denotes the infinite region exterior to the cylinder. For E-polarization ¢ = E, and for

H-polarization ¢ = H,. Since ¢'™ satisfies the wave equation, the scattered field satisfies

the same equation
Vi + k24 =0  in Qg (2)

subject to the Sommerfeld radiation condition

lim +/p (%f + jk1¢s> —0 (3)

p—00

where k1 = w,/pyer and p = /2? 4+ y2. Similarly, the field inside the cylinder, ¢,

satisfies the Helmholtz equation

Vi + kigy =0  inQ (4)



where ky = w,/lz€; and 2 denotes the region occupied by the cylinder. The fields inside

and outside the cylinder are then coupled by the boundary conditions

hr=¢2=09, ul%%l:u2%2' q on Tl (5)

where u = 1/p, for E-polarization and u = 1/¢, for H-polarization with ¢, and p, being
the relative permittivity and permeability, respectively. Also, I denotes the boundary of
the cylinder, separating Q and Q, and # is the associated unit normal vector pointing
from Q to Q. Equations (1)-(5) now completely define the boundary-value problem
and we are interested in a solution of ¢* and ¢5.

Let us consider the scattered field first. By denoting the weighting function as W,

the weighted residual form for (2) can be written as
/ [ WiV + ) =0 in O 6)

where ¢° now becomes the trial function for the scattered field. Invoking Green’s second

identity

// (WV2h - $V2W)ds = }{ (Wg—f: - ¢%%> dl (7)

(6) can then be written as

// (VW1 + ki W1)ds — f (Wla¢s ) ¢saW1)
+j£ ( a¢s_¢sawl)dl:0 o .

where I', denotes a circle of radius approaching infinity. Since ¢° satisfies the Sommer-

feld radiation condition (3), the integral over 'y, vanishes provided we also choose W;



to satisfy the same condition. Thus, we have

0¢° oW )
/-/Qoo ¢S(V2W1 + kfwl)ds - fi: (W1 3?1 - (bs(?—nl) dl=0 in Qg (9)

In a similar manner, we obtain the weighted residual form for (4) as

063 ow, .
//ngg(v W, +k2W2)ds+ﬁ(W2 L g )dl 0 InQ (10)

where W3 is another weighting function and ¢, now becomes the trial function for the
interior field.

Equations (9) and (10), together with the boundary conditions (5), form a complete
set of integral equations for ¢° and ¢;. It remains to choose the weighting functions
W1 and W, and expansions for the trial functions ¢° and ¢, to obtain a system of
algebraic equations for a numerical solution. It will be seen below that different choices
of the weighting and trial functions lead to different formulations, some of which are
well-known and commonly used. Note that since Q., and Q are homogeneous it would
be advantageous to choose the weighting functions W; and W, so that the area integrals
in (9) and (10) are eliminated and this is the principle followed in the formulations

described below.

Method 1: Green’s Functions for Weighting and Polynomials for Expansion
In this approach, we choose W = Gi(p, p’) and W2 = Ga(p, p') where Gy and G are
the two-dimensional unbounded space Green’s functions satisfying the partial differential

equation

ViGia+ ki Gr2 = ~6(p - p') (11)



where 6(p — p') is the usual Dirac delta function. Substituting (11) into (9) and (10)

yields
(
0 for peQ
0¢°(p’ 0G1(p,p
7£ [Gl(Papl)%(;'l - ¢S(P,)—lé(g,—p) dl' = -« (1-c)¢*(p) for ponT  (12)
&°(p) for p € Qy
and
ba(p) for peQ
9%2(p') 9Gs(p, p')
7§ [Gz(P,P’)—an_,‘ - ¢2(PI)_‘3n,_ d' = cpa(p) for ponT (13)
0 for p € Qy

where f denotes the Cauchy principle value integral with the singularities removed, and
¢ =1/2if pis on the smooth portion of T or ¢ = a/2r if p is at a sharp corner having

an internal angle of a (see Figure 2). From (12) it can be further shown that

¢inc(p) _ 7§ [GI(P, pl)6¢811(;),) _ ¢1(pl) aGl(p’ P’) dl’

on'
[ 0 for peQ
=4 (1-c)¢i(p) for ponT (14)
t $1(p) for p € Qq

upon making use of (1) and

(.
¢'"(p) for peQ

,aincl inclaG ’I , '
ﬁ[Gl(P,P)qs_an(,—p—)—¢ (p )_16(%-,)_) dl'=§ cg™(p) for ponT (15)

0 for p € Q4

Equations (13) and (14) are recognized as the well-known boundary integral equa-

tions. To solve for ¢* and ¢, we may invoke the boundary conditions (5) in (13) and
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(14) to obtain the coupled set of integral equations

(1= )o(p) +7[[—G1(p, Yalo') - (15BN = () (160)

e(p) = - | ==Galo, #a(p!) - 86y XL gy — g (16b)
r Lu2

valid for p on T.
Equation (16) has been widely used in moment method implementations [5], [6] and

to illustrate this procedure, we expand ¢ and q as

¢ = ZLJ¢J y 4= ZLJqJ (17)

with ¢; and ¢; being the unknown expansion coefficients whereas L; and L; are either
entire domain or subdomain polynomial expansion functions defined on I'. Substituting

(17) into (16) and applying Galerkin’s technique yields the matrix system

A B b
i = (18)
C D q 0
where the elements of the submatrices [A], [B], [C] and [D] are given by
45 = (-0 f 1oL - § [160)f 1) X2 Parla o)
1 ! / / !
Bi; = ™ fr [Li(p)yng(p )G1(p, p)dl ] dl (20)
~ 0G2(p,
Cy = C}I{Li(p)Lj(p)dHﬁ[ 7[1: 23(:, )dl} dl (21)
1 i / / !
D = - f [Lo L L)Guto et (22)
and the elements of {b} are given by
$ L) (o) (23)
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If we replace the weighting functions L;(p) in (19)-(23) by 6(p — p;), (18) becomes the

well-known point-matching system [2].

Method 2: Eigenfunctions for Weighting and Polynomials for Expansion
In this approach, we choose Wy = ¥q; and Wy = ¥y; where ¥y; and ¥y; satisfy the

Helmholtz equations

V20 + k20 =0 for pin Q4 (24a)
and

V2o + Uy =0  for pin Q (24b)

respectively. Provided we choose ¥y; to satisfy the Sommerfeld radiation condition (3),

from (9) and (10) we then obtain

(R P =

and

é( ‘% ¢2‘9‘I'2’)d1=0 in 0 (26)

Further, by invoking the boundary conditions (5), (25) and (26) become

}i ( Vg — ¢a_‘1’£) dl = }{ (\I:l,ad’mc qﬁ"‘cawh)dl (27a)

ﬁ( giq - ngE?i)dl_O (27b)

for p on I', representing two coupled integral equations which can also be solved via
the numerical procedure illustrated in Method 1. In particular, upon substitution of the

expansion of ¢ and ¢ given in (17), we obtain a system of algebraic equations of the same



form as in (18). However, the elements of the submatrices are different and in this case

we find
aq’lz
Az] bt - WL dl (28)
B; = — AR (29)
U1
8‘1’2,
iy = — ¢ ——L;dl
CJ T an J (30)
Dij = i Wg,L'dl (31)
U3
and

b = }4 (q:h i ¢m°aw“)dz (32)
r

It remains to specify ¥q; and ¥, and this may depend on the geometry of the
scatterer; however, satisfactory results can be obtained for smooth convex scatterers
having nearly circular cross sections by setting ¥y; and ¥y equal to the cylindrical
eigenfunctions ‘IIS) and \Ilgf-), respectively, defined later in (37) and (39). The approach
with this choice of weighting functions is designated as Method 2. We remark that in
comparison with (19)-(22), the integrals in (28)-(31) do not have singular integrands and
can, thus, be evaluated numerically without difficulty. In addition, this method has the
added advantage of not suffering from the internal resonances which are associated with
(16). It has recently been employed for a solution of the eigenvalue problem pertaining
to optical waveguides [7]. However, the method is not popular and possible reasons for
this are (i) it requires the computation of high order Bessel and Hankel functions, (ii)
the procedure for treating the integrand singularities in the evaluation of (19)-(22) has

been well-established and (iii) Method 1 has been successfully applied to a variety of



geometries.

In passing, we note that the eigenfunctions are not the only choice for ¥y; and ¥y,
and particularly, for cylinders whose cross sections deviate substantially from a circle,
they may result in ill-conditioned systems. In that case a different choice may be more
appropriate. Observing that (25) and (26) are valid for any ¥y; and ¥y; provided they
satisfy (24), we may choose ¥y; to be H (kllp p;|) and ¥y, to be Jo(ko|p— p;|) where
H(g2)(c) denotes the zeroth order Hankel function of the second kind, Jo(e) denotes the
zeroth order Bessel function, and p; denotes the location of the ith testing point residing
on or inside I'.  The only concern with such a choice is that p; (i = 1,2,3,...) must
be judiciously chosen so that Héz)(kllp — p;|) form a complete set for representing ¢*
and so do Jo(kz|p — p;|) for ¢2. We may also choose ¥y; to be H((,2)(k2]p — p;|) instead
of Jo(ke|p — p;|) but p; must now reside on or outside I' so that ¥s; is non-singular
in Q. Finally, we remark that if we choose ¥y; to be II((,2)(k1|p — p;|) and ¥y; to be
Héz)(k2|p = p;|) with p; residing on T, then (27) becomes (16) and the resulting system

given by (28)-(32) becomes identical to that given by (19)-(23) with point-matching.

Method 3: Eigenfunctions for both Weighting and Expansion
In this method, we again choose the eigenfunction ¥y; satisfying (24a) as the weight-

ing function Wy. With this choice, (9) becomes (27a) and can be written as

a6, o 0 W
f; (wl, L gy )dl }{ (wl, _ g )dl (33)

assuming again that Wy; satisfies the radiation condition (3). We observe that all quan-
tities associated with the right hand side integral of (33) are known and to facilitate

its evaluation we may introduce a fictitious circular boundary Ty, sufficiently large to



enclose the entire scatterer (see Figure 3). By employing Green’s second identity it can

be shown that

f (wh‘% ¢’“°W“)dz=f (w id ¢’"°N“) d (34)
on Iy

provided no sources of the incident field exist in the region enclosed by I' and T'; and

thus, (33) can be rewritten as

I O agne 0wy,
f;(w 2 ¢1—>dl £ (mph Ly )dl. (35)

The evaluation of the right hand side integral can now be substantially simplified if ¢t

is expanded in terms of basis which are orthogonal to ¥y;. We may choose to expand

¢inc as
w’”c—za, Ea, (kp)ime s m = int(i/2) (36)

where sin m¢ is used for even 4 and cosmé is used for odd i. Also, J,,(e) denote the
mth order Bessel functions and the expansion constants a; can be found by invoking the

orthogonality of the expansion functions. Substituting (36) into (35) and choosing
Uy = 0 = HO (kyp)inme (37)
with H{? )(o) denoting the mth order Hankel functions of the second kind, we obtain
; (1)
_l (1 8¢1 _ a‘1111 dl = a:
2f§<1, 2 I dl = (39)
upon invoking the orthogonality of the sine and cosine functions and making use of the

Wronskian for the Bessel functions. This provides a global relation between the field and

its normal derivative on the boundary.
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Equation (38) is sufficient for the solution of ¢ or d¢1/0n provided either of these
vanishes on I' as is the case for a perfectly conducting boundary. For the general case,
however, a solution for both ¢; and 0¢;/0n requires that (38) be supplemented by
an additional equation which can be obtained from the interior field formulation. An

appropriate eigenfunction representation for the interior field ¢ is

o0
gy =Y g0l = Zgz (kp)i2me (39)
=1

where again m = int(¢/2) and g¢; are unknown expansion constants. Strictly speaking,
this expansion is only valid for p residing on or inside a circle which is completely enclosed
by I'. However, Waterman [11] showed that the expansion functions \I!g? also form a
closed complete set capable of representing the unknown surface field on I'. He further

showed that the expansion (39) converges in the mean on I' and is differentiable there.

This was proven through the identity

SO0 ] (20, 0
ﬁ(wzan zan)dz_ﬁz Wook — g2 ) dl (40)

valid for Wy being non-singular within the region enclosed by I' and I'p, where I'; is a
circular contour completely enclosed by I' as shown in Figure 3, and by choosing W3 to
be \Ilg) and \Ilg‘:f).

Thus, (39) can be used to approximately represent the boundary field and its normal
derivative on I' and by invoking the boundary conditions (5) and substituting (39) into

(38) we obtain

[@Hg} = {a} (41)

11



where

; 3\11( ) 3\11( )
L d O b (4) i
Qi = -3 ( 28 anJ - \IJQJ 81 dl (42)

This matrix system can be solved for the expansion coefficients g; which can then be used
n (39) to obtain the boundary field and its normal derivative. Elsewhere, the scattered
field can be found by evaluating the pertinent boundary integral (see for example (14)).

An alternative way to evaluate the scattered field is to expand it as

=Y sl = ZfH@)(klp)cos p>p (43)
1=1

where f; are the unknown constant coefficients to be determined and p; is the radius of

the circle I';. Substituting (43) into the integral identity
¢ <W1% - ¢1‘9W1) dl
T )

= f} 1 (Wl o9 qb’”c >d1+ f (W 8‘;: - ¢’an) (44)

(which can be proved using Green’s second identity) and setting W, = \Ilgt) we obtain

) aq:<‘?
f=df (052 -0l ) (15

since the first right hand side integral in (44) vanishes when the expansion (36) is in-

troduced. Further, by invoking the boundary conditions (5) and making use of the

expansion (39) in (45), we find

{1} =[Pl{g} (46)

where the elements of [P] are given by

J W72  g@o*1
Pz] - 9 T (ul ‘I‘lz on wZ] an dl (47)

12



When (46) is combined with (41) we then obtain the system

{f}=[THa}, [T]=[PlQ]" (48)

which can be solved by properly truncating the infinite series in (36), (39) and (43).
The formulation described herein is the two-dimensional version of the so-called ex-
tended boundary condition method which is also known as the T-matrix method or the
null field method. The method was originally developed by expanding the Green’s dyadic
and employing the concept of analytic continuation [8]. It can be also developed by invok-
ing Huygens’ principle [9] or, alternatively, by using Schelkunoff’s equivalence principle
[10]. The formulation presented here is, however, more parallel to the one described in
[11] which employs the concept of flux conservation. Similarly to Method 2, this for-
mulation does not exhibit difficulties associated with internal resonances. Furthermore,
for scatterers having nearly circular cross sections the number of unknowns required for
a given accuracy can be smaller than that for the previous two methods. However, for
elongated cylinders, the field representions (39) and (43) may be inadequate or slowly
converging (consequently the system may be ill-conditioned) making the method much
less attractive. It was seen, though, that (43) can be avoided if (41) is solved independent
of (46) and (14) is then used to compute the scattered field. Nevertheless, the approxi-
mate representation of (39) for the boundary field and its normal derivative is essential
to the method and its use is the major source of error when simulating scatterers with

elongated cross sections.

The aforementioned three different methods for the solution of the boundary-value

problem defined by (1)-(5) are summarized in Table 1. These methods share a common

13



feature that the same type of weighting or trial field expansion functions are employed
for both fields inside and outside the scatterer. This is, of course, not required and in
fact we may choose to formulate the interior field using Method 1 and the exterior field in
accordance with Method 2 or 3. Such combinations lead to a variety of formulations (not
necessarily more advantageous than those just presented). In passing, we should also
note that the methods described herein are equally applicable to multilayered, conducting
and impedance scatterers provided the boundary conditions are accordingly modified.
In particular for perfectly conducting and impedance cylinders the internal field vanishes

leading to substantial simplication in formulations and a reduction in unknowns.

Table 1: Different Choices for Weighting and Expansion Functions

Method | Weighting Functions | Expansion Functions Eqn. #
Method 1 | Green’s Functions Polynomials (18), (19)-(23)
Method 2 Eigenfunctions Polynomials (18), (28)-(32)
Method 3 Eigenfunctions Eigenfunctions (42), (47), (48)

II1. DOMAIN-BOUNDARY INTEGRAL FORMULATIONS

The solution methods presented in the previous section are restricted to homogeneous
scatterers, and whereas the expressions involving the exterior field ¢; are still valid for
inhomogeneous scatterers, those associated with the interior field ¢2 must be modified to
account for the inhomogeneity. When the scatterer is inhomogeneous, the appropriate

wave equation for the interior field is

V- (uaVéy) + kvgy =0 in Q (49)

14



where ¢ and u are the same as those defined earlier, kq is the free-space wavenumber, and
v = ¢ for E-polarization and v = u, for H-polarization. The boundary-value problem
is then completely defined by (1)-(3), (5) and (49).

To derive integral equations for ¢, we can follow a similar procedure to that outlined
for the homogeneous scatterers. The integral of the weighted residual of (49) can be

written as

//Q WolV - (u2Vy) + K2opdalds =0 in O (50)

and by invoking the identity
V. (-W2U2V¢2) = WQ[V . (UQV¢2)] + ’LL2V¢ - VW, (51)

and the divergence theorem we obtain

// (4aVWa - Vg — k2va Wy )ds — f wW. %‘l:-l"ldl 0 0 (52)
Q Iy

As before, different choices for W; lead to different integral formulations and some of

these are discussed below.

Method 1: Green’s Function for Weighting
The Green’s function Gy associated with (ug,v;) is usually not available. However,

we may choose G, defined in (11), for W, to rewrite (52) as

J[ 1207610, ) - Va(0) - Boua(0)Gi(p, )00 ds

9¢2(p)

f— AR A ) —

;g ua(p)Ci(p, o) Bhil = 0 (53)

and through the repeated use of the identity (51) and the divergence theorem we find
[ [ox(p)Ga(,8) + (p)V2 G, + Valp) - VG (p, )] ()

15



+ fualo) [ 6100, )22 () 2L 1= g (54)

Further, by making use of (11), (54) becomes

//Q {[K3(6) = K] ua(@")G1(p, p') + V'1a(p') - V'Gr(p, §) } 62(p')d

| 062 :
+.7§u2(l’l) [Gl(l’, Pl)% B ¢2(pl)%] @

ug(p)p2(p) for pe Q

=9 cuz(p)p2(p) for ponT (55)

0 for p € Qoo
where we have also interchanged the primed and unprimed coordinates. Combining this

with (14), which is still valid for the exterior field, through the boundary conditions (5),

we finally obtain

{6 - 1] wa()Ga(p, ) + Vsl - VG, )} dal ')

+ ]£ [Ul — uy(p ] )] #(p Mdl/ U1¢mc(P)
(

uz(p)¢2(p) for p€ Q
=3 [(1 - c)ug + cuz(p) ¢(p) for ponT (56)
L u191(p) for p € Qo

which is the integral equation derived in [12]. We note that this integral equation involves
only a single unknown field component within the inhomogeneous scatterer and along the
contours defining an abrupt change in material constants. It has been shown, however, to
be equivalent to the volume integral equations involving the vector polarization currents
given in [13]-[15] which require three unknowns for a simulation of general inhomogeneous

scatterers and are also associated with higher singular kernels. A solution of (56) for

16



general scatterers has been given in [16] using pulse basis and point matching and has also
been implemented with isoparametric elements [17] to yield a more accurate simulation

in the case of high contrast dielectrics.

Method 2: Eigenfunctions for Weighting
The eigenfunctions Wy; associated with (ug,v;) are usually not available. However,

if we choose W to be the eigenfunctions ¥; satisfying the Helmoholtz equation

V2, + k20, =0  forpin 0 (57)
(52) becomes
2 d¢2 .
(w2V0; - Vg, - K§vaWigs) ds — § up ¥, 2dl =0 in (58)
Q r on

In (57), k is an arbitrary constant and could be chosen as the average value of k; for
best result. Following the same procedure as described above under Method 1, (58) can

be rewritten as

//Q [(k§ - k2)u2\11,~ + Vauy - V‘I’i] bods
+f{ u2( 3¢2 _ ¢2_> _0 - 59

which parallels that in (55). This together with (25) for the external fields and the

boundary conditions (5) yield the two coupled equations

}g ( Upiq - ¢%) dl = f(wl og™ ¢"‘C‘9‘I’“) dl (60a)

//Q (82 ~ K)uz¥: + Vs - V) guds + ]i <111,q - uzqsgql) =0  (60b)

17



These integral equations can now be discretized by expanding the interior field, the
boundary field and its normal derivative. Clearly, the integrands of (60) have no singu-
larity and their evaluation can therefore be carried out numerically without difficulty. It
should be noted however that in most cases (56) yields a more efficient solution because
it does not involve the normal derivative of the boundary field.

Similarly to that remarked earlier in Method 2 of Section II, we may also choose other
solutions to (24a) and (57) for ¥y; and ¥; (other than the eigenfunctions). Particularly,
if we choose both ¥y; and ¥; to be Hé2)(k1|p — p;|) with p; residing on T', then (60a)

and (60b) can be combined to yield an integral equation identical to (56).

Method 3: Subdomain Basis for Weighting and Expansion

If region € is subdivided into a number of small elements and within each element
a set of polynomials is used for the weighting and field expansion functions, we then
obtain the well-known finite element method. Specifically, the field in © and its normal

derivative on I' are expressed as

Np 0 ¢2 Np

$2=) Ni¢;, q=u2%=zlf§% (61)

7=1 7=1
where N1 denotes the total number of nodes in Q (including boundary nodes) and Np
denotes the number of boundary nodes. Also, N f and L‘J‘? are known expansion or shape
functions chosen so that ¢; and g; represent, respectively, the unknown ¢, and ¢ at the
jth node. Substituting (61) into (52) and choosing W, to be Nf, we obtain the finite
element matrix equation

prr‘ KFI ¢I“ HFI" 0 q
= (62)

K[F KH ¢[ 0 0 0

18



where the subscripts ' and I are used to denote the fields at the nodes on T' and those

interior of T', respectively. The elements of the matrices [K] and [H] are given by

K = //Q (WVNf-VN;-kgvang) ds (63)

Hy = j[Nng dl (64)
T

Clearly, the system (62) provides a relation between the boundary field and its normal
derivative in a discrete form and to solve this we must introduce an additional relation
between the two quantities at the boundary. This must be derived from the exterior field
formulation and can take the form of an integral relation based on one of the methods
described earlier. Below we discuss various approaches.
A. Finite element/boundary element method

If the exterior field is formulated in accordance with Methods 1 and 2 described
in Section II, the resulting relation between the exterior boundary field and its normal

derivative is the first row of (18). When this is combined with (62), we obtain the system

9 ( ) \
A 0 B or b
Krr Kry —Hrr | ¢é1r (=4 0 (65)
K Kir 0 q 0

where the elements of [A], [B] and {b} are given by (19)-(23) or (28)-(32), depending on
the method used to formulate the exterior field. We observe that the [K] submatrices are
sparse and banded whereas [A] and [B] are fully populated matrices. However, substan-
tial memory reduction can be achieved if we first solve (62) to obtain {¢r} = [E]{¢} and
then solve the equation ([A][E] + [B]){¢} = {b} for {q}. This finite element/boundary

element method has been recently applied to a variety of two-dimensional scattering com-
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putations [18]-[21] and has also been found to be particularly attractive for scattering
by grooves and slots in thick conducting planes [22]-[24].
B. Finite element/extended boundary condition method

This method was proposed by Morgan et al. [25] to formulate the scattering by a
body of revolution. The exterior fields are formulated following Method 3 of Section II.

In particular, from (38) we have

: (1)
AV O R SN ) S ril W
L p(ulw”q ool di=a (66)

where a; correspond to the expansion coefficients associated with the incident field.
Equations (62) and (66) now provide a coupled pair of relations between the field and
its normal derivative at the boundary. To solve this coupled set of equations we can
first expand ¢ and ¢r in a form compatible with (61) and this results in the same finite
element /boundary element method described above with the exterior fields formulated
in accordance with Method 2 of Section II. An alternative is to generate from (62) a set
of coupled expansion bases for ¢ and ¢r to be used in (66) for a solution of the expansion
coefficients. Specifically, we first choose a set of known bases for {¢}, denoted by gj, and
for each of these we can use (62) to compute the corresponding coupled basis for {¢r},
denoted as ¢J Since the system (62) is banded and sparse, the computational demands
associated with this repetitive process are quite managable. Thus, we can expand ¢ and

¢r using a single set of the expansion coefficients g; as

N N
g=> giGj, or=> 0% (67)
7=1 j=1
where (éj,(jj) are the known numerical bases. When these expansions are substituted
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into (66) we obtain the system

[Q1{g} = {a} (68)

which is of the same form as in that (41) with the elements of [Q] given by

. (1)
J 1 ‘I’z
Qi = -3 ( vig; - g1 ) (69)

It remains to choose §; and this can be done rather arbitrarily as long as a set of §; are
capable of representing the true solution of ¢ on I'. For example, we may choose the
entire domain basis ¢; = sin %d) (for odd j) and §; = cos =;L1¢ (for even j) for certain
geometries.

Once the expansion coefficients g; are solved from (68), the scattered field can be
computed by evaluating the integrals involving the boundary field and its normal deriva-
tive given in (67). Alternatively, we can follow the procedure illustrated in Method 3
of Section II by first expanding the scattered field as in (43) and then solving for the

expansion coefficients f; from (46), with P;; now given by

.. ovl
Pj = 2}4( g~ d— 2 )dl (70)

C. Unimoment method

The unimoment method was first proposed by Mei [26], [27] and is very similar to the
finite element/extended boundary condition method. In fact, the latter is an extension
of the former. Based on this formulation the boundary T is chosen to be a circle, say I';,
of radius p;. As a result, the scattered field can be represented by (43) and through the

same procedure described above, a set of coupled bases similar to those given in (67) can
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be generated from (62) for the fields inside I';. The boundary conditions (5) are then

imposed through their weighted residual forms

}i W (62 + ) dl = }i Werdl (71a)
}i W (%f + 3?:) di= § Wad (71b)

where W denotes the weighting function. Substituting (43) and (67) into the above
and choosing a set of weighting functions for W yields a system of equations for a
solution of f; and g¢;. It is then seen that the unimoment method results in a 2N x2N
matrix whereas the finite element/extended boundary condition method leads to an
N x N matrix. Further, this approach introduces additional nodal fields to be computed
in the region between the structure’s boundary and the fictitious circular boundary T';.

In passing, we note that the finite element/extended boundary condition method
and the unimoment method usually result in a smaller size matrix than the finite ele-
ment/boundary element method. This has often been attributed to the expansion of the
scattered field in the form of (43), but is not true. In the formulation of the finite ele-
ment/extended boundary condition method it is clearly seen that the expansion (43) is
not an essential element since a solution can be obtained directly from (68). The smaller
size matrix should actually be attributed to the use of coupled bases. A matrix of the
same size can also be obtained when the boundary integral formulation (16a) or (27a) is
used in conjunction with the coupled bases and this becomes obvious when the coupled
basis expansion (67) is substituted into (16a) or (27a). The only concern with the use
of the coupled bases is how to choose the known bases §; which should be capable of

representing the true solution of ¢ on the boundary to be used to compute the coupled
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bases @. The safest choice is to choose a set of orthogonal pulse basis, i.e., g = 1 and
¢; = 0 for ¢ # j. However, this choice offers no advantage over the standard approach
adopted in the finite element/boundary element method since the resulting full matrix
will have the same size. The coupled bases will have an advantage only if the number of

the coupled bases is smaller than the number of the boundary nodes.

Table 2: Different Choices for Weighting Function W,

Method | Weighting Function W, Resulting Formulation Eqn. #
Method 1 Green’s Function Singular Integral Equation (56)
Method 2 Figenfunctions Non-singular Integral Equation | (60)
Method 3 Subdomain Basis Finite Element Method (62)

The three methods presented in this section are summarized in Table 2. In Method
1, subsectional bases are usually chosen to expand the boundary and interior fields, and
similar expansion functions could be used in Method 2. For Method 3, subsectional
expansion and weighting functions must be chosen and three variations of this method

were presented depending on how the exterior fields are formulated.

IV. CONCLUDING REMARKS

In this paper, we presented a unified approach to formulate various boundary and
domain-boundary integral methods, including the finite element method, for electro-
magnetic scattering. First, we introduced weighting and trial functions to formulate two

weighted residual equations for the fields inside and outside the scatterer. It was shown

23



that different choices for the weighting and trial functions result in different integral
equations or methods for the solution of the exterior and interior fields. Among the
various methods presented in this paper, those employing the unbounded space Green’s
functions in conjunction with subsectional field expansions (Method 1 of Sections II and
IIT) have been most frequently used primarily because they are capable of treating ar-
bitrarily shaped geometries. Method 2 of Sections II and III, where eigenfunctions are
employed for weighting, was presented to merely show that there are other possible ways
to formulate the problem. The extended boundary condition method (Method 3 of Sec-
tion IT) could be efficient for far field computations, but it is not likely to provide accurate
result for the induced field particularly for those structures which deviate substantially
from a circular cross-section. This is primarily due to the approximate representation of
the field and its normal derivative at the boundary in terms of cylindrical eigenfunctions.
However, by employing the finite element method to formulate the interior fields, the
accuracy of the method can be restored. The resulting formulation would be the finite
element /extended boundary condition method (Method 3B of Section IIT). Neverthe-
less, to date, among the formulations which incorporate the finite element method those

discussed under Method 3A of Section III has been most widely used.
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FIGURE CAPTIONS

Fig. 1 Geometry of the scattering problem.

Fig. 2 Illustration of the internal angle.

Fig. 3 Illustration of I'; and I's.
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