RL-868

FINITE ELEMENT-BOUNDARY ELEMENT METHODS
FOR ELECTROMAGNETIC SCATTERING

Jianming Jin, Valdis V. Liepa,
and John L. Volakis

Radiation Laboratory
Department of Electrical Engineering
and Computer Science
The University of Michigan
Ann Arbor, MI 48109

October 11, 1989

RL-868 = RL-868



ABSTRACT

FINITE ELEMENT-BOUNDARY ELEMENT METHODS FOR

ELECTROMAGNETIC SCATTERING *

by

Jianming Jin, Valdis V. Liepa, and John L. Volakis

Recent advances in computer speed and storage have led to an increasing interest
in developing new methodologies to satisfy a need for accurate and efficient numer-
ical simulation of complex open region electromagnetic scattering problems. In this
thesis, several hybrid techniques which employ finite element and boundary element
methods are presented.

A finite element-boundary element method is presented for computing the scat-
tering by cylindrical objects. The method uses artificial boundaries that can follow
the contour of the scatterer so that the discretization region is minimized. More im-

portantly, the method results in a highly sparse or uniformly banded matrix which

! The material in this report is also the Ph.D. thesis submitted by Jianming

Jin in partial fulfillment of the requirements for the Ph.D. degree in the University
of Michigan.



can be efficiently solved using special algorithms. Results are presented to demon-
strate the accuracy of the method as well as its capability and versatility.

The method 1s then extended to treat the scattering by coated wedges and half-
planes. In this case, the physical optics approximation is employed to approximate
the surface fields away from the edge of the structure. Numerical results are presented
to show the surface field and surface impedance behavior near the edge.

A finite element-boundary element method is also developed to characterize the
scattering and transmission properties of an inhomogeneously filled aperture in a
thick conducting plane. Of particular interest in this formulation is the use of a
fast Fourier transform to evaluate the boundary integrals and the use of a conju-
gate gradient method to solve the system of equations. As a result, the method is
particularly efficient in dealing with large apertures.

The use of isoparametric elements is subsequently presented for modeling ar-
bitrarily shaped and curved geometries. This leads to an improved efficiency and
accuracy not shared with traditional elements.

Finally, formulations for several hybrid techniques which combine the finite ele-
ment method with either a surface integral equation or an expansion of vector eigen-

functions are presented and discussed for three-dimensional scattering problems.
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CHAPTER I

INTRODUCTION

This dissertation deals with the development of new numerical methodologies to

analyze and evaluate open region electromagnetic wave scattering.

1.1. Motivation

In the frequency domain the problem of open region electromagnetic scattering
is usually treated using integral equation methods (see, for example, Mei and Van
Bladel [1963], Richmond [1965, 1966], Harrington [1968], and Wu and Tsai [1977a]),
partial differential equation methods (see, for example, Mason [1982]), and hybrid
techniques which combine the partial differential equation methods with a surface
integral equation or an eigenfunction expansion (see, for example, Chang and Mei
[1976], Marin [1982], and Jeng and Chen [1984]).

The integral equation methods have the advantage of a simple numerical imple-
mentation with a minimum discretization region, since their formulations incorporate
the radiation condition by employing the free-space Green’s function. However, they
have the disadvantage of a rather difficult formulation when dealing with complex
media and usually result in large full matrices whose treatment is usually time con-

suming and costly.
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In contrast, the partial differential equation methods have the advantage of a
simple formulation even in the case of complex media and result in a simple numer-
ical implementation. In addition, they produce highly sparse matrices which can be
efficiently solved using special algorithms [George and Liu, 1981]. Their major dis-
advantage, though, is the need of extending the discretization to the far field region
in order to enforce the radiation condition and this usually leads to an extremely
large number of unknowns.!

The hybrid techniques represent a combination of the above two methods. They
eliminate their disadvantages while maintaining their advantages. As a result, the
hybrid techniques are more powerful especially for treating large and complex scat-
terers. However, the formulations and, especially, the numerical implementation
of the hybrid techniques usually require more effort than for the integral equation
and partial differential equation methods. Therefore, there exists a need to improve
the existing hybrid techniques and to develop new ones that are more efficient for

practical application. This is the goal of this dissertation.

1.2. Background

There are basically two kinds of partial differential equation methods: finite ele-
ment and finite difference methods, and both of them can be employed in the hybrid
techniques. The hybrid techniques presented in this dissertation employ the finite
element method and combine it with boundary element method. Therefore, they
are referred to as finite element-boundary element methods. The following is a brief

review of the background of the finite element-boundary element methods in electro-

! Currently, much attention is aimed at employing more complicated radiation

conditions or absorbing boundary conditions to reduce the discretization region
(see, for example, McCartin et al. [1988], Mittra [1988], and Wilton and Richards
[1988]).
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magnetics, while a detailed review for each problem considered in this dissertation
is given in the related chapter.

The basic idea of the finite element-boundary element methods was first developed
in mechanical engineering and introduced later in electromagnetics by Silvester and
Hsieh [1971] and McDonald and Wexler [1972] when they were considering the finite
element solution of exterior or unbounded field problems. The idea is to introduce
an artificial boundary enclosing the scatterer, and express its exterior field by either
an expansion of eigenfunctions or a boundary integral equation involving the free-
space Green’s function. Such expressions are imposed on the variational equation
for the interior field as boundary constraints. The resultant variational equation is
then solved via the finite element method. This idea has been further developed
and improved upon in order to solve two-dimensional antenna problems [Washisu
et al., 1979; Orikasa et al., 1983] and scattering problems [Marin, 1982; Jeng and
Chen, 1984; Guo, 1985]. These methods, however, were not well-known in the mid
1980’s since their capability and computational efficiency were not obvious. A better
known method is the one called unimoment method and was developed by Mei and
his students [Mei, 1974; Chang and Mei, 1976; Morgan and Mei, 1979]. In this
method, the finite element method is used to generate a set of trial functions inside
a mathematical circle encompassing the scatterer. The field outside the circle is
expanded in terms of Hankel functions and then coupled with interior solutions on
the circle.

Recent advances in computer speed and storage and an increasing need to study
more complicated scattering problems have led to a growing interest in using the finite
element-boundary element methods. As a result, an increasing amount of research
on the subject, including that of the Radiation Laboratory of The University of

Michigan, has been reported in the past two years.



This dissertation includes the part of my research conducted during the past four
years on developing new finite element-boundary element methods for a number of
scattering problems. The dissertation is organized in such a way that each chapter is
self-contained and independent, and can be read without intensive reference to the
other chapters.

Chapter 2 presents a brief review of some basic concepts of electromagnetic theory
and also contains pertinent equations that are used in subsequent chapters.

Chapter 3 first briefly reviews several methods for solving boundary-value prob-
lems, then presents some basic concepts of the finite element method, and finally
describes its application to two-dimensional problems. The chapter is intended for
a reader who is not very familiar with the finite element method. Thus, in the later
chapters we can concentrate our attention on the principles and formulations of the
hybrid techniques, rather than the finite element formulation.

Chapter 4 deals with the scattering by cylinders. A general review of various
methods is given and the major shortcomings that exist in each are pointed out. A
new formulation combining the finite element method with a surface integral equa-
tion is then presented which overcomes those shortcomings, and numerical results
are given to verify the method as well as to demonstrate its capability. Finally, the
method is compared with other commonly used numerical methods and its advan-
tages are clearly shown. The work contained in this chapter was published in 1988
[Jin and Liepa, 1988a and 1988b)].

Chapter 5 describes a technique for the scattering by a coated wedge and half-
plane. This technique is an extension of that presented in Chapter 4 by incorporating
the physical optics approximation for the fields far away from the edge. A brief

review for the problem is given and then followed by description of the formulation.
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Numerical results are subsequently presented to show the surface field and surface
impedance behavior around the edge. The work reported here was published in 1989
[Jin and Liepa, 1989a).

Chapter 6 presents a very efficient technique for the electromagnetic character-
ization of the scattering and transmission properties of an inhomogeneously filled
aperture in a thick conducting plane. The new technique again combines the finite
element method with boundary integral equations as was done in Chapter 4. Of
particular interest is the use of the conjugate gradient method [Hestenes and Steifel,
1952] and fast Fourier transform for the solution of the system. The technique is suc-
cessfully used to solve some problems which are formidable when other techniques
are used, and this is shown by numerical results. The work in this chapter was
published in 1989 [Jin and Volakis, 1989c].

Chapter 7 describes the application of isoparametric elements in the finite element-
boundary element methods. The purpose for using the isoparametric elements is to
improve the computational efficiency and accuracy of the previously developed meth-
ods which usually employ the linear triangular elements.

Chapter 8 presents several hybrid formulations involving the finite element method
for the three-dimensional scattering. Numerical implementation of these formulations
is a subject for further investigation.

Chapter 9 concludes this dissertation with a brief summary and recommendations

for future work.



CHAPTER 11

BASIC ELECTROMAGNETIC CONCEPTS

The analysis of electromagnetic scattering and radiation is actually a problem of
solving Maxwell’s equations subject to given boundary conditions. In this chapter,
we will briefly review some basic concepts and equations of electromagnetic theory,
which will be used later on in our formulations. It should be noted that our emphasis

is laid upon their mathematical expressions rather than their physical interpretations.

2.1. Maxwell’s Equations

Mazwell’s equations are a set of fundamental equations governing all macroscopic

electromagnetic phenomena. In differential form they are written as

VxE= -%;It; (Faraday’s law) (2.1)
VxH=J+ aa—? (Maxwell-Ampere’s law) (2.2)
V-D=p (Gauss’ law) (2.3)
V-B=0 (Gauss’ law - magnetic) (2.4)

where

E = electric field intensity (volts/ meter)

6
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D = electric flux density (coulombs/meter?)
H = magnetic field intensity (amperes/meter)

B = magnetic flux density (webers/meter?)

|

= electric current density (amperes/meter?)

p = electric charge density (coulombs/meter?)

Another fundamental equation, which is known as the equation of continuity, can be

written as

—
VI=-o (2.5)

which states the conservation of charge.

Among the above five equations, only three are independent, and thus called
independent equations. Either the first three equations, (2.1)-(2.3), or the first two
equations, (2.1) and (2.2), with (2.5) can be chosen as such independent equations.
The other two equations, (2.4) and (2.5) or (2.4) and (2.3), can be derived from the
independent equations, and thus called auziliary or dependent equations.

The three independent equations are in indefinite form, since the number of
equations is less than the number of the unknowns. Maxwell’s equations become
definite when the constitutive relations between the field quantities are specified.
The constitutive relations describe the macroscopic properties of the medium being

considered. For a simple medium, they are

D=¢E (2.6)
B=uH (2.7)
J=0oF (2.8)

where the constitutive parameters €, u and o denote, respectively, the permittiv-
ity (farads/meter), permeability (henrys/meter) and conductivity (mhos/meter) of

the medium. These parameters are tensors for anisotropic media and scalars for
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isotropic media. For inhomogeneous media, they are functions of position; while for
homogeneous media they are not.

When the field quantities in Maxwell’s equations are harmonically oscillating
functions with a single frequency, using complex phasor notations, (2.1)-(2.5) can be

written in a simplified form

VxE=—jupH (2.9)
V xH=1J+ jweE (2.10)
V-(E)=p (2.11)

V.- (uH)=0 (2.12)
V.-J=—jwp (2.13)

where the time convention ¢’“! is used and suppressed, and w is angular frequency.

2.2. Wave Equations

To solve Maxwell’s equations, one usually first converts the first-order differential
equations involving two vector variables into the second-order differential equations

involving only one vector variable. By eliminating H or E in (2.9) and (2.10), one

obtains
]. b—1 2 - . =7
Vx=-VxFE-weFE=—jwl; (2.14)
I
VxivxT- wiuH =V x (17.-) (2.15)
€c €c

where J; is an impressed or source current, and ¢, (=€ — jo/w) represents a combi-
nation of induced current and displacement current; however, for simplicity we next
use € to denote ¢,. Equations (2.14) and (2.15) are called inhomogeneous vector wave

equations.
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For two-dimensional electromagnetic fields (the fields have no variation with re-
spect to one Cartesian coordinate, say the z-coordinate), it can be shown that the

z-components of (2.14) and (2.15) become

910 o910 .
(e + ayyoag + ) B = kel (21

(%qg torat kour) H, = -2 (qu) to (ErJr> (2.17)

where €. (= €/¢) and p, (= p/po) denote the relative permittivity and relative
permeability, respectively, and they are assumed here to be complex scalar func-
tions of position; ko (: w eopo) is the wavenumber in free-space; Z, (: \/;m) is
the intrinsic impedance of free-space; and the electric constant ¢, (= 8.854 x 10~'2
farads/meter) and the magnetic constant po (= 47 X 10~7 henrys/meter) are the
permittivity and permeability of free-space. Equations (2.16) and (2.17) are called

inhomogeneous scalar wave equations.

2.3. Boundary Conditions

Solving the inhomogeneous vector or scalar wave equations given above in a
domain of interest, one may obtain many solutions; however, only one of them is
the real solution to the problem. To find out this real solution, one should know
the boundary conditions associated with the domain. In other words, a complete
description of an electromagnetic problem should include complete information about
both differential equations and boundary conditions. This section presents some
boundary conditions which apply to many practical problems.

Boundary Conditions at the Interface between Two Media. At the interface
between two media, say medium 1 and medium 2, the boundary conditions can be

mathematically expressed as

ix (E;—E) =0 (2.18)



for electric fields, and similarly
Ax(H -Hy)=0 (2.20)

i-(Bi—By) =0 (2.21)

for magnetic fields, where 7 is the unit vector normal to the interface, pointing from
medium 2 into medium 1. It is assumed in (2.19) and (2.20) that neither surface
currents nor surface charges exist at the interface. It is also understood that among
the four boundary conditions only two of them are independent: one from (2.18) and
(2.21), and the other from (2.19) and (2.20).

Boundary Conditions at the Surfaces of Perfect Conductors. This is a
special case when one of the media, say medium 2, becomes a perfect conductor.

Since a perfect conductor cannot sustain a field inside, (2.18) reduces to

and (2.21) reduces to
A-B=0 (2.23)

Note that in this case the boundary can support a surface current (J, = 7 x H) and

surface charge (p, =7 - D).

2.4. Radiation Conditions

When the domain of interest is unbounded (its boundary is at infinity), a condi-
tion can be specified at infinity. Assuming that the sources and scatterers are located

within a finite distance from an origin, the fields are required to satisfy

. E . E
}%nn R|Vx| | +jkRx| _ =0 (2.24)
- H H
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where R = /22 + y? + 2%, This is referred to as the radiation condition for general

three-dimensional fields. For two-dimensional fields, the radiation condition becomes

E, E,
lim Jr 5’9— + jk =0 (2.25)
"\ H, H,

where r = /22 + o2

2.5. Surface Integral Equations

This section presents the general solutions, in the form of integral equations, to
the electromagnetic field problems within a homogeneous isotropic medium. Con

sider an electric current J radiating in a domain V bounded by the surface S. The

electric field inside can be written as [Tai, 1971]

ER) = —]w,u/// (=} ﬁﬁ')dV’—//{VxGo(_,-ﬁ')
: [n x E(R )] —]wpéo(ﬁ,ﬁ) [n x H(R ]} ds’ (2.26)

where @’ is the outward unit vector normal to the surface S, and Go(R R) is the

dyadic Green’s function defined by

L2
with
— —,  e-iHR-F
Go(R, R - — 7
4r|R - R |
and

HE) = ///V(:}ro(l—z,R) R)dv' - //{VXG (R, R

[ x HR)| + jweéo(ﬁ,ﬁ’) [ xE(R)]} ds' (2.27)
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If we consider the domain V to be of infinite extent, the outer surface, denoted
by S, recedes to infinity. Because of the radiation condition described by (2.24),
the surface integral over S, vanishes, and thus, (2.26) and (2.27) are still valid. In
scattering and radiation problems, S usually represents the surfaces of obstacles or
scatterers. The first term on the right hand side of (2.26) and (2.27) represents the
field radiated by the electric current in the absence of any scatterers, and thus can
be referred to as the incident field. The second term comes from the integrals over
the surfaces of scatterers, and thus represents the scattered field.

Equations (2.26) and (2.27) can be uniformly written as
F(R) = F(R) - / / [V x Go(R,F)- [t x F(R)

+ Go(BR)- [ x V' x F(R)|} ds' (2.28)
where Fi(—R-) denotes the incident electric or magnetic field, and F denotes the corre-
sponding total electric or magnetic field. Equation (2.28) is referred to as the surface
integral equation for the three-dimensional case.

For the two-dimensional case, in an unbounded domain with homogeneous isotropic

medium containing scatterers, the solution to (2.16) and (2.17) is found to be

F(F) = F'(r) - /[Go( )agi,)—F(f’)% ac’ (2.29)

where F' = E, for E-polarization, F' = H, for H-polarization, and C is the boundary

of all scatterers. Also, Go(7,7') is the two-dimensional Green’s function given by
Go(F, ) = = H (k|7 = )
and F(7) is the incident field given by

Ei(F) = —jwu//Go(F, ) J,(7) ds'

for E-polarization, and

0= | foien 242240 o
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for H-polarization. Equation (2.29) is referred to as the two-dimensional surface

integral equation or boundary integral equation.

2.6. Radar Cross Sections

The radar cross section (RCS) is a quantity characterizing the scattering of an
obstacle. It is defined for plane wave incidence, and is also known as the scattering
cross section. In the three-dimensional case, the scattering cross section is defined

by
19
o(8,¢) = lim 47rR2|£1.-|— (2.30)
R— oo IF |2
where F denotes the scattered field at the observation point (R,0,4). In the two-

dimensional case, the scattering cross section per unit length is defined by

5|2
o(¢) = ,li,r& 27mr ||Fi||2

(2.31)

where F* is the scattered field at the observation point (r, ¢).



CHAPTER III

FINITE ELEMENT METHOD AND ITS APPLICATION
TO TWO-DIMENSIONAL PROBLEMS

The finite element method (FEM) is a computer-aided mathematical technique
for obtaining approximate numerical solutions to boundary-value problems of mathe-
matical physics. The method has a history of about forty years. It was first proposed
in the 1940’s and its use began in the 1950’s for aircraft design. Thereafter, the FEM
has been developed and applied extensively to problems of structural analysis and
less extensively, but increasingly, to problems in other fields. Today, the FEM has
become recognized as a general method of wide applicability to engineering and
mathematical problems. Many books have been written on the subject, of which
Zienkiewicz’s [1977] is probably one of the most popular reference texts. In this
chapter, we will first briefly review several methods for solving boundary-value prob-
lems. Some basic concepts of the FEM will then be presented and followed by a

FEM analysis for two-dimensional field problems.

3.1. Solution of Boundary-Value Problems

Boundary-value problems have long been a major topic in mathematical physics
and nowdays one has many methods available for finding their solutions. A boundary-

value problem can be mathematically defined by a governing differential equation in

14
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a domain
Lé=f (3.1)

together with the associated boundary conditions on the boundary I' of the domain.
In (3.1), L is usually a differential or integral operator, f is the excitation or forc-
ing function and ¢ the unknown quantity. It is, of course, desirable to solve (3.1)
analytically, whenever possible. However, this is generally the exception since an
analytical solution can only be attained in a few cases for given I'. To overcome this
difficulty, numerical methods have been and continued to be developed for obtaining
an approximate solution by means of computing ¢ at discrete points. These methods
can be categorized into three groups: the finite difference method, the variational

method, and the method of weighted residuals.

3.1.1. Finite Difference Method

The finite difference method approximates the differential operator and is best
suited for problems with regular boundary domains and homogeneous media. Using
this method, the differential operator in (3.1) is represented by a difference operator
and thus (3.1) is transformed into a set of difference equations. This method has
been mostly used for solving field problems with regular boundaries, such as rectan-
gular waveguides in electromagnetics. However, it is not easily adapted to problems
involving curved or irregular boundaries because of the difficulty of enforcing bound-
ary conditions. The method is also not as effective if the problem involves different
media since the boundary condition at the interface between media requires special
treatment. As a result, it is difficult to develop general purpose computer programs

using the finite difference method.
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3.1.2. Variational Method

The variational method formulates the boundary-value problems in terms of vari-
ational expressions, referred to as functionals, with (3.1) as their Euler equations un-
der the given boundary conditions. The approximate solutions are then obtained by
minimizing the functional with respect to its variables. Specifically, consider (3.1).

If the operator L is self-adjoint, i.e.

< Lo, >=< ¢, Lp > (3.2)
and positive-definite
>0 ¢#0
<L¢,¢> { (3.3)
=0 ¢=0

then the solution to (3.1) can be obtained by the minimization of the functional
[Mikhlin, 1964]
F(¢)=<L¢,¢'>-<¢,f>-<f¢> (3.4)

with respect to ¢'. The inner product, denoted by the angular bracket, is defined by

< bt >= /ﬂ $pdQ (3.5)

where the asterisk denotes the complex conjugate.
Once the functional is found, the solution can be obtained by the procedure
described below. For simplicity, let us assume that the problem is real-valued and

suppose that ¢’ in (3.4) can be approximated by the expression
N
¢ =3 cvi=cv=vlc (3.6)
1=1

where v; are the chosen expansion functions and ¢; are constant coefficients to be
determined. Also, the boldface letters denote column vectors and the superscript T

denotes the transpose of the vector. Substituting (3.6) into (3.4), we obtain

F(¢) = T /Q vIvTdQe - 2¢7 /Q vdQ (3.7)
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To minimize F(4') we let its derivatives with respect to ¢; vanish. This yields the

matrix equation

[Sle=b (3.8)
whose elements in [S] are given by
S, = /Q viLv;dQ (3.9)
and those in b by
b = /ﬂv;fdﬂ (3.10)

As a consequence of the self-adjoint property of the operator, the matrix [S] is
symmetric. Solving (3.8), one obtains an approximate solution for (3.1).

The variational method described above has been the basis for many finite element
formulations since the beginning of the FEM history. It does not apply, though, to
cases where the operator L is not self-adjoint. In that case, a functional can be
constructed leading to an adjoint operator before applying the variational method
procedure [McDonald and Wexler, 1980]. Finding and minimizing a functional is,
however, not the only way to formulate the finite element equations. The weighted

residual methods can provide an alternative approach.
3.1.3. Weighted Residual Methods

Based on its definition, the weighted residual method weights a residual. Assume
that ¢' is an approximate solution to (3.1). Substitution of ¢’ for ¢ in (3.1) would
then result in a non-zero residual

R=L¢'-f#0 (3.11)

The best approximation for ¢ will be one that reduces the residual, R, to the

least value at all points of Q. The weighted residual methods enforce the condition

/ Ruwd® = 0 (3.12)
Q
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where w; is a chosen weighting function. Different choices of the weighting functions
can result in different formulations as discussed next.
Collocation Method. This is also known as the point matching method. Impulse
functions are selected as the weighting functions (w; = 1 at some point ¢ and zero
everywhere else). This is equivalent to satisfying (3.1) at specific points.
Subdomain Method. The weighting functions here are set equal to unity over a
specific subdomain and zero elsewhere. This is equivalent to making the integral of
the residual vanish over a number of subdomains.
Least Squares Method. The least squares method uses the residual as the weight-

ing function and minimizes a new error term defined by
e=LMM (3.13)

The minimization is with respect to the unknown coefficients in the approximate
solution.

Galerkin’s Method. In this method, the weighting functions are selected to be the
same as those used for the expansion of the approximate solution. This usually leads
to the most accurate solution and is, therefore, a popular approach in developing the
finite element equations. To more explicitly illustrate the method, let us assume that

the solution is represented as in (3.6). The weighting functions are then selected as
w; = ; i=1,2,3,--- N (3.14)

and (3.12) becomes
/Q(v,-LvTc —f)d=0 i=1,2,3,--- N (3.15)

This again leads to a matrix system such as that given in (3.8), although now the
matrix [S] is not necessarily symmetric unless the operator L is self-adjoint. In that

case, the variational and Galerkin’s methods result in identical equations.
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3.2. Basic Concepts of Finite Element Method

As stated at the beginning of this chapter, the finite element method (FEM) is
a numerical procedure for obtaining solutions to boundary-value problems of math-
ematical physics. The principle of the method is to replace a continuous domain by
a number of subdomains, which are usually referred to as elements whose behavior
is modelled by interpolation functions containing a few unknown values at the nodes
of the elements. Thus, the original boundary-value problem with an infinite number
of degrees of freedom is converted into a problem with a finite number of degrees
of freedom, or in other words, the behavior of the whole system is approximately
represented by a finite number of nodal values. Then, a set of algebraic equations
or a system of equations is obtained by assembling all elements and the solution of
the boundary-value problem is achieved by solving the system. The most impor-
tant feature of the system of equations is its sparse form due to the highly localized
interaction of nodes. In summary, the usual steps in a finite element solution of a
boundary-value problem are as follows: (i) discretization of the domain, (ii) deriva-
tion of the element equations, (iii) assembly of the elements, and (iv) solution of the

system of equations. Below we describe each step in some detail.

3.2.1. Discretization of Domains

In a finite element analysis, the discretization of the domain is the first and
most important step. The manner in which the domain is discretized will affect
the computer storage requirement, the processing time, as well as accuracy of the
numerical results. The discretization involves these essential tasks: (i) subdivision
of the domain into elements, (ii) numbering of the elements and nodes, and (iii)
selection of the expansion or interpolation function to model the behavior of the

field within each elements.
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Domain Subdivision. The boundary-value problem represented by (3.1) may be
solved in a one-dimensional, two-dimensional or three-dimensional space. For a one-
dimensional domain which is actually a straight or curved line, the elements are
shorter line segments interconnected to form the orginal line. For a two-dimensional
domain, the elements are usually triangular and rectangular surface areas. The
rectangular element is, of course, best suited for discretizing rectangular regions while
the triangular one can be used for irregular regions. In a three-dimensional solution,
the domain may be subdivided into tetrahedra, rectangular prisms or triangular
prisms, among which the tetrahedron is the simplest and best suited for arbitrary
volume domains. We note that the line segments, triangles and tetrahedra are the
basic one-, two- and three-dimensional elements which model the curved lines or
surfaces by straight line segments or planar patches. A better modelling can be
achieved by introducing isoparametric elements, which will be discussed in Chapter
1.

Node and Element Numbering. In a finite element analysis, it is necessary
to label the elements and associated nodes for implementation purpose. A complete
description of a node contains its coordinate values, local number and global number.
The local number of the node indicates its position in the element, whereas the global
number gives its position in the entire system. While specifying the coordinate
values is a rather straightforward job, numbering the nodes and elements requires
some strategy. Since the maximum difference between the global numbers of two
adjacent nodes in an element determines the bandwidth of the system matrix, this
bandwidth can then be minimized by properly numbering the nodes. Thus, if a
banded matrix method is used to solve the final system of equations, the computer
storage and processing cost can be reduced significantly. However, in the case that
the bandwidth minimization is unnecessary, the numbering scheme can be arbitrary

and is usually chosen to simplify the programming.
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Interpolation Function Selection. The interpolation function provides an ap-
proximation of the unknown solution within an element. It is usually selected to
be a polynomial of first (linear), second (quadratic) or higher order. High-order
functions, although more accurate, usually result in a more complicated formulation.
Hence, a simple and basic linear interpolation is still widely used. Once the order of
the polynomial is selected, one can derive an expression for the unknown solution in

an element, say element e, in the following form

¢ =Y Nig; (3.16)

where n is the number of nodes in the element, ¢} the field value at node j, and N}

the expansion function which is also known as basis function or shape function.
3.2.2. Derivation of Element Equations

The second step in a finite element analysis is to derive the element equation.
Two popular approaches exist for this derivation. One employs the variational prin-
ciple and the other uses Galerkin’s method. The least squares method can also be
employed, but will not be discussed here.

Derivation Using Variational Method. The element equation can be derived by
applying the variational method, described in Section 3.1.2. The functional of the
system can be expressed as a summation of integrations over each element. Thus,

for a real-valued problem one has

F(¢) =3 F(¢") (3.17)

where M is the total number of the elements and

Fe(¢°) = /Q Lt -2 /Q foedn (3.18)
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Substituting (3.16) into (3.18) and differentiating F'® with respect to the nodal field

values, we obtain

1oFe &
L NELNCdQ) — / N i=1,2.3,-, 3.19
9 a¢‘e E/f;c 1 J Qef 1 ? n ( )
This can be written in matrix form as
1 [OF¢
= = |K°|{¢°} — {H® 3.20
{5} = ) - () (320
where [K¢] is an n X n matrix and {H®} an n X 1 column vector with their elements
given by
K& = /Q N{LN;d0 (3.21)
and
H;= [ fN:dQ (3.22)
Qe

We note that the element matrix [K*] is symmetric since L is self-adjoint.
Derivation Using Galerkin’s Method. Galerkin’s method is an alternative for
the derivation of the element equation. When using this method, the weighted

residual equation for the eth element is
/Q Ni(LE®— YA =0 i=1,2,3,---n (3.23)
Substituting (3.16) into (3.23) then yields
/QeNng;quﬂde—/mfozo i=1,2,3, - n (3.24)
which can again be written in a matrix form as
(K¢} —{H} =0 (3.25)

In this the matrix elements K{; and Hf are of the same form as (3.21) and (3.22),
respectively. Since the operator L is not required to be self-adjoint, here the element
matrix [K*] is not necessarily symmetric. However, when the operator L is self-
adjoint, the element matrices resulting from the variational and Galerkin’s methods

are identical.



23

3.2.3. Assembly of the System of Equations

Once the element equation or subsystem has been derived, the entire system of
equations can be obtained by assembling each subsystem in conjunction with the
boundary conditions. Either assembling (3.20) for all elements and imposing the

stationary requirement or assembling (3.25) yields

M

D (K Ke} - {H}) =0 (3.26)

e=1
By changing the local number of each node in (3.26) to the corresponding global

number, (3.26) can be written more compactly as
[K){6} — {1} = 0 (3.27)

where [K]is an N x N matrix, {H} an N x 1 known vector, {#} an N x 1 unknown
vector whose elements are the nodal field values, and N denotes the total number of
nodes in the system.

Before solving (3.27), one has to apply the boundary conditions associated with
the problem. There are two kinds of boundary conditions which are often encoun-
tered: the homogeneous Dirichlet and Neumann boundary conditions. Since the
latter is usually satisfied automatically as a natural boundary condition, one only
needs to impose the Dirichlet boundary condition by setting the fields at the appro-
priate nodes equal to zero. The resultant system is then solved via matrix inversion,

LU decomposition, or iterative approach.

3.2.4. Solution of the System of Equations

Solving the system of equations is the final step in a finite element analysis. The

resultant system has one of the two following forms:

([A] = A[B]) {X} =0 (3.28)
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or

[4] {X} = {Y} (3:29)

Equation (3.28) is of the eigenvalue type and in electromagnetics it is usually asso-
ciated with waveguide and cavity problems. In that case, A is the eigenvalue, {X}
is the corresponding eigenvector, both of which are unknowns. Equation (3.29) is of
the deterministic type and in electromagnetics it usually associated with scattering
and radiation problems. Since we are interested in the latter in this thesis, only the
solution to (3.29) will be discussed here.

To choose an algorithm for the solution of (3.29), one needs to consider the
properties of the matrix [A]. Theoretically, there are many algorithms available
to solve this matrix equation. However, since [A] here is usually large but sparse
and banded provided the nodes are properly numbered, it is instructive to look at
algorithms that exploit these properties. We describe three of them here.

One solution approach is the banded matriz method with a variable bandwidth
storage scheme. Using this method, the matrix [A] is stored as a vector rather than
as a two-dimensional array. Only the elements from the first non-zero to the last
non-zero (or to the diagonal element for a symmetric matrix) in each row are stored.
The solution proceeds by first decomposing the matrix into an upper triangular form
using Gaussian elimination (however, if the matrix is symmetric and positive-definite,
an LDLT decomposition will be more efficient). The solution is then obtained by
back substitution.

Another solution method for sparse systems is the frontal method which was devel-
oped in the early seventies [Irons, 1970]. This method applies Gaussian elimination
during the assembling process of the matrix [A]. Such progressing continues until
every element and every node has been processed. The final solution is then ob-
tained by back substitution. Because the assembly and elimination are intertwined,

the matrix [A] is never formed explicitly. As a result, the required computer storage
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is reduced to minimum. Also, the operations on the zero elements of [A] are avoided.

The Lanczos method is a third solution method which is also referred to as the
“bi-conjugate gradient method” [Sewell, 1985]. If the matrix [A] is symmetric, the
method is actually the usual conjugate gradient method. In contrast to the above two
direct methods involving Gaussian elimination, this one solves the system iteratively.
The assembly process takes place in each iteration and the calculation of the matrix
products [A]{P} are performed by executing the summation "™ [A¢]{P¢} where
[A°] is the element matrix and {P} denotes a vector. Thus, like the frontal method,
the Lanczos method does not actually form the matrix [A] and, as a result, it avoids
the storage of the matric [A] as well as the operations on the zero elements which
comprise most of the matrix.

Among the three methods, the banded matrix method is the most preferable for
matrices with dimensions up to a thousand or so. However, it requires much larger
storage than the other two methods since the elements within the band of [A] must
be stored explicitly. The frontal and Lanczos methods are capable of solving very
large systems with many thousands of unknowns, but at the expanse of computing

time.

3.3. Finite Element Analysis of Two-Dimensional Problems

In the previous section we briefly introduced the basic concepts of the FEM and
in this section we describe the application of the FEM to two-dimensional problems.

The pertinent differential equation is of the form

7 ot 2] - 2 e 2420 eyt = Sa) (250

where ¢(z,y) is the unknown field, a(z,y), 8(z,y) and ¥(z,y) are known parameters
associated with the physical properties of the geometry, and f(z,y) is the source

or excitation function. The ordinary two-dimensional Laplace equation, Poisson
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equation and Helmholtz equation are only special forms of (3.30). To solve (3.30)
via the FEM we will employ linear triangular elements and the system is derived
using the variational and Galerkin’s methods. The results obtained in this section

will be frequently used in subsequent chapters.
3.3.1. Shape Functions for Linear Triangular Elements

To apply the FEM to (3.30), one first divides the domain of interest, denoted by
S, into a number of two-dimensional elements. If the linear triangular elements are

used, the field within each element is approximated as
¢"*(z,y) =a+bzr+cy (3.31)

where a, b and ¢ are constant coefficients to be determined and e is the element
number. For a linear triangular element, there are three nodes located at the vertices
of the triangle. Assume that the nodes are numbered counterclockwise by numerals
1, 2 and 3 with the corresponding field values denoted by ¢5, ¢5 and ¢, respectively.

Solving for the constant coefficients a, b and ¢ in terms of ¢¢ yields

¢"(x,y) = ) Ni(z,y)¢5 (332)

1=1

where N7 (z,y) are referred to as the shape functions given by

1
Nf(:r,y) = ﬁ(ai + bz + C,'y) 1=1,2,3 (333)

in which
ay = T2Y3z — Y2I3; by =Y2—Y3;, € =T3— T

az = T3y — Y3T b2=y3—y1; C2 =T — I3

asz = I1Y2 — T2, b3=y1—y2; C3 =T — Iy
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and

I =z »n
A® =

1 z, y, | = area of the eth element

| —

1 z3 ys3

It can be easily shown that the shape functions have the property
1 i=j )
Ni(zj,y;) = 6 = (3.34
Y j 0 itj

and as a result at the nodes the field expression (3.32) reduces to the corresponding

nodal fields ¢¢.
3.3.2. Derivation of Finite Element Equations Using Variational Method

As stated earlier, the variational method is a traditional technique for deriving
the finite element equations. Let us denote the contour enclosing S as C and assume

that the field on a portion of C, say Cj, satisfies the Dirichlet boundary condition

Hlatc, =0 (3.35)

and the field on the remaining portion, say C,, satisfies the Neumann boundary

condition

~0 (3.36)

where 7 is the outward unit normal to C'. It can be shown that the solution to the
differential equation (3.30) subject to the above boundary conditions is equivalent

to the variational problem

5F(4) =0
{ (3.37)

(Mat o) = 0

where

F(¢') = é / /S [a (%)2+ﬂ(%—‘j)2+7¢'2} ds — / /S fdds (3.38)
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The functional F(¢') here is obtained by first substituting (3.30) into (3.4), then
invoking the divergence theorem, and enforcing the Neumann boundary condition
(3.36).

Next assume that the region S is divided into M triangular elements of surface
area 5S¢ (e = 1,2,3,- - -, M). The integral over S in (3.38) can then be expressed as
a summation of M sub-integrals over each element. This in turn allows the subdi-
vision of the functional F' in (3.38) into M sub-functionals F® which are identical
to F except that S is replaced by S¢. Introducing the expression (3.32) for ¢" and

differentiating each F° with respect to ¢¢ yields

6Fe € € € € €
(S} = gy + ) - () (339

where

aFe aFe aFe 8Fe T
{a&}z [aqsg a5 a¢g] s {67 =145 45 )"

The elements of the matrices [A¢] and [B¢] are given by

ONgON;  ONgONs
//e ( Oz 0:1: +h dy Oy )dxdy (3.40)

=//SC7N§de:r,dy i7=1,23 (3.41)

and those of the vector { H¢} by

H = / A [Nidzedy — i=1,2,3 (3.42)

It is noted that both [A°] and [B®] are symmetric here. Assuming now that the
coeflicients a, 3, 4 and the source f are constant within each element and equal to
a®, %, 4¢ and f°, respectively, (3.40)-(3.42) can then be analytically integrated. A

basic result in this process is

l'm!n!
Ng) (N)™ (Ng)" dady = - ‘ .
[ [ ) Vg (5" dady = g Em o (343)




29

We find
Az = i(aeb;b,- + Boeic;) (3.44)
ij = %‘)’e(l + 6,'j) (3.45)
HE = %—e fe (3.46)

If a, B, ¥ and f are maintained arbitrary within each element, then the matrix
elements must be evaluated numerically.
Assembling all M elements and imposing the stationary requirement on F' yields

the complete system

M

S([A{¢) + BN} - {H}) =0 (3.47)

ex=1

Finally, altering the local node numbers to the global ones, (3.47) can be written
in a matrix form of the form the same as (3.27), where [K] = [A] 4 [B] and is also

symmetric.
3.3.3. Derivation of Finite Element Equations Using Galerkin’s Method

In this section, the finite element equation (3.47) is rederived using Galerkin’s

method and compared with the results derived via the variational method.

The residual for (3.30) is

=0 (09 _ 9 (509 _
R__ax(aaz) By( 8y)+7(ZS f (3.48)

and thus the weighted residual equation for the element e is
/ /S NfRdedy=0 i=1,2,3 (3.49)
Substituting (3.32) into (3.48) and then into (3.49) yields
3 0 ON¢ 9] ON¢
Nf |—— L) - — . N¢| ¢tdx
;//e ’[ (?x(aax) By('gay)d*ﬂ7 ’]¢] zdy

- / /S Nefdedy — i=1,2,3 (3.50)
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Invoking the identities

(ONN)_ ON? ON;

vl (0N 0
iz \@ 83: ~ Or Or 8:15 Or
9 (,ON\ 9 (0N ON? N
e 0 (g2} _ 9 ‘ 9N 3.51
N'ay<0y) 8<ﬂ6N'> o oy (3:5)

and the divergence theorem

/ / . (B—U + 8_V) dzdy = fCC(U &+ Vy)-ncdl (3.52)

(3.50) can be written as

ONFONS  ONEONT N\
Z//( 5z a: oy By +NN)¢dxdy

ONe  ONe
/ / Nefdedy + Z }( Neg: ( i+ 5—jy) edl
i=1,2,3 (3.53)

where C° is the boundary of S¢ and 7¢ is the outward unit vector normal to C¢. In

matrix form, the above equations become
(Ao} + (B¢} = {H} +{G°} (3.54)

where the elements in [A°], [B¢] and [H¢] are the same as those given by (3.40)-(3.42),

respectively. The elements in {G*} are given by

e _ e 8¢e a¢e Ae »
G,-—jéeN,-( . :1:+ﬂ ) n°dl (3.55)

The complete system of finite element equations is then obtained by summing (3.54)

over all elements

M M
;([AC]W} +[B{¢}) = ;({He} +{G*}) (3.56)

This system is obviously not the same as that in (3.47), since it contains an
additional term (the second term on the right-hand side) arising from an integration

around the sides enclosing the elements. However, since each of the internal sides,
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those lying inside the domain, is shared by two adjacent elements, their contribution
cancels each other provided that no source of a Dirac delta function form exists there.
Therefore, the only contribution comes from the integrals along the external sides
lying on C. If the boundary condition is of the Dirichlet type (the values of ¢ are
specified on C), the additional term will drop out once the boundary condition is
imposed. Alternatively, if the boundary condition is of the Neumann type defined by
(3.36), the integrand in the line integral along C' becomes zero. Similar conclusion
can also be reached when the boundary condition is of the Dirichlet type on portion
of C and of the Neumann type on the remaining portion. Therefore, {G¢} drops
out when all elements are assembled and the boundary conditions are enforced. The
finite element equation derived via Galerkin’s method is then identical to that derived

via the variational method.

3.3.4. Concluding Remarks

In this section, the FEM was applied to a two-dimensional boundary-value prob-
lem with a general governing differential equation in conjunction with the Dirichlet
and /or Neumann boundary conditions. The finite element equation was derived us-
ing the variational and Galerkin’s methods with the first order triangular elements.
The derivation using high-order elements can, of course, be developed in a parallel
manner, but is more involved.

The equations obtained here can be used directly to find solution of bounded two-
dimensional problems. In electromagnetics, such problems include various waveg-
uides filled with inhomogeneous and anisotropic media. One advantage of using
the FEM for waveguide problems is the easy treatment of the boundary conditions.
Therefore, one can easily deal with a waveguide of arbitrary cross-section. Another
advantage is the easy treatment of inhomogeneity and anisotropy of the media. All

one needs to do is to specify different physical properties for different elements. The



32
advantages in computational aspects are also notable. The utilization of the proper-
ties, such as sparseness, bandedness and symmetry, are key factors in reducing the
storage demand and increasing the efficiency of the solution. Due to these advan-
tages, the FEM has gained wide applications in bounded problems.

However, if the problem is unbounded (its exterior boundary is at infinity), the
FEM alone is no longer applicable, simply because the subdivision of an infinite
region will result in an infinite number of elements and nodes. To extend the FEM to
unbounded problems, various kinds of techniques, such as infinite elements, boundary
elements, etc., have been developed. Though these techniques may appear in quite
different form, the principle is the same, that is, to truncate an infinite domain into
a finite one where the FEM can be applied.

The electromagnetic scattering and radiation in free-space is a typical unbounded
problem because of the requirement to enforce the radiation condition at infinity. To
apply the FEM to such a problem, several techniques have been developed. In the
next chapter, we will describe a hybrid technique which combines the FEM and
a boundary element method for a surface integral equation in dealing with two-

dimensional electromagnetic scattering problems.



CHAPTER IV

SCATTERING BY CYLINDERS

In this chapter, we consider the problem of electromagnetic scattering by infinite
cylinders for transverse magnetic (TM) and transverse electric (TE) wave incidence.
The cylinders of particular interest are those having arbitrary cross sections and
consisting of inhomogeneous materials. This chapter is organized as follows: first,
we give a general review of the problem; then we introduce a finite element-boundary
element method with a detailed description of the formulation; following this are the
numerical results, which verify the formulation as well as demonstrate the capability
of the method; and finally, we compare this hybrid method with other commonly

used numerical methods.

eneral Review

The problem of electromagnetic scattering from infinite cylinders has been stud-
ied intensively for many years using exact, asymptotic and numerical techniques.
Among various solutions, the exact, which are usually in the form of infinite series,
are most desirable, but are only available for very few geometries, such as perfectly
conducting and impedance circular and elliptical cylinders, dielectric circular cylin-

ders, and dielectric coated circular cylinders [Bowman et al., 1969; Ruck et al., 1970].

33



34

Many geometries of practical interest are not solvable analytically. For electrically
very small and very large cylinders, the asymptotic techniques, such as the Rayleigh
scattering technique for low frequencies, and for high frequencies the geometrical
optics (GO), the physical optics (PO), and a more accurate technique, the geomet-
rical theory of diffraction (GTD), can be applied to obtain approximate solutions.
However, there are still many problems which are practically important, but diffi-
cult to solve using either exact or asymptotic techniques. In such cases, numerical
techniques can be used to solve the problems.

As discussed in the first chapter, all numerical techniques can be categorized into
three fundamental groups: the integral equation (IE) methods, the partial differential
equation (PDE) methods, and the hybrid techniques.

Among the IE methods, the method of moments (MM) is the best-known [Har-
rington, 1968] for solving scattering problems. This method is efficient for problems
involving perfectly and imperfectly conducting cylinders and homogeneous dielectric
cylinders. For such problems the method utilizes surface integral equations (SIE)
which reduce the problems into one dimension. The method, however, is not ef-
ficient for solving problems involving inhomogeneous media. This is because the
Green’s functions in inhomogeneous media are usually unknown and thus volume
integral equations (VIE) have to be used. As a consequence, the whole cross sec-
tions of cylinders need to be discretized, giving rise to a large number of unknowns,
which may make the problem practically unsolvable due to limited computer storage
and processing time. Recently, various iterative methods have been developed to
complement the MM. Among them, the conjugate gradient-fast Fourier transform
(CG-FFT) method appears to be a good candidate. The main advantage of the iter-
ative methods is to avoid using a large amount of storage, which is a major drawback
of the MM.

The PDE methods alone cannot be efficiently applied to finding solutions of



35

scattering problems, since the regions of solution are unbounded or infinite. To
make the PDE methods applicable, various hybrid techniques have been developed
to truncate infinite regions into finite ones. The best-known of such techniques is the
unimoment method, developed by Mei and his students [Mei, 1974; Chang and Mei,
1976; Morgan and Mei, 1979]. In the unimoment method, a PDE method, either
the finite difference method (FDM) or the finite element method (FEM), is used
to generate a set of trial functions inside a mathematical boundary encompassing
the scatterer by solving a sparse or uniformly banded matrix. The field outside
the boundary is expanded in the Hankel functions and then coupled with interior
solutions on the boundary.

Another example of the hybrid techniques is the so called hybrid element method
presented by Jeng and Chen [1984], in which the exterior field is again expressed
by an expansion of the Hankel functions. Such an expression is imposed on the
variational equation for the interior field, which is then solved using the finite element
and boundary element methods. However, this method is less efficient than the
unimoment method, since it results in a partly full and partly sparse system matrix.

In addition to the aforementioned two methods, we also note several other meth-
ods, including the one developed by Marin [1982] and the finite element-extended
boundary condition method (FEM-EBCM) by Morgan et al. [1984].

In this chapter, we present a finite element-boundary element (FE-BE) method
which is a special form of the hybrid PDE-IE method using the FEM for the partial
differential equations and boundary element method (BEM) for the SIE. The basic
idea of this method was introduced by McDonald and Wexler [1972] in the early
1970’s. The method formulates the exterior field using the SIE and the interior field
using the FEM, and then couples them by applying the boundary conditions on the
artificial boundary separating the exterior and interior regions. This method has

been further improved and used to solve two-dimensional antenna and scattering
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problems [Washisu et al., 1979; Orikasa et al., 1983; Guo, 1985].

In the previous works on scattering, two major shortcomings exist. First, a circle
is often used as an artificial boundary to separate the exterior and interior regions.
Although such an approach simplifies the formulation, it is not efficient when dealing
with non-circular cylindrical problems, especially those with thin geometries. Sec-
ondly, the system matrices resulting from the method of Jeng and Chen [1984] and
the previous FE-BE formulations are partly full and partly sparse, and such matri-
ces are not easily amenable to banded matrix algorithms. These two shortcomings
severely limit the capability of these methods.

In the method we present here, these two shortcomings no longer exist. The first
is overcome by developing a formulation which allows the artificial boundary to be
of arbitrary shape. The second is overcome by modifying the coupling technique, re-
sulting in a sparse or uniformly banded system matrix, as in the unimoment method.
As a result, the method presented here is more efficient and more capable of dealing
with complicated two-dimensional scattering problems. A detailed formulation is

given in the next section.

4.2. Formulation

The problem under consideration is illustrated in Figure 4.1, where an electro-
magnetic wave is incident on a cylinder consisting of dielectric and magnetic materials
and perfect conductors. The constitutive parameters of the materials are denoted
by a complex permittivity € and a complex permeability u, which may be functions
of position. The axis of the cylinder is assumed to be along the z-direction; hence,
there is no variation of field quantities and material parameters with respect to the
z-coordinate.

We will consider TM and TE wave incidence separately. The solution of an arbi-

trary wave incidence can be obtained from TM and TE solutions, since an arbitrary
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Figure 4.1: Geometry of Wave Scattering by a Cylinder. (a) Illustra-
tion of Artificial Boundaries. (b) Example of Discretiza-
tion.
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wave can be expressed as the sum of TM and TE waves. Note that the formula-
tion we describe below is for a single cylinder; for multiple cylinders the formulation

would be similar.

4.2.1. Interior and Exterior Decoupling

As the first step in the FE-BE method, the infinite solution region is divided into
two subregions: one is an infinite and homogeneous region and the other is a finite
region where the FEM is applied (see Figure 4.1). For this, let the boundary of the
cylinder be I'. We first draw an artificial boundary I'4 to enclose I' and then draw
another artificial boundary I'p lying between I'y and I' (some criteria for drawing
I'4 and I'g are discussed in Section 4.3). The region inside I'4 is treated using the
FEM, and thus is called interior region or FEM region and is denoted by R;. The
region outside I'g is treated using the SIE, and thus is called exterior region or SIE
region. The fields in the FEM and SIE regions are coupled by imposing the continuity
conditions over the overlapping region between I'y and I'g. The displacement of I's
from T' 4 avoids the singularity problem typically encountered in the Green’s function
integration. In general, to minimize the FEM region, I'4 is drawn in such a way that

only one layer of elements is needed between I'y and T.

4.2.2. Finite Element Analysis

In the interior region denoted by R;, the axial field component satisfies the partial

differential (wave) equation

V.

—VE, + k2, (F)E, = 0 4.1
ﬂr(r) 0 ( ) ( )

for the TM case, and

1 )
vt k2 (F)H, = 0 (4.2)
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for the TE case, where V = £0/0z + §3/0y is the two-dimensional operator, ko =
2m /) is the free-space wavenumber, and ) is the free-space wavelength. Note that
(4.1) and (4.2) are special forms of (2.16) and (2.17) for the source-free case.
It can be shown that the solutions to (4.1) and (4.2) can be obtained by mini-

mizing the functional

1 OF
= . — ke, (F)E, - E, } ds — —dl .
F / /R I{”r VB VE: = K (D) } N~ (4.3)
for the TM case, and
F=// ! VH, -VH, — ku.(F)H, - H, } ds — aszl (4.4)
RI CT(F) z z orr z 2z [‘A ZanA

for the TE case, where 714 denotes the outward unit vector normal to I'4.
Following the FEM analysis described in Section 3.3, we subdivide R; into M
triangular elements. Using the linear interpolation for each element, we can express

the field ¢ (= E, for the TM case, and H, for the TE case) in Ry as
M 3
$z,y) =)D Ni(z,y)4 (4.5)
e=11=1
where N{(z,y) (i = 1,2,3) is the interpolating function for the eth element and #¢
is the field at the ith node in the eth element, all well-defined in Section 3.3.1.

Application of the FEM analysis to (4.3) or (4.4) results in the matrix equation

[K1{¢} = {s} (4.6)

where the element expression for the matrix [K] can be obtained from Section 3.3.2,
{¢} is a column representing the discretized field, and {1} is a column resulting from
the discretization of the line integrals in (4.3) and (4.4). In more detailed form, (4.6)

can be written as

Kaa Kap b4 B Y4 (1)

Kia Kip ér 0
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where the subscript A denotes the nodes on I'4, I the nodes interior to I'4.
The above equation is unsolvable since {14} is unknown. However, such a prob-
lem can be bypassed by discarding the first row of (4.7) if we can find another rela-
tionship between {¢4} and {¢;}. The surface integral equation (2.29) can provide

such a relationship.
4.2.3. Surface Integral Discretization

In the exterior region, the field can be represented by the surface integral equation

(2.29) which is rewritten here for convenience as

0¢(7)

BnB

0Gy(7,7B)
Ong

o00) = 6°(0) - [ [outr, ) 202 — gy dy (49

where 7p is on 'g, 7 is an outward unit vector normal to I'g, and Gy(7,7p) is the
two-dimensional free-space Green’s function.

Using the BEM, we can discretize (4.8) into a matrix equation so that it can be
solved together with (4.7). Assuming that I'p passes through Mg elements, we can
rewrite (4.8) as

c (_ ) o= 9Go(T,TB)
¢(r) = g™ (F Z_/[e {Go 7 FB)—— A —¢ (TB)—%B—B} dlg  (4.9)

where the quantities in the integral can be expressed as

Go(r,75) = —3HS (kolf — )
Go(F, 7 ' - -
8Go(r75) O(T’TB) = —llcon?)(koleFBD(gf B cosaf + LB Sinae>
Ong | — 7p] | — g
3 3
¢*(fB) = )_Nf(zp,yp)¢t = ; +bizp + ciyp) ¢}
1=1 i=1
a¢e( ) _ 3 aN mB’JB e aNg (mB,yB) . e e
Thm = ; 0:63 sa® + ———3!/3 sina’| ¢;
1

= = ) (bicosa® + ¢;sin a®)¢f
o)
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Figure 4.2: Illustration of a Line Segment on I'p.

with
sin o = (zas — 2an)/L*, cosa’ = (van —yp0)/ L , L° = |7

and (zpy,yp1) and (zp2,yp2) are defined in Figure 4.2. In the above expressions,
N¢(z,y) is the same as that in (4.5), which along with a;, b;, ¢; and A® is defined by

(3.33). If we use the simplest one point integration, we can write (4.9) as

Mp ‘re 3

#(r) = ¢"(F) + X {é‘i‘ > [ B (ol ~ 7l)(bicosa® + cisina®)  (4.10)
e=1 =1

_ k0H1(2)(kOIFB —7) (m — :fB cos a® + 2 gin ae) (ai + bizp + Cin)] ¢f}

|7 — 7g] IrB — 7|

where (zp,yp) is taken to be the mid-point of I¢.
Applying (4.10) to calculate the fields at the nodes on I'4, we obtain the matrix

equation

{$a} = {847} — [Paal{8a} — [Parl{41} (4.11)
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Matrix equation (4.11) provides another relationship between {¢4} and {¢;}.
We can think it as a boundary condition or boundary constraint on I'4. Since (4.8)
satisfies the radiation condition at infinity, the solution of (4.11) should also satisfy
the radiation condition. Thus, we have converted the radiation condition at infinity

to a boundary constraint on the artificial boundary.

4.2.4. Interior and Exterior Coupling

In Sections 4.2.2 and 4.2.3, we obtained a finite element equation (4.7) which can

be written as

[K1al{¢a} + [Kul{¢s} =0 (4.12)

where the first row in (4.7) is discarded here, and a boundary constraint (4.11) which

can be written as

[Pual{$a} + [Parl{¢1} = {84 (4.13)
where [P} 4] = [I] + [Paa] with [I] as the unit matrix. A joint solution of above

two equations gives the numerical result of the fields at nodal points. There are
several approaches to the solution of (4.12) and (4.13). The simplest is to solve the
(Na + Ni)X(N4 + Ni) matrix equation

Pisx Par b4 B ¢iNe (414)
Kia Kjp é1 0

where N, is the number of nodal points on I'4 and N; is the number of nodal points
interior to I'y. However, this approach is not efficient. In the following, we discuss
two alternative approaches.

The first, which is the one commonly used, imposes (4.13) on (4.12) and gives

the system of equations

(K1l{¢r} = {¥1} (4.15)
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where
(K1) = [Ku] = [K1al[Pyal ™' [Parl, {91} = —[K1al[Paa) {6} ©

In this approach, two matrices have to be solved: one is the complex and full matrix
[P}4] having size of N4y x Ny, and the other is the partly full and partly sparse
complex matrix [K7;] having size of Ny x Nj. Usually, N is much larger than N,
and hence the size of the scatterer to be treated by this method is mostly limited by
the magnitude of Nj.

The second approach, the one proposed in [Jin and Liepa, 1988b], substitutes
(4.12) into (4.13) and gives the equation

[Pial{g4} = {#}° (4.16)

where
[Pial = [Paal = [Parl[Kn) " [K14]

Mathematically, this second approach is equivalent to the first one; however, com-
putationally it is much more efficient. Here, we also need to solve two matrices: one
is the complex and full matrix [P} ,], but now the other is the symmetric and sparse
matrix [K;] which becomes real-valued for lossless scatterers and can be narrowly
banded if one numbers the nodes properly. A more obvious comparison is given
in Table 4.1. The difference between the first approach and the second approach
is in the properties of the matrices [K};] and [Kj]. Solving the symmetric, sparse
or uniformly banded matrix [Kp,] is of course much easier and more efficient than
solving the nonsymmetric matrix [K};] with nonuniform block submatrix structures.
Three algorithms, namely the banded matrix algorithm, the frontal algorithm and
the Lanczos algorithm, which are discussed in Section 3.2.4, can be well applied to

solving [Kj].
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Table 4.1: Comparison of the Two Approaches.

n Matrix to | Matrix p s of mat
Approac be solved order roperties of matrices
[Pia) N4 | Complex and full
Ist
approach , Complex, partly full and
(K1) Ny partly sparse
[Pl 4 N4 | Complex and full
2nd
Symmetric, sparse or banded.
approach [K11] N; Real for lossless materials and
complex for lossy materials

Before ending this section, we wish to point out that the above described interior
and exterior coupling is actually a result of the continuity conditions. The continuity
of the field and its normal derivative on the artificial boundary I'p is satisfied by using

the same field expansion (4.5) and solving (4.12) and (4.13) jointly.

4.2.5. An Alternative Formulation

As we have seen, the general principle of the FE-BE method is first to use an
artificial boundary to split the whole solution region into an interior and an exterior
region, then to apply the FEM to formulating the interior field and the SIE to
formulating the exterior field, and finally to couple these fields by enforcing the field
continuity conditions. Any formulation which complies with the above principle will
be able to solve the problem. The formulation described above is just one version
of this general formulation. In the following we propose an alternative approach, in
which the two artificial boundaries I'4 and I'g will not be used.

Let us use R to denote the region occupied by the cylinder and use T to denote
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the boundary of the cylinder. In this case the functional to be minimized is

1 2 - 1 __0E;
_ L vE .vE - . [ — e %g ar
F / /R {ur(F)VE, VE, — Ke,(7)E, E,}ds /F el (@)

for the TM case, and

1 . 1 _OH:
_ VH. - . [ —— g (4
F / /R {CT(F)VH, VH, - K, (F)H, H,}ds /F A (@

for the TE case, where 7 denotes the outward unit vector normal to I, and E; and

H7 denote, respectively, the electric and magnetic fields on I' when the field point
approaches I' from the inside.

Applying the FEM analysis to (4.17) and (4.18), we obtain the matrix equation

[Brr){yr} + [Krr]{¢r} =0 (4.19)

where we use {47} to denote the discretized nodal fields on and inside T, and
use {¢r} to denote the discretized quantities (1/u,)0E; /0n for the TM case and
(1/€;)OH [0n for the TE case on I'. In (4.19), the element expression for [K77] is
the same as [K;] in (4.7), while the element expression for [Byr] can be easily de-
rived. The matrix [Brr| comes from the line integral on I', and hence is a boundary
element matrix. In addition to (4.19), another relation between {¢r} and {¢7} is
needed to provide a solvable system.

The field outside I' can be formulated using the surface integral equation

6(7) = 6™°(r) - | [GO(F, f')% - wmﬁ% & (420)

where ¢t denotes the field on ' when the field point approaches I from the outside.

The discretization of (4.20) using the BEM provides the matrix equation

[Prol{vr} + [Prr){¢r} = {6"° (4.21)

where {47} is the same as that in (4.19), and {tr} here denotes the discretized
quantity d¢*/on.
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The boundary conditions on I' require that

E; =E} , H; =H}
10E; OE} 10H; oH}

t, On on ' ¢ On  On

As a result, the discretized field {¢} and the quantity {¢} on I in (4.19) should be
equal to the corresponding ones in (4.21). Therefore, by solving (4.19) and (4.21)
jointly, we can obtain the solution to the problem. The two approaches discussed in
Section 4.2.4 for solving the matrix problem are also applicable here.

Three differences exist between this alternative formulation and the previous one.
First, the previous formulation uses two artificial boundaries while this one does not
use any artificial boundary. Second, the previous formulation does not use the line
integral in the functional while this one does. Third, the previous formulation avoids
the singularity of the Green’s function while this one encounters the singularity in
deriving (4.21); however, this singularity problem can be easily handled. These
three differences are not independent; they are actually intimately related. From
computational aspect, the two formulations have about the same efficiency. However,
the previous one is easier to implement. The results presented in the next section

were obtained using that formulation.

eric sults

Based on the formulation described in Sections 4.2.1-4.2.4, a computer program
was written for computing the nodal fields. Once the nodal fields are found, the far
fields are calculated from the surface integral equation (4.8) using the large-argument
approximation for the Hankel function. The program can be used to compute the
bistatic and backscattered fields from cylinders having arbitrary cross sections and

consisting of inhomogeneous materials for both TM and TE wave incidence. In this
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section, we will first use this program to investigate two problems pertaining to the

subdivision of the FEM region and then present six numerical examples.

4.3.1. General Considerations

Before the program is used to obtain final results, we need to resolve the following
two questions: first, what is the optimum distance between I'4 and T, and second,
how fast does the numerical result converge with respect to the density of nodes?

Let us consider the first question. Since we use linear interpolating functions for
the elements between I'y and I', the normal derivative of the field on I'p, d¢/0np
in (4.8), is approximated by the difference of the fields on I'y and I'. From this
consideration, to make this approximation accurately, the distance between I’y and
I' should be as small as possible. However, if this distance is very small, it will
result in very narrow elements. Such narrow elements will introduce errors in the
FEM analysis. Also, because of the finite (digit) resolution of computers, a very
small distance can produce a so small difference between the fields on I'y and T
that it is beyond the last effective digit, resulting in a meaningless value. Therefore,
the distance between I'4 and I' should be properly chosen to best approximate the

normal derivative of the field, and thus to provide the most accurate result.

To find this optimum distance, we made computations for a coated circular con-
ducting cylinder with a TM plane wave incidence. The radius of the conducting
cylinder is 0.4), and the coating thickness is 0.06)\. The coating is a lossy material
with € = 2 — 52 and p, = 2 — j2. For computation, we divided the coating into
two layers and the circumference into 52 segments. Such a subdivision can provide
a sufficiently accurate result for the TM incidence. We computed the error in both
amplitude and phase of the far-field coefficient (P) in the backward direction for

different distances (d). The result is shown in Figure 4.3, where we see that a good



48

(a) Amplitude
4
R
o
£
)
o
e
1
()
0 v T v T v Y v T T v
0.00 0.01 0.02 0.03 0.04 0.05 0.06
d/lambda
(b) Phase
o
[
T
&
O
L )
«©
=
e
o
1 S
)
()
0 v Y v T v T r T v T v
0.00 0.01 0.02 0.03 0.04 0.05 0.06
d/lambda

Figure 4.3: Error in Backscattered Far-Field Coeflicient vs Distance
between 'y and T'.



49
result (error in amplitude within 1% and error in phase within 1°) is obtained for
distances of d between 0.005) and 0.03A. Therefore, a criterion for drawing I'4 is
such that the distance between I'4 and I is within the range 0.005) to 0.03X. This
criterion is generally applicable and is independent of the polarization of the incident
field and the complexity of scatterers.

Considering the second question regarding the convergence of the result, we find
it difficult to give a clear answer. Though we know that generally the numerical
result converges to the exact solution as the density of nodes increases or the area
of each element decreases, we cannot find a general criterion to relate the accuracy
of the result to the density of nodes. This is because such a relation depends on the
polarization of the incident wave, the property of the material, and the geometry of
the scatterer. To show this, let us consider the same problem as that used to generate
data for Figure 4.3. The far-field coefficient in the backward direction was computed
as a function of the number of nodes (N) along the circumference and the number of
layers (L) in the coating. The results are shown in Figure 4.4 for the TM incidence
and in Figure 4.5 for the TE incidence. In both figures, we see that as N increases,
the far-field coefficient converges to a constant, and as L increases, this constant
converges to the exact solution, which is P = 0.3737/14.2° for the TM case and
P =0.3000£ — 142.8° for the TE case. However, we note that the convergence rates
for the TM and TE case are different. For the TM case, the result converges to the
exact solution rapidly, while for the TE case, such a convergence is rather slow. This
is because in the TE case the coating can support a surface wave which is circulating
around the cylinder, resulting in a drastically changing field distribution, while for
the TM case the field changes slowly since surface waves do not exist. Therefore, we
conclude that the convergence rate of the result depends on the individual case and

one needs to check this convergence for each case.

For a problem whose exact solution is unknown, perhaps the best way to assess the
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convergence of the numerical result is to perform computations for different density
of nodes. To give an example, consider a plane wave scattering by a square cylinder
with a size of 0.5X x 0.5), a permittivity of €, = 2.5 and a permeability of u, = 1.5.
If we divide each side of the cylinder into N segments, the resulting number of nodes
is (N +1)%. We computed the backward scattered field in the broadside direction
for different N’s. The results are shown in Figure 4.6 for both TM and TE cases,
where we see that the results converge as N increases. The result for the TM case
converges faster than that for the TE case. Such a difference in convergence rate is
due to the difference in the values of ¢, and p,. Generally, the result for the TM
case converges fast for a small value of g, and slowly for a large value of g, while
the result for the TE case converges fast for a small value of ¢, and slowly for a large
value of e,.

Though no general criteria can be obtained, less general criteria can be still
developed for certain class of problems. For example, for dielectric cylinders involving
no sharp edges, a subdivision of 16 points per material wavelength can provide an
accuracy of £10° in phase and 5% in amplitude (corresponding to £0.4 dB in RCS)
or better for backward far-field computation. As experience is gained by performing
various computations, one can develop a skill for predicting the accuracy of result

based on his or her understanding of the field behaviour within the scatterer.

4.3.2. Examples

Six examples, selected from numerous computations, are presented here to show
the validity, versatility and capability of the FE-BE method (also called as FEM-
BEM). The first three have unknowns (or nodes) of about one hundred and were
computed using the first coupling approach discussed in Section 4.2.4. The last

three have unknowns as many as about two thousand and were computed using the
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second coupling approach. In these examples, the incident wave is assumed to be a
plane wave; however, the program can handle non-plane wave incidence as well.
A. A Coated Circular Cylinder

This is the case for which an exact solution is available and hence is used to
verify the program. Figure 4.7 shows the results of our numerical (FEM-BEM) and
exact (series) computations for both TM (E-polarization) and TE (H-polarization)
incidence. The dimension of the cylinder, the coating thickness and the coating
electric properties, given in Figure 4.7, are the same as that used for investigation in
Figures 4.3-4.5. For the numerical FEM-BEM computation we divided the coating
into two layers and the circumference into 32 segments. Therefore, the dimension
of the resulting matrix equation is 64 for E-polarization and 96 for H-polarization.
The FEM-BEM results agree with the exact solutions quite well. Better results can
be obtained by using smaller elements and more nodal points as shown in Figures
4.4 and 4.5.

Also given in Figure 4.7 are the results computed by using the moment method
(MM) with impedance boundary condition (IBC) applied at the cylinder’s surface
[Knott and Senior, 1974]. In this computation the normal incidence impedance value
() which is appropriate for coated conducting plane was used. In this case, the MM-

IBC also provides good results.

B. A Coated Rectangular Cylinder

The second example concerns the backscattering from a coated rectangular cylin-
der. The backscattering cross section, denoted by o, was computed using the FEM-
BEM and MM-IBC, and the results are shown in Figure 4.8, where the dimension of
the cylinder, the coating thickness and the coating electric properties are also given.
From the figure, we see a large difference between the FEM-BEM and MM-IBC
results. To assure the validity of the FEM-BEM solution, we computed the same

problem using a rigorous moment method with the volume-surface integral formu-
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lation (VSIEM) [Jin and Liepa, 1989b]. As seen, the VSIEM results show a very
good agreement with the FEM-BEM results. Therefore, the large difference between
the FEM-BEM and MM-IBC results is due to the failure of the MM-IBC. Recalling
the good accuracy of the MM-IBC results for the coated circular cylinder case, we
conclude that the impedance value 7 used for computation, which is appropriate for
the coated conducting plane, is an improper approximation near edges. Techniques
such as the FE-BE method which is capable of finding accurate near fields can be
used to compute this impedance value, from which a better guideline to predict the

impedance near edges could be developed.

C. An Ogival Cylinder with Coated Edges

An ogival cylinder shape is often used to study the scattering behaviour from
bare and coated edges. Here we present a sample computation using the FE-BE
method for bare, single- and double-edge coated ogival cylinders. In this case the
coating is homogeneous lossy material, but of varying thickness as shown by a sketch
in Figure 4.9, where the computed backscattering is presented. The ogival cylinder is
1.0X wide and the maximum coating thickness is 0.1 at the edge. From the results
we see that the single- and double-edge coating has very little effect on the return at
broadside incidence, but at edge-on the double-edge coating decreased the return by
some 5 and 16 dB for E- and H-polarizations, respectively. By examining the return
at edge-on from the single-edge coated case, it is evident that for E-polarization the
leading edge is the dominant scatterer, since coating the leading edge reduces the
return (¢ = 0°), while coating the rear edge the return (¢ = 180°) is unchanged. In
the case of H-polarization, usually the dominant scatterer is the rear edge (due to
travelling wave effects), but in this example such is not obvious, since the cylinder is

too narrow to sustain and launch appreciable travelling waves.

D. An Inhomogeneous Circular Cylinder

Starting with this example, we now consider the problems of having thousands of
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unknowns. Here is an inhomogeneous dielectric circular cylinder having radius 1.2
and the permittivity of the dielectric varying in the radial direction according to
€ = (2.4A—r)/r. Since the permittivity tends to infinity at the center, a conducting
cylinder of radius 0.2 is used to replace the dielectric there. The results for bistatic
scattering are shown in Figure 4.10. For computation, the cross section of the dielec-
tric cylinder is subdivided into 3948 triangular elements, resulting in Ny = 94 and
N = 2068.
E. An Inhomogeneous Rectangular Cylinder

This example is an inhomogeneous rectangular cylinder of size 3.8Ax1.2X. The
permittivity of the cylinder varies along the y-direction as €, = 1 + cos(yr/a), with
a = 3.8) being the height of the cylinder; the permeability is a constant, having
pr = 1.5. Both bistatic and backscattering results are given in Figure 4.11. In this

case, the number of triangular elements is 3648, resulting in N4 = 200, N; = 1925.

F. An Inhomogeneous Triangular Cylinder

The last example is an inhomogeneous triangular cylinder with the length of each
side equal to 2.77A. The permittivity and permeability vary along the z-direction as
€ = 1.540.5z/h and p, = 2.0 — 0.5z /h, respectively, where h (= 2.4)) is the height
of the triangle. The results are presented in Figure 4.12, again for both bistatic
and backscattering. In this computation, the number of triangular elements is 3844,
resulting in N4 = 186, Ny = 2016.

All above computations were performed on an Apollo Domain workstation (using
Domain series 3000 and 4000 machines). The symmetry property of some examples
was not utilized, though it could have been easily adopted to reduce the number of
unknowns. Although there is no codes available at current to check the results of
the last three examples, some computations were performed using the VSIEM for

similar cylinders with reduced size and excellent agreement was observed between

the FEM-BEM and VSIEM solutions [Jin et al., 1988c].
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It should be noted that in the FE-BE method there exists a problem of singular
frequencies due to the employment of the SIE. This problem occurs when the fre-
quency of the incident field is at the resonant frequency of the interior of the boundary
which is 'y for the formulation in Sections 4.2.1-4.2.4 and T for the formulation in
Section 4.2.5. At such frequencies the system matrix becomes singular and, thus,
near and at these frequencies the solutions may be erroneous. Since the resonant
frequencies depend on the shape of the boundary, the problem can be avoided by
deforming the artificial boundary so that the resonant frequency is shifted away from

that of the incident field.

4.4. Comparison with Other Methods

In order to give an objective evaluation of our FEM-BEM, we compare it with two
other methods: the unimoment method [Chang and Mei, 1976] and the conventional
volume integral equation (VIE) method [Harrington, 1968], both of which have been
widely used in scattering computations of inhomogeneous cylinders having both €
and p different from their free-space values.

In Table 4.2 we list the number of nonzero matrix elements that need be generated
and the size of the matrices to be solved in each of the three methods. In the FEM-
BEM, [K[j] has about 7N; nonzero elements, since a node is usually connected to
six adjacent nodes, and due to the symmetry of the matrix, only 4N; elements need
be generated. 2N, is the number of nonzero elements in [K7,], and 2N?% the number
of nonzero elements in [P44] and [P4j]. As previously shown, two matrices need
to be solved: one is [P} ,] of size Ny x Ny, and another one is the symmetric and
sparse matrix (K], which in banded form is of size Ny x B with B being the half

bandwidth (including the diagonal) of the matrix.

In the unimoment method, as originally developed, an artificial circle is drawn



64

Table 4.2: Comparison of the Three Methods.

Method FE-BE method | Unimoment method | VIE method

Elements to generate | ANj+2N4+2N% |  4N+2Np+4Q? 9N?

Matrices to solve | NyxB, NyxNy NxB', 2Qx2Q 3N x3N;

to enclose the entire scatterer. Assume N is the total number of the interior nodes
and N¢ the total number of boundary nodes. One needs to generate 4N nonzero
elements for the matrix [Q] and 2N¢ for the matrix [T] (see [Chang and Mei, 1976,
eq. 21). 4Q* is the number of elements in a matrix of size 2Q x 2Q, resulting from the
continuity conditions on the circle, where () denotes the number of harmonics used
to expand the field in the exterior region. In this method, also two matrices need to
be solved: one is that with the size of 2Q) x 2Q), and the other is the symmetric and
sparse matrix [@], which in banded form has the size N x B, where B’ is its half
bandwidth.

In the VIE method, one needs to generate and solve a matrix of the size 3N; x3 Ny,
since at each node there are three unknown equivalent polarized current components.

In order to compare the present FEM-BEM with the unimoment method we
need to consider three cases. For a scatterer having its cross section close to a circle,
the magnitudes of Ny and N are about the same, and so are the magnitudes of B
and B'. Since the number 2Q) can be smaller than N for far field calculation, the
unimoment method in this case is more efficient than the FEM-BEM. However, for a
slender scatterer whose cross section substantially deviates from a circle, N is much
larger than Ny, and B’ is also larger than B. Even though the number 2Q is possibly
smaller than N4, the FEM-BEM in this case is expected to be competitive with
the unimoment method. Finally, for the case of multiple scatterers, and especially
when the scatterers are far apart, the FEM-BEM may prove to be more efficient.

This is because in the FEM-BEM the artificial boundary I'4 can be split into several
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contours, each enclosing one scatterer, while in the unimoment method a single circle
is used to enclose all scatterers. However, a modification to the unimoment method,
which uses a boundary conforming to the surface of the scatterer, would enhance its
efficiency. One such modification, the FEM-EBCM, was presented by Morgan et al.
[1984] for the case of dielectric bodies of revolution, and if applied to two-dimensional
problems it would result in an efficient numerical technique.

Comparing the present FEM-BEM with the conventional VIE method, we find
that the FEM-BEM, like the unimoment method and the FEM-EBCM, is far more
efficient than the VIE method. For the problems of size comparable to those of last
three examples considered in the previous section, using the VIE method, one would
have to generate many more matrix elements, about four hundred times the number
needed in the FEM-BEM. The computational differences in solving the matrices is
expected to be even larger, though no accurate number can be stated, since the
computing time depends on the algorithm chosen for solving the matrix. We note
that for the case of dielectric (g, = 1) cylinders, the number of unknowns in the VIE
method reduces to 2N for H-polarization and to Ny for E-polarization. We also
note that the volume integral equation involving three equivalent polarized current
components can be transformed to an integral equation having both volume and
surface integrals but only involving one axial field component [Jin et al. 1988c].
Such a volume-surface integral equation provides a technique (VSIEM) much more

efficient than the VIE method; however, it still would not be competitive with either

the FEM-BEM or the unimoment method.

4.5. Concluding Remarks

In this chapter, we described a technique which combines the finite element

method and a surface integral equation for solving the scattering by infinitely long
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cylinders. This technique relaxes the restriction that the artificial boundaries be cir-
cles to the condition that the boundaries follow the shape of the scatterer, and thus
solves the problem numerically more efficiently. Numerical results were presented to
validate the technique as well as to demonstrate its versatility and capability. We
note that the corresponding computer program has been successfully used to gener-
ate solutions to verify other methods [Jin et al., 1988c; Jin and Liepa, 1989b; Ricoy
and Volakis, 1989]. We also note that since 1987 when we presented the technique
at the IEEE International AP-S Symposium/URSI Radio Science Meeting, we have
seen more researchers attracted into this technique. As a result, more papers were
presented on this subject at 1988 and 1989 AP-S International Symposia/URSI Ra-
dio Science Meetings [Wu et al., 1988; Collins and Volakis, 1989; Yuan et al., 1989;
Boyes and Seidl, 1989]. Though they appeared in different forms and different names,

the basic principle behind them is the same as presented in this chapter.



CHAPTER V

SCATTERING BY COATED WEDGES AND
HALF-PLANES

In the previous chapter, we presented a hybrid method to deal with scattering by
cylinders whose cross sections are of finite extent. In this chapter, we will consider
scatterers whose cross sections are of infinite extent. Two such typical scatterers are
the wedge and half-plane which still attract considerable interest in the field of elec-
tromagnetics. We will show that the method presented in the previous chapter can
be extended to deal with such problems by incorporating the physical optics approx-
imation. The particular problem we consider here is the scattering by conducting
wedges and half-planes coated with dielectric and/or magnetic materials. We will
first give a brief introduction to the problem and describe a hybrid formulation for
E-polarization. Numerical results are then presented and discussed, followed by a

short conclusion.

5.1. Introduction

Electromagnetic scattering by a perfectly conducting wedge and a half-plane are
two canonical problems in electromagnetics. Their analytical solutions are well-

known and can be found in many reference books [Bowman et al., 1969]. By coating

67
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the wedge and the half-plane with dielectric and/or magnetic materials, their scat-
tering patterns can be changed. This concept is often used for the purpose of radar
cross section reduction. For these problems, no exact analytical solutions exist. An
approach to the problems is to model the coated wedge (or the half-plane) by a wedge
(or a half-plane) of the same geometry, but with an impedance boundary condition
(IBC) applied to its surface, and then to obtain the solution using readily available
methods [Senior, 1952; Maliuzhnets, 1958; Tiberio, 1985; Volakis, 1986]. However,
due to the edge effects the surface impedance may not be uniform near the edge,
and, even worse, the impedance value cannot be predicted there accurately. Hence,
the applicability of the above approach remains questionable. One way to obtain
valid results is to go to numerical techniques.

For many years, numerical techniques have been developed for solving various
scattering and antenna problems. Among them, the method of moments (MM) is
best known [Harrington, 1968]. However, the finite element method (FEM) has
advantages for dealing with problems involving inhomogeneous media [Silvester and
Hsieh, 1971; McDonald and Wexler, 1972]. Nevertheless, both the MM and FEM are
only applicable to electrically small or medium bodies. For dealing with electrically
large bodies, such as wedges and half-planes, various hybrid techniques have been
developed.

Following is a brief review of the previous works. In 1971, Morita [1971] applied
the MM to TM scattering from a conducting half-plane by subtracting out the phys-
ical optics (PO) current. In 1975, Burnside et al. [1975] combined the geometrical
theory of diffraction (GTD) and the MM to treat a conducting wedge by adding
a diffraction term to the PO current. Soon after, Wu and Tsai [1977b] applied the
same technique to a dielectric wedge; however, in their formulation, only the PO cur-
rent was used, since the diffraction current is unknown for dielectric wedges. More

recently, Newman [1985; 1986] presented a MM/Green’s function solution to the
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scattering by a dielectric and/or magnetic cylinder in the presence of a half-plane.
In his formulation, a half-plane Green’s function was used as the kernel of integral
equations. Note that all these efforts employed the MM.

In this chapter, a numerical technique is presented for investigating the scattering
by a coated wedge and half-plane. The basic concept employed here is similar to that
used by Morita [1971], Burnside et al. [1975] and Wu and Tsai [1977b], except that
a finite element-boundary element (FE-BE) method [Jin and Liepa, 1988a], instead
of the MM, is used to compute fields near the edges. The use of the FEM allows
one to efliciently handle more complicated problems involving inhomogeneous me-
dia. In Section 5.2, a procedure of combining the FEM with surface integral equation
(SIE) and PO formulations is described for a coated wedge for E-polarization. The
analysis for a coated half-plane and for H-polarization is similar. In Section 5.3,
numerical results for the surface fields are presented and discussed to show the valid-
ity and applicability of this technique. Also presented are the corresponding surface

impedances calculated from the surface fields.

Consider the scattering by a coated wedge with a TM (E-polarized) plane wave
incidence. The coating is characterized by complex permittivity e and permeability
pt. To solve such an unbounded problem, the whole solution region is divided into

three subregions (see Figure 5.1). The first region, where SIE applies, lies outside

of abede. The second region is enclosed by abAA’ and ed EE". The coating in this
region is assumed to be homogeneous and of uniform thickness, and thus the PO
approximation can be used. The interior of the contour ABCDEF A forms the third
region, in which the FEM is used to compute the field. In this region, the coating

can be inhomogeneous and the geometries can be arbitrary. The problem is finally
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solved by coupling these three subregions. Following is a detailed description of the
technique.

In the FEM region defined by the contour ABCDEF A, the electric field E,

satisfies the wave equation (4.1) which is rewritten here as

! 2e. (F =
V'[u,_(f)VE’]”" {(F)E, =0 (5.1)

where ¢,(7) and p,(7) denote the relative permittivity and permeability, respectively.

The solution to (5.1) can be obtained by solving the variational problem
0F =0 (5.2)

with

/ / { L _vE,.vE, - kge,(F)Ez-E,}ds
Ry ﬂr

l E VE, - ndl (5.3)
ABCDE u,(

where R; denotes the FEM region, kg is the free-space wavenumber, and # is the

outward normal unit vector. Note the line integral over EF A is neglected since we
assume the wedge to be a perfect conductor. The solution to (5.2) can be obtained
only if one has complete boundary information on ABCDE.

If the interfaces between the FEM region and the PO region, AB and DE, are
far enough from the edge, the fields there can be approximately represented by the

PO fields. As a consequence, one can obtain an approximate boundary condition
VE, -n=UE, (5.4)

where the unknown coefficient U will be derived later. The line integral in (5.3) can

then be written as

l E VE, -ndl

ABCDE /Lr

[ LE, . E,dl + Bdl + Z _EVE.-idl  (55)
B [ir1 DE p'r2
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where the subscripts 1 and 2 refer to the corresponding parameters on AB and DE,
respectively. The first two integrals in (5.5) can be discretized while the third one
remains unknown.
If we use subscript B to refer to nodes on BCD and I to refer to other nodes
in the FEM region, application of the finite element analysis to (5.2) together with

(5.3) and (5.5) results in the matrix equations

[ABsl{¢B} + [ABil{¢1} = {¥s} (5.6)
[Ars] {¢8} + [Aul{¢r} = 0 (5.7)

where {¢} denotes the discretized fields E, at nodes. {t)g} in (5.6) comes from the
line integral on BCD, which is unknown. However, the problem can still be solved
if another relation between {¢g} and {¢;} can be found to replace (5.6). Such a
sidestepping of (5.6) was justified in the previous chapter. The required alternative
relation between {¢p} and {¢;} can be found using the SIE together with the PO
approximation.

In the SIE region, which is the outside of abcde, the field can be computed using

a surface integral equation

E.(F) = EINO() = [__{Gor,*)VEL(¥) i — B.(F)VGo(r, ) - W'} dl' (58)

abcde

where 7' refers to integration point on abcde and 7' the outward normal unit vector.
Go(7,7') is the well-known two-dimensional free-space Green’s function. Using the

PO fields to approximate the fields on ab and de and defining

E(7) = EINC(7) ,L{ }di' — /_{ ydr (5.9)

one can write (5.8) as

E,(F) = E:(F) — bcd{ }U (5.10)
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In accordance with the boundary element method, applying (5.10) to compute the

fields at nodes on BC D, one then obtains the matrix equation

{¢B} = {65} + [PeB){¢8} + [Pei1l{41} (5.11)

where the subscripts B and I imply the same as in (5.6) and (5.7). Thus the matrix
equation (5.11) provides the second relation between {¢p} and {¢;}.
By jointly solving (5.7) and (5.11), one obtains the fields on BC'D

{¢5} = [Pps] {3} (5.12)

where [Pgg| = [I]—[Psg]+[Ps1][A11]"[A18]. The fields inside can then be computed
from (5.7) as

{61y = -[An) " [As5){¢5} (5.13)

Knowing the fields {¢p} and {¢;}, one can easily find the scattered field.

To implement the above procedure on a computer, one needs to derive the PO
field expression to be used in (5.9) and the coefficient U in (5.4). To do this, consider
a TM plane wave incident upon a coated conducting plane at an angle 8 from the
normal (see Figure 5.2). The total field above the coating is the superposition of the

incident and reflected fields
EfO( ) EINC( )(1+R —)2koycoso) (5'14)

where R is the reflection coefficient given by

_ A+jB
~ A-jB

with

A= ZcosOtan(ktcost'), B = Zgcost', k=w/epn
29

J = \/— Zo = \/»0 cosf’ = sin
\l €rft
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Figure 5.2: Geometry of a Coated Perfectly Conducting Plane.

The coefficient U in this case is then
U= —jkosind (5.15)

and this along with (5.4) is valid everywhere (above and within the coating) on the

plane perpendicular to the z-axis.

9.3. Results and Discussion

To show the validity and effectiveness of the technique described above, a com-
puter code was developed to calculate the surface fields on coated wedges and half-
planes for unit amplitude plane wave incidence. Before the final results can be
obtained, the following questions must be first resolved.

The first one concerns the integration over the PO regions ab and de in (5.9). The
PO regions extend to infinity; however, in computations one needs only to integrate

over a finite section, since the Green’s function and its derivative provide an integrand
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whose magnitude monotonically decreases with an increasing argument. The length
of the section to be integrated also depends on the direction of the incident wave.
For a desired accuracy this length can vary from several wavelengths to hundreds of
wavelengths for different directions of incidence. Hence one has to judiciously choose
a criterion to truncate the integration. In the half-plane case, when the direction of
incidence is near edge-on, the range of integration will be minimum, i.e., the inte-
gration converges rapidly. However, when the incident angle approaches 0° or 360°,
the integration range will be maximum. Exploratory computations show that for
incident angles within 135° < ¢ < 225°, a 10 (free-space wavelengths) integration
range is sufficient. This problem is analogous to that of near-field calculations for a

travelling wave antenna.

The second question is how far from the edge the PO approximation becomes
valid. To approach this, one can make an estimate by performing sample compu-
tations. The answer depends on many factors, such as the coating thickness, its
constitutive parameters, the incident field direction, and the desired accuracy of the
results. To give an example, computations were made on a half-plane with one face
coated with a dielectric material and the other left bare. The problem is illustrated
in Figure 5.3(c) where the coating thickness, the dielectric property and the incident
angle ¢ are shown. The FEM region is defined over 0 < z < [ and the PO region
over ¢ > [. Computations were made for four different I’s and three of them are
shown in Figure 5.3. The fourth computation, which is not shown in the figure, for
[ =2.0) shows that if the observation point is farther than 1.5 away from the edge
the surface fields deviate from the PO fields by less than 2%. It is interesting to
observe in Figure 5.3 that even for an inadequately small ! the results in the FEM
region are still valid. However, this only occurs when 90° < ¢ < 270°. If ¢ < 90° or
¢ > 270°, the approximate boundary condition (5.4) at z = [ is not appropriate for

small [, since there are two waves propagating in opposite directions.
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Since there are no results, to our knowledge, available for a coated wedge or half-
plane to validate our results, surface currents of a perfectly conducting half-plane (a
special case of a coated half-plane with ¢, = g, = 1) were computed for various angles
of incidence. Very good agreement was observed between the numerical results and
the exact solutions.

To show the feasibility of the technique, four examples are given below. The first
is a coated right-angled wedge, and is illustrated in Figure 5.4(a). The surface electric
field and its normal derivative are given in Figures 5.4(a) and (b), respectively. The
fields on the two sides of the wedge are identical because of the symmetric incidence
(¢ = 135°). From the results we see that the fields change greatly near the edge,
while far from edge they tend to constants which, as one would expect, are the
PO fields. To check the validity of IBC on such a structure, the surface impedance
(Etan/ Hian) normalized to free-space intrinsic impedance Z, was calculated and is
given in Figure 5.4(c). One finds that at points farther than 0.1\ away from the edge,
the IBC provides a very good approximation. However, close to the edge, the IBC
would be invalid since the computed impedance value deviates drastically from that
predicted by PO. It should be noted that in the computations, the phase reference
point was usually shifted to the FEM /PO interface, and as a result the phase data
for the field and its normal derivative are shifted by a constant phase. However, this

has no effect on the surface impedance values.

The next example is a half-plane with its edge and two faces coated by a lossless
material, as depicted in Figure 5.5(c). The results are presented in Figure 5.5, where
the edge effect on the surface fields and on the surface impedance is clearly seen. It
is of interest to note that even for a lossless coating the impedance around the edge
has a resistive component, indicating energy flowing into the coating. At the lower
(shadow) surface the impedance has a negative resistance, which indicates that the

energy is flowing out from the coating.
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The third example shows an inhomogeneously coated half-plane with edge-on
incidence, as sketched in Figure 5.6(c). The relative permittivity of the coating
varies along the surface from €, = 4 at the edge to ¢, = 2 at infinity according to
€, = 2.0(1 4+ e7**/**). The results for the upper surface are given in Figure 5.6 and,
due to symmetry, are the same for the lower surface.

One may note that the examples presented above were made for thin coatings
which are not able to support surface waves. As a final example, a half-plane with its
upper face coated by a thicker lossy dielectric was considered. For top incidence the
results are shown in Figure 5.7, and there one clearly sees the oscillatory behavior
of the surface fields due to the interaction of the incident and reflected fields with
the surface wave excited by the edge. We note that even though the present analysis
does not include the surface waves in the PO region formulation, the results show
such waves and their correct interference patterns in the FEM region. This indicates

that the present technique is also applicable to the thick and lossy coating cases.

It should be noted that for lossless coatings which are sufficiently thick (¢ >
0.25)/ (e st — 1)/2) to support surface waves, the present technique may not give
accurate results. The difficulty will be more pronounced when one extends the
technique to the transverse electric (TE) case, since there surface waves are always
present, no matter how thin the coating is. To overcome such a difficulty, one would

need to incorporate expressions for surface waves in the PO formulation.

5.4. Conclusion

This chapter presents a numerical technique for computing TM scattering by per-
fectly conducting wedges and half-planes coated with dielectric and /or magnetic ma-
terials. The technique combines finite element method with surface integral equation

and physical optics approximation. Numerical results are presented and discussed
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for coated half-planes and a coated right-angled wedge. The technique allows one to
study the scattering behavior of coated wedges and half-planes as well as the surface
impedance behavior around the edges of such structures. From computed data one
can extract diffraction coefficients, which then may be used to extend the GTD to
coated structures. The shortcomings of this technique are also pointed out. Incor-
poration of surface waves in the formulation may allow to treat thick coatings and

TE incidence case.



CHAPTER VI

SCATTERING BY INHOMOGENEQUSLY FILLED
THICK APERTURES

The hybrid technique that combines the finite element method and the surface
integral equation has been well-established in Chapter 4 for scattering by cylinders
and in Chapter 5 it has been extended to solving for scattering by wedges and half-
planes by incorporating the physical optics approximation. In this chapter, we will
deal with the electromagnetic characterization of the transmission and scattering
properties of an aperture in a thick conducting plane filled with an inhomogeneous
composite material, a problem which is of considerable interest in electromagnetic
engineering. The principle of the technique for this analysis is basically the same as
that in Chapter 4; however, to allow the treatment of large apertures, the conjugate
gradient method and fast Fourier transform will be employed for the solution of
the resulting system. Numerical examples will be presented which demonstrate the

validity, versatility and capability of the technique.

6.1. Introduction

The problem of electromagnetic diffraction by a slot in a perfectly conducting

plane of finite thickness has been studied extensively. Lehman [1970] and Kashyap

84
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and Hamid [1971] employed asymptotic techniques; Neerhoff and Mur [1973] consid-
ered a formulation of coupled integral equations; and Hongo and Ishii [1978] utilized
the Weber-Schafheitlin integral technique. Also, Auckland and Harrington [1978;
1980] considered modal and nonmodal formulations where the method of moments
was employed to solve the coupled integral equations. These solution approaches are
usually restricted to rectangular slots or slots of arbitrary cross section filled with
a homogeneous or at most partially homogeneous material. Also, except for the
asymptotic solutions presented by Lehman [1970] and Kashyap and Hamid [1971],
all others, especially the one by Auckland and Harrington [1980], require excessive
storage to invert the resulting matrix. In this chapter we present a method that
alleviates both of those limitations.

The method combines the finite element method (FEM) and the boundary inte-
gral equation formulation. The FEM [Zienkiewicz, 1977] is known to be well-suited
for dealing with material inhomogeneity and geometry irregularity and results in a
very sparse matrix. It has recently been used by Jeng [1988] to compute the ad-
mittance matrix of an air-filled cavity-backed aperture for transverse electric (TE)
incidence. In this chapter the FEM is employed to formulate the fields within the
slot and establish a relationship with those at the aperture. The fields external to the
slot are expressed as an integral over the aperture and a system of integral equations
is then obtained by enforcing field continuity across the aperture. These are solved
via the conjugate gradient method (CGM) and in the process the boundary integrals
are efficiently evaluated via the fast Fourier transform (FFT).

The capability of the FEM to treat structures of arbitrary geometry as well as
material composition and that of the CG-FFT method to deal with large systems are
demonstrated herein. Although this combined methodology is applicable to a wide
class of configurations, in this chapter we restrict its application to that of a two-

dimensional slot in a thick perfectly conducting plane with TE or TM (transverse
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magnetic) incidence. To show the versatility of the combined FEM and CG-FFT
method, computations are presented for slots filled with multilayered dielectrics that

may also support embedded conducting strips.

5.9 T} ical Formulati

Consider the geometry illustrated in Figure 6.1. This specific configuration con-
sists of an inhomogeneous material slab inserted between two metallic half-planes of
the same thickness. The relative permittivity and permeability of the material will
be denoted by €, (7) and p,(F), respectively. For further reference, we will denote the
upper half-space (y > 0) as region I, and the lower half-space (y < —t) as region
II. Also, the cross section of the slot (0 > y > —t) will be referred to as region III
In the following, we first present a general formulation for the scattering by such a

structure and then give detailed formulations for TM and TE cases, respectively.

6.2.1. General Formulation

For the problem of scattering by an aperture in a thick, infinite ground plane,
it is customary to decouple the fields in the three regions by closing the upper and
lower apertures of the slot with a perfect conductor and introducing the equivalent
magnetic currents M, and M, over the extent of the apertures, as illustrated in

Figure 6.2. Based on the equivalence principle [Harrington, 1961],
Hl = —E-l X :l} ) Mg = Fz X (-—Z)) (61)

where E, is the field at the upper aperture (y = 0) and likewise E, is the field at
the lower aperture (y = —t). Both currents reside on the surface of a ground plane

which can be removed by application of image theory.
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The field in region I can now be expressed as the radiation caused by M; and the
impressed sources (7', Mi). We will denote the tangential (to the aperture) magnetic
field at y = 0 as ﬁf(ﬁl,T,ﬁ) Similarly, the tangential magnetic field at y = —t
in region II will be denoted by ﬁtl I(Hg) as generated by the equivalent magnetic
current M over the lower aperture. Enforcing continuity of the tangential electric
fields at the upper and lower apertures of the slot, the fields within region III can
be expressed as the radiation of the equivalent magnetic currents —M; and —M,,
as illustrated in Figure 6.2(c).

The fields in each region are coupled by requiring continuity of the tangential

magnetic fields across the slot opening. We then have

0, T, 3 =Ty (-, -1, (6.2)
ﬁtn(ﬁz) = F{;I(-Ml, —M,) (6.3)

where _I_I-tlll "and ﬁg " denote the tangential magnetic fields in region III at y = 0 and
y = —t, respectively.

Traditionally, (6.2) and (6.3) are employed in constructing integral equations for
the solution of the magnetic currents M; and M,. In this procedure, the fields
in each region are expressed as an integral over the aperture currents utilizing the
appropriate Green’s function applicable to each region. In regions I and II the free-
space Green’s function is required, whereas in region III the appropriate Green’s
function must be derived to satisfy the pertinent boundary conditions. Clearly, for a
slot of arbitrary cross section and filled with inhomogeneous material the derivation
of the Green’s function for region III may not be possible and this is the major
limitation of traditional approaches.

In the proposed formulation the variational equation

§F =0 (6.4)
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with
1 —_ —_ —_ —
F = // [— (VxEm)-(VxEm)—kge,Em-Em] dedy
a |p,
~2jkaYs [ My T 'da = 2jke¥o [ - Hy'da (6.5)
1 2
or

F = / /ﬂ Ll (vxT") (vx T - T | dody

—2jkeYs /F M, - ' dz — 25keYo /F M, A de (6.6)
1 2

is employed in region III, where kg = 27/ is the free space wavenumber and Z, =
1/Yy is the free space intrinsic impedance. Also, ) denotes the cross sectional area
of region III, T'; is the line segment specifying the upper aperture and T'; is the
corresponding line segment specifying the lower aperture. Equation (6.4) can be
discretized in the standard manner employed in finite element techniques to generate
a matrix relation between the aperture and internal fields. The incorporation of the
boundary conditions to be satisfied by the internal fields is rather straightforward
after a discretization of (6.4). Essentially, the introduction of (6.4) eliminates a
need to find the Green’s function associated with the internal structure of the slot.
More importantly, the application of (6.4) is independent of the slot’s cross sectional
geometry and material filling once the appropriate finite element mesh has been
generated.

The boundary conditions (6.2) and (6.3) in conjunction with (6.4) and (6.5) or
(6.6) imply a system of equations for the solution of the magnetic currents M; and

‘M3 to be employed for the computation of the scattered and transmitted fields.
6.2.2. Formulation for TM Case

For TM (E-polarization) incidence, the impressed or incident electric field E™
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is z-directed and the equivalent magnetic currents M; and M, may be written as

M, = iM(z) = =2E! = —¢E"" on T, (6.7)

M, =iM,y(z) = :EM = 2E™ onT, (6.8)
The electric field in region I is now given by

E;(z,y) = E(,y) + E*''(z,9)
) 0
—%-a—y s My(z')HY <k0 (z—2')* + y2> dz’ (6.9)
where E7¢/! is the electric field reflected from the infinite ground plane in the absence

of the slot and .H(gz) is the zeroth order Hankel function of the second kind. The

corresponding tangential magnetic field at the aperture is given by

: koY 1 9
H!(z,0) = 2H(z,0) — % ( K aiZ) / Mi(z ko|x —2'[)dz’ (6.10)

where H:" denotes the z-component of the incident magnetic field.

Similarly, the electric field in region II is given by

EM(g,y) =12 / My(z') HP (km/(a: Yty )d::: (6.11)

and the corresponding tangential magnetic field at the aperture is found as

2
H;I(x,()):_k"_QYQ( 1:2 Bax ) / My HO (kole - o)de’ (6.12)

The functional F' to be employed in (6.4) becomes

L] (5] el

—95keZo /F M H M dz — 25koZ, /F MyHdg (6.13)
1 2

By further incorporating (6.2), (6.3) and (6.7), (6.8) along with (6.10) and (6.12), F

can be more explicitly written as

SNEE

E, 2+ OE,\’
T dy

- kge,Ef} dzdy
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(lc2 + —) A E,(z")H? (ko|z — '|)da:'] dr

£
+]/ [(k2+——) | E.(«)H VHY (ko|z - 2'|)dz ]dx

+45koZo / () H™(2,0)dz (6.14)

where the superscript I1] on E, has been omitted for convenience. A numerical

solution for E, can then be obtained by solving the variational equation (6.4).
Once the aperture electric fields are obtained, the scattered field can be computed

from (6.9) and (6.11) and the scattering radar cross section (RCS) can be evaluated

from [Bowman et al., 1969)
o= 2P (6.15

where ¢ is the observation angle measured from the z-axis and P(y) is the far field
coefficient P(¢) given by

ko

2 Jry

P(p) = Y E,(x)ejk”ws“’sin pdr T<p<2r (6.17)

E,(z)e*"*Ysinpdz  0<p<nm (6.16)

gy
s
I

The time average power per unit length (in the z-direction) transmitted into

region II through the slot is given by
Pirans = —Re /F H:(2)E,(2)de (6.18)

where the asterisk denotes the complex conjugate. From this, the transmission co-
efficient T' of the slot, defined as the ratio of Pians to the time average incident
power P;,. intercepted by I'; per unit length, can be calculated in a straightforward

manner.
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6.2.3. Formulation for TE Case

For TE (H-polarization) incidence, the impressed or incident magnetic field "™
has only a z-component implying that the scattered magnetic field will also be z-

directed. The equivalent magnetic currents M; and M, may then be written as

=

tMy(z) = 2ET = 3E™ on Ty (6.19)

1

=

2= iMy(z) = —2E = —2E!"" onT, (6.20)

The magnetic field in region I due to M, is given by

T'(7) = HI(F) = tH™(z,y) + :H™(z, —y)

58 [ HD (bl - a2'de’ (621)

and similarly, the magnetic field in region II due to M, can be expressed as

"' (F) = sH(F) = -z% / My(2')HP (ko[ — 32'|)da’ (6.22)

The functional F to be employed in (6.4) becomes

= S (5] e

_9ikoYs /F M H!dz — 2jk0Y,s /F MyH!dz (6.23)
1 2

In this case, it is impossible to find an analytical expression for the functional F
which couples the fields in the three regions by enforcing the boundary conditions
(6.2)-(6.3), as is in the TM case. The coupling of the fields or the enforcement of the
boundary conditions can only be carried out after we discretize (6.21)-(6.23). This
is the main difference between the formulations for the TM and TE cases.

Once the equivalent magnetic currents M; and M, are computed, the RCS of the

structure is again given by (6.15) with P(y) given by

koY: .
Plp) = ———-02 9 A ]Wl(m)e]k"xmwdm O<p<m (6.24)
1
kO}/O 1ko x cos
P(p) = ——— [ My(2)e?™**%dz n1<p<2r (6.25)

2 Jr,
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and the time average power per unit length transmitted into region II through the

aperture is given by

Pivans = —Re /F H*(2)My(2)dz (6.26)
2

6.3. Numerical Discretization

In this section the functional expressions and integral equations will be discretized
using the finite element and boundary element methods and systems of linear equa-
tions will be derived. For discretization, the cross sectional region (1 is subdivided
into M small triangular or rectangular elements. Also, the line segments I'; and
'y are broken into L; and L, short segments, respectively. On the assumption of a
linear field distribution within each element, the field within the eth element having

n nodes can be expanded as

n

E; (or H7) = Z (,9)¢F = {N°}T{¢°} = {¢°}"{N°} (6.27)

where Nf(z,y) are the shape functions and ¢¢ represent the nodal fields. In the
following we will discuss the TM and TE cases separately since their formulations

are different.
6.3.1. Discretization for TM Case

For the TM case, we need to derive a system of equations by discretizing and
minimizing (6.14). For the discretization of the line integrals in (6.14), we use the
mid-point field value to represent the field on the segment. Thus, the field on the

sth segment becomes

By = 5(6" +4%) = ¢ (6.28)
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where ¢°! and ¢*? denote the electric fields at the ends of the segment.

Substituting (6.27) and (6.28) into (6.14), we obtain

M Ly L,
F = Z{¢6}T[Ke]{¢e} + Z(¢sl + ¢32)6, Z¢tPst
e=1 s=1 t=1

L, L, Ly )
+ (6" +6°)8, Y ¢ P+ 25k0Z0 3 (6 + ¢°1) HM(2,,0)8, (6.29)
s=1 t=1 s=1

where 6, denotes the length of the sth segment and z, is its mid-point. The n x n
matrix [K*] is given by

o - LGNS

— KB {N"}{N°}"} dady (6.30)

in which {2° denotes the area of the eth element with (e, u) being the relatively
permittivity and permeability of that element. Finally,
y 2 Tt 6:/2
_ J 2 6 + (2) A / / ¢
P, = 3 [(ko + 5?) /m—&/2 Hy" (ko|lz — 2'|)dz . (6.31)
For constant € and p;, the elements of [K¢] can be evaluated analytically, resulting
in the simple expressions given in Section 3.3.2 for linear triangular elements. The

integral in P, can also be evaluated analytically to find

. "
P = L1 1——llog(o.1638k05,)] 6, — jkoHO(keby[2)  s=1 (6.32)

™

Pst — %kgHéz)(Im'xs —_ xtl) + %ko [:tf{l(2)(k0|l'a — T — 5t/2|)

POl o620 olek8f) sAL (639

where H1(2) is the first order Hankel function of the second kind.
In accordance with the Rayleigh-Ritz procedure, differentiating F in (6.29) with
respect to each nodal field and equating the resulting expression to zero yields the

system of linear equations

[A[{¢} = {b} (6.34)
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where [A] is an N x N square matrix with N being the total number of nodes within
Q2 and on Ty and I'y, {¢} is a column vector representing the electric field at the
N nodes and {b} is a known column vector representing the excitation. It is not

difficult to show that [A] is a partly sparse and partly full symmetric matrix.
6.3.2. Discretization for TE Case

For the TE case, we need to discretize and minimize (6.23) with respect to H!!f
to derive a set of linear equations which, together with another two sets of equations
derived by discretizing (6.21) and (6.22), forms a system of equations for the solution
of the problem.

Substituting (6.27) into (6.23) and employing a pulse basis expansion for the

magnetic currents M; and M,, we have
M Ly Ly
F= ;{¢C}T[K€]{¢C} -J ;(QS” +6")641 —j a;@“ +¢%)69;  (6.35)
where {¢°} represents the nodal magnetic fields within the eth element, ¢*! and $*2
denote the magnetic fields at the ends of the sth segment, and %{ or 1§ denotes the
quantity (ko¥oM;) or (koYoM,) on the sth segment. The matrix [K¢] is given by
(6.30) provided ¢ and p¢ are interchanged. Minimizing (6.35) with respect to the

nodal fields yields the matrix equation

[K1{¢} + [Bil{#1} + [B] {92} = 0 (6.36)

where {¢} is a column vector representing the magnetic field at the N nodes within

region III and on I'; and T',. Also,

{1} = kYo{M1} and {3y} = kYo {M} (6.37)

are column vectors having L; and L, elements, respectively, equal to the number of

segments employed for the discretization of I'y and T';, respectively. The quantities
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in the brackets represent sparse matrices assembled as

M Ly L2
(K] =2 KT, [Bi]= 2_:1[3’] , [Bi] = Z_;[B’] (6.38)

where the elements of the column vector [B®] are given by
J
B} = B} = —=4,
1 2 9

Note that the submatrices [K¢] and [B®] are properly augmented when assembled
using the global nodal numbers. We also note that [K] is an N x N square matrix
whereas [B;] and [By] are rectangular matrices having N X L; and N X L, elements,
respectively.

We now proceed with the discretization of (6.21) and (6.22) to derive another
two sets of linear equations. Multiplying both sides of (6.21) and (6.22) by (—j)
and applying Galerkin’s technique to the resultant equations, we obtain two matrix

equations

[Cil{¢1} = {¢™} = [P]{t1} (6.39)
[Cal{¢2} = —[Pa]{¥2} (6.40)
where {¢;} and {¢,} are column vectors having L; + 1 and L, + 1 elements, respec-

tively, representing the nodal magnetic fields on I'y and I';. The sparse matrices [C}]

and [C,] are assembled from

L] L2
[Ci]=2C"], [C]= X [C"] (6.41)
s=1 s=1
where [C”] is a row vector whose elements are given by

C!=C2 = -%5,

Again, [C?] is properly augmented when assembled using global numbering. We note
that [C}] and [C;] are rectangular matrices having L; x (L; +1) and Ly X (Ly + 1)

elements, respectively. The column vector {¢""°} has L, elements given by

¢ = —2jHi"(z,,0)8, (6.42)
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where z, denotes the mid-point coordinate of the sth segment on I'y. Also in (6.39)
and (6.40), [P,] and [P,] are square matrices having L; X L; and Ly X L, elements,

respectively, given by

Py = -% 1= Plog (0.1638k08,)| 6 s =t (6.43)
™
Py = —LHP(kolo, - z)6,8, s+t (6.44)

2

The final system of equations is obtained by enforcing (6.2) and (6.3) on (6.36),
(6.39) and (6.40). In doing so, we have

- - 3 ( )

K B, B ( ¢ 0

BI P 0 P =1 ¢} (6.45)
BT 0 P || 0

for a numerical solution of the magnetic fields and currents. Note that the superscript
T in (6.45) denotes the transpose of the associated submatrix and, thus, the operator

in (6.45) is symmetric.

6.4. CG-FFT Implementation

While the systems of equations (6.34) and (6.45) can be solved via a direct matrix
inversion, this approach requires a memory of O(N?) for (6.34) and O((N + L, +
L,)?) for (6.45). If the sparsity property of the matrices is efficiently utilized (not
necessarily a simple task), the memory demand can be reduced to O(N) + O(L?) +
O(L3) which still may exceed the capacity of the available storage. An approach
in dealing with this difficulty is to employ an iterative solution process such as the
CGM and exploit the convolutional nature of the boundary integrals to reduce the

memory demand to O(N). In this section, we describe such an approach.

Rewriting (6.34) and (6.45) as

Az=b (6.46)
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and assuming an initial solution vector z;, the CG algorithm [Hestenes and Steifel,
1952] for the solution of (6.46) can be outlined as follows.

Initialize the residual and search vector:

rn = b— AZ] (647)
1

= —— 6.48

130 (A“TI,A“TI) ( )

p1 = BoA’n (6.49)

Iterate for k = 1,2,..., N for (6.34) or N + Ly + L, for (6.45):

1

a = T 6.50
¢ (Apx, Apy) ( )
k41 = 2kt 0Py (6.51)
Tep1 = Tk — apApy (6.52)

1
= 6.53
& (A%riq1, ATiyr) (6.53)
Pevr = Pr+ Brt1A'Tisn (6.54)

Terminate at k = N for (6.34) or N + Ly + L, for (6.45) or when

[|rrs1]l2

< tolerance (6.55)
1612

As seen, in the implementation of the CG algorithm the coefficient matrix A is

only involved in the computation of the two column vectors Az and A%z, where z

is a known column vector and the superscript a implies the adjoint operator. This

computation can be accomplished rather efficiently without generating matrix A

explicitly and to illustrate this process, let us consider the computation of Az for the

TM and TE cases separately.

TM Case

The contribution of the M area elements to Az is

M
;[K No'} (6.56)
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and since the expression for [K°| is quite simple, the above summation can be carried
out very fast. The contribution of the L; and L, line segments to Az can also be
computed efficiently via the FFT. For example, if we assume that each segment has
the same length é and define f, as

82 :L‘+5¢/2 ' ’
Eqs* [(k"’ + —) /z_s 2 HP (ko|z - 2'|)dz

/ =T,

s=1,2,..,1, (6.57)
then,
{f} = FFT'{FFT{g} o FFT{G}} (6.58)

in which the symbol o denotes the Hadamard product. The elements of the column
vector {g} are defined by
{¢t t:1,2,...,L1
gt =

0 t=Li+1,L1+2,..,N,
and those of {G} are given by
(k21 — (25/7)log(0.1638k8)] 6 — 2ko H® (ke6/2) t=1
RRHS((t = 1)ko6) + ko [HP((t = 3/2)ko6)

- H((t-1/2kof)]  t=2,3,..,N,/2+1

\GNp—H-Q t =Np/2+2,Np/2+3,...,Np
where N, > 2L; — 1.

TE Case

The first N elements of Az are attributed to (6.36) and can be computed as
M L L
2IKNeY+ LB + LB w3} (6:61)
e=1 s=1 s=1

The next L elements of Az are attributed to (6.39) and can be computed as

Ly

Y [C*|{#i} + FFT™" {FFT{;} o FFT{G}} (6.62)

s=1
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where the elements in {G} are given by
—(5/2)[1 — (2j/7)log(0.1638k,6)] 62 t=1
Gy = —(/2HP kot = 1)6)8  t=2,3,..,N,/2+1 (6.63)
GNp-ty2 t=N,/242,N,[2+43,..,N,
and 9} =0 for t = Ly + 1, Ly + 2,..., N,. Similarly, the last L, elements in Az are
attributed to (6.40) and can be computed as
L,
Y[C'{#}} + FFT' {FFT{3,} o FFT{G}} (6.64)
I=1
The computation of A%z can be accomplished in a similar manner. But, since A

is symmetric, then A%2=A*z, where A*z can be computed using the above formulas

with [K*], [B°], [C*] and {G} replaced by their complex conjugates.

.. Numerical Results

Based on the formulation described above, a general computer code was developed
and in this section we present some numerical results which validate the formulation
and demonstrate the code’s versatility. In all cases a plane wave illumination is

assumed.

6.5.1. Results for TM Case

For the sake of verification, Figure 6.3 shows the equivalent magnetic currents
(normal incidence) and backscattering RCS for a rectangular groove, depicted in
Figure 6.3(a), and Figure 6.4 shows the equivalent magnetic currents (normal inci-
dence) and transmission coefficient for a rectangular slot, depicted in Figure 6.4(c),
both filled with different materials. The results presented are those computed by this

method and the method of moments in conjunction with the modal Green’s function
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Figure 6.3: Equivalent Magnetic Current at Normal Incidence and
Backscattering RCS for a 1A Wide and 0.25) Deep
Groove. (a) Magnitude. (b) Phase. (c) RCS. Solid Lines
Correspond to ¢, = 1 and g, = 1; Dashed Lines Corre-
spond to ¢, = 4—j1 and p, = 1. Solid and Dashed Lines:
This Formulation; Circles and Squares: Mode Matching
Solution.
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Figure 6.4: Equivalent Magnetic Current at Normal Incidence and
Transmission Coefficient for a 1.6A Wide and 0.25X Thick
Slot. (a) ¢ =1, p, = 1; Solid Line: Current on the
Upper Aperture; Dashed Line: Current on the Lower
Aperture. (b) ¢ = 2.56(1 — j0.1), g, = 1; Solid Line:
Current on the Upper Aperture; Dashed Line: Cur-
rent on the Lower Aperture. (c) Transmission Coeffi-
cient Corresponding to ¢, = 1, u, = 1 (Solid Line);
& = 2.56(1 — j0.1), u, = 1 (Shorter Dashed Line); and
& = 2.56(1 — j0.1), g, = 1.2 — j0.35 (Longer Dashed
Line). Solid and Dashed Lines: This Formulation; Cir-
cles: Mode Matching Solution [Wang, 1984].
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N el /7%

31cm

|‘ V'

Figure 6.5: Illustration of an Aperture Filled with Three Dielectric
Layers and a Strip Grating. Top and Bottom Layers:
& = 2.56, u, = 1.0, Thickness = 0.2 cm. Middle Layer:
e = 4.0, p, = 1.0, Thickness = 0.2 cm.

of the cavity [Wang, 1984]. It is clearly seen that the both methods give identical
results.

To demonstrate the versatility and capability of the combined FE-BE and CG-
FFT formulation as well as the pertinent computer code, we consider the computation
of the plane wave scattering by the geometry shown in Figure 6.5. The illustrated
configuration depicts a wide slot in a thick conducting plane filled with three dielec-
tric layers with a perfectly conducting strip grating embedded in the center layer.
The specific geometrical and material properties associated with the dielectric and
pertinent strip grating are given in the figure. Figure 6.6 shows the electric fields
at the upper aperture, the center line containing the strip grating and the lower
aperture computed at 10 GHz and for normal incidence. We note that the field
distribution within each period of the strip grating is very similar and as a result,

the approximate scattering solution for the truncated periodic array proposed in [Jin
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and Volakis, 1990] will be of reasonable accuracy for large apertures. Some bistatic
scattering patterns are given in Figure 6.7 for three different incidence angles. The
higher order Bragg diffraction effects are clearly seen in Figures 6.7(b) and (c). Fi-
nally, Figure 6.8 shows the transmission coefficient as a function of the incidence
angle at 10 GHz and as a function of frequency at normal incidence. Note that in
all Figures 6.6-6.8, we have included information relating to the discretization and

convergence of the iterative solution.

6.5.2. Results for TE Case

For the sake of verification, Figure 6.9 shows the equivalent magnetic currents
M; and M, as computed by this method and the method of moments in conjuction
with the slot’s Green’s function [Aucland and Harrington, 1978]. It is clearly seen

that both results are practically identical.

Next, we consider the computation of the plane wave scattering by the geome-
tries shown in Figure 6.10. The illustrated configurations depict wide slots in a thick
conducting plane containing a (truncated) perfectly conducting strip grating embed-
ded in a multilayer dielectric that fills the entire slot. Specifically, Figure 6.10(a)
shows a single strip grating centered in the slot and residing within a 0.1 cm gap
that separates two dielectric layers. The slot shown in Figure 6.10(b) contains two
strip gratings, each embedded in the center of a dielectric layer. The specific geo-
metrical and material properties associated with the dielectric and pertinent strip
grating are given in the figure. Figures 6.11 and 6.12 show the equivalent magnetic
currents computed at 30 GHz for Figure 6.10(a) and 9 GHz for Figure 6.10(b). We
again observe that the current distribution within each period of the strip grating
is very similar. Some bistatic scattering patterns for the geometry in Figure 6.10(a)

are given in Figure 6.13 at three different frequencies, all for normal incidence. Also,
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Field Distribution Corresponding to the Geometry in
Figure 6.5 at 10 GHz and Normal Incidence. (a) Up-
per Aperture Field. (b) Field at the Center Line Con-
taining the Strip Grating. (c) Lower Aperture Field.
Ly = L, = 186, N = 1309, Tolerance=0.01, 139 Iter-

ations.
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Figure 6.7: Bistatic Scattering Patterns for the Geometry in Figure
6.5 at 10 GHz. (a) ¢ = 90° (Normal Incidence), 139
Iterations. (b) ™ = 60°, 176 Iterations. (c) @™ = 30,
161 Iterations. L; = L, = 186, N = 1309, Toler-
ance=0.01.
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Figure 6.8: Plots of the Transmission Coefficient (T') Corresponding
to the Geometry in Figure 6.5. (a) T versus Angle of
Incidence (p) at 10 GHz; L; = L, = 186, N = 1309,
Tolerance=0.01. (b) T versus Frequency (f) at Normal
Incidence; 0-10 GHz: L, = Ly = 124, N = 625, Tol-
erance=0.01; 10-20 GHz: L, = L, = 186, N = 1309,
Tolerance=0.01; 20-30 GHz: L, = L, = 248, N = 1747,

Tolerance=0.01.
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for a 1A Wide and 0.25\ Thick Slot Filled with a Di-
electric Having ¢, = 1 —j. L; = L, = 20, N = 126.
Solid and Dashed Lines: This Formulation; Circles and
Squares: Data from [Aucland and Harrington, 1978).
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Figure 6.14 includes three bistatic scattering patterns corresponding to the geometry
in Figure 6.10(b) at 9 GHz for different incidence angles. Finally, Figure 6.15 shows
the transmission coefficients for the two geometries as a function of frequency at

normal incidence.

6.5. Concluding Remarks

A hybrid technique was developed for a numerical characterization of the scat-
tering and transmission properties of an inhomogeneously filled aperture in a thick
conducting plane with TM and TE incidence. The technique combines the finite
element method and boundary integral formulation. This resulted in a system of
equations whose solution was obtained via the conjugate gradient (CG) method
employing the fast Fourier transform (FFT) for the evaluation of the convolution
integrals over the aperture. The use of the CG-FFT eliminated a need for an explicit
generation of the pertinent matrices and thus reduced the memory demand to O(N)
for the implementation of the entire system.

Differing from other techniques, the proposed methodology can efficiently handle
any slit cross section regardless of its material properties and geometry. New ge-
ometries can be simply accommodated by changing the finite element mesh without
affecting the solution process. It is, therefore, a promising approach for treating
large and complex radiation and scattering problems that are often formidable with

traditional techniques.
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Figure 6.10: Illustration of an Aperture Filled with (a) a Single Lay-
ered Strip Grating and (b) a Double Layered Strip Grat-
ing. d Denotes the Thickness of the Associated Dielectric
Layer or Conducting Strip.
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the Geometry in Figure 6.10(b) at 9 GHz and Normal
Incidence. Ly = L, = 248, N = 1743, Tolerance=0.01,
159 Iterations.



o/A (dB)

o/A (dB)

116

20.

30. 1

(b)

270.
..... | BN BN PP B PR
90 120 150. 180 210 240. 270.
¢ (degrees)



117

o/A (dB)

_20’ ..... L L

¢ (degrees)

(c)

Figure 6.13: Bistatic Scattering Patterns for the Geometry in Figure
6.10(a) at Normal Incidence. (a) 3 GHz, L, = L, =
126, N = 508, Tolerance=0.005, 97 Iterations. (b) 10
GHz, L, = L, = 189, N = 1140, Tolerance=0.005, 118
Iterations. (c) 30 GHz, L, = L, = 252, N = 1771,

Tolerance=0.005, 389 Iterations.
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Figure 6.14: Bistatic Scattering Patterns for the Geometry in Figure
6.10(b) at 9 GHz. L, = Ly = 248, N = 1743, Toler-
ance=0.01. (a) ¢'"* = 30°, 102 Iterations. (b) @™ = 60°,
201 Iterations. (c) '™ = 90°, 159 Iterations.
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CHAPTER VII

APPLICATION OF ISOPARAMETRIC ELEMENTS

There are basically two approaches to achieve more efficient and accurate compu-
tation of electromagnetic scattering. One approach is to develop new methods. The
development of several hybrid methods discussed in the previous three chapters are
some examples in this direction. An alternative approach is to improve the existing
methods, and here we will consider this approach. Specifically, we will describe the
application of isoparametric elements in the finite element-boundary element method
presented in Chapter 4 to improve the efficiency and accuracy of the solution for the

scattering by cylinders.

7.1. Finite Element-Boundary Element Formulation

To illustrate the use of isoparametric elements in finite element-boundary element
methods, we choose the formulation presented in Section 4.2.5 as an example. For

convenience, we introduce the following notations

F) = E,(F )= — OF.(r) u(F) = — v(7) = € (F
$0) = B(r), $0) = =5 B ) = v(F) = )

for TM incidence and
7) = H,(F F) = L_OH.(r) u(F) = ! v(F) = p,(F
¢( )_Hz( )7 Q/"( ) Cr(F) an ) ( ) 67(7:) Y ( ) lr( )
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for TE incidence. Then, (4.17) and (4.18) can be uniformly written as

F= / /R {u(F)V(F) - V4(F) - Ko(F)o(F) - (7) } ds — / AP (1.1)
and (4.20) as

)= 60 - [ |ootrrote) - a0 ar o

Note that in (7.1) and (7.2) the boundary conditions on I' have already been enforced
by neglecting the superscripts in (4.17), (4.18), and (4.20).

In accordance with the finite element-boundary element method, we need to
transform (7.1) into the form of matrix equation (4.19) and (7.2) into that of (4.21)
to form a linear system. For this, we first subdivide R into M elements and assume
that L is the number of segments on I' resulting from the subdivision. Then, we
expand ¢ in each element as

(7= RV = Ve = (V) e=12bt (13)

and expand ¢ and ¢ on each segment as
ZU’ ()¢ = {U°}{¢'} = {¢*}T{U} s=1,2,..,L (7.4)
EU’ Wi ={U {9} = {¢*}{U°} s=1,2,..,L (7.5)

where V? and U} are the known expansion functions and ¢¢, ¢! and 17 are the

corresponding unknown coefficients.

Substituting (7.3)-(7.5) into (7.1) yields
M L
F =3 {6} KN} - YA} 1B Hv) (7.6)
e=1 s=1
in which the elements in [K*] are given by

K¢ = / / ) VVE(R) — Bo@VEEVE (P} ds 5 =1,2,00m (17
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and the elements in [B*] are given by
By = / UEAURA 0,5 =1,2,..,1 (7.8)

where Q¢ denotes the area of the eth element and I'* the length of the sth segment.
Application of the Rayleigh-Ritz procedure to (7.6) will then produce a matrix equa-
tion in the form of (4.19).

Now substituting (7.4) and (7.5) into (7.2), we have

540) = 6%0) - X . [Glr, HOY 1)
—{U"}"{¢*}V'Go(7,7) - '] dI' for FonT (7.9)

where f denotes the Cauchy principle value integral. Application of the boundary
element method to (7.9) then provides a matrix equation in the form of (4.21).
From the formulation above, it is clear that the accuracy of the solution depends
on how accurate (7.3)-(7.5) can represent the fields and how accurate the integrals in
(7.7)-(7.9) can be evaluated. The second problem is closely related to the modelling

of geometry.

7.2. Isoparametric Elements

As we have seen, to obtain an accurate numerical solution one is required to
model both the geometry and the ficlds accurately. Isoparametric elements were de-
veloped to provide such an accurate modelling. These elements belong to a special
group in the family of parametric elements and particularly refer to the discretiza-
tion elements which have the same order shape functions as the field representation
within them. When using isoparametric elements, the region R can be broken into
a number of elements whose sides can be curved. Figure 7.1 shows two examples of

breaking a circular region into five and 12 quadrilateral elements, respectively, with
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(a) (b)

Figure 7.1: Two Examples for Breaking a Circular Region. (a) A
Five Quadrilateral Element Model with 20 Nodes. (b) A
12 Quadrilateral Element Model with 45 Nodes.
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Figure 7.2: A Quadratically Curved Segment in the zy-Plane Can

Be Transformed into a Straight Segment Lying on the
é-Axis.

quadratic shape and expansion functions. In this section we will describe the for-
mulation for quadratically curved line elements and that for quadrilateral elements

with quadratically curved sides.

7.2.1. Curved Line Elements

It can be shown that a quadratically curved segment in the zy-plane can be
transformed into a straight segment lying on the ¢-axis (Figure 7.2) using the trans-
formation

3 3
T = ;Lf(f)xi, y= ;Lf(f)yi (7.10)
with the quadratic shape functions L? (i = 1,2, 3) given by

=300 L=2(+6 L=1-¢ (1.11)
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It is observed that L{(£) is unity at the ith node and thus by choosing (7.11) for the
expansion functions in (7.4) and (7.5), i.e., U = L?, then ¢! will coincide with the
nodal values of the field ¢°(7) and so will ?. It can also be shown that the field is

a quadratic expansion of z and y. From (7.10), we find

dl = 9z 2 + % 2d§ = |J°|d¢ (7.12)
=\ 7 T = ]
and the normal unit vector 7 is given by
(e
n-(mag—yag)wl (7.13)

With these relations the line integrals in (7.8) and (7.9) can be evaluated numerically.

Specifically,

By = [ U3t = [ IOLEN(Olde (1.14)

and the line integral in (7.9) can be written as

P = [ B = [ BER)LEE e (7.15)

-1

If a four point Gaussian integration formula is employed, then

By = 3 WL B €06 (716
= 3 VB AL (E) (117

where & = —& = —0.8611363116, & = —¢ = —0.3399810436, W, = W, =
0.3478548451, W, = W3 = 0.6521451549, and 7, = z(&)% + y(&)§ in which z(&;)
and y(&) are given by (7.10).
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7.2.2. Quadrilateral Elements with Curved Sides

Similarly, it can be shown that a quadrilateral element with quadratically curved
sides in the zy-plane can be transformed into a square in the £7-plane (Figure 7.3)

using the transformation
T= iNf(i,n)w.-, y= i;Nf(f,n)y; (7.18)
with the shape functions ]\_’f (1=1,2,..,8) gi\:en by
Ni= (== n)E+n+D), N=50+OL-n)E-n-1)

Ng= (48 +m(E+n—1), N =710 +n)(=E+n-1)

4
Ne =301 €)1 -n), Ni=3(+6)(1-7)
Np= (1 -)1+n), Ny=3(1-1 1) (1.19)

Again it can be shown that NF(¢,n) is unity at the ith node and thus by choosing
them for the expansion functions in (7.3), i.e., V¢ = N¢, then ¢¢ will coincide with
the nodal values of the field ¢¢(7). Also, the field expansion can be shown to be a

quadratic function of z and y. From (7.18) the area element ds can be expressed as

ds = (@@ _ g_;’@) dédn = |J¥|dedn (7.20)

where |J¢| is the determinant of the Jacobian transformation matrix. The area

integrals in (7.7) can then be evaluated numerically. Specifically,
K& = / / FVVE(F) - VVE(F) - Ko(R)VE(FVS(F) } ds

/ / ONg ON§ N ONf ON;
Oz Ba: Oy Oy

— kgo(F)N (6, n)Nf(ﬁ,n)} |J¥(€,m)|dédn (7.21)
where
ON¢. 1 [0y ON¢. aya
Yo -J 4J 5
gz |Je| (an o¢ ~ a¢ an ) (7.22)
ON;; 1 ( 0z ON; Oz ONE; )
— = 4= 7.23
5y~ 1\ o oe o oy (723)
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Figure 7.3: A Quadrilateral Element with Quadratically Curved
Sides in the zy-Plane Can Be Transformed into a Square
in the ¢{n-Plane.
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By using a 3x3 point Gaussian integration formula, (7.21) can be evaluated according
to the formula
1 3 3
L [ A€ ndedn =33 wiwaeon) (1.24)
where §; = n, = —0.7745966692, £, = 1, = 0.0, & = n3 = 0.7745966692, W, = W, =
0.5555555556, and W, = 0.8888888889.
We note that the numerical implementation of the above formulation is rather
straightforward. The quadrilateral elements are just one type of two-dimensional
isoparametric elements. Another type of elements is trilateral element which is also

often used and its formulation can be found in the book by Zienkiewicz [1977].

7.3. Conclusion

In this chapter we have described two types of isoparametric elements: a quadrat-
ically curved line element and a quadrilateral element with quadratically curved
sides. The use of these isoparametric elements in the finite element-boundary ele-
ment methods can lead to an improved efficiency and accuracy not shared with the
traditional elements. Since such an improvement is well-quantified in mechanical
and structural engineering, it is expected that similar improvement can be obtained

in electromagnetic scattering problems.



CHAPTER VIII

FORMULATIONS FOR THREE-DIMENSIONAL
SCATTERING

For long cylindrical geometries with axial excitation the electromagnetic wave
scattering can be well-approximated by two-dimensional models where one deals
with only scalar fields. However, all practical geometries are finite. For the situation
where there is a symmetry, such as a body of revolution with axial or circumferential
field excitation, the problem can be still reduced into a two-dimensional one. But,
for the geometries having no such a symmetry, a description by three independent
coordinates and consequently a full three-dimensional treatment is required.

The numerical analysis of three-dimensional scattering has been investigated us-
ing integral equation approaches with the method of moments (see, for example,
Schaubert et al. [1984]). The rapid increase of the number of unknowns in the
three-dimensional case, however, prohibits such a method for scatterers having a size
comparable to the wavelength of the excitation field. Recently, the high sparsity of
the matrices produced by the finite element method has attracted more people, and
an increasing amount of effort has been concentrated on developing various finite
element solutions. The vector property of the electromagnetic fields, however, makes
such a development very difficult. In this chapter we will propose several techniques
where the finite element method will be employed in conjunction with either a surface

integral equation or an eigenfunction expansion.
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8.1. Problem Description

Consider a three-dimensional scattering problem illustrated in Figure 8.1, where
the volume V is occupied by an electrically and magnetically permeable body with
constitutive parameters € and g which are complex if the material is lossy. The
surrounding medium is assumed to be free-space with constitutive parameters ¢
and po. An electromagnetic wave excited by a source with harmonically oscillating
angular frequency w is impinging upon the body and then scattered. Let us denote
the infinite volume exterior to the volume V as V,,, and the closed surface separating
Vand V as S.

The electromagnetic fields (E,, H,) inside the volume V satisfy the following

vector partial differential (wave) equations
I = .=
Vx-VxE —wek, =0 (8.1)
T

V x lV xHy—w*uH, =0 (8.2)
€

which actually are the special forms of (2.14) and (2.15) for the source-free case. The

fields (E,, H,) outside the volume V satisfy the free-space wave equation

VXVX—E—Z—kSF2=0 (83)

VxVxHy,—kiH,=0 (8.4)

where ko(= w\/efio) is the wavenumber of free-space.

The general principle of the various methods for solving such a problem is as
follows: a three-dimensional finite element method is used to formulate the fields
inside the volume V' while a surface integral equation or an eigenfunction expansion,
which is a solution for the fields in V., is used to provide a necessary boundary
constraint on the surface S for the finite element solution. We will address the finite

element formulation first in the next section.
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Figure 8.1: Geometry of Wave Scattering by a Permeable Body.
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3.2. Finite Element Formulatio

In this section we describe the formulation of the finite element method for the

fields inside the volume V.
8.2.1. Stationary Functionals of Fields

To solve (8.1) and (8.2) using the finite element method, we first find the corre-
sponding functionals in the volume V. In the entire domain V + V., the functional

for (8.1) is [Silvester and Ferrari, 1983]
1 1 _ o
F = 5///‘/[w—m(VXEl)-(VXEl)—eEl-ElldV
1 1 _ o
+§///w {E(V xEy)- (VX Ey) - ¢E, -E1] v (85)

Substituting the vector identity

1 — — — 1 —
w—m(VxEl)-(VxEl) = El-Vx(w—zlleEl)
1 — —
-V. [@(V X El) X El] (86)

into the second integral of (8.5) and applying the divergence theorem, we obtain
1 1 — — - =
F = 5///‘/ o, (VXF)- (VX By) = By - Ty | dv
1 1 N
+5//5E7 (VxE) xEy] -4 dS (8.7)

where 2 is the normal unit vector pointing from V to V.. Equation (8.7) is the
functional expressed in terms of the electric field. A similar expression can be derived

in terms of the magnetic field, which is

1 1 o
F = —2-///‘/[;TC(VXHI)-(VXHI)—qu-HI v

+%//WL2C [(V x Hy) xﬁl] -ndS (8.8)



134
Note that the surface integrals in (8.7) and (8.8) are the same and they can be written

as

%//S(E x Hy) - dS (8.9)

The scalar forms for (8.7) and (8.8) are respectively given by

1 1 |(0E, oE)\® (8E, OE,\’
F_E///V{uﬂp <6y_6z)+(6z—0z)

dE, OE,\’ s o o
(G ) | elmemen o
+= [ /S (EHy — Ey Hy)dS (8.10)

and

1 1 |(6H, oH,\* (0H, OH,\’
F o= 5///‘/{;2:!(63; _Fz—) +<8z - 31;)
+ @_y_aH‘" ’

oz Jy

— [H§+H3+H3]}dv
+§]‘;—)//S(E,Hm — E,.H)dS (8.11)

where the subscript “1” on both E and H has been dropped for convenience. Also,
[ and i are two orthogonal unit vectors tangential to the surface S and they are so

oriented that (l ,m,n) form a right-handed system.
8.2.2. Finite Element Discretization

Let the volume V' be subdivided into a number of three-dimensional elements
which can be either tetrahedra, rectangular prisms, or triangular prisms, or even
better, isoparametric elements. Within each element, the fields can be expressed as

n
e —

E° =Y Ni(z,y,2)E;; H =3 Ni(z,y,2)H; (8.12)
i=1

=1
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where n is the number of nodes within the element, Nf are the interpolation func-
tions, and (E7, H;) represent the fields at the ith node. Substituting (8.12) into
(8.10) or (8.11) and applying the Rayleigh-Ritz procedure, we can obtain a system
of linear equations. For example, application of the three-dimensional finite element

discretization to (8.10) results in the matrix equations
] (B + ] {Bs} =0 w13

and

[Ksi] - {Er} + [Rss] - {Ts} + [Rlss] {Hs}=0 (8.14)

where {EI} denotes the electric field at the nodes interior to the surface S, {-E_s}
denotes the tangential electric field at the nodes on S, and {FS} is the tangential
magnetic field at the nodes on S. Also, [I__{] denotes a matrix having three dimen-
sions.

It is obvious that the finite element equations, such as (8.13) and (8.14), do not
form a complete system and another matrix equation relating {Es} to {7{-5} is
required. In the next section we will discuss several formulations to provide such a

relationship.

8.3. Hybrid Formulations

In this section we present several formulations which combine the finite element
method with either a surface integral equation or an eigenfunction expansion for

solving the three-dimensional scattering problems.
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8.3.1. Finite Element-Surface Integral Formulation

In this formulation a surface integral equation, either (2.26) or (2.27), is employed
to provide a matrix equation relating {E'—s} to {—ﬁs} For example, (2.26) can be

written as

R
—jwnGo(B,R) - [¢ x H(R)|} ds’ (8.15)

The discretization of the above equation on the surface S provides a matrix equation

in the form of

[ﬁss]-{Fs}Jr[ ]{HS} (B8} (8.16)

where {—E_ch} is the tangential incident electric field at the nodes on S, and again,
[l=3] denotes a matrix of three dimensions. Equations (8.13), (8.14) and (8.16) then
form a complete system for the solution of the nodal fields.

Clearly, this formulation is the same as that presented in Section 4.2.5 for the two-
dimensional case. Another formulation corresponding to the one in Section 4.2 can
also be developed for the three-dimensional case by introducing two artificial surfaces
to enclose the scatterer and, as a result, the singularity problem in discretizing the

surface integral equation can be avoided.
8.3.2. Finite Element-Eigenfunction Expansion Formulation

It can be shown [Stratton, 1941] that the scattered field outside V can be ex-

panded in the spherical vector harmonic functions M and N* as

= 20, [£0,(keP) + 9, N, (koP) (8.17)



137
where f, and g, are the unknown expansion coefficients, D, is a normalization con-
stant, and v is a combined index incorporating the three spherical harmonic indices.

The scattered magnetic field is then given by

B'(R)=-LvxT'® R) =% 2D, [LN.(kB) + 0 M, (k)| (818)

Who
and the total fields in the exterior region by
(R)+ E’(R) (8.19)
R)+ H'(R) (8.20)

Next, using (8.19) and (8.20) to evaluate the tangential electric and magnetic

fields at each node (point-matching) on the surface S, we obtain the two matrix

equations
(B} = {EM) + [P * (8.21)
9v
(s} = @)+ P (22
9v

where {f,} and {g,} are column vectors representing the unknown expansion coef-
ficients properly truncated from the infinite series. From (8.21) and (8.22) a matrix

equation relating {Eg} to {Fs} can be found as

{Es}- P[P {Ts} = {75} - [P [P (B} 829

which together with (8.13) and (8.14) also forms a complete system for the solution
of the nodal fields.

It should be noted that in the above formulation the number of harmonics used
n (8.17) must be equal to the number of nodes on the surface S. However, the
necessary number of harmonics to expand the exterior fields can be much smaller.
Obviously, the above formulation does not exploit this advantage. In the following

we propose an alternative formulation.
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Let us first expand the tangential fields on the surface S as
{ES} = Ecu {-Esn} ) {Fs} = Zcﬂ {—ﬁSu} (824)
H u

where {FS,L} and {Fg,,} are the coupled basis functions, and ¢, is the expansion
coefficient. The number of expansion terms in (8.24) is equal to the number of
the harmonics in (8.17). {Eg“} and {FS“} can be generated by selecting a set of
orthogonal known bases for {Es} in (8.13) and (8.14) and then solving (8.13) and
(8.14) for {7{—5}

Now let the surface S be divided into some smaller surfaces .S; whose number
also equals the number of the harmonics. Substituting (8.24) into (8.19) and (8.20)

and integrating over S; (subdomain method) yields

//szc“ sudS //s Es'"dS .//s EgdS (8.25)
A t i

//S Z:cuHSuds_//S‘—HchdS }-//s H(dS 1=1,2,3,.. (8.26)
top [ f

These two equations, after employing (8.17) and (8.18), can be transformed into the

two matrix equations

[K1] {cu} = {g™} + [H)] a (8.27)
9v

Ko o) = () + [ ] (8.25)
gl/

from which one can eliminate {c,} and then solve for {f,} and {g,}.

8.3.3. Finite Element-Extended Boundary Condition Formulation

This formulation was proposed by Morgan et al. [1984] and applied to the case of
axisymmetric inhomogeneous penetrable scatterers. In the formulation the surface

integral equation embodied in the extended boundary condition method (EBCM)
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[Waterman, 1965 and 1979] is combined with the finite element method, as shown
below.
According to Stratton [1941], the incident field can be expanded in the spherical

. . = —1
vector harmonic functions M and N as

E"°(®) = ¥ D, 0,3, (kR) + bW, (kB)| (8.29)

where a, and b, are the known expansion coefficients. The scattered field is again
expanded as (8.17). In accordance with the EBCM, one can find the following four

basic integral equations

kg / /S (N, Es - jYoM, - Hs) dS = jra, (8.30)
& [ [ (.- Fs - %N, -Hs) dS = jb, (8.31)
and
. 2 T — =l =
ity = & [ [ (N,-Bs-j¥e, - Ts) ds (8.32)
itg, = kj / /S(Wl-Fs—j%'Ni-Fs)dS (8.33)
Now assume that
_ _ .
E E E
D IR S B 3 i (8.34)
Hs u Hg, u Hg,

where {Esu} and {ﬁsu} are again the coupled pairs of basis functions, and ¢, and
d, are the expansion coefficients. {ES‘,} and {Tisu} can be generated in the same
manner as discussed in the previous subsection for (8.24). The expansion in (8.34)
is actually the same as that in (8.24) except that it is now split into two parts for
description convenience.

Substituting (8.34) into (8.30)-(8.33), one obtains the two matrix equations

4 4
1 I, I, c, a,

Il

— 8.35
JT | K4 LA d b (539
vy vy U v
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and
Iy L Tow T | ] e (8.36)
9 | T KL L || d
where
I, = K / /S (W, - B, - jYoM, - Hg,) dS (8.37)
Jo= K / /S (W, - Es, - YoM, -Ts,) dS (8.38)
K, = K / /S (i, -5, - YN, - T5,) dS (8.39)
L, = & [ [ (. B, - %N, 7,)ds (8.40)

with t =4 in (8.35) and ¢t = 1 in (8.36). Eliminating {c,} and {d,} from (8.35) and
(8.36), one finds

-1
Y n J noJ a,
d =| " " o (8.41)
9v Kl}u Lllzu Kgu Ltu b"

and then the scattered field can be computed from (8.17).
8.3.4. Discussion

Among the above three three-dimensional hybrid formulations, the one in Section
8.3.1 has been verified in the two-dimensional case in this thesis and the one in Section
8.3.3 has been verified in the case of a body of revolution [Morgan et al., 1984]. Only
the one proposed in Section 8.3.2 has not yet been verified.

The major shortcoming in the finite element-surface integral formulation is the
need to generate two full matrices [ﬁsq} and [ﬁss]’ whose dimensions are propor-
tional to the number of nodes on the surface S. These two matrices can be so large
that their memory demand can easily exceed the capacity of a computing facility. A
remedy for this is to use a rectangular box as the surface S, then compute the sur-

face integrals via the fast Fourier transform and solve the system of equations using
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the conjugate gradient method, as demonstrated by Collins and Volakis [1989] for
the two-dimensional case. One obvious advantage of this formulation is that there
is no need to compute the spherical vector harmonic functions, as in the other two
formulations.

The finite element-eigenfunction expansion formulation with point-matching ap-
pears very simple; however, it is not efficient since the matrices [751] and [?2] are
also full and have the same dimensions as [I=355] and [E:KISS] The alternative formu-
lation with subdomain method is more efficient though it involves one more matrix
inversion.

Instead of using delta functions (point-matching) or subdomain functions (sub-
domain method) as the testing functions as in the previous formulation, the finite
element-extended boundary condition formulation employs the spherical vector har-
monic functions as the global testing functions and utilizes the orthogonality of these
harmonic functions. As a result, this approach can be more efficient than the previ-
ous one. Its internal field computation, however, may be less accurate than that of
the finite element-surface integral method.

In all three formulations, one encounters the problem of dealing with the matrix
equations (8.13) and (8.14). Generating these matrices and then solving them are
the two major aspects of the problem. Also, selecting a set of known bases for {Eg,,}
to compute the coupled bases {FS#} is another important issue in the second (with
subdomain method) and third approaches. These could be the subjects for future

studies.



CHAPTER IX

CONCLUSION AND FUTURE WORK

In this thesis several finite element-boundary element methods were developed

for solving the problem of open region electromagnetic scattering.

.1. Conclusion

A finite element-boundary element method was developed in Chapter 4 for the
numerical analysis of the scattering by cylindrical objects. The method overcomes
two major shortcomings which existed in the previous methods. First, it relaxes
the restriction that the artificial boundaries be circles to the condition that they
follow the shape of the scatterer and thus substantially reduces the solution domain.
Second, with a modification on the coupling procedure it results in a highly sparse
or uniformly banded system matrix which can be efficiently solved using special
algorithms. Numerical results were presented, showing the high accuracy of the
method as well as its notable capability and versatility. Through a comparison with
other numerical methods, it is concluded that this method provides one of the most
accurate and efficient means to solve complex two-dimensional scattering problems
involving inhomogeneous media.

We need to note that, though the computer code was developed based on the

formulation using two artificial boundaries, the alternative formulation proposed
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in Section 4.2.5 may turn out to be theoretically more attractive since it can be
interpreted using the equivalence principle [Harrington, 1961]. Nevertheless, from
the computational aspect both formulations have the same efficiency.

The finite element-boundary element method was then extended in Chapter 5, by
incorporating the physical optics approximation, to treat the scattering by a coated
wedge and half-plane. Numerical results were presented for the transverse magnetic
case to show the surface field and surface impedance behavior around the edge. It is
demonstrated that the impedance boundary condition is invalid at a point close to
the edge, though it provides a very good approximation when the point is about a
tenth of a wavelength away from the edge.

In Chapter 6, a finite element-boundary element method was developed and ap-
plied to characterizing the scattering and transmission properties of an inhomoge-
neously filled aperture in a thick conducting plane. Of particular interest in this
chapter is the use of the fast Fourier transform to evaluate the boundary integrals
and the use of the conjugate gradient method to solve the system of equations. The
high accuracy, capability, and versatility were demonstrated by the numerical re-
sults. Some of the results, such as those for the truncated strip gratings embedded
in dielectric layers, would be impossible to obtain using the conventional techniques.
It is felt that this technique is a promising approach for treating large and complex
radiation and scattering problems.

In Chapter 7, the application of isoparametric elements in the finite element-
boundary element method was described in order to more accurately model the
curved and arbitrarily shaped scatterers. The use of the isoparametric elements can
further enhance the efficiency and accuracy of the method.

Chapter 8 presented and discussed several hybrid techniques which combine the
finite element method with either a surface integral equation or an expansion of

vector eigenfunctions for three-dimensional scattering. Some are just the extensions
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of the previously developed methods for the two-dimensional case or for the case of

a body of revolution.

9.2. Future Work

An obvious, interesting, challenging, and very useful as well as very difficult prob-
lem is three-dimensional scattering from arbitrarily shaped electrically and magnet-
ically permeable bodies which may contain conducting surfaces. This is a subject
which is currently attracting more and more people and will become a popular field
in the near future. The finite element-surface integral equation method, proposed
in Section 8.3.1, is felt to be a promising approach for attacking the problem when
it incorporates the conjugate gradient method and the fast Fourier transform as de-
scribed in Chapter 6. While the theoretical formulation is available, its numerical
implementation, which needs a tremendous effort, is the most difficult. The imple-
mentation of the finite element-extended boundary condition method, described in
Section 8.3.3, is also very worthwhile since it could be more efficient for the far field
computation.

As a special three-dimensional problem, the scattering by an inhomogeneously
filled finite aperture in a thick conducting plane, in contrast to the two-dimensional
one treated in Chapter 6, is also a problem of practical interest. The formulation
given in Section 6.2.1 is applicable; however, a numerical implementation is necessary.

The finite element-boundary element method combined with the physical optics
approximation, as described in Chapter 5 for coated wedges and half-planes, can be
applied to treat the scattering by very large two-dimensional geometries. While the
physical optics approximation (and surface wave formulation, if necessary) can be
employed to approximate the fields on the smooth portion, the finite element method

and boundary integral equation must be used where there is a surface discontinuity or
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coating inhomogeneity. The incorporation of the physical optics approximation and
surface wave formulation can remove the problem of singular frequencies introduced

by the employment of the surface or boundary integral equation.
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