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PREFACE

This dissertation expounds on the thesis that numerical methods and models can be de-
veloped which are sufficiently accurate to enable a microwave engineer to design microstrip-
fed slot devices, without resorting to the empirical or semi-empirical techniques character-
istic of more traditional methods. This possibility is of importance since the traditional
approaches are typically time-consuming and therefore expensive. The advantages of nu-
merical models are widely recognized, not only in the microwave industry, but in manyv
other fields as well. With the rapid development of personal computers and workstations
in terms of availability and processing power, computer-aided design (CAD) capability is
becoming even more important for the development of technology.

Slots have been used in microwave designs for many years, particularly in waveguide-fed
antenna arrays. Stripline, and more recently, microstrip line has also been used frequently,
especially when there are active microwave components involved. It is now recognized that
combinations of these types of structures and devices offer many significant advantages
and will be needed to meet the requirements for advanced, state-of-the-art systems which
have recently been proposed. Additional changes in technology have created the need
for the ability to analyze structures with multi-layered substrates and superstrates and.
increasingly, there has been a push toward higher and higher operating frequencies. For
these reasons, we have developed the analytical and numerical methods to be presented
here. It will be shown that many of these issues can be addressed in terms of computer-

aided design and a considerable advancement and improvement over previous work in this



area has been achieved.

In Chapter I, we begin by introducing various historical aspects of the use of slots in
microwave antennas. Through an examination of these devices in the context of present
thinking, we will define the types of problems to be analyzed in this work; specifically.
microstrip-fed slot antenna elements and couplers. The basis for the numerical models will
be formulated in terms of integral equations. Full-wave analysis by means of exact Green's
functions is used with a view toward application of these methods at high frequencies where
other methods generally fail.

Chapter II will present the derivations of the necessary dvadic Green’s functions which
will be used throughout the remainder of the work. The approach will use a ‘field expansion
method’ in terms of vector wave functions which will be explained and defined. The method
of scattering superposition will be used and a method, not previously presented for this
approach, emploving impedance boundary conditions and field matching proceedures will
be developed. The entire approach is in contrast to the more widely used, and perhaps
more familiar, ‘vector potential method'. Some comparisons to and deficiencies with past
usages of the latter approach will be pointed out. To further illustrate the differences, the
method of scattering superposition with impedance boundary conditions as applied to the
vector potential method will be illustrated by example in the appendix, since even for this
method, there are significant advantages that have not previously been presented.

The application of the method of moments to the integral equations is detailed in
Chapter I1I. The treatment will be generalized to include variations on the main thrust of
the work, to show how slots and lines can be modelled with arbitrary orientations relative
to each other and the shielding structure. Although the applications discussed in later
chapters impose some simplifying assumptions on the geometry, the material here lays the

groundwork for further extensions to the work which may be implemented at a later date.
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Also included in Chapter I is some discussion of mathematical relations and programming
techniques which have been used to greatly reduce the computation time for generating
the required matrix elements.

Several applications are introduced in Chapter IV. This chapter is devoted to the
discussion of problems which can be reduced to two dimensions. The first part demon-
strates the procedures for treatment of layered structures through analytical field matching
throughout the layers. Applications discussed include the evaluation of transmission line
parameters for microstrip lines and the visualization of field behavior for both shielded
strip and slot lines. The accuracy of the technique is verified for microstrip by comparing
to data available in the literature and a commercial computer-aided design package. The
second part deals with the development of a model for scattering from vertical wires in
waveguides. For small diameter wires, the model can be greatly simplified compared to
approaches used in the literature. The validity of the model is verified by comparison to
experimental measurements. The motivation for the work in this chapter is to support the
modelling of applications discussed in Chapter VI.

Chapter V presents the analysis of microstrip-fed slot couplers. Expressions for the
S-parameters which characterize their behavior are derived based on network analysis of
even- and odd-mode excitations of the structure. The procedure is referred to as the
‘Standing Wave Method’ and involves an interpretation of the method of moments solution
for currents on the microstrip lines. This has become a sort of ‘standard’ approach to a
variety of similar problems but has some drawbacks as will be pointed out. Also presented
in this chapter is a discussion of the fixture design and experimental results which verify
the accuracy and validity of the method.

Chapter VI introduces the radiating slot or antenna element problem by deriving an al-

ternative approach for finding network parameters. The method is based on an application
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of the Reciprocity Theorem and is here referred to as the ‘Reaction Theorem Method” or
‘Reaction Method’. The requirement for a new approach is a consequence of the limitations
of the Standing Wave Method discussed in Chapter V. Historically, the Reaction Method
was introduced many years ago for application to simple waveguide-fed slots; however, for
our use, the structures are more complex and as a result, the application of the method
is also. The details of how the technique is applied are discussed in this chapter, together
with experimental results which demonstrate the capability of the numerical methods.

In Chapter VII, a variation of the radiating slot is explored. In this case. a slot of
finite thickness is introduced. Instead of simply making the slot thicker. which can also be
modelled by this approach and has been treated through more approximate methods in the
past, the case where the strip-fed slot couples to the radiating slot through an intervening
section of rectangular waveguide is presented. In this case, we find the important result
that the slots can be detuned to extend the bandwidth of the element.

The dissertation concludes with Chapter VIII which summarizes the techniques devel-
oped. The points where the effort is judged to have succeeded are outlined as well as where
the numerical models fail. In the latter cases, the suspected causes for deficiencies in the
approach are discussed along with recommendations for remedies. These issues form the
basis of suggestions for the extension of this work and exploration of related areas. Specif-
ically, the treatment of a ‘T-bar’ fed slot is discussed. This is a slot fed by a microstrip
line terminated in a T-junction, whose branch arms are short-circuited to the cavity side
walls. A similar device has been previously shown to provide extended bandwidth for
cavity-backed aperture antennas.

A few final comments about the mechanics of this work: A number of programs were
developed for the numerical modelling and analysis of the structures discussed as well as for

post-processing the data. These programs were written almost exclusively in FORTRAN
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and run on a variety of machines. including the University of Michigan IBM 3090/600L
mainframe and IBM RSG000 workstations for the numerically intensive operations. A
majority of the remaining processing was performed on HP/Apollo workstations. primar-
ily a DN2500. The manuscript was typeset using IATEX text processing software with
macros developed at the University of Michigan for dissertation formats. Rectangular two-
dimensional plots used throughout were produced in PostScript by a menu-driven plotting
program developed jointly by the author and Dr. Leland Pierce. Smith Chart plots were
produced by similar programs developed by the author. Most of the drawings were gener-

ated using either XFig or directly with PostScript and incorporated in PostScript form.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The use of slots in microwave circuits can be traced back at least as far as the 1940’s
to the rescarch efforts associated with World War II. This is particularly true in antenna
designs where slots have been used extensively as the primary radiating elements, but also
in feed networks as couplers. With the advent of monolithic microwave circuit technology
and also for more traditional construction methods, transitions from microstrip to slotline
are also becoming increasingly important in the design of microwave and millimeter-wave
circuit elements. Two such transitions can be combined to form interconnects between
lines and by using lines on opposite sides of the slot plane, a vertical transition can be
made without the use of via-holes. The basic structure, in a variety of forms, has a wide
range of applications to both broadband and narrowband connections and can be used
as a building block for interconnects [35], phase shifters and inverters [30], directional
couplers [80], filters [50], and many other microwave components [2]. Whether used as a
coupling element between guided wave structures or to free space, both applications require
accurate analysis and design tools in order to minimize costly, time-consuming empirical
techniques and rework.

Many papers have been published on the design of slotted waveguide antennas over

the past forty-five years including “classics” by Stevenson [71] and Oliner [57], among



others [51, 4, 5]. Elliot and his associates have contributed many important works on the
analysis and design of slotted rectangular waveguides and arrays (22, 23, 58, 70. 40]. More
recently, slots which are fed by microstrip or stripline have received attention [59. 62. 67]
due to advantages in cost, size, weight and conformability, among others. The development
of variations and new analytical techniques is ongoing (16, 8, 17, 87].

Numerous investigators have also presented approximate analytical techniques to char-
acterize these types of structures with applications to circuit elements [12, 49, 50, 41, 2].
For example, a quasi-static analysis has been provided in [89], however, this may not
be sufficient, particularly for higher frequencies where end effects and higher order mode
coupling become more significant. A more recent paper [66] presents a transmission line
analysis with excellent results, however, similar shortcomings would be expected. Hybrid
methods which combine two-dimensional full-wave analysis with transmission line theory
as in [56], should certainly extend the validity of such models, but still may not account
for all discontinuity effects. Exact methods for microstrip-to-slotline transitions have only
recently begun to appear, such as the case reported in [91] which has applications to open
structures.

For couplers, practical considerations suggest that a shielding structure will almost
always be present. In fact, in many cases, a shielding structure must be introduced in
order to reduce crosstalk and to control undesirable coupling to other structures in the
package (for example, DC control lines in phase shifters have been known to unexpectedly
become part of the microwave circuit). For antennas, cavity-backed slots have been used
for similar reasons; for example, to reduce internal mutual coupling on the feed network
side of an array. This often both simplifies the design process and improves the achievable
performance. For instance, it has been shown that the internal isolation of the slots in

phase steerable antennas can significantly improve scanning performance [47].



For these reasons, the slots studied here will be enclosed by a cavity at least on one
side. The dimensions of the cavity can have a strong influence on the electrical behavior
of the slot. In some cases, these dimensions are used to control the slot characteristics and
in others they are used to suppress undesirable effects. In practice, slot antennas are often
covered by a protective dielectric sheet. The capability to handle these cases will also be
included in the analysis discussed here by emploving the exact Green's function for an infi-
nite covered ground plane. This function will be evaluated by a combination of numerical
and analytical techniques as described in [36), however. the details will not be reiterated
here. Also included is the capability to model multi-lavered substrates and superstrates
which is becoming increasingly important for monolithic circuits and for systems which
may combine many circuit functions through three dimensional integration over multiple
layers.

An example of a hypothetical structure which employs numerous transitions of the type
to be analyzed is illustrated in Figure 1.1. Shown is a slot antenna array loosely based
on a conventional waveguide fed slot array. Conventional arrays typically use waveguide-
to-waveguide slot coupling to feed slotted waveguide branch lincs. Here we assume the
individual slots are fed by microstrip-to-microstrip slot couplers as illustrated by the lowest
three layers of Figure 1.1. Each radiating slot is internally isolated by a cavity which may
contain active devices for power generation for example. The feed network may contain
additional active sources coupled by combinations of microstrip and slotlines and may
be built on multilayered substrates for integration of additional antenna functions, such
as phase control, frequency conversion, detection, etc. This example illustrates just one
application with features drawn from topics being considered in the current literature which
also verifies the need for more accurate and advanced analysis and design tools for the types

of structures to be considered.
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Figure 1.1: A hypothetical integrated antenna employing numerous slot coupling struc-
tures.



1.2 General Description of Analysis Approach

For coupling through slots, the distribution (shape, amplitude and phase) of the field
in the slot is vital to the determination of the slot coupling behavior. For radiating slots.
this distribution has been investigated by Elliott {23] and others [59, 67. 70] by treating the
case of an isolated slot in an infinite ground plane. With the Green’s function for a half
space and the fields in rectangular waveguide, they were able to write an integral equation.
The equation was solved by the Method of Moments to determine the field distribution.
Subsequently, the scattering parameters of the slot were found by an application of the
Reciprocity Theorem.

The same approach will be used here for radiating slots, referred to here as the *Reaction
Theorem Method’ or ‘Reaction Method’; although the presence of the strip and. especially
for microstrip, the inhomogeneous filling of the rectangular cross section precludes the use
of simple rectangular waveguide field solutions. In previous works [67], the presence of
the strip has been neglected by assuming a similarity between the strip modes and empty
waveguide modes. This not only places certain restrictions on the position of the strip
between the ground planes but also does not take into account the influence of the strip on
the fields near the slot. Here, the formulation will be generalized to include not only the
case of stripline where the cross section is homogeneously filled, but also the possibility of
multiple layer substrates and superstrates, allowing microstrip or more complex structures
to be analyzed. This will require the solution to the two-dimensional ‘waveguide’ problem
in addition to the three-dimensional ‘cavity’ solution which is the primary focus of this
work. The relative position of the strip within the shield will also be unrestricted which
has not been the case in some of the previous works.

For couplers, the same shielded strip substrate/superstrate capability will be included.

However, in this case, an alternative method will be used to extract the coupling parame-



ters. This will be referred to as the ‘Standing Wave Method" and is based on a more detailed
modelling of the strip current. The scattering parameters are extracted from the positions
of peaks in the strip current standing wave pattern, evaluated for even and odd excitations
of the structure. Although the Reciprocity Method is more general, the Standing Wave
Method is somewhat simpler and therefore may be more convenient.

In many cases the thickness of the ground plane is very small and the slot can be
considered infinitesimally thin. However, for both types elements it may be necessary to
make a ‘thick’ slot for structural purposes or heat dissipation, for example. In fact, we
have found that this feature may be used to another advantage which is to broaden the
operating bandwidth of the element. These cases can be treated by the same techniques
and will be included in the formulation.

Highly accurate models are needed to reliably design these types of elements. There-
fore, a full-wave space-domain integral equation approach solved by the Method of Moments
will be used as opposed to quasi-static, modified quasi-static dispersion analysis, or other
similarly limited techniques. This approach is preferred since we can find exact Green’s
functions for the structures described which account for all possible electromagnetic inter-
actions. It also allows application of these techniques to problems without restriction as

to the size of dimensions relative to wavelength.
1.3 Integral Equations and Notation
In this section, appropriate integral equations will be derived. One of the primary

purposes of this section is to introduce the notation and conventions used throughout the

text and some of the fundamental equations and relationships which will be needed.



1.3.1 Dyadic Green’s Functions for Physical Quantities

It is well known that time harmonic electromagnetic fields must satisfy Maxwell's Equa-

tions ( €/*! time convention assumed and suppressed throughout):

Vx E=-juuH (1.1)

Vx H=J+ jweE (1.2)

where the constitutive relations D = ¢E and B = puH have been assumed. Also. J is

defined in terms of the movement of electric charge with time by the Continuity relation:

V.-J=—jwp (1.3)

Understanding these to be the governing independent equations, by taking the divergence

of Equations (1.1) and (1.2), it is found that the fields also obey

v.E="* (1.4)
€
V-H=0 (1.5)

That the fields must satisfy the Helmholtz wave equation is readily derived by taking the

curl of Equation (1.1) and substituting (1.2) into the result, yielding

UxVx E-kE=—jou] (1.6)
where k? = w?pe. Similarly, it can be shown that H must satisfy

VUxVx H-kH=Vx]J (1.7)

Dyadic Green’s functions can be introduced to represent the solutions to these equations
for infinitesimal current sources. For instance, Gej will be used to represent the solution

to Equation (1.6) in the form

(][]

e =[EP:+ ¥y 4+ B9 (1.8)



el

Here, E¥ is the field resulting from an 7 directed current source

]_(r) 5(R— R’)

Jen

I (1.9)

and so forth for the § and Z components so that
VXV xGey— k2Gey = 16(R- R (1.10)

where

§(R-R) = —jun[dPs + T+ 793 (1.11)

— ]

Likewise, for the magnetic fields. the dyvadic Green’s function must satisfy
VxVxGm-k*CGmy =V x[T6(k - R (1.12)
where émJ represents
Gy = —jop| T + AV + T3 (1.13)
From Equation (1.10) and (1.12) it is seen that éeJ is related to é[nj by

Y‘Xée_]:(:;n]_] (114)

VxGmy = 16(R-R')+ k2Gey (1.15)

The terminology and notation which we use to refer to these functions is that Gey is
the dyadic Green’s function of the electric field type (subscript ‘e’) for an electric current
(subscript *J*). Similarly, G my represents the dyadic Green’s function of the magnetic field

type (subscrip: "m’) for an electric current.

1.3.2 Dyadic Green’s Functions for “Dual” Quantities

The Duality Principle entails the proposal of a system of equations where

Vx E=—jupH - K (1.16)

Vx H=jweE (1.17)



K representing a fictitious magnetic current. This current in introduced as a matter of
convenience by which we can represent tangential electric fields in terms of equivalent
magnetic currents according to the Equivalence Principle. We then can take advantage of
the duality between these and the “physical” quantity equations to generate solutions to

the equations [32, pp.98-116]. The Helmholtz wave equations for this system are

VxVx H-kH=-jweK (1.18)
VxVx E-KE=-Vx K (1.19)
Using the representation
G = [A%2 + A¥g + T4 (1.20)
émk satisfies
VXV xGmk - k*Gmk = 16(R - R') (1.21)

where the inhomogeneous term represents

I6(R - ') = —jw B2 + Ky 4+ K3 (1.22)
with
bt 6 R - izl -
g - YRR, (1.23)
Jwe

and so forth for the § and 2 components. Similarly, Geg satisfies

VX VXGek - kGek =V x 16(R- R (1.24)

where (:;e;{ represents
Gek = jwe E7: + EWj+ ¥4 (1.25)

Here it is evident that
V x Gmi = Gek (1.26)

V x Gex = 16(R - R') + K2 G mi (1.27)
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The notation and terminology are the same as before with the magnetic current represented

by the subscript ‘K.

1.3.3 Integral Solutions to Helmholtz Equations using Dyadic Green’s Func-

tions

Once (2363, émJ, Cz}eK and Gk are known for a particular geometry and set of bound-
ary conditions, it is possible to find the corresponding field quantity for any distribution of
electric or magnetic current. The relationship to be used can be derived from the vector-

dyadic Green’s second identity:

///[F'vaxé—(VXVx P)-Qdv

—//{[fszxP (3 (A x P)- xé}dS (1.28)
S
To find the integral solution to

VxVx E-k2E = —joul (1.29)

we use the electric dyadic Green’s function with an electric current source, Gej. By letting

P = E and (=2 = ée_] in Equation (1.28), we find that

(R) = —]wu///JR )-Ges(R', R)aV"’

/ [Ax V' x E(R)]-Ges( R, R)

=

+17 x B(R)]- V' x Ges( R, R)} dS" (1.30)

Note that in the process of deriving this result, the notation of R and R’ has been inter-
changed in keeping with our conventional usage of R’ as the source position vector and
R as the observation position vector. (Primes throughout will be used to indicate source

coordinates.) Using the vector-dyadic identity of triple products:

@-(bxT)=-b-(ax?) =(axb)¢ (1.31)



Equation (1.30) can be re-written as

E(R) = —jwu///J'( R')-Ges(R'. R)dV"
¢ [ {17 % BRO [ % G R R

~[ix E(R)) [V x Ges(R', R)}} dS’ (1.32)

In our application, éeJ is used in a cavity with impedance walls representing the source
laver. It is assumed that the region outside this layer is bounded by the impedance walls
and a surface which requires either the radiation condition or the Dirichlet condition for
the E and Ge functions so that the [Ax | terms in Equation (1.32) evaluate to zero on
the boundary. We also assume that this region contains no sources. If such is the case, the

surface integrals of Equation (1.32) disappear and we are left with

E(R) = —jwy// Gey(R.R)-J(R) V' (1.33)

Here, the symmetry property of the dyadic Green’s function:

es(R.R) = [(:;e.l( R, R)]T (1.34)

O

has been applied ( ‘T’ indicating ‘the transpose’), which can be shown using dyadic-dyadic
Green’s second identity as outlined in {76] under the assumptions stated above.

We can find the integral solution to
UxVx H-k*H=Vx]J (1.35)
by returning to Equation (1.28) which with P = H and (3 = é,m, reduces to

A(R) = ///émj(rz, Ry J(R')dv’ (1.36)

using assumptions similar to those for the E fields with the appropriate radiation or Neu-

mann boundary conditions enclosing the impedance walls. Alternatively, Equation (1.36)



12

can be obtained directly from Equation (1.33) by using

H(R) = —-_—I—VX E(R) (1.37)
Jwp
and
V x Gey = Gmy (1.38)

The procedure for the magnetic currents is exactly the same resulting in
(R) = —jwc// Gmx(R, R K(R)dV' (1.39)
and

E(R) = -// Gex(R, R')- K(R)dV' (1.40)
1.4 Formulation by Application of Boundary Conditions

We now derive a set of integral equations by enforcing the boundary conditions for the
problem. To begin, we replace the slot openings in each region by a tangential, conductor-
backed equivalent magnetic current in accordance with the Equivalence Principle as illus-
trated in Figure 1.2 (all conducting walls will be assumed to have perfect conductivity).
The problem is thereby separated into independent regions, coupled together by the mag-
netic currents as shown in the figure which also illustrates the treatment of finite slot
thickness. Since K = —# x E, using the same current on either side of the slot openings
enforces the continuity of the electric field in the slot.

In addition to the boundary conditions at the cavity walls, slot walls, ground plane
surface and dielectric interfaces which will be satisfied by finding the appropriate Green'’s

functions, we must also satisfy the following boundary conditions:

Ax E™= € (1.41)
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Figure 1.2: Cavity layout and equivalent magnetic currents for a radiating slot.

on the microstrip;

ax M —ax T = | (1.42)
at the slot opening to the cavity; and
ax Y —ax T = H (1.43)

at the slot opening in the dielectric covered plane. The € function is a vector describing
the source and is normally set to zero except when a gap generator is used to excite the
line!. The H function is used in Equation (1.42) when the slot is excited internally?,
or in Equation (1.43) when the source is external>. When £ is set identically to zero,
Equation (1.41) enforces the boundary condition that the tangential electric field is to be

zero on the strip. Equations (1.42) and (1.43) enforce continuity of the tangential magnetic

fields over the slot openings when H is set to zero. The ‘U’ and ‘L’ subscripts will be used

'The gap generator is used only for the coupler problem as a mechanism for even and odd excitation of
the lines.

?The right hand side will be set to the incident H field of the dominant strip mode for the Reaction
Method formulation.

*The right hand side can be set to an incident plane wave field for the analysis of the slot as a scatterer
or receiving antenna, however, this problem will not be discussed further in this work.
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throughout to indicate the upper and lower slot openings for the general case of a “thick’
slot.

The electric field, fnt, in the interior of the cavity can be written as an integral in
terms of the electric and magnetic currents in the cavity using the relationships outlined

in Section 1.3.3:

int

F = "jwp'c/ CeJ,im ’js dSI "/ GeK.im ' KL dSI (1-44)
strip sloty
Similarly, i anywhere in the cavity is given by
[T 2/ Gmiine - Js d5"—Jw€c/ Gmiint - K1 dS (1.45)
strip slot

For a thick slot as shown, the H field in the slot can be written as

ﬁSlOt = j‘-‘-’fs/ émK,slot : KL ds' - j“-’(s/ éml\'.slot : K-U ds’ (1-46)

sloty sloty

The external H field is given by

ﬁut = jU)Cd/ (z;mK,cxt : KU dSI

sloty

(1.47)

Using these expressions in the boundary conditions given by Equations (1.41-1.43), we

arrive at the integral equations for the problem:

=strip

. . =strip - , ) — , _
—gone ([ ax @i dodst - [ ax Gl Kids=¢ ()
strip slotp,
R =slot - ) . R =slot | — ,
J[ ax i1, a5 - wee [[ i x e Ru dS
strip sloty
. . =slot] = . R =slot - -
—Jwes // n X GmK,sloL K ds’ Jwe, // n X Gmlé,s]ot - Ky dS'=H
slotp sloty
(1.49)
. R =slot = . A =slot —
Jwes // L X Gmé"sm- K, d5' Jwes // n X Gs;,:‘slot- Ky dS’
slotp sloty

=sloty

jwfd// leGmK'ext‘T\;U d§'= H
sloty

(1.50)



where the superscripts on the dyads imply evaluation of the dvad at the indicated location.
Throughout this work, Equation (1.48) and similar types will be referred to as an electric
field integral equation (EFIE) since it is derived from a boundary condition on the electric
field. Similarly, both Equations (1.49) and (1.50) are magnetic field integral equations
(MFIEs).

Since each of Equations (1.48-1.50) involve the [aX | term, from here on it will be
dropped with the understanding that only the tangential components of the various dvads

are used. Equations (1.48-1.50) can then be written:

=str _strzp -— _ _
—]u,uc// S(,J‘f)m Jo dS' - // Gekine - Kz d5'= & (1.51)
strip lot)
_slotL / . =slot| =slot| —_ y
// mJ int ds - Jw // € GmK int T € Gml\ slot| -~ I\L s
strip lotp
_slolL , - -
+ gwe [[ G Ko d5'= H (1.52)
sioty
_.slotU . ._.slotu — -
]wcs // ‘ml\ slot * I\L dSI - ]w// [ mkK slot + €dG mk Ml] ’ ]\(' ds' = H
sloty sloty
(1.53)

where all the terms involving 2 are excluded*. The unknown currents J,, K; and K can
have only tangential components on each of their respective structures, we therefore have
six scalar unknowns. Since only the tangential components of Gare used, Equations (1.51-
1.53) represent six scalar integral equations which are sufficient to solve for the unknown

currents.

For convenience of notation, we redefine Equations (1.51-1.53) as

11 =(13) __ _
// gy, dS’+// K, a5’ = & (1.54)
strip lot
31) ' = ' - / - -
// &y, d5+// ., ds+/ & %y ds = 7 (155)
strip lot] slotU

// g% K, dS' + // ) Ry dS' = # (1.56)
sloty loty

*Throughout most of this work we will consistently use # =  where @ will be orthogonal to the currents
involved. Therefore, no integral equation or Green’s function evaluation will involve the 3 components
which will subsequently be ignored.




where

=(13)
G

=(33)
G

=(35)
G

=(11)

b =

=(31)

1 =

For the radiating' slot problem, it

16

=strip

—JwpcG el.int

=strip

TeK,int

=slot
mlJ.int

=slot =sloty
—J“) [( G mK.int + csGmK,slot]

=slot|

= ]“)(SG mK.slot

=sloty

= JWE€LU mK slot

=sloty =sloty

—Jjw [ G mK.slot T €aGmK ext]

(1.57)
(1.58)
(1.59)
(1.60)
(1.61)
(1.62)

(1.63)

remains to find the various dyadic Green’s function

components, solve the equations for the unknown currents, and interpret the results to

obtain parameters which characterize the slot’s electrical behavior and properties.

The coupler problem differs only in the final equation. Equation (1.56) which involves

the Green’s function for the half-space is replaced by an EFIE as follows. The field on the

upper slot is now contained by another cavity which may also have a conducting strip as

illustrated in Figure 1.3. Under these circumstances, we then have the following integral

equations:

. =stripg
—JwWH // Gey
stripp
// ..slatL
stripp

// __slotu
stripy
trxpu
—Jwp Ges
stripy

Jp dS’

Jp d§’

Ju dS’

Ju dS’

// Gt KL ds'= £
loty

_slotL =slot —
]w/ €LG K +€slotGmK - Kg
slotp

_slolL — , -
]“)(slot // mK I\U dS = H
sloty

_slotu =sloty
]w (U mK +63101GmK .
sloty

_slotU —

]U(sloz // mK KL dS’ = ’}:i

loty

// G Ry dS' = £

loty

(1.64)
ds’

(1.65)

Ky dS’

(1.66)

(1.67)

The subscripts U and L here indicate whether the source is associated with the upper or
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Figure 1.3: Electric and equivalent magnetic currents for microstrip-to-microstrip coupler
with a ‘thick’ slot.

lower cavity strip or slot opening.



CHAPTER II

DYADIC GREEN’S FUNCTIONS

In this chapter, the dyadic Green’s functions needed to evaluate the integral equations
are derived. The method used in all cases is a ‘field expansion method’ using Vector
Wave Functions (VWFs) as opposed to the perhaps more conventional, ‘vector potential
method’. Some of the Green’s functions derived will not be needed in the later analysis
but are included in this chapter for completeness.

The use of vector wave functions with dyadic analysis is presented as an alternative.
It has the advantage of producing the complete dyadic Green’s function in one solution.
The process also may involve a reduced number of simultaneous algebraic equations which
must be solved for unknown coefficients as compared to the vector potential method. The
disadvantage of the approach is that it requires dyadic analysis which may be unfamiliar.
although it is quite straightforward.

The field expansion approach using VFWs has been extensively detailed by Tai over an
extended period of time [72]-[79]. Nevertheless, the method is not widely employed which

may be due to several factors including:

1. Early development of the technique involved the use of the vector wave functions
designated L, M and N. As will be shown, the M and N functions have clear, physical

interpretations, however, the interpretation of the L functions is somewhat obscure

18
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and its handling. at times. somewhat difficult. Consequently. the approach may have

been avoided.

2. Anoversight in [72] but corrected in [77], stirred up some controversy which may have

caused some to avoid the method (see [11] also for details and a list of references).

The current method is more mature, having evolved to a stage where the previous difficul-
ties have been eliminated. Problems can now be solved in a methodical and straightforward
manner with no difficulties in physical interpretation (the need for the L functions can be

avoided).

2.1 Impedance Boundary Conditions for Layered Structures

It can be shown that a plane wave in a homogeneous region exhibits a constant wave
impedance defined by the ratio of a component of the electric field to an orthogonal com-
ponent of the magnetic field, both transverse to a given direction {6, p.142]. A ‘planc
wave expansion’ of the field is convenient in many problems due to this property. For
many canonical structures, the expansion itself is unnecessary since wave impedances can
be derived directly. For instance, modal wave impedances for homogeneously filled rect-
angular waveguides are well known. In somewhat more complex structures such as those
treated here, the boundaries are still always planar owing to the rectangular geometry. As
a result, wave impedance surfaces can be chosen to conform to the boundaries and the
wave impedance concept becomes a vehicle through which the boundary conditions can be
applied in a simple way.

The dyadic Green’s functions for all of the structures treated here will be derived using
this approach. As the Equivalence Principle states, the fields in a given layer depend
only on the fields at the boundaries and internal sources. We therefore can derive the

Green’s function for the source layer alone with the other layers represented by impedance
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boundary conditions applied at the laver interfaces. In this way the Green’s function can
be generalized to represent any number of lavers above or below the source laver. The
approach greatly simplifies the analvsis of the total structure by allowing the fields to be
found first for the source laver alone. Once they are found, expressions for the fields in
the remaining layers can be immediately written in terms of the homogeneous solutions
by matching tangential components on the boundaries. As in [13], this process is greatly
facilitated by expanding the solutions in terms of ‘Longitudinal-Section Electric’ (LSE)
and ‘Longitudinal-Section Magnetic’ (LSM) fields because the field matching procedure
can then be done on a one-to-one basis. (An individual mode on one side of an interface
matches an identical mode on the other side exactly, with an appropriate coefficient.)

The impedance boundary conditions, as used here, are not to be confused with the ap-
proximate impedance boundary conditions discussed in [63, 64]. Both usages may be exact
under certain circumstances. The present usage is in the context of the modal impedances
of various structures and is exact under the assumption of perfectly conducting walls where
applicable. For example, the approach is exact for a closed, perfectly-conducting rectangu-
lar cavity with uniform side walls. A counter-example is a cavity with perfectly conducting
side walls, but which is open on one end: terminating the open end with the impedance
of free-space as proposed by some, is not exact since this condition is not exact. For all
structures studied in this work, the geometries are such that the representation is exact to
the extent that perfectly conducting walls can be assumed.

In our structures, the impedance boundary conditions require the fields to satisfy

_i-E -
n= g H ( . )
For electric currents, this becomes
-G 3 n $-VxG .
—= & =21 or ——= m) = jwen (2.2)
y-Gmy WH ¥-Gmy



Similarly for the equivalent magnetic current Green's functions, the impedance boundary

conditions are;

(][]

-G '
K Jwen or _Tiwek _J0 (2.3)

T-

(]

i
For simpler notation, 7. will be the wave impedance associated with the LSE modes and

Im Will be used for the LSM modes. Furthermore, 7, and 7,, will denote normalization to

the intrinsic modal impedance in the layer and are defined as

k< .
o = (24)
wp
- WeTm; -
fimi = —kn'f" (2.5)

where i is an index associated with the i** layer.
We can then evaluate the impedance conditions using transmission line analvsis and

wave impedances for the various layers as illustrated in Figure 2.1. The impedances on a

*K *K

Figure 2.1: Impedance boundary condition representation of a multi-layered structure.

given layer’s upper boundary are found by the transmission line equation

. ki [ Ne(i-1) + J tank,i_1)l(i-1) } (2.6)
koiz1) |14 Je(i-1) tan kyiyyl(ion

P €iky(i-1) | fim(i=1) + 7 tan ky_pylioa) } (2.7)
€i-)kzi | 1+ Jim(i-1) tank,nylioy) '
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where the index 1 is iterated from the top layer through successive lower layers to the laver
of interest with /; the thickness of the i** layer. (We have assumed that g, = 1 throughout

this work.) Similarly. for the lower lavers, since the wave impedance is negative,

k Neti+1) — Jtank, ol .
fo =tz | Teler)) 7T 00 Falir)) (i) } (2.8)
Fooany 1= DMy tan kol
€k, i 1) — Jtan k,andi
i = z(141) | 7 (t1) J 2(1+1)4(i+1) (2.9)
€hrn)ka [ 1= Jlmasny tan kol

where here the iteration proceeds from the lowest layer upwards.

2.2 Dyadic Green’s Functions for an Infinite Covered Half Space

We begin with the derivation of the Green's function for an infinite covered half-space.
The method of solution closely parallels that of the other cases, except for the boundary
conditions, so that by covering this case in greater detail some of the steps for the later
cases may be omitted. For completeness, we also include the solutions for electric currents
in this section, although this function is not needed for the characterization of the slot. It

is, however, widely used in the analysis of open microstrip and microstrip patch antennas.

2.2.1 Magnetic Current

The dyadic Green's functions for the slot problems use a magnetic current ( K) as the

source. They are the solutions to the dyadic Helmholtz equations:

VXV xXGmk - kGmk = 16(R - R (2.10)
Vx VX Gek — k2Gex = V x 16(R - R (2.11)
The key to eliminating the need for the L vector wave functions, and thus simplifying the

analysis, is in the choice of which of Equations (2.10) or (2.11) to solve first.

The functions L, M and N form a complete set of solutions to the homogeneous equation
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V x Vx F=k?F =0. They are defined in the general forms
L = vV (2.12)
- X 1 _ )
M = VxV¥z,=-VxN (2.13)

K
_ 1 ) 1 _
N = -VxVxV¥i;=-VxM (2.14)
K K

where ¥ is a scalar function solution to the equation V2¥ + k?¥ = 0 chosen to satisfy the
boundary conditions of the problem; Z; is a unit vector called the ‘piloting vector’; and
is the separation constant k? = k2 + kZ + k2.

Following the Ohm-Rayleigh method as described by Tai [72], we can find the particular
solutions by expanding the right hand sides of (2.10-2.11) in terms of the eigenfunctions
L, M and N with unknown vector coefficients; deriving the values of the coefficients using
the orthogonality properties of the VWFs; expanding the dyadic in terms of the same
functions with scalar coefficients; and enforcing the equations by performing the derivative
operations. From Equations (2.12-2.14) it can be seen that only L can have a non-zero
divergence and since the right hand side of (2.11) has no divergence, the L function is not
needed in its solution. We therefore find the solution of (2.11) first. It can also be shown

that émK and éeK are related by

Vx Gmk = Gek (2.15)

V x Gex = 16(R - R') + K2 Gk (2.16)

so that jmK can be found from (2.16) once éeK is known. This is the essence of the
method described in [77].

As with the vector potential method (see Appendix C), we begin as if the space were

infinite and homogeneous. We therefore expand the field in terms of VWF’s for free space

defined by

Y= emherthyvihes) (2.17)
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To simplify later application of the boundary conditions, we choose the piloting vector to

be 2. The orthogonality properties of these functions are then

/// M (kg Ky ke) - N(=KL, —k), —k,) dV" = 0 (2.18)

// MKz kyoks) - (=K, k). kL) dV
- // N(ks by, ko) - N(=KL, —K), kL) dV
‘/

= (27 )P(kE + K2)o(ky — KL)6(ky — k})o(k, — k%) (2.19)

where the volume of integration corresponds to the entire space.

To find éeK we first let

v x [Té(R - /Jm/ dkpdkydk, [N(ko ky ko) A + (ko k. ko) B] (2.20)

By taking the anterior scalar product of Equation (2.20) with M(—k;,—k;,—k':) and
N(-k", —ky, —k,) respectively, and integrating throughout V', we can determine the un-
known vector coefficients A and B through the orthogonality properties. The results are
sN'(=kz, —ky, —k.)

(2m)3(k2 + &)

_ KMI(—kza_kys_kz) (2 22)
(2m)*(kZ + k) |

>
I}

(2.21)

(eo]}

in which the primed functions are defined with respect to (z’, 4, z'), the site of the source
at R= R Thus,

© kdk.dk,dk,
(k% + k?

. [M(k,,ky,kz)N (=kzy,—ky, —ks) + N(kr,ky,k,)M'(—kr, —ky, —k.)| (2.23)

v x [T§(R - R)| =

Now we let

© kdk.dk,dk,
CETR

C)u

: [aM(kI,ky,kz)N (=kz, —ky, —ks) + bN(kg, ky, k)M (= ky, —ky, —k,)| (2.24)
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with @ and b unknown scalar coefficients, and substitute into Equation (2.11) vielding

1 1
=b= = 2.25
eyl 1y ¥ g ¥y ) (2:25)

The integration with respect to k, in Equation (2.24) can now be carried out in closed

form by applying Cauchy’s theorem:

_ koo dkedk, (e o
jek = —— ———— |M(£k, )N (Fk,) + N(£k, )M (Fk,

222" (2.26)

where k. = \/k? — k2 — k2 (note that x becomes k). As indicated, the top sign applies

""and the bottom sign when z < 2’. This condition is a result of requiring

when = > =
the solution to satify the radiation condition at infinity which determines whether the
contour of integration is closed in the upper or lower half-plane. Also, from here on it will
be understood that the primed functions, M’ and N', have —k;, —k, or —k. arguments,
unless indicated otherwise.

We now can write C:;m;\' by performing the operations indicated by Equation (2.16).
This can be done almost by inspection using the relations between M and N from Equa-
tions (2.13) and (2.14) except for the discontinuity which occurs at z = 2'. As in [77], it

can be shown that these relations apply but an additional term is needed to account for

the discontinuity at the source; specifically,

= _ gk dk,dk, ‘
VX Gex 87r2,/ / k(K21 K2) [M +k,)M'(Fk.) + N(£k,)N (;kz)]
+16(R- R 222 (2.27)

where the transverse idemfactor, I, = #% + §j, appears in this case as a result of the
combination of the choice of the piloting vector Z and the partitioning of the z dependence.

Notice that the singular terms come from the second derivative of

e ka(z=2) o5

f(2) = { (2.28)

ek (z=2)
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or the first derivative of

—gke(z=2") - o
af(z _ -’ o
9(z) = ——g ). jk: (2.29)
- erk: (2= <z
which is
- 'k,(Z—Z') z >/
dg(z) 0%*f(z e’ 2>z . , ,
96{ ) _ aff? ) _ —k? — 25k, 8(z - ) (2.30)
‘ - erke(z=2") o

This term has sometimes been overlooked in the potential function method as well, as

discussed in Appendix B. Thus, Equation (2.16) leads to

= 1 .. dk dk,
GmK = —pllé( 87{2/m/ kz-{»—k?

[M(ERON (Fh.) + Nk )N (FE:)] 222 (231)

We now divide the infinite space into layers surrounding the source point above and
below. The layered structure can be represented by impedance boundary conditions for

the source layer as previously described and as illustrated in Figure 2.2. We then apply

Figure 2.2: Layered infinite space as represented by impedance boundary conditions.

the method of scattering superposition to this case by letting

=(P)  S)
ek = Gek + Gek (2.32)

[®]]]



(S
-1

=P) . . . ) ) .
Gk is the particular solution found above for the infinite space which may be referred to

. =(5) . )
as the primary term, and Gy - the secondary or scattered fields - is made up of solutions

to the homogeneous equation as follows:

dk dk,
e TN

[M(ko) AT + M(=k, )A +N(k,)BY + N(- kZ)B‘} (2.33)

where A*,A7,B* and B are unknown vector coefficients to be determined. The physical
interpretation of this procedure is that the t coefficients represent the waves traveling in
the &2 directions as a result of reflections. i.e.. scattering, from the interfaces. In evaluating
the boundary conditions, it is also useful to find ém[( through V x (zle;\' = k2G miK which
is the source-free version of Equation (2.16). Hence,
(:}(S)’ _ /*/ dk.dk,
mEeT s k(K2 + k2) m

~[N(k:)§\ + N(=k,)A™ + M(k,) BY + M(=k,)B (2.34)

Note that additional boundary conditions need only be imposed at the newly introduced
interfaces and not at the source, since the primary fields satisfy all boundary conditions at
the source and the secondary terms are continuous there.

Applying the boundary conditions at the top and bottom of the source layer, we derive

the following set of algebraic equations for the unknown coefficients:

(e = 1)e X AT — (for + 1)e? ¢ A” ~(flev = 1)e™7%vN'(=k,) (2.35)

(et = 1)e™ ™ AY — (fer + 1M AT = (fp + 1)eN'(k,) (2.36)
and

(imu = 1)e™ BT + (fimu + DR BT = —(figu - De7R M (=k,)  (2.37)

(fime = D) B 4+ (fmr + )™ B™ = (s + 1)e?XM (£,) (2.38)
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Here the 't and ‘L’ notation indicates the upper and lower interface conditions respectively.

These four equations decouple into two pairs due to a judicious choice of the piloting
vector in the VWFEs. Because the piloting vector was chosen as the unit vector normal to
the layer interfaces, the M and N VWF's appearing in éml( correspond to the LSM and
LSE modes of the structure respectively. (In contrast, it should be noted that M and N
correspond to the LSE and LSM modes, respectively, when they appear in (:?e;\-.) Asis well
known, the LSE and LSM modes are decoupled on the interfaces, that is, the tangential
components of an individual mode on the interface can be matched by an identical mode
in the adjacent layer, therefore the coefficients are decoupled. That there are only four
equations is a result of the fact that the field in a given layer depends only on the field in
the adjacent layers.

The solutions are easily found to be

o @ (R = e+ DR (k) + (e + Dl + DNk,

v (flev + D(fer, = 1)e?Xsle=D) — (e = 1)(fer, + 1)e77Rsle=d)
(2.39)
o _e-n-yc [(f)eU — D)(fe = Ve 4N (=k,) + (o = 1)(7ier, + 1)e]kde'(kz)]
(ev + 1)(7ler, = 1)e?5(=D) — (et = 1)(dler, + 1)e77kvle=)
(2.40)
o _ elkyd [(77 U= 1)(fimr + 1)e %M (=k;) = (fimu + 1)(fimz + 1)ejkycM/(kz)]
(imtr + D(fime = 1)e?¥ (=) — (finy = 1)(fmp + 1)e2ks(e=d)
(2.41)
fo Uit = Dl = Ve AW (k) = (i = Vit + e (k)
(im0 + 1)L, ~ D)) — (i = 1)(fimp + 1)e2ks(e=d)
(2.42)

With some algebraic manipulation and use of the relations found in Appendix A, we now

can write

/ / dk dk



i:fleUNIe[kz(z - C)] - jN’IO[kl - C)]} [neLI\ [ ( - d)] - jf\‘:)[—kl(:l - d)]}

{f]eLMe[kz(: —d)] = jM[k.(z - d)]J [f;euﬁ';[k‘z(:’ — o)) = NI [=k.(s' = c)]ji

(ﬁeU - ﬁeL)COS kz(c - d) = 1 (MevNeL, — 1)sin k.(c—d)

{ﬁmUNo[kZ(z - C)] + jNe[kz(z - C)]] [f’mLN[;[kZ(zl - d)] + jxl;[_kl(‘:’ - d)]}
+
[f]mLNo[kz(z — d)] + jNe[ko(z ~ d)]} [ﬁmuM;[k:(Z' = )]+ N[~k (=" = o))

(lmv = mL) cosk (¢ — d) = J(MmuNmr = 1) sink.(c - d)

for =227 (2.43)

where the M, and N, functions are defined by

cos(k,z)e"(k‘”k“y)
e(k) = (2.44)
sin(k,z)e ks +kyy)

This expression contains all components of the dyadic Green’s function separated into LSE
and LSM modes. Note that our convention will be to denote even and odd trigonometric
dependence by the substripts ‘¢’ and ‘o’. In order to avoid any ambiguity when these
subscripts are used, the corresponding &, k, or k, arguments will be shown explicitly in
the same order, sometimes followed by other arguments as appropriate (see Appendix A).

The magnetic field type is given by
- dk dk,
R (R R 4#2/ / k. k2+k2

[flmUMO[kZ(Z - C)] + jMe[kZ(z - C)]] [ﬁmLM:)[kz(Zl -d)] + jN{;["kz(zl - d)]]

(o]l

[ﬁmLMO[kZ(z - d)] + jMe[kZ(Z - d)]} [ﬁmUM;[kz(zl -+ jM;[—kZ(z' - C)]}

(f)mU - ﬁmL)COSkz(C - d) - j(ﬁme]mL - 1)Sin kz(c - d)
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e Selkal = = )] = Ry - n} [mN (' = )] SRkl dn]

7.}eL&e[kZ(: - d)] - jNo[kz(z - d)]:| [ﬁeUNle[kZ(zl - C)] - jN;[_k:(:’ - CH}

(Tlet = fler) cos k(e — d) = j(TevrTer, — 1) sin k= (c - d)

for 222" (2.45)

When applied to the case of a slot on an infinite, perfectly conducting ground plane,

7L is set to zero. For a single dielectric cover layer, on the upper interface we set

k
o= (2.46)
ko -
f]mU = (T? (24()

corresponding to the normalized impedance boundary conditions for free-space above the
slab. For a slot in the ground plane with its axis along Z, we take the = > =’ terms which

results in
_ _1_ o< dk dk, _OR2@Ry ks (2= )+hy(y=')]
Gmkzz = 72 k2 + kg)

[c,kn sink,(z —d) +]kz cosk,(z - d)] N kgkf [kz sink,(z —d) + jkpcosk,(z — d)]
€rkycosk,(c—d) + jk,sink,(c-d) k? [k, cosk,(c—d)+ jknsink.(c - d)

(2.48)

By transforming the spectral integrals to a cylindrical coordinate system the double integra-
tions can be replaced by a single radial integral on recognition of the integral representations
of Bessel functions in the angular variable. Through some very tedious algebraic manipu-
lations, the result can be transformed from the present form, which separates the LSE and
LSM modes, to a hybrid form which can be compared to the result in Appendix C or with

previously published forms (38, 36]; although not necessary for numerical evaluation.
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2.2.2 Electric Current

For the case of the electric current source, the steps are exactly the same as in the

preceding section, except here the Helmholtz equations take the forms:

VxVxGes - k?Gey = 16(R- R (2.49)

VXVXGmy-k2Gmy =V x I§(R- R (2.50)

where now we solve for (=}mJ first. Due to the similarity to the previous set of Helmholtz
equations and because of the way the VWF's have been defined - particularly the symmetry
introduced in the curl relationships - the solution proceeds with identical equations but

with the following notational replacements:

M < N (2.51)
Gex = Gmy (2.52)
Gmk = Gey (2.53)

The process is similar to replacements made under the guidance of the Duality Principle,
however, it is important to note the difference. The replacements dictated by the Duality
Principle alone would result in functions which satify ‘dual’ boundary conditions, i.e., the
electric field dyadics would satisfy the Neumann rather than the Dirichlet conditions on
the conducting boundaries [13, pp. 29-39). By replacing the M and N functions with each
other, the true boundary conditions remain valid since these functions are complementary
with respect to these boundary conditions. Although it would be interesting to more gen-
erally state and define this process under a heading such as say, the ‘Similarity Principle’,
the development and proof is beyond the intended scope of this work, however, we will use

it repeatedly.
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The final result then is

= dk.dk,
Gm 471'2 / / P + k2
{f)mUMo[kz(z - )] + jMe[k.(z - c)]} [f}mLN;[k:(z' —d)] + jNL [~k (5 - d)]}
[ﬁmLMo[kz(Z - d)] + ch[kz(z - d)}] I:T]mUN [l‘ ]+ ]N [ k ( - C)]
(ﬁmU - ﬁmL)cOSkz(C - d) - j(f]ml/ﬁmL - l)sinkz(c - d)
liﬁeUNe[kZ(: - C)] - jNo{ky(: - C)]} [f)eLM;[kl(:l - d)] - jM;[—ky(:/ - d)]]
+

[f)eLNc[kz(z -d)] - jNO[ky(: - d)}} {ﬁeUM:z[k:(zl -] - jI\_’I;[—ky(z' - C)]}

(ﬁeU - 7.76L)CO5kz(C - d) - j(f)CU’.]EL - I)Sill k:(C - d)

7/

(2.54)

for !

]

>
2z
Gey can be found by substituting the coeflicients into equations similar to Equations (2.32-

2.34), but also can be derived from (:}mJ directly, applying Equation (1.15) with special

care in performing the derivatives at the source discontinuity. The final expression is
= o dk dk,
Gey = ——256(R - R) / /
k 224 T k(K2 K2) ﬂ?

e Melk(z = ¢)] = 1 Mo[ky(2 }J [neLM [ko(" = d)] = TMg[—ky(<' ~d)]]

—

[ﬁeLMe[kz(z -d)] - jMO[ky(z - d)]] [ﬁeUM’e[kz(zl -c)] - jM;[_ky(Zl - C)]]

(f]eU - f]eL)COS kz(c - d) - j(f)eUT_}eL - I)Sin kz(c - d)

ﬁmUNo[kz(z - C)] + ch[kz(z - C)]] {ﬁmLN;[kz(zl - d)] + jN;[_kz(zl - d)]}
+

ﬁmLNO[kz(z - d)] + jNe[kZ(z - d)]] I:f]mUN;[kz(zl - C)] + jN;["kz(zl - C)]]

(mU — ﬁmL)COSkz(C - d) = J(MmUTmL — 1)sin ki(c— d)
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2.3 Dyadic Green’s Functions for Layer Filled Rectangular Waveguides

The electric and magnetic dyadic Green’s functions for an electric current source in
rectangular waveguide are needed for the radiating slot problem. As will be shown later,
the electric type is used in an integral equation approach to solve for the propagation
constants of the structure. Once a propagation constant has been determined for a selected
mode, both the electric and magnetic fields on the entire cross-section are required to apply
the Reaction Method to the three-dimensional cavity problem. The magnetic current case
is not needed in the main body of this work but will be discussed briefly in Chapter IV.

As in [79], the solution for the multi-layered waveguide problem is built upon the
solution for the parallel plate problem. The parallel plate waveguide solution has already
been obtained in the previous section if we set )y = ), = 0 on the source layer boundaries.
However, although the parallel plate solution we need is based on VWFs defined with
respect to a piloting vector Z as was used above, the desired planes for the parallel plates
are defined by z = 0 and z = a which do not correspond to the impedance boundaries
used previously. Therefore, the parallel plate solution will first be derived based on the

appropriate conducting planes followed by the layered rectangular waveguide solution.

2.3.1 The Parallel Plate Green’s Function

A parallel plate waveguide shown in Figure 2.3 is formed by bounding walls at z = 0
and r = a filled with a uniform dielectric material represented by the wavenumber k;,
where ¢ will ultimately represent the 2 layer of a waveguide containing a source. We now

define the functions

Mo(kz) = V xWo(k;)s=V x [sin(mvrz Ja)e=itkvthes) ;) (2.56)

1 1
Ne(ks) = VX Vx¥(k)i= -V x ¥ x [cos(mn/a)eﬂ(*w“‘zz)z] (2.57)

K



*(x\2)

x=0 z
R

Figure 2.3: Parallel plate waveguide coordinate system.
which satisfy V x V x F—k2F = 0 where x = ,/k2 + k% +k?and the boundary condition
ix F=0 (ie., zx E=0) (2.58)

at z = 0 and z = a. The wavenumbers k, and k, are two continuously distributed
eigenvalues and k; = mn/a where m is an integer including m = 0 for N..

The orthogonality properties of these functions are

// Me(m, ky, k,) - No(m', k), k) dV = 0 (2.59)
v

for any combination of even and odd functions and for any two sets of eigenvalues (m, ky k)
and (m',ky,k;). The volume of integration corresponds to the entire space inside the

paralle] plate waveguide. The normalization constants of these functions are stated by the

following relations:

/// Me(m, Ky, k.) - Mo(m', —K), =K} dV
/// Re(m, ky k) - Ne(m!, k), =K.} dV
’
0

{(1+5 )2m2a(k2 + k2)6(k, — k.)6(k, = k))  m=m'=0,1,2,...

m# m'

(2.60)
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// Mo(m. ky k2) - Mo(m', =k, —K!) dV
.
/// Ro(m, ky.ks) - No(m', —k), —K.) dV
.
0

I

m#m
- (2.61)
2nla(k? + k2)6(ky — k3)8( k. — k)) m=m'=1.2,...
1 m =10
where §,,, is the Kronecker delta function defined by é,, =
0 m#0
To find G,y we first let

v x (167 - / / dk,dk, Z [Mo(m, ky, k:) Ao + Ke(m, ky, &,) Be] (2.62)

By taking the anterior scalar product of Equation (2.62) with My(m’, ~k,,—k}) and

Ne(m', —k|, —k7) respectively, and integrating throughout V", we can determine the vector

coefficients Ao and Be through the orthogonality properties. They are

Ao (2 = 6 )N (M, —ky, —k.)
°- 4m2a(k? + k2)

B _ (2 = 6 )KML(m, —ky, —k)
€ 4r2a(k2 + k2)

(2.63)

(2.64)

In Equations (2.63) and (2.64) the primed functions are defined with respect to (z',3',z'),
the location of the source. Although for m = 0 the function N vanishes, m = 0 is
included, as implied by the factor (2 — §,,) in Equation (2.63), to put it in a form similar

to Equation (2.64). Substituting Equations (2.63) and (2.64) into (2.62) we obtain

v x (18R / / dkdkz47rak7+k2)

: [Mo(m,ky,kz)No(m, ~ky, —k;) + Ne(m, ky, k)Mo (m, —ky, k)| (2.65)

Now we let

o

o oo = (2-6m)k
mo= [ ke Y
oo =, 4r%a(k2 + k2)

-[aMo(m,ky,kz)N;(m,—ky,—k,)-}-bNe(m,ky,k,)M;(m,—ky,—k,) (2.66)
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Substituting Equations (2.65) and (2.66) into (1.12), and making use the relations given

by Equations (2.13) and (2.14), one finds

as before. The integration with respect to k, can be carried out in closed form by applving

the residue theorem together with the radiation condition yielding

o0 ki
my= "/_ dk Z47rak L2+k2)

[M (m,ky, 2k )N (m, —ky, Th.) + Ne(m, ky, £k, )N (m, =k, k)] 222 (268

where k, = |/k? — k2 - kZ. Again, the top sign applies to = > 2z’ and the bottom sign to
z < 2. Now applying Equation (1.15), again through use of the relationships given by

Equations (2.13) and (2.14). and taking into account the discontinuity at the source. we

can write

1 -, = (2= 6m)
= ——323(R- - k _—
« et R /_ood Z  drak, (K2 + K2)

-[Me(m,ky,ikz)Me(m,—ky,;k,)+No(m,ky,ik_z)No(m,—ky,xkz) 22 (269)

o

The solutions for the magnetic current follow the same procedure yielding

= 1
Cmk = -—336(R- -/
mi e ( oo dhy Z 47rak L2+k2)

.Mo(m,ky,ikzm;(m,—ky,;kz)+Ne(m,ky,ikz)Ne(m,-ky,;kz) 2220 (2.70)

(o]l
o

& m ki
= - dk _I@2 = bm)ki
/_ Z 47rak k2+k'~’)

[Me(m,ky,ik-_,)Ne(m,—ky,xkz)+No(m,ky,ik:)l\_/l;(m,——ky,:sz) 27 (271

Note again that this can also be obtained from the previous case by simply replacing

Ges = Gmi, Gmy = Gex, and M = N.
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2.3.2 Rectangular Waveguide with Electric Currents

We now construct the dyadic Green’s function for the source layer of a multi-lavered
rectangular waveguide (see Figure 2.1) by using the parallel plate Green’s function solutions

above and the method of scattering superposition. Let
CmJZGmJ+GmJ (272)

= (P =(S) .
where G(m; is the parallel plate solution and G(m)J is defined as

oo

= (S) J(2 = ébn
Gm’““/_ dky Z47rak L7+k2)

[Relm by ko) A 4 Re(m, by, —k2) A7 + Mo(m, ky, k) BY + Mo(m, ky, —k.) B™] (2.73)

representing fields which are scattered from the dielectric layer interfaces located at z =
and z = d. The unknown vector coeflicients, A+, AT, Bt and B™, can be found by

applying the upper (nu) and lower (1) impedance boundary conditions for the layer. This

produces two pairs of equations for the unknown coefficients:

(ev = 1)e 5 A = (v + 1)e*°A™ = —(fiy = 1)e M Mi(m, —ky k) (2.74)

(e, ~ Ve ¥4 AY = (fep + 1)e?¥ A7 = (e + 1)e?*¢ML(m, —k,, —k.) (2.75)
and

(fimt = 1)e™ % BY 4 (iy + 1)e?¥°B™ = —(fimy — 1)e 75N, (m, =k, k.) (2.76)

(fimz = 1)e 754 BT + (fimp + 1)e*¢ B~

]

~(fimr + 1)e?*4NL (m, —k,, —k,) (2.77)
Notice that these equations are identical to Equations (2.33-2.35) with the replacements:
M'(£k,) = ML(m, —k,, +k.) (2.78)
N'(£k.) = Ni(m, —k,, tk,) (2.79)

This feature is characteristic of all of the solutions we will be dealing with, and should be

expected since the functions differ only in whether the functional dependence is exponential
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or trigonometric. As a result, the solutions are identical to Equations (2.39-2.42) with the
corresponding notational substitutions.
Algebraic manipulation of Equations (2.68,2.72) and (2.73) and use of the relations

given in Appendix A then leads to

> m ki
- /_ dky Z271'ak k2+k7)

Moliimus my ko2 = €)] Nyliime; m, k(2" = d)]

Qi

Mo[f)mL; Tn’kz(z - d)] 'A_/;[f)mu; m, kz(z’ - C)]
(f}mU - f]mL)COS kz(c_ d) - j(ﬁmUT-]mL - l)sin kz(c - d)

A—fe[fleu; m, k,(z - c)] M;[f?elj m, k(2 - d)]
.+_

Nelfler;m k(2 — d ]M (Mevs m, k(2" = )]

(ﬁeU - "_kL)COSkz(C - d) - ](neUneL - l)sm kz(c - d)

for :2:' (2.80)

where we have now defined the new operator functions, Mg and ,/\_fg, for the sake of compact

notation:

Mo[n;a] = nMogla] + jMoe[al] (2.81)
Me[nia] = 7Mee[a] - jMco[a] (2.82)
Nolmia] = nRoola] + jNoe[a] (2.83)
Ne[ma) = nNefa] - Neo[a] (2.84)

Since a here is [m, k.(z - c)] and m is associated with k,, we recognize that the ‘¢’ and

‘o’ subscripts in this case imply trigonometric functions of z and z. Also recall that the
primed functions use —k,.

We can find éeJ as we did in the parallel plate case, by performing the derivatives
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indicated by Equation (1.15):

= ] an = =/ o< 3 ad ](2_6771)
Gey = ~p#(R-T )+/_Ood1‘yn§02mkz(k§+k§)

Reliews m, kul = ) Milfsim kil = )

Meliess m bl = d)) Milfs mo kil = o)
(T_]eU - ﬁcL)COSkz((' - b) - j(f’eUf]eL - l)sin kz(C - b)

'\-ro[f?mui m, k:(z - C)] A_Z[ﬁmﬁ m»kz(zl - d)]
+

No[fimrim. k(2 = d)) Né[f)mu; m, k,(z' - c)]

(ﬁml" - 7.7mL)COSkz(C - b) - .j(f]mUﬁmL - l)SiIl kz(c - b)
for 222 (2.85)

Both ée_] and ém_] involve a spectral integral which can be reduced by Cauchy’s Theorem,
once the impedance functions are specified.
2.3.3 Rectangular Waveguide with Magnetic Currents

The magnetic current cases can be found through the same method or ‘Similarity

Principle’ substitutions (section 2.2.2) to obtain

G — l:* R R’ « . = .j(Q_ém)
Gmic = 'k?‘”‘“"R)+/.md"”n§02wakz(k3+k§>

Molfimui k(2 = €)] Myfiimeim. k(2 ~ d)]

MO[’?mL; m’kz(z - d)] M:;[ﬁmu; m, kl(z’ - C)]
(f]mU - ﬁmL)COSkz(C - b) - j(flmUﬁmL - l)sin kz(c - b)

Neltewi m, kz(z = ¢)) N[fler; m, ko(2' = d))
+
Nelferim k(2 = d)) Nlffiew:m, ky(2' = c)]

(ﬁcU - ﬁeL) cos kz(c - b) - j(f’eUT—)cL - l)Sin kz(c - b)

for z2z' (2.86)

AV
™
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and

= o0 . had H2 = bm)k;
Gek = /; dkymzzo 27‘.’(1}63,(1\'3 + kf)

Me[f]eu; m, kz(z - C)] /\“‘Z[f]eL; m, kz(z' - d)]

Melfierim. ke(z = )] Allfew; m, ka2 = )]
(T-]eU - f]eL)COSkz(C - b) - j(f]eUﬁeL - ],)sin kz(C _ b)

No[iimos m, ka(z = )] M{[fimeim, ko(2' = d))
+

Noliimeim, k(2 = d)] M[iimu; m, k.(2" = )]
(TmU = TimL) cOs ky(¢ = b) = j(AmUTme — 1) sink,(c - b)

for 222 (2.87)

&

2.4 Dyadic Green’s Functions for Layer Filled Rectangular Cavities

The scattering superposition approach can now be applied to the result of the previous
section directly to obtain the dyadic Green's functions for the cavity problem by introducing
conducting walls at y = 0 and y = b and applying scattering superposition to the +g
directed waves. As an alternative, one can take a somewhat simpler approach by first
deriving the dyadic Green’s function for a waveguide with its axis along the Z direction
(ky becomes nr/b). Then scattering superposition is applied along the  direction with
impedance boundary conditions to obtain the result for the cavity (see also [72, 75, 79]).
This will be the approach demonstrated here since the intermediate Green’s functions will

also be needed in Chapter IV.

2.4.1 Homogeneously Filled Rectangular Waveguide: TE and TM Modes

As with the use of the half-space solution as a building-block for the previous solutions,

the preceding modal representations of layered rectangular waveguides are not in a con-

venient form for the formation of the cavity solution. Again, the VWFs there are defined



41

with the normal to the layer interfaces, resulting in the LSE and LSM mode representa-
tion. What is more convenient here is the solution for a homogeneously filled rectangular
waveguide expressed in terms of VWF's defined to represent the modes Transverse-Electric
(TE) and Transverse-Magnetic (TM) to the waveguide axis. We again will first find é(n\:;)

., =W
from which Gy will follow.

= (W) . :
Gy must satisfly the wave equation:

= (W) 2:(\V) = -
VxVxGmy ~ kG =V x [16(R - )| (2.88)

To construct the solution we will need the vector wave functions satisfving the Neumann

boundary conditions which are:

Moo(kz, ky) = V X Woolks, ky)Z (2.89)
- 1
Nee(kz, ky) = ;V XV X Wee(ks, ky)Z (2.90)
where
cos kyx coskyy
Ve (ks ky) = eI (2.91)

sin kyz sin kyy
with k; = ky, = mr/a and ky = k, = n7/b.

Following the Ohm-Rayleigh method as before, we expand the source term as

V x [f&(iz— 1‘2')] = /00 dk, Z [Moo(kz,ky) A + Nee(kz, ky) B] (2.92)
© 0

m=0n=

The coefficients A and B are found from the properties of the vector wave functions to be

(2= bmn)k
Tab(k?, + k2)

(2= bmn)k -
rab(k2, + k%)M"

A

Noo(kz,ky, —k.) (2.93)

!

B (kzyky, k) (2.94)

where the Kronecker delta function é,,, is equal to 1 for m = 0 or n = 0 and 0 otherwise

(the case where both m = 0 and n = 0 is the trivial, zero field solution for this case). Thus,



Equation (2.92) can be written as

- T¢I D! — = 5 - mﬁ;‘sm_"i
Vx[I6(R-R"Y) = ‘/_.(“\:ZZ rab(kZ + k2)

Mool by kDN (i kyy ko) + Reelke, by k) Moglke by —k0)| - (295)

= (W)
To find Gy, we let

= (W) -
GmJ = /_ (“” Z Zﬂ'ab k2 +k2)

. [aMoo(kr.ky,k,)Noo(kI,ky, —k;)+ bNee(kr,ky,k,)M;e(kr,ky, —k)| (2.96)
Substituting into Equation (2.88) we find as usual

a=b= '{2—— (297)

so that

= (W) ~x ad (2= bmn) K
m)J = / dkzzz [)(k2 +l\,2) lil{2—k?}

Mool ky, ky, ke )N' (kzoky, —k:) + Nee(kz, ky, ko )ML (koo ky k)| (2.98)

The Fourier integral can be evaluated in closed form by means of contour integration and

the radiation condition leading to

Gmi = Z_z_: bL (k2 +k2)

| Maolkr by, 2k NG (e by, Fhe) + Nee(ke, by £k )M (ks Ky, T,

for z2 2 (2.99)
where k2 = k? — (k2 + k2). Using Equation (1.15):
= (W) 1. = o j(2- (2= bmn)
el = _k_? R ‘L:, g (k2 + k2)
 [Moolke. by, £k )N (K, ) + Neelkz, ky, £k,)ML (ko ky, The)

for 222/ (2.100)
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2.4.2 Cavity with Opposing Impedance Walls: Electric Current

We now introduce impedance walls at z = ¢ and z = d where the added boundary
conditions given by Equation (2.1) are to be enforced. Using the method of scattering
superposition we let

= = (W)  =(S) .
GmJ:GmJ +ij (2101)

where

= (S) i ad jki(2_6mn)

C 1= -
mI =7 2o 2 Gk (K2 + K2)

. I\_/I o k ,k ,kz A +Moo(k ,k ,—kz)A +Nec(}€1~,k ,kz)B +Nee(k ,}C ,—k:)B
o T y z y y I y

Evaluating the boundary conditions given by Equations (2.1) we get the same system of

equations as (2.33-2.35) except this time with

M'(tk,) = M. (k;, k,, £k.) (2.103)
N'(k,) = N (kz, ky, £k.) (2.104)

Again we already have the solutions for this set by changing the notation of the VWFs.

With some algebraic manipulation and use of the relations in Appendix A the results are

(Moommu; krs kya kz(z - C)] j(c;o[ﬁml.; k.rs kyv kz(zl - d)]

Moo[f}mL; krn kyv kz(z - d)] Jvololﬁmu§ k:r’ ky, kZ(ZI - C)]

(Mmu — mi)coskz(c — d) = J(MmuTimr — 1) sink,(c — d)

Nee["—kL; kra kyw kz(z - d)] Mlce[f)CU; kz» kya kz(zl - C)]

(T]cU - ﬁeL) cos k,(C - d) - j(fkv"_)cL - l)Sin k,(c - d)

(Nee{f]cu; krvkwkz(z - ¢ )] M::e[ﬁeL; k.‘mkya kz(z’ - d)]
+

for 2

AV
(8]

" (2.105)



Meelllevs kzo by ke (2

CF[T]CLﬂkral" l‘

(z - d)] M
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(2 - 6mn)

abk, (K2 + K2)

=) M lferi ke ky ko2 = d))

ee[

Teuws Kz ky k(2" = ¢)]

(ncu - T]eL)COSk:(C - d) — J(MevNer — )Sm kz(c - d)
-&[oo[ﬁmu; krwky~ k:(: - C)] -’(Zo[f]mL; krv kys kz(zl - d)]
+
Noo[nmLak l‘ k ( d)] ,'\‘Zo[fjmu; kr» kyvkz(:/ - C)]
(nmU - T)mL)COS k:(C - d) - j(f)ml'f)mL - I)Sill k:(C - (1)

The operator functions are defined by

Maq[: al
Mce[m O]
/\700[773 a]

Nee[n: @]

for 222/

the relations

I)Nlooo[a] + jMooe[a]

Ulﬂcec[a] - jNIIeeo[Q]

77Nooo[a] + jNooe[a}

= nNeee[ ] ’Neeo[ ]

(2.106)

(2.107)
(2.108)
(2.109)

(2.110)

2.4.3 TE and TM Modes in Homogeneously Filled Rectangular Waveguide

and Cavities with Opposing Impedance Walls: Magnetic Currents

To model the slots, we also need the cavity dyadic Green’s functions of both types

for magnetic currents. The derivation could follow the previous case explicitly, however,

because of the way the functions have been defined, we can take advantage of the symmetry

of the equations and write the solution by making simple notational replacements. (The

only exception is the treatment of the (2

= émn) term which here is expanded as (2 —

ém)(2 — én) since the m = n = 0 case may produce non-zero field components.) Using

this approach we can write the TE and TM solutions for magnetic currents in rectangular



waveguide as

= (W) 7ki(2 = 0m)(2 - 6)
ek = mZOnz_: abk, k7 + k2)
) [Mee(krwky»ikZ)Nce(krvky’ ?k:) + I\OO(kIvkyvikl)h‘{;o(kf’ky‘q:kf)} :Z:I (2111)
= (W) 1 5 5/ - — j(z"ém)(Q—én)
Gmg = ~##6(R =)= . ) =iy

1 m=0n=0

: [Moo(kr» kyv ikz)Mloo(kr».kya ?:kz) + Nce(kr’ kyv ikZ)Nlee(kT* ky’ :FI‘Z)} :z

e

' (2.112)

The cavity solutions are

G = 23

m=0n=0

Mee[fkm kz, ky’ kz(z - C)] '/(fe/emeL; ks, kyv kz(z/ - d)]

27ki(2 = 61)(2 = 62)
abk, (k2 + k2)

Mce[f)el,; k:n kyv kz(z - d)] -/vele[ﬁeu; kra kyv kz(zl - C)]
(f]eu - ﬁcL)COS kz(c - d) - j(ﬁeUﬁcL - I)Sin kz(c - d)

'A—/oo[ﬁmu; k:vkyv kz(z - C)] M;o[ﬁml.; kmkyakz(z, - d)]
+

Noo[f)mdkxskyakz(z - d)] oo[TImu,k k k (z - C)]

(nmU - f)mL)COS kz(c - d) - J(nmunmL - 1) sin k,(C - d)

for 222/ (2.113)

and
(:3mK = k—12226 R- R +m20n§:02jaik 6k2 +k2fn)
Moolfimus kzy ky, ko2 = €)) Mooliimus kz, ky, ka(2' = d))
Mooliim; kzs ky, ko2 = d)] Moliimus ke ky, ko(2' = ¢)]
(fimu = im1) coskz(c = d) = J(muTim, — 1) sink(c — d)
. Veelflews kz, by, k2(= = ©)) Neeltew; kzy ky, ko(2' = d)]

ec[nchl‘ k k ( ] [T’cUﬂk k k (zl - C)]
(f)ev - ncL)COS kz(c - d) - ](neuneL - 1) sin kz(c - d)

for 222" (2.114)
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We now have derived and specified the dyadic Green’s functions for all tvpes of struc-
tures to be treated in this work. The integral equatiors are therefore fully defined and the

task remaining is to solve for the unknown currents in each case and interpret the results.



CHAPTER III

METHOD OF MOMENTS FORMULATION

A general methodology for application to the various problems treated will be presented
in this chapter for the case where two components of current will be allowed on both the
strips and slots. Later, we will restrict our attention to strips and slots which are narrow
so that only the longitudinal component of current need be considered. This assumption
is sufficient to yield accurate results for the experimental cases to be used for verification,
and thus simplifies the numerical implementation without loss of generality.

The solutions to the presented integral equations can be found by choosing basis func-
tions to approximate the various currents. The error in the approximation is minimized
by applying the well known Method of Moments, resulting in highly accurate representa-
tions of the currents from which the electrical behavior of the structures can be deduced.
Furthermore, the method of moments formulation will be discussed in the context of the
radiating slot problem only, since this problem contains all the essential elements of the

coupler problem as well.

3.1 Definition of Coordinate Systems and Basis Functions

Let us expand the current on the strip in the following manner. We first define a

strip-fixed coordinate system as illustrated in Figure 3.1. The currents on the strip in this

47
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Figure 3.1: Cavity (z,y) and Strip-fixed (v,v) Coordinate System.

coordinate system can now be expanded as

Jy=J,04 L0
Jo = ¥(v)) @(v,)l,

J
Jo=@(v)) L
b

where ¢ are piecewise sinusoidal basis functions defined by

d(a) =

1 sinky(a — ag_y) for =l <a-0a,<0
sin kyl,

sinky(ag41 —a) for 0<a-a,< |,

and [, is half the subsection length defined by

la = [ag41 = ag-1]/2

(3.5)

The subscript ¢ is an index identifying basis functions at various points along the strips

and slots. Actually, &, will always be chosen so that kyl, < /2, making the function

basically a triangular pulse. This way, because the basis functions overlap, the current will

essentially be approximated by piecewise ‘linear’ segments between sample points (see [32]

for an introduction to the method of moments and basis functions). The sampling rate is

determined by field phenomena, phase resolution requirements or numerical limitations, as
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will be shown later. Typically, the sampling rate will be at least 20 samples per wavelength.
often much higher, so we generally set k, ~ k, which is more than sufficient to ‘linearize’
the basis functions. The motivation for the sinusoidal dependence is to simplify later
integrations and evaluation of the resulting functions.

The ¥ function will be either a *Maxwellian™ distribution or a ‘pulse’ basis function

defined as

1
Vararuwelhanl B) =

W) = i@l 5-gi<ly  (30)
q’pulse'_‘l

The Maxwellian function is often used since it closely approximates the true solution for
narrow strips or slots [52. 88]. These expansions are further illustrated by Figure 3.2 where

the sinusoidal functions are exaggerated for clarity.

Longitudinal

w2 piecewise sinusoidal |9p) -wWn wnr
Maxwellian

Transverse

a\

2 pulse - rectangular w2 wn w2

Figure 3.2: Current Expansion Functions.

In this work, we will deal exclusively with strips and slots which are narrow with re-
spect to wavelength so that only one basis function will be used to represent the narrow
dimension. For wider structures, rooftop functions are commonly used, involving similar

overlapping basis functions in the direction of each component of current, but using the
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pulse basis function for the transverse dependence. Because our strips and slots are nar-
row, we will typically only model the longitudinal component of current, however, both
components are discussed here for generality and to form a basis for future efforts. The
primary motivation for the use of piecewise functions is that thev are very efficient in terms
of changing strip or slot lengths as opposed to entire domain basis functions.

The strip-fixed system is related to the cavity coordinate system by

v= (T-12,)cos¢+ (y—yo)sing (3.7)

v=—(T —1,)sin¢+ (y— y,)coso (3.8)

We also define a slot-fixed coordinate system as illustrated in Figure 3.3 where

Y

Figure 3.3: Slot-fixed Coordinate System ((, £).

(= (z-s5,)c0o88+ (y—1,)sin#h (3.9)

E=—(z~5,)sinf +(y~-t,)cosf (3.10)
The slot currents are now written as

K. = KL(C + KLEé (3.11)

Ku = Kuel + Kuygf (3.12)



where the "L” subscript represents the slot opening to the cavity and the ¢’

represents the slot interfacing with the dielectric cover.

these currents,

]\’LC
1\',U<
Kipe

Ky

51

Equations (1.54-1.56) can be written in matrix form

— le Zl? Y13
Zyy 2y Y3
Z31 Z3y Yas
Z'ﬂ Z42 Y43

0 0 Y3

] 0 0 Ygs

YGG

V(&) SN g,
J

V()Y SV,
J

O(E)> Vi
J

®(6) > Vi
J

Ca

Cn

X X X X

where each term in bold face is a submatrix described by integrals such as

Z{l :/ (‘(“) I ' U, T

)\Il(u)(b(vj)dsj

z,= [ / GUD(z,y,2',y')¥(v,)B(v)dS,

vh= [[ 6w s,
W= | /S GOz, y,2', ¢ )W((,)B(£)dS

subscript

Assuming similar expansions for



wn
(8]

or in a more compact form as

[ GUD G G G g o V() | £
G GiY 6% ¢ o 0 U(v,)d(v)1,, £
s G G G Gl G || weVi | 4y | H
Pl 6 6 6t o G || WeeEVe | dy | H
00 G GEY G G || uORGIVug H
00 G G G G L MGR©Vue | M

(3.18)

The functions on the right hand sides of Equation (3.17) and (3.18) are discussed in Chap-
ter | and are further defined in section 3.2.

Note that §; is the 7t ‘source’ segment of the corresponding strip or slot. We also have
a triply mixed coordinate system which must be accommodated using the transformations
given by Equations (3.7-3.10). For example, computation of Gg(s) involves both Gélcs) and
GE?). In addition, the derived Green’s functions are in the cavity-fixed coordinate system.
Consequently, all terms must be transformed to a common coordinate system before the
integrations can be performed. Treatment of these integrations and manipulation of the
various G terms will be discussed in a later section.

The evaluation of the elements of the matrix at the positions where the boundary con-
ditions are being imposed has not yet been discussed. Following the conventional method
of moments formulation, we introduce a weighting function and impose an inner product

to be evaluated at each subsection on the strips or slots. The inner product is defined as

(a,B}://a-B ds (3.19)
where a = w, the weighting function, and b will be the vectors represented by Equa-

tions (1.54~1.56). Note that the elements of Equation (1.54) are to be evaluated on the

- strip as indicated by (1.57) and (1.58). Similarly, Equation (1.55) is evaluated on the lower
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slot as indicated by Equations (1.59-1.61) and Equation (1.56) on the upper slot as implied
by (1.62) and (1.63).
Following Galerkin’s method we can choose w to have the same form as the basis

functions used in the expansions of the currents. Thus, for Equation (1.54)
w=Y(v)d(v)o+ ¥(v)P(r)r (3.20)
Similarly, for Equations (1.55) and (1.56)

By = U(E)B(C)C + V()D(E)E (3.21)

The elements of the matrix in Equation (3.17) are then changed to

// V(v)(v) 2, dS,

12_/ (v)®(v)Z1,dS,

4= [ wowonas

where the 7 index represents the ‘field’ point integration locations.

For certain cases we will use point matching on the slots driven by considerations in the
evaluation of the Sommerfeld integrals of the half-space Green’s function. In this case the
weight function for the transverse dependence of the longitudinal component of magnetic
current on the slot becomes a delta function resulting in the evaluation of the field at a

point at the center of the slot.

3.2 Excitation Models

The final element to be discussed is the excitation vector represented by the right hand

side of Equation (3.17). As mentioned previously (Section 1.3), the & terms represent
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non-zero values in the excitation vector corresponding to gap generator locations on the
strips. Likewise, the H terms will be non-zero for the incident H field excitation used with
the Reaction Method. In this case, the incident field must be weighted the same way as

the left hand side so that the right hand side terms become

M, = / / @ T dS, (3.22)
S,

For the gap generators, the corresponding field for the gap subsection can be designated

E,. Application of Galerkin’s method then, results in the integral

5,:// w- E, dS, (3.23)
Sy

on the right hand side of Equation (3.17). Eg is an unknown caused by a source at that
location on the microstrip. If we assume E, = E,, 0, then we can set £ = 0 in the second
row of Equation (1.54).

In most cases, we can arbitrarily set the integral of (3.23) so that £ of the first row
of (3.17) becomes a zero column vector except for one element corresponding to the position

of the gap generator of the form
£=(0 - 010 --- 007 (3.24)

where T denotes the transposition operator. Setting the magnitude of E, is arbitrary be-
cause the Standing Wave Method used with the gap generators uses relative interpretations
of the resulting current, not absolute quantities.

For certain problems, however, we need the use of the gap generator model to determine
absolute values of current on the lines. If we set the field in the gap such that the voltage

over the gap given by

V, = _/ E, dl (3.25)
gap
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is equal to 1 Volt. the input impedance at the feed point is given by Z,, = 1/I; to first
order. A similar model can be used for slots with a coaxial feed, as in [21, p.360] for
example, by replacing the coaxial feed with a current source on the slot.

Before moving on, it is worthwhile to examine this process a little more closely in the
context of some of the terminology and physical interpretations of gap generator models
found in the literature. Restricting this discussion to one dimension, at the source our

system of equations represents the enforcement of the boundary condition

/ wf(z) dr = I (3.26)

where w is the weight function, f(z) is the field quantity and A" is the constant specified
on the right hand side of the matrix equation row corresponding to the location of the
source. It is clear that the only non-zero contribution to the integral can occur on the
domain of w for which w is non-zero so that any physical interpretation is confined to
that region. It should also be noted that there may be an infinite number of solutions
f(z) satisfying this equation and that this equation does not force further constraints on
what f(z) might be, i.e., the right hand side does not specify how f(z) behaves on a
scale smaller than the domain over which w is non-zero. We then also have no basis for
a physical interpretation which imagines the terminals of the source within this domain,
but rather we should interpret the terminals to be at the domain’s endpoints. Obviously,
K" will depend on the nature of w. The physical interpretation of the nature of the source
then also depends on w. For simple cases such as a pulse weight function, the delta-gap
physical interpretation is appropriate since Equation (3.26) reduces to a form similar to
Equation (3.25). The point match case, or delta-function source can be interpreted in
the same manner by taking the limiting case of the pulse weight function, shrinking its
width to an infinitesimal gap while keeping the area constant. For more complex weight

functions, the physical interpretation is unclear except that we can consider the source to
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be ‘distributed’ over the domain of the weight function.
The system of equations represented by Equation (3.17) is now fully specified. The

unknown currents J,. K; and K can now be found by solving for the matrix elements

and inverting the matrix.

3.3 Expansion of the Dyadic Green’s Functions for the Cavity

To evaluate the elements of the matrix, we need to expand the dvadic Green’s functions
into the components corresponding to the electric and magnetic currents which are in z-y
planes. All of the required terms can be separated into trigonometric functions of z.z’,y
and y’ multiplied by a complex coefficient which contains the = and 2’ dependence. The
Green’s functions can then be written in a condensed form as follows. Also, a constant
complex coefficient Cy,, can be factored out which appears in all Green's functions for the

cavity and is defined by
Conn (3.27)

Cavity EFIE - Electric Currents J

The electric field integral equation contribution of the electric currents involves the z-y

components of Gej which can be written in the form

Cmn Gelxx €08 kppn sin kpy cos kyz' sin kp, ¢’

]38
K

GeJxx =

3
1]
)
3
I
o

WK
M8

Geyyx = Cmn Gelyx sin kmx cos kny cos k2’ sin kny/

3
Il
o
3
i
o

8
M2

Genxy = Crmn Gelxy €08k sin kpysin k2’ cos kny'

3
I
(=}
3
il
(=}

Nk
8

Geyyy = Cumn Gelyy sin kmz cos kpysin k2’ cos k, y' (3.28)

3
I}
o
3
1}
o



n
=1

where k; = k,, = mn/a, k, = k, = n7 /b, and

2 ~ kmkz : ~ 9
GEJXX = knzee(ne)+< k ) Zee(”m) (3-9)
knk:\? .
Getyy = [kznzee(ﬁe)+< e ) Zee(nm)} (3.30)
%
GEJ_VX = gelxy = —knky [Zee(ﬁe) - (IT) Zce(ﬁm)] (3.31)

The z dependence of the Green’s function is contained in the Z.. function defined as

[ cos k,(z — ¢) = jsink,(z — ¢)] [fiL cosk,(z' — d) = jsink,(z' - d))

Zee() = (L cosk.(z — d) = jsink,(z — d)] [fu cosk,(z' - ¢) = jsink,(2' - c))

(qu = M) cosk.(c - d) — j(qunL — 1)sink,(c - d)
for 222/ (3.32)

Here again we use the ‘ee’ subscript notation to imply the trigonometric dependence of the
function.
Cavity EFIE - Magnetic Currents K

The contribution of the magnetic currents involves the components of Gex which can

be written as

8
WK

Gekxx = Cmn GeKkxx €08 kmz sin k,y sin k2’ cos ky,y’
m=0n=0
(o] (e o)
Gexyx = Z Z Crmn GeKyx sin kmz cos k,y sin k2’ cos k,y/
m=0n=0
o0 oo
Gekxy = Z Z Cran Gekxy €08 kmz sin kny cos k2’ sin k3’
m=0n=0
o0 oo
Gekyy = Z Z Crmn GeKyy Sin kmz cos kny cos k2’ sin kny' (3.33)
m=0n=0
with
geny = -k, [kfnzet)(ﬁe) + kgzco(f]m)] (334)
Gexy =k, [kizeo( Me) + k2, Zeo(im )] (3.35)
(‘ -

YeKxx = — gel(yy = kmkqk, [zco(f]e) + Zeo(Tm )] (3.36)
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The Z., function is defined as

[ cosk,(z = c) = jsink,(z = ¢)] [ sink.(z' —d) + jcosk.(z' = d)

7. =
“~eo

(L cos k,(z — d) = jsink,(z — d)] [usink.(z' = ¢) + jcosk.(2' = ¢)]

(v = AL)cosk.(c—d) = j(quiL = 1)sink.(c - d)
for 222/ (3.37)

Cavity MFIE - Electric Currents J

The magnetic field integral equation contribution of the electric currents involves the

components of Gy which can be written in the form

K
NgE

Gmixx = Crmn Gekxx Sin kppz cos k,y cos k1’ sin by y'
m=0n=0
[e ] o0
Gmiyx = Z Z Crmn Gekyx €08 kmx sin kny cos kp,z'sin k,y’
m=0n=0
[e ¢} [ee]
Gmixy = E Z Cmn Gexxy $in kmT cos knysin kpz’ cos by’
m=0n=0
[s ¢} o0
Gmiyy = Z Z Cmn GeKyy €OS km sin knysin kp2' cos kny' (3.38)

3
I}
o
3
1}
o

Notice that the coeflicients are the same as for the Ge case. It is not difficult to show

that upon application of Galerkin’s method,

(o]

<K, mJ,J'> = <J,éeK,K> (3.39)

where the double inner product notation is defined by

,z‘»)://a-//%-z}ds'ds (3.40)

This implies, because of the signs of Equations (1.58-1.59), that the submatrix associated

ofl

a,

with the electric current contribution to the MFIE is the negative of the submatrix for the
magnetic current contribution to the EFIE (diagonally opposite for the order given). This

observation reduces the computational effort required since only one of these submatrices
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needs to be calculated to fill their respective positions in the matrix. However, for the
radiating slot problem when we use the Maxwellian transverse distribution, evaluation of
the Sommerfeld integral has been accomplished through point matching which does not
produce this symmetry. Ience, in that particular case, we cannot take advantage of this
property.

It can also be shown that the electric current EFIE terms form a submatrix which is
diagonally symmetric as are the terms in the diagonal submatrix representing the MFIE
contribution of the magnetic currents. Therefore, these also can be formed by calculating
only about half of the terms. however, as will be seen later, taking advantage of other
mathematical relations for these terms produces far more significant improvements in the

fill time for these submatrices.

Cavity MFIE - Magnetic Currents K

The cavity magnetic current MFIE terms are associated with a Green’s function which

can be expressed as

IS
G mkxx = Z Z Cmn Gml(xx sin kmr Cos kny sin kaI Cos knyl

m=0n=0
o0 o<
GmKkyx = Z ZCmngml(yxcoskm:csinknysinkmz'coskny'
m=0n=0
Gmkxy = Z Z Crmn GmKxy Sint kT 0 kpny cos kpp 2’ sin kny’
m=0n=0
oo o0
Gmkyy = 9. Y Comn Gmiyy €08 k2 sin kpy cos kmz’ sin kyy' (3.41)
m=0n=0
where
- kmkz 2
gml\’xx - [Lzzoo(ne)‘i" ( k. ) Zoo(f)m)] (342)
g — k'Z Z ~ knkz 2 -
mKyy = m 00(778)+ L Zoo(nm) (343)

k\?
Gml\'y.‘( = gml\'xy = _kmkn [zoo(f]e) - (k_> Zoo(f’m)J (3.44)
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The Z,, function is defined as

[fusin k. (z = ¢) + jcos k,(z — ¢)] [ sin k. (=" = d) + jcosk.(=" - d)]

Zoo = [ipsink.(z — d) + jcosk,(z — d)] [fju sin k(2 = ¢) + jcos k(2" = c)]

(v — fiL) cos k(¢ — d) = j(quiL — 1) sink.(c - d)

for =22/ (3.45)

Slot MFIE - Magnetic Currents K

For the slot, the transverse components of G for a homogeneously filled cavity are

needed which can be written in the forms:

K
s

Gmkxx = Crmn G mKxx Sin k2 c0s kny sin kpz' cos kny'
m=0n=0
o0 (o ¢]
Gmkyx = Z Z Cmn GmKyx €08 km T sin kny sin kmz' cosk,y'
m=0n=0
[e e (o ¢]
Gmkxy = Z Z Crmn G mKxy Sin kT 08 kny €08 k' sin kny/
m=0n=0
[o ¢] oo
GmKkyy = 9. Z Crmn G mKyy €08 kT sin kny cos kn,z" sin kny' (3.46)
m=0n=0
where
cosk,(z' —d) |,, kZK?
S\ = k m>z
G mKxx snk(c—d) | " + kf
cos k,(z' — d) k2k?
J— k2 nz
Gmkyy sin k,(c - d) [ mt g2
cosk,(2' - d) k? .
GmKyx = = Omkxy = —kmknm - E (3.47)

These expression are valid for currents on one end of the slot coupling to field points on

the opposite end when =’ = ¢. For currents coupling to the same end, 2’ is set equal to d.

Half-Space MFIE - Magnetic Currents K

Although the Green’s function for the half-space was derived in Chapter II, the nu-

merical treatment is quite involved and will not be detailed here. It consist of a real axis
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Gaussian Quadrature scheme with singularity extraction of the branch point and surface
wave poles and asymptotic evaluation of large arguments. The methodology has been
outlined by Katehi and Alexopoulos in [36]. The numerical implementations used to eval-
uate the half-space admittance elements of the matrix were provided by Katehi for the

Maxwellian transverse distributions and by Harokopus [31] for the rooftop functions.

3.4 Identification and Reduction of the Integrands

The elements of each of the submatrices of Equation (3.17) involve double surface
integrals as shown earlier. The inner surface integrations are over ‘source’ regions defined
by the current expansion basis functions. The outer surface integrals result from the
application of the weighting functions and cover the “observation’ or *field’ regions of the
problem where the boundary conditions represented by the integral equations (section 1.4)
are being enforced.

Using the condensed notation we can now write expressions for the impedance elements
in a general form which will identify the integrations to be performed for each term. To
illustrate, only the EFIE expansions for the current on the strip will be presented. The
MFIE for the strip and slot currents are handled in an exactly the same manner.

The EFIE:electric current terms can be written as follows:

z; = ii/]\v (v // GUDW(v)8(v,) dS, dS,
zZ% = ii// W // G2 (v,)8(v) dS, dS,
zj = iw/ ¥(v,)® // G(v,)0(v) dS, dS, (3.48)

As before, the superscripts 7 and j represent the it2 “field” subsection and the j* ‘source’
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subsection. The Green’s function terms can be transformed using the relations

I = 1COS®—UsSinog (3.49)

y = Usingd+vcosd (3.50)

The transverse Green’s function,

am
e
1]

Geixxtt + Geyyx¥T + GeixyZy + Getyyyy (3.51)

can then be written for the strip-fixed coordinate system as

Ger = Genwvi+ G ewvi®+ G esuwti + G eywii (3.52)
where
Geiwv = Geixxc0s’d+ (Gejyx + Geixy)sindcosd+ Gejyysin’ ¢
Gewv = —(Geixx — Gelyy)singcoso + GeJyxcos2¢— Genysin2¢>
Gejw = —(Geixx— Gelyy)singcoso — Gejnyin2¢+ GejxyCOS2¢

G elvy = Gejxx sin2 ¢ - ( Ge]yx + Ge]xy)Sin ¢coso+ Gejyy COS2 )

(3.53)

When the coordinate systems are mixed, such as the case of the magnetic slot current
contribution to the EFIE, the Green’s function terms are also mixed. The relations for the

slot-fixed coordinate system unit vectors are

i = (cosf—Esin (3.54)

(sinf + £ cosf (3.59)

N
"

Substituting these into the posterior positions of Equation (3.51) and (3.49,3.50) into the

anterior positions, the Green’s function terms for this case become

G eku¢ = Gexxcosdcosl + Geyyxsingcosf + Gejxy cos sinf + Geyyy sin ¢sin 6
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G eKUf = - Gejxx COS (DSin 9 - Ge_].\"\' Si“ d)Sin 0 ‘+‘ (; QJX.\' COS @ COS 0 + (" (\J.\’.\' Sin OCOSG
G ekv( =~ Gejxxsindcos+ Geyyx cosgcosf — Gejxysinosinf + Gejyy cososin
GeKuE = Gejxxsingsinf — Gejyxcosgsinf — Gejxysinocost + G ¢jyy cos ocosf

(3.56)

Returning to the EFIE:electric current case, we can now write the terms of the associ-

ated submatrix terms as (omitting the Cy,, constant)

© 00
Z;JI = Z Z Geixx CO52 ¢Ieo(viayi)leo(vjs‘/])+ geJyx SinCT”COSOIO((I“,U,)[co(l'J.I/))
m=0n=0
+ geny sin @ cos ¢180(vi7 UK)IOC(U]‘U]) + GGJ}‘)' sin’ Olye( vy v ) oel L‘]-"])
g 00 00
Z’:)Jx = Z Z — Geyxx Sin @ cos ¢leo(Vi, Vi) leo( V), 1)) + Gesyx cos? ol (1,. vleo(vy 1))
m=0n=0
— Geyxy sin? @leo(Vi, Vi) loe(V) 1)) + Gedyy sin €08 Olue (v, ty) [oe(v), 1))
© o0
Z;J2 = Z Z - Gexx sin ¢COS¢IeO(U{,Ui)Ieo(V], 'Uj) - GCJ}'X sin’ Bloe( vy, Vx)leo("_;-l'J)

3
1
o
3
1}
=

+ GCny cos’ d’Ico(Uian)Ioe(VJst) + geJyy sin ¢ cos ‘D[oe(vzwl’x)[oe(’/_yw ;)

[\/]8

Zh=3

m=0

CJX)« sin ¢Ieo(uu Ut)Ieo(Vjavj) - geJyx sin @ cos ¢]oe(”x- ‘("l)leo(ll‘jv ?‘])

3
Il
o

- geny sin ¢C05¢I¢0(U,',U,')Ioe(l/],'U]) + GEJy_V C052 Oloe(l/u Ux)[oe(’/pvj)

(3.57)
Now it can be seen that the only terms involved in the integration are of the form
cos knz sink,y
el e, ok ¥(B,)d 58
(24, 5y) ./,/sq [sin kymz coskny} b(ag)¥(f,)dS, (3.58)

where (aq, 8,) could be either (v,,vy) or (vg,v,) with dS; = duvdv for the strip or (a4, 8,)

would be replaced by ((q,&,) or (&, (,) with dS; = d(d€ for the slots.
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3.5 Integration

We will ultimately assume, as is commonly done, that the strip and slot are sufficiently
narrow so that the longitudinal components of current are much greater in magnitude than
the transverse components. The latter can then be neglected which, as will shortly become
apparent, greatly simplifies the book-keeping required to keep track of various Green’s
function and current components, coordinate transformations, cross-coupled terms, etc.
The assumption is further justified in that, at this point, there is no known advantage or
requirement for the microstrip or slot structure to be more complex. For the moment,
however, the complete expansion will be retained so that the numerical model can later be
extended based on these expansions, by evaluating the additional terms of the matrix.

Now the Jeo(ay, ;) function is still a mixed coordinate system function, therefore, to
perform the integration the function must be transformed to a common system. The sim-
plest approach is to transform the cavity-fixed coordinate system functions into the strip-
fixed system by solving Equations (3.7-3.8) for z and y and substitute into Equation (3.58)

giving
T = wvcos¢—vsing+ z, (3.59)

y = vsing+vcoso+ y, (3.60)

Equation (3.58) then becomes

lo(ag,B,) // {cos m(vcos @ — vsin ¢ + z,)]sin[k, vsnn¢+x/smd>+yo)]}
0:P4) S, \sin{km(vcos @ — vsin ¢ + z,)] coslkn(vsin ¢ + vsin ¢ + y,)]

®(aq)¥,(8,) dvdv (3.61)

By introducing the notation,
kei = kpcos¢ptk,sing (3.62)
kf = kpsingt k,cosé (3.63)
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1]

Vo = knyo (3.65)
we can reduce these integrals to the form
leo(aq,By) = -;—//Sq [sin(kFv + v,) cos(ky v = v,) = cos(kF v + v,) sin(k] v = v,)
Fsin(kJ v+ v,)cos(kfv + v,) £ cos(hIv + v,) sin(kFv + Vo))

®(aq)¥(8,) dvdy (3.66)
It is now clear that there are only two integral forms which must be evaluated:

// sin(kaa + @,) cos(kgf + B,)®(c)¥(3) da df

//cos(koamo)sm(kﬁmﬁo)é(a)\p(ﬁ) da B (3.67)

The integrals involving ®(«a) are expanded and evaluated in straightforward fashion to give

sin kol [sin L] . ly

k 0 d S a o o 1 P Pl RPN O Sl

/ [cos( ata )] (a) da Skl [COS(Laq ta )] sinc [(k + ky) 5 ] sinc [(k ky) 5 ]
(3.68)

where sinc(z) = sin(z)/z.

For the case where ¥(8) is the Maxwellian distribution,

+ _ sin . _ _1— g sin ‘ dﬁ
= /[cos(kﬁiﬁ")} Vb = - /-13 [cos(kﬁiﬁo)] N (3.69)

Using the substitution £ = sin ¥, we have
lg

1 rx/2 ;
o= o memmnvimﬂdv

T J_x/2 Lcos

cos(f,) /"/2 [sin _ } sin(+8,) [™/2 [cos ,
= = kl =) :
T -r/2 cos( psiny) dy+ s ,/_,,/2 [sin (klgsm'y)} dy

(3.70)

This form can be reduced to

2 ; /2 H
= Z [sm(iﬂo)]/ cos (klgsiny)dy = [sm
0

T |LCOoS Cos

<imﬂJAum (3.71)
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For the rooftop functions, the transverse weighting is 1/2[3 so that

+ sin_- ’ I__L’B[sin y /}
E o= /[COS(ABiBU)}w(J)dJ_ o /_15 (kg £ 5,)| 5

[Sm (iBo)] sinc(ksls) (3.72)

Ccos

I

With these results, the integration of Equation (3.66) is fully specified and we can

proceed to evaluate the terms of the matrix.

3.6 Numerical Evaluation Considerations

Before proceeding to the applications, some comments on the numerical implementation
should be made. At this point we are in a position to go ahead and program the previous
expressions to evaluate the matrix elements as thev stand, however, just a brute force
approach, without some consideration of the algorithms to be used, would undoubtedly
result in a very inefficient program which takes much longer to run than need be. In this
section, some ‘common sense’ features will be pointed out in addition to some mathematical
identities which can be used to significantly improve the convergence rate of the summations

involved.

3.6.1 Precomputation

By writing out the complete expression to be evaluated for the self-impedance on the
strips, the main points can be illustrated which also apply to other elements of the matrix.
Let us assume that the strip is oriented along the  axis in the cavity with a width of W

and is centered at the point (z,,y,). A typical element of the [Z;;] can then be written as

ZZ//s.q) // G (YU (y) dr dy dz'dy’

chmn GQJX.‘(ICO(IUyi)leo(zgay;) (373)

m

(11)
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Assuming the Maxwellian transverse dependence, the [, terms are evaluated as in the

previous section and Z,, becomes

4 Crnkily
2" = ien Y TR Geve coslhn(, + 20)] coslhn(z, + 7o)

n

sin? knyon(any)sincz[(km + kb)lr]SiHCQ[(km — ky)l](3.74)

The most basic rule to optimize the speed of the computations is to perform any operation
or function evaluation as few times as possible. Immediately we recognize then, that the
constants should be factored out and the outer loop factors should be removed from the

inner loop:

(11)
Z; =
Y absin? kyl,

4fpkd 5 (2= 6,)

2 COS[km(I, + Io)] Cos[km(I] + IO)]

m

sinc?[(km + kp)lzJsinc?[(ky — ky)lz)

: {Z geJxx Sin2 knyoJZ(knly)} (375)

Now in this expression, although evaluation of the sine and Bessel function .J, in each
cycle of the loops is implied, in practice these are computed and multiplied external to
both loops and stored as a vector dimensioned to include the maximum value of ‘n’ to be
evaluated. Thus, these functions are evaluated only once per value of ‘n’. Similarly, the
(2= 6m)/2 factor ( = 1 for m # 0 ) appears only in the ‘m’ loop, since for n = 0 there
Is no contribution (note also that the conditional statement which tests for m = 0 can be

eliminated by calculating the m = 0 terms separately).

3.6.2 Transformations

Finally it is noted that the ‘m’ loop implies m x N evaluations of the cosine terms and
with the inner n loop implies m x n x N2 products of these terms and the remaining terms

where N is the number of basis functions on the line. This can be dramatically reduced
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by making use of the relation
cos Acos B = %[cos(A+B)+cos(A— B))] (3.76)

so that our expression becomes

274 -
2fpk;lz Z (2~ bm) (coslkm(zi + 7, + 21,)] + cos[km(z, — 1,)])

(11)
70
ki absin® kyl, 2

m

sinc?{(km + ks )l z)sinc?[(km — kb)) {Z Gegxx sin’ knyo.lj(knly)} (3.77)

We now need at most m x (3N — 1) cosine evaluations, on the order of m x n x N products
and N? simple additions which greatly improves the computation time, especially as N
increases. The sum resulting from the application of Equation (3.76) is performed after
the m and n summations are complete. This is the key to the speedup since a factor of N
is removed from the number of product evaluations. A factor of A'? additions are added.
however, this is inconsequential since the additions are simple (two complex numbers)
whereas the previously required product evaluations also involve the calculation of other
non-trivial coefficients. If the matrix elements are to be stored in data files, storage of the
cosine sum and difference terms also greatly reduces the file size - now on the order of
(3N — 1) rather than N2,

This technique also applies to the slot self-impedance terms. For the coupling terms
(slot-to-strip, etc.), the same principles are used except the sum and difference scheme no
longer applies due to mixing of k,, and k, wavenumbers. However, in these cases, due to
the separation of the structures in the Z direction, sine or cosine factors in the denominators
become hyperbolic for large values of m and n and improve the convergence rate so that
the upper limits of the summations can be reduced.

Other factors can be considered, however, the above points are thought to contribute
the most significant improvements in program efficiency with minimal effort. Of course,

there are other issues which have not been addressed since they often depend on the avail-
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able facilities: memory limits for example. There are also schemes available to improve
convergence through auxiliary series transformations, however, these are often only possi-
ble at the sacrifice of generality. For example, for uniformly filled cavities. e.g.. stripline
problems, techniques such as those found in [13, Appendix A.6] can be applied but then
multi-layered cases would require separate treatment. Admittedly, the full extent of these
possibilities have not been adequately explored and may offer further improvements in pro-
gram efficiency. Rather, the emphasis has been focused on phenomenological exploration

of the applications in the discussion to follow.

3.6.3 Convergence, Algorithms and Run-Time

As with other eigenfunction expansion methods, consideration of the convergence of
the modal summations is an important process in establishing reliable results. For these
types of solutions it would be desirable to analytically examine the expressions involved
and derive formulas for acceptable upper limits of the summations. Ideally these formulas
would be provided for each type of Green’s function and would be functions of all the
relevant geometric and electrical parameters and the desired accuracy. To develop such
a system, however, is a major undertaking in itself and would really only be worthwhile
after a more thorough investigation of possible series transformations alluded to above.
In addition, convergence behavior generally varies depending on which output variable is
sought, further complicating the situation.

Nevertheless, it was necessary to investigate some aspects of this question in order to
produce reasonably efficient programs, the intention here then being to pass along some of
the information gained to those who may extend the scope of this work. Also it should be
recognized that although it has become common practice to discuss convergence by showing

the behavior of particular parameters for the structure at hand as a function of the number
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Figure 3.4: Convergence behavior for several parameters of a centered shielded microstrip
transmission line. Dimensions a = b = .25, w = h = .025, ¢, = 9.7. Terminal
values at 1000 modes were Z, = 49.63Q, €, 5. = 6.90, Hx = 12.45A/A,.

of modes used in their calculation, this information is really of limited value since when
the technique is applied to a different structure, there is usually no guarantee of similar
results. The plots given here are therefore provided only to illustrate some intuitive points
and to give the reader an ‘order of magnitude’ feeling for the required range of upper limits.
Unless some analytical guidelines are developed and become available for these problems,
similar numerical experiments must be performed for each new application.

To illustrate, let us first look at the convergence rates for several transmission line
characteristics. The theory behind the calculations is presented in Chapter IV. Figure 3.4
shows the convergence behavior for three key transmission line parameters of a shielded
microstrip line. As can be seen, the rate of convergence depends on which characteristic

is to be computed. We re-emphasize that these features may vary as a function of the
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geometric and electrical specifications. It should also be mentioned that this application
does not present any practical difficulties since not only does the convergence appear to be
quite rapid but these parameters are computed by a two-dimensional formulation involving
only a single summation. The efficiency of evaluating the summation for this problem is
not a significant issue given today’s desktop computer capabilities. For example, the data
in the figure were efficiently computed on an Apollo DN2500 workstation'.

This brings us to the consideration of the two dimensional summations required in
the analysis of three dimensional problems of the type discussed in Chapters V-VII. The
required number of terms in the double summations depends on their behavior in the
mn-plane, where m and n are the two parameters of summation. The real problem is in
predicting or anticipating this behavior a-priori so that the corresponding limits can be
set. Some progress in this direction can be achieved by recognizing that these summations
are similar in many respects to the Fourier series. By drawing on our understanding of this
topic, we can gain some intuitive understanding of how the modal summations behave. For
example, it can easily be shown by numerical experiments that the closer two elements are
in spatial coordinates, the greater will be the extent of the mode spectrum as in Fourier
analysis. In addition, there may be no sign changes for the self coupling terms so that we
can immediately conclude that these terms will display the slowest convergence. Thus, we
could potentially monitor only the self coupling and nearby terms to determine whether
the summations have converged or not. There is also a potential savings in time, if we
can monitor the convergence of the series as a function of one direction (referred to as an
‘eigendirection’), the direction of m say, while the other (n) is constant. Thereby we can

potentially eliminate significant fractions of individual rows or even entire rows, depending

"The Apollo DN2500 is quite slow relative to most other engineering workstations, perhaps comparable
in speed to standard Intel 80386 based personal computers. The above data was computed at a rate of

approximately one minute cpu time per 1000 modes. The relation is approximately linear since there is
only a single summation.
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on the behavior of the functions involved.

While these ideas have an attractive generality to them in that we might be able to
develop an algorithm for monitoring the convergence of the sum, making the convergence
question invisible to the user, there are serious difficulties when we try to put it into
practice. Most significant of the pitfalls involved include the fact that the final result is not
known a-priori so it is quite difficult to establish a criteria for convergence. To illustrate,
consider what happens if a ‘percent change’ criterion is used. Suppose some of the terms of
series at the early stages of summation contribute very large values which are later canceled
by similar terms of the opposite sign. At the early stages then, the sum will be large and
a fixed percentage of the current sum may be quite large compared to the final result.
Thus, truncating the local contributions to the series based on the current percent change
may prevent important terms from making their contributions which in the end leaves a
significant error. Another problem is that, as with Fourier analysis, the mode spectrum
may have extended gaps along the eigendirections so that a summation in that direction
may appear to be converged when in fact there are addition terms farther along which are
needed.

Some time was invested in pursuing an algorithm which takes these factors into account
based on observations of the spectra of various cases. In the end, however, it was found
that while some progress could be made by instituting various monitoring schemes, the
final conclusion was that the overhead required for keeping track of the progress of the sum
and the periodic testing of sum'’s status, more or less offsets the gains made in reducing the
number of actual terms added to produce the result. However, one scheme that emerged
does bear mention here since it is straightforward. It should be recognized that the cancel-
lation of terms generally occurs along both eigendirections and also the largest terms occur

near the origin. Then, one can readily accumulate the bulk of the sum by making sure
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to sum the low index terms near the origin at the onset. thus providing a good estimate
of the final result and alleviating the problem of not having a good estimate of the final
result in advance. A very simple algorithm accomplishes this scheme by simultaneously
incrementing either m or n while decrementing the other and successively moving away
from the origin, thereby summing in a direction normal to the diagonal of the mn-plane.
However, because of the tradeoff mentioned, the final versions did not use any of the de-
veloped schemes but simply scanned the mn-plane in a straight{forward, raster-like fashion
with terminating conditions set by experience.

Generally, to avoid any question of convergence while other investigations were under-
way and because sufficient processing power was available, far more terms than necessary
were used anyway, typically on the order of 1000-1500 modes in the eigendirection associ-
ated with the directions of the lines or slots, and half as many in the other direction. For
the cases studied here, not nearly as many modes in the one eigendirection are needed as
in the other. This is due to the fact that in the particular cases studied for comparison to
experiments, the strips and slots were always parallel to the side walls of the cavities so
that one coordinate describing the position of the basis functions is constant. This tends
to cause the spectral variations in the corresponding eigenvalue to be similar for all basis
functions, although the variation of the other coordinate prevents this from being strictly
true. If, for example, the y coordinate is constant for all basis functions and n is the
associated eigenvalue, the spectra in n at a fixed value of m will be identical except for a
constant scale factor which depends on z. Truncation error in n then tends to get averaged
out by the variation in z. To illustrate, let the aspect ratio in this example be defined by
N/M, i.e., the denominator is the maximum eigenvalue corresponding to the coordinate
which varies and N is the maximum of the other eigenvalue (N < M). Figures 3.5 and 3.6

demonstrate a typical convergence experiment in which the aspect ratio has been fixed
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at 0.5. The quantities examined are key parameters to be introduced in Chapter VI.
As always, other parameters may converge at different rates and the rates may vary as
geometric or electrical parameters change. The key point here is that at least for this case,
when the maximum m value is set to M = 600, the changes which occur as N/M is reduced
from 1.0 to 0.25 are less than 0.1% for the resistance and 0.03% for the resonant length.
Thus, far fewer modes are needed in the n direction.

For subsectional basis functions, the spatial sampling rate also requires convergence
criteria. Since the quantities we are dealing with, e.g., impedance, are typically highly
sensitive to the behavior of the near-field and also often depend only on the fields in a
small region, the required spatial sampling rate is generally substantially higher than what
is required for far-field type problems (or non-uniform sampling is needed which is more

complex to implement). Again, the actual requirements depend on the circumstances
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Figure 3.6: Convergence of resonant slot length as a function of the number of modes.

and techniques used so it is difficult to provide general statements on these requirements.
Twenty samples per material wavelength is often used as a ‘rule of thumb’ for far-field
problems which we generally increase to the 30-40 samples/wavelength range for sampling
on strips or non-resonant slots. For the resonant slots, we often increase the sampling to
100-125 samples per wavelength making sure to overestimate the resonant length of the
slot by a significant amount. This practice is not driven so much by convergence criterion
as it is by practical matters. It takes far longer to generate the matrix elements than
it does to invert and process the cases studied here. Changes in length or the relative
positions of slots and lines for example, can easily be accomplished by loading a matrix
with longer than needed lengths and scanning the behavior of the structure as a function of
lengths or distances by successively removing the appropriate rows and columns; inverting

and solving for the appropriate parameters at each stage. Thus, the matrix elements
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need to be generated only once for a given frequency, allowing a wide variety of geometric
variations to be studied as long as the cavity dimensions are not changed. We also use this
technique to provide greater resolution of lengths and relative distances without requiring a
regeneration of the matrix. The upper limit of the spatial sampling rate when the elements
of the matrix are computed with double precision seems to be on the order of about 250
samples per material wavelength. This number, attributable to round-off and truncation
error, is machine and algorithm dependent which brings us to the final point on this subject.

For problems of these types, it is common practice to quote run times typical for certain
machines, often not very well identified. It is common knowledge that machines vary widely
in their ability to execute codes, especially from machines of one type to another, but even
for the same type of machine with different hardware configurations. In addition, the
information provided can quickly become dated and irrelevant since available computing
facilities are changing rapidly. Not only this, but also the execution time of the same
analysis implemented with different algorithms and different degrees of generality can vary
widely (easily on the order of a 10 to 1 variation, depending on both the abilities and
knowledge of the programmer as well as the time spent in optimizing the algorithms for
speed). Undoubtedly, there are techniques which can be used, in addition to those discussed
above, to improve the run time of codes developed for this analysis. The real issue comes
down to a tradeofl between time spent on optimizing codes versus producing and examining
results. Of course, the outcome of this tradeoff depends on available resources, the objective
in producing the codes, and their intended end use. Suffice it to say that the key element in
the current approach is the generation of the matrix, which for a typical three dimensional
structure at a single frequency, can be generated in 45-60 minutes or less on a ~ 25 million
instructions per second machine such as the IBM RS6000/320. This amount of processing

time has been sufficient for our needs.



CHAPTER IV

ANALYSIS OF TWO-DIMENSIONAL STRUCTURES

The treatment of multiple layers can be illustrated in greater detail by presenting the
methods used to analyze structures which are uniform in one dimension. Complex three-
dimensional problems are often treated initially in this manner by analyzing their more
fundamental elements - two dimensional transmission lines - with lumped elements added
to represent discontinuities. The total problem can then be treated by network analysis if
the basic properties of the individual structures are known.

The objective here is to show how these fundamental properties can be obtained, for
instance, the propagation constants and characteristic impedances of transmission lines.
These quantities are directly tied to the solutions for the fields in the structure which
thus becomes the main objective of this chapter, that is, to demonstrate the procedure for
matching field components through multiple substrate and superstrate layers as applied to
two-dimensional problems. The presentation also serves to illustrate how the technique can
be applied to more general three-dimensional problems since the procedure is the same.
Some examples of field solutions are given to demonstrate the utility of the approach. The
work in this chapter is also needed in later chapters which deal with the microstrip-fed slot
antenna elements.

The scattering of waveguide modes by vertical wires is also studied in this chapter. This

problem reduces to two dimensions for the homogeneously-filled waveguide case which

7
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Is relevant to the experimental work on stripline to be discussed later. The problem is
unique in this work in that the currents are normal to directions of the other currents
discussed. The treatment of wires inserted through multiple layers cannot be reduced to a
two-dimensional problem and will not be discussed although, as will be seen, the solution to
this problem would be needed to complete the general analysis of waveguides and especially
cavities formed by inserting wires through the ground planes of multi-layered parallel plate
waveguides. It is also noted that even for the homogeneously-filled case, the problem of
vertical posts or wires has not been extensively treated in the literature, especially for
parallel plate structures, even though they are often used in practice for the suppression

of unwanted higher-order modes.

4.1 Application to General Multi-layered Shielded Microstrip Struc-
tures

The objective of this section is to show how the fields in the various levels can be calcu-
lated from a known form of current density on a single microstrip line in a straightforward
way. Also, although to this point we have considered multiple components of current, the
applications to be discussed will be restricted to narrow strips with one current component
to minimize the complexity of the presentation. There is no restriction on the placement
of the current or the number of strips which can be used, however, a simple case here
will better serve to outline the method. The procedure for the treatment of more complex
multi-layer coupled strips can be found in [83], which serves as an example of the use of
potential theory with impedance boundary conditions to generalize multiple layers in a way
similar to what has been done here. This reference also addresses the modelling of strip
conductor loss. In additon, we compare to a much earlier work on this type of analysis
by Yamashita [90], whose method of non-uniform discretization would be appropriate for

wider strips where the form of the current density cannot be assumed.
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In order to calculate the characteristic impedance. the definition Z = P/I? is used
where P is the time average of power propagating along the guide. Thus. if we set [ = 1.
the characteristic impedance is simply Z = P which can be computed analytically by
integration of the average Poynting vector on the cross section of the waveguide. Also, in
some cases, the reaction of the fields (R) on the waveguide cross section is needed which
can be computed in the same way.

For our purposes, let us assume a geometry such as shown in Figure 4.1 with a longi-

Figure 4.1: A shielded stripline, uniform in the § direction with multi-layered substrate
and superstrate.

tudinal current component on a single narrow strip of the form

-, 26(2' - d)

iy, = 2
AWy[1- 4 (Z55)

i.e., a Maxwellian transverse variation of the current density which satisfies the edge con-

ek |2 1| < W2 (4.1)

ditions on an infinitesimally thin narrow strip. The propagation constant k, represents the

set of characteristic complex phase constants associated with shielded microstrip modes.
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These complex constants are the eigenvalues of the equation

Ez=—jw#///ﬁx(:‘,eJ~.]'dI"’=fz><ii (4.2)

which enforces the appropriate boundary conditions on the surface of the microstrip line [83].
A particular value for k; must be found first, before the fields of a particular mode can be
calculated.

Using Equation (4.1) in (4.2); the §§ component of (z;e_] as derived for layered rectan-

gular waveguide in Chapter II; and the integral representation of the delta function,

too ,
/ emilks kW gy = 9x(ky — k,) (4.3)

-0
we find that the § component of the electric field can be written as

wp [t —ky) . .
E, = — dk, Z k2+L2) sin k. sin kzz,Jo(k:W/2)

a J-

-{k2 [ neL[ncUCOSI‘z(C'z)+j5in kz(c_ 3)] ]
(ﬁeU - ﬁeL)COSkz(C - d) - j(ﬁeUﬁeL - I)Sin kz(c - d)
kzkf fimL[fimu cos kz(¢c — z) + jsink,(c — z)]
el aal )

k¥ L(fimv = fim) cos k- (¢ — d) = j(muTime — 1) sink,
where the Fourier integral can be eliminated using the sifting property of the é func-
tion. Then, using Galerkin’s procedure to enforce the boundary condition given by Equa-

tion (4.2), we can write

Wi Om) 9 kW
Eyy = stm kIJ( )

[ fleL[Tlet cOs k;(c — d) + jsink,(c - d)) ]
.2

(NeU = ML) coskz(c — d) = j(TeUTer — 1) sink,(c — d)

+kfkg [ fimL{imU cos k,(c = d) + jsin k,(c - d)) ] (4.5)
k,z (7-7mU— f]mL)COSkz(C— d)-j(ﬁmUﬁmL_ 1)5inkz(c_ d) .

We now numerically search, using Muller’s method for example [60, p.262], to find the
values of kg which satisfy Equation (4.2) and thus correspond to microstrip modes.
With the propagation constants known, the fields in the i** layer can be easily found.

By inspection of Equations (2.80) and (2.85), the fields can be written in a general form
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in terms of the homogeneous solutions to Equations (1.10) and (1.12). Thus, the fields in

the 7** layer can be written as

— = 72— bm)k
Hy = - S S L Ak
/ mzz() 2mak,(k2 + k2)

[f]mUI\—doo[kr, kz(z - C)] + jMoc[krs kZ(Z - C)]}

B,
I:f]mLMoo[k:, k(2 - d)] + jMoc[km ki(z - d)]}
[ﬁeUNte[kr’ k(2 = )] - jNeO[kr» k(z - C)]]
+ A (4.6)
[ﬁeLNee[kI’ kz(z - d)] - jNeo[kr, kZ(Z — d)]j|
and
T — _ J(2-bm)
By = - Z  Dmak, (K2 + k2)
l:neUMee[kzal\v z—-cC ] - ]Meo kr,k (Z - C ]}
A;
[ﬁE[JMCE[kIs k:: - d ] - ]Meo[kz,k ]:I
{ﬁmUNoo[kra kz(z - C)] + jNoc[kzakz(z - C)]}
+ Bi (4.7)

{ﬁmbNoo[krv ko(z = d)] + jNoelkz, ko(2 - d)]]
which are valid for all layers except the source layer. Some of the leading constants are

preserved for convenience in later notation.

4.1.1 LSE Modes

Expanding the VWFs we then find that the LSE mode fields in each layer can be

written in the form
E | e [“'kkok in k' — k2 sin k,z sin k,z”
LSE ; ak,;(k§+lc2) tgjkzky coskyz sinkyz' — gk’ sin k.z sin Iz}

COs Azx [neUt + ] tan kn( C; — Z)] (Z S 0)
(4.8)

1
cosk,i(e; = d;) { c0s kpi(2 = dy) [feLi - jtanksi(z — ;)] (i > 0)
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§ig 2.7 ~ .12 - . ’ - - /
= FA |5 | [F9k2sink : ok, cos ko7 sin ks

Hpse FA; [a(kg n kz)} [kaI sinkyzsink,z" + gyjkok, cosk zsink,x ]

1 cos kyi(c, — 2) [fevitanki(ci — 2) = 3] (1 <0)

coskzi(ei = di) | cosk,i(z - dy) [fiors tankai(z — ) + 7] (i > 0)

+A; [ 4 ] (29k; cos kT sin k,z']
aKkz;
1 cos k;i(c; — z) [feus + Jtank,i(c; — z)] (2 <0)
coskzi(ei = i) | cosk,i(z = d) [flers - jtanku(z —d,)] (i > 0)
(4.9)
where 1 = 0 for the layer containing the strip and
Ao = —TleLo (4.10)

(ﬁcUO - ﬁcLO) cos kz(CO - dO) - j(f]cUOﬁcLO - 1)Sin kz(CO - dO)
By matching the tangential components of the field at the interfaces above and below the

strip layer the remaining coupling coefficients are found to be

_ k21 [fevo + j tank;o(co — do)
A= AOE {f}cLl - jtank; (e — dy)
Airkzifer(i-1)
A = ka(i-1)cos kyi_q)(ci-1 — d.‘-_x)[ﬁeL.' — jtank;i(c; — di)]
! AiprkziNeu(i41)
E(it1) €08 kyipr)(Civ1 = dig1)[Mevs + J tank.i(c, — d))]

(4.11)

(z>1)

(1<0)

(4.12)

For computation of power (P), the needed component of Poynting vector is - —;- Ex I

while for reaction (R) we need § - E(k,) x H(—k,). For the case of LSE modes, power

density and reaction are given by

,'k k ?kr 2 . . n2
poppr = k| Akky ||Aks| cos’ksz[sinksz]
a? kn(kg + ks) k;‘ |COS kzi(ci _ di)P

{ |Dev cos kzi(ci — z) + jsin kyi(ci — z)|2 (1<0)

|ieLi cos koi(z — di) — jsinkyi(z — di)> (1> 0)
(4.13)
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R = Ex(ky)H.(-ky)

dwp | JAkzk, [jA,-kx} cos? kpz [[ sin k2]

a? k(24 K2) || ke cos? k;(c; — d;)
[fevri cos ki(ci — 2) + Fsin k(e — :)]2 (1<0)

: (4.14)
[fleLi cos kzi(z — di) — jsinkyi(2 — d;)]* (i > 0)

4.1.2 LSM Modes

Similarly, the LSM mode fields can be written as

2jw/‘kzi
R+ KD
1 cos kyi(c; — 2) [mui + jtank,i(e; — 2)] (¢ <0)
d;)

"cos kai(ei —

Ersy = -Bi [ } [:&g}jkxky cos k, sin ko2’ + k2 sin k,z sin k,z']

cosk,i(z — d;) [imri — jtank,(z — d;)] (1> 0)

9
1B, [ ;:2“ } [29k, sin k2 sin k2]
1 { cos kz;(c,- - Z) [T-)mu,'tan kz,-(c,- - Z) - ]] (i < O)
cos kZi(Ci - di) Ccos k‘z,‘(z - d,‘) [ﬁmLi tan kz,-(z - d,‘) + ]] (i > 0)
(4.15)
= 27 a2 . .. :
Hism = FB; [a—(k_g—%c—z_)] [zykz sin k,z sin k2’ — §jjk-ky cos k. sin kzz']
1 { cos k;i(ci — z) [imuitank,i(c; — 2) — 5] (i <0)
cos kzi(ci - di) cos k;i(z — d;) [impitank,i(z — d;) + 3] (¢ > 0)
(4.16)
where the coefficients are defined by
_ﬁmLO
By = — - — - - 4.17
° (Mmuo — fimrLo) cos k;(co — do) = 3 (MmUofimLo — 1)sin k;(co — do) (4.17)
kz0k} [fimvo + 7 tan ko(co — do)
B, = B a2 — 4.1
T kg [t — g tan k(e = ) (4.18)
Bi1ko(io1)k imp o1y (i>1)
B - kaikf_yycoskoioy)(cio1 — dict)[fimei — jtankzi(c; — d;)]
Bisikoio) ki imuis) (i<0)

kaikf 1) cosky(ipry(civr — dipr)[fievs + 7 tan kyie; — dy)]
(4.19)
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To calculate the field at a particular point in the it layer, we then calculate only the
coupling coefficients (Ag...4;) and (Bg...B;) while evaluating Equations (4.8.4.9) and
(4.15,4.16).

For the LSM modes the required terms for calculating power density and reaction are

given by

P=-EH: = 2“”‘[

k? (kg + kf,)' l cos kz,-(c,- — d,’)|2
{ |fimui sin kzi(ci — 2) — j cos kzi(ci — z)l2 (1 <0)

a?

ngy} [ Bf‘(k;)2 } sin? k2 [[ sin krz’]2

|fimLi Sin kzi(z — i) + jcos k(2 = di)|* (i > 0)
(4.20)

=
I
|
ty
P
Fo
N
R
N
I
o
<
1

_Adwp | jBiky —jBik? | sin? kpz ([ sin kpz')?
a? | k? (k2+k2)|  cos? kai(ci — di)

{ [7.7mUi sin kz,-(c,- — Z) — j oS kz,-(ci - Z)]2 (i <0)

[fimpisin k;i(z — d;) + jcos ki(z — d,—)]2 (i>0)
(4.21)

4.1.3 Cross Terms

There are also two sets of cross-terms from the Epsy x Hpsg product. The power

terms are

P = EH=-

owi | Bikgkyks | | Afks | cos? kox [fsink,pz’]2
a? |KXk2+Kk2)| | k3 | lcoskz(ei—di)f?

{ [imui cos kzi(ci — z) + 7 sin kzi(ei — 2)] [flevs cos kzi(ci — 2) + jsin k(i — )" (1<0)

[f]mLi COSs kz;(z - d,’) - ] sin k,_,'(z - d,)] ['F]cLi (o] kz,‘(z - d,’) - ] sin k,,'(z -_ d,')]‘ (‘i > 0)

p o~ _pp o2 |Bik)| Ak |sin’ k(] sin kyz')?
B UET | k2| [(RE4 kD) |coskai(ci — di)f?

{ [fimui sin kzi(ci — 2) — j cos kzi(ci — 2)) [fevisin kzi(c; — 2) — jeoskyi(ci — 2)]7 (1 <0)

[f]mu sin kz,-(z - d,’) +jCOS kz,-(z - d,’)] [ﬁeLi sin kz,-(z - d,’) + ] cos kz,-(z — d,')]‘ (i > 0)
(4.23)



For the reaction we have

R = Eq(k,)H.(~k,)=

dwp [—ngkxkykz,-] [inkI] cos? k,z [ sin krr’]2
a2

k(K2 + k2) k,; cos? k(¢ — d;)
{ [Imui cos kzi(ci = 2) + jsinkzi(ci — 2)] [flewi cos kyi(e; = 2) + jsin kyi(e; — 2)] (1 < 0)

[fimLi cos kzi(z — d;) — jsin k(2 — d;)] [eLi cos kx(z—di) = jsink,i(z —d;)] (> 0)
(4.24)

4wy | 7Bk —jAk? sin? kyz [[ sin kpz’ 2

a? k? (k24 k2)|  cos?k,i(ci — dy)
{ (imuisin kzi(c; — 2) = jcoskzi(ei — 2)] [flevs sin k(¢ — 2) — cos kri(ei—z)] (1<0)

(limLisin kyi(z — d;) + j cos kyi(2 — d;)] [fleLi sin ki(z — d;) + j cos k.i(z—d;)] (1>0)
(4.25)

4.1.4 Integration of Power and Reaction terms

The evaluation of total power can be done analytically by integrating the power density
on the waveguide cross-section. Integration of the z dependence is trivial and has been

indicated in the previous expressions. The z dependence appears in two forms, the first of

which is
¢ | [mcosk(c—z)+ jsink(c— z)|[ncosk(c - z) + jsin k(c — 2)]*
Ipp = / dz
d
[m cosk(z — d) - jsin k(z — d)][n2 cos k(z ~ d) — jsin k(z — d)]*

_ mm-1. — M

= Re(R) sin 2Re(k)(c — d) qZ] 2% ) sin? Re(k)(c — d)
n1775+1 . o~ _ 771+7]2 2
1Sm(R) sinh 28m(k)(c - d) F ———=% 25m(k) sinh® Sm(k)(c - d) (4.26)

where Re(k) and Sm(k) symbolize the real and imaginary parts of k respectively. The

second form is

¢ | [msink(c—2)—jcosk(c— z)|[nsink(c - z) - j cos k(c-z)|*

Ipny = dz
[msin k(2 — d) + jcos k(z — d)][nzsin k(z — d)+ jcosk(z — d)]"
mmn -1 M o2
— A2 7 sin o%Re(k -
aRe(F) sin 2Re(k)(c - d) :t]%% k) sin® Re(k)(c - d)
mm +1 o : m+m .o
+ R sinh 28m(k)(c - d) F 23mik) sinh® Sm(k)(c - d) (4.27)
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For reaction we also have two types of integrations to perform. The first is

[m cosk(c— z) + jsink(c — z)][n2cos k(c — z) + jsin k(c — 2)]

/C dz
d

[m cosk(z — d) — jsink(z — d)][n2cos k(z — d) — jsin k(2 — d)]

Irm

= Ml BB i ok(c - b) £ 5T Bsint k(e -b) (429

Similarly,

[m1sin k(c — 2) — jcosk(c — 2)][nzsin k(c = z) — jcos k(c — 2)]

Ipn = / dz
d
[misin k(z — d) + j cos k(z — d)][mysin k(z — d) + j cos k(z — d))]

771772—1(C_d)_ mne + 1

2 4k

. . + M2
k(c—d
sin2k(c—d)Fj T

sin? k(¢ — d) (4.29)

4.1.5 Applications

With these analytical results, the fields, power flow and reaction, characteristic impedance
and propagation constants can be readily found for shielded strips with any combination
of layered substrates and superstrates. An example is shown in Figure 4.2 where results
of the present technique are compared to a commercial CAD package ( Touchstone [20])
and experimental measurements provided by Dunleavy [19]. The relatively large error bars
provided by Dunleavy for this case do not provide for any conclusion on the comparative
accuracy of the full-wave approach since the agreement is excellent. The corresponding
characteristic impedance is shown in Figure 4.3.

We conclude that the accuracy of the full-wave implementation is excellent since the
accuracy of Touchstone is well established and has been further verified by Dunleavy for
this case. One can argue that the full-wave implementation with its greater complexity is
not needed, however, most CAD packages, including Touchstone, are based on approximate
formulas which, although they can be quickly evaluated, generally decrease in accuracy as

frequency is increased. Also they deal almost exclusively with the dominant propagating
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modes which sometimes is insufficient. These features are similar to the behavior of “quasi-
static” analyses although today’s CAD packages generally go beyond “quasi-statics™ by
employing higher-order, albeit still approximate techniques. The results. of course. are
very efficient routines for each component in a microwave circuit which make these packages
very powerful and efficient for circuit design.

Full-wave techniques have their greatest promise where the other methods fail. for exam-
ple, analysis of high frequencies components, systems with multi-mode interactions, radia-
tion problems and applications with geometries and accuracy requirements not amenable
to simpler analytical techniques, i.e., the type of structures studied here. For instance.
Figure 4.4 shows the multi-mode propagation constants for the even modes on a shielded
microstrip line produced by a program generalized to handle arbitrary layered structures
as discussed. The simple case of microstrip is shown since there is available data for com-
parison and verification. The curves overlay the data supplied by Yamashita [90] with
the exception of the dominant mode. Touchstone results are also shown for the dominant
mode which are in exact agreement with the present method. It is presumed that the
Touchstone results are correct for this mode since the dimensions are not extreme in terms
of wavelengths; thus, quasi-TEM assumptions, as used by Touchstone, should be adequate.
Most likely, the discrepancy for Yamashita's approach is attributable to the use of pulse
basis functions at the strip edge which do not satisfy the edge conditions, although his
discretization over the strip improves the capability to approximate the true current. Nev-
ertheless, the form of current assumed with the present method is the exact form for the
static case which should be very close to the true solution and therefore is more likely to
give better accuracy. Since the exact details of the discretization are not supplied in [90],
it is difficult to make a judgement, however, the real point here is the ability to model the

higher order modes. (To represent the odd modes, a higher order expansion of the current
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Even Modes -- This method

5] Dominant Mode -- Touchstone

-------- Dominant Mode -- Yamashita

Effective Relative Dielectric Constant (g, )
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Frequency (GHz)

Figure 4.4: Multi-mode propagation constants for the even modes in shielded microstrip
(a=b=127mm, h = 1.27 mm, w = .635 mm ¢, = 8.875).
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is needed such as Yamashita’s approach or possibly, expansion by Chebyshev polynomials
as in [83].)

Besides the obvious utility of this type of information for circuit design and the need
for these quantities to be demonstrated in later chapters, the ability to visualize the field
or power distribution often provides important insights into why certain structures behave
as they do, and also, how the behavior might change when the structure is modified. For
example, we later will extensively discuss the special case of a stripline (homogeneously
filled shielded strip) which passes through an aperture in the wall of a cavity. The field
distribution in the vicinity of the strip as shown in Figure 4.5 gives a clear indication of the

constraints which must be placed on the size of the aperture. One can see that the larger

E Field on waveguide cross section
Arrow scaled to logarithm of field magnitude

0dB —>
-20dB —=
40dB -

Figure 4.5: Stripline field distribution for the dominant propagating mode.

field magnitudes are tightly confined to the immediate vicinity of the strip as expected

(the tails of the arrows are the field points). For a ‘pass-thru’ aperture then, the opening
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in the wall should be sufficiently large so that minimal energy (proportional to the field)
is intercepted by the wall. From the numerical data, quantitative criteria can casily be
established.

Similar examples for microstrip and suspended microstrip can be found in Figures 4.6

and 4.7, respectively. The upper part of the structure in Figure 4.7 has the same dimen-
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Figure 4.6: Microstrip field distribution for the dominant propagating mode.

sions as the structure in Figure 4.6. By comparing the fields in these two cases, especially
in the substrates, one can appreciate how one structure behaves quite differently from the
other. Consider for example, what would happen if another strip is introduced on the
substrate in these two cases. Clearly, the suspended microstrip field distribution would
be more greatly disturbed than the conventional shielded microstrip, and therefore the
coupling between strips would likewise be greater. This type of argument is a ‘visual’

application of the Reaction Theorem. Such an ability to visualize the field demonstrates
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Figure 4.7: Suspended microstrip field distribution for the dominant propagating mode.
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one of the benefits of this type of analysis: enhancing our intuitive understanding of the

behavior of these structures as well as providing quantitative information.

4.2 Application to Multi-layered Slotline

A similar process can be used to evaluate slotlines or coplanar waveguide. Since copla-
nar waveguide can be treated as coupled slotlines by a simple extension of the method,
only the single slot case will be discussed here. We assume the magnetic current is of the

same form as in the electric current case which then is valid for narrow slots:

K(z'.y.) =7

2(?_jk9y’ |z’ —z,| < W/2 (4.30)
TWy1 -4 (25

The variable kg here represents the set of characteristic complex phase constants associated

with shielded slotline modes. They are the eigenvalues of the boundary condition equation:

0 -1 = -jwf//] [étnK - é—mx] -Kdv'=0 (4.31)

which enforces continuity of the tangential magnetic field ( H;) in the slot. As before, a
particular value for k, is found first, before the fields of a particular mode are calculated.
The procedure is the same as before except that the field expressions are changed to reflect

the change in the source terms and complementary boundary conditions for the dual fields.

4.2.1 LSE Modes

Expanding the VWFs we then find that the LSE mode fields in each layer can be

written in the forms:

e 1] 2=6a) | 1. |
E = P 2 ! ~ a . ’
LSE o [a(kg n 1\3)] [zyky cos kx coskzz’ + §yjkzk, sin k. z cos er}
1 { cos k.i(ci = 2) [Mevi + jtankyi(c; — z)] (1<0)

cos ki(c; — d;) cos k;i(z — d;) [fleri — jtan k(2 — d;)] (i>0)

(4.32)
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(2 - 5m)w€0kz,'

ak2(k2 + R2)

1 cos kyi(ci = 2) [fevitank,i(c; — 2) = j] (1 £0)
d;)

Hisg = A [ } [i‘g}krky sin kpx cos kpr’ + Qﬁjkz cos kT COos krz/]

COSkzi(Ci_ Coskzi(z—di)[’f]eL,;ta,nkz{(Z“di)+j] (2 > 0)

—A; {Ml‘)—eﬁ] [29k, cos k. cos kzz']

ak?

1 { cos ki(c; — 2) [flevi + Jtank,i(c; — 2)] (1 <0)

cos k;(¢; — d;) cos k;i(z — d;) [fleri — jtank;i(z — d;)] (¢ > 0)
(4.33)

where ¢ = 0 for the layer with the slot so that
Ay = —% (4.34)
° - 7.76U0 +jta'n kzO(CO - dO) '

A = 2 (4.35)

feL1 — Jj tan kz1(cr — di)
By matching the tangential components of the field at the interfaces above and below the

strip layer the remaining coupling coefficients are found to be

jA‘_l kz(i—l)kiz (l > 1)
s kzikf;_)ycosk,ioyy(cio1 — diz1)[fleri tan kai(ei — di) + ]
t y pp— L _ (i<0)
kaiki; 1y cos ky(ir)(cirr — dig1)[flevi tan kzi(ci — di) - 7]
(4.36)

The expressions for power density and reaction of the LS E modes are

|Ai|2(2 = bm)*we, k2 ky | coskyz [[ cos kpz')’
2a? (k24 k2)e;i| [(kD)?] |cosksi(e; — dy)]?

{ |evi cos k(e — z) + 7 sink,i(c; — z)|2 (1 <0)

P=E.,H:

|fleLi cos kyi(2 — d;) — 7sink,i(z — dg)12 (1>0)
(4.37)

— _ 22 bm)Pwe k2 ky | cos® koz ([ cos ksa')’
R = E;(ky)H.(=ky) = A (K2 + k2)e; | | &2 cos? kyi(c; — dy)

{ [Mevi cos kzi(ci — 2z) + Jsin k(¢ — z)]2 (1 <0)

(fleLi cos koi(z — d;) — jsink,i(z — d,’)]2 (1>0)
(4.38)



4.2.2 LSM Modes

Similarly, the LSM mode fields can be written as

- 2= bm . PR . '
Ersm = -B; [u_((ATA?))e—] [:L'ylcz coskyz cos k2’ — §yjhkokysin kyz coskyz ]
T y/t
1 { coskyi(¢; = 2) [mui + Jtank,i(e; — 2)] (1 <0)
cos kzi(ei ~ di) cosk-i(2 — d;) [fimpi — Jtank;i(z = d)] (> 0)
+B; {(2 — 6m)] [ég)kr sin k. cos kra:']
ae,-kz,-
1 { coskzi(¢i — 2) [muitan k(e — 2) — 7] (1 <0)
cos kui(c; — d;) cos k(2 = d;) [fmr. tank,(z = di) + 3] (1> 0)
(4.39)
Hisn = 3B [%’%} {i'y/cl.ky sin kyz coskyz’ — Qg]jkz cos kx cos krz'l
1 {COSk:i(Ci'—z)[f]mUx tallkzi(,ci-z)_j] (l S 0)
coskzi(ei — dy) coskzi(z — d;) [impitank;i(z = di) + 3] (i >0)
(4.40)
where
By = < (4.41)
¢ - NmUo + J tan ko(co — do) '
€]
B, = .
! 7-7le - ] tan k:l(cl - dl) (4 42)
jkzi .
B,‘_ = ; 1> 1
B - "hogion) €08 kogioy)(cimt = dimy)[fimLi tan kzi(ci — d;) + J) (>1)
v jkzi .
-B; - - 1< 0
* ko(ig1) cosboipry(civ1 = dig1)[imui tan k(e — d;) = 7] ( )
(4.43)

For the LS M modes the required terms for calculating power and reaction are

P=-nb; = 1B G [Ae] || ek
‘2(12(1»‘3 + kg) €k, k‘; | cos kz,'(c,' — d,‘)|2

{ If]mu,‘sin kz,'(c,‘ — z) — jcos kz,'(c,‘ — Z)|2 (i < O)

|fimeisin kzi(z = di) + jeoskyi(z — ) (i > 0)
(4.44)
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bl
P

- oy - p22=8m) e [ ks ] koky sin? k.z ([ cos k,1']
R=-E,(k)H(-ky) = -B a? k] k(K24 k2)| "~ cos? ke - d,)

{ (Imuisin k;i(¢c; — z) — jcos k(¢ — z)]2 (1<0)

(ImpLisin koi(z — di) + jcos k(2 — d;))° (i > 0)
(4.45)

4.2.3 Cross Terms

There are also two sets of cross-terms from the Epsy x Hisg product. The power

terms are

- ril, — 141y (

2a? (}CZ. + kg)e,- k:)Z I Cos k,,—(ci - d,‘)l2
{ [(Mmui cos kzi(ci = 2) + gsin kyi(c; — 2)) [feu: cos kzi(ci — 2) + jsink,i(ci — 2)]° (1 <0)

[MmLs cos kyi(2 — di) — jsink,i(z — d;)] [feL: cos ki(z —di) —jsink,(z-d)]" (:>0)
(4.46)
(2 = §m)we, { ks ] kok; sin? k.2 [ cos kyz')?
a? ki€ k;;(k3 + (k;)2) | cos kz,-(c,- - d,‘)|2
{ (Mmuisink,i(c; — z) — jcos kyi(c; — 2)} flevi sin k4i(c; — 2) — j cos kui(ci—2)]" (1<0)

P = -E,H,=BA

(imLisink,i(z — d;) 4 j cos k(2 = di)] [fleLi sin k(2 — d;) + j cos ki(z—d)]" (i>0)
(4.47)

Similarly, for the reaction we have

a? (k2 + k2)e; | | k2 cos? k,;(¢c; — d;)
{ (imui cos kyi(ci — z) + jsin k,;(c; - 2)) [flevi cos ki(c; — 2) + 7 sin ki(ci—2)] (:<0)

- 2 2 2 n2
R = Edk)H.(~k)= B 2=t “"°[ ts Hk—y} cov ez ] cosber]

(fimLi €08 kzi(2 — d;) — jsink,(z — d;)] [fleL: cos ki(z —di) - jsink,(z - d;)] (i >0)

(4.48)

(2 = 6 ) e, [ ks ] kok, sin? k,z [[ cos kyz')’
a? ki€l | kai(k2 + k2) | cos?kyi(ci — d)

{ [imuisinkzi(ei = 2) = jcos ki(ei — 2)] [flevi sin kzi(ci — 2) = jcoskyi(es — 2)] (i < 0)

R = -E,(k,)H.(~k,) = B:A;

(imLisin k;i(z — d;) + j cosk,i(z — d;)] (leLi sin k,i(2 — d;) + j cos k.i(z-4d;)] (:>0)
(4.49)

The integration of these terms on the cross section involves the same forms as for the
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electric currents which have already been given.

4.2.4 Application to Finline and Suspended Finline

As with strips, the distribution of the field provides insight into the behavior of the
structures. Two examples illustrate by showing the change in the field structure for finline
without a substrate compared to the case where a dielectric substrate (¢, = 2.2) is added.

These cases are shown in Figures 4.8 and 4.9
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Figure 4.8: Finline field distribution for the dominant mode.
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Figure 4.9: Suspended finline field distribution for the dominant mode.
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4.3 Scattering from Pins in Rectangular Waveguide

The insertion of wires or pins through the ground planes is a technique used for many
years to suppress parallel plate waveguide modes in stripline and for structural support. It
is also a convenient way to form waveguides. cavities or isolation walls in stripline circuits.
The experimental work discussed in Chapter VI is an example of the formation of a cavity
where our particular need for this analysis will become evident. Other applications include
the use of posts (or strips) in a rectangular waveguide as reactive elements in filter and
matching networks [9, 10. 68] and for active device mounts and tuning elements {7, 24].
These types of applications have been the focus of most of the theoretical and experimen-
tal work appearing in the literature. In contrast, what we are interested in here is the
effectiveness of a ‘wall of wires’ as a short circuit.

Analytical techniques in early works are primarily based on variational methods [54,
48, 45). These approaches, however, become impractical for more than a few posts or posts
with irregular spacings and are limited in accuracy at high frequencies. Even later works
focussed primarily the study of three posts at most with emphasis on accuracy for post of
relatively large diameter [43, 44, 3]. The emphasis on a limited number of larger posts is
the opposite of what we require here where we will tend to use wires of small diameter and
of greater number (and density). It is also evident that larger posts require more complex
formulations and numerical treatments than is desirable for our situation'. Image theory
or grating formulations as in {29] or especially [46] would seem to be appropriate for this
problem but appear to be excessively complex and have limited potential for combination
with other structures. The approach developed here will therefore be in spirit of the

approach given in [43] which offers a good balance of simplicity and flexibility. In addition,

'Unless one already has a numerical code to treat the problem at hand, it is always desirable to use
the simplest formulations which can produce results of sufficient accuracy and therefore can be quickly
implemented. Another consideration is whether the resulting numerical model can be efficiently evaluated
which usually, but not always, favors the simpler formulations.
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the method will be even further simplified for wires of small diameter.

4.3.1 Reflection Coefficient Formula Derived from the Reciprocity Theorem

Consider a grid of wires appearing in the cross section of a rectangular waveguide as

illustrated in Figure 4.10. Let us assume that the diameters of the wires are sufficiently
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Figure 4.10: A grid of vertical wires in rectangular waveguide.

small to allow us to represent the current on the wire as an infinitesimal filament located

at the center of the wire, i.e.,
J = :Lé(z-1z,)8(y-y;) (4.50)

Furthermore, the waveguide dimensions are deemed to be such that all modes but the
dominant one are cut-off. The current on the wires is also assumed to be excited by the
dominant mode field which has no z variation. This fact justifies our assumption that
the current also has no z variation. For multilayered structures this assumption would no
longer be valid and the formulation must be made more general, however, it is sufficient

here since the present need for this effort is restricted to stripline in support of Chapter VI.
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We can derive a reflection coefficient representing the scattering of the dominant mode

by an application of the Reciprocity Theorem [33] in the form

//[Eaxﬁb-ﬁbxﬁaJ-ﬁdS' - ///[Eb-ja-ia-jb dv (4.51)

The locations of the surfaces defining the volume of integration are coincident with the
side walls of the waveguide and two transverse planes on either side of the grid of wires.
The transverse planes are assumed to be far enough away from the grid wires so that only
the dominant mode has significant field strength. Now let the E, and H, fields represent
the normalized fields of the dominant mode. incident from along the —y axis. having no

source terms within the volume of integration, i.e., J, = 0. Then these fields are given by

E. = Ew= 3sin(kpz)e kY (4.52)

T T Ly — 7k

H, = Hyo=-z—=sin(kyz)e™ " (4.53)
wi

where k,, = mm/a, m = 1 for the dominant mode and &k, = N kmy. The E, and
H, fields will be produced by the currents on the wires and radiate in both the +3 and
—y directions. If the currents on the wires. I, are those which are excited by the above

incident field, then we can write

E, = TE;p= ffsin(kmr)ei’kyy (4.54)
Hy = THy=zz rﬁsin(kmx)eilkw (4.55)
wp

where the top sign is for y < y' and the bottom sign for y > y’. Equation (4.51) now

// Eio-Jdv
F —_

S ¥ s (4.56)
2// Eo x Hio - § dzdz

Note that to obtain this result, the surface integrations over the walls of the waveguide

reduces to

were found to be zero, since the tangential E fields are zero there for perfectly conducting
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walls and also the surface integral over the waveguide cross section on the +y side of the

wires evaluates to zero. The remaining integrations are readily performed to give

27 f po

I = _T\/——;‘/—-—TZI sin WIJ/(I (457)

We thus need only determine the unknown currents from which the reflection coefficient is

produced by this simple summation.

4.3.2 Method of Moments Formulation

In the previous section, the assumption of constant current on the z dimension has
already been stated. In the parlance of the Method of Moments this is a ‘pulse’ basis
function which in effect has reduced the problem from three dimensions to two. For small
diameter wires as treated here, the problem can be further reduced to one dimension, if the
grid of wires are all contained in a transverse plane, however, this produces no significant
advantage.

Since we have previously found the dyadic Green’s functions for homogeneously filled
rectangular waveguide (section 2.4), we can use Equation (1.33) to derive the electric fields
in the waveguide. With the current as stated by Equation (4.50), the z component of the

E field produced by the j** current filament is given by:

oo
o 1
E, el Z L_ (kmz)sin(kmz;)e” Tkyly=y,| (4.58)

It remains then, to find the set of I;’s which produce a total electric field that satisfies
the boundary conditions on the wires, specifically E, + - E;o = 0. The simplest way to
enforce this condition is to use point matching on the surface of the wires which is to use a
delta weight function. Although found to produce identical results, a two point matching

scheme was used to provide symmetry balance in which the field is taken as the average
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over two points of the wire surface. The resulting expression for the field is
W 1
E.. daldy Z sin infkm(2; £ 70)] sin(ka; Je = Kslv=w)] (4.59]

where i is an index indicating the field evaluation points and r, is the radius of the i** wire.
The £, notation is taken to imply the averaging of the field contributions at these points.

The combined field expression can be written in matrix form as
(Z;;][;] = [~ Eio,] (4.60)

which is solved by matrix inversion for the unknown currents.

4.3.3 Validation

In order to investigate the validity of this formulation we first compare to the data of
Marcuvitz [48] for single posts. The accuracy of this data is well established for diameter
to waveguide width ratios (d/a) of up to 0.25. The equivalent circuit for the single post

is as shown in Figure 4.11. From this equivalent circuit we can convert the values given

Port Xa Port

Figure 4.11: Equivalent circuit for single post in rectangular waveguide.

by the formula in [48] to a reflection coefficient which can be compared to the results of

Equation (4.57). Since our formulation is a simplified version of the method found in [43],
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Figure 4.12: Magnitude and phase of reflection coefficient for a single conducting post
in rectangular waveguide. Point match Method of Moments (MoM) results
compared to the data of Marcuvitz [48] (A/a = 1.4).

we would not expect the range of its accuracy to extend as far; thus, we will limit the
range of our discussion to d/a < 0.1. Moreover, we are specifically interested in thin wires
with diameters (d) much smaller 0.1a, on the order of 0.02a, the approximate value to
be used later in Chapter VI. The results over this range is given in Figure 4.12 which
shows the magnitude and phase of the reflection coefficient of a single post in rectangular
waveguide as compared to Marcuvitz’s data. As can be seen, the comparison is excellent
with a maximum phase error of less than four degrees for the largest wire diameter. Thus,
we have a first indication of the accuracy of the method.

Before proceeding to further results, it is instructive to further examine the single
post case. The behavior of the element values of the equivalent circuit follow the curves
illustrated in Figure 4.13. By evaluating the input impedance for one of the ports with
the second port matched and plotting it on the Smith Chart as in Figure 4.14, we see that
the input impedance progresses from inductive to capacitive as the diameter is increased.

We also note that the single post makes a surprisingly good short circuit at a diameter as
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Figure 4.13: Behavior of element values for the equivalent circuit given by Marcuvitz [48]
(Ma=14).

small as d/a = 0.15, the diameter at the 180° phase shift point.

Not surprisingly, as more pins are added the wires form an even better short circuit
producing ever higher shunt susceptance values. For example, Figure 4.15 shows how
the shunt susceptance value increases rapidly as the number of equally spaced wires is
increased. In this case we have lumped the reactive behavior of the grid into a single
shunt element on the transmission line, i.e., replace the series capacitors of the equivalent
circuit of Figure 4.11 with shorts and the shunt inductor with a general reactive element.
(Note also that all wires in this investigation will be located in the same transverse plane
of the waveguide which is the reference plane for the equivalent circuits.) It is interesting
to observe that the normalized pin diameter (d/a), where the susceptance crosses over
from inductive to capacitive, depends on the number of wires and generally moves toward

smaller post diameters as the number of posts increases. This suggests that for a given
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Figure 4.14: Input impedance as a function of post diameter with a matched load port.
Post diameter increases in the counter-clockwise direction from d/a = .005 to
d/a = .25 in .005 steps, demonstrating the transition of the input impedance
from inductive to capacitive.
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Figure 4.15: Shunt susceptance behavior for up to seven wires placed evenly spaced across
waveguide cross section.

number of wires equally spaced across the guide, there is an optimum post diameter which
most nearly produces an effective short circuit. Similarly, it implies that additional posts
do not necessarily improve the capability to simulate a true short circuit at the reference
plane.

With these large shunt susceptance values, the real part of the input impedance becomes
negligible so that the network can be treated as a one port terminated with this reactive
element. As such, the one port can also be modelled as a true short circuit located at a

distance from the reference plane determined by the calculated value of susceptance and

the transmission line equation:

B = cot(Bl) (4.61)

where B is the susceptance, [ is the distance from a true short to the reference plane and
B = 2m[A,, with A, the guided mode wavelength. The argument 8! is the phase angle of

the reflection coefficient for the line. The accuracy with which we can determine this angle
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is a measure of how well the grid of wires is treated by the simplified model, thus becoming
the focus of the experimental results and comparisons to follow.

To further confirm the accuracy of this method, measurements were made with an
HP8510 Network Analyzer on various combinations of wires in X-band waveguide (0.4 x0.9
inches) at 12 GHz. A series of seven equally spaced holes where drilled in a line on the
broad wall, transverse to the axis of a section of waveguide. The holes themselves were
small enough in diameter and sufficiently spaced so that they did not significantly perturb
the propagation of the fundamental mode, a fact verified by subsequent measurements.
The reference plane was established and the fixturing de-embedded by performing a one-
port calibration with two short circuited waveguide sections of different lengths and a
precision waveguide load. To make the measurements, different patterns of wires were
inserted through selected holes and the reflection coefficients recorded. The patterns used
will be denoted by a series of ones and zeroes, for example the case of the single centered
post would be designated by the pattern ‘0001000°.

The results of one set of measurements are shown in Figure 4.16. In this and the fol-
lowing charts, data marks correspond to the three wire diameters used (d = .025,.033..039
in.), the filled-in marks representing the corresponding measured points. As can be scen
by drawing a line from the center of the chart through the various points, the accuracy
of the predicted phase angle is quite good. Similar results are found for wires in pairs as
shown in Figure 4.17.

Figure 4.18 is an experimental demonstration of the case discussed above where the
number of pins is progressively increased. This is perhaps the worst case where errors in
phase angle are on the order of five degrees for some points. Some of these errors are
attributable to experimental error due to variables such as mis-alignment in the transverse

plane and tilting of the wires in the holes, which necessarily must be larger to accommodate



109

single post at various offsets from the

flicient measurements for a

mpared to predictions

Figure 4.16: Reflection coe

from the simplified model. Wire diameters

in the cou

centerline co

(d

nter-clockwise direction.

ase

.025,.033,.039 in.) incre



110

~——0— Pattem : 1100000

---@---- Pauem : 0110000
--&--- Patten : 0011000

Figure 4.17: Reflection coefficient measurements for pairs of wires at various offsets
from the centerline compared to predicted values. Wire diameters (d =
.025,.033,.039 in.) increase in the counter-clockwise direction.



111

ntered wire grids of equal spacing and

--4--- Pattem : 0111110

--%-- Pattem: 1111111

ed reflection coefficients for ce

Figure 4.18: Measur

in the

.025,.033,.039 in.) increase

creasing number. Wire diameters (d

counter-clockwise direction.



112

different diameters. Nevertheless, the overall results suggest that the method is capable of
predicting the phase to within a few degrees.

The final plot, Figure 4.19, is an illustration of a case very similar to one which will

Patten : 0111111
Pattem : 1011111
- Pauem: 1101111
-- Pattem: 1110111

Figure 4.19: Measured and predicted reflection coefficients for wire grids with a single pin
missing in the sequence. Wire diameters (d = .025,.033,.039 in.) increase in
the counter-clockwise direction.

be encountered later. In this instance, an evenly spaced row of wires were installed across
the waveguide cross-section, however, one pin was removed at various locations in the
sequence. As will be seen in Chapter VI, this type of approach is used to allow a strip to

pass through the pin curtain. The ability to predict the reflection coefficient for this case
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is very important for certain situations as will be seen. Although the comparison for this
case looks reasonable, it is pushing the limits of the experimental errors involved with the
fixture. However, a consideration of the previous results leads to tlie conclusion that the

results are reliable.

4.4 Summary and Conclusions

In summary, we have seen how problems with uniformity in one dimension can be ana-
lyzed with a high degree of accuracy. The uniformity allows the structure to be represented
by a single modal series which can be numerically evaluated efficiently.

The use of impedance boundary conditions and a LSE and LSM expansion of the fields
greatly simplifies the modelling of multilayer substrates and superstrates. This particularly
facilitates the computation of fields throughout the structure since most of the evaluation
can be done analytically. Application to shielded strip and slot geometries vields both
reliable quantitative information as well as visual representations of the fields providing
insight into the behavior of the structure.

A simple model for scattering from wires in rectangular waveguide has also been de-
veloped. The simplicity of the model is in contrast to methods discussed in the literature
which are oriented towards fewer posts with relatively large diameters. The present method.
however, emphasizes posts of greater number and smaller diameter. Experimental results
were obtained to verify the modelling ability of the technique. The need for this model in

the context of the present work appears in Chapter VI.



CHAPTER V

COUPLING THROUGH STRIP-FED SLOTS

A class of structures which couple from one guiding structure to another through an
aperture is important in microwave circuits, aside from the radiating slot. In fact, for
antennas, the coupling of waveguide to waveguide through a narrow slot in a common wall
has been used for many years in the design of corporate feed networks for slotted waveguide
arrays. As discussed in Chapter I, the case of coupling between shielded strips in a similar
manner is becoming equally important in current and future systems, including similar feed
networks. In this chapter, the analysis of these types of couplers will be presented along
with experimental verification of the numerical results to demonstrate the applicability of

these techniques to microwave and millimeter wave devices.

5.1 Network Analysis

The basic structure of the coupler to be discussed is as shown in Figure 5.1. Variations
on this geometry include cases with microstrip lines on the same side of the slot; multi-
layered substrates/superstrates; reverse couplers where the lines exit on the same wall:
additional parallel slots and lines; and 3- and 4-port networks, among others, but all can
be analyzed using the same approach.

Integral equations have been formulated for this problem in Chapter I and are solved

as outlined in Chapter III for currents on the slot and strips. Therefore, in this chapter

114
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Figure 5.1: Geometry of basic coupler.

we need only discuss the interpretation of these currents in order to extract the network
parameters which characterize the coupler’s behavior.

Solutions for the currents are found with even and odd gap generator excitations at the
line ends. These are sufficient to characterize the two-port problem since all excitations
can be decomposed into even and odd components. The approach can be generalized using
N-port network analysis [14, pp. 157-158] but this aspect is beyond the focus of this work.

From the even and odd currents on the microstrip lines, even and odd impedances
are found by measuring the relative distance (d) from a standing wave maximum to the
location of the slot as illustrated in Figure 5.2. We can also estimate the guided wavelength
for the even and odd modes from the standing wave patterns by measuring the spacings
between minima or maxima. If the materials are lossless, as we typically can assume for

most microwave circuit applications!, the expression for the reflection coefficient referenced

'For slightly lossy structures, the estimation of the attenuation constant can be easily determined from
the ratios of successive current maxima or minima(55]. For larger losses the situation is more complex,
since not only the envelope of the standing wave current but also the spacing between maxima and minima
vary along the line {27, sec. 5.4]. In this case one must resort to a parameter estimation scheme to find the
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current
magnitude

slot
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Figure 5.2: Measurement of location of current peak relative to the slot for standing wave
calculation.

to the slot reduces to
[ = —elmd/A (5.1)
which produces an impedance according to
7 = —_ (5.2)

The even and odd impedances are then combined to form the Z-parameters which, in the

symmetric case studied here, are given by the simple expressions:

2y = = 72 (5.3)

Zy = 2" =7, (5.4)

Finally, the even and odd impedances may be combined to produce S-parameters through

the transformations:

7} - 7% -1
Sn = 1L =5 5.5
11 Zlgl +2211 _ Z%l +1 22 ( )
27
521 = 2 512 (56)

Z} +2Z, - Z: +1 -

optimum fit to the current with the attenuation and propagation constants as parameters.
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which are used to characterize the coupling behavior.

Before proceeding, the limitations of this technique should be noted. Transmission line
analysis of the current in this way assumes that there is only one propagating mode on the
line at some distance from the discontinuities. For the shielded structures treated here,
this requires that the cross-sectional dimensions of the feeding microstrip lines be such that
all higher-order modes are cut-off or, looked at another way, a given cross-section restricts
the maximum frequency for which circuit parameters can be reliably produced with this
technique. Also, in order to estimate the phase constant, the line must have a minimum
length, typically on the order of the wavelength. Moreover, for good numerical stability of
the results over a wide range of parameters, it has been found useful to average a number
of estimates on a line approximately three wavelength long, discarding the maximum and
minimum values. This restriction demands more unknowns and hence greater computa-
tion time, however, the results are quite reliable. The alternative method based on the
Reciprocity Theorem developed in Chapter VI, overcomes these limitations at the expense

of a more complex formulation.

5.2 Fixture Design

To verify the results, we have designed and constructed the fixture shown in Figure 5.3.
Sample substrates with various line and slot dimensions are installed in the fixture in
different combinations to allow frequency response measurements. A number of circuit
boards were made: One set of boards was double-sided with a microstrip line etched to
a certain length relative to a slot etched in the ground plane on the opposite side. The
second set was one-sided boards designed to be held against the boards of the first set by the
fixture, with microstrip lines of corresponding lengths. The lines are excited by Eisenhart
connectors which provide a reasonable match over a broad frequency range, even when the

contrast in ¢, is high (¢, = 1 for the connector, ¢, = 10.6 for the substrates). In our case
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Figure 5.3: Photograph of coupler fixture assembly.

this is partly a result of the good match in dimensions between the boards and the tip
to outer conductor spacing of the connector. Another critical factor is the transition from
the outer conductor of the connectors to the ground planes of the boards which must be
carefully designed. The match at the connectors was optimized to minimize the launching
discontinuity, allowing us to avoid the necessity for TRL [34] or similar de-embedding

schemes which require additional and more complex fixturing.

5.3 Numerical and Experimental Results

A coupler with the geometry of Figure 5.1 was analyzed using the above techniques.
The parameters which can be varied in this design are numerous, consequently, only a few
variations will be presented here. In all cases, although not required in general, symmetric
geometry was maintained to simplify the even and odd mode analysis, as discussed above.
Also, in all cases the cross-section for the cavity was 0.25 x 0.25 inches: the substrates were

0.025 inches thick with ¢, = 10.6; and the slot and line widths were 0.025 inches. The
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cavity length was fixed at 2.0 inches for the measurements and varied for the numerical
results to allow an approximately constant 3A feed-line length. This dimension does not
affect the results since for all frequencies considered here, the cavity is below the cutoff
frequency of the higher order microstrip modes and the reference plane was fixed at the
location of the slot.

To illustrate the behavior of the coupler, we first examine the influence of various
parameters at fixed operating frequencies. The effect of the line stub length (/) is shown

in Figure 5.4. It can be seen that the stub is initially too long for an ideal match at this
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Figure 5.4: Effect of the line stub length (/) on S2; and $;; magnitudes (s = 0,L; = 0.25
inches and f = 12.0 GHz).

frequency. However, as the stub is progressively shortened, a certain length “matches™ the

two port coupler and with further shortening the match gets progressively worse. We can

interpret this effect by examining the equivalent circuit shown in Figure 5.5. Variation

of the stub length has the effect of changing the position of the current maxima (virtual

shorts) and minima (virtual opens) on the lines relative to the slot, thus varying the degree

of coupling through the slot represented by the coupling transformers. Consequently, the
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Figure 5.5: Equivalent circuit for a 2-port coupler.

peak coupling occurs when line stub length places a current maximum below the slot
or lengths in odd multiples of ~ A/4. The opposite effect occurs when the line stub is
approximately in multiples of A/2 in length so that there is a virtual open circuit beneath
the slot, in which case there would be very little coupling between the line and slot.

A similar effect is observed for variations in slot length (L,) as illustrated in Figure 5.6.
Again using the transmission line analogy, one can interpret this effect by transforming the
impedances at the ends of the slot to the center. These end impedances are nearly short
circuits, the difference being due to fringing fields which extend beyond the ends of the slot
line, fully accounted for by the full-wave analysis. At the matching length, the resulting
transformed reactances at the center cancel the reactance associated with the junction,
thereby matching the two ports. As the slot becomes very short, the field in the slot is
effectively “short circuited”; thus, coupling is reduced. S, then tends to zero while Si
approaches unity (since the structure is closed and assumed lossless). All of these effects
would be expected to repeat as the slot length increases in multiples of A, however, for the

case studied here, the maximum slot length is limited by the dimensions of the shielding
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Figure 5.6: Effect of the slot length on S3; and S}, magnitudes (s = 0,/ = 0.049 inches
and f = 18.0 GHz).

package which have been chosen to allow propagation of only the dominant microstrip
mode.

To generate a frequency response, the programs are run at each frequency of interest
and the slot and line lengths are varied to form a parametric database. The database is
then scanned and interpolated to assemble frequency response plots as functions of the
geometric parameters. Measurement of one of the assemblies is shown in Figure 5.7 in
comparison to corresponding numerical results for a stub length of / = 0.115 inches. The
position of the high frequency corner of the response was found to be very sensitive to the
length of the line stub. As discussed above, this corner is controlled by the length at which
the stub is approximately A/2. Since the effective dielectric constant for the microstrip
is approximately ¢, .;; = 7.8 at 17.0 GHz, a null is predicted in the coupler response for
that neighborhood, in good agreement with the results shown. The error bar on the high
end indicates the sensitivity of the high frequency corner to a £5 mil error in line stub

length which is well within the expected tolerance errors for positioning the stubs relative
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Figure 5.7: Comparison of theory and experiment for S2; magnitudes with s = 0,/ =
0.1151in., Ly = 0.250 inches. The error bar indicates the influence on the high
frequency corner of a £.005 inch change in stub length.

to the slot. In view of the above, we conclude that the theoretical results are in excellent
agreement with the experimental data. In fact, we were able to move the upper board
slightly toward the slot to extend the stub length somewhat, shifting the high corner to a
lower frequency as expected. However, this also created problems with the match at the
Eisenhart microstrip launchers so these results are not shown.

The ‘sidelobe’ which can be seen at the high frequency end, is also attributed to toler-
ance errors for the line stub lengths. A difference in lengths would produce multiple nulls
in the response at the high end resulting in undesirable sidelobes in between. Because
of the high sensitivity to line length, owing in part to the high dielectric constant, the
amplitude and span of the sidelobe is a strong function of the relative line stub lengths, a
fact which can be observed when the boards are slightly shifted as described above. The
sidelobes do not appear in the theoretical result since a difference in stub lengths between

the upper and lower lines introduces an asymmetry which has not been included in the
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