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Abstract

The propagation of electromagnetic fields through a one dimensional in-
homogeneous medium is studied by solving the Maxwell’s equations with a
numerically nondissipative finite difference scheme. The medium is assumed
to be stratified in layers of specified permittivity, permeability, and conduc-
tivity. In particular, the reflection from and transmission through composite
slabs of finite thicknesses is studied for a normally incident Gaussian pulse.
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Abstract

The propagation of electromagnetic fields through a one dimen-
sional inhomogeneous medium is studied by solving the Maxwell’s
equations with a numerically nondissipative finite difference scheme.
The medium is assumed to be stratified in layers of specified per-
mittivity, permeability, and conductivity. In particular, the reflection
from and transmission through composite slabs of finite thicknesses is
studied for a normally incident Gaussian pulse.

1 Introduction

Although a direct solution of Maxwell’s equations via finite differences was
proposed as early as 1966[1], a serious application of the method to general
electromagnetic scattering problems was not considered until 1975[2].
Traditionally, the scattering problems are solved by the complex time har-
monic approach which is based upon the assumption of an e~** time depen-
dence in the fundamental Maxwell’s equations. The solutions are obtained at



single frequencies which in principle may be combined using spectral meth-
ods to yield the final result. On the other hand, in the study of the transient
response of scatterers, it may be more efficient and instructive to solve the
time dependent form of the equations directly, using finite differences. This
approach is known as Finite-Difference Time-Domain method(FDTD) in the
electromagnetics community(2, 3.

In this paper, an example of this method is given for the case of prop-
agation of an electromagnetic pulse in planar stratified medium (Figure 1).
Starting from Maxwell’s equations in one dimension, a consistent leapfrog
scheme is developed for the solution of field quantities in the medium. The
stability of the scheme and its compliance with the Courant-Friedrichs-Lewy
criterion is discussed next. Since the scattering problem under study repre-
sents an open problem with an unbounded physical domain, a method has to
be devised to enable a proper truncation of the domain of computation. This
is done by the incorporation of a first order absorbing boundary condition
which accurately simulates the medium surrounding the outer surface of the
computational domain. Finally, several numerical examples are presented to
display the performance of the method.

The treatment presented here is similar to that given in [4] although we
will take a different approach. In particular, the stability criterion and the
absorbing boundary conditions are discussed in some detail.

2 Maxwell’s Equations

The propagation of electromagnetic waves in space is described by the Maxwell’s
equations which form a system of coupled differential equations for electric
and magnetic field vector intensities, E and H. The Maxwell’s equations in

a source free medium are[5]

Vsz—-?E V-D=0
ot
JD ()
VXH=E+J V-B=10

where D and B are the electric and magnetic flux densities, respectively and
J is the volumetric conduction current density. They are related to the field



quantities through the constitutive relations and for an isotropic medium

D =¢cE
B=iH (2)
J=0E

where €, u , 0 are assumed to be time-independent functions of space denot-
ing permittivity, permeability, and conductivity of the medium, respectively.
From Maxwell’s equations, it may be shown that the fields satisfy the inho-
mogeneous wave equation in the lossy medium. Considering the electric field
for example, we have after combining (1) and (2)

1 9? 0
2 1L O ) ol
(V = 8t2)E +V(np) X (VXE)+ V[E-V(lne) ,uaatE 0 (3)
where ¢ = 1/, /e is the speed of light in the medium.
Assuming the medium is stratified in the x direction, the Maxwell’s equa-
tions may be specialized to the one dimensional case. Retaining only the E,
and H, components, we have

0E, 1 (dH,
ot (x) ( Oz —}—o(x)Ey)
(@
o, _ 10,
ot u(z) Oz

and the wave equation (3) reduces to

where ’ denotes differentiation with respect to x.

3 The Finite Difference Scheme

In this section we give a suitable finite difference scheme for the solution of
(4). We will first treat the propagation in a lossless medium (¢ = 0). It



is noted that in this particular case, (4) represents a hyperbolic system of
flux-conservative equations with variable coefficients as

i )= (o 05 (i) ®

which may be put into the standard vector form

0 0
7 (W) = Alz)5-(u)- (7)

Since we are interested in the propagation of the waves for a relatively
long periods of time, a numerically non-dissipative scheme is preferable in
this case. Therefore, considering a leapfrog difference scheme!, we have

- A n n
E:/H-l = ES T 6—(HV+1 _Hu—l)

v

- A n n
H:H = H: v y’_(Eu-i-l - Eu—l)

v

where as usual F]' = F(v- Az,n - At) and we have set A = At/Az.

3.1 Consistency

The leapfrog method is second order accurate in both space and time and-
unlike first order methods (such as Lax-Friedrichs) which require significantly
small time steps-is limited only by the stability considerations.

3.2 Stability

In order to establish the stability of the method for the general case, we may
discuss the stability of the constant coefficient form and extend the result to
that of variable coefficients.

'In the leapfrog scheme, the space and time derivatives are approximated by central
differences.



3.2.1 Constant Coefficient Case

From (7), the numerical scheme in this case takes the form
v*"*i(z) = v*I(z) 4 AADov"(z) (9)

where the matrix A is given in (6) and D, denotes the central difference
operator and we may write

\an 2AtAD, 1 v"
()
Wi = QoW (11)

Applying the von Neumann analysis, we take the discrete Fourier trans-
form of both sides of (11) to obtain

W = QW (12)
where 60 denotes the symbol of the scheme given by
. 0 -2\ [esin I
Qo = —2t\/psiné 0 (13)
I 0

where ¢ = wAz and w is the wave number. In order to check the condition
on the power-boundedness of Qg we form the characteristic equation

X' =21 —-2(cAsiné)Yxr+1=0 (14)
and find that

= (i1 ¢ (15)

where ( = 1 —2(cAsiné)?. It is clear from (15) that |y| = 1 if |¢| < 1 or,
equivalently, if

cA <<l (16)

where ¢ is the speed of light in vaccum. As expected, condition (16) is
compatible with the Courant-Friedrichs-Lewy (CFL) criterion for stability.
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3.2.2 Variable Coefficient Case

The numerical scheme is now of the form
wrtl — Qo(z)W™ (17)
where

Qulc) = (QAtAI(z)Do é ) (18)

To establish the stability of the scheme in this case, we employ the following
theorem:

Theorem: The stability of the leapfrog scheme with variable coefficients
o™t (z) = 0" (z) + 2AtPy(z, t)v"(2) (19)

is compatible with the CFL criterion for the corresponding frozen co-
efficient case if Py is anti-symmetric, i.e. if

(Porys) = —(r, Pys) V ors (20)

Clearly, the difference operator Py = A(z)Dy is not anti-symmetric. How-
ever, it may be easily shown that it is located within a bounded distance
from an anti-symmetric operator given by

Po(x) = 5[A(@) Do + Do (A(2)")] (21)

Incorporation of this new operator into our formulation leads to the following
scheme

n n— A 1 n 1 n " ! )
EM! = Erl = ( Hyy + :(Hu-{-l —-Hy_,) - _Hv-l)

2 €41 v €v-1
(22)
A1 1 1
g o= g2 (———E,’,‘ +—(Ejy, - E)_)) - —E}_ ) ‘
2 Kot +H 'uu( i 1) Hy—1 !



The nonzero conductivity case (¢ # 0) is considered next. Referring
to (4), a simple extension of the previous scheme is to replace the first of
equations (8) by

n n— A n n 2At
Eu+1 = El/ t— :(Hu-}-l - Hu—l) -

14 61/

o,El - (23)

and leaving the second equation unchanged. Unfortunately, it was found that
for nontrivial conductivity values(o & 1 S/m) the stability of this scheme is
questionable for moderate c values. This is because the stability condition
(16) was derived for negligible losses and the introduction of the new term
clearly violates the condition. A solution to this difficulty is to write the loss
term in (23) implicitly as

a0 A n 2At
E;LH = E:} 1__(Hu+1—Hu—1)_

6l/ 14

o, Ert?

so that

Ef = By = MHEy, - H)| /(6 +20t0,)

(24)

n n— A n n
Hv+l = Hu 1_——(EU+1_EV—1).
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A stability analysis of the new scheme shows that the new term in (24)
introduces numerical dissipation, thus making the scheme inherently more
stable for nonzero o. It is, of course, clear that this modification does not
affect the results obtained from (8) for the lossless case.

4 Incident Field
For the incident field we may consider a Gaussian electric pulse of the form
E,(z,t) = Ege~Ple-ap=ct)’ (25)

where Ej is the peak amplitude and z, denotes the initial position of the pulse
peak. The coeflicient 3 specifies the shape (and equivalently, the bandwidth)



of the pulse. For a pulse of amplitude FE, that decays to aE, in ¢, seconds
(a < 1), B is given by

=G =

Writing (25) as a difference equation we obtain for the two field components

En = pyenal(v—p—cin)/k]? (27)

v

n _ Eo Inal(v—p—cn)/k]?
iy = Doualls-p-ciny o8)

where p = z,/Az, k = ct,/Azand Z = \//—L/_C is the local intrinsic impedance
of the medium. The above expressions for the incident fields are used to
obtain the initial data at n = 0,1 as called for in (8) and (22). For this
purpose, the pulse is initially positioned at a node where it is not disturbed
by the presence of layers whose properties are different from that of the

background.

5 The Absorbing Boundary Conditions

The problem under consideration is an example of open problems in which
the domain of computation is not bounded by physical boundaries. For this
reason, an artificial boundary has to be introduced in order to simulate the
propagation of the outgoing waves in the medium surrounding the outer
surface of the domain of the computations. The new conditions imposed at
these boundaries are called absorbing boundary conditions?.

Such a boundary condition not only has to minimize the artificial re-
flections which occur at the boundaries but also has to guarantee stable
difference approximations. Engquist and Majda[6] give a systematic method
for obtaining a hierarchy of such boundary conditions. Also, Bayliss and
Turkel[7] derive another type of conditions based on the Wilcox expansion.
Here, we employ the boundary conditions proposed by Engquist and Majda
and further discussed by Mur[8] for electromagnetic problems.

2 Also referred to as the radiation conditions.



Considering the governing wave equation (5) and assuming, for the mo-
ment, that the losses are negligible in the vicinity of the boundaries, we write

1P o,
dz2 2or"Y  u Oz

We now seek conditions on the boundary, 00 such that the solution to the
above equation is consistent with an outgoing wave propagating in the ex-
tended medium of the same electrical properties as that of the boundary
neighborhood. This implies y' = 0 in the vicinity of the boundary. For
the family of solutions W = f(z F ct) to the (homogeneous) wave equation
traveling toward the boundaries, the first order condition

0- (29)

(Bxicat)w aQ--0 (30)
would determine a W on the outer surface which is outgoing, is not reflected,
and is thus absorbed. Although this is a first order condition, it actually
provides zero reflection for the waves normally incident on the boundary
surface[6]. It is also interesting to note that neglecting the effect of the
conductivity term o is of second order and does not deteriorate the order of
accuracy of (30) as discussed in [6].

A finite difference approximation to the above boundary condition is given

by

T n 1 n
D+(Wo)_th+(W0) =0

1
DE(Wig) +=DL(Wg)) = 0

yielding
E;tt = E7 +c\E! - EY) (31)
B = Ey— By - Ejy,) (32)

where v = 0 and v = M denote the left and right boundaries, respectively.

6 Numerical Results

An interactive computer program was developed which implements the pre-
ceding formulation. The user specifies the mesh size, pulse width, the number
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of slabs present and their respective locations and electrical properties. The
program calculates the field quantities at specified time and space increments
and displays the results in both static and animated forms.

Figure 2 shows the reflection from and transmission through a 9 cm thick
purely dielectric (u = 1, o = 0) slab of relative permittivity ¢, = 4 by
an E,-polarized 400ps (to 0.1% amplitude, alpha = 0.001) Gaussian pulse
propagating in the free space. The plots correspond to different time steps.
Figure 3 shows the same results in a space-time plot. The reflection and
transmission of waves are clearly visible. Also, it is seen that the waves
reaching the outer boundaries are absorbed with minimal reflection.

As a further example, the same configuration is examined with a slab of
permittivity 4 and conductivity 0.8 S/m. The results are shown in Figures
4 and 5 where the dispersion of the pulse due to the presence of losses are
evident.

Finally, Figure 6 shows the propagation of a pulse through a lossless
nonreflective slab (¢, = pi,) with a normalized intrinsic impedance of unity.

7 Summary

The Finite-Difference Time-Domain technique is an efficient method of solv-
ing transient electromagnetic problems. In this paper, the Maxwell’s equa-
tions were directly solved by a second order leapfrog scheme and successfully
applied to the problem of propagation of electromagnetic pulses in an strat-
ified medium. A first order absorbing boundary condition was employed to
minimize reflections from the artificial boundary introduced by truncation of
the domain of computation.

Further study of this problem would include a spectral analysis of the
solutions obtained when using various waveforms of different bandwidths
as well as employment of higher order absorbing boundary conditions to
improve the accuracy of the solutions. Also, the more complicated problem
of electromagnetic propagation in time-varying inhomogeneous media whose
electrical properties are functions of both space and time may prove amenable
to finite difference approaches in an attempt to model transient responses of
targets in plasma.
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List of Figures

Figure 1: Geometry of a stratified medium.

Figure 2: Reflection from and transmission through a dielectric slab by a
400ps unit amplitude Gaussian electromagnetic pulse. Slab thickness 9crmn,
€& =4, p. =1, 0 = 0. Spatial increment Az = 1.5mm, coA = 0.5.

Figure 3: Propagation of the pulse of Figure 2 in space and time.

Figure 4: Reflection from and transmission through a dielectric slab by a
400ps unit amplitude Gaussian electromagnetic pulse. Slab thickness 9cm,
€ =4, p, =1, 0 = 0.85/m. Spatial increment Az = 1.5mm, ¢\ = 0.5.

Figure 5: Propagation of the pulse of Figure 4 in space and time.

Figure 6: Transmission of a Gaussian pulse through a lossless nonreflective
dielectric slab.
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Figure 1: Geometry of a stratified medium.




1.0 n=0 t=0 ps 1.0 n=210 t=525 ps
0.5 0.5
E g \
S S
~. 0.0 ~. 0.0
o )
-0.5 - -0.5
“1.0 T v -1.0 T
0 30 60 90 0 30 60 90
X, cm X, cm
1.0 n=330 t=825 ps 1.0 n=450 t=1.125 us
0.5 J 0.5-
E E ]
N N
> 0.0 > 0.0
-0.5- -0.54
-1.0 A | -1.0 T
0 30 60 90 0 30 60 90
X, cm X, cm

Figure 2: Reflection from and transmission through a dielectric slab by a
400ps unit amplitude Gaussian electromagnetic pulse. Slab thickness 9cm,
& =4, u, =1, 0 = 0. Spatial increment Az = 1.5mm, A = 0.5.
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Figure 2. (continued)
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Figure 4: Reflection from and transmission through a dielectric slab by a
400ps unit amplitude Gaussian electromagnetic pulse. Slab thickness 9cm,

& =4, g, =1, 0 = 0.85/m. Spatial increment Az = 1.5mm, coA = 0.5.
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