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Abstract

For a material discontinuity represented by the junction of
any two resistive, conductive or impedance half planes, a simple
formula is derived expressing the diffracted field in terms of the
fields diffracted by the half planes in isolation.
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1 Introduction

An important source of scattering is the field diffracted at a discontinuity
in the material properties of a surface. The simplest model for such a
discontinuity is the common edge of two half planes of different material
properties, and if the materials are simulated using an impedance boundary
condition, the edge diffracted field can be determined using Maliuzhinets’
method [1959]. Alternatively, for thin layers of non-magnetic materials,
a representation in terms of resistive sheets may be appropriate, and the
corresponding diffraction coefficient has recently been obtained by Uzgoren
et al [1989]; and yet a third possibility is the junction of two conductive
sheets which are the electromagnetic dual of resistive sheets.

The purpose of this paper is to show that there is a simple formula ex-
pressing the field diffracted at a junction in terms of the edge diffracted field
of each half plane is isolation. The formula is applicable for any combina-
tion of resistive, conductive and impedance sheets and constitutes a useful
design tool. In Section 2 we cite the known edge diffraction coefficients for
the three sheets and show how these are related to each other. In Section
3 we then provide a simple derivation of the diffraction coefficient for the
Junction of two resistive half planes using the angular spectrum method
[Clemmow, 1953, and show how this can be applied to any junction using
the fact that co-planar electric and magnetic currents do not interact.

2 Half Planes in Isolation

Consider first a uniform resistive sheet of resistivity R ohms per square
occupying the portion @ > 0 of the plane y = 0 and illuminated by an E
polarized plane wave having

Ei — ge—ik(rcos®o+ysi11¢>o) (1)
(see Fig. 1) where a time factor e ! has been assumed and suppressed.

Without loss of generality it can be assumed that 0 < ¢, < 7 and 0 <¢<
27 where © = pcoso, y = psin ¢.
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Figure 1: Fig. 1: Half plane geometry.

A resistive sheet supports only an electric current and the boundary
conditions there are

E.(2.40) = E.(2.~0) = =R {H.(2,+0) — Hy(z,~0)} . (2)

At large distances from the edge, the edge diffracted field can be written as

2
Eo=y o <D 0.0 3)

with 5 = 2R/Z where Z is the intrinsic impedance of free space, and as
shown by Senior [1975a]

Dg)(%&,@o) _ v IN(n, =k cos @)]\'(77,—kcoscpo).

(4)

Lo |

COs ¢ + cos ¢,

Iv(n,€) 1s an upper half plane function associated with a Wiener-Hopf split
and such that

. ) k -1 -
]\(77,5)]\.(7}.——{):{yH.T_g} . (5)
In terms of Maliuzhinets’ half plane function v, (a )
. Q _ _ B
K(n,—kcos @) = L Sin 5 Yr(T = @+ X) hr(m — ¢ X) )

\/ﬁcos-;\—cos%(%+¢) Vr(é = Xx)¥r(d+ x)

[Senior, 1975a] with cosy = 1/. When R = 0 implying 7 = 0 the resistive
sheet is perfectly conducting and
k+€

K(0.6) = /== (
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giving
] ? o1y o
) , . sinZsin %
Dp'(0.0.6,) = i —2—2— (8)
COS ¢ + €os ¢,
in agreement with the known result [Bowman et al, 1987; p. 315]. On the
other hand, when R = oo implying n = oo, the resistive sheet ceases to
exist, and since
1

K(n,§) ~ 7 (9)

as |n| — oo, Dg)(oo, ?,¢,) = 0 as required.

The electromagnetic dual of a resistive sheet is a conductive one. This
supports only a magnetic current and for a sheet occupying the portion
x > 0 of the plane y = 0 the boundary conditions are

H(z,40) = Hy(z,~0) = R"{E.(2,+0) — E.(2.—0)} (10)

where R* siemens per square is the conductivity. The edge diffraction
coeflicient is [Senior, 1975a]

D, 6.0,) = ~Zycos = cos 2 DP(n, 6. 0,) (1)

with 7 = 1/(2R*Z). When R* = 0 implying n = oo the sheet is a perfect
magnetic conductor, and from (4), (9) and (11)

‘:) d’o
. COS 7 COS =~
D (0,0,06,) = =1 —2—2 (12)
cos ¢ + cos ¢,

whereas if R* = oo implying 5 = 0, the sheet ceases to exist, and
D(E?)(O, ¢, 0,) = 0 as required.

The last case to be considered is that of an opaque sheet having an
impedance boundary condition imposed on both sides. If the surface
umpedance is 77, the boundary conditions are

E.(z,£0) = F9Z H.(z, £0), (13)



and as noted by Senior [1975a], the sheet is equivalent to a combination of
resistive and conductive sheets whose properties are such that

R 1
"= TRz

(14)
Since the two sheets do not interact, the edge diffraction coefficient is

DY(n,6.6,) = DP(n,6.6,) + DL (n, ¢, 6.)

le.

‘ P : ,
D(n.9.0,) = (1 ~ 2ycos 5 cos ';) Di(1.0,0,). (15)
For an isolated sheet occupying the half plane 2 < 0 the diffraction
coefficients differ from the above only in having ¢, replaced by = — ¢, and
o replaced by 7 F ¢ for y <> 0 respectively. We can also obtain the results
for H polarization using duality. For H polarization we write

[ 2 hoer
Hj _ m cilke /4)DH(777¢7¢0)7 (16)

and recognizing that resistive and conductive sheets are the duals of each

other,
, 1 _
DS)(’77¢*@0):D(E2) <;»Qﬁ@o)’ (17)
1 .
DP(n.¢,9,) = DY (;,o,d)o) . (18)

In particular, for a perfectly conducting half plane (a resistive sheet having
R =0 1mmplying 7 =0) in @ > 0, (12) shows that

cos £ cos &2
v

DY(0,6,0,) = —1 —2

cos¢+cosa (19)

is agreement with the known result [Bowman et al, 1987; p. 322].



3 Resistive Sheet Junction

Consider two resistive sheets of resistivities Ry(== 1:Z/2) and Ry(=1:2/2)
occupying the portions ¢ < 0 and z > 0, respectively, of the plane y = 0.
We seek the diffraction coefficient attributable to the junction at x = 0
when the incident field is the E polarized plane wave (1).

If the sheet having resistivity R; occupies the entire plane y = 0, a
simple analysis shows

e—ilb(xcosdno+ysin bo) __ (1 + m sin ¢O)—le—ik(rcos¢o~ysin¢o)
E. =

N1 sin (1 + 1y sin gbo)"e“ik(I cosdotysind,)
implying

—Ysin ¢ e—ik(zcos¢o+ysin o) + (1 + M sin O'O)—l e—ik(r COsS Qo—ysing,)
o b
H, =

—~Y sin ¢, 1 sin o1 + ny sin ¢O)—1 ¢~ tk(z cos botysin go)

for y > 0 and y < 0 respectively, and we will denote this field with a
superscript ‘o’.  When the resistivity in @ > 0 is R,. the total field is
written as

E=FE+E, H=H+H1,

and since the ‘scattered’ field is attributable to an electric current in the
plane y = 0, we have [Clemmow, 1953]

E = /OO P(§)elrtllyie=€). d¢
z e V2 — 52

H = / P(¢ 5r+|yl\/2 &)
l IJI .

a

By virtue of this choice, the continuity of E, across the plane y = 0 is
assured, and from the remaining boundary conditions in z < 0 and 2 > 0
we obtain

[ {n+ =

)P(g) Krde =0 (z <0) (21)



/O:’ (’72 + — \/ ‘ 2) P({)ﬁlfzdé = M) /—-1501‘ (fl' > 0) (22)
—00 g M 1 \/_kg__ﬁ

where £, = k cos ¢,

Equation (21) demands that the non-exponential portion of the inte-
grand be a function analytical and free of zeros in a lower half plane (an
‘L’ function) and therefore

P(§) = K(ni, §)L(E).

Similarly, apart from a pole at £ = —£,, the non-exponential portion of the
integrand in (22) must be an upper half plane (or ‘U’) function so that

K(n2,-€) .,
P(&) = ——=U(¢).
() s (&)
Hence
L(ny, E)K(n,, —
Pi) = \(771,§)+xg/2 5).4(5)

where A(€) 1s a function analytic everywhere. To reproduce the right hand
side of (22) it is necessary that
ik
AlE,) = =52 (= m2) (1, &) N (02, = &5,

._./l

and since order considerations show that A(¢) is at most a constant, the
final expression for P(¢) is

PIE) = ey — ) S ”"(’h’fogfi(zz» ~OR(m,—&)

When (23) is inserted into (20) the substitution £ = kcos a gives

(23)

1
E: = 5-(m=m)

. / K(ny, kcosa)lx(m, kcos @)X (0, —k cos a) K (ny, —k cos ¢,)
S

cos a + cos ¢,

eik(r cosa+|y|sina )(]C\
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where S is a path on which cos a runs from oc to —o0, and from a stationary
phase analysis the diffraction coeflicient of the junction is found to be

(1) d
Dp' (2,0, 0,) = S0m =)

K(m, kcos @) K(ny, kcos o)X (02, —k cos @)X (ng, —k cos ¢,) (24)
cos ¢ + cos ¢, o

If only the resistive sheet on the right is present,
v (19, —kcos )\ (1, —k cos ¢,)
cos @ + cos ¢,

Dg)(oc-ﬂ2a¢» Qo) =

o

in agreement with (4), and when only the left hand sheet 1s there,

@ (1, kcos @)1 (m, k cos g,)

(1) h ) =
D (11,00, 0, 00) = —3 cos ¢ + cos ¢,

consistent with the substitution described in Section 2. As evident from
these

D(El)(nlﬂha ¢7¢0) = 2?(771 “772)(COS¢+- COS¢O)

DY, 50,0, 6,) D2 (00,72, 0, 0,)  (25)

and therefore

Dg)(m,nz,cb,sbo) = 2i(n — n2)(cos ¢ + cos ¢,)

D (m. 7 F 6.7 = 6,)Dg (2,6, 0).  (26)

This is the required expression for the junction contribution in terms of the
edge diffraction coefficients of the sheets in isolation.

For two conductive sheets having conductivity R} = 1/(21;Z) on the
left and R; = 1/(21,Z) on the right, a similar analysis shows

( , ?
D(E?)Wh??z,% ¢o) = ig(’h —12)

K(n, kcos @)K (ny, kcos ¢o) K (ng, —k cos ¢) (2, —k cos ¢,)

' cos ¢ + cos ¢, (27)




with the upper (lower) sign for y > (<)0, and this differs from (24) only in
the sign alternative. The formula can be written in terms of the diffraction
coefficients for conductive sheets in isolation. but it is simpler to express it
in terms of the coefficients for resistive sheets, viz.

DY (01, 12.6.6,) = £2i(n; —12)(cos ¢ + cos 6,)

DP (7 F o1 —0,) DV (02, 6,6,)  (28)

which should be compared with (26). It now follows that for two impedance
sheets

D(ES)(UI-, N2y 0, 00) = 4i(n1 — n2)(cos ¢ + cos ¢,)

DV (.7 = 0.7 — 6,) DV 02y 6, 00)  (29)

for 0 < ¢ < 7 and zero otherwise. This is logical since the sheets are
opaque.

4 Concluding Remarks

The preceding junction diffraction coefficients encompass all possible cases
of two abutting sheets subject to first order transition or boundary con-
ditions. If, for example, the right hand sheet is an impedance one with
surface impedance 7,Z and the left hand sheet is resistive with resistiv-
ity R = 1,Z/2, the fact that electric and magnetic current sheets do not
interact implies

DE("]«W?»@%éO) = Dg)(nlsHQa ¢a¢0) + Dg)(n?vOa d)o) (30)

where the coefficients on the right hand side are given in (11) and (26).
It can be verified that the diffraction coefficient derived by Uzgoren et al
[1989] has this form. Similarly, if the impedance sheet is replaced by a
conductive one with conductivity R* = 1/(21,Z). then

Dg(im.m. 9,60) = D (7 F 6.7 = 6,) + D2, 0.0,).  (31)



There are two limitations that should be noted. The first is that all
of the diffraction coefficients are non-uniform ones which are infinite at
the reflected and transmitted wave boundaries. Since the infinities are
associated with the optics field, they could be eliminated using the same
procedure employed to derive a uniform diffraction coefficient for an isolated
half plane. We have also restricted attention to incidence and diffraction
in the zy plane perpendicular to the common edge of the half planes. For
skew incidence the diffraction coefficient for a single half plane is much more
complicated [Senior, 1975b], and it is not evident that there are formulas
for the junction effect analogous to those presented here.
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