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CHAPTER I

INTRODUCTION

Microwave circuits are integrated on many different dielectric substrates using
hybrid or monolithic techniques. In hybrid circuits, both active and passive com-
ponents are fabricated separately and attached to the substrate by any of several
bonding methods. Monolithic circuits differ from the above IC’s in that the active
devices are fabricated together with the passive elements in a single semi-conductor
wafer. In both cases, however, the active devices are connected through various
types of transmission lines. These lines form an integral part of high frequency cir-
cuits since their primary role is to confine and transmit the electromagnetic waves
with as low loss as possible. Also, these lines can be designed to serve as passive com-
ponents such as capacitors and inductors, and as circuit elements such as filters and
directional couplers. For practical purposes, most MMIC’s are enclosed in a shielded
housing which prevents radiation and surface wave losses and suppresses electro-
magnetic interference from the environment. The shielding structure also provides
hermetic sealing, mechanical strength, ease of handling and allows for the mounting
of connectors. In view of the importance of shielded transmission lines, it is neces-
sary to have a good understanding of their performance and limitations. To that

end, this dissertation addresses the characterization of two-dimensional metallic and



dielectric interconnects integrated in a multilayered shielded environment.

1.1 Motivation

Transmission line structures commonly used in microwave integrated circuits con-
sist of thin conducting layers of gold, copper or high temperature superconductor
on a dielectric substrate and are backed by a conducting ground plane (Figure 1.1).
Circuits realized using planar geometries have several advantages such as light weight,
small size, low cost, reliability and reproduceability. They also allow for easy integra-
tion with active elements and are compatible with planar antennas. At microwave
and millimeter-wave frequencies up to 110 GHz, the most widely used type of printed
transmission line interconnect is the microstrip line due to its simple construction.
However, to design such interconnects in the frequency range of interest, a full-wave
description of these lines is required where both dispersion and losses have to be
accounted for as they impose a limit on the overall performance of the circuits.

Another application of microwave integrated circuit technology can be seen in
digital logic circuits. With the development of gigabit-rate logic circuits, more em-
phasis is placed on design and modeling to obtain higher densities on the substrate
and higher yields of the circuits. As the speed of di~ital integrated circuits increases,
the pulse rise and fall times become shorter (< 50 ps) and therefore the frequency
spectrum extends in the microwave region. At microwave frequencies, dispersion on
the line is a well-known phenomenon, which leads to pulse distorsion and cross-talk.
An additional factor that cannot be neglected at high frequencies is the frequency
dependent ohmic loss, which not only attenuates the signal but also adds to the
dispersion of the propagating pulse.

Recently, interest has been focused on the potential use of high temperature su-
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perconductors, such as YBCO, as transmission line materials. Unlike the microstrip
lines mentioned above, superconducting lines have negligible ohmic losses and disper-
sion for frequencies up to several tens of GHz. For high frequency applications, the
major advantage of high critical temperature (T.) superconductors is the reduced sur-
face resistance of the lines as compared to normally conducting metal strips. This, in
turn, decreases conductor loss significantly in microwave circuits where ohmic losses
can be an important limitation. Also, the use of superconducting transmission lines
in VLSI circuits will lead to higher switching speeds, higher data bandwidth, low
cross-talk, high packing density and reduced resistive heating. The lines, as they are
currently developed, are made of thin films which have a thickness large compared to
), the penetration depth of the magnetic field into the superconductor. Their low-
loss properties make them good candidates for most microwave circuit applications
where power loss is usually a limiting factor.

The millimeter-wave and terahertz frequency region is becoming increasingly im-
portant for scientific and military applications, such as landing systems for airplanes
in heavy fog, radiometric systems for monitoring the upper atmosphere and ozone
depletion, and radio-astronomical receivers for studying the chemical composition of
our universe. Since, at these frequencies, conductor lines display prohibitively high
ohmic losses, a new type of waveguiding structure is needed. A novel monolithic
guiding interconnect made of a combination of dielectric layers of different permit-
tivities has been proposed [1]. This type of dielectric line exhibits several advan-
tages over more conventional conducting lines such as low ohmic losses, electrically
small size (fraction of a guided wavelength), good guiding properties by appropriate
combination of layers, easy fabrication, and monolithic nature that allows for easy

construction of passive circuit elements as well as simple integration of active de-



vices. These lines can be made of very low-loss dielectric materials (e.g. Si/Glass,
GaAs/AlAs or InP/AlInAs) with thickness a fraction of the wavelength in the dielec-

tric and appear to be suitable for millimeter waveguiding applications (Figure 1.2).

1.2 Objectives

The main objective of this research is to characterize accurately microstrip and
dielectric transmission line interconnects for high frequency applications. During
the past two decades, several numerical techniques have been developed to inves-
tigate planar microwave transmission line circuits with arbitrary metallization for
microwave applications. For an accurate description of the circuits, it is now of in-
terest to study second order effects such as cross-talk, packaging effects and losses,
and to understand their influence on the propagation characteristics of normal and
superconducting interconnects as well as dielectric lines. Because all interconnects
studied in this thesis are within a shielded environment, losses due to surface waves,
leakage and radiation are not present, and therefore only dissipative losses, including
conductor loss and dielectric loss, are considered.

The main objectives of this study are summarized as follows:

1. Derive a generalized model to account for electromagnetic coupling between
multiple microstrip lines printed on different planar interfaces which are in close
proximity. The method addresses geometries involving multilayered structures
with any number of substrates or superstrates since today’s MMIC technology

uses a combination of multiple thin passivation films and thick dielectric layers.

2. Develop accurate theoretical methods for the analysis of ohmic losses in shielded

structures. Unlike planar hybrid transmission line circuits where metallization
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thicknesses are of the order of several skin depths, the conductor thickness of
MMIC’s is of the order of magnitude of the skin depth. The goal is therefore
to calculate the effect of losses on the propagation characteristics of multiple
microstrip lines with thickness ranging from a fraction of the skin depth § to

several skin depths.

3. Investigate the importance of conductor losses relative to dielectric losses in
high temperature superconducting thin films. Because the values found in the
litterature for loss tangent and other electrical parameters needed to charac-
terize these films are not consistent with each other, a parametric study of
the transmission characteristics is to be performed as functions of frequency,

temperature, permittivity and geometry of the structure.

4. Develop an analytical method to study thin dielectric lines at terahertz fre-
quencies in a manner that allows for easy and accurate characterization of their
propagation parameters. This method should also allow for a straightforward
extention to three dimensional problems without increasing the complexity of

the solution.

1.3 Full-wave approach

In the present work, we are interested in studying interconnects at microwave,
millimeter-wave and terahertz frequencies, and therefore it is important to develop
accurate full-wave analysis methods and validate their need as compared to the
simpler TEM and quasi-TEM or dispersive techniques which have a limited frequency
range.

Several static or TEM methods, such as modified conformal mapping [2], finite-

difference (3] and integral equation techniques [4] have been used extensively in the



past to study transmission lines where the circuit parameters are determined through
the use of electrostatic capacitances and low frequency inductances. A TEM mode of
propagation assumes no longitudinal fields and no dispersion and is therefore limited
in frequency to a few Gigahertz. These methods are adequate for the analysis of
circuits where the strip width and substrate thickness are much smaller than the
guided wavelength.

As the frequency increases, quasi-TEM or dispersive techniques, such as the
planar-waveguide[5] and ridge waveguide models [6], are used because they provide a
frequency dependent solution and yield convenient analytical formulations which are
represented by semi-empirical formulas. Although their frequency range of validity
extends beyond the TEM models, their accuracy is still frequency limited because
they assume negligeable longitudinal components and ignore shielding effects.

In order to provide accurate modeling of transmission lines at the frequencies of
interest in this work, fullwave analysis techniques are needed which account for all
components of the fields in the transmission line structure. These methods include
differential techniques (finite-difference and finite element methods [7]) which require
the solution of the wave equation and solve the variational problem purely numeri-
cally. Integral equation techniques have also been implemented in the space domain
[8] and the spectral domain [9], and have the advantage of providing a physical in-
sight in the problem. This dissertation describes the use of a space domain integral

equation technique for the characterization of two-dimensional interconnects.

1.4 Overview

In this thesis, two-dimensional microstrip and dielectric transmission line inter-

connects are studied. The analysis of these two-dimensional passive elements pro-



vides the basic properties for the study of more complex three-dimensional circuits.

In Chapter 2, we introduce an integral equation formulation to analyze a broad
class of microstrip and dielectric interconnects. This integral equation provides an
exact formulation for the electric field, and has several advantages over conventional
differential formulations. Boundary conditions are incorporated in a general manner
in the Green’s function kernel, and include all the possible modes in the guiding
structure. Although different approaches are used to model the metallic and dielectric
transmission lines studied in this thesis, some common points apply and are given
in Chapter 2, namely the derivation of the generalized dyadic Green’s function for
a generic multilayered shielded structure, the formulation of a Fredholm integral
equation of the second kind, and its solution by the method of moments.

The influence of dielectric and conductor losses on the propagation characteris-
tics of microstrip lines with thickness of the order of the skin depth & is studied in
Chapter 3 using a modified electric field integral equation that accounts for both
loss and dispersion. The electromagnetic fields are expressed by an integral equation
which is solved independently inside the conducting strips and in the surrounding
region. The solution for the fields inside the conductors provide the surrounding
region with a relation between tangential electric and magnetic fields on the surface
of the strips which serves as an additional boundary condition. This boundary con-
dition is satisfied by an equivalent infinitesimally thin impedance surface which then
replaces the lossy conducting strips. The resulting integral equation is then solved to
calculate the complex propagation constants, current distribution and characteristic
impedance of multiple line geometries. From these results derived in the frequency
domain, the effect of losses on pulse dispersion and cross-talk in coupled microstrip

lines can be obtained in the time domain by an inverse Fourier transformation. The
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method presented in Chapter 3 is implemented numerically in Chapter 4 to quantify
the effects of dispersion and losses in conductors with thickness comparable to the
skin depth. Examples illustrating the validity and accuracy of the present method
are shown for multiple conductors on several layers where dielectric losses in the
substrate and conductor losses in the strips and ground plane are considered.

In Chapter 5, an integral equation approach is applied to calculate the propa-
gation characteristics of high temperature thin-film superconducting lines at high
frequencies. To evaluate losses in these lines, the superconducting strips are replaced
by frequency-dependent surface impedance boundaries. The values of these surface
impedances are measured experimentally by a stripline resonator technique. Using
this method, phase and attenuation constants as well as impedance of the lines are
evaluated and presented as functions of frequency, temperature and several other
geometrical parameters.

A novel method is developed in Chapter 6 to calculate the propagation character-
istics of dielectric ridge structures in high frequency monolithic integrated circuits.
First, the electric field in the dielectric ridge is expressed in terms of a polariza-
tion current from which an equivalent surface current density is defined. Generalized
boundary conditions are then enforced in order to provide a simple integral equation.
The validation of this method for both polarizations is discussed in Chapter 7 and
results are reported where comparison to numerical methods is made.

Several appendices can be found at the end of this dissertation. They collect the
more lengthy derivations and calculations that are intentionally omitted to simplify
the flow of the text. These appendices are included not only for completeness, but

are also intended to those who may extend the scope of this work.



CHAPTER II

THE ELECTRIC FIELD INTEGRAL
EQUATION TECHNIQUE

2.1 Overview and assumptions

This chapter presents the general technique used in the present work to obtain
the fundamental properties of two-dimensional transmission lines in a multilayered
dielectric conﬁgﬁration within a shielded environment (Figure 2.1). The theoretical
methodology described here serves as building block to the analysis of both types of
interconnects studied in this thesis, i.e. metallic microstrip lines and ridge dielectric
waveguides.

An electric field integral equation technique (EFIE) is used to derive the propa-
gation characteristics of shielded lines. The approach is based on a full-wave analysis
that employs an integral equation to relate the electric currents to the electromag-
netic fields inside a waveguide with any number of dielectric layers. The appropriate
boundary conditions for the problem at hand are applied to establish a dyadic
Green’s function derived for an electric point source in the waveguide structure.
By expanding the unknown electric currents into basis functions and applying the
method of moments, the integral equation is transformed into a system of lin-

ear equations. The solution of this system provides information on the propagation

11
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Figure 2.1: Shielded microstrip line configuration
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characteristics of the structure, i.e. the phase and attenuation constants of the ex-
cited modes, the characteristic impedance of the lines and the current distribution.
These frequency-dependent parameters can then be utilized to solve for the fields in
the structure or for a time domain analysis. The integral equation method derived
in this chapter can be applied to more general problems for the characterization of
lossy microstrip lines (Chapters 3, 4) and superconducting lines (Chapter 5), and of
dielectric lines (Chapters 6, 7).

Consider an infinitely long inhomogeneously-filled waveguide along the z-direction,
with several lines on different levels in a multilayered configuration as shown in Fig-
ure 2.1. Cartesian coordinates are used with z the direction perpendicular to the
interfaces. In the two-dimensional problem, the z-dependence will be of the form
e™"** where 7, is the complex propagation constant for the given mode'. The devel-
opment considers lossy dielectric layers, as well as finite conducting strips and ground
planes. However, the side walls of the waveguide are assumed to be perfect conduc-
tors. In the past, many formulations considered the case of narrow strips with widths
small compared to the strip wavelength so that only the longitudinal component of
current needed to be accounted for. In this work, there is no restriction on the width
of the strips as both longitudinal and transverse components are included in the
presentation and in the computational implementation. Also, no assumptions have
been made which limit the validity of the technique with respect to the operating

frequency, the number of strips or their location within the shielded structure.

'In this derivation, the sinusoidal time dependence is chosen to be e/“* and is suppressed through-
out the text
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2.2 Formulation of the integral equation

Let us assume the waveguide structure to be excited by an impressed electric field
E' which can be supported by an assumed aperture distribution or a current probe
in the waveguide. The impressed field induces a current or dipole moment J on the
line resulting in a scattered field E*. At any point 7, the total field is the sum of the

impressed and scattered fields (E =FE + E"), or

E@ = BE@®+ / j /V &7 - 7 dv'. (2.1)

For two-dimensional guided-wave problems, we are searching for solutions to the
source-free or eigenvalue problem. To that end, the impressed field E' is set to zero,

yielding

E(f = / / /V &7 - J(7) dv'. (2.2)

The kernel of the integral, C__?c, represents the electric dyadic Green’s function for
the problem and is obtained by solving the boundary-value problem of the structure
excited by an infinitesimal source. Equation (2.2) allows one to obtain the electro-
magnetic fields excited anywhere in the structure by an arbitrary surface current
Ji (') and is derived by applying the Green’s theorem between E and G’ and by
making use of the boundary and radiation conditions. A similar integral equation

can be derived for the magnetic field

A() = / / /V GFIF) - T & (2.3)

=h . . .
where G represents the magnetic dyadic Green’s function.



15

2.2.1 Single integral representation

In the two-dimensional problem, the Green’s function must represent outward-

propagating waves to infinity, as

—jkzz !
G(2) ={ Cle' 2> 2 (2.4)

Coe¥? 2«2
where we require G(z) to be continuous at z = z’. In the above, the eigennumber in
the z-direction is given by k, = ,/k? — k2 — k2. In addition, we can synthesize the
spectrum of plane waves propagating in the z-direction by using a one-dimensional
Fourier transform with respect to z as

S(z—2) = ;ﬂ [ et ap, (2.5)

The Green’s function may therefore be written in terms of an eigenfunction expansion
with respect to the z-direction, and since the components are separable in 7 and 7,
we get

1

G(F/f") = 5;[_00 E(z y/z',y')e” ike(2=2") gk (2.6)

where (7) is used to denote the transverse dependence of G. The induced current J

is assumed separable with respect to the variables z’, y’ and 2, and is written as

-

J(7) = J(&',y') e~ (2.7)

where & is the unknown current propagation constant on the line.
Substituting (2.6) and (2.7) into Pocklington’s integral equation (2.2), the electric

field due to a current J can be expressed as

1 ~e ! - !
/ / / / (z,y/a',y") e3*=5) . J(2',y") €735 da' dy' dz' dk. (2.8)

where the z-dependence of both the Green’s function and the current is shown explic-

itly. Since the dyadic function contains the exponential e~7%:(:=%) the integration
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with respect to k, can be evaluated in closed form by the method of contour inte-
gration. However, equation (2.8) may be written at any cross-section z = ¢, and

therefore at z = 0 it becomes
E= 2%///[: ée(m,y/x',y') CJ(y) e ERT dnd dy' 2 dk,. (2.9)
- Using the sifting property of the Fourier transform, i.e.
/_ Z e=3 Bk 4ot — 9 1 §(K. — k), (2.10)

the electric field becomes

-

E= / /w G (z,9/2y) - J(y)de' dy

kemkt (2.11)

where S,, is the cross-section of the line. Discrete modes with propagation constants
k. = k. form the spectrum of the surface currents. As will be seen later, the poles
of the integrand never occurs for k, = k., and therefore the sifting property of the
impulse function can be used. The above expression satisfies all boundary conditions

except the ones on the lines, as discussed next.

2.2.2 Fredholm integral equation of the second kind

In this thesis, the propagation characteristics of two-dimensional metallic and
dielectric lines are evaluated by solving the appropriate boundary-value problems
which are formulated in terms of Fredholm integral equations of the second kind of

the form

8(z) = f(z) + A [ Gla.v)(w)dy. (212)

Here f(z) and G(z,y) are known functions defined at every point z of the domain,

and the unknown function ¢ appears both under the integral and outside, as opposed
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to the integral equation of the first kind where the unknown appears only under the

integral sign

NG vody = f() (213)

Also, the domain of integration is fixed in this type of problem unlike Volterra integral

equations where the upper limit of integration is variable.

Lossy Microstrip Lines

For perfectly conducting strips Dirichlet condition of vanishing tangential electric

field on the surface of the line is enforced
AxE=0 (2.14)

and can be cast in the form of a Fredholm integral equation of the first kind (2.13).
For the general case of strips with finite thickness and finite conductivity this condi-
tion is not applicable since the fields can penetrate inside the strips. As further dis-
cussed in Chapter 3, we approximate the strips with equivalent non-zero frequency-
dependent surface boundaries extending over the surface of the strips and derived
from a quasi-TEM analysis of the field penetration. The resulting integral equation

is derived from the recognition that the total field on the strip is given by

N

AxE=axZ-J (2.15)

where Z represents the dyadic surface impedance of the lossy metallic line. The
integral equation may then be written as a homogeneous integral equation of the
second kind

-

w=[ waxG(eyey) o)y

3>

X

NNT]
A‘

ke=k! (2.16)

-

where the unknown function is the current distribution J(y).
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Dielectric Lines

A novel method is developed in Chapter 6 to calculate the propagation character-
istics of dielectric ridge structures in high frequency monolithic integrated circuits.
First, the electric field in the dielectric ridge is expressed in terms of a polarization
current from which an equivalent planar dipole moment P is defined. Further, gen-
eralized boundary conditions are enforced to provide the following Fredholm integral

equation

Ply) = [ Cruawlt) - PW) ' b (217

where the unknown function is the equivalent dipole moment ﬁ(y), and where émod
is a modified dyadic Green’s function which includes the generalized higher order

electric field boundary conditions at the surfaces of the dielectric strip.

2.3 Derivation of the Green’s function

In this section, the kernel G of equation (2.2) is presented for a shielded multi-
layered dielectric configuration where a vector potential formulation is used to derive
electric and magnetic Green’s functions as detailed in Appendix A. A generalized
impedance boundary formulation is introduced to enforce the boundary conditions
at the planar dielectric interfaces in a simple way, leading to a compact formulation

of all nine components of the dyadic Green’s functions.

2.3.1 Notation

Assuming the time dependence to be e?**, the three independent Maxwell’s equa-

tions are

VxE = —jwuﬁ , Faraday’s law (2.18)
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VxH =J+jweE , Maxwell-Ampere’s law (2.19)

V. (J) =-—jwp ,equation of continuity (2.20)
with auxiliary equations

V. (uH) =0 , Gauss's law magnetic (2.21)

- -

V-(eE) =p , Gauss’s law (2.22)

where, in an isotropic and homogeneous medium, D=¢E and B = pﬁ have been
used. Taking the curl of (2.18) and substituting V x H from (2.19), we obtain the

vector wave equation
VxVxE-FkE= —jwpd (2.23)

where k = w,/ep. The concept of dyadic Green’s function G has been developed to
find the solutions for this type of equations with various boundary conditions and

may be defined as a solution to

(FI7) = B*G(FIF) = =16(F - 7) (2.24)

Qu

VxVx

with I the idem dyad I=3%+ ¥y + zz. Each component of current gives rise to a
vector field and associated vector potentials, and therefore the general linear relation
between the current and the field is a dyadic relation. Thus for vector fields, the
Green'’s function is a dyadic quantity which can be represented in its most general
form in rectangular coordinates as a tensor

] Gestd + Goydi + Gands
G= Gyzgi' + nyﬁﬁ + Gyzl:"é (2°25)
Gudt + Gu3j + G.i3

where G;; is the ith component of the field due to a unit j-directed current source.

We can define dyadic Green’s functions for electric as well as magnetic fields due
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to electric or fictitious magnetic current sources. In this work, we will only be
interested in the electric-type Green’s function C_-?e(r"' /7) and magnetic-type Green’s

. xh .
function G (7/7") due to electric current sources, where

V x V x G (7IF) = G (7/7) = I§(F-7) (2.26)
¥ x ¥ x G'(F/7) - BG(7)7) = VxI§(F-7). (2.27)

Equation (2.19) shows that the following relation holds between G and G

~!

BE =V x G - I5(7-7). (2.28)

= h
Therefore, from the knowledge of the magnetic Green’s function G, the electric

Green’s function G~ can be determined in a straightforward manner through the use

of (2.28).

2.3.2 Vector potential formulation

The Green'’s function is derived by applying the boundary conditions to the prob-
lem of Figure 2.1 for an infinitesimal current source with all three components. There
are several approaches in solving boundary value problems of this type, such as the
field expansion method using vector wave functions [10]-[11], the scattering super-
position method with Hertz potentials [12] or vector potential functions [13],or the
mixed potential formulation[14], to name just a few. In this chapter, the dyadic
Green’s function is derived through the use of vector potentials.

Introducing the concept of vector potential functions A and F simplifies the prob-
lem when fields generated by sources inside the region of interest are considered. The
magnetic vector potential A is derived from the current source and is subsequently

used to compute the electromagnetic fields. Since the definition of any vector requires
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the specification of both its curl and divergence, we define the curl of A as
B=pH=VxA, (2.29)

whereas the choice of the divergence of A is taken such as to simplify the problem,

and is commonly referred to as the Lorentz’s gauge [15], yielding

i = lyxa (2.30)
7’
- . VV.A
E = —jwA+—= A (2.31)
Jwep

Substituting (2.29) and (2.31) into (2.18) yields
VxVxA = -VPA+V(V-4)
= uJ+kA+VV- A (2.32)
which reduces to the inhomogeneous vector Helmholtz equation :
VEA+ KA =pl. (2.33)

Similarly, the vector electric potential Fis given by

D = VxF, (2.34)
for which we get
, 1 q
E = “UxF (2.35)
€
- . VV.
H = juF- = F, (2.36)
Jwep
and
V2F + K*F = 0. (2.37)

In microstrip problems, the current is carried by the strip and can be decom-

posed into a longitudinal and transverse component. As shown by Sommerfeld, for a
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current source parallel to a dielectric interface, continuity at the boundary requires
two components of the vector magnetic potential A, one parallel to the interface, the
other perpendicular to the interface (see Sommerfeld’s derivation for a horizontal an-
tenna over an arbitrary earth, p. 257 [16]). Instead of deriving the electromagnetic
fields through the vector magnetic potential A with these components, it is possible
to derive £ and H through both Aand F potentials. Any two components of A
and F can define the electromagnetic fields anywhere but a judicious choice of the
two components can greatly simplify the derivations by producing a set of decoupled
equations [17]. The vector wave potentials having only one component in the direc-
tion of propagation produce a formulation of the electromagnetic fields in terms of
TE and TM waveguide modes. On the other hand, when A= A, 7 and F=F, z,
the fields are then written in terms of longitudinal section electric LSE modes and
longitudinal section magnetic LSM modes to the z-direction. This formulation is
usually referred to as the Hertz potentials. In view of (2.30)-(2.31) and (2.35)-(2.36),

an (A, F;) formulation yields electromagnetic fields of the form

. 1 0

E = —]wA,z + jwep axayAxy + m a—z'a';AzZ (238)
- 10 0
H = ——A,y - —A;z 2.39
P ¥ ByA z (2.39)
for LSM modes, and
- 10 0
E = -—F,y— —F;z 2.40
gz =Y 6yF ¢ (2:40)
- 2 2
H = jwF.z L 9 ) L 9 F.z (2.41)

" jwep Ozdy ¥~ Jjwep 0z0z
for LSE modes. The total fields at any point are the sum of both contributions
E = Elisg+Elsu . (242

Hlvsg + Hlwsm (2.43)

s}
Il
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2.3.3 Representation of multi-layered structures

In the present derivation, the Green’s function is formulated in a generalized
way that can be applied to analyze structures involving multiple substrates and
superstrates made of a combination of materials. For such structures, the boundary
value problem is usually solved by satisfying the boundary conditions of continuity
of tangential electric and magnetic fields at the interface between each of n dielectric
regions separately [18]. This approach leads to a linear set of 4(n+1) equations which
has to be solved analytically in order to find the unknown potentials. In the present
formulation, the problem is simplified by considering equivalent boundary conditions
on the dielectric interfaces. In this manner, we are able to decrease the complexity
of the solution and solve for the electromagnetic fields within the source region only.
This formalism has been applied extensively in the past to open structures [19]. This
approach results in a simpler formulation of the problem and has the advantage that
there is no theoretical limit to the number of dielectric layers that can be treated.

From the uniqueness theorem, we know that a field in a lossy region is uniquely
spectfied by the sources within the region plus the tangential components of E over the
boundary, or the tangential components of H over the boundary, or the former over
part of the boundary and the latter over the rest of the boundary [20]. Therefore, we
can derive the Green’s function for the source layer alone (layer s) with impedance
boundaries 7, and #; at the upper and lower interfaces, respectively, as shown in
Figure 2.2. The fields in the other layers are solved by applying the continuity of
tangential fields at the interfaces and can be cast in a simple and compact form as
shown in Appendix A. These fields are not needed for the solution of the eigenvalue
problem, but are required for the calculation of the characteristic impedance.

The impedance boundaries 7, and 5 are found by introducing the concept of wave
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impedances. Wave impedances can be defined at the planar dielectric interfaces in
terms of a simple relationship between the tangential electric and magnetic fields

existing on them

E,=ixnH, (2.44)
or, in other terms
j-E
= =. 2.45
1="TF (2.45)

These components are chosen such that § x Z = Z is the direction of power flow [21].

The boundary conditions at the upper and lower interfaces are enforced separately

for each LSE and LSM modes [18] as

E

ol = (ﬁ"-) ,@x=0 (2.46)
z/ LSM,LSE

e/ = (%) , @x=h (2.47)
z/ LSM,LSE

where the subscripts | and u represent the lower and upper interfaces and the su-
perscripts @ and f are associated with the LSM and LSE modes, respectively. To

simplify the notation, we define normalized wave impedances as

(2.48)

where the characteristic impedances (7.)’ correspond to the TM and TE impedances

in the source layer. In any layer i, we can define

(T]c)} = %;“—' , for LSE modes (2.49)
(TIc)f, = fﬁf , for LSM modes. (2.50)

The interface complex impedance 7; is equivalent to the impedance of a transmis-

sion line ¢ with characteristic impedance (nc)" terminated by a load impedance which
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may be a lumped impedance (such as the surface resistance of the ground plane) or
the impedance presented by another substrate layer (Figure 2.2b). The normalized
impedance 7 is calculated by the impedance transformation formula for transmission

lines using an iterative scheme from the upper and lower walls towards the source

region s :
i = ()ay T3 titankohin (2.51)
' (Uc):;-fl 1+ Jﬁ?lfl tan kz,_, hi-1 ’
ﬁ.“vf = (Th);’f ﬁ:;'j; - -] tan k’i-{»l hi+1 Z > s (2 52)
' (776):}1 1- Jﬁ?—{'—f; tan kz,,, hiy1 ,

2.3.4 Solution to the boundary value problem

The homogeneous scalar wave equations for A, and F are solved in regions (I) for
z > z' and (II) for z < z’ inside the equivalent structure. The solution of the fields
in each region amounts to applying first the boudary conditions of the structure
at the waveguide walls and the interfaces, and then to solving three independent
problems with an excitation in the form of an electric current dipole with an z, y
and z component respectively.

Applying the method of separation of variables to the wave equations (2.33) and

(2.37) yields

Az = Xo(z) Yaly) Za(2) (2.53)

Fp = Xy(z) Vi(y) 24(2) (2.54)
for which a general solution may be put in the form
@ = Acos ke + Bsin ke (2.55)

where { = z,y,0r 2z, ¢ = X, ), or Z and k¢ is complex in general. The eigenvalues



are related by
K = k2 + k2 + k2. (2.56)

First, boundary conditions at the walls and interfaces of the structure need to
be enforced. Since the waveguide walls are assumed to be perfectly conducting, the

tangential components of the electric field must vanish at the side walls

Esy=0,b) = 0 (2.57)

E.(y=0,0) = 0. (2.58)

These boundary conditions are satisfied by choosing the following eigenfunction so-

lutions for the y-dependence

Yuly) = sinkyy (2.59)
Yi(y) = coskyy (2.60)

with
k,,:% . m=0,1,2,.. (2.61)

To completely characterize the shielded multilayered structure, the boundary
conditions on the lower and upper interfaces (2.46) and (2.47) of the source layer

have to be enforced, as described in the previous section, by setting

~

E 1
(_‘?y) =92 | z=h (2.62)
a,f

#)
B/,

Making use of (2.38)-(2.41), it is shown in Appendix A that the eigenfunction solution

!, z=0. (2.63)

for the z-dependence can be written as

XD(z) = AD [cos ky(z — h) — jif2 sin ks(z — h)] (2.64)

(@) = D [sin k,(z - h) + i cos k(= ) (2.65)
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for region (I), and as

XUD(z) = AUD [cos k,z — j7F sin k,z] (2.66)

x{0(z) = pun [sin koz + jii cos kzz] (2.67)

for region (II).

The four unknown coeficients A, D), AUD DUD in (2.64)-(2.67) are deter-
mined by the application of the boundary conditions at the source. To that end, we
consider an infinitesimal current source located at 7 with unit amplitude and compo-
nents in the z, y and z direction. To account for the electric current source, continuity
of the electric fields needs to be satisfied at the interface £ = z’. An infinitesimal
two-dimensional current source in the y and z directions yields a discontinuity in the

magnetic field components as follows

Ax (HD - AI) = §§(F = )| omar (2.68)

Ax (HD - AID) = 5 §(F = 7)|e=ar- (2.69)
For an z-directed electric dipole, the wave equation is used
VIA+KA = —p28(F=7)|pew (2.70)

to derive the coefficents of the A potential (2.53)-(2.54) as detailed in Appendix A.
Except at the source point, the eigenfunction expansion of the Green’s function is
well-behaved. It should be noted that the potential formulation of the problem leads
to a singular term in the normal zz-component of the Green’s function. However,
for the characterization of planar structures where the current sources are assumed
to have only y and z components, the zz component of the Green’s function is not

needed.
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Electric Green’s function

The components of the dyadic electric-type Green’s function G" are given below
for the source layer, where G"J’k represents the 7 component of the electric field due
to a k directed current dipole. In the following, €} is the complex permittivity of the

source layer and : represents the region above (I) or below (II) the point source.

we;s
© 6 K2+ K o
+ > __(_y___)__}_ sa(z) vi(z") sin kyy sin kyy' (2.71)
m=0 b kl‘ D“
(~° )i = - ] i 6—'"-k L s (z) ¢t (') sin kyy cos kyy’ (2.72)
Ty uJC; o b !IDa a a Y y
e \! 1 &6, 1 . S . ,
( zz) = — ) k.= ci(z) ¢i(z') sin kyysin kyy (2.73)
we, m=0 b a
Se \* J = Om 1 i if.0 : !
(Gyz) = —we; Z;o oA k4 (z) v (z') cos kyy sin kyy (2.74)
e \! = m 1 !
(ny> = J z:o TETR kyy cos kyy
m= y z
s 1 i [y y s 1 ' v
[kﬁ (ne)a 7~ Ya(2) ¥(e") + k2 (ne); D, ¥y(z) ¢y(z )} (2.75)
i 2 Om kyk
Ge = m yhz : !
( yz) '2) b (k§+k3) cos kyy sin kyy
s 1 i [ s 1 1 on
-l WD A+ 3 @ ] e
~C l 1 o 5171 1 1 l / . . !
(sz) = —we; ,,,Z=:0 —Z-kzD—a ¥i(z) vi(z') sin kyy sin kyy (2.77)
e \! | o= m  kk, ,
(Gzy) = mzz:o T—(k_z—-in) sin kyy cos kyy

(1), 5 W) ) - (- W@ )| T

a
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~ N\ i 1
G:,) = ;) ————sinkyysinky'
(¢) )3 bR
1 : 1 . .
2 c’ 1 (o) k2 c’ 1 (o .
[kz (17 )a Da lI”a.(:r) (Pa(l' ) + y (7’ )j Df “[)j(z) ‘r”j(x) (2 79)

where

k, = wy/€eluo (2.80)
k, = m-b—" (2.81)

ke = JBR— k- KR (2.82)

and 6,, is the Neumann delta defined by

6= L m=0 (2.83)
2 m#0

The z dependence is given by

<os(3) = cosk(z —h) = jilu ' sinks(z = h) (2.84)
(@) = cosksz = i sin ke (2.85)
¥l () = sinks(z - h)+jiiu “f cosko(z - B) (2.86)
$(2) = sink. +jii *f cos k., (2.87)

and the z’ dependence may be written as

ga,{'f(m') = sinkgz' + j7. &S cos k,z' (2.88)
el (') = sink(z' = h)+ ji “f cos ky(z' — h) (2.89)
vij(x') = coskyr — j7, %S sin k,z' (2.90)

viff(x') = coskg(z' — h) — jii *I sink,(z' — h) (2.91)
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with
Dy =sink.h (1= 7/57) + 5 cos ko (77! - 72). (2.92)

As further discussed in Chapter 7, the equations D, = 0 and D; = 0 are the char-
acteristic equations for the waveguide modes of the TM and TE types, respectively,
propagating in the corresponding multilayered inhomogeneously-filled waveguide.
The contribution of the LSE and LSM terms is expressed clearly through the z
and z’ dependence of the individual components. For the vertical component of the
field, only LSM modes are present. All the terms of G~ are eigenmode expansions
with respect to the y direction, resulting in a single summation over the modes m.
It is interesting to note that the m = 0 term only contributes to the summation for
the yy-component since it is the product of two cosines.

The dyadic Green’s function components are given here for the regions just above
and below the source. By applying the boundary conditions at the different dielectric

interfaces, the Green’s function can be derived in any layer as shown in Appendix A.

Magnetic Green’s function

The components of the magnetic Green’s function are needed for the evaluation

of the characteristic impedance and are given below

(Gi) =0 (2.93)
~p \i = O k1 ; ,

(G:y) = -J mE—O-b_ k D, ¥, (z) (") coskyy cos kyy (2.94)
e i = 6’“ k 1 1 1 ! . 1

(G2) = - :;07 k—” D, Val®) #al(@) cos kyy sinkyy (2.95)

(éh )'. —_ —]_ f: 6_"‘ k ( )S igi(x‘) vi (.’L‘l) sin k sink ] (2 96)
yr wy opar! b z e a a\*/ %a vy vy .

a
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J
el i) + -5e) 1) (297

K —6,(2) ¢4(z') + k) ==5}(2) v}(x')} (2.98)

~h 0\ ] & om s i i) . '
(Gh)' = — X Tk () i@ vi() coskyy sinkyy’  (2:99)

%(2) wale’) + K -l—fCQ(w) vi(r’)] (2.100)

[——c‘(w) i (z') + =j(z) w}(x')] : (2.101)
2.4 Method of moments

The generalized integral equation (2.11) can only be solved numerically because
of the complexity of the integrand. The Method of Moments is particularly well-
suited for the solution of integral equations of this type [22] and is adopted here to
calculate the current distribution on the lines. This technique transforms the integral

equation into a matrix algebraic equation that can be easily solved on a computer.

2.4.1 Overview of the method

Let us consider the operator equation (2.2) as
L(J) = g(E) (2.102)

where £ is an integral operator (which includes the Green’s function and certain

boundary conditions), g(E) is a known excitation function and J is the unknown
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function to be found. Equation (2.102) can be solved by applying the method of mo-
ments. The first step in this approach involves approximating the unknown current

by a series of functions as

-

Jy) = Yl b (2.103)

where the components of i;, are the unknown constants to be determined and the
components of Ep(y') are known expansion functions which form a suitable basis. The
basis functions may be either entire domain bases defined over the entire domain of
the operator (e.g. Chebychev polynomials) or subsectional bases which only exist
over subsections of the domain (e.g. pulses) as shown in Figure 2.3. In this work,
both types of basis functions have been used.

For exact solutions, (2.103) is usually an infinite summation and 5,, form a com-
plete set of basis functions. For approximate solutions, (2.103) is a finite summation
which is truncated after insuring proper convergence. In addition, the expansion in
(2.103) has to satisfy the boundary conditions as required by the original equation

(2.102) where, upon substitution, we obtain

-

if, - L(5) ~ g(B). (2.104)

The second step in the moments method is to compute the coefficients {Ii,}
so that the approximate equation (2.104) is satisfied in some average sense. The
subscript [ denotes the z, y or z component of the unknown constants. To that end,

we define the inner product

< fg>= /w 7 ddy (2.105)

where the integration is taken in the y direction along the width W of the strip.

Next, we take the inner product of (2.104) with some suitable weighting functions
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Wy, ¢ = 1,..Q, which form a functional basis, defined on the same domain as the
unknown current, i.e. the source coordinates. In Galerkin’s method, the weighting
functions are taken to be the same as the basis functions w, = b,. Thus we obtain

a set of linear equations in { f;,}:
P - - -
YL <y, L(b)> ~ <@, g9(E)> ,q=1,..,Q (2.106)
P

which can be solved for {I),} by using either direct methods (Gaussian elimination, or
LU transform) or iterative methods (conjugate-gradient method), which are suitable

for large systems of equations.

2.4.2 Matrix formulation

The application of the inner product to (2.102) reduces the integral equation to

a matrix equation given by
21T =[V] (2.107)

where [Z] is the impedance matrix, [Z] is the current vector of unknown z,y, z
amplitudes and [V] is the excitation vector.

The impedance matrix [Z] contains 9 sub-matrices as shown below

[Ze2] [22] (2]
(2] = (2] [Zyy] (Zy:] (2.108)
(2] [24] (2]
with individual components given by
Zu(q,p) = <wig, L(by) > (2.109)
= /quy /wpdy G5i(2,9/7,4) bip(y) waly). (2.110)

In the above, W, and W, represent the width of the testing and basis cells, respec-

tively. Integration is performed over the total width of the strip when entire domain
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bases are chosen to represent the current, and over subsections of the strip width for
subsectional basis functions.

The elements of the excitation vector are of the form

(V:=(q)]
V=1 Ml |, (2.111)
[V.(q)]
where
Vi(q) = fw dy Ex(y) wie(y) ,k=2,y,2. (2.112)

When the boundary conditions on the strip are imposed, either in the case of lossy
conductors or dielectric lines, the resulting integral equation is a Fredholm integral
of the second kind (see section 2.2.2). Therefore the unknown current appears under
the integral as well as on the right hand side of equation (2.107). In view of equation

(2.12), equation (2.112) takes the form

Vle) = [ dyCuduly) warlv)
Vy(q) = /w dy Cy Jy(y) qu(y)
V.(q) = /W dy C; J:(y) wxly) ,¢=1,...,Q (2.113)

where C;, Cy, C, are functions of the boundary conditions on the line and indepen-
dent of y. In the above equations the current is the only unknown and can be written

in terms of the expansion (2.103) as

V() = Co Elop [ dbey) wea(y)
Cy Ll [, 4y bi(y) wialv)

c. S L, /w dy boy(y) Wraly) g =1, @ (2.114)
P q

&
=
I

<
~N
—~~
]
S

I
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The resulting expressions can be moved to the left hand side of equation (2.107) and
incorporated in the impedance matrix. The resulting excitation vector is zero for the

solution of two-dimensional eigenvalue problems [23].



CHAPTER III

MICROSTRIP LINES: THEORETICAL
STUDY OF LOSSES

3.1 Introduction and background

Shielded microstrip lines are widely used in microwave integrated circuits where
they perform a great variety of functions. It is therefore very important to have
an accurate knowledge of their characteristics, i.e. phase velocity, characteristic
impedance and losses as a function of geometry and frequency. Although dissipative
losses are often considered a second order effect, they can impose a major limitation
on the performance of microstrip interconnects, passive circuits and radiating ele-
ments in high frequency circuits. It is therefore of interest to improve loss analysis,
whereby effects of substrate and non-perfectly conducting strips can be treated indi-
vidually. In the context of shielded microwave and millimeter-wave printed circuits,
ohmic losses due to the finite conductivity of the strips are the prevalent loss effect
and have been studied by several authors during the past fifty years but have been
limited to lower frequencies and electrically thick strips.

The incremental-inductance rule derived by Wheeler [24] is the foundation for
calculating the surface resistivity of conductive strips. From the knowledge of the

resistivity, attenuation due to conductor losses has been evaluated by analytic dif-

38
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ferentiation [25], [26] and numerical integration [27] . The perturbation method is
also frequently used in quasi-static techniques such as the boundary-element method
(28], the finite-element method [29] as well as in spectral domain fullwave analyses
[30], [31]. These methods are based on the electromagnetic field distribution of a
loss-free environment and are useful for hybrid circuits with relatively small losses in
conductors with cross-sectional dimensions much larger than the skin-depth.

In the approaches mentioned above, explicit formulas are given as a function
of the width to thickness ratio of the strip. However, these techniques are strictly
limited to electrically thick conducting strips, i.e. they assume that the conductors
have a thickness much greater than the skin depth at the frequency of interest. The
thickness is usually taken into account by a modification of the strip width [27],
[32]. In monolithic microwave and millimeter wave integrated circuits, however, the
metallization thickness is of the order of a few pm, and the skin depth ¢ varies
between about 3um at 1 GHz to 0.3 ym at 100 GHz. Thus the conductor thickness
and skin depth are of the same order of magnitude and therefore the skin effect
becomes an important issue. In the past few years, several researchers have studied
the above problem using variational formulations [33], [34]. Since the publication of
the present work to the scientific community in 1989 [35]-[36], several new approaches
have been employed, ranging from quasi-static techniques (Green’s function method
[37]) to semi-empirical methods (‘phenomenological loss equivalence method’ [38])
and full-wave approaches (mode matching method [39], finite-difference method [40],
and the method of lines [41]). In the present method the influence of conductor losses
is evaluated using an integral equation method. In this mathematical formulation,
the fields are computed inside the conductors and are utilized to define an equivalent

impedance on the surface of the strips. This surface impedance is used as a boundary
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condition for the solution of the electromagnetic problem outside the conductors.

3.2 Description of the theoretical method

This chapter represents an approach to evaluate dispersion and losses in a system
of multiconductor microstrip lines printed on multilayer substrates and surrounded
by a shielding cavity. The system is uniform in the direction perpendicular to the
r — y plane. An arbitrary number N, of conductors are embedded in an arbitrary
number Ny of dielectric layers (Figure 3.1). The conductor strips are assumed to have
a uniform, rectangular cross-section, finite conductivity ¢ and thickness ¢. For mi-
crostrip lines used in microwave and millimeter wave applications, the strip thickness
is in many cases small compared to the width of the strip. However, VLSI intercon-
nections with strip aspect ratios less than five (width/thickness < 5) are commonly
encountered in state-of-the-art, high-speed, high-density packages. Also, in practical
circuits the strips are usually at least two widths away from the side walls of the
waveguide to avoid coupling, therefore losses of the shielding can be ignored since
most of the fields are concentrated below the strips. However, the effect of a lossy
ground plane is included. Dielectric losses are accounted for by assuming a com-
plex permittivity for each layer which in turn implies that the propagation constant
v: = jk, is a complex quantity whose real part represents the attenuation due to the
finite conductivity of the strips and dielectric losses. Both conducting and dielectric
regions are assumed to be nonmagnetic with free-space permeability po. The theory
can be extended to multilayered isotropic magnetic media in a straightforward man-
ner by the concept of duality [20]. In the case of anisotropic materials, the electrical
parameters have to be described as permittivity and permeability tensors.

The approach consists of a generalized integral equation formulation where fields
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Figure 3.1: Geometry of a multilevel microstrip line system in a shielded environment
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are computed independently in different dielectric regions as well as inside the con-
ductors. The field behavior inside the conductor is described by a quasi-TEM analysis
where the magnetic vector potential is related to the unknown current distribution
by a static Green’s function. This method allows for the computation of the per unit
length resistance R(f) and the per unit length internal inductance of the strip L;,(f)
as function of frequency. An equivalent surface impedance is then defined which de-
scribes, in a physical equivalent sense, the frequency-dependent field penetration in
the lossy strips and serves as the boundary condition on the strips. In the case of
N, coupled strips, there are N, modes associated with the structure. Each line is
therefore represented by N, surface impedances corresponding to each mode. The
fields in the dielectric region, which consists of an arbitrary number of layers parallel
to the ground plane, are computed by a method of moments solution of Pocklington’s
integral equation subject to the new introduced boundary condition.

The novelty of this method resides in the application of the boundary conditions
on the strip where the tangential electric field is related to the finite current in the
microstrip line by the surface impedance described above. The resulting general in-
tegral equation that accounts for both dielectric and conductor losses is solved to
calculate the complex propagation constant, current distribution and characteristic
impedance. From these results derived in the frequency domain, pulse dispersion
and cross-talk effects are obtained in the time domain by an inverse Fourier transfor-
mation. The numerical implementation of this method is discussed in the following
chapter where example results are presented for copper-polyimide interconnections

embedded in various substrates.
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3.3 Derivation of the equivalent surface impedance

In today’s VLSI and MMIC circuits where the cross-sectional dimensions of the
lines are comparable to the skin depth, conductor losses are of particular concern.
In order to examine the importance of skin-effect, it is necessary to derive the cur-
rent distribution inside of the conductors. An exact analysis of this case requires
Maxwell’s equations to be solved throughout the entire domain, i.e., in the dielectric
regions and inside the lossy strips. Such an analysis is very involved and actually
needs not been undertaken for the frequency range of interest. Inside the lossy
strips, the much simpler quasi-TEM approximation discussed below will be shown
to be valid up to millimeter wave frequencies. The quasi-TEM integral equation
formulation used here for the frequency-dependent current distributions in the lossy
strips has been derived in [42], [43] and will be repeated here for completeness. From
the knowledge of the current density distribution and energy considerations, the per-
unit-length inductance and resistance matrices of the multiconductor transmission
line system can be calculated. An equivalent infinitesimally thin impedance is then
defined which replaces the lossy conducting strip. This impedance provides the sur-
rounding region with a relation between tangential electric and magnetic fields on

the surface of the strip and serves as an additional boundary condition.

3.3.1 Quasi-static integral equation for the current distribution in con-

ductors

Assuming that the cross-sectional dimensions of the strips are small compared
to the wavelength ) in the frequency range of interest, the fields in the strips can
be considered to be quasi-TEM allowing the use of transmission line circuit-theory

parameters. The multiconductor transmission line system can be described in the
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frequency domain by the telegrapher equations

P - @+l (31)
T - a1+ i)V (32

where [R], [L], [G] and [C] are the per-unit-length resistance, inductance, conduc-
tance and capacitance matrices, respectively. All these quasi-TEM matrices are of
dimensions N, x N. where N, is the number of conductors in the system. The pa-
rameters V and I are the complex voltage and current vectors and w is the angular
frequency.

Because of the finite conductivity of the lines and their small cross-sectional
dimensions, a longitudinal component of the electric field E, exists inside the con-
ductors. However it has been shown [44] that this component is still very small
compared to the transverse E; component inside the lossy conductors throughout
the millimeter wave frequency range and, as a result, the quasi-TEM approximation
remains valid. The field penetration in the strips is dependent on the frequency of
operation and therefore the [R] and [L] matrices, which are of interest in this work,
will also be frequency-dependent.

In the derivation of the quasi-static integral equation for the current, the system
of multiconductors is above an infinite perfectly conducting ground plane as shown
in Figure 3.2. At frequencies up to the millimeter wave region, the displacement
currents inside the conductors can be neglected compared to conduction currents
(we < o) for good conductors such as copper. From Maxwell’s equations, and under

quasi-TEM conditions, the longitudinal component of the electric field is given by
Ez(x’ y) = _jWAZ(J:’ y) -Vo (33)

where A is the magnetic vector potential and ® is the scalar electric potential. As-
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Figure 3.2: System of N, z-directed multiconductor lines above a ground plane
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suming that the voltage drop inside the conductor is only in the z direction, we can

write

Vo = (3.4)

S

Using the fact that for any scalar quantity V x V& = 0, it follows that 2 = C.

Applying Ohm’s law ( J = ¢E ) to (3.3), we get

d
Iz,3) = —juo Adlz,y) - 05 (3.5)

By integration of equation (3.5) over the cross-section of the mth conductor, the

constant % can be determined as

—%=#/smjzds+g—://;m/hds (3.6)

where the first integral represents the total current flowing through the cross-section
of the mth conductor and the second integral can be seen as the average magnetic

potential over the strip and will be denoted by A,

~ 1
= . ds. ki
An= o / [ 4.ds (3.7)
This leads to
: .= 1
J:(z,y) = —jwo Ax(z,y) + jwo Am + g//sm J:(z,y) ds. (3.8)

The magnetic potential A satisfies the inhomogeneous equation
V24, = -pd(z,y) (3.9)
whose general solution has the form

Aey) = uf [J(y) Olzyiay) de' dy (3.10)
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The two main assumptions in this derivation are that the gradient of the electric po-
tential has only a z component which is a constant (3.4), and that the current J may
be related to the magnetic vector potential A through a quasi-static Green’s func-
tion. In (3.10), the quasi-static Green’s function G is dependent upon the geometry

considered and can be written as

Gloyizhy) = ——ln|EZ2) + W=v)
Y 4 |(z-2)? + (y+y')?

(3.11)

for an infinite ground plane [45]. Upon substitution of (3.10) in (3.8), we can write
the final integral equation for the current density distribution inside of the lossy

strips as

Ji(z,y) = -Jwaﬂa// G(z,y;z',y") dz' dy’ +//
]wapos //m[// G(z,y;7',y') dz’ dy] ds  (3.12)

where St = T"N¢, is the total cross section of all conductors. The integral equation
(3.12) has been solved by the Method of Moments using pulse basis functions over the
cross-section of the strips [45]. Figure 3.3 illustrates the results of this formulation
by showing the magnitude of the current density along the width of a metallic strip

plotted for four different distances s;, s,, s3 and s, from the bottom side of the strip.

3.3.2 Evaluation of the resistance and inductance matrices

Resistance matrix

Once the current distribution inside the conductors has been computed, the per

unit length resistance R(f) is found by considering the time average power dissipated
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Current Distribution (f=1 GHz)
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in the conductor due to ohmic losses on the line:
1 T
P, = —Re{/] . E ds}. (3.13)
2 S
Using Ohm’s law (J = o' E), we get

- L 7L Fdsd = L 2 }
P = %Re{/SJ J ds} = ZURe{/SlJI ds} . (3.14)

The power can also be written in terms of the per-unit-length resistance matrix as

1,1 ( )
=1 . d
Pu=5RII 2RUSJ3

where I = [;Jds. The component R;; of the resistance matrix [R] represents the

2

(3.15)

per-unit resistance of the jth conductor due to a current in the ith conductor and is

expressed as
_ 1 fs,‘ IJilz ds

Ri; = :
» I(fs,- de‘s) ‘2

(3.16)

Inductance matrix

The per-unit-length inductance L(f) can be derived by examining the energy
stored in the inductors used to represent the lines. The magnetic energy stored

[ m 1 E { J : } ( )
4 ST

where A is the magnetic vector potential. The magnetic energy U, can also be
expressed in terms of mutual and self inductances as
1 Ne Ne
Un = 4—22 L; L I (3.18)
1=1 j#i

where L;; is the component of the per-unit-length inductance matrix for a system

when only the ith and jth conductors are excited, and I; and I; are the amplitudes
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of the currents on the respective lines. The case where only the :th conductor is
excited yields
L1
Uk = i L I (3.19)

From (3.19) and after expanding (3.18), we get

U

L; = 4-1?- (3.20)
13 _ (L 841

L; = 2Um Un Um. (3.21)

LI
3.3.3 Derivation of the surface impedance

From the knowledge of the per-unit length resistance and inductance matrices, a
longitudinal surface impedance is defined that relates these quantities to the tangen-
tial magnetic field H, and the tangential electric field E,. A transverse component
of the current also exists, and thus a transverse surface impedance Z; may be defined

as discussed below.

Longitudinal component

The per unit length internal inductance of the strip is computed as

Lin(f) = L(f) = Lo, (3.22)

where L, is the per unit length inductance of the strip in the limit ¢ — oo, in which
case the current flows on the surface of the strip and there is no field penetration.
Knowledge of the per unit length strip resistance and internal inductance allows us

to express the per unit length voltage drop AV along the lossy strip as

= AV =[R(f) + j2r fLin (/)] T (V/m) (3.23)

where [ is the total current flowing in the strip.
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In order to derive the desirable surface impedance we start with the standard
definition for the surface impedance of an imperfect conductor as the ratio of the
tangential component of the electric field to the surface current density at the con-

ductor surface

E.(1) = Z(7)J.s(7) = Z(7)Hy(7), (3.24)

where 7 is the transverse coordinate along the surface of the conductor. Integrating

(3.24) along the side of the strip we have

/0 " B (r)dr = / Y 2(r)H,(7)dr, (3.25)

0

where W is the width of the strip. From (3.25) using the mean value theorem for

Riemann integration [46] we can write

w w
/0 E,(r)dr = Z(n) / H,(r)dr, (3.26)

0

where 79 € [0, W]. Dividing both sides of (3.26) by W and recognizing the integral

on the right-hand side as the total current flowing on the surface we can write

~ I

Ez = Z(To) W, (327)

where E, is the average value of the longitudinal component of the electric field on
the strip. Obviously, this value can be thought of as the negative of the per unit
length average voltage drop along the strip, in which case (3.23) and (3.27) lead to
the relation

Z(r,) = W[R(f) + jwLin(f)]. (3.28)

This is the desirable expression for the surface impedance of the equivalent
impedance surface to be used in place of the lossy strip. In what follows, we shall

denote this surface impedance as Z;( f) where the subscript [ suggests its relation to
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the longitudinal current on the strip.

Zi(f). (3.29)

|
]

<

Transverse component

For most practical purposes, the dominant part of the conductor loss is due to
the longitudinal component of the current, for which an accurate longitudinal surface
impedance Z(f) has been proposed. However, as the frequency of interest becomes
higher and/or the width of the strip increases, the transverse component of the
current becomes more significant and needs to be accounted for. This is being done

using the standard surface impedance for an infinite resistive plane as

L1
-2 =2Z0= (14, (3.30)

where o is the conductivity of the strip and § the skin depth at the frequency of
interest. Even if the width of the strip is finite, use of (3.30) is justified by the fact
that the strip is assumed to be infinite in the direction perpendicular to the flow of

the transverse component of the current.

3.4 Integral equation formulation

As discussed in Chapter 2, the electric field excited by an electric current source

depends upon the surface current density J as follows

B = [ / /V & FI7) . T dv'. (3.31)

The above expression satisfies all boundary conditions except the ones on the sur-
face of the strip conductors. For perfectly conducting strips we enforce the Dirich-

let condition of vanishing tangential electric field on the surface of the line. This
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boundary condition is applied to (2.11), and is satisfied for discrete values of kM
corresponding to the dominant and possible higher-order modes, depending on the
operating frequency. For the general case of strips with finite thickness and finite
conductivity this condition is not applicable anymore. We follow here the alterna-
tive, approximate method based on an equivalent representation of the lossy strips
by the impedance surfaces derived above.

In planar microstrip problems, the current sources are assumed to have both
longitudinal and transverse components which, in turn, implies that only four out
of the nine Green’s function components need to be considered (Gyy, Gy, Gy and
G::). In view of (3.29) and (3.30), equation (3.31) takes the following form on the

surface of the strip

B = ///nxG ). J(7@)dv' = —ax Z- (Hx#n)  (3.32)

where E, represents the transverse electric field and Zisa dyadic quantity that we

call the dyadic surface impedance given by
7 = 24§ + 2133 (3.33)
Recognizing the boundary condition for the magnetic field as
Ax H=J (3.34)

and recalling (2.11), equation (3.32) becomes

[ ix G layle'y). ) dy - ax ZJ() =0 (33

kz=kMS

In a multiconductor system, the above equation can be generalized to a Fredholm

integral equation of the second kind

""’C

Z/C i x G (z,y/z',y) - JJ( Ndy' - nx Z'-j?(y)=0

i=1

k,:kf{s

i=1,..,N. (3.36)
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iy ziJ
where Z' is the surface impedance of the ith strip and G is the Green’s function at

the ith strip due to a current J7 on the Jth strip.

3.5 Application of the Method of Moments

The integral equation (3.36) is solved by the Method of Moments [22]. The cross-
section of the strips has been replaced by an infinitesimal impedance surface. Let
N. be the number of conductors and N, the number of entire domain basis functions
that are used to represent the current on the surface of the strip. The total number
of elements, Nr, is then given by Ny = T Ne Ny = N, x N,

The two-dimensional surface current on the ith strip may be written as
Fy) = 1) + JiW)z (3.37)
where J}(y') and Ji(y") are functions of y’ given by

) = E Ly Y8/

p-]

Ty Z L, b,y (3.38)
=1

and I}, I}, are unknown current coefficients. Inserting the expression for J(y) from

equation (3.38) into equation (3.36) we get

ii B[ a0 Gyl ) ) +

iy w@mmwmw)=—TZ&%

N b - )
S5 G [ W Gl ) ) +

J=1 p=1 C“”
&L}M%wmww>=42m;

i=1,..,N. (3.39)
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After applying the weighted averages, the system of equations (3.39) becomes

Ny N ] . .
LY Lf W [ ey ) w0
p=1 )= Cus

+ 5[ dy'/C, dy G (2,3/2',) Up(y) w(v)
-2 Z o () we(w)
DD IZ,/CW dy’ /Cm_ dy Gy (,y/<',y') B, (y') wiy(y)

+ I / dy’ / dy Gi(z,y/<,y) b, (y) wiy(v)
w: ws

. L b(0) uly(y)

r=1

fori,j=1,..,N.and p,q =1,...,N,. (3.40)

The set of equations (3.40) may be rewritten as

Ny
> |AnT+
r=1
Nc (o, <]
Y (BIVIOF,(m 22} + BIPIOF, (m,zi,2)) | = (3.41)
1=1m=0
Ny
Z [Zl I;vzgg)
p=1

Ne oo
¥y (1;,,1;1)1(4)}- (m,z;,7}) + ILIOTOF, (m,z;, 2 J))} q3.42)

2p“p
1=1m=0

fori,j=1,..,N.and p,g=1,.... N,

In the above, the F(m, z;, z/) are given, according to the notation defined in Chapter

2, by

6m 2 s 2
Fonlm, 21 2}) = i s [ () ) ) + B2 ()} () (2])] (349

o bm kyk, s
Fy(m, i, 7)) :=Tm[—(nc)ma<xf) Pa(z3) + (1)} s(2:) o5(a5)] (3:44)
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1) k,k
Ly = __vE
Fau(m,zio ) = 3 (k2 + k2)

5},",czik2[ (Me)? al(2:) @alel) + K2 (1)} ¥s(z:) 5(a})] {3.46)

(1) al:) wala]) = (ne)} $y(2:) 4(a5)] (3.45)

fzz(m,xiaz’)

The terms I,’s represent the moments integrals resulting from the application of the
method of moments and are dependent on the choice of basis and weighting functions

through the following definitions

n
L /Cw dy coskyy b, (y) (3.47)
® _
7 /cw, dy sin kyy b,(y) (3.48)
) = /C dy cos kyy w},(y) (3.49)
@ _
A /C _ dysin Ky wl () (3.50)
ﬁ?=‘L dy b, (y) wl,(y) (3.51)
w)
I = /Cw dy b (y) wi,(y)- (3.52)

The set of equations (3.40) can be further reduced to a matrix equation of the

form
(2](1] = [0]. (3.53)

For the general case of N, strips on two levels of interconnects, the impedance matrix

[Z] can be represented as a [2N, N, x 2N, N,] matrix
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212 . ZINc

vz . w
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Zyy
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yz
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yz

NN,
Zyzc c

zir
z2

NcN,
Zzzc c
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(3.54)

where the individual Z¥ are themselves N, x N, submatrices, whose elements are

defined by
2 (p,9)
Zii(p,q)
23 (p,q)

Z3(p,q)

S IO IO Fplm,zi 7)) + 6,5) 218

m=0

o0
Y I,(,Z) IO Fyo(m,zi, 7))

m=0
oo

> I},” Ié‘” Foy(m,zi,27)

m=0

Y 10 I £, (m, 2, 2) - 6(i, ) ZTO

m=0

where 6(z, 5) is the Kronecker delta,

6(¢,7) = {

1 ,fori=]
0 ,fori#]j.

(3.55)
(3.56)
(3.57)

(3.58)

(3.59)

It is important to choose the basis functions b to be as close as possible to the

physical current on the strip for numerical efficiency and rapid convergence. If the

first few basis functions represent the current reasonably well, the necessary size

of the matrix can be kept small for a given accuracy of the solution, so that CPU

time is minimized. Therefore, the formulation of J should take into account the
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Figure 3.4: Geometry for entire domain basis functions

singularities of the charge distribution at the edges of the strip. In this study, we
have investigated the use of entire domain functions to approximate the behavior of

the current distribution.

3.5.1 Basis functions expansion

Entire domain basis functions are chosen to approximate the behavior of the cur-
rent distribution. The longitudinal current is represented by Chebychev polynomials
of the first kind T, multiplied by their respective weighting functions in order to

satisfy the edge conditions

N T (v -w)
Z I’-P ) 2"
== (& - w)

with N, the total number of basis functions, W; the width of the :th strip and y; the

Ji(y") (3.60)

distance from the origin to the center of the strip as shown in Figure 3.4.
For narrow strips, the zeroth order polynomial T} is usually sufficient to describe
the variation of the longitudinal current J, in the transverse direction with good

accuracy. Indeed, this variation corresponds to that derived by Maxwell for the
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surface charge density distribution on an isolated strip [47]

Jo

- o [y <%
o(y') = x\/l—(-va; (y—ya)) . (3.61)

0 Jor Jy—y)[>%

For the dominant quasi-TEM mode, the transverse current Jy 1s zero at the
center of the strip and is an odd function about the center. The current I,(y) can be
obtained analytically through the use of the continuity equation [48] and has been
described in the past by closed-form trigonometric functions [49], [50]. In this work,
the transverse current J, is approximated by Chebychev polynomials of the second
kind U; multiplied by their own weighting function

Z ( (y- yz)> \/1—(%(1/—3/;02- (3.62)

p=1

The first order (p = 1) corresponds to an odd function over the strip which satisfies
the edge conditions and approximates accurately the current distribution on the
microstrip. Introducing these expressions for the basis functions into equation (3.36)

results in closed-form integrals of the form

- [F Y 0 (mt-9) 1= [ty -] i G
% T (F0-w)
/' vit \/1 ([W ¥y=y )

w
2

@)
IP

" sin(kyy) dy (3.64)

slu

that simplify to Bessel functions of integer order as shown in Table 3.1. The deriva-

tion of these integrals can be found in Appendix C.

3.5.2 Testing functions

In the choice of appropriate testing functions, care has to be taken to fulfill
certain mathematical requirements. The testing functions should be chosen so that

the inner products are independent of the excitation. Some additional factors may
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Basis Functions Moments Integrals

Jy(y) where Y = % (y - %)

byp (Y) 5"
| T I
|
1 2YV1-Y? VY] €1 =2 Dk %) sin(kyy) L ifm#0
|0 JfY|>1100 ,ifm=0
[ |
| 4 |
@AY?-1)1-Y2  if|Y|<1| -2 Ik, %) cos(kyys) ,ifm#0
| | |0 JfY]>1]0 ,ifm=0
| l
[ S
|
| /L AYQY2-1)WI1-YZ if|Y|<1|2J,(k%) sin(kyw) Jfm#0
1] | |0 Y] >1 (0 ,if m =0
l [

Jz(y) where Y = & (y - %)

b.p (Y) ¥

L VEY <1 | Wor do(k, %) sin(kyy)
0 LY > 1

S
.-

L VEY <1 | W gk, %) cos(kyyi)
F | 10 f Y] > 1
|
A
_L N GEY] <1 | =% 1 Jo(ky %) sin(kyy:)
| | Jif Y] > 1
u I I

Table 3.1: Chebychev basis functions and the resulting moments integrals for the
first three orders p =1,2,3
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influence the selection, and in particular the ease of evaluating the inner products:
computational considerations require to find closed-form expressions that can be
easily implemented numerically. Galerkin’s method, which assumes the testing and
basis functions to be identical, is applicable to the solution of the integral equation
in the case of lossless strips. When adding conductor losses, however, the unknown
current appears on both sides of the Fredholm integral equation. The application of
weighted averages to the right hand side of (3.39) implies the solution of an additional

integral of the type
Nb . . .
<uly, B> = Lh, [ul@b0) g=1.N (36
p

<wl,, Jiy) > =z [ i) Byy) sa=1oms N (3:66)

For the case of Galerkin’s procedure, we would choose

Tymr ( (v- )

wi,(y) = - (3.67)
\/ 1= (y-w) )
which results in undetermined integrals of the form
4 6 - p)
/ cos(g+p)9  coslg —p)f) 4y (3.68)
0 sin § sin

Another type of testing function was considered

o) =Toct (0 =90) 1= (e -0 (3.69)

which yields closed-form expresions. However, this set of testing functions is zero

at the ends of the domain of solution and therefore should be avoided since a finite
current cannot be synthesized at the edges with such a choice. In mathematical
terms, the residual may be large near the end points and so may be the error in the

solution [51]. Using the above guidelines, the following testing functions have been
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chosen
wy(y) = U (-37 (y - y.-)) (3.70)
wiq(y) = To-1 (Vf/" (v - yi)) : (3.71)

This method is a variation of Galerkin’s procedure where the testing functions @, dif-
fer from the basis functions 5, by the Chebychev weighting functions, i.e. (1 — Y,~2)%
and (1 - Y,~2)_% for the y and z components, respectively.

The integrals resulting from the weighted averages are given by

i+ 5 2

e = [ ’U( = (y- y,)) cos(kyy) dy (3.72)
yl+!2l'

70 = " Tt (0 - ) sin(ig) (.13
-

and summarized in Table 3.2. These moments integrals result in closed-form expres-
sions involving the family of spherical Bessel functions j, of pth order and are derived
in Appendix C.

Using the testing functions defined in (3.70)-(3.71) the moments integrals intro-

duced by the conductor loss term in (3.65)-(3.66) may be written as

!/.'+—V;'i 2 2 2 2
19 = [ U () |1 - -] U (-0 @
: sforp=gq
= wl i 3.74
{ 0 ,forp#aq. 1

70 _ /Mz} Tp (wl,.(y—yi)) (2 _ > &y

) T,- —(y y:)
Sy e R
7 2forp=q=1
= Wi{ 7 ,forp=q#1 (3.75)
0 ,forp#gq
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Testing Functions Moments Integrals

Jy(y) where Y = (y - %)

wyp(Y) 7(13)

| 4 |
|

A, |2 (Y] < 1| =2W ji(k, %) sin(kyy:)
‘7 [ |0 f Y] > 1
| !
| 4 | ~
_L<7ZL a'-1 YIS g {do(ky %) - 872(ky %)} cos(kyys)

0 Y21

|
]
A
mez_l) YIS = {Ga(k, %) - 473(ky %)} sin(kype)
|
|

Jz(y) where Y = ﬁy(y - %)

w,,(Y) i
| |
1 o
- L 1 Y] <1 | W jo(ky75) sin(kyys)
| | |0 Y] > 1
| |
| 4 |
| | . N
_b;4.> Y ,lf IYI S 1 WJl(kyT COS(kyyi)
| 0 LY > 1
|
| 4 |
| |
A V=1 YIS (k) + 420k, )  sink)
I 1 |0 Jf Y21
| |

Table 3.2: Chebychev testing functions and the resulting moments integrals for the
first three orders p =1,2,3
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3.6 Determination of the propagation characteristics

Using the method of moments solution detailed above, the integral equation (3.36)
results in a homogeneous system of simultaneous algebraic equations which can be

solved by setting the determinant of the impedance matrix [Z] equal to zero
Det(Z) = 0. (3.76)

The resulting homogeneous equation is solved for the microstrip propagation con-
stant of the dominant quasi-TEM mode and higher order microstrip modes. In the
study of losses, however, interest is focused on the dominant microstrip mode for
which the surface impedance 7 was derived. The above expression (3.76) can be
easily programed on a personal computer to evaluate the roots of the determinant.
Expressions for the elements of [Z] involve a summation over the modes of the inho-
mogeneously filled waveguide aléng the y-direction. The number of modes considered

is enough to insure convergence as discussed in the next chapter.

3.6.1 Propagation constant

When considering lossy metallic lines or lossy dielectrics, the propagation con-

stant k, is a complex quantity defined as
k, = -jv. =08 - Jja (3.77)

where £ is called the phase constant and « the attenuation constant.
The real part of the propagation constant 3 is given, in the lossless case, by

B = i_r [ rad/meter] (3.78)

9

where ), is the microstrip wavelength. In the lossy case, the phase constant is simply

defined as the real part of the propagation constant as described in (3.77).
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The imaginary part of the propagation constant « is the sum of an ohmic at-
tenuation factor a, and a dielectric attenuation factor ag. Conductor losses are
represented through the surface impedance defined in equation (3.33). Dielectric

losses are considered by assuming a complex permittivity for each layer as

€ = €ri€, (1 — jtan d) (3.79)

where the loss tangent tan é is given by

1

WEri€op

tand =

(3.80)

with €,; the relative permittivity of layer : and p the resistivity of the substrate.

3.6.2 Equivalent current density and field distributions

Once the propagating modes on the lines are found, the current distribution on
the strips is derived in a straightforward manner by back-substitution of k, into [Z].
Since we are solving a two-dimensional problem, there is no source in the excitation
vector and therefore the excitation vector [V] = 0, and the current vector [I] is of
the form

[ (2, 120, 122, 122, (22, (23], 2, (2] ] (3.81)

where each submatrix [I}] can be decomposed as
. . . . T
[ i), 1), [3), L) | (3.82)

From (3.53), the unknown current coefficients can be normalized with respect to
one of them, e.g. I}(1). Bringing the first column of (3.53) to the other side of the
equality leads to an Ny x (N7-1) overdetermined linear system, which is solved to

obtain the normalized current vector [I,,orm]. Using the Golub Householder algorithm
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(QR method) [52], we need to solve the following system
[2'][Tnorm] = (8], (3.83)

where Z' is an Ny x (Np-1) matrix, b is an N7 x 1 vector, and Iorm is the N7 X 1
vector of unknowns which is to be found such that [Z][Inorm] is the best approxima-
tion to [b]. The dispersion analysis provides only the relative amplitude coefficients
with respect to each one of them, therefore a value of 1 is set for the normalization
factor (I}(1)), and the other ones are obtained from (3.83).

Once the propagation constant and the relative amplitude coefficients of the sur-
face current density distributions are known, the field components at any point in

the structure can be calculated in a straightforward manner by using (3.31).

3.6.3 Characteristic impedance

Among the parameters of interest in circuit design of high frequency interconnects
is the characteristic impedance Z,. To study the effects of pulse dispersion and
losses, it is important to determine the frequency dependence of the characteristic
impedance and to define a TEM equivalent in terms of current and voltage at each
frequency. In the microwave and millimeter-wave frequency range, the characterisitic
impedance is not defined uniquely for non-TEM structures such as microstrip lines.
This is due to the fact that, at higher frequencies, the longitudinal components of the
electric and magnetic field are not negligible, and therefore the conductor voltages
and currents cannot be calculated by line integrals in a simple way. For a single

microstrip line, several definitions for Z, are used,

Z, = % (3.84)
2
z = Y (3.85)

2P
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2P

Zo=|—I—|;

(3.86)

namely the voltage-current, the power-voltage and the power-current definition, re-
spectively. In the above, (*) denotes complex conjugation, P is the total power
transferred across the reference transverse plane and I is the total longitudinal cur-
rent carried by the strip. All these definitions give the same results in the low
frequency limit. The power-current relation is particularly well-suited for microstrip
problems, whereas the power-voltage definition is preferred for slot problems. It is
therefore customary to choose the characteristic impedance definition (3.86) for the
microstrip line. For the case of two symmetric coupled lines, the power is split be-
tween the two conductors (P, = P, = 1/2P) and therefore the line characteristic
impedance is half the one of a single strip Zeyen odd = II%' When considering larger
systems of conductors, the power-current definition needs to be extended to account
for multiconductor transmission lines.

In a general configuration involving N. conducting strips over a ground plane or
in a shielded environment, there exists N, modes which combine together to form
the actual field around the strips and satisfy all boundary conditions. For multi-
conductor systems, each mode k is described by its phase velocity and by the total

power transported along the system of conductors. This total mode power Py can

be decomposed into partial powers associated with each strip Py; where

Nc
Pi=) P (3.87)
=1
and
Py = / Bt x iy, - ds. (3.88)

In the above, the integral is evaluated over the cross-section of the waveguide with
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tot the total electric field due to mode k and Hy; the magnetic field due to the
current on strip j for mode k.
Based on (3.86) and (3.88), the partial power characteristic impedance definition

was proposed as [53]

Zy = A (3.89)

|k;]?’

where 1;; is defined as the surface current on line j for mode k with

Tj = /w (Jz)kj dy (3.90)

f

and represents an element of the N.x N, eigencurrent matrix [I]. In the same manner,
an N. x N, eigenvoltage matrix [V] is introduced with components Vi; = Zi; 1.

The formulation of Z; given in (3.89) is widely used as it seems to give con-
sistent results with measurements [54], but it does not strictly satisfy the necessary
reciprocity conditions at higher frequencies [55]. To that end, another definition of
the modal characterisitic impedance has been proposed which is based on the or-
thogonality of the eigenvoltage and the eigencurrent vectors of the different modes.

The relation is described by
VkTII = Pk6kl y for k,l = 1,2,...,Nc (3.91)

where Vi and I, are the kth and Ith column vectors of [V] and [I], respectively.
This provides a set of N? equations that are solved for the new modal characterisitc
impedances Zi; as a function of the total modal power and the modal currents.

In circuit design, one is generally mostly interested in the total characteristic

impedance [Z,] which includes a superposition of all the modes and is defined as

2 = [V~ (3.92)
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The components of {Z,] must all have positive values, which is not necessarily the

case for the modal characterictic impedances Zj;.

Evaluation

In the evaluation of the partial modal power Py;, integrals of the form
Py = [ Bt x Hy-ds
= [do [y [ (B&), (Hi); -~ (BYY), (ij);] (3.93)
have to be performed over the whole cross-section of the waveguide. The total

transverse electric field due to mode k is expressed as

N

B = Y (B, (3.94)
i=1
Nc

E = ) (Ey), (3.95)
=1

and the general formulation of the electric and magnetic fields associated with each

mode k is given by

]

v | Ak '
(Exj), = ‘/w dy [G‘x;(z,y/xj,y)Jj( )+ Gu(:r y/xj,y ) Ji(y ] 3.96)
~k

(Ew), = [, 40 | Galew/hy) BW)+ Glay/ahy) 2w)]| (397)
- |

(), = [, av' |Caleu/chy) ) + Cooav/ay,y) 2] (.99
P~k' i

(Ha), = [, &' |Crulau/ais) )+ CFpalenu/y) )] (3.99)

In each dielectric layer r, the electromagnetic fields may be written as

1 &6l . _ . . ,
(Bwi), = —— Y. 35 o kyy [J ky CF = k. CH] *(2)0%(z})(3.100)
T m=0
(Ew), = f: L cosk
kily = —p k:-}-k Cos RyY

2
; [k G =k b CPJ 9 (2)e(2))

J

Wiy . : : /
+ ( k.r ) DI |82 CY + ky k. CF] W(f)cp’(x,-)} (3.101)
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and

0 ] , | A ,
(H), = -2 5 ol sk [J k. Cl + k, Cf’] ¥/ ()¢’ (})(3.102)

(Hyj), = E = sin kyy
! b k2 +k? v
1

=ik, ke CH 4 K2 CH] *(2)¢°())

+(w"') o [k, k. CF + K2 CH| ¢! (2)p!(a 3)} (3.103)

where ¢*/, o/ and ¢*/ are defined in Appendix A for each layer. In the above,
the y' dependence is incorporated in the modal coefficients C*’ resulting from the

method of moments solution

Cki(m) = Z 1%(p) T (m (3.104)
CH(m) = {V: 1¥(p) 72 (m) (3.105)

=1
where I*/ are the current coefficients on line j for the mode k. Also I:,}) and I;,?)
given by (3.47)-(3.52) are the moments integrals and depend on the choice of the
current expansion functions.

The modal power (3.93) is evaluated analytically by integrating the Poynting
vector over the waveguide cross-section and may be decomposed into two terms as

follows

P = /T(Eki)x (ij);(r)da:
- = 2(3) (e =
[z (i CE - k. CH] ()e(aD)

kze \ 1 . _ . .
(k) 2 [t k0P + & O] @lo(e)

wpe\ 1 | | G
+(1:,) o [k, k. CF + K2 C¥) <f(w)so’(x,-)} (3.106)
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P, = / (Ew), (H;): (r)dz
2 (b 1 1 1Y\"
- -2(%) gelze)
/rdz {(k ) [kz Ck: k k Cln] ,wa( )(pa(z:)

WeE,

+ (‘Z:‘) = [iK2 CF + ky k. C¥| 0 (2)! (xﬁ)}

{ikcy + k CP] ¢/ (@) ()} (3.107)

In the above, orthogonality has been used to simplify the integration over the y

direction as
. b ,form=n=0
n
/dy cos—ycosT = % ,form=n#0 (3.108)
0 ,form#n
and
b form=n#0
d — —y=4{ %’ 3.109
/ ysm ysmby {0 ,form#n ( )

The integration over the z direction is more involved and requires the evaluation
of complex-valued functions of the real variable z. For all layers except the source
layer, the electric and magnetic field components E; and H, (E, and H,) associated
with lines ¢ and j have the same = dependence. The integration over layer r involves

the following integrals

/d:vc (¢(2)) = /rd:c ¢! (3.110)
/, dz ™! (z) (w-f(x))' - / dr [p*/(z)| (3.111)
where
cos kzr (z—h—ihz) ~ jiid sin ke, (m—h—ih,) 2,:1: > h
)| = =1 =1

, 2 <0

oS kzr (a: + Z hz) — 77 sin kg, <z + Z h,)

=1 =1
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Figure 3.5: Multilevel lines in the source region

2
,Z 2> h

sin k., (:c —h - Zh;) +jr'i;"fcoskz, (:z —h - Z hl)

=1 =1
2

sin k., (a: + Z h;) + ]ﬁff cos kz, (:c + hl)
=1

=1

,z <0.

(3.112)

The integrals (3.110)-(3.111) are derived in Appendix B and yield

. 2 1 + 7,77 sinh 23 (kzr Ve F (7 + 72 h 2S(kzr Jhr — 1
/,dm o) = {1 +7,77) (Fzr) f&}EZ )n)(cos S(kar )by — 1)}
+ {(1 = #7;) sin 2R(kzr ) hr F j (7, — 77) (cO8 2R(kor ) hr — 1)}
4R(kzr)
fodiies A & fod ot ] 93 —
[dz d’a’f(x)r _ {(1 +n,n,)sxnh2\r(k,,)h,4q;§z, -;— 77) (cosh 23 (kzr )by — 1)}
_ {(1 = 577) sin 2R(kzr ) hr F j (7r = ;) (cos 2R(kzr )R, — 1)}
AR (k)

where R(k.,) and (k.,) represent the real and imaginary part of the wave number
k.,, respectively. In the source layer, the expressions for the z-integrals depend on
the vertical position of line j with respect to :. Let line j be at z = z and line ¢ at
z = z{, with 2% > z{ as shown in Figure 3.5. We can define three distinct regions :

(A) z; > zi >z, (B) 2’ > z > z{ and (C) z > 2, > z|. The z dependence in the
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different regions is given by,

{cos k.z — jﬁf'l sin k,z} {cos k. — jﬁf" sin k,:c}'

{cos k.z — jit! sin k,x} {cos kz(z — h) — 77>/ sin k,(z — h)}.

{cos ko(z = h) = ji2! sin kz(z = h)} {cos kz(z = h) = jij2! sin ko(z - h)}

and

{sin k.z + jfﬁ’j cos k,z} {sin k.z + jr'ﬁ"f cos k,:z:}-

{sin k.z +jﬁ;"f cos k,z} {sin kz(z = h) + 7% " cos k, (z - h)}-

(3.113)

=

(3.114)

{sin kz(z — h) + 7% cos k. (z — h)} {sin kz(z = h) + 77 cos k(z — h)}‘

for P,. The integration over the source layer becomes

where

/ozf(A).-,-dz + /1:3(B)ijdx + L ?(C),-J.dx,

—lj—{(l—ﬁ,ﬁ{)sin2§i( 2)2i + J (7 = 77) (cos 2R(k; ) — 1)}

/ " (Byds =
B
4S(k,)
+ cosh 2‘3(k,)|2 [cos™ kph (fy + 77) — jsin™ kb (1 + ﬁuﬁf)]}

1
4§R( )

+ cos 2R(k ’ [— sin® kb (1 — 7,77) + J cos™ kzh (7, — 777)]}

{smh?f‘( )| ’[cos kzh (1 4+ 7,7;) — 7 sin™ kzh (7, + 7))

{s‘“ 2R(k.)I;! [cos™ koh (1 = 77) + j sin” koh (7 — 7))

(3.115)
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[ (cydz =
= 0 {1+ A sk 29k = 7+ ) cosh 2k
+ 4%(1,%) {(1 = 7luT],) sin 232(1%)!2; — j (7w — 1) cos 232(k,)|2;} (3.116)
for Py, and
/oi(A)“’d:z: =
= 482/:,,) {(1 + M) sinh 23(kz )z} + (7 + 77) (cosh 23 (k)i — 1)}
- 482:1:,) {(1 = 7dfy) sin 2R(kz)a; = j (it = 77 ) (cos 2R(kz)z; = 1)}
/x T;(B)"’dx -
= 432 5 {Sinh 23(kz)li§ [cos® kzh (1 + 7] — j sin® kzh (i + 7))
+ cosh 23(kz)li§ [cos™ kzh (7, + 7i7) — j sin® kzh (1 + r,ur,,-)]}
- 49%: ) {Sin 2?R(/cx)I:% [cos® kzh (1 = 7,77) + j sin® kzh (7 — 7))
+ o9 2R(ke) [ in” ke (14 7T7) +  cos” ke (7 = 7))}
/T(C)"’dx =
%
= oot {4 R sinh 230k ) - G+ ) cosh 23001
+ 4‘%2;%) {(1 = Tuily) sin2?R(kx)|2; — 7 (= ) cos 2§R(k$)123} (3.117)

for P,.

For edge-coupled lines, the sources are on the same planar level ! = x;, and
therefore the integral of region (B) disappears. In the case of broadside-coupled

lines, z; = 0 and z; = h, and therefore integrals of (A) and (C) are not needed. Note



75

that the following relations apply

(A)i; = (A)i (3.118)
(B)i; = (B)j; (3.119)
(C)i; = (C)i (3.120)

Once the partial modal power Pj; is computed, the characteristic impedance is

found through the use of (3.89) or (3.91).

3.7 Time domain analysis

As the speeds of signals on modern VLSI interconnections increase, with pro-
jected rise times < 50ps, the need arises for quantifying the effects of dispersion on
overall pulse degradation. Such dispersion effects are of great importance in cross-
talk phenomena, since the amount of cross-talk in a symmetric coupled microstrip
depends on the difference between the frequency-dependent propagation constants
of the even and odd modes of the line. Moreover, as we are moving toward higher
device densities, with the interconnection cross-sectional dimensions shrinking to val-
ues of a few microns, conductor losses are becoming an important factor. Naturally,
questions have been raised about the effect of the longitudinal component of the
electric field inside the lossy conductor on the field distribution of the fundamental
microstrip mode, especially for the case of very thin conductors with high current
densities. Furthermore, due to faster rise-times and clock-frequencies, these losses
exhibit a frequency-dependence which, in addition to attenuating the propagation
pulses, cause further degradation to their rise and fall times.

While the effect of conductor losses to the frequency-dependence of the prop-

agation and attenuation constant as well as the characteristic impedance of single
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microstrip has been studied extensively [36], very little is available on their influ-
ence on cross-talk effects in coupled microstrip interconnections. In this section, the

full-wave analysis presented above is used for the parametric study of such effects.

3.7.1 Theory

In order to implement the frequency-domain analysis presented above for the
study of pulse propagation, cross-talk, and dipersion effects on VLSI interconnec-
tions, the equivalent circuit model for the terminated hybrid-mode multiconductor
transmission lines presented in [56] is used.

For a given frequency w, the total voltages and currents at any point z on a

multiconductor transmission line can be written as

[{i} = {ir} (3.121)

Vi{v} = {vr} (3.122)

where [I] is an N, x N, matrix with columns the N. eigencurrents corresponding
to the N, eigenmodes of the line, [V] is an N, x N, matrix with elements 1x;Z;
(row k, column j) with Zj; as defined in (3.89), {i7} and {vr} are N.-dimensional
column vectors with elements the total currents and voltages on the lines at point
z, respectively. In the above, {v} and {i} are N.-dimensional column vectors with
elements that are dependent on the spatial position. For the case of semi-infinite

lines, these are given by

v; = ajezxp(—7;2) (3.123)

i; = ajexp(—7;2). (3.124)

For terminated lines, the analysis uses a model consisting of uncoupled lines with
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unit characteristic impedance and elements of the form

a§+)ezp(—7jz) + ag--)e:cp(+7jz) (3.125)

v; =

i; = a{Pexp(—vj2) - o) exp(+7;2) (3.126)

where j = 1,2,...,N. and 4; is the propagation constant for mode j calculated using
the full-wave analysis described previously. The coefficients a§~+), ag--), j =12,..,N,
are found by applying the boundary conditions for the total voltages and currents at
the terminating networks, i.e. at the ends of the lines z = 0 and z = [. The uncoupled
lines are then coupled at the input and output ends of the lines by (3.121).

The waveform simulation procedure involves the solution of the above system
of equations for a set of discrete frequencies dictated by the characteristics of the
exciting signal. The excitation is at z = 0 of line 1, and may be either a pulse or
a sine wave. Pulse functions are usually treated as trapezoidal functions with finite
rise and fall-times. For each of these frequencies, the frequency-dependent propa-
gation constants and characteristic modal impedances needed for the solution are
obtained using the frequency-domain method described in the previous sections. Fi-
nally, with the restriction of linear terminating networks, the frequency-domain data

are converted to the time domain via standard inverse Fourier transform procedures.



CHAPTER IV

MICROSTRIP LINES: NUMERICAL
CONSIDERATIONS AND RESULTS

The need to increase the speed of analog and digital circuits has lead to advances
in the design and use of interconnects operating in the millimeter-wave range. This,
in turn, requires the understanding of signal propagation in microstrip transmission
lines at these frequencies. The study of broad-bandwidth waveform propagation in
microstrip transmission lines is of importance to understand signal distorsion which
is attributed to two factors, namely the frequency-dependent phase velocity due to
modal dispersion, and the frequency-dependent attenuation due to the skin-effect
in the conductors. The theory developed in the previous chapter incorporates both
mechanisms of dispersion and losses.

The present chapter is organized into two main parts. First, the numerical imple-
mentation of the full-wave method of Chapter 3 is addressed. A practical algorithm
is implemented to calculate the propagation characterisitics of microstrip lines. Con-
vergence requirements are discussed and a description of the impedance matrix is
further detailed. In the second part, the effects of modal dispersion, dielectric prop-
erties of the substrate and frequency dependence of the conductors are analyzed for

single and multiple coupled microstrip lines as a function of geometry and the oper-
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ating frequency. Finally, using these frequency-dependent results, the effects of pulse

dispersion are illustrated.

4.1 Numerical considerations

4.1.1 Algorithm

Based on the theory derived in the previous chapter, a FORTRAN 77 computer
program has been developed to calculate the propagation characteristics of lossy
microstrip lines, and the algorithm used is summarized here. The code consists of
three separate modules: input, processing and output. The geometry of the two-
dimensional structure is read into the program from either the screen or an input
file. Several computational parameters and conditional flags are also inputed from
this file. Following the calculations, results are printed on the screen and stored in
an output file as well.

The processing module can be subdivided in three parts: the search of the roots
corresponding to the complex propagation constant of the modes, the calculation
of the current distribution on the strips and the computation of the characteristic
impedance of the lines. Once the lossy root k, = 3 — ja is determined, the current
distribution and the characteristic impedance of each strip are found in a straightfor-
ward manner as described in Chapter 3. Therefore only the root searching process

is detailed here.

4.1.2 Determination of the propagation constant

The knowledge of the propagation constant k, is needed for the computation
of the current distribution, the characterisitc impedance and the field distribution.

Therefore the accuracy of the key transmission line parameters depends directly on
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the precision of k,. The search routine for finding the roots of Det(k.) = 0 is two-
fold. First, the propagating modes are found for the lossless structure, and then, the
values are used as initial approximations for determining the roots when ohmic and
dielectric losses are added.

The lossless case amounts to determining the real roots 3 of the nonlinear equa-
tion Det(B) = 0. To that end, the determinant is computed for succesive values
of k, within an interval (k.,,k,1) where the lower and upper bounds k., and k.,
and the increment A are provided as input parameters. Since the problem consists
of finding the propagation constant in a shielded waveguide, the normalized phase
constant may vary between k,, = 0 and k,; = /€, where ¢, is the permittivity of
the substrate. In a first step, the roots are located roughly to within the accuracy
of the interval A by checking for the condition Det(3).Det(8+ A) < 0. Then, these
roots are used as initial guesses to determine the roots with a more rapidly conver-
gent method. Rather than using recursive methods, such as the bisection method
[52], which are slowly converging, we can attain significantly faster convergence us-
ing more refined methods, such as the Muller’s method with deflation, which require
initial approximations close to the desired root. Muller’s algorithm was chosen be-
cause it can be applied to solve both real and complex zeros of an analytic complex
function, and thus allows the characterization of both lossless and lossy structures.

Next, dissipative losses are incorporated in the formulation by assuming metallic
lines with finite conductivity and dielectric layers with complex permittivity. Using
Muller’s algorithm with deflation, the IMSL routine ZANLYT calculates the com-
plex zeros of the analytic complex function Det(k,) with the lossless roots as initial
guesses. The attenuation constant « is found as the imaginary part of the resulting

root by solving (3.76). In the case of large losses, (such as tané = 1), an iterative



81

procedure is followed. First, the roots are found for the lossless case (such as tané
= 0.001) and these roots are then used as initial guess for the next iteration (tané
= 0.01). The iteration cycle is repeated until the loss value (tané = 1) is reached.
This method proved to be a rather sensitive function of the initial guesses, therefore

it is crucial to verify the stability of the final results.

Variation of the determinant

In the lossless case, the matrix elements of the impedance matrix [Z] become
either purely real (Z,,, Z,,) or imaginary (Z,,, Z,.) for real phase constants 3. The
inversion of the [Z] matrix and the calculation of its determinant are computed by
NAAS routines for complex matrices. The zeros of the corresponding real determi-
nant indicate the existence of propagating modes.

The variation of the determinant is dependent upon the geometrical parameters
of the structure and the operating frequency. Figure 4.1 illustrates the behavior of
the determinant of a typical microstrip on a dielectric substrate as a function of 3. In
this example, only the dominant quasi-TEM mode propagates with a phase constant
of 2.45 k, at an operating frequency of 5 GHz. When the operating frequency ex-
tends into the millimeter-wave region, the circuit package becomes electrically large
enough to allow package resonances. The existence of higher order modes results into
multiple roots of the determinant as illustrated in Figure 4.1 b) where the dominant
and three higher order modes propagate at 20 GHz. Also, above the cut-off frequency
of the waveguide, the determinant exhibits poles corresponding to the propagation
constants of the LSE and LSM modes of the dielectrically-loaded guide. The poles
result in a change of sign of the determinant but are ignored in the computer program

since they do not represent a propagating mode on the microstrip line.
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Another case where more than one zero crossing of the determinant occurs is for
an N-dimensional conductor system which results in N dominant degenerate modes.
Figure 4.2 shows the behavior of the determinant for two edge-coupled microstrip
lines at an operating frequency of 5 GHz. The determinant is a smooth function of
B where the roots correspond to the dominant quasi-TEM even and odd microstrip

modes.

Impedance matrix elements

To derive the propagation constant we must first compute the elements of the
impedance matrix Z,,. The formulation for these elements, given in Chapter 3, are
put in a form more convenient for programming below. This is important because

70% of the computation time is spent on evaluating the elements of the matrix
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Z. The components Z,,, Z,,, Z,, and Z,, given in (3.55)-(3.58) involve modal

summations of the form

M
Y. L(m) IL(m) Fij(m,z,3). (4.1)

m=0

In the above, I, correspond to the four moments integrals incorporating the y
and y’ dependence, and defined in (3.47)-(3.50). These expressions are computed for
each mode m and for each strip, but do not depend on the propagation constant
k.. The current distribution on all strips is described by the same number of basis
functions N;. Hence, the four integrals are calculated in an external subroutine and
stored in an M x N.x N, x4 matrix where M is the maximum modal index number, N,
is the number of subsections and N. is the number of strips. Once these integrals have
been computed they need not be re-calculated unless the strip geometry or the width
of the waveguide is changed. The moments integrals for the entire domain functions
involve the computation of Bessel functions of real arguments and of integer and
fractional orders which result from the expansion and testing functions, respectively
(see Appendix C). An available subroutine is used to compute the Bessel functions of
integer order based on recursive relations [57]. The Bessel functions of fractional order
(spherical Bessel functions of the first kind) j, are calculated in a straightforward
manner using their trigonometric representation [58).

The terms F;;(m,z,z') in equation (4.1) are functions of k, and need to be re-
computed for each value of the variable parameter k,. By inspection of these terms
in (3.43)-(3.46), we recognize that the expressions X, s(z,z') are common to all four

impedance elements and are given by

! -6"1 1 s ! s !
Falm i) = 57 mm (K (1)) Xulm, i) + K (1)) Xy(m, 21,25)[4.2)
y z
, b kyks . , . ,
Foe(m,ziyzh) = —b—m[—(nc)uXa(m,x,-,:cj)+(nc)fo(m,x;,:cj)] (4.3)
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6"‘ k kz 3 ! 3 !
Fiy(m,zi,7}) = Tm [('Ic)., Xa(m, zi,23) = (1)} X!(mvxi"rj)] (4.4)
v z
'5 1 s ! S li
fzz(m’xi’ I.,;) = J—b_k2 + k2 [kf (T]C)a Xﬂ(mﬂ I,‘, IJ) + k; (nc)j Xf(m,l',,l'])k45)
v z

The function X, ¢(m, z, z’) involves trigonometric functions with complex arguments,
and care has to be taken in the analytical formulation to avoid floating point overflow
as the index m increases. This problem is overcome by replacing the complex sine

and cosine functions by tangent functions which asymptotically tend to 1 for large

arguments,
Ltan kz(z—h)'l'j";:',}tan k:-‘l‘l+j;7—:'f } cos k:xl cos kg(.‘t—h) ,
R )= | AT ET) bk T
a [ Rad B J - {tm k:z+j;‘¢-!}{tankz(x'_h).q-j;;‘vf} coskz(l"-h) COSkgI for x < xl
tan k,h(l-;ﬂ"ﬁ?")+j(;“‘"—;:'!) coskzh
(4.6)

The right-most fraction can be re-written in the following form

cos ks(z — h)cosksa' _ 1[cosks(z'+z—h) + cosks(z'—z +h)]

= f /
cos k- 2 cos kzh oresT
cos kz(z’' — h) cos k.z 1 [coskz(z' +z—h) + cosk.(z' —z - h)]
= = fi <z
cos k. h 2 cos k h orrsT
In the “large argument” limit, this ratio tends asymptotically to
cos kz(z — h) cos k.2’ Lt ike(e+o=2h) |, —jks(z'=2) ,
oS Euh — 5[6’ + e’ ] forz >z

COSs kz(x' - h) Cos k:z - l [e-jkz(-’l-‘"FZ') + e-jk;(t'—l‘)] for r< _’1:,
2

cos kzh

The main factor in the change of sign of the determinant is the zz component of
the impedance matrix as shown in Figure 4.3 for the case where entire domain basis

functionsn are used. Note that the elements Z,,, Z,, are almost constant over the

phase constant range.
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4.1.3 Convergence considerations

The present method requires a certain amount of preprocessing in order to achieve
good computational efficiency. As mentioned above, susbtantial CPU time is needed
for the evaluation of the matrix elements which involves an infinite summation over
the modal index m. However, the order of the final system can be kept very small
provided an appropriate set of expansion functions is chosen. Convergence with
respect to both the modal summation and the number of basis functions is discussed

in the following sections.

Modal summation

Figure 4.4 shows the convergence behavior of the impedance elements as a func-

tion of the modal index m. The convergence of the calculated values of %, a and the
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characteristic impedance Z, with respect to the summation index m is illustrated in
Figure 4.5 for the dominant microstrip mode where it is seen that the phase constant
converges faster than the characteristic impedance.

To improve the overall convergence of the modal summation, auxiliary series
transformations of the impedance matrix elements may be used. Such a formula-
tion has been derived for pulse basis functions in the study of dielectric lines, as
described in Chapter 7. In the case of Chebychev polynomials, however, these ana-
lytical transformations would require much algebraic effort and was not undertaken

here.
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Number of basis functions

The order of the final system can be held very small by an appropriate choice of
expansion or basis functions which satisfy the edge conditions, i.e. the right singu-
larity at the edges of the strip. In this work, entire domain basis functions are chosen
using Chebychev polynomials since the zeroth order function T, alone can represent
the current Maxwellian distribution very closeley, and therefore the true value of
B is obtained with a very small number of expansion terms. In the case of pulse
basis functions, the sampling rate needs to be at least 30 samples per wavelength
to represent accurately the current distribution on the strip and therefore, conver-
gence of the resulting impedance matrix will be slower than for entire domain basis
functions. This is illustrated in Figure 4.6 where a convergence comparison between

subsectional (pulse) and entire domain (Chebychev) basis functions is shown.
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For narrow lines, the longitudinal component of current I, is much greater in
magnitude than the transverse component, and can be represented with sufficient
accuracy by T,. As the strip width increases, the contribution of the transverse
component becomes more pronounced, and therefore the current distribution on
the lines needs to be represented by two unknown components I, and I, which are
incorporated in the present formulation and numerical implementation. In all the
examples considered in the text, the propagation constant of single strips is only
slightly influenced by the current distribution which is therefore approximated by

the zeroth order Chebychev polynomials, unless otherwise specified.

4.2 Dispersion analysis

Microstrip lines are inherently dispersive due to the inhomogeneous nature of the

dielectric medium. As a result, shielded microstrip lines propagate hybrid modes,
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which can be represented as a superposition of TE and TM waves to the direction
perpendicular to the interfaces. As the width of the line approaches a guided wave-
length, the longitudinal components on the line cause the effective permittivity and
the characteristic impedance to become dispersive.

In this section, dispersion is discussed for lossless structures to better understand
and compare to the additional degradation due to losses. Much work has been
published on dispersion, therefore the following results for single and multiple lines
are only intended to validate the present full-wave analysis. Empbhasis is placed on
the frequency dependence of these lines and, in the case of coupled lines, also on the
separation between lines as well. Some of the examples shown here are used again

for the analysis of losses in the following sections.

4.2.1 Single microstrip line .

As it has been discussed by many authors, shielded microstrip interconnects can
propagate a dominant mode with zero cut-off frequency and higher order modes
which are in one-to-one correspondence with the modes of the inhomogeneously
filled waveguide surrounding them. All these modes are hybrid in nature and exhibit
strong dependence on the electrical and geometrical characteristics of the microstrip
interconnects and the shielding structure.

In Figure 4.7, the dispersion characteristics of a single microstrip are compared to
the work of Yamashita where a nonuniform discretization of the electric field integral
equation [59] was used. Examination of the results shows that only the dominant
quasi-TEM mode propagates at low frequencies, and the normalized phase constant
of the dominant TEM mode tends to a constant value \/&; (= 2.979 in this case) as

the frequency increases. This indicates that, in the high-frequency limit, the field
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Figure 4.7: Dispersion curves for the even modes propagating along a single shielded
microstrip (¢ = b= 12.7 mm, w = 0.635 mm, A = 1.27 mm, ¢, = 8.875)

concentrates primarily in the dielectric region. A 4% discrepancy between the two
methods is noted for the case of the dominant mode, and is in agreement with the
findings of the study performed in [11]. When the frequency increases, the strip
propagates higher order modes with cut-off frequencies very close to the roots of the
corresponding LSE and LSM modes excited in the inhomogeneously-filled waveguide
with no strip present. The partially-filled waveguides modes are calculated by solving
the appropriate LSE and LSM transcendental equations [20] and are plotted for
comparison to the corresponding microstrip structure in Figure 4.8. |

The phase constant is also dependent on the geometrical parameters of the strip,
namely the width of the strip W, the distance between the strip and ground plane
h and the permittivity of the substrate. These effects are accounted for accurately

by the present method, but are not included here for sake of brevity.
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Figure 4.8: Dispersion curves for the LSE and LSM modes in an inhomogeneously-
filled waveguide (a = b = 12.7 mm, h = 1.27 mm, ¢, = 8.875)

4.2.2 Multiple microstrip lines

Today’s MMIC technology involves the fabrication of multilevel metallized in-
terconnects on multilayered substrates, with stringent requirements on the spacing
between elements [60]. This, in turn, requires an accurate modelling of coupling
effects, whether they are desirable as in the case of directional couplers, or unde-
sirable (parasitic couplings). A shielded guiding structure which consists of N lines
can support N dominant modes, and therefore the dispersion characteristics of these
additional quasi-TEM modes must be determined. For some applications, e.g. di-
rectional couplers, the phase velocities of the modes should be nearly equal. This
condition can be achieved by optimizing the geometry and location of the strips or by
an overlay configuration with a high dielectric constant compared to the substrate,

which slows the odd mode relative to the even mode [61]. Such effects can be read-
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Figure 4.9: Geometry of coplanar and non-coplanar coupled strips

ily analyzed by the present generalized integral equation method without imposing
limitations on the number of substrates and superstrates.

When weak coupling is desired, edge-coupled lines on a substrate are widely used
whereas stronger coupling can be achieved by a broadside-coupled configuration. The
generalized formulation derived in this work can be applied to coplanar strips as well
as multilevel planar strips (Figure 4.9), and both types of structures are examined

in the following sections.

Coplanar strips

Applications of such edge-coupled lines are illustrated in Figure 4.10. A symmet-
ric two edge-coupled line system can propagate two orthogonal modes, namely the
even and odd modes which correspond to an even and odd symmetry about a plane
(electric or magnetic wall). Therefore the mode is called even when E, is an even
function of y (H, odd) and the mode is called odd when E, is an odd function of
y (H, even). For asymmetric lines, ¢ and 7 modes are defined as the in-phase and

anti-phase waves which reduce to even and odd modes in the case of symmetrical
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lines. The knowledge of the field configuration (Figure 4.11) provides an insight into
the loss mechanisms described in the following sections.

Figure 4.12 shows the dispersion characteristics of two symmetric edge-coupled
lines as a function of frequency for the geometry used in [59]. The parameters used
were w; = wy = 1.27 mm, separation between the strips s = 1.27 mm, ¢, = 8.875,
substrate thickness A = 1.27 mm. The even and odd dominant (quasi-TEM) modes
propagate in the structure with no cut-off frequency, whereas higher order microstrip

even and odd modes are only excited above 11 GHz.

Non-coplanar strips

As mentioned above, two broadside-coupled strips on different levels propagate ¢
and 7 modes with generic electric field distribution shown in Figure 4.13. To validate
the accuracy of the present integral equation method, asymmetric broadside-coupled
lines are studied here through two examples found in the litterature.

First, the effect of horizontal strip separation s on the phase constant and char-
acteristic impedance is plotted in Figure 4.14 where very good agreement is shown
with the work of Diaz [62]. For large separation between the strips, the effective
dielectric constants for the two modes come closer to each other since coupling is
decreased. The same trend is shown for the even and odd characteristic impedances
(Figure 4.14b), where both lines have the same modal impedance Z? = Z3 (odd
mode) and Z5 = Z5 (even mode) because of the symmetry of the structure.

Next, the frequency dependence of symmetric lossless coupled lines printed on
different interfaces is compared to the spectral domain study performed by Carin et
al. [63]. No symmetry applies in this case, and therefore all four modal impedances

are plotted where Z;; represents the impedance of line i for mode j (Figure 4.15).
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Figure4.11: Field distribution for the even and odd modes of symmetric edge-
coupled strips
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4.3 Substrate loss analysis
Several methods have been reported in the litterature to account for dielec-

tric losses in microstrip structures, such as the quasi-TEM approximation [64], the

method of moments [65], and the pertubation method [30]. The quasi-TEM formu-

AN A NSO AN S SO NSANI NN AN S N N N N N N NN NN

Ll il il il llll

77777777777
P 7 77 2222222227

Figure 4.13: Field distribution for the even and odd modes of broadside coupled
strips
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lation uses the simplified design equation shown below

20 q tané

d=—

In10 A,

dB / unit length (4.7)

where A, is the microstrip wavelength and g is the filling factor [64]. The most
widely used method to quantify dielectric losses, however, has been the perturbation
approach, where the loss tangent is assumed to be sufficiently small so that the
perturbed fields can be approximated by the electromagnetic fields in the lossless
case. According to this method, the attenuation constant due to dielectric losses

may be written as

Py
ag = 5P, (4.8)
where P; is the time-averaged power dissipated in the dielectrics given by
Py = wctané/ |E,|* dS. (4.9)
Sdiet
P, is the time-averaged power flow along the line
P, = %/SEO x {73 dS, (4.10)

with Sy the area covered by the dielectric and S the complete cross-section.
In this work, an exact and simple formulation is adopted where dielectric losses

are considered by assuming a complex permittivity for each dielectric layer : as

& = €i(1 — jtand;) (4.11)

which in turn introduces a complex propagation constant. In this manner, for a
given tan é, attenuation due to dielectric losses is very accurately determined and is

not subject to limiting assumptions applied on the substrate loss tangent §.
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Among the parameters which affect the characteristics of the propagating modes,
the operating frequency and the strip width-to-substrate thickness ratio (aspect ra-
tio) are the most important ones. The curves in Figure 4.16, representing dielec-
tric losses for a single strip on a lossy substrate, are displayed as a function of the
operating frequency. Comparison is made between the present formulation, a per-
turbational method [30], a quasi-TEM approximation [64], and a full-wave spectral
domain method [66]. Good agreement is shown for small values of tan§, but the
quasi-TEM and perturbation technique portray increasing differences from the full-
wave techniques as the loss becomes larger than 0.1 .

Substrate loss is displayed for a single microstrip as a function of strip width
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W in Figure 4.17. The attenuation constant of the dominant mode is shown to
increase monotonically with W and compares well to a perturbation technique used
in the spectral-domain approach of Mirshekar-Syakhal [30] and in the finite-element
method of Pantic [29]. Data from the commercially available CAD program LineCalc
(available from EESOF) plotted on the same graph show a discretized behaviour
caused by a round-off problem, but bounds the full-wave results in a conservative
manner.

Figure 4.18 shows the dielectric attenuation constant for two edge-coupled strips
as a function of the separation between the lines. Due to the higher field concentra-
tion in the substrate for the even mode (see Figure 4.11), the attenuation constant
resulting from dielectric losses is more pronounced for this mode as shown in Fig-
ure 4.18. As the strip separation increases, coupling effects decrease and, in the case

of wide spacing, the attenuation tends to the single strip value.
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Although dielectric losses are usually important when the substrate is made of
semiconductor material, conductor losses should also be considered in the overall
loss determination. For the new generation of MMIC’s at microwave frequencies,
dielectric losses are of much lesser magnitude than conductor losses (excluding su-

perconductors) as discussed in the next section.

4.4 Conductor loss analysis

Today’s MMIC technology involves the fabrication of interconnects with metal-
lization thickness of the order of 10um and less. At microwave and millimeter-wave
frequencies, the cross-sectional dimensions of the strips are of the order of the skin
depth (about 3 um at f= 1 GHz) which causes conductor loss to become a pre-

dominant effect on the propagation characteristics of shielded lines. It is therefore
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important to include its influence in the overall design of MMIC’s.
Up to the time when this work was performed, all the existing full-wave analysis
models had evaluated conductor losses by assuming a zero-strip thickness and using

a perturbation method where the attenuation constant is given by

P. R Jg, |H|,,dl
ac = = - - .
2P, R [ E, x H:-:dS

(4.12)

P. is the time-averaged power dissipated in the conductors, E,,, ﬁo are the electro-
magnetic fields for the lossless case and the surface resistivity R, is given by the

incremental inductance rule [24], or by

R, = (fﬁ); (4.13)

20,
However these definitions of R, assume that the strip dimensions are much larger than
the skin depth and, as a result, these methods cannot predict losses for conducting
strips with thickness of the order of a skin depth. Therefore, to validate the approach
presented herein, a comparison with previous work was only possible for the thick
strip limit (e.g. t = 10 pm ~ 3.56 at f = 1GHz ). Figure 4.19 presents conductor
losses derived with the present technique as a function of the aspect ratio. The
results are compared with the finite element method (FEM) [29], the spectral domain
method (SDM) [30], [66] and an analytic differentiation of Wheeler’s incremental
inductance rule [25]. This analytic differentiation implemented through the CAD

package LineCalc is shown to overestimate the conductor losses by about 30%.

4.4.1 Skin effect

At high frequencies, each conductor surface has a layer of skin depth ¢ defined as

the depth in which the wave has been attenuated to 1 / e of its original value, or

1

5=( 2 )5 (4.14)
WO,
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where o, is defined as the conductivity of the line conductor. The strips considered
here are made of material of conductivity ¢ = 3.33 x 10" S/m. The curves in
Figure 4.20 illustrate the influence of strip thickness on the attenuation constant
where conductor losses versus strip width are plotted for the case of t = 0.56 which
appears substantially higher from the case of ¢t = 2,3 and 46 (= electrically thick
strips). Our results correctly predict that as the thickness of the strip increases to
values large compared to the skin depth, the loss decreases significantly to the thick
strip limit and does not change much thereafter. These results confirm the rule used
in hybrid circuits of using a thickness ¢ > 36 at the highest frequency of interest to
achieve low ohmic attenuation [68].As the thickness of the strip decreases, the line
exhibits higher attenuation because the current is forced to flow through a smaller

area. Also, it can be seen from Figure 4.20 that the attenuation exhibits a more
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pronounced sensitivity to the thickness ¢ for small strip widths.

The skin-effect problem may also be described as a function of frequency. Fig-
ures 4.21-4.22 present results corresponding to a microstrip line on a GaAs substrate
with a total width of 73um and a characteristic impedance of about 50 ). As the
operating frequency is increased, the per unit length inductance stays approximately
constant, whereas the per unit length resistance increases rapidly because the current
tends to concentrate at the surface of the strip and therefore is forced through a re-
duced cross-section. This behaviour of the equivalent surface impedance is reflected
in the resulting attenuation constant which increases monotonically with frequency.
From Figure 4.21, it is interesting to note that the phase constant is affected by
conductor losses. In addition to dispersion, which can be seen over the frequency
range studied, a drastic increase in £ is noticed for low frequencies due to an increase
in the internal inductance. Figure 4.22 shows the frequency dependence of the char-
acteristic modal impedance where the impedance is now complex, with a negative
imaginary part which is rather significant at lower frequencies. This behavior of
the characteristic impedance agrees with the result obtained from the quasi-TEM
definition of the characteristic impedance for a line with ohmic losses and negligible

dielectric losses. Indeed, assuming R <« wL, one finds

R+0L [L . R
7 = —_— = - —— 4.15
=\ TSec VT '%mvic (4.15)

where R, L, C are the per-unit-length resistance, inductance, and capacitance of the
line, respectively.

Finally, a comparison between conductor and dielectric losses is plotted in Fig-
ure 4.23 for frequencies up to 20 GHz which shows that dielectric losses are much

less significant than conductor losses, i.e. about one tenth in this particular case.
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4.4.2 Multiple metallization and roughness

The formulation used in this study for the surface impedance of conductors is
amenable to a variety of conductor configurations, such as multiple metallizations.
For certain types of microstrip circuit elements and transmission lines, a composite
conductor is used, such as nickel, which serves as an intermediate bonding metal
between gold and ceramic dielectrics (see Figure 4.24). The nickel layer is usually
very thin compared to the strip conductor (200 A thick layer). In the present formu-
lation, a non-uniform discretization is used to calculate the current distribution in
the conductors, leading to a solution of the electromagnetic fields in both conductors,
with no assumption on the thickness. Therefore propagation on lines made of several
metallic layers can be modeled.

The present method can also account accurately for roughness on the surface



111

Figure 4.24: Geometry for a microstrip made of multiple metallization

of the strip conductors. If we assume that the surface of the conductor of a single
microstrip line has a periodic variation such as the one shown in Figure 4.25 with
a peak-to-peak value (r) of 1.5 pm and a period of 70 pm then the effect of this
roughness on the surface resistivity and subsequently on conductor losses is plotted
on the same figure as a function of frequency. The roughness has an important effect

when the size of the discontinuity r is of the order of the skin depth.

4.4.3 Ground plane contribution

Conductor losses in the ground plane are incorporated in the formulation of the
Green’s function where a load impedance may be included on the lower and upper
walls of the shielding waveguide (see section 2.3.3). The ground plane resistance is
represented by the surface resistivity of an infinite thick plane as R, = 1/0 4. This is
a good assumption since the waveguide walls are made of electrically thick metal for
mechanical strength. Figure 4.26 shows the effect of the lossy ground on conductor

losses (Figure 4.26). The increase in attenuation is about 50% and therefore losses
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due to the ground plane cannot be neglected. When the strip is located closer to
the ground plane, the overall attenuation constant increases due to a higher field
concentration below the strip.

Figure 4.27 shows a comparison between the equivalent surface resistance of a
single strip (3.28), calculated using the method described in Chapter 3, and the sur-
face resistivity R, = 1/o 6 of an infinite thick plane. As the operating frequency gets
into the microwave region, the thick strip approximation increasingly overestimates
the resistance and therefore the conductor losses. This behaviour is further verified

experimentally in the next section.
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4.4.4 Experimental verification

Several experimental methods have been proposed in the literature for the char-
acterization of dispersion on microstrip lines, but fewer deal with attenuation mea-
surements. The attenuation due to conductor losses is not easy to measure ad hoc,
but rather has to be de-embedded from an overall measurement of the total atten-
uation of the line which includes coupling phenomena, reflections, mismatches, end
effects and surface roughness.

The present theoretical method for the study of losses on the propagation charac-
teristics is validated by a comparison with measurements performed at Ball Aerospace,
Boulder, CO [67] on a single microstrip transmission line measured over a range of
frequencies extending up to 20 GHz. The strip is 73 um wide and 2 pm thick, with

conductivity ¢ = 3.33 x 10” S/m. The width of the metallic enclosure is 20mm and



114

0.05 T M T v I

\

0.04

v

Resistance (Q2)

0.03 -

001 |- *

0.00 f ] L ]
Frequency (GHz)
Figure 4.27: Equivalent surface resistivity R; and ground resistivity R, versus fre-

quency (@ = b =500 um, W = d = 50 ym, ¢, = 10, o = 3.33 x 107
S/m,t=>5pm)

its height 10 mm. The substrate is 100 pm thick and its relative dielectric constant
€, = 12.9 with loss tangent estimated to be tan§ = 16 x 10~*. Both dielectric and
conductor losses are included in the theoretical model. Agreement better than 4% is
shown for the attenuation constant and 1.6% for the effective permittivity, as shown

in Figure 4.28. These results are compared to the modeling of strip losses using the

resistance of an infinite plate.

4.4.5 Multiple coupled strips

In order to design directional couplers and filters for high frequency applications,
conductor losses should be accurately included in the computer-aided design models.
During the past few years, a number of papers have been published for the char-

acterization of multilevel planar transmission lines. However earlier attempts only
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included the effect of conductor loss degradation on the propagation properties of
edge-coupled lines on a single planar level [68], [69] using a quasi-static method. In
this work, the technique is applied to evaluate the effect of losses on the performance
of directional couplers involving lines on the same planar level (edge-coupled lines)

as well as in a multilevel configuration (broadside-coupled lines).

Edge-coupled strips

A comparison to earlier work on electrically thick strips is shown in Figure 4.29.
Conductor losses are included in the analysis of the even and odd excitation modes
for the case of two edge-coupled strips. The derived results are plotted as a function
of the separation between the two strips and compare very well to results derived
with the spectral domain method [30], [66]. The attenuation constant is larger for the
odd mode than the even mode because of the high concentration of fields around the
gap in the odd configuration (a¢)oda > (@c)even (see Figure 4.11). This also explains
why the odd mode is more sensitive to the separation between strips, as the field
distribution is changed more drastically in this case. As mentioned earlier, dielectric
losses exhibit the opposite behaviour with (@g)even > (@a)odd-

The following example of two symmetric coupled lines will be used again in the
next section to study the effect of coupling on pulse propagation. Figure 4.30 shows
the frequency dependence of the even and odd mode propagation constants in the
lossless and lossy case over a range of frequencies extending up to 10 GHz. The
overall behavior of the complex modal impedances is illustrated in Figure 4.31 and
agrees well with results derived for the case of a single line (see Figure 4.22). Because
of the symmetry of the structure, both lines have the same modal impedance Z;; for

mode j, thus Z,; = Z3; (odd mode) and Z;; = Z,, (even mode).
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Broadside-coupled strips

The effect of losses on the propagation characteristics are illustrated here through
the example of a two-level microstrip structure as a function of both horizontal (s)
and vertical (d;) spacing. In Figure 4.32, the equivalent surface impedance of the
lines is described in terms of its resistance for the even and odd modes. The surface
reactance has the same value for even and odd mode and therefore is not displayed
here. The resistance for the even mode decreases monotonically as s and d; increase.
For the odd mode, the surface resistance has a pronounced peak for s = 100 um
and small vertical distances d;. This is due to the fact that the intensity of the
magnetic field generated by the two lines add up near the inner edge and the current

is concentrated at that point. This reduces the area where the current flows thus

increasing the surface resistance.
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Figure 4.33 shows the behavior of the phase and attenuation constants for the
odd and even modes as a function of horizontal (s) and vertical (d;) separations.
The phase constant follows the same overall behavior as in the lossless case. The
attenuation due to conductor losses has the same trend as for edge-coupled lines [30].
As the vertical spacing is increased, the current is less affected by the other line and
therefore the attenuation decreases, approaching the single strip value for both even

and odd modes.

Coupling coefficient

The present study also involves the calculation of the coupling coefficient. In the
case of two symmetric coupled lines, the coupling coefficient is defined according to
classical transmission-line theory [70]

. . Z Z
J sinf(\/4= — /4=
k= ' Wz z) (4.16)
2cos 6 +]sin0(,/—§-: + ,/%f)

where Z,. and Z,, are the characteristic impedance of the even and odd modes

respectively. The angle 6 is the electrical length of the coupled lines. For maximum

coupling, the coupler should be designed approximately % in length (A = i’dz'—*—ﬂ) or

s

Bo + B

(4.17)

where (3, and S, are the phase constants of the odd and even mode.

Coupling coefficient for the lossless and lossy case are presented in Table 1 as a
function of separation s where k, represents the coupling in the lossless case, and k
is the calculated value for lossy strips.

Case A describes a broadsided-lines geometry where b = 400 mm, €,; = ¢,, =
&3=1,0=333x10" S/m,t=3um,d; =d; =31 mm, d, = 10 mm, w; = w, = 5

mm, f =1 GHz. Results are also shown for edge-coupled lines (Case B) with ¢, = 1,
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s/dy | ko(dB) | k(dB)
CASEA| 0 [-7.556004 | -7.568321
2 [-13.15119 | -13.16493
4 |-20.70458 | -20.70458
6 | -28.03051 | -28.03051
CASEB|0.02 | -7.9248 | -8.0724
0.1 | -10.0147 | -10.0997
0.5 | -17.9334 | -18.0203
1.0 | -25.5180 | -25.6149

Table 4.1: Coupling Coefficient for edge-coupled and broadside-coupled lines

€2 = €3 = 10, 0 = 3.33 x 10" S/m, t = 4um, d; = d3 = 50um, w; = w, = 100um,
f =1 GHz. Because of the particular geometry and the fact that wide lines were
chosen, the effect of ohmic losses is relatively small. However, for narrow lines used
in digital and high frequency applications, the effect of conductor losses will be much

more pronounced.

4.5 Time domain analysis

In order to study the dispersive effects of both the dielectric inhomogeneity and
the ohmic losses on pulse propagation and cross-talk, a one-inch section of transmis-
sion line was analyzed. The two strips are identical, 20 ym wide and 5 pm thick,
with conductivity ¢ = 4.8 x 107 S/m, and positioned at a distance of 20pm from one
another. The width of the metallic enclosure is 500um and its height 60 um. The
substrate is 20um thick and its relative dielectric constant ¢, = 4. The active line is
driven by a source generating a trapezoidal-shape pulse train of amplitude 1 V and
period 10 ns corresponding to a clock frequency of 100 MHz. The duration of each
pulse in the train is 1 ns, with rise and fall times of 100 ps. The input impedance

at the source and the terminating impedance for the active line is taken to be 74
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Figure 4.34: Equivalent circuit for the active and sense lines

ohms, a value close to the characteristic impedance for a single microstrip with strip
dimensions, substrate thickness and dielectric constant same as those for the coupled
line under consideration. Similarly, 74 ohm resistors are used to terminate both ends
of the sense line.

In the previous section, the frequency dependence of the even- and odd-mode
phase and attenuation constant, was plotted over a range of frequencies extending up
to 10 GHz. This upper frequency limit was adequate for the excitation signal under
consideration. The voltages at the near-end and the far-end points for the active line
with and without ohmic losses are shown in Figure 4.35 a) and 4.35 b), respectively.
The plots depict only one of the pulses in the pulse train. Notice that the lack
of attenuation for the lossless case results in a transmitted signal at the far end of
amplitude equal to that at the near end. For the lossy case, shown in Figure 4.35 b),
the attenuation caused by the losses becomes apparent. In addition, the mismatch at
the source, caused by the frequency-dependence of the modal impedances of the lines,
results in an incident pulse of amplitude somewhat higher than the 0.5 V obtained for
the lossless case. Figure 4.36 a) and 4.36 b) show the near-end and far-end cross-talk
voltages on the sense line for the lossless and lossy case, respectively. Notice that, as

expected, far-end cross-talk levels are lower for the lossy case. In addition, some of
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the sharpness of the cross-talk signals observed in the lossless case is lost when losses
are taken into account. This is due to the larger values of the attenuation constant
at higher frequencies. Such effects are expected to become more profound as clock

frequencies approach the gigahertz range.



CHAPTER V

LOSSES IN HIGH TEMPERATURE
SUPERCONDUCTING THIN-FILM LINES

In this chapter, an integral equation approach is applied to calculate the prop-
agation characteristics of high temperature thin-film superconducting lines at high
frequencies. To evaluate losses in these lines, the superconducting strips are replaced
by frequency-dependent surface impedance boundaries. The values of these surface
impedances are measured experimentally by a TEq, cavity technique. Using this
method, a parametric study is performed where phase and attenuation constants as
well as characteristic impedance are evaluated as functions of frequency, temperature,

permittivity and geometry of the structure.

5.1 Motivation and approach

Low temperature superconductors have been known since 1911, but their use was
limited by the extremely low temperatures of early materials (4° to 23° K) requiring
liquid helium as coolant. New high-temperature superconductors were introduced in
the 1980’s and operate in the 77° to 120° K temperature range, where liquid nitrogen
can be used for cooling purposes. Superconductivity is characterized by two effects,
namely zero resistance to electrical current, and diamagnetism, i.e. the expulsion of

magnetic fields below a critical temperature T, a critical magnetic field and a critical

128
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electrical current density. For high frequency applications, the major advantage of
high temperature (T.) superconductors is the reduced surface resistance of the lines
as compared to normally conducting metal strips. This, in turn, significantly de-
creases conductor loss in microwave and millimeter-wave circuits where ohmic losses
can be an important limitation, as discussed in the previous chapters. Also, the use
of superconducting transmission lines in VLSI circuits may lead to higher switching
speed, higher data bandwidth, lower cross-talk, higher density and reduced resistive
heating. The lines currently developed are made of thin films which have a thickness
large compared to A, the penetration depth of the magnetic field into the supercon-
ductor. Several groups have reported theoretical evaluation of the surface resistance
and propagation constant of high T, films and strips [71]-[100]. One common charac-
teristic in all these attempts has been the observed discrepancy between theoretical
and experimental results which, in the case of attenuation constant, may be of a
few orders of magnitude. This disagreement is mainly due to the inadequacy of the
implemented theoretical models, such as the London or BCS theory, to characterize
the electromagnetic behavior of the high T. superconducting materials as they are
presently made.

To avoid the shortcomings of existing theoretical treatments, the presented method
does not attempt to solve for the electromagnetic fields inside the superconducting
thin films. Only the electric/magnetic field relation on the surface of the strips is
utilized to create an equivalent surface impedance boundary which will replace the
superconducting strips. Due to the fact that superconducting strips made today have
a large width-to-thickness ratio, the electric/magnetic field ratio on the strip surface
is almost identical to the surface impedance of a thin superconducting plane. As a

result, measured values of this surface impedance can simulate the superconducting
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strip very accurately. Having defined an equivalent surface impedance, an integral
equation method is developed to study the behavior of high T, superconducting thin
film strips at high frequencies [36]. However this simulation does not hold for very

narrow lines where the edge conditions affect the current distribution considerably.
5.2 Theory

A shielded planar high T. superconducting microstrip line of YBa;Cu30- film
(YBCO) deposited on lanthanum aluminate substrates (LaAlQO3) is considered as

shown in Figure 5.2. The LaAlQj is well-suited for high-frequency passive component
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applications because of its low losses in the microwave and millimeter-wave range.
Also its dielectric constant is relatively low as compared to other materials (e.g.
SrTiO3) used in superconducting circuits. An important attribute of LaAlQj is that
it is a good host for YBCO unlike MgO which has a more reasonable permittivity
(¢, ~ 10) for microwave circuit design but is not lattice matched and can grow
only under certain conditions. The permittivity of LaAlO; is weakly dependent on
temperature with a nominal value around 22 at 20 GHz. Because different values
have been reported in the litterature [75],[76], a parametric study of the effect of
the dielectric constant on the propagation characteristics is presented in the next
section. Dielectric losses in the substrate material are accounted for by assuming a

complex permittivity given by:
e=¢ (1 —jtand). (5.1)

The imaginary part of the permittivity of this material varies with temperature from
0.2 at 20K to 1.1 at 150K [76]. However, up to this point, values of loss tangent are
not precise and few experiments have given consistent values for tan é as a function of
temperature and frequency. This discrepancy in the measured loss tangent reflects
the fact that quality control of available films is poor and variations are hard to
measure. Both the permittivity and loss tangent are independent of frequency in the
range of interest.

The superconducting strip and ground plane which are of thickness t are replaced
by equivalent surface impedance boundaries with values equal to the experimentally
measured surface impedance of an infinite superconducting thin film of the same
thickness. To confirm the validity of using the surface impedance of a thin film rather
than a strip, calculation of the per-unit length impedance of a superconducting strip

was performed for different widths, under the assumptions of weak magnetic fields



132

3.50 e ————————

3.25

3.00
275
2.50 |

225 |

Resistivity R, (pQ)

aaa b ool

2.00 f

175 F =

1.50 ST T T U S B P P PP PP

Ratio Width/ Thickness of Strip

Figure 5.2: Surface resistance of a Y Ba;Cu3F;0, microstrip line on a LaAlOs
substrate as a function of the strip width to substrate thickness ratio
(¢ =22, h=05mm,t=05um,a=b=25mm, T=4K, f=5
GHz)

and temperatures T well below the critical temperature T, as presented in [72]. The
results indicate that, when the width-to-thickness ratio of the strip becomes larger
than 50, the surface impedance of the strip is approximately equal to the surface
impedance of an infinite film of the same thickness (Figure 5.2). The present study
assumes that the penetration depth X is smaller than the film thickness. In high T.
superconductors and for the materials specified above, the width-to-thickness ratio
is 500 and the penetration depth is smaller than one third of the film thickness.
Under these conditions, the surface impedance of the superconducting strips can be

effectively approximated by the measured surface impedance of the corresponding
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infinite thin film. The same surface impedance replaces the superconducting ground
plane. With these equivalent surface impedances in place, an integral equation for
the unknown superconducting current is then formulated and solved by the method

of moments.

5.2.1 Fabrication

Thin films of Y Ba;Cu30, (YBCO) were deposited by simultaneous magnetron
co-sputtering using Y, Cu and BaF; targets onto LaAlO; (100) 1.5 inch substrates.
The depositions were carried out with the substrate at ambient temperature on
both sides of the LaAlO; substrates. After dicing the substrate into 1 by 0.5 inch
pieces for the RF devices, they were annealed at 850°C for 1 hour in a wet O,
environment. The variation in thickness and composition uniformity was about 2%
across a 1.5 inch substrate as determined by RBS and resistivity measurements. Each
film ranged in thickness from 4000A to 6000A. Using resistivity and a.c. magnetic
susceptibility measurements, the superconducting transition onset was around 90K
with a transition width of 2K. Analysis of the films using X-ray diffraction and cross-
section transmission electron microscopy showed highly oriented structures with the
a and c axes perpendicular to the substrate. The films were patterned using standard
photolithography followed by exposure to dilute phosphoric acid. Ohmic contacts

were made using sequential depositions of 2000A Ag and 2000A Au which were
annealed in O, at 550°C.
5.2.2 Measurement of the surface impedance

The surface impedance used in the theoretical derivation is directly related to the

measured surface impedance. The surface resistance of the films described above was
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measured by two different methods, namely the T Eo; cavity technique [77] and the
stripline resonator technique [78]. The T Eq, cavity measurements were performed at
three different frequencies (22, 86 and 146 GHz) as a function of temperature. The
measurement procedure has been presented in [79] and will not be repeated here.
The film was also measured at 4.2 K using a stripline resonator technique and good
agreement with the cavity method was obtained. In both studies, the w? dependence
was verified and is consistent with the BC'S theory and with experimental measure-
ments on conventional low T, superconductors. The surface resistivity varies from
approximately 1mQ) at 4.2K to 10mQ at 70K for a frequency of 22GHz. In situ
grown films of YBCO of approximately the same thickness have been found to have
significantly lower resistance, as low as 0.1m at 4.2 K at a frequency of 1GHz [79].

The surface reactance behaves as purely inductive and varies linearly with fre-
quency as has been reported by several authors [80]-[82]. The value of the inductance
of the superconducting strips considered here has been measured experimentally by
A.T. Fiory using a two-coil mutual-inductance measurement technique [81].

In view of the above, the surface impedance used in our theoretical derivations

is given by:

Z(f,T)= R(f,T) + 3 X(f,T) (5.2)
where R(f,T) represents the resistive losses and X(f,T) represents the inductive
energy stored within the superconductors. In Equation (5.2), R and X are given by

R(f,T) = w?* A(T) (5.3)
X(f,T)=w Ly(T). (5.4)

For YBCO films at 77K, the value of A(77) is 2.066 m Q- sec? and L, is about 2
pH.
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5.2.3 Calculation of the superconducting current

The influence of superconductor losses on the propagation constant is evaluated
using an integral equation method. In this mathematical formulation, the supercon-
ducting strip is replaced by an infinitesimally thin surface impedance which serves as
a boundary condition for the electromagnetic field excited in the volume surrounding
the strip. The impedance of this surface boundary is given by (5.2) and describes
the effect of the frequency dependent field penetration in the superconductor and
the presence of grain boundaries. The fields in the dielectric region, which consists
of an arbitrary number of layers, are computed by a method of moments solution of
Pocklington’s integral equation subject to the new introduced boundary condition
as discussed in Chapter 3.

The resulting surface integral equation is given by:

/ Gla/z') - Tdy' — ZueJ |oyoies =0 (5.5)

w

where C,, is a path along the width of the conductor, G is the dyadic green’s function
for the boundary value problem defined in Chapter 2 and J is the superconduct-
ing current flowing in the impedance sheet Z,.. The integral equation in (5.5) is
solved numerically to give the complex propagation constant kM5. The characteris-
tic impedance of the superconducting lines is then evaluated from the conventional

power-current relation shown below:

P,
Zo = 3777 (5.6)

(23

i

where P, is the power propagating in the superconducting structure and J is the
supercurrent.
One of the main advantage of superconducting materials is their low surface re-

sistance. However, zero resistance at DC is somewhat misleading because the surface
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resistance of superconductors varies as the square of frequency, whereas the loss is
much slower for a normal conductor. Since superconductor loss starts many orders
of magnitude lower than copper, a good superconducting film will be comparatively
more advantageous up to several hundred GHz. For comparison purposes, conductor
loss is evaluated for superconductors and normal conductors in an identical con-
figuration. In the case of normal conductors, the equivalent frequency-dependent
impedance surface derived in Chapter 3 was used rather than applying the conven-
tional skin-effect approximation which is not valid at low frequencies where the fields
do not merely follow a square-root f dependence. Results show that for normal con-
ductors, the conductor losses decrease with frequency when expressed in dB/A,. In
contrast, the ohmic losses in superconductors increase because of the w? dependence
of the surface resistivity of the thin film material. These trends are shown in Fig-
ure 5.3. As mentioned previously, normal conductors have a skin-depth which varies
inversely with the frequency. On the other hand, due to the Meissner effect, waves
do not propagate much in the superconductor and therefore the penetration depth of
a superconductor is a function of the material rather than frequency. High frequency
skin effects in normal and superconductors are sketched in Figure 5.4 where A ~ 200

nm for a good thin-film, and § is about 2 um for gold at 1 GHz.

5.3 Results

Using the approach described in the previous section a computer program was
developed to calculate the complex propagation characteristics of superconducting
lines. Throughout this section, unless otherwise noted, it is assumed that the struc-
ture has the geometry shown in Figure 5.2 with ¢, = 22, p, = 1, b = 500um,

t = 0.5um and w = 250um. The operating temperature is taken to be below the
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Figure 5.4: Current flow in normal and superconductors

critical temperature T, of the superconducting thin film.
The main goal of this study is to give a qualitative understanding of the effect
of temperature, frequency, substrate permittivity, line width and substrate thickness

on the attenuation associated with thin-film lines printed on LaAlO; substrates.

5.3.1 Temperature variation

As it has been discussed earlier, when the temperature varies from 4.2K to 77K,
both R and tané vary while ¢, remains unaffected. Figure 5.5a shows the effect
of temperature and frequency variation on the attenuation constant a for a 250 ym
wide post-annealed superconducting line. As expected, both dielectric and conductor
losses increase with increasing temperature. The attenuation constant is usually
given in Np/m or dB/m. However, when comparing losses over a large range of
frequencies and different geometries, it is more informative to express a in dB/A,
where A, is the microstrip wavelength.

The ratio of conductor to dielectric losses (Figure 5.5b) gives an indication as to
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the limiting mechanism which affects propagation characteristics in superconducting
lines printed on LaAlO; substrates. It is observed that, for low frequencies, losses
due to the nonzero resistivity of the superconducting strips are overshadowed by
dielectric losses in the dielectric substrate. However, depending on the temperature
and frequency of operation, conductor losses may become comparable and even larger
than dielectric losses as shown in the case of T = 4 K in Figure 5.5b. The theoretical
method used in this paper was developed for a shielded microstrip geometry. The
cut-off frequency of the shielding waveguide depends on its dimensions and on the
substrate layer. For the LaAlQj substrates (e, ~ 22), the waveguide cut-off frequency
is about 30 GHz. To study the propagation characteristics over a larger frequency
range, a waveguide of smaller dimensions was considered. Both geometries exhibit
the same dependence of the attenuation constant on temperature and frequency with
a predominant contribution of conductor losses in the smaller structure.

Several approaches are used to grow superconducting thin films. Besides the
post-annealing process described above which requires high temperature annealing
(about 900°C), in-situ thin film epitaxial growth up to 5000A is performed at lower
temperature (650-700°C) and has a surface resistance smaller by a factor of 5 [79],[83].
The results show that the in-situ technique yields a lower attenuation than the post-
annealed technique (Figure 5.6). However a limitation of the in-situ technique is
that it only allows for single side coating. In the case of post-annealed technology
thin film coverage on both sides of the substrate is possible, thus both ground plane
and circuitry are made of superconducting YBCO films. Another advantage of post-
annealing technology is the large area uniformity for YBCO films deposited by co-

sputtering (~ 5 cm?) as compared to ~ 1 cm? for in-situ grown films.
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5.3.2 Permittivity variation

Because of discrepancies in the real part of the permittivity reported in the lit-
terature, it was found of interest to calculate the propagation constant for different
values of ¢, of the substrate LaAlO5. The values of ¢, chosen for this study span the
range of available published data with ¢, = 15.3 [84], ¢, = 19.7 [76], ¢, = 22 (nominal
value) and ¢, = 26 [75]. These data have been measured for several LaAlO; sub-
strates and in different experimental set-ups. The results reflect the essential trends
of B and a with varying €, (Figure 5.7) . It is shown that a in dB/), is independent

of the choice of ¢, for frequencies lower than 20 GHz.

5.3.3 Line width and substrate thickness variation

The propagation characteristics of post-annealed superconducting lines are also
studied as a function of the height of the substrate and line width. The phase constant
(Figure 5.8) strongly depends on both parameters and dispersion occurs as the width
of the strip and substrate thickness are increased. As expected, in the case of thin
substrates, dispersion happens at much higher frequencies, which is of interest when
designing circuits with very short pulses or delay lines. The attenuation constant
(Figure 5.9) varies inversely to the height of the substrate and width of the line.
The characteristic impedance (Figure 5.10) follows the same trend as in the case of
lossless lines and shows very little dispersion over the frequency range studied here.

The validity of this program has been verifie. in the case of lossy normal conduct-
ing strips in Chapter 4. For further validation, attenuation derived by the present
method was compared with calculated results using the phenomenological loss equiv-
alence method (PEM) [100]. The PEM method was based on London’s equations

which ignore the presence of grain boundaries and assume perfect superconductors.
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Microscopic loss mechanisms such as the loss in granular films due to flux penetration
in the weak links is included in the present method by using the actual measured
values of the film surface impedance. As a result, the attenuation predicted by the

PEM method is lower than the one predicted by this work (Figure 5.11).



CHAPTER VI

DIELECTRIC LINES: THE GENERALIZED
INTEGRAL EQUATION METHOD

6.1 Motivation and background

At the present time, almost all monolithic circuits are made of thin strip conduc-
tors which provide simplicity in the fabrication and desired guiding properties for
frequencies up to the millimeter-wave region. However, this technology introduces
radiation and ohmic losses which become unacceptably high as the frequency ap-
proaches the terahertz region. In order to avoid these limitations, novel dielectric
guiding structures and circuit elements operating in the terahertz regime have been
recently proposed that use epitaxial semiconducting materials or heterostructures on
GaAs or InP substrates [85], [1]. These low-loss ridged and semi-embedded lines are
appropriate for high frequency monolithic applications, as they exhibit several ad-
vantages over more conventional conducting lines and can be designed for optimum
confinement by stacking layers and ridges of different permittivities (Figure 6.1).
They provide low dielectric losses compared to conductor losses of metallic inter-
connects at sub-millimeter frequencies. Lines of thickness and width measuring a
fraction of a guided wavelength make for feasible fabrication by etching a layered

wafer, and allow for easy construction of passive circuit elements as well as simple

149
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Figure 6.1: General configuration of low-loss ridged waveguides using heterostruc-
tures

integration of active devices. Types of dielectric lines can be classified based on their
geometry and their permittivity relative to the substrate as shown in Figure 6.2.
The theoretical characterization of this new type of dielectric structure plays an
important role in the design of low-loss circuits operating in the sub-millimeter wave
region, such as power dividers, impedance transformers and filters. To design these
circuit elements, a rigorous theoretical characterization is needed. Theoretical stud-
ies on geometrically simple optical and microwave dielectric waveguides have been
presented in the past decade using approximate and numerical methods. The ap-
proximate methods are represented by an analytical approximation introduced by
Marcatili [86] and by the effective index method [87], [88]. The numerical methods
are divided into variational methods [89], mode-matching methods, finite-element
methods [90] and integral equation methods using polarization currents [91]. These
methods have been exclusively applied to two-dimensional problems where they per-

form a fine discretization of the cross-section introducing many unknowns and strong
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numerical instabilities. Consequently, an extension of these methods to three dimen-
sional problems introduces many limitations and requires special care [92].

In this chapter, a novel two-dimensional theoretical method is presented which is
appropriate for the analysis of multiple thin dielectric lines on multilayered substrates
in a manner that allows for easy and accurate characterization of their propagation
parameters. This approach is unique in terms of combined accuracy and simplicity
and has demonstrated good performance when applied to basic dielectric structures.
The major advantage of this technique is that it can easily be extended to three di-
mensional problems without increasing the complexity of the solution. The technique
presented in this chapter is then applied to study different geometries of low-loss di-
electric ridge lines in Chapter 7, where results are presented along with a detailed

description of the numerical implementation of the method.

6.2 Approach

This section introduces the generalized integral equation (GIE) method which
has been developed to characterize complex geometries at submillimeter-wave and
terahertz frequencies. In this mathematical scheme, the formulation of the electric
field in terms of equivalent electric and magnetic polarization currents is shown to
lead to a modified integral equation eigenproblem as summarized in the flowchart of
Figure 6.3 and outlined below.

First, a conventional formulation utilizing volume electric polarization currents
inside the strips is used. Then, an equivalent problem is defined with respect to the
fields outside of the dielectric strips to facilitate the computation of the propagation
characteristics of such strips. Equivalent planar polarization dipole moments are

introduced to simulate the lines, reducing in effect the dimension of the unknown
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Define an equivalent problem with respect
to the field outside the dielectric strip

'

Replace the volume dipole moment with an
equivalent dipole moment of lower
dimensionality

i

Apply the appropriate boundary conditions
to make the two problems equivalent

'

Derive a modified Green’s function

'

Solve the resulting integral equation
using the method of moments

Figure 6.3: Approach used in the derivation of the GIE method
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by one, as discussed in section 6.3. To make the two above problems equivalent,
the concept of generalized boundary conditions is applied to the electric field at the
surfaces of the strips via a Taylor’s series expansion method (section 6.4).

Introduced in the 1960’s [93], generalized impedance boundary conditions (GIBC)
have been used for both analytical and numerical treatment of scattering problems
[94]. Earlier on, effective models were developed to simulate very thin and high
contrast materials, such as the standard impedance boundary condition [95] which
involves a zero or first order derivative of the field components. An accurate simula-
tion of thicker layers requires to include higher order derivatives of the field, usually
referred to as generalized impedance boundary conditions (GIBC) which can be writ-
ten in terms of normal derivatives of the field components. The order of the condition
refers to that of the highest derivative used in the definition.

With the replacement of the dielectric strips by equivalent currents of lower di-
mensionality, the original problem is simplified and an eigenvalue equation for the
propagation constant k, is derived through the use of a modified planar integral
equation (section 6.5). This integral equation can then be treated as any other two-
dimensional problem with unknown planar current densities as described in Chapters
2 and 3. Applying Galerkin’s method, the current densities are represented by a set
of pulse basis functions (section 6.7).

The GIE method is derived in a general context and can be applied equally well to
open, shielded or covered dielectric waveguide problems with the presumption that
the boundary conditions away from the dielectric strip surfaces are satisfied by the
appropriate Green’s functions. Herein, the formulation is applied to structures with
multiple dielectric strips printed on different levels within a multilayered substrate

environment, and the electric Green’s function G° described in Chapter 2 is used to
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Figure 6.4: Geometry of the analyzed structure

derive a modified Green’s function Grmoq (section 6.6). The technique accounts for an
accurate modelling of dispersion at high frequencies, including the effect of the actual
coupling between multiple strips. Throughout this derivation, conductor losses in the
ground plane and shielding waveguide may be accounted for in the Green’s function
as described in Chapter 3. Also lossy strips can be handled by considering materials

with complex permittivities.

6.3 Description of the problem

The generalized integral equation (GIE) model developed in this section is two-
fold. First, we substitute the original problem with an equivalent polarization cur-
rent, and second, we replace it by an equivalent planar current. The technique is
general and can be applied to a multilevel structure comprising several dielectric
strips (1 = 1,2,..., N). These rectangular shaped strips are made of nonmagnetic
materials with permittivity ¢;. Their thickness A; equals a fraction of the wavelength

in the dielectric and is small compared to the strip width w; (Figure 6.4). The strips
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rest in a multilayered environment which is intended to represent a typical integrated

dielectric waveguide made of substrates, film and possible superstrates.

6.3.1 Polarization formulation

For the sake of simplicity in the presentation of the technique, we shall focus now
on the cross-section of a single dielectric strip line of thickness & centered on the
plane z = z, and resting on the surface of a grounded dielectric slab of permittivity
€4. We denote S; to be the cross sectional area of the dielectric strip (Figure 6.5a).

Under these assumptions, Maxwell’s equations take the following form:

Iy

VxE = —jwpH (6.1)

jweE + jwP | (6.2)

s o]
]

V x
where ¢ indicates the permittivity in the slab and half-space above it.

The excitation of the electromagnetic field is provided by an impressed electric
field Ef which gives rise to a displacement current J-;, = jwP or equivalently to an
electric dipole moment per unit volume P (Figure 6.5b). This dipole moment P,
also known as the polarization vector, stems from the discontinuity in permittivity

between the background region ¢, and the dielectric strip ¢4 as discussed in [20], and

is given by
- (Cd - Cb) Ed y in Sd
P = 6.3
{ 0 , elsewhere. (6:3)
Using Maxwell-Ampere’s law (2.19) in the strip region
6 X ﬁ = ﬁ +jwchd, (64)

we can define the equivalent polarization vector P by mere addition and substraction

of the background medium as

VxH = J + jw (€q — €) E, +jweb1:jd (6.5)
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= ﬁ +jw13 +jwebﬁd (6.6)

where J' is the impressed current and E, is the total field in the dielectric region

with complex permittivity €4

€= (c,d -7 7 > €o- (6.7)

weE,

As discussed in Chapter 2, the current J:, or polarization vector P will result in

a total field E given by equation (2.2) or
B = jw / / /V G (77 - B(7)dv'. (6.8)
In the two-dimensional problem, the Pocklington’s integral equation reduces to a

surface integral formulation as discussed in section 2.2.1.

E=jo [ Gleyls') - Pu)de'dy' oot (6.9)
This integral is carried out over the cross-section of the dielectric region, which can
be divided into rectangular segments across which the current is assumed constant.
A method of moments is implemented using two-dimensional basis functions along
the z and y axes, leading to a matrix equation which is solved for the unknown polar-
ization current distribution. This formulation has been used extensively in scattering
problems [91], [96]-[97) but has a major disadvantage in that it requires subsection-
ing with a grid sufficiently fine with respect to the wavelength. Thus it becomes
numerically intensive as the frequency gets large or in the case of three-dimensional
problems. It is therefore of interest to modify the formulation by lowering the degree

of dimensionality as discussed below.

6.3.2 Equivalent planar problem

At this point, we define a problem which is equivalent to the original one with

respect to the field outside the dielectric strip where we seek to simulate the radiated
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»

Figure 6.6: Equivalent dipole moment per unit surface

field using an infinitesimally thin sheet. First, the dielectric strip is replaced by a
planar-strip polarization surface extending over the width of the strip as shown in
Figure 6.6. This fictitious surface rests on the plane z, and is characterized by a

dipole moment per unit surface P, given by:
- h -
Pz,y) = / P(',y) dz'. (6.10)
0

The electric field Ey throughout the dielectric region can be written in terms of
the electric field on the upper and lower interface of the surrounding surface Sy by

using a Taylor’s expansion as

= o 1 3"54(:1: y) (z—h)" ifz,<z<h
Eufz,y) = ’ rSeshg
(®,9) ;’) I'(n+1) oz I if0<z<z, (6.11)

where E; is the electric field in the dielectric strip. In view of (6.11), equation (6.10)

takes the form

- -

P(z,y) = P}(z,y) + P (z,y) (6.12)

where we can express the dipole moment per unit surface P, in terms of the higher
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order derivatives of this electric field as shown below:

o NN A )

Pl(z,y) = (ea—e) :4:3 T(nt2) oo Eq(z,y) _ (6.13)
= _ _ = (-""p)w1 " =

P, (x’y) = (ed €) "z:% F(n +2) ozn Ey(z,y) o (6.14)

In the presence of the planar polarization surface, the electromagnetic field sat-

isfies Maxwell’s equations in the following form:

VxE, = —juph, (6.15)
V x H = jwek, + jwP, (6.16)

Based on equations (6.15)-(6.16) and with the use of a polarization potential [15],
the electric field E’;, due to the equivalent planar dipole moment at z’ = z, is given

by a line integral as :

Ey(z,y) = jw /L [G(z,9/20,¥)] - Pi(zp¥) dy' (6.17)

where G is the dyadic Green’s function for the problem. If the dielectric ridge is
inside a rectangular waveguide section, this function can be found analytically as a
superposition of all the propagating and attenuating modes in the inhomogeneously
filled waveguide. For free space problems, the Green’s function is written in terms

of single Sommerfeld integrals.
6.4 Application of the boundary conditions

In order to make the above two problems equivalent in the volume outside the
dielectric strip, appropriate boundary conditions have to be enforced outside the

strip as well as at its interfaces.
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6.4.1 Outside the strip

In the regions outside of the dielectric strips, the field E, has to be identical to
the original E field on the surface of the dielectric waveguide indicated by the path
C, on the cross-sectional plane. As a result, these fields must satisfy the following

equations:
rE, OE
oz ~ Oz"

Vn=0,1,... on C, . (6.18)

6.4.2 At the strip interfaces

Recalling the assumption of the strip width to thickness ratio to be large, the
boundary conditions on the sides are incorporated in a general manner in the Green’s
function kernel. In addition, we need to enforce the appropriate boundary conditions

of continuity of the tangential £ and H fields at the interfaces z = h and z =0,

¥ - E =
X (E =0,k Eq 1:=0,h) =0 (6.19)
i X (H; z=0h Hy zzo,h,) = (6:20)
and discontinuity of the normal components of those fields
n- (EbE;' - édEd ) =0 (6.21)
z=0,h z=0,h
A (,u,ﬁ* o paHy ) =0. (6.22)
z=0, r=0,h

where the plus and minus signs represent the exterior fields on the upper and lower
surfaces of the strip. In the following, equations (6.19)-(6.22) will be referred to as

the initial conditions. Recalling (6.12), we can write

Plaw) = (w-a) ¥ 5ty

Lo )|+ @™ 2 )

I=O}(ﬁ.23)
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To a first approximation, i.e. for n = 0, the dipole moment per unit surface can

be obtained by enforcing the initial conditions as

(€a — &) -
P, = {@—-h) BL| , + 2 E, m} (6.24)
P, = (a-e){(&-h) E}|_, +3 E, ) (6.25)
P, = (u-e){(s—h) Bf| _ + 3 E5| _}- (6.26)

The above equations are only accurate for very thin dielectric layers. The problem
can be improved by including higher order derivatives of the field components in the
boundary conditions [94], in which case relations between the higher order derivatives
of the electric field on each side of the interface with respect to the normal component
z have to be used. A detailed derivation of the generalized boundary conditions used
at the interface between two homogeneous, isotropic media is given in Appendix E
and summarized below.

Using Maxwell’s equations together with (6.20), we can evaluate the boundary
conditions of the first-order derivative of the tangential components of the electric

field at the upper and lower interfaces as

0

0
~E| -=—E = (2-1) — B¢ 6.27
Oz ! =0,h oz ? z=0,h (Eb ) ay : z=0,h ( )
6 0 €4
—E| - = 7 (1-=)E 6.28
oz e oz * ron 7z ( 6b) rmoh ( )

where the + signs are omitted. The derivatives of the z-component of the electric

field are derived from Gauss’s law in source-free regions to yield

0E,| _ OE!

Oz Y (6.29)

r=0,h r=0,h

Making use of the wave equation and the initial conditions, the boundary condition

of the second-order derivative of the electric field can be found as

0*E; 0? Eg
o0z? o0z?

= (ki — k) Ee

=0,h

(6.30)

z=0,h

r=0,h
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where ¢ denotes all three components of the electric field. If we take the nth-order
derivative of the above equation, a recurrence relation can be derived where the
normal derivatives of the outside electric field £ on the surfaces at z = 0 and
z = h are related to the normal derivatives of the electric field Ed excited inside the
dielectric strip by

O E,
Jzn

= K. E (6.31)

=0,k )
z=0,h

In equation (6.31), K, is a tensor operator defined as

Kosit + Koyd§ + Kook
Kn=| Kyejz + Kuii + Ku.§2 (6.32)
Kutd + Kuytj + K..33

with individual components

(3] -2
_ a0 A N C N B Y
Koo = ed{ g HALCF) T e 4 (F) (eb 1) ngm b (639
Ky = 0 (6.34)
K. = 0 (6.35)
n] [ € 6
Ky = (--F)[z](é—l) nnb—y- (6.36)
an [%] et an—2u
Ky = 5x——ﬂ+A§(-F) oy (6.37)
Ky = 0 (6.38)
K. = (~F)] (:—:—1> n,.% (6.39)
K:zy =0 (640)
In [%] -2
— _E'_ v-1 a'n g
K.. = éW+AV=1( F) — (6.41)

where

1
Ky = { » 1 odd (6.42)
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and

A = kg(eb—cd) (6.43)
62 k2 2
F = T 2_ g2, (6.44)

The tensor operator K. can be written as

[ 2(4+B.4CE) 0 0
Kn= Cn & A, + B, 0 (6.45)
Ca 2 0 An+ B,

where A,, B, are nth order linear differential operators and

an

[!21] n—2v
B, = AZ_:(—F)"“;FE (6.47)
C. = (-P) (:—:—1) K. (6.48)

In summary, the derivatives of the electric fields with respect to the direction
perpendicular to the interface between two media are related at the boundary and
can be expressed through fundamental recurrence relations. The formulation of
these generalized boundary conditions is further verified in Appendix F, for the case
of a dielectric slab illuminated by a plane wave. It is shown that the relations
given in (6.31) are equivalent to the relations of continuity of tangential electric and
magnetic fields at the interface. Indeed, the combination of the initial and higher-
order boundary conditions of the electric field at an interface reproduces the known

reflection coefficient for a dielectric layer of infinite extent.

6.5 Formulation of the modified integral equation

To derive the modified integral equation for the determination of propagation

characteristics, we start with (6.18) and make use of the generalized boundary con-
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ditions (6.31) to obtain

rE, -
5o =K, E, moh” (6.49)
z=0,h
This equation, when combined with (6.17), leads to
a"E-: v . A ' D ' ]
2 = Ralio [ [Geufany)]  Blemy)dy| (650
Oz z=0,h L z=0,h

-

 Be,y)dy (651)

_ . '
= Jw /Lp [Kn G(xay/xpay)]z_:()'h
By substituting (6.51) into (6.23), the equivalent strip dipole moment per unit

surface can be expressed in terms of the outside electric fields at the upper and lower

strip surfaces as

Foo= jula=a) ér(n1+ 2)
{ (zp — h)nH/L [E:n : C__;'(x, y/zp, y) ]:c=h : P;(%, y') dy’
+ (2" /L [Kn-Gle,9/20y)]__ - Plepy) dy’} (6.52)

or

) ad 1
jw (€4 — €) /Lp Z;I‘(n+2)
{(z,= b [Ra- G (@)™ K c";]mo} - P dy  (6.53)

SO
Il

r=

The above equation can be cast as a homogeneous Fredholm Integral Equation of the

second kind:

P, = jw (ed—eb) /; Gmod . P; dy’ (6.54)
P
where the modified dyadic Green’s function émod forms the kernel of the equation,
and is given by
- 0 1

Gmod = Y, 9 {(:cp — h)™* [K:In . é]

n=0

+ (zp)"™ [Kn- G| _}. (6.5)

r=h
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For the case of multiple lines, the integral equation is generalized to
N .

P = jw(eq — &) X_:l /;P Go - Pidy | (6.56)
which may be solved to determine the unknown equivalent planar currents. In the
above, éi,{od is the Green’s function at the ith dielectric strip due to an equivalent
dipole moment on the jth strip. Knowledge of the propagation constant can provide
accurate and complete information about ohmic losses, leakage and radiation effects.
The procedure as described up to this point can be applied to open or shielded
dielectric waveguide problems with the presumption that the boundary conditions
away from the dielectric strip surfaces are satisfied appropriately by the Green’s
functions é:ad. In both cases the application of the generalized boundary conditions

result in infinite summations which can be evaluated analytically leading to simplified

kernels as will be discussed next.

6.6 Modified Green’s function for the shielded case

In this section, the modified dyadic Green’s function is presented for the case of a
multilayered dielectric structure within a shielded metallic waveguide. The notation
and geometry are the same as that used in the derivation of the Green’s function
of an electric point source in a multilayered structure described in Chapter 2. The
geometry used in the derivation of the modified Green’s function corresponds to
Figure A.4 where the source layer s is taken to have the height of the dielectric
strip and is surrounded by the background medium of permitivity €;. The dielectric
substrates and superstrates are taken into account in the formulation of the original

Green’s function G. In the following, the equivalent planar dipole moment P, is set
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at the center of the strip, i.e. z' = z, = h/2, which reduces (6.55) to

. (h)n-l-l
Ginod = : -1 K G Ko G 6.57
Gomod :L:Bl"(n+2) (-1 Ra-G|_, + Ka-G| _ ] (6.57)
Making use of (6.45), we can write
) s(A+B+CE) 0 0
Gmod = C 3%’ -A+B 0
\ C% 0 A+B
( G::2% G,,-yi‘:l} G2z
G2 Guyy Gz (6.58)
k G""éi Gz!léﬁ Gzzéé
where
. (3"
_ 2
A = %:0 T(nt2) (6.59)
0o (%)n-}-l
- 6.6
’ 2;; T(n+2 Bn (6.60)
- ()"
¢ = ~— Cn 6.61)
n=lz.3.5 I'(n +2) (

From (6.46)-(6.47), it is clear that the operators A and B affect only the z-dependence
of G. The Green’s function formulation involves trigonometric expansions which al-
lows for an analytical evaluation of the infinite summations over the index n in terms
of closed-form expressions given in Appendix G. This further enhances the versatility
of the GIBC’s by reducing the infinite order derivatives to simple expressions, thus
avoiding the summation over n. In scattering problems, finite-order approximations
have to be considered leading to truncated Taylor’s series expansions.

The components of the modified Green’s function émod are of the following form

& (kR T D
(Cret)ee = 2o Z—b—( s )[T: vf(z,) + 17 v7 (z5)] sin kyysin kyy
m=0 T
] = 6m ky kI + + - - . !
(G”Wd)ry = _wez Z b k2, [Ta vs(zp) + T2 g (l'p)] sin kyy cos kyy
m=0 z



(Gmod).,
(Gmod)yz

(Gmod) yy

(G'mod)yz

(Gmod ) 2z

( Gm"d )zy

(Gmod )zz

where
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ad 6m kykz 1 .
=2 ¥  _ cosk,ysink,y’
"go b (k3 + kg) kg CO8 My Sin Ky

= (ne)a (¥F ¥ (25) + U5 937 (3y))

+(ne)y (¥F 03 (z5) + 97 07 ()]

2 ‘%’"ﬁ [\Il+ vi(z,) + ¥ v (g:p)] sin kyy sin k,y’

m=0

= 6,,, 1 1
Y 3Tk — sin kyy sin kyy'

T R R kg
(£ (ne)s (W 2 (2p) + ¥ 97 (35))

+5 (1)} (¥ F(25) + U7 05 (2)))]

ki = wy/€po

mm

b

ke = (k) — k2 - k2.

(6.62)

(6.63)
(6.64)

(6.65)
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The z dependence has been modified to give at the interfacesz =0 and z=h

(ﬂc): . .~q
Tt _ mj-sm k,dg — s (cos k,dg - 1) , x=nh
a,f —

d
E:::;s Lsin kea} + 57 (coskaad 1) x =0

d
” ot (conkeay = 1) + it/ sinkesh , x=h
a,f = ( ‘;): o
—(:c)a., (C°9 kzd% - 1) +Im / sin k,dg , x=0

Also, the z’ dependence is given by

ot (2') = 1 | sink;d’ + jiitd cos kyz! , Xx=h
af Doy | sink.(z' — )+ j7* cosk,(z'—h) , x=0
vE () = _1_ cos kz’ —jﬁ}"f sin k,z’ ,x=h
“P T Das | cosky(a! = B) = jie sinkg(z'—h) , x=10

where the denominator D, y may be written as
Dus = sinkeh(1 = 37 ) + §(77 = /) cos keh.

The impedances 7;, 7, and 7. are defined as in Appendix A.

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)



CHAPTER VII

DIELECTRIC LINES: NUMERICAL
CONSIDERATIONS AND RESULTS

This chapter is divided into two parts. First, the numerical implementation of the
GIE method is discussed: an algorithm for the study of propagation in dielectric lines
is presented and consideration is given to the convergence of the different summations
involved in the formulation. Second, we apply the generalized integral equation
method to determine the propagation characteristics of different types of dielectric
strip waveguides; the strip dielectric guide, the insulated image guide and the optical
rib waveguide. Numerical results for single and coupled strips are presented and

compared to those of other formulations.

7.1 Method of moments solution

The method of moments is applied to the dipole moments 13;' to solve (6.56) and
Galerkin’s method is used to transform the integral equation into a matrix equation as
described below. Subsectional pulse basis functions are chosen as expansion functions

for the transverse dependence of the dipole moments.
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7.1.1 Matrix formulation

Let N, be the number of subsections used to discretize the surface of the equiva-
lent dipole moment of width w into linear elements (subsectional bases). The total
number of elements, Nr, is given by Nr = Zf‘;‘l Ny = N, x Ny, where N, is the num-
ber of dielectric strips. Although the equivalent dipole moment P, lies in a planar
configuration, it is a three-dimensional vector quantity with components given by

Ny
P.(y) = pX_:l Plp Vep(4')

. Nb . .
PL(¥) = 3 By bu(y)

p=1

P, (y)

Il

Ny ' .
> Pl b,y (7.1)
p=1

where p_, p,, and pi, are unknown coefficients. Following a procedure similar to
the case of microstrip lines (section 3.5), weighted averages are applied and reduce

the integral equation to a matrix equation of the form
[Zmod][I] = [0] (7.2)

where Z,,,4 contains 9 submatrices

[Z"']mod [Z"'!J]mod [Z”z]mod
[Zmod] = [Zyx]mod [Zyylmod [Z!IZ]mod : (7.3)
[zzz]mod [Zzy]mod [Zzz]mod

For the general case of N, strips in a multilayered configuration, the impedance
matrix [Zpm.4] is represented by a [3N,N, x 3N, N,) matrix.
7.1.2 Expansion and testing functions

In the case of microstrip lines, the unknown current distribution was expanded

in terms of a set of entire domain basis functions with special properties, such as
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Figure 7.1: Geometry for subsectional basis functions

the built-in edge condition for the charge distributions. When a large number of
expansion functions is required to approximate the unknown function or when the
solution is difficult to predict, it is advantageous to use functions that make the inner
products easy to compute. Since the choice of entire domain basis functions is not
readily evident for the type of lines discussed here, subdomain basis functions are
chosen to be unit pulse functions over the pth element and of magnitude zero over

all other elements

0 ,lyl> 55

1,y < &%

P, = { Iyl < 77 (7.4)
providing the ability to generate simple asymptotic formulas for increased conver-
gence and computer efficiency. Let the strip be divided in N, subsections and y,
be the coordinates of the center of the element AW, = % as shown in Figure 7.1.

Forcing (7.3) to be satisfied at all the y, points provides a set of 3NVyN, equations

for the unknowns pip, p;p and pf,p.
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For this choice of basis functions, Galerkin’s method may be implemented in
which pulses are used for both testing and expansion functions, as w,(y') = gp(y’).
This implies that the resulting sub-matrices in (7.3) are symmetrical, with moments

integrals of the form

Iz(’l) = pa) =/. sin kyy dy
wj
W, N LW
= MSmc (k,, m) sin k, (y. —+(p 5)7\,—1’) (7.5)

and

I = I = [ coskydy

wy

W; .. W; Wi 1 W
= E-Smc (ky m) cos k, (y,— +(p— 2)-M) (7.6)
) = 19 = [ dy,(y) wl(v)
wy
1 ,p=g¢
(7.7)
{ 0 ,p#q

The derivation of these integrals may be found in Appendix D. The method of
moments solution for the equivalent dipole moment distribution discussed above
was implemented in a FORTRAN 77 program using double-precision. The various

computation steps used in the algorithm are outlined in the following section.

7.2 Algorithm

The search for the roots of the matrix equation is similar to the one described
in Chapter 4. First, a data file is set up that includes all geometrical parameters
of the structure under consideration and the operating frequencies. After the strip
geometry is defined, the moments integrals (7.2) are computed. These integrals are
independent of the propagation constant and the operating frequency, and once they

have been calculated they need not be re-computed unless the waveguide width or the
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strip geometry has changed. For each frequency, a numerical search is performed to
find the values of k,, which satisfy (7.2) and thus correspond to strip guided modes.
This is done by computing the modified impedance matrix (7.3) for increasing values
of k, and searching for the zeros of the determinant of the matrix. To gain insight
in the nature of these matrices, plots of a typical impedance matrix and a typical

determinant are shown next.

Typical impedance matrix elements:  Figure 7.2 shows the self-terms Z1*

zz )

Z;';“, Zmod of a typical modified impedance matrix. The cross terms are not shown
because their small amplitude does not vary much over the k, range. For this example
where the waveguide height is larger than its width (a > b), it is seen that the yy

term has the greatest amplitude and changes sign twice in the k, interval. In the

case where a < b, the zz term plays the predominant role.

Typical determinant: Figure 7.3 shows the variation of the determinant with
increasing propagation constant, where the determinant exhibits the same overall
behavior as the yy term in Figure 7.2. The roots of the problem are found by
searching for a change of sign in the determinant, however care has to be taken to
differentiate between poles and zeroes. In this particular example, the determinant
exhibits a pole corresponding to the partially-filled waveguide mode at k. = 0.4425

and a root corresponding to the strip mode at k, = 0.672.

In the development of the GIE method described in Chapter 6, the dielectric strips
and substrates were assumed lossy in general. Although the program accounts for
complex permittivities, only lossless structures are considered in this chapter and,

therefore, the roots k., = f, are real. The propagation constant is varied within
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Figure 7.2: Modified impedance matrix elements as a function of k, for a single strip
(a=5cm,b=2cm, h; =2.625cm, by =0.5cm, h3=1.875cm, w =1
CIm, Estrip = 127 €substrate = 21 f = 3GHZ)

an interval (k.,,k;;) and the lower and upper bounds bounds of the k, range are

determined using the transverse resonance method as discussed next.

Upper and lower bounds

Consider a dielectric strip within a waveguide consisting of N, dielectric layers.
In the limiting cases where the width of the dielectric strip either spans the whole
width of the waveguide (W = b) or vanishes (W — 0), the structure corresponds to
a partially-filled waveguide made up of Nj+1 or Ny layers, respectively. The modes
propagating in such a waveguide are determined through the solution of transcenden-
tal equations for the LSE and LSM waveguide modes, as shown for the case of two

layers by Harrington [20]. These transcendental equations are derived in this section
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Figure 7.3: Variation of the determinant versus the propagation constant for a single
strip (e =5 cm, b =2 cm, hy = 2.625 cm, hy = 0.5 cm, hz = 1.875 cm,
w=1 CIm, Estrip = 121 €substrate = 27 f = 3GHZ)

for a general multilayered waveguide, and their roots are used as lower and upper
limiting bounds for the range of allowable propagation constants for a dielectric strip.
To be consistent with the derivation of the Green’s function, we use an A;, F;

formulation as described in (A.52)-(A.55)

AD = 3 A [cos ko(z — k) — ji2 sin ko(z — h)]sin kyy (7.8)
m=0

AUD = 5™ AUD (cos k,z — jij} sin koz]sin kyy (7.9)
m=0

F = Y DD [sin kz(z — h) + j7j7 cos k-(z — h)] cos kyy (7.10)

m=0
FI(U) — Z Dg’) [sin k. +]17{ cos kxa:] cos kyy. (7.11)
m=0

The geometry is shown in Figure 7.4 with no source present, and where impedance
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boundary conditions are used on the upper interface of layer (I) and lower interface
(IT). Continuity of the tangential electric field at the interface z = z’ provides two
equations which can be solved for the unknowns A9, DU!) leading to the following

expressions

All = Al sin kz(z' — h) + 75 cos kz(z' — k)
sin k.z’ + 37} cos k;z'

(7.12)

i1 _ pi sin k(z' -h)+]nfcosk (z' —h).

D (7.13)

sin k,z’ + ]n, cos k.z'
In addition, continuity of the tangential magnetic fields is enforced resulting in the
following transcendental equations

/

kz1 cos kz(z’' — h) — j7jisin ky(z' — h) _ kyp cosk.z' - jr"i,f sin k,z

o &z~ B) = I, o o 1 (7.14)
#1 sinky(z’' — k) + jfu coskz(z' — k) p2 sink,z’ + j7ij cosk.z’

for the LSE modes, and
€ cosky(z' —h) —jiysink:(z' — k) €& cosk.x' — jijf sin k.2’ (7.15)

kz1 sinkz(z' — h) + j2 coskz(z' — h) ks sin k.2’ + j7f cos k .z’
for the LSM modes.
For verification purposes, let the upper and lower layers be metallic walls, i.e.

M = N = 0. In this case, the problem simplifies to a two-layer waveguide and

equations (7.14) and (7.15) reduce to

ks ks
2L ot ka(z' —h) = =2 cot kzox' (7.16)
H1 K2
k:r ! kz:
=L tanky (' —h) = -2 tan k7' (7.17)
€1 €2

which are identical to (4.45), (4.47) in [20].

A subroutine was written to compute the complex propagation constant of the
hybrid modes propagating in an inhomogeneously-filled waveguide with any number
of lossy substrates and non-perfectly conducting walls [98]. These hybrid modes are

denoted LSEn, and LSM,,,. The transcendental equations have an infinite number
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Figure 7.4: Geometry and notation of a partially-filled waveguide
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of discrete solutions m for each given mode number n. The numbering is chosen to be
consistent with that of the empty waveguide [20]. In the case of perfectly conducting
walls, the end transmission-lines are shortcircuited as shown in Figure 7.4. However
finite conductivity of the metal housing has been implemented where the top and
bottom walls can have a conductivity o, which in turns can be described by a load at
the end of the transmission line. The program also accounts for substrate losses and
can calculate the cut-off frequency of the modes by choosing a frequency increment

small enough around &, = 0.

7.3 Convergence considerations

The GIE technique described in Chapter 6 involves several infinite summations
which have to be truncated during numerical implementation. Consideration of the
convergence of these summations is therefore an important process in establishing
reliable results, requiring a thorough investigation of the acceptable range of upper
limits for the different summations. Improvement in program efficiency is realized

through the use of series transformations and asymptotic expressions.

7.3.1 Number of basis functions

As mentioned in section 7.1, Galerkin’s method is applied using subsectional pulse
basis functions to describe the equivalent dipole moment P, on the dielectric strip.
The number of expansion functions depends on the geometrical parameters and the
operating frequency. The dipole moment P is proportional to the electric field in
the strip, and therefore does not show abrupt discontinuities, unlike the case of
microstrips where the current distribution displays singularities at the edges. As the

width or the frequency increases, more subsections are needed to accurately model
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the equivalent dipole moment since higher order modes may be triggered requiring

a larger number of subsections to describe the resulting field distribution.

7.3.2 Modal summations

The modified Green’s function involves an infinite modal summation in the y
direction for each of its components (see equation 6.62). When the strip width W
spans the width of the waveguide (W = b), only one mode should be necessary to
describe the dominant LSE or LSM waveguide mode. As the width of the strip
decreases, more modes are needed to represent the perturbation caused by the strip
in the waveguide, thus the summation over m needs to incorporate more terms.
Therefore the numerical evaluation of the infinite summation over m depends on the
strip width and may result in large CPU time. This problem is overcome by the use
of some mathematical identities and series transformations which greatly improve
the program efficiency and insure fast convergence and accurate results.

The elements of the modified matrix Z,,,4 can be written in terms of an infinite

summation as follows

Zmo = 3 Zy(ks) i(ky) (118)

m=0

where = and II reflect the z and y dependence of the matrix elements. As the
modal index m increases, the terms =;;(k;) converge asymptotically to analytical

expressions indicated by Z{?"*. The matrix elements can then be written as

Zp = Y Zh) Wky) + 3 Y Tyl (7.19)
m=0 Mconv
= 3T (2lk) - ) Tyky) + 22 S Mglky)  (7:20)
m=0 m=0

where the upper limit of convergence m,y, is found numerically for a given geometry

according to the desired accuracy. The infinite summation (7.18) is therefore trans-
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formed into two terms: a rapidly converging finite sum and an infinite series which
often may be expressed in closed form. The following sections describe the deriva-

tion of the asymptotic expressions =" and the evaluation of the k, summations

Zm—o ( )

cnnv

Evaluation of the asymptotic expressions =¢

According to the notation defined in Chapter 6, the terms =;;(k.) are given by

2 2
Zez = w]e; %—-(—ki::%z (X3 v} () + 15 v7(2)]
S = - LR 1 ) + T2 (o)
= popat (XL elle) + Yo 4o
%= =L 08 [ 0t (@,) + ¥ v3(,)

Zw =17 K2+ R kg

(2 (ne): (wa et (2,) + U7 97 (z,) + K (o) (U5 oF(zy) + U7 97 (2))]
bk 1

(k2 + k2) kod

[— (UC)z (\IJ;" ‘P:(xp) + ¥ %'(xp)) +(n )I} (‘I’f Ps (xp) + lI’f 9’](%))]

- b
b

Sy =

—zz — UJC; b k:::d [\pa Uq (zp) + \I’a U, (zP)]
—  bm kk 1
—zy - -—
b (k2 + k2) ke
(1) (9 @t (2) + U5 03 (5) — () (¥F 0F () + 97 9 (25)]
b 11

= .] b kz k2k_z;
(62 ()% (W ot (2) + 95 07 () + K2 (ne) (95 0F () + 97 97 (35)]

(7.21)
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where

T

ky = mz

k; = ‘/kz—kz—k§=—j,/kf+k3-—k2
k, = constant

(1.22)
(7.23)

(7.24)

As the modal index m increases to large values, the mode number k, increases

linearly, and k; — —jk,, while k, and k are independent of m. Also the impedances

1. and m; degenerate to a constant ratio given by

€

as

a —
Ny — =Ty
€s-1
€p
a — ,.a8
m - =N
€s+1

(7.25)

(7.26)

Therefore the multilayered case does not require special treatment since, as m — oo,

the impedances only involve the permittivities of the background and of the layer

just adjacent to the source region. The elements = simplify to

—conv .7 1 €b ( eb) 773’ mas
= = ——=|2— 1-— -
& wep b | ed+ €4 (1-}-173’ 1—7],“’)}
—conv  _  _ .7 l (1 _ C_b) 7]:" nf" -
- we b |\ e/ \L+ng  1—ni")]
= = 0
—=conv __ .7 1 -(1 Cb) 1 1 ]
T wgb [V e/ \I4mr 10
1 1 1
zconv J ~ 12—~ (1 _ ﬁ)
W g J\Tw T
11
Z = =2 (1—5‘1) ! !
wej b ¢/ \1+0p 1=
= = 0
E;va — E;Oznu
Econv = ] l 2 (k2 _ kZ) _ k2 (1 _ 2).) 1 1
22 we; b z ) z €4 1 + nza 1 - 77;1-’
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Figure 7.5: Convergence of the =;; terms as a function of the modal index m (a =5
cm, b=2cm, hy = 2.625 cm, h; = 0.5 cm, h3 = 1.875 cm, w = 1 cm,
Estrip = 12, €substrate — 2, f = 3GHZ)

where the k, dependence of =,,, Z,,, =,, is lumped with the expressions I, II,,
and II.,. Because the behavior of these functions increases monotonically, a ‘percent
change’ criterion is used to establish the upper limit of convergence, mcsn,, With no

source of error. In the example shown in Figure 7.5, the terms are seen to converge

to within 0.1% after only 88 modes.

Evaluation of the infinite k¥, summations

The terms of the infinite summations in equation (7.20) can be written as

—
H
]
—
-
<
~—
Il

Moa(ky,) = Mo(ky) = IO I
Ly(k,) = IV TP

Myo(k,) = IO IV
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I,(k,) = I,(,”Icf”
1
,.(k,) = I£2)I§1)k_y
., (k,) = Iﬂ)z('a’)i
ky
1
M.(k,) = IV IO — e (7.28)

- where the T, terms represent the moments integrals resulting from the application
of the method of moments. Qut of the nine infinite summations over II;;(k,), only
the series involving II,, and II,, cannot be cast in terms of closed-form expressions.
The derivation of these expressions is illustrated through the series II;;(k,) where

the infinite k, summation defined in (7.19) becomes

i Sinc? ( Vg) sin ( %/- +(¢- %)%) sin (yo - v—;/- +(p- %)g) (7.29)

m=1

which may be written in terms of cosines as
1 w
cos | ky(q —p)—=
_% {cos (ky(q -p+ 1)%) + cos (lcy(q -p- l)g)}
i {eos (b2 (-5 ) +a+n )
+cos (ky(2 (vo- ) +(a+p- 2)%))}

w w
— cos (ky(2 (yo - —) +(¢g+p- 1)—))] . (7.30)
2 Q
Using the trigonometric series transformation [111],
2 coskr w wlz| |z|?
== —4+— 0<|2| <L 31
mz;l e -t 0 el (7.31)

and after some algebraic manipulation, the series (7.29) may be cast in the following

form

g (o) Lt o Y-8

m=1
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4 p=q

7.32
yP#4q (732

O o

|

The other summations are derived in a similar fashion where the following Fourier

series are used

0 I 2 2 3
mz.::l ?.’_%kf = signum(z) ”—6|x—| - ll-ii- + % , 0< IJ:I <2r (7.33)
X, coskz ™ nz)*  wlzP |z
— = — 4l 0Lz <2 7.34
P %12 T g skls (7.3

In summary, the four k, summations are given by

i; Sinc? (m;bvg) sin(ma,) sin(mg,) = g % 6(q—p) (7.35)
& W
Eﬂ Sinc? (m;b Q) cos(mg,) cos(me,) = %-’r g— %— 5(¢g—-1p) (7.36)
= . 2 W . b b
El Sinc (m;b Q) sm(mgbq)cos(mq&p);l; =3 €
1 w. W
{2 -5+ G- (130

o 2
2;1 Sinc? (m;bvg) sin(md, ) sin(mg,) (%) = 2{2(% - _V;i) + %/—fq.p}
% 2 :
—é{@ (yo—?)+(q+p+l)) - (g—) (q—P)Q} (7.38)
where
T W 1 W
=7 (yo -5 - 5)5) (7.39)
3 »P=4
€qp = 1 , P<q (740)
0 ,p>q
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and
29-3 ,p=4q
§p=9{ 2P—-1 ,p<q (7.41)
2q—-1 ,p>q

These closed-form expressions are independent of m and need to be computed
only once for each (p,q) pair, significantly improving the convergence of the computer

program.
7.4 Validation and limitations of the method

In this section, the Generalized Integral Equation method is validated through
comparison to other well-established methods for the solution of the propagation
characteristics in dielectric strips where both parallel and perpendicular polarizations
are studied. A discussion of the limitation of the method for the case of perpendicular

polarization (a < b) is presented.

7.4.1 Parallel polarization
Comparison to the mode matching technique

As a demonstration of the validity of the presented technique, theoretical results
using the present method are compared to results derived from the classical 2-D
modal analysis [1]. Good agreement is shown for the phase constant of the dominant
mode as a function of frequency (Figure 7.6). In this mode, the electric field com-
ponent which is parallel to the dielectric interface (E,) is a few orders of magnitude
larger than the other two components. As can be seen in Figure 7.6, the technique

applies very efficiently even for electrically thick ridges ( w = 0.25 A, at 120 GHz).
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Figure 7.6: Comparison between the GIE method and the modal expansion method
(w=0.5mm,h =625 pm, s = 250 pm, €5rip = 2, €substrate = 12)

Comparison to volume polarization current formulation

The Generalized Integral Equation method is also validated by comparison to
the classical polarization current formulation. In this case, the electric field in the
dielectric strip is represented in terms of a polarization current j;, present only over

the cross-section of the strip, as

yo+.V21 ze S,
d::]w/ d:c/ . WG (z,y/7y) - P(y). (7.42)
Vo=

Recalling (6.3), we can write the above integral equation in terms of a Fredholm

integral equation of the second kind as

P(z,y)_ ]w/ dz’ /yo+— é (z,y/',y') - P(x',y') (7.43)

(€4 — €)
+% T =(I) h = (II) -
jw/”’dy'[/ i'G + [ dz'G ]-P (7.44)
Y 0

4

NIE



= jo |, WTey) - PEY) (7.45)
-7
where ['(z,y) is given by
z =(I) h = (1)
[(z,y) = A dr'G (z,y/z',y) + | d2'G (z,y/7,y"). (7.46)

and (I) and (II) represent the regions z > z’ and z < 7', respectively. In the above,

it is assumed that the strip thickness is small with respect to the guided wavelength

), and therefore, in the following, a single pulse is used to represent the vertical

r dependence of the polarization current. A set of subsectional pulse expansion

functions is used for the transverse y direction to represent 13(:1:’ ,y'), yielding

/ "z / W dy—}-)m = jw / " i / " / T W Tley) - Bley'17.47)
0 w-% (& —1)e 0 - w-%

In Figure 7.7, results using the GIE method are compared to the polarization
current formulation where very good agreement is shown for the dominant mode.
The propagation constant of the dominant mode has been computed as a function
of the width of the dielectric strip. As predicted for the extreme cases W = 0 and
W = b, the structure simplifies to a partially-filled waveguide with homogeneous
dielectric layers, for which the propagation constants are simply found by solving

the appropriate characteristic equations [22].

7.4.2 Perpendicular polarization

In this section, the GIE method is applied to the case of a single strip in a
waveguide structure with a < b. Figure 7.8 shows numerical results for the propaga-
tion constant as a function of the strip width using the GIE method and the mode
matching method. For the case where W = b , the structure becomes a partially-

filled waveguide for which this method agrees within 0.1% to the transcendental
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equations (7.14)-(7.15) as illustrated in Figure 7.8. For the case of very small strip
width, the present method should provide a root close to the pole corresponding to
the two-layer waveguide. However, deviation from the expected behaviour is noticed
as the strip width to thickness ratio (aspect ratio) decreases (Figure 7.8). Similar
problems have been encountered in scattering where it was noticed that GIBC’s are
invalid near abrupt discontinuities [99).

From the performed study, indications have been found which point out to the

following interesting observations:

1. The method fails when the thickness to width ratio approaches or exceeds 0.3.

2. As the frequency of operation increases, the numerical solution of the derived

planar Fredholm integral equation of the second kind provides spurious modes
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around the physically existing ones.

3. The presence and intensity of the problem described in the above are domi-
nated by the definition of the planar polarization current. Preliminary results
have indicated the possibility of eliminating this problem by using an appro-
priate weighting function in the definition of the planar current in terms of the

polarization current in (6.10).
This is an important problem for future study.

7.5 Numerical results

A computer program was implemented to calculate the propagation constant of

single and multiple lines using the approach described above. The results presented
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in this section are derived for the case of two-dimensional dielectric strips within
a shielding waveguide. The presence of the waveguide does not affect the guiding
properties of the lines when the walls are far enough. The electric field of the funda-
mental mode on the line is excited by feeding the structure with a TEq, rectangular
waveguide mode. Two types of modes may then propagate in the dielectric struc-
ture, namely waveguide modes (known as surface wave modes in open configuration)
which are related to the supporting structure, and strip modes which are confined to
the dielectric waveguides. The first modes will always propagate above the cut-off of
the waveguide. On the other hand, the strip mode will not exist unless the guiding
layer is above a critical thickness and width. In this analysis, the width-to-thickness
ratio of the strips is moderately large. The strips rest in a multilayered environ-
ment which is intended to represent a typical integrated dielectric waveguide made

of substrates, film and possible superstrates.

7.5.1 Single strip

The structure of Figure 7.9 has been analyzed using the Generalized Integral
Equation method where the propagation constant of the dominant mode has been
computed as a function of the width of the dielectric strip. As predicted for the
extreme cases W = 0 and W = b, the structure simplifies to a partially-filled waveg-
uide with three and four homogeneous dielectric regions, for which the propagation
constants are simply found by solving the appropriate characteristic equations as
mentioned above [20], [98].

In the present formulation, it is assumed that the thickness of the strip equals a
fraction of the wavelength in the dielectric and is small compared to the strip width

w;. To test the range of validity of the GIE method with respect to the strip thickness,
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comparison is made between the present technique and the exact formulation which
uses the transcendental equations (7.14)-(7.15) derived for the case where the strip
width spans the width of the waveguide. In Figure 7.10, the propagation constant
of the strip is shown as a function of the strip thickness where it is seen that, as
the thickness of the strip is increased, the GIE method starts to deviate from the
exact solution. However, this method is derived to analyze thin strips up to 0.1
guided wavelength, and displays an accuracy better that 1% in that range as seen in
Figure 7.10b.

In Figure 7.11, the dispersion characteristics of a single strip have been computed
as a function of frequency for the dominant mode and first higher order mode. Results
are plotted for several strip width values, and are well confined between the cases

W =0and W =b.
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7.5.2 Multiple strips

The fabrication of geometrically complex circuits on multilayered substrates faces
stringent requirements on the spacing between elements. This in turn requires a
good understanding of various coupling mechanisms. During the past few years,
a number of papers have been published on the characterization of edge-coupled
dielectric lines at millimeter-wave frequencies using the effective dielectric constant
(EDC) method [100], [101], the mode-matching technique [102], variational methods

[103] and integral equation formulations [104], [105].
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Frequency dependence

The computer program was implemented to calculate the propagation constant
and coupling coefficient of multilevel lines using the approach described above [108].
Figure 7.12 shows the dispersion characteristics of coupled dielectric lines in a hori-
zontal (E,) field configuration. The dotted lines correspond to the first two waveguide
modes of the partially-filled structure (LSE;o and LSEq, in this example) and the
solid lines to the modes of the structure with the strips present. For high frequencies,
the odd mode is actually higher than the even mode because of the waveguide polar-
ization in this particular example. As the operating frequency decreases, the strips
become electrically small and the fields are no more confined to the strips. The cor-

responding modes then degenerate to a perturbation of the partially-filled waveguide
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modes. A number of non-physical modes without low-frequency cut-off were found.
The pattern of these spurious modes was easily recognizable and was disgarded on
Figure 7.12 for sake of clarity (as were the many higher-order modes propagating
above 250 GHz). This type of problem is not uncommon in the numerical solution

of electromagnetics problems, as in the case of the finite-element method [109)].

Effect of strip permittivity

In Figure 7.13, the phase constant of the odd and even modes are investigated
for three different types of guides : the rib (€guide = €substrate), the strip dielectric
(€guide < Esubstrate) in region 1 and the insulated image guide (€guide > €substrate) N

region 2. Note that for €44 = 1, no strip is actually present, and the phase constant
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reduces to the waveguide mode of the partially-filled structure. The permittivity of
the substrate was chosen to be 2.2 in this example. However, in actual fabrication,
III-V materials must be selected for the substrate and lines due to their adhesion

properties.

Coupling effects

The phase constant is shown (Figure 7.14) for two identical strip dielectric guides
as a function of separation s and compared to a single line at the location of strip #1.
The normalized propagation constant of the odd and even modes tends to degenerate
to the single line case as the separation increases, showing a decrease in the coupling

between the lines. This is due to the fact that at higher frequencies the fields tend
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to concentrate in the strip regions.

The present study also involves the calculation of the coupling coefficient. In the
case of two symmetric coupled lines, the coupling coefficient is defined according to
classical coupled mode theory [107]. For maximum coupling, the coupler should be

designed with a length of

T

ﬂe_ﬁa

L= (7.48)

where 3. and 3, are the phase constants of the even and odd mode, respectively. The
normalized coupling length L/h is plotted in Figure 7.15, where h is the height of
the dielectric guide. The higher the normalized wavenumber of the waveguide, the

higher is the coupling length.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

The basic structures treated in this thesis involve two-dimensional metallic and
dielectric lines which can be used as building block for interconnects. Both types
of structures are analyzed using integral equation techniques to provide the trans-
mission line propagation characteristics. The integral equation approach is based on
a full-wave formulation and contains a Green’s function derived for shielded waveg-
uiding structures involving multilayered substrates and superstrates. The dielectric
layers are incorporated in the dyadic Green’s function through the use of impedance
boundary conditions derived from transmission line analysis. The formulation ac-
counts for multilevel lines without limitation on the width, the location or the number
of strips.

The approach involves Fredholm integral equations of the second kind that are
solved by the method of moments using entire domain and subsectional basis func-
tions for the expansion of the unknown currents. The analytical and numerical
techniques derived in this thesis have been implemented in powerful computer pro-
grams capable of characterizing multiple microstrip lines and dielectric strip guides.
Extensive numerical results illustrate important aspects regarding losses and disper-

sion in high frequency metallic interconnects and the propagation characteristics of
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dielectric lines. In the following sections a summary of achievements is presented

and extensions of the present work are proposed.

8.1 Summary of achievements

8.1.1 Microstrip lines

The present work calculated the effect of dispersion and losses in microstrip lines
with thicknesses of the order of a skin depth. To that end, an integral equation
formulation using dyadic Greeen’s functions was used to solve for the dispersion
relations and frequency-dependent circuit parameters of single and coupled metallic
microstrip interconnects.

In this mathematical formulation, the fields were computed inside the conductors
and were utilized to define an equivalent impedance on the surface of the strips.
This surface impedance was used as a boundary condition for the solution of the
electromagnetic problem outside the conductors. The novelty of this method resides
in the application of the boundary condition on the strip with the tangential electric
field related to the _ﬁnite current on the strip by the surface impedance described
above. The resulting general integral equation that accounts for both dielectric and
conductor losses was solved numerically by the method of moments.

The total attenuation of the wave is due to losses in the conducting strips as well
as in the dielectric materials. However, for microwave circuits of practical interest,
dielectric losses were seen to be much smaller than conductor losses. For microstrip
lines with thickness of the order of a skin depth, it was observed that the skin effect
has a large influence on the phase constant, the attenuation and the characteristic
impedance of the dominant propagating mode. Therefore, conductor loss has to be

accounted for as a first order effect in the modeling and design of today’s MMIC’s
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circuits with thin metallizations.

Another contribution is the accurate modeling of the effect of conductor losses on
pulse dispersion and on cross-talk between lines on different levels in VLSI circuits.
Conductor losses were shown to reduce the pulse amplitude and smooth the sharpness
of the pulses and were increasingly important as the rise and fall times of the pulses
became less than 100 ps.

The method was validated by measurements and by comparison with other meth-
ods in the litterature. The formulation is general and therefore applicable to the eval-
uation and design of different types of MMIC structures, such as multilevel structures

with broadside-coupled conductors, as well as coplanar lines, striplines and finlines.

8.1.2 Superconducting lines

The generalized integral equation derived to study losses in normal conductors
was applied to calculate the propagation characteristics of high temperature thin-
film superconducting lines at high frequencies. To evaluate the losses in these lines,
the superconducting strips were replaced by frequency-dependent surface impedance
boundaries. The novelty of the approach was the use of a measured surface impedance
of the high temperature superconducting YBCO films to simulate an equivalent
boundary condition on the strip. The values of the surface impedances were mea-
sured experimentally versus frequency and temperature by a stripline resonator tech-
nique. Using this method, phase and attenuation constants as well as characteristic
impedance were evaluated and presented as functions of frequency and temperature
for various geometries. As expected, it was noticed that ohmic losses are negligible
and that dispersion is virtually nonexistent up to several GHz. Also, dissipative

losses in the strips are mainly due to the dielectric substrates rather than to the high



202

T, films.

8.1.3 Dielectric lines

A modified planar integral equation approach was developed for the analysis of
monolithic structures using equivalent polarization currents. This method employed
an integral equation formulation and used a dyadic Green’s function together with
higher-order generalized boundary conditions to study the influence of frequency,
material constants and geometrical dimensions on the propagation constants of single
and coupled dielectric strip waveguides. Propagation characteristics were presented
for dielectric ridges on layered substrates and compared very closely to other well-

established numerical methods for the polarization parallel to the dielectric interface.

8.2 Recommendation for future work

During the last couple of years, the developments made in analysis techniques
for the study of microstrip dispersion and losses have made it possible to analyze
microwave interconnects with arbitrary metallizations. Because of these essential
improvements, the design of planar microwave passive components and interconnects
is now a mature area where no further extension of this work is anticipated. However,
the methodology described in this thesis can be applied to analyze high speed digital

integrated circuits and multichip modules used in VLSI technology.

8.2.1 VLSI interconnects

The VLSI chips and modules are currently being designed and built with clock
rates exceeding 60 MHz and up to 200 MHz. The 60-20u MHz clock rates require rise

and fall times of the order of 100 ps which have a frequency content up to 10 GHz.
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The thin metallic and dielectric layers used in multichip modules result in significant
dispersion and delay, and large conductor losses due to the high series resistance and
capacitance to ground present in multilayered lines. The study of interconnects for
high-speed/high-density applications has not kept pace with the rapid technologi-
cal progress. The design methods used today follow rules derived from elementary
transmission line equations. Basically, high speed circuits use appropriate resistive
terminations but neglect coupling, cross-talk, shielding and packaging effects, as well
as losses at high frequencies and dispersion in the lines. These effects impose major
limitations on many aspects of digital circuits, such as rise and fall times, spectral
content of pulses, high error rates and low dynamic range due to unacceptable level
of cross-talk and interference. It is therefore important to study these effects in or-
der to build accurate models for the design and characterization of high-speed digital
circuits and multichip modules. This will eliminate several design cycles and greatly

reduce the manufacturing cost of high-speed digital integrated circuits.

8.2.2 Dielectric interconnects

The Generalized Integral Equation (GIE) technique introduced in this thesis is
a novel method which can be implemented to study different geometries of low-loss
dielectric ridge lines. However, additional theoretical and experimental research is
needed to establish the accuracy of this method in the case of the characterization
of strips with small width for perpendicular polarization. As discussed in Chapter
7, a thorough theoretical analysis needs to be performed to accurately predict the
electrical characteristics of dielectric interconnects with arbitrary width to thickness
ratio and the derived theoretical results should be validated by extensive experiments.

Several areas should be further investigated which form the basis for extensions to
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this work and are presented below.

A rather simple extension of the present work will be the study of the effect of
dielectric losses in the substrates and in the guiding strips on the performance of
thin dielectric lines at high frequencies. The proposed method can also be extended
to layered structures by appropriately modifying the Taylor’s expansion to account
for the existence of the layers and the appropriate boundary conditions on the inter-
faces between them. Then, the solution can proceed exactly as has been previously
described. As another application, this technique can be used to study the propa-
gation characteristics and field distributions of optical waveguides and interconnects
constructed from polyamide strips on GaAs substrates.

The effect of the shielding on the strip propagation behavior can be significant,
and requires accurate modelling at high frequencies. In the present context, dielectric
lines were analyzed within a shielded environment. However, for applications of
dielectric lines in millimeter-wave and terahertz antennas, it is important to study
the propagation characteristics in an open environment.

The planar integral equation technique can be further applied to study three-
dimensional passive circuit elements such as power dividers, impedance transformers,
bends and stubs. Such an extension is rather simple. With the replacement of the
volume polarization current with an equivalent current of lower dimensionality, the
original problem is simplified and can be treated as any other three-dimensional prob-
lem with unknown planar current densities [8]. The development of this technique
allows the design of novel monolithic circuits which can provide high performance at

frequencies up to the terahertz region,
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APPENDIX A

DERIVATION OF THE GENERALIZED
GREEN’S FUNCTIONS OF A
MULTILAYERED WAVEGUIDE

The goal of this work is to study the fundamental properties of two-dimensional
circuit elements, and in particular, the propagation constants and characteristic
impedances of transmission line interconnects. These parameters are directly related
to the solution of the fields in the structure, which in turn requires the evaluation
of the appropriate Green’s functions. In this appendix, the electric and magnetic
dyadic Green'’s functions, G° and éh, respectively, are derived for an infinitesimal
electric current placed in an inhomogeneously-filled rectangular waveguide uniform
in the z direction (Figure A.1).

The calculation of the propagation constant can be determined from the knowl-
edge of the fields in the source region alone. Thus, the first part of this appendix deals
with the formulation éf the Green'’s functions in the source region using potential
theory where impedance boundary conditions are used to simulate the surrounding
layers.

In order to calculate the characterisitc impedance, the electric and magnetic fields
have to be known over the whole cross-section of the waveguide. To that end, the next

section provides a generalized formulation of the Green’s functions in each dielectric
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layer within the shielded environment.
The dyadic Green'’s function is the solution of the fields due to a point source

and can be represented, in rectangular coordinates, by
) Gz2t + G2y + Gr22
G= Gz + Guyy + Guyi (A.1)
G2z + Gu2y + G iz
where G;; is the :th component of the field due to a unit j-directed current source
§(F-7);.
A hybrid mode formulation involving LSM and LSE modes is used to derive the

Green’s function, where the following magnetic vector potential A and electric vector

potential F are chosen to be
A=3:A, , F=3iF, (A.2)

as discussed in Chapter 2. Using Maxwell’s equations

VxE = —jwuﬁ (A.3)
VxH = J+jweE (A.4)
together with
- 1 - -
H = -VxA (A.5)
M
B = —9xF (A5)

we can relate the electric and magnetic fields to the vector potentials A and F by

E = -leﬁ-jwh.l VV-A (A7)
€ Jwep
- - - ]_ -
= vxi-juf + —vv.F (A.8)
p Jwep

The individual components can be decomposed into their LSE contribution

E: =0 (A.9)



10
= —— A.10
Ey € 0z Fz ( )
E = L0p (A11)
¢ Oy
H, = —jwF, + L _6_?_ F, (A.12)
= = I e 00 T '
1 9
= — F, A.13
i, jweu Ozdy (A.13)
1 9
= —— F, A.l4
i, jwep 020z 4 (A-14)
and LSM contribution as
) 1 9
Ex = —]wA, + Jwen -6;'5 Az (A15)
1 9
_ s A.16
Ey jwep 0z0y ( )
1 9
= — A.l7
E. Jwep 0z0z ( )
H =0 (A.18)
1 0
H, = L 9 A;. (A.20)
p Oy

Away from the source, the vector potentials satisfy the homogeneous vector

Helmholtz equations

VIA+k*A=0 (A.21)

VIF 4+ K F =0 (A.22)

where k = w,/epi. Equations (A.21)-(A.22) are solved for A and F using the method
of separation of variables by applying the appropriate boundary conditions of the
problem. Once the vector potentials are known, the electric and magnetic Green’s

functions may be derived through the use of (A.7) and (A.8).
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A.1 Green’s functions in the source layer

We will first restrict our attention to a point source within a homogeneous layer
to simplify the notation without loss of generality. The problem is solved with the
current source placed a distance z’ above the reference plane to study the more gen-
eral type of configuration shown in Figure A.1. After solving the general problem,
the current can be set on one of the interfaces. The electric and magnetic fields due
to the point source are derived in the source layer (s layer) which is divided in two
regions, above (I) and below (/) the point source respectively (Figure A.2). Using
the concept of wave impedances, the surrounding layers are replaced by impedance
boundaries which are calculated by applying the transmission line theory. The appli-
cation of the boundary conditions of the problem is twofold. First, the appropriate
boundary conditions of the equivalent waveguide are applied. Then, the components
of the Green’s function are found by considering three subproblems corresponding

to each direction of current (Figure A.3).
A.1.1 Application of the boundary conditions of the waveguide structure

Boundary conditions on the waveguide walls

The waveguide side walls are assumed to be perfectly conducting, and thus the

tangential electric field must vanish at y = 0 and b, as

Ei(y=0,b) = 0 (A.23)
Ei(y=0,b) = 0 (A.24)
where 1 represents regions (I) and (II), above and below the current source.

Applying the method of separation of variables to solve (A.21) and (A.22), the

potentials are obtained in terms of a series expansion, where the single summation
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is taken over all possible modes as

Ai = Z [A,In cosk.(z — h) + B,In sin ky(z — h)] sin kyye""‘zz (A.25)

m=0
Al = % [A,Inl cos k,z + B! sin k,:c] sin k,ye 7k (A.26)
m=0

FzI = E [C,{. coskz(z — h) + D! sink.(z - h)] cosk,ye7**  (A.27)

m=0
F:’ = E [C,{f cos kzz + D,In[ sin k,x] cos k,ye 7%+ (A.28)
m=0

with

ko= w/am (A.29)

k, = 1’%’[ . m=0,12,... (A.30)
o= k- k- R (A.31)

Since the waveguide and the current source are infinite along the z-direction, the
wavenumber k, is a continuously distributed eigenvalue. To simplify the notation
and avoid carrying out the z-dependence that is common to all components, the
vector potential components may be written in terms of their Fourier transform

representation as

A, = 1 ]°° dk, A, e77%:* (A.32)
27 -0
F,o= L [ dk, B ek (A.33)
27r -0
where
i = /°° dz A, e+ (A.34)
P o= /°° dz F, et (A.35)

Using this notation, the fields become, in the transform k. domain

~ 2 ~
B o= — (k2 + a_) A (A.36)

Jwen 0z?



-~ . kz -~ 1 82 -~
, = - —F, - —A; A.
€ 6yF WEl B:cA (A.38)
o= — (k4 LAY (A.39)
T jwep or?) " * '
~ 1 9 - k. ~
= =] —Ag A40
i, Jwep 83:8yF J I & (A-40)
H, = - i iﬁx-liﬁ, (A.41)

where differentiation with respect to z in (A.9)-(A.20) is replaced by multiplication
by 7k, in the Fourier-transformed domain. Since the Fourier transform chosen for the
two-dimensional problem affects only the z coordinate, all boundary conditions spec-
ified for the spatial electromagnetic field can be directly transferred in the spectral

domain, unless otherwise specified.

Boundary conditions at the upper and lower interfaces

The eight unknown coefficients in (A.25)-(A.28) are determined by the application
of the appropriate boundary conditions. As defined in (2.46)-(2.47) we can define

the following relations on the lower and upper guide walls

E LSM
no= (7”) , @x =0 (A.42)
~ | LSE
E
o = (-ﬁ—y) ,@x=0 (A.43)
and
E LSM
e = (2] ,@x=h A.44
- (2) e (A44)
~ | LSE
0l = (%) ,@x=h (A.45)

where 7, and 7; represent the impedances at the upper and lower interfaces, respec-

tively. These are computed by applying transmission line theory to the other layers
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as described in Chapter 2. From (A.36)-(A.41) and (A.42)-(A.45), one obtains

Bl =-j (&) nt Al =-j AL (A.46)
ch =j (&) n{DL =j#lD} (A47)
Bl =—j () np Al =—j i} AN (A.48)
¢ =j (&)o/ DI =j#4f D} (A.49)

where 7}, and 7; are introduced to simplify the notation and represent the normalized

impedance boundary conditions with respect to the modal impedance of the dielectric

layer as
- ks
71,{,1 = 775,1 (—') (A.50)
wy
~a a we
o= (5). (A51)

Substituting (A.47)-(A.48) into the transform of (A.25)-(A.28), we get

o0

Zg) = Z AW [cos k,(z — h) — j72sin ks (z — )] sink,y (A.52)
m=0

AUD = Y- AU [cos k,z — jiif sin koz] sin kyy (A.53)
m=0

Fh = ¥ D [sin kz(z — h) + jijs cos ky(z — h)] cos kyy (A.54)

m=0

j:"*i”) = Z DS,{” [sin k.x +]ﬁ{ cos k,:c] cos kyy. (A.55)

m=0

At this point we have reduced the problem to four unknowns complex coefficients
AN AUD D) and DUD. In the next section, boundary conditions at the source

will be employed to solve for these unknowns.

A.1.2 Application of the boundary conditions at the source

The three subproblems shown in Figure A.3 are solved in this section. First a

horizontal excitation parallel to the layers is assumed (y and z direction). Next, a
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vertically oriented dipole is considered.

Electric and magnetic Green’s functions for a y-directed current

The electric current is of the form
T=jbz-1)6(y—-y)6(z-2) (A.56)

The complex coefficients for the potentials in region (II) are related to those in region

(I) by applying continuity of the electric field tangential to the plane x = x’

El =EI' |x=x (A.57)
El =ET x=x. (A.58)

Combining (A.37)-(A.38) and (A.57)-(A.58), it follows that

; sinkg(z' — h) + j7 cos kz(z' — h)

i
An = An sin k,z’ + j7i? cos k' (A.59)
Dl = p! sin k,(z’ —h)-i-]nucosk (z' —-h) (A.60)
sink.z' + ]17, cos k .z’
Recognizing the boundary condition for the magnetic field as
axH=J (A.61)

the following boundary conditions at £ = z' are used to solve for the remaining two

unknowns of the problem

H -H' = 0 (A.62)
H —HT = —J, = —§(z - 2")b(y — y")6(z - 2'). (A.63)

Equation (A.63) represents the discontinuity of the z-component of the magnetic

field at the interface z = z’ due to a y-directed current source. Only this boundary
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condition will be different in the transform domain. Taking the Fourier transform

defined as - [ dk,e~7*:=7) = §(z — 2'), (A.63) becomes
H - ﬁz” =-6(y—y) k¥ x=x. (A.64)

Multiplying the above equation by cos %%y and integrating both sides of the re-

sulting equations over the cross-section of the waveguide, we get

nw

b b L,
/ (Hzl - Hz”) cos ﬂy dy = —/ oy - y')e”‘” cos —vy dy. (A.65)
0 b 0 b

Using the orthogonal properties of the cosine trigonometric function

) b ,form=n=0
mn s
/ cosTycos%-ydy= % yform=n#0 (A.66)
0
0 ,form#n
yields, after simplification
Al = 8m pk, coskyy etk
m b Y Y k: + kz

sin k;z’ + j7} cos kya'

A.67
S kAT =72 77) + 577 — 72) cos Bk (467

6 weE 1 )

1 _ Im [ g Jkzz

Dy, ; pk, coskyy <kz> k3+k36
sin k.2’ + ]ﬁ,f cos k,z’
: P Y (A.68)
sink:h(1 = 7u 7 ) + 5 (7] — ) cos kzh
where 6., is the Neumann delta, given by
5. = 1 ,form=0 (A.69)
2 ,form #0.

Using (A.52)-(A.55), we can finally write the A and F vector potentials in region

(I) as
~ &\ bm k 1 . ke
AD = % 7 K Wyk? T Sin kyy cos kyy' ek
m=0 y z ~a
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- ] y w €
b 2 + cos k ! kgz

[sin kz(z — ) + ji7] cos k(z — h)| [sin kea' + jif coskoz’| (AT1)
where the denominator D, is given by
Day = sinkh(1 = 727 770) + (7 = 727 cos k.h. (A.72)

After appropriate substitutions in (A.36)-(A.41), the components of the Green’s

function in region (I) due to a y directed current are obtained as

(‘i;y)l = —L Z (%m ky DL sinkyy cos kyy' elke?

{cos kz(z — h) — j7, ®sink.(z — h)}

{sin k.2’ + ﬁ)’l * cos kzz'} (A.73)

A~ I ' ’
(G;v) = E —b_ T 1 R cos k,y cos k,y' elksz
y

J
{ki ( e) — {sin k;z' + j7; ® cos k.z'}
w

a

{sink;(z — h) + j7, ® cos kz(z — h)}
+k? (L-dﬁ) L {sin k.z' + j7 / cos k,,x'}
f
{sinkz(z = h) + jfiu | coskz(z — h)} | (A.74)

(C" )I = i 6—'" ky k- sin kyy cos k,y’ elke?’

1

) b—{smk z' + j7; ® cos k;z'}
{sink.(z = h) + j7, ® cos kz(z — h)}
wp\ 1

- (k_) Df {smk z' + 37 f cos kza:}

{sm ko(z — k) + 57, { coskz(z — h)} ] (A.75)
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~ I 2 Om k1 )
(Gﬁv) = -j ) ib- — D_j cos kyy cos kyy’ e***
m=0 z

{sinkz(z = h) + jifu ! coskz(z — h)}

{sin k.z' + ji { cos k,x’} (A.76)
S bm ky k.

@) =ixz=

sin kyy cos kyy, ejkle
1 . ' c~ g /
[—5- {sin k.2’ + j7i ® cos k;z'}

{cos ko(z = h) = jifu * sin kz(z — h)}

1 i~
+E {sin k.z' + jii { cos lc,,.x’}

{cos kz(z — h) = jit, ! sink.(z - h)} ] (A.77)
(G’h )I = - i b _1 cos kyy coskyy' e
zy m.o b k2 + kg Y v

[k — {sin kzz' + j7; ® cos k;z'}
{cos kz(z — k) — jij, ® sinkz(z — h)}
2 : ' e~ f '
+k"D {sm k:z' + ji ! cosk.z }
{coske(z = ) = j7i, ! sinkz(z = h)} . (A.78)

In region (I1), substitution of (A.67)-(A.68) in (A.59) and (A.60) yields

1

Om L
nmn _ Jksz
A, = byk coskyy,D BT i
{sin kz(z' = R) + j72 cos k-(z' — h)} (A.79)
bm
I _ Jk,z
D, = —bpk cos kyy' Df ( o 36
{smk (z' = k) + j7 cos ko (2’ — )} (A.80)

from which we obtain

~ = bm | g
AUD = z 5 P k Esmkyy cos kyy’ e7***

1/
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[cos k.z — j7j} sin k.z] [sink.(z' = h) + j72 cosk-(z' — h)] (A.81)
- ad 6 k 1 o0 (W€
(an _ m : 1k I giksz (_)
F! 2 ' 7 I k;‘: Y7 D, cos kyy coskyy' e 0

m=0

{sin k.z + j7i] cos k.z [sin kz(z' = h) + j7 cos k. (z' - h)} .(A.82)

Note the duality between the relations in region (I) and (II) where the following

transformations may be made to derive the Green’s function components

Region (I) — Region (II)

t-h — z (A.83)
i — -k (A.84)
o (A.85)
Ta < 1. (A.86)

Electric and magnetic Green’s functions for a z-directed current

The same steps as above are applied for the case of a z-directed electric dipole at
(z’,y',2'). The formulation only differs in the application of the boundary conditions
at the source which are now represented by a discontinuity in the y-component of

the magnetic field

HI -HI' = J, = 6(z-2")6(y-y) 6(z -2 (A.87)

HI _ H”

I
e

(A.88)

Orthogonality is applied to the transform of (A.87) where the following property of

the sine trigonometric function is used

b . mm nw b form=n#0
—y sin—ydy=¢ 2’ A.89
Asmbysmbyy {0 ,form#n (A.89)
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to yield
Al = gy Bk e+ {sin k k A.90
m = J- sin ,,ka2 B sin kzz' + ji} cos k.z'} (A.90)
6 B W€ k T
D, = —j=sinky — (—) —Y__ o7k Lsin k2 + 77 cos k,z' {A.91)
b “ Dy \k/ K2+ k2 { }(

Hence, the components of the electric and magnetic Green’s functions due to a 2

directed point source are given by

(é::g)[ - ‘di i 6Tm Sln kvy Sln kvy ekazl

m=0 “

{cos kz(z — h) — jij, *sinkz(z — h)}

{sin k.2’ + ;7 ® cos k.z'} (A.92)
e \/ S bm Ky k. koo
(Gw) = ,,.z=:o_b— k2y W cos kyy sinkyy' €’
k;
[— (;—E) . {sin kzz' + j7; ® cos k.z'}
{sink.(z = h) + jf, ® cos kz(z — h)}
wp) 1
+ (k ) D] {smk,:c + jii { cos k:-‘b'}
{smk (= h) + jiu { cos ko (z — h)} ] (A.93)
~e \1 - S | ) ) ' ikt
(Gu) = j EOT oy sinkyy sinkyy’ €’
[kf (k—) — {sin kzz’ + jfi ® cos k.z'}
we
{sink.(z = h) + j7, ® cos k-(z — h)}
o (wp\ 1 (. by oam f '
+k, (-’Z> E{smk,z +Jm  cos k,:c}
{sinkz(z = k) + jfiu  cos ke(z — h)} | (A.94)
Aho\E_ = bm K, 1 - 1 ks’
(G;z) = mz=oT k. —D7 cos kyy sinkyy' €’
{sm kz(z — k) + 77, { cos kz(z — h)}

{sm k.2’ + j7 { cos kya' } (A.95)
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(3"‘ )I = Eoo 6—"'- sin k,y sin k,y’ e’***
- Yy Y
vz b B+ kz

[ ZD {sin k.2’ + 7 * cos k.z'}

{cos kz(z = h) = j7j, *sink.(z — h)}

1
2
+k, — D, {sm k.z' + iy cos k,z }
{cos k,(z — h) = jfiu ! sinkz(z = h)} | (A.96)
(e ) Z Tm K+ ;cz cos kyy sin k,y' &<
[—51— {sin k.2’ + j7; ® cos k.z'}

{cos kz(z — h) — j7, *sinkz(z — h)}
+%—j— {sin k.z' + ji ¢ cos k,:c'}

{cos ko(z — k) = j7i. ' sinke(z = h)} ] (A.97)

Similar expressions for the Green’s functions in region (II) are derived using the

transformations stated above (A.83) through (A.86).

Electric and magnetic Green’s functions for a x-directed current

In the case of a current dipole perpendicular to the interface, only the magnetic
vector potential A = A, is needed to represent the fields [110]. The following

boundary conditions are employed to solve for the two unknowns complex coefficients

E! = EN (A.98)

VEA+ KA = —pb(f-7)s. (A.99)
We start with (A.38) and use (A.98) to obtain

Al = AL cos kz(z' — h) — j78sink.(z' — h)

A.100
cos k,z' — j7f sin k,z’ ( )
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The other boundary condition to apply is equation (A.99) which reduces from a
vector wave equation to a scalar wave equation since the vector potential A has only

a component in the z direction
VA, + KA, =-pb(F-7) ,x=x (A.101)
and implies in rectangular coordinates

2
(% - K- kf) A, + KA, = —pb(F = 7). (A.102)

Substitution of (A.31) in (A.102) yields

az [ !/ /
(5;5 + ki) A; = —pb(z - 2)é(y - y)é(z - 2) (A.103)
which becomes in the transform k, domain,
O 1 12) A = —pb(z — )ily - ) A.104
52 ke | Az = —pblz = 2)b(y —y)e™". (A.104)

Multiplying both sides of Equation (A.104) by sin 2y, and integrating the differential

equation across the boundary at z = z’, we get

2 - o
(6—313 + k:) Az(z) = —pb(z - a:')-%— sin kyy'e’*< (A.105)

where A, is now only a function of z. We then integrate both sides of this equation
(A.105) over a small interval passing through the source point 7 and take the limit

as the interval vanishes
. ' 4€ 62 2\ =« 6m . ! _jksz'
11_133 - (-6-2-:-2- + kz) Az(z) dz = —ppsin kyy'e? %, (A.106)

If we make use of (A.52) and (A.53), we can show that the second term of the

integrand vanishes as follows

’ 0 z=z'+¢
T 4¢€ -
lim [ klA.(z)dz = lim Y —k, AD [sin ko(z — k) + j73 cos kz(z — )]
/=€ m=0 =z’
+ lim Y —k.AUD [sin k,z + ji} cos ko] (A.107)
m=0 T=z'—¢
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since each limit vanishes individually. Therefore (A.106) can be reduced to

~ z'+e

bm
dAd,(:r) = —-p—b— sin k,y'e’*** (A.108)
T |,
from which we obtain
I bm . l'l:z'1 1 ! _ :=~a /
A, = = psin kyy'e’™ P {cosk.z' — jq}sink.z'}.  (A.109)

The zz component of the electric Green’s function is found by applying (A.15)

G = —jwhst —— 55 (A.110)
1 9?
= — (K +—] 4. :
o ( +ax2) A (A111)
From (A.101) or (A.102), we can write
: O - 2 2
B 4o | A= —pb(F~7) + (k2 + K?) A, (A.112)

This equation shows that the self term G, has a singularity at the source point

Ge, = [—;15 F=) + (K + k) A (A.113)

which may be written in the k, space as

e ____1___ o o\ piks? 2 2\ 4
G, = o [ pb(z —z') é(y — ') %% + (ky + kz) A,]. (A.114)

After appropriate substitutions, the components of the electric and magnetic Green’s

functions can be expressed as

(@) = Lem (f(e-2) 6y —y)

we

oo m +k2 1

Z b ol sin kyy sinkyy'
k

{cos

=(z — h) = jilsinkz(z — h)}
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{cos k.z' — 7} sin k;z'}] (A.115)

= \/ ] ) . T
( ,) -= Y T"' k, coskyy sink,y' e*:*

m=0

Di {cos k.2’ — ji * sin k.z'}

{sin kz(z — k) + j7j; cos k-(z — h)} (A.116)
(G’:’)l = -1 Y bn k. sink,y sinkyy' e+

we ~= b

1 ~g
— {cos k.2’ — ji} sin k.z'}

D,
{sinkz(z — k) + 7, cos kz(z — h)} (A.117)
(G4)" = o (A.118)
(G:,)I = ‘j—“ io%" k. sink,y sin k,y’ %+
(% 51: {cos k.z' — 37} sin k,z'}
{cosk.(z — h) — jqisinkz(z — h)} (A.119)
(é}z'z)l = WL# io% k, cos kyy sink,y' e’**
(“;—f) DL., {cos kyz' — j7i} sin k.z'}
{cos kz(z — h) — jy sink.(z — h)}. (A.120)

A.2 Green’s functions in the surrounding layers

The vector potentials in the layer above the source layer may be cast in the

following form

A'g:—l)

Féa-—l) =

(e o}
= > AC=Vginky

m=0

[cos ke, (z = h = hyoy) = iy sin ke, , (2 = h = hyt)| (A121)

o0
Z DU cos kyy

m=0

[sin ke, (2 = h = hot) + iy cOs ks, (2 = b = hot)] (A.122)
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where the impedances are given by

k
~f - f Tyl
Na-1 Ns-1 Wiks-1
~ W€y
Moot = Mooy ——
Toml

These are related to (A.42)-(A.44) by

~a _ Whks—1 ﬁ:—l + J tan kz.-1hs—1
kt.-l 1 + jﬁ:—-l tan kx h:—l
=f _ kro-x ﬁn-l + J tan kt.-xh-!—
we-1 1+ Jn:-—l tan k; h

=1

=
«
|

=1

By matching tangential components on the boundary z = ,

Il ps-1
E, = E
El = B
one gets, for a z directed current
Om ps—1 K Wy -
Aa—lz__"_l’ z s a-kljk.z
m b D, B4k \E,, ) TR E

sin k;z' + 37} cos k.’
sinkz,_ ho—y — j72_  cosk;,_ h,;

Dl = 5_m €s-1 n! ky
m b Dy ™ k242
sink.z’ + jﬁ,f cos k,z'
sinkz,_ hyoy — j7%_  cosky,_ hy_y’

: 1 _jks2'
sin kyy' e’**

Using (A.125)-(A.126), it can be shown that

(Z:.":) T . 1

tan kz,_ h,_y — j72_, 71 +jn3_  tank,,_ h,_

(:Z’s—_lx ) 7]“ . 1

s—1

J T~ .
tan kz,_ hey — .777.{-1 1+ J'];f-l tan kz,_, hy-1

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)

(A.129)

(A.130)

(A.131)

(A.132)
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Source
layer

Figure A.4: Notation for multiple layers
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In view of the above, it is interesting to compare these results to (A.90), (A.91)

1
AL = AD Bl Al
m ™ u cosky,_ her+ 7% sinks,_ hey (A.133)
s—1 Cs- kz
Dt = —p( Famt Gt ! L(A.134)

p€ ko) cosks,  hoy + i sinks,_ ke
Substituting the above in (A.121)-(A.122) and using the relations derived between
potentials and fields, we can write the generalized form of the electric and magnetic
Green’s functions for the ith layer in compact form. This notation is valid for all

layers except the source layer

. © b (K2 + k2 ,
(Gz2) = }ZT( )’R‘ ¢i(z) vi(z')sinkyysink,y’  (A.135)
t m=0 T
e i j i 6"\ N ‘ ’ . )
(Gzy) = = Z 55 k,R. i (z) ¢! (z) sin kyy cos k,y (A.136)
i m=0
(Ge,)' = 1. > 5—;)"—k R: si(z) @i (') sin kyysin kyy’ (A.137)
t m=0
e ) ] o= bm i i - /
(Gyz) = o b —ky,R;, ¥, (z) vi(z') cos kyy sin kyy (A.138)
t m=0
e\ = 1
(Gw) = j Z-o ; k2 P cos kyy cos kyy'

(K2R (ne); #i(2) wi(2) + K2R (1)) () @) (A.139)
eV o= Om k. L
(Gyz) = goTWCOSknylnkyy

[-R% ()i #i(2) wi(2) + Ry (ne)) () @4(@)]  (A.140)

(Gz)' = o 2 "bﬁszf, ¥i(z) vi(z') sin kyy sin kyy’ (A.141)
1t m=0
i 2 0m kyk
G = — —2= _sink,y cos k,y’
(63) 2% I

Ry (1) ¥i(2) i) = RY (o) wilz) @4(2)]  (A142)



(3RS (n0); ie) @i(a") + K2R (me)) ¥l wi(a)]  (A.143)

where

ki = wy/€ o (A.144)

mn

ry (A.145)

ke = JRE-K- k2. (A.146)

>
Il

Above the source z > z’

For the regions above the source z > z’, the z’ dependence is given b
g P g \

¢%/ (') = sin k.2’ + j5;* cos k.2’ (A.147)

v®l(z') = cos kyz' — j7;*! sink,z'. (A.148)

The z dependence may be written as

gfn‘f(z) = 05 kz; (l’ -h- Z hf) - ].77{“", sin k; (1' -h- Z hr) (A-149)

r=1 r=1

¥ (2) = sin ky (x -h=-Y h,) + jii®! cos ks (27 -h=3 hr) - (A.150)

r=1 r=1

The denominator R, is given by

' 1
Ros = - . A.151)
! Da,f n:'=l {COS kzrhr + j;’:a’f sin krrhr} (

Below the source z < z’
For the regions below the source z < z/, the z’ dependence is given by

@%! (z') = sinky(z' — h) + j5;*! coskz(z' = h) (A.152)

v&(2') = cos ky(z' — k) — j7;*/ sink.(z' — k) (A.153)
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and the z dependence is

s2(z) = cos ky; (z + Z h,) - 75 sin ky; (-‘L' + Z h,) (A.154)

r=1 r-l

¥ (z) = sin kg (1‘ + z‘: h,.) + 77 cos ky (z + Z h ) (A.155)

r=1 r=1
where, now,
R. , = L (A.156)
“f Das 11, {cos kzehe = 57:%4 sin k,,h,.} '
and the impedances are given by
k.
il = pf 2 A157
i Ll (A.157)
o= o (A.158)

The characteristic impedances 7 and 5/ are taken to be the wave impedance of

the TM; and the TE, modes, respectively, or

' kl.‘.‘
(Me)s = — (A.159)
we;
i w
() = 7= (A.160)

In the above equations, the input impedances 7/ are given, according to the

impedance-transfer equation, as

.. uy Tl +jtanks ki
med = (7 )‘._‘fl 11]} an i< 8 (A.161)
("c)a,f l + J'I: ta'n kx._l ht 1
i ~a,f
. e ; tan k,,, h; .
= ("°)'.;fl 1 ’ 20 Pains f‘ > s (A.162)
(Uc)a,f 1- J7li+1 tan k., hipy
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APPENDIX B

EVALUATION OF POWER INTEGRALS

In this appendix, the derivation of the power expressions found in section 3.6.4.

are detailed. In the evaluation of the modal characteristic impedances, integrals of

complex functions are encountered which can be decomposed in the four types shown

below

b

cC = / cos zz (cos zz)" dz
o

§§ = / sin zz (sin zz)" dz
o

CS = / cos zz (sin zz)" dz

b
SC = /sinza:(coszx)'d:p

(B.1)
(B.2)
(B.3)

(B.4)

In the above expressions, z represents a complex number z = r + ji. Substitut-

ing the expanded form of z in the above equations and making use of well-known

trigonometric and hyperbolic identities, we can write

b
cC = / cos® rz cosh? iz + sin® rz sinh® ix) dr
1 b
= 5/ (cosh 2iz + cos 2rz) dz
1 { sinh 2:z b sin 2rz b}
= - - +
4 ? e T a
b
SS = / (sin2 rz cosh? iz + cos® rz sinh® ia:) dz
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b
= %/ (cosh 2iz — cos2rz) dz
. .1 . b
_ l{smh?zm _sin2rg } (B.6)
4 l s r a
b .
CS = / (sinrz cosrz — jsinhiz coshiz)dr
1 .. .
= 5/ (sin2rz — jsinh 2iz) dz
. b p b
_ _l{jcosh?z:r + cos 2rz } (B.7)
4 ? e r a
SC (sinrz cosrz + jsinh iz coshiz)dz

b
/ (sin 2rz + jsinh 2iz) dz

b b
3 cos 2rz } (B.8)

.cosh 2:z

il
e wl»—‘g\&_

e N
<

1 r

The following integrals need to be evaluated in each dielectric region as :

b
/ {cos zz — jn;sin zz} {cos zz — jn; sinzz} dz

b b

sin2rz

4

1 [ sinh 2iz

(1= mim})

a

b

(1 + nm}) +

. cos2rz|®

(4 ;)

a

(Tli : 7];) + cos}: 2iz

r a

b
/ {sin zz + jn; cos zz} {sin zz + jn; cos zz}" dz

T .
_ % [smh.sz (1 . '7:");> _sin2rz b (1 3 77:'77;)
b
_j cosr2rz z (77:' B 77,') + coshl 2iz (m . TIJ)] (B.10)

B.1 Around the source region

The r dependence and the limits of integration for regions around the source

layer are given in Table B.1.
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Tdependence limits of integration‘
above the source region |z —h=YJh |a=h+ [ 'l |b=h+ Tk
below the source region | z + Y]k a=-Y]h |b==%""h

Table B.1: Integration in the layers around the source region

In view of (B.9) and (B.10),the integrals may be re-written as

b
/ {cos zz — jn;sin zz} {cos zz — jn;sinzz}" dz

a
_ sin 2rh,

i [sinh 2ih, ( . mn;)

— (14 mm5) +
ij(_l;cggr__hrl ('h‘ —17,") e —C0:h2ihr) (m +n;)] (B.11)

r

where the upper and lower signs (£) correspond to the layers above and below the

source region, respectively. The other type of integrals encountered gives

b
/ {sin zz + ju; cos 2z} {sin zz + jn; cos 2z}" dz

- l [SinhiQih,. (1 + 7);'17;) _ sin 31"1, (1 _ T],'T];)

4

:Fj(l — cos 2rh,) (’7:' —77") L

J

r

(1- co:h 2th,) (77:' n 7];)} (B.12)

B.2 In the source region

The source region can be divided into three sub-regions as shown in Table B.2.

x dependence | limits of integration
z> 1>z (z —h) a=z b=~h
i>z>z;| z,(z—-h) |a=1z;| b=2d]
z;>zTi>zT T a=0 b =z!

Table B.2: Integration in the source region

In the process, an additional type of integrals has to be performed

b
CCh = / cos zz (cos z(z — h))"dz = CC cos” zh +CS sin"zh  (B.13)
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b

SSy = / sinzz (sinz(z = h))"dz = 8§ cos*zh — SC sin"zh  (B.14)
b

CSy = / cos zz (sin z(z — h))"dz = CS cos*zh — CC sin"zh  (B.15)

b
SC, = / sin zz (cos z(z — h))"dz = SC cos* zh + 8§ sin"zh  (B.16)

The z dependence is then written as

b
/ {cos 2z — jnisin 2z} {cos z(z — h) — jn;sin z(z — h)}" dz
! CC (cos® zh — jn}sin® zh) + SC (min? cos® zh — jn; sin® zh
1 j j
+SC (—n.-n; sin® zh — jn; cos® zh) +CS (sin' zh + jn; cos” zh)]

1 | sinh 2:z b
1 -

{cos' zh (1 + 17.-17;) -J (17.- + n;) sin® zh}
b

cosh 2iz {cos” zh (i +17) = 7 (1 + men;) sin” 2}

1

sin 2rz |®

{cos‘ zh (1 - r;.-q;) +7 (r).- - r/;) sin” zh}

r
cos 2rz

a
b

. {— sin® zh (1 - n.'fl;) +7 (n.- - Tl,') cos® zh}] (B.17)

b
/ {sinzz + jn; cos zz} {sin z(z — h) + jn, cos z(z — h)}" dz

% [58 (cos' zh - jn; sin® zh) +CC (r].-r]; cos® zh — jn; sin” zh)

+CS (7;,-17;- sin® zh + j7; cos® zh) -8C (Sin' zh + jnj cos” Zh)]
L ae b
% [sm};sz {cos' zh (1 + 7]:'77;) -7 (77.‘ + 77;) sin” Zh}
cosh 2iz | . . - *) sin”
: a{cos zh(ni+7l,-)-1(1+77f’7j)sm Zh}
sin 2rz i {cos‘ zh (1 - 'h"?;) + (TI:‘ - 77;) sin” Zh}
cos 2rz |

{sin' zh (1 - n.-q;) -J (77,- - 17]‘) cos” zh}] (B.18)

a
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APPENDIX C

EVALUATION OF ENTIRE DOMAIN
MOMENTS INTEGRALS

When applying the Method of Moments (MoM) to (3.36), the unknown current
on the strips is expanded in terms of entire domain basis functions chosen to ap-
proximate as closely as possible its physical behavior for numerical efficiency. The
Chebychev family of orthogonal polynomials has been selected and an overview of
their properties is presented in this appendix. Also, in the formulation of the matrix
resulting from the MoM, three sets of integrals have to be evaluated, corresponding
to the basis functions expansion, to the application of weighted averages and to the

conductor surface impedance term. The solution of these integrals is detailed below.

C.1 Chebychev polynomials

The Chebychev polynomials of the first kind are orthogonal over [-1,1] with re-
spect to the weighting factor (1 — x?')‘%. For the family of Chebychev polynomials
of the second kind, the weighting factor 1s (1 — z2)3.

The orthogonal relations give

,form=n=0
yform=n#0 (C.1)

, for m # n.

1 Ta(z)Tm(z)

—_— L dr =
-1 1-122 !

O vl N
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and

,form=n

O Wi

(C.2)

-1 , form # n.

1
/ Un(2)Un(2)VT =2 dz = {
The Chebychev polynomials are historically the oldest set of orthogonal polyno-
mials. This is mainly because they are simply related to the trigonometric functions

by the formula

Ta(cos8) = cos(nb) (C.3)
_ sin(n+1)6
Un(cosf) = oy (C.4)
Thus, using some well-known trigonometric identities we can conclude that
To(l‘) =1 Uo(:c) =1
T\(z)=1¢ Ui(z) =22 (C.5)
Tg(l’) = 2.’172 -1 Uz(.’L‘) = 4.‘82 - 1.

It can be seen that the polynomials of even order are even functions of z and
those of odd order are odd functions of z. The Chebychev polynomials of the first
and second kind are shown in Figure C.1.

The remaining Chebychev polynomials may be tabulated quite simply with the

aid of the recurrence formula

Toii(z) =22 Ta(z) + Ta-a(z) = 0 (C.6)
Un1(z) = 2z Up(z) + Upey(z) = 0 (C.7)

and
2Ta(z) = Un(z) = Un-s(z). (C.8)

In a sense, the U,’s are more fundamental than the T’s since the latter can

always be expressed simply in terms of the former, but not conversely.
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Figure C.1: Chebychev family of orthogonal polynomials
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C.2 Integration over the basis functions

The set of basis functions that approximates the behaviour of the unknown cur-
rent has been chosen as the Chebychev polynomials of first and second kind multiplied
by their respective weight factor, to satisfy the boundary conditions for the current
at the edges of the strip.

The integrals over the basis functions that are encountered in the evaluation of

the matrix sytem are of two types as shown below

) = /:fu,.(—;,-(y-yom/l—[—f;(y-yon* cos(ky)dy  (C9)
o = [} Jn_ﬂy__y%}zsm(kyy)dy, (C.10)
W=7 )

where T, is the Chebychev polynomial of the first kind of degree n, and U, is the
Chebychev polynomial of the second kind of degree n. Using the explicit trigono-

metric expressions for the Chebychev polynomials,

sin(n + 1)6

n 0) = .
Un(cos ) o (C.11)
Ta(cos) = cos né (C.12)
and letting
cosl = E(y-y) = -—sinfdf = Zdy
W . (C.13)
Yy = Scosf+y = dy = —=sinfdf

the above integrals become

l—'(ll) - /0’r M sin 8 cos ky(%cose + Yo) % sindf (C.14)

sin 6
"’ 6
I = /(; % sin Ic,,(—zu-,- cos 6 + yo) % sin 6 do. (C.15)
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C.2.1 Evaluation of I{!

We will first calculate the integral corresponding to the y-component of current.

Substituting the above trigonometric transformation in (C.9), we get

| w
0 = > /0 sin(n + 1)@ cos ky(7 cos 8 + yo) sin 6 df. (C.16)

Using some trigonometric expansion formulas,

"’ %4
M = %/ %[cosnﬂ — cos(n + 2)6)] cosk,,(?coso-i-yo) do
0

u w
= % cos kyyo {/ cosnf cos ky(7 cos 9)df
0

- /0« cos(n +2) 6 cos(k,,(%/- cos §))df}

- % sin ky Yo {/” cos nf sin ky(%cow) dé
0

- /”cos(n+2)0 sink,,(%/-cow) do}. (C.17)
0

These definite integrals have a closed-form solution given in [111] of the type

/1r cos(zcosz) cosnzdr = « coan—7r Jn(2) (C.18)

0

/« sin(zcosz) cosnzdr = « sin% Jn(2) (C.19)
0

where J,(z) is the Bessel function of the first kind of the nth order. Therefore, (C.17)

becomes
147% w
M = - Teos kyyo{cos(n%) J,,(ky%:) — cos(n + 2)%Jn+2(ky?)}
w o N W, T W
= [ msin kyyo{sm(n-i) J,,(ky—g—) —sin(n + 2)5 Jn+2(ky72‘)}

) Jully ) = cosllyo + (n+2)%) Jusalky )

T

=TT [cos(lcyyo+n2

(C.20)
which yields

%4 W 14 "
M = =T cos(kyyo + n%) [J,,(kyg) + Jn+2(ky7) - (C.21)
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Using the following recurrence relation,

Jnt1(2) = ~ Ja(z) = Ja-1(2) (C.22)
it follows that

W
0 - f. (n + 1) cos(k,yo + ng-) Tnsa(ky5): (C.23)
y

C.2.2 Evaluation of (!

The second step is to calculate the integral corresponding to the z-component of

current. Following the same procedure as above, we get

I = % /: cos nf sin k,,(% cos 8 + yo) df. (C.24)

Using some trigonometric expansion formulas,

0 = % /t cos nf [ cos kyyo sin ky(-v;cosG) + sinkyyo cos ky(% cos §)|dd
0

w 4 . W
= 5 cos kyyo /0 cosnd sin k,,(? cos §)df
w

+ —2—sin Ic,,yo/(:r cos nf cos ky(%cosa)dﬂ. (C.25)

These definite integrals have the form given in (C.18),(C.19). Therefore, (C.25)

becomes
w : w. . w
I = 5T [cos kyyo sm(n-;:) Jn(k,,?) + sin kyyo cos(ng-) J,,(kyT)]
W W, . T
= 5T J,‘(kyT) sin(kyyo + n-2-) (C.26)

This completes the Z{? integration.
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C.3 Integration over the testing functions

From (3.70) and (3.71), the integrals resulting from the weighting averages are

given by
76 m+¥
© = [7) Un(( - o)) cos(kyy) dy (c27
w=7
uo+-“,'1 _
= ¥ Wy yo)) sin(kyy) dy. (C.28)

C.3.1 Evaluation of I{)

With the substitutions defined in (C.13),
yASE % / i sin(m + 1)8 cos ky(% cos 6 + yo) db. (C.29)
0

After some trigonometric manipulations, this expression may be written as

w
5 cos kyyo/'sin(m +1)8 cos(k, -;Kcos 6) dé
0

- -‘;—,- sin ky¥o /(: sin(m + 1)6 sin(ky%/- cos 6) df. (C.30)

o =

No general recurrence formulation was found for the integrals above. However,

by comparison with the spherical Bessel functions of the Ith order given by [58]
a(z)= % (—i)'/1r e***® P(cos §)sin 6d8 (C.31)
0
where P, corresponds to the Legendre polynomials of order [, we can write

/O"P,(coso) sind sin(zcos0)d8 = Im{2(i) ji()} (C.32)

/1 Pi(cos8) sin8 cos(zcos8)dd = Re{2(i) ji(2)}. (C.33)
0
Expanding sinm#@ in terms of a summation over these polynomials as

sinmf = sin8 ) Aim Pi(cos 0) (C.34)

=0
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l=0[1=1]1=2[1=3]1=4] 1=5 | 1=6 =7
1
0 2
13 0o | 83
0 | 45| o [16/5
1/5 ] 0 | 87 | 0 [128/35
0 [18/35] 0 [64/45| 0 | 256/63
/71 o |16/21] o [128/77] 0 |1024/231
0 |82 | o [32/33] o [512/273 0 | 2048/429

o|w|olu|e]lwl|—|8

Table C.1: Coefficients A for the expansion of sinm#f in terms of Legendre poly-
nomials of order [, P,

we may readily see that

/ “sinmf sin(zcos8)d8 = 3 Ay Im{2(=i) ji(2)) (C.35)
0 =0

/1r sinmf cos(zcos8)df = > Aim Re{2(=i)~ ji(2)}). (C.36)
0 =0

Therefore these integrals can be written as a weighted sum of spherical Bessel
functions. Note from (C.32)-(C.33) that, for any given m, one of the above two
integrals alternatively evaluates to zero.

The coefficients A, are readily calculated and given in Table C.1 for the first

few orders. After appropriate substitutions and some algebra, (C.30) becomes

Y = W coskyyo jo(ky%)

I = —2W sink,yo jl(ky-vzz)

¥ = T coskyy {jo(ky%) - 8]2(’%%/“)}
A -ig sin kyyo {jl(ky%) - 4]3(’%4%)}
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y LWy 8 W s W )

¥ = W cosk,yo {5 o(ky 2) 77 J2(ky 2)+ 35/ 2
Ty T Ty Ty ")

Ié = —W sinkyyo {35]1(k 2) 45]3(k 2)+ 53 Js(ky 2)

¥ = W cos kyyo

1. w 16 . W 128 . w 1024 %%
{710(’%7) - 51'12(’%'2—)"' 714(’%7)— m]s(k 5 )}

I;s) = —W sink,yo
8 . %% 32 . %% 512 . w 2048 .
{Sithg) = S islh) + 32 dslkys) = o inlky ) s

Using Rayleigh’s formula (58],

O e e (c3)

z2dz " =z z

the spherical Bessel functions can be written in terms of trigonometric functions,

which yields for the first five orders

sin z

ae) = =55 - == (C.40)
z z
. . 3 1 3
J2(2) = smz(;s- - ;—) - o8z (C.41)
. .15 6 I5 1
J3(z) = smz(-; - ;;) + cos z(—-;-i— ;) (C.42)
: . 106 45 1 105 10
Ja(z) = smz(—;s— - = + ;) + cosz(——zT + -;,‘;) (C.43)
. . 945 420 15 945 105 1
15(2) = smz(—zé— - + ;2-) + cos z(——zs— + - -) (C.44)
: . 10395 4725 210 1 10395 1260 21
jo(2) = sinz(————+——=) + cosz(—; +—T——XC 45)
z z 2z z z

: . /135135 62370 3150 28
J7(2) = sinz( pr + ot ;2')

~ cos Z(135135 _ 17325 + 378 3 l) (C.46)

27 25 23z
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C.3.2 Evaluation of I)

A similar derivation can be done for the integral arising from the weighting av-

erage with Chebychev polynomial of the first kind (C.28) as

4 W
AN %/ cos mé sin @ { cos k,yo sin(ky—z— cos ) +
0

sin kyyo cos(ky% cos ) }db
u W
= % cos kyyo/(; {sin(m +1)6 sin(k,,E cosf) — sin(m —1)6
r w

.sin(}'c,,K cosf) } d6 + w sin k,,yo/ {sin(m + 1)@ cos(k,— cos )

2 4 0 2
— sin(m - 1)8 cos(ky‘/—;/- cos§) } df. (C.A4T)

In view of (C.31) and (C.34), it follows that

X ... W
Ié” = W sinkyyo jo(ky—)

2
%%
114) = W coskyyo jl(kv?)
W . W .
154) = _? sin kyyo {]o(ky_z‘) + 4]2(ky 2 \,}
W ., W :
I;.(;“) = 3 cos kyyo { (3Jl(ky-2’) + 873(ky =) }

. 1. |14 16 . %% 64 . W
TV = W sinkyo { (—EJO(’%?) + ﬁh(kv?) + 514(’%7)}

‘ W W
LY = W ocoskyo { (=5ky) + ialk,3) + 1287s(k, ) )

Iéﬂ = W sinkyyo

| 1% 4 . w 384 W 512 . %%
{ (—gJo(kyj) + ﬁ)z(ky—z') - gfg]‘t(ky?) - ﬁ]e(kyf?-) }

I-‘(f‘) = W cosk,yo

1 14 112, W 128, W 1024

. %4
{(-gatkz)+ 105730k g) = Tprds(ky ) = ogdr(ky =) (-48)

C.4 Integration over the conductor term

The second term on the left hand side of equation (3.36) takes into account ‘the

ohmic losses due to the finite conductivity of the strips. After applying the method
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of moments, the resulting integrals may be written as

18 = [T U - 9001~ ~ v Un( ity = ) dy (C:49)
79 = [F Do) g 2 )e (C.50

w=f /1- &y - v0)
From (C.1) and (C.2), and using the orthogonal properties of the Chebychev

functions, (C.49) and (C.50) become

x —
T sform=n
0 ,form # n.

% = W{ (C.51)

and
,form=n=0

yform=n#0 (C.52)
,form#n

76 =W

(== N EWCTE]
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APPENDIX D

EVALUATION OF SUBSECTIONAL
MOMENTS INTEGRALS

When applying the method of moments (MoM) to (3.36), the unknown current
on the strips is expanded in terms of subsectional basis functions. Galerkin’s method
is used here, where the testing functions are equal to the basis functions. Therefore
only two sets of integrals have to be evaluated, corresponding to the basis functions
expansion and to the conductor surface impedance term. The solution of these

integrals is detailed below.

D.1 Pulse functions

Let us assume N equispaced points on the interval yo — %’- Sy<y+ % defined

by the y,

W 1
yn=yo——2—+(n—§) AW, n=1,2,..,.N (D.1)

A subsection is defined to be of width AW centered on the y, coordinate. The pulse

function is defined over only one subsection as shown in Figure D.1

1,y < AW
P(y) = D.2
(v) { 0 l> AW (D.2)
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P (y)
A
— S .._> y
AW AW
2 2

Figure D.1: Pulse function

D.2 Integration over the expansion functions

The integrals that are encoutered in the evaluation of the matrix system are of

two types as shown below
IV = 19 = sin(kyy) P(y — ya) dy (D.3)

yAY)

I

1
=
i

'c\-

Q

o

w

(kyy) P(y — yn) dy. (D.4)

For a y directed current on a strip of width W, I{}) becomes

70 = / Wy sin(k,y) P(y — yn) dy (D.5)
" w-Ltm-nY "
1 W W W W
= Py cos ky (yo -5 +(n - 1)-N-> — cos ky <y0 —5 + n-ﬁ>](D6)
or
0 = { 037 sink, (o= ¥ +(n-DF) sink (%) m 7£g (D.7)
,m=0.

where k, = 7% with m =0,1,2, ...
The second step is to calculate the integral corresponding to the z component of

the current. Following the same procedure as above, we get

¥ =

w-Fny
/ cos(kyy) P(y — ya) dy (D3)

vo—-%+(n-1)%
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17, wo.owy w 4
= F- [SInkV (y0—7+nﬁ) - smky (yo——2-+(n—1)ﬁ)](D9)

o2

or

D.10
D=1 T, (oo

I(z)z{ f;cosk,, (yo—%+(n—%)%) sin k, (%) ,m#0

D.3 Integration over the conductor term

The last term in (3.36) takes into account the ohmic losses due to the finite
conductivity of the strips. After applying the method of moments, the resulting

integrals are

w'i

vo+
Iu=I® =10 = P(y—y.) P(y—w) dy (D.11)

- %

T ={ L l=n (D.12)
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APPENDIX E

GENERAL BOUNDARY CONDITIONS
BETWEEN TWO HOMOGENEOUS,
ISOTROPIC MEDIA

Let us consider an interface between two media, as shown in Figure E.1, along
which there are no charges or sources. These conditions are satisfied provided that
neither of the two media is a perfect conductor or that sources are not placed
there. Regions 1 and 2 are characterized, respectively, by the constitutive parameters
€1, 41,01 and €3, y2, 0. In this derivation, we will assume the media to be isotropic,
homogeneous and non-magnetic (g1 = g2 = fo).

The z,y,z coordinate system is chosen to represent the local geometry. For
rectilinear propagation along the z direction, the fields can be written in terms of

their transverse and longitudinal components as

E = (&+¢) ezp(—7:2) (E.1)

- -

(he+ F.) exp(~7.2) (E2)

o1
I

In this appendix, generalized boundary conditions between two homogeneous,
isotropic media are derived. The dependence of the field vectors on the electrical
properties of the media along boundaries of discontinuity is referred to as the initial

boundary conditions. Using these initial boundary conditions of the electromagnetic
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fields, it is shown that the derivatives of the electric fields in the two media with
respect to the direction perpendicular to the interface are related at the boundary

and can be expressed through a general recurrence formula.

E.1 Initial boundary conditions

Maxwell’s equations in integral form provide the most convenient formulation for
derivation of the initial boundary conditions, and can be found in any elementary
electromagnetic textbook (e.g. [112]). The boundary conditions for the electric field

are

o the tangential components of the electric field across an interface between two
media with no impressed magnetic current densities along the boundary of the

interface are continuous
A x (EW — E®) =, (E.3)
o the normal components of the electric field intensity across an interface are
discontinuous
i (qEY — E®) =0 (E.4)
and for the magnetic field,

e the tangential components of the magnetic field across an interface between

two media, neither of which is a perfect conductor, are continuous
A x (HY = F?) =, (E.5)

e the normal components of the magnetic field intensity across an interface are

discontinuous

A (m AW = ) = 0. (E.6)
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In the z,y, z coordinate system defined in Figure 1 and at z = o, Equations

(E.3), (E.4) take the form

e? = () (E.7)
€2
e§2) = egl) (E.8)
e = ell (E.9)
while (E.5), (E.6) become
h® = h® (E.10)
h(» = h{M (E.11)
h® = hiV. (E.12)

The bold notation is used for the field components evaluated at the interface z =

To.

E.2 First-order boundary conditions

To evaluate the boundary condition of the first-order derivative of the electric
field, we make use of Maxwell’s equations. Since we are interested in the boundary
conditions for the electric field only, Maxwell’s equation from Faraday’s law will be

used
V x E = —jwpoH (E.13)

or in terms of longitudinal and transverse components

— - -

(Vi =7:2) X (& + €;) = —jwpo(he + h) (E.14)
which may be decomposed to lead
Vix & = —jwpohs (E.15)

z X (Vgez + 7zé‘t) = jW}loEt. (Elﬁ)
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Making use of (E.15)

.0 .0 ) A : X
(E5-+ y@) X (ezE + ) = —jwpoh.2
we get
de; Oe .
R Jwhoh,

and in region (2)

At £ = z and for any y along the boundary, we can write

0ed el el  gelM
dy dy’ 8z Oz

Recalling the continuity of the magnetic field intensity from (E.5),
h£2) — hgl)

we obtain

0el)  del)  geld  pelt

Or 0r Oy oy

) = jwho(h{) — h{!).

(E.17)

(E.18)

(E.19)

(E.20)

(E.21)

(E.23)

The media exhibit discontinuity along the x-direction only. In the y- and z- direc-

tions the field quantities are single-valued, bounded, and possess (along with their

derivatives) continuous distributions, thus

n(1) na(2
0 e 0 ee) v

= , n
oy" oy"
n (1) n,(2)
g e _ 0 e
ozn ozn

, Vn

(E.24)

(E.25)
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where ¢ denotes the y or z coordinate. Similarly, upon using (E.7), we get

el ¢ orell

= , E.26
oy» e Oy (E-26)
Hence (E.23) yields
TP 2= (515
Proceeding in a similar fashion for the z component, from (E.16) we have
. ,.0e;  Oe, R . , . .
Ex (22— + 5, + Y.2ez + 1:9¢y) = jwpo(hzZ + hy) (E.27)
or
Oe, .
‘5; + 7.6 = Jwpohy (E.28)
de, )
5:”" + 7.6y = "JW.U'OhI‘ (E29)
Equation (E.28) holds at any point and therefore in region (1)
del) :
o+ el = jwnohy), (E.30)
and in region (2)
(2)
O 4 ye® = jopoh?. (E31)
Oz v
Using (E.7) at the interface ¢ = zo, we can write
@ gel)
oo Ty = (1 = Lyl 4 jopofbf? — ) (£.32)

Oz or €2

From the continuity of the magnetic field intensity (E.5), we obtain

Zel— Zel) = 11— 2)el)]
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Now, from Gauss’s law in source-free regions,
V.-D=0 (E.33)

we can find a relationship between the derivatives of the x-component of the electric

field

V-aEY =0, in region (1) (E.34)
V- E® =0, in region (2). (E.35)
Assuming homogeneous and isotropic materials, we get

aV - -EV =V . E® =g (E.36)

from which we obtain, at z = z,

del) el  gelV ge®) del?  Hel?
“( Oz + dy 0z = 52 + Jy 0z (E.37)
or
9el?) € 0el) ¢ Oel) gel) el gel@
bz "6 oz Te oy T o:) oy tTar) (E-38)
In view of (E.24) and (E.25),
de? e 0ell) ¢ delt)  pe()
: - a% a1y % : :
Or €&, Oz (62 ) dy + 0z ) (E.39)
g del) ¢ dell)
T g 0z g -1 Oz (E40)

or

2 al2) = 8.4(1)
328z = 8ze1' :
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E.3 Higher-order boundary conditions

To evaluate the boundary condition of the second-order derivative of the electric
field, we will make use of the wave equation which can be written, in terms of

transverse and longitudinal components of the electric field, as

V2, - (1= E = 0. (E.41)

The wave equation is general and holds at any point in space at any time. There-
fore, Equation (E.41) can be written in region (1) as

(1) (1)
3"’6€ 3266

get T a7 T (k2 = kel = 0, (E.42)
and in region (2) as
528 52¢@
6—;2+ 3;2 + (K - Kl = 0. (E.43)

At the interface z = z,, substraction of (E.42) from (E.43) yields

(aze?) B azegl)) N aze?) _ azegl)
0z? 0z? 0y? 0y?

)+ (K2 — k2)el? — (k2 — k?)e) = 0. (E.44)

Hence, recalling (E.8)-(E.9), Equation (E.44) becomes

(2) (1)
0%e; _ azef

oo~ g = (= kDed = (k5 - e (E.45)
= (K= kD)el) + (k2 — k%) (el — e (E.46)
= (K- ke, (E.47)

Now, taking the x-derivative of (E.42) and (E.43), we get

3Pel) 5%V delt) _ .
3;3 t ax(;yz + (ki - kf)a—i =0, in region (1) (E.48)
el 53 (2 5e'?
i + i + (k2 - kz)—e£— = 0, in region (2) (E.49)

0z  Oz0y? oz
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leading to
33e£2) Bsegl) 2 12 Ge?) 2 g 0 Begl) Be?)
3 9 (ky = k3) i (k2 — k; + 8—y’-’) (W - 8_::) (E.50)
e} a . delV
= (k2 _ 2 € 2y (21 _ z
(K] - ) 5+ (k) (2 - )% (E51)
Generalizing this procedure to the nth-order derivative,
ane(l) ane(l) an-?e(l) ' .
83:5‘ + Bz"‘;3y2 + (k? - kf)-a—z-n—_%— =0 , in region (1) (E.52)
6"6(2) ane(z) an-?e(z) ' '
6:1:5‘ + ax"';ayz + (k2 - kz)—a_x"_f'-’- =0 , in region (2) (E.53)
from which we get
ane?) anegl) 62 6n—2e§2) 3n—2e§1)
e Pl e L e B =g
g-2el? or-2ell)
2 2 § 2 2 4
- (k- kz)W + (ky = kz)W' (E.54)
The above may be rewritten as
el el
doz" oz
6n-2e(1) 82 an—2e(2) an-Ze(l)
B2 — k) —— (== + k2 —k? € _ Y _
( 1 2) 61‘"_2 (ay2 + k2 kz) ( axn_g 0;1:"'2 ) (E 55)
Now, let us set the following definitions
greld  grel)
Sa(8) = (o = o) le=mo (E.56)
orell)
Ba€) = ——t ez (E.57)
greld
T.(¢) = _a‘;%‘ |z=zo (E.58)
and
A= k12 - kg = kg(él - 62) (E59)
F= ZL+E-k =k, (E.60)
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then (E.55) becomes

Sn(§) = ARn-2(§) — FSn-2(§)- (E.61)

This expression involving S, and S,_; is a recursion formula [52] and by an iterative

process, can be written in the form

Sa(€) = ARa-a(£) = FSn-a(§) (E.62)
= ARn-2(§) = F(ARn-4(£) — F5a-4(¢)) (E.63)
= A(Ra-3(€) = FRa-4(€)) + F*(ARn6(6) = FSn-6(¢))  (E.64)
= A(Rn-2(€) = FRa-4(€) + F*Rug(§)) = F*Sn-s(¢) (E.65)

or

Az: F)*'Roo () + (=F)VSo(€) ifn=2N
S =7 = (E.66)

AZ FY 'Rua(6) + (=F)¥S,1(€) ,if n = 2N+1.

Note that in this new nomenclature, the previously derived boundary conditions

may be written as

So(z) = e — el —(—-1) (1) (E.67)
Soly) = el) =0 (E.68)
So(z) = egz)—egn =0 (E.69)
Si(z) = ;xem ;ze(” =0 (E.70)
Si(y) = ;%e(?) ;L (M) = (62 1)%e9)|,=xo (E.71)
Si5) = el = 2l = (£ 1) Lol o, (£.72)
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Therefore

N
£) +AY (=F) 'Ruco (&) + (= F)NSo(€) ,ifn=2N
Tn(§) = i (E.73)
§) + AY (=F)*'Raca () + (= F)VS1(€) ,if n = 2N+1.

Alternative expression for the derivatives of the z component

Another formulation is derived below, that takes into account the discontinuity

of the electric field at the interface. Proceeding in a similar procedure as above, we

recall (E.55)
an e?) an egl)

gz ozn
an—2 (1) 62 an—2 (2) an—Z (1
(= K)o = (g + K = K (i — ) (BTH)

which may be rewritten as

grel) ¢ drel)

0z € 0z
on-2ell) 0?

Bo)2l = (T

( )62 ozn-2 (5y2

an-2e£:2) € an-—2eg‘l)

Ozn-? € Oz"? )

ane(l) an—Ze(l) 62 an—Ze(l)
1—-— 2 AR 2 - 2 _ 12y 2tz
+ ( ) [ a n + (k k. ) 61‘n—2 + (ayz + k2 kz) 6.’17""2

+ k5 - k) (

o2 e(l) 5? an—2e(2) € an—2e(1)
_ kz k2 o e’ 2 _ 12 \ z. _ & z
( ) €, Ozn—? k= k Oy 3 { dr"=? ¢ Ozn—? )
o2 [ 52 5?
0 2 (g H ) (=

Since the eigenvalues are related by

o= R+ k4R (E.76)
B o= B+ R4 R, (E.T7)

equation (E.75) simplifies to

el ¢ orel) € 0" 2e(t) on%ed ¢ on2ell)
5 o e = (k? - k2): s (- 2)( - )(E.78)

Oz"? € Oz™?
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Setting the following definitions

greld ¢ orelV)

Su(z) = (6z" _;_6'3:_") z=zo
orell)
R(z) = 2-&7 r=z0)

we find the same type of recurence formula as in (E.66)

AZ F)7'R o () + (=F)"Sy(z) ,ifn=2N

SE@={ F
AE F)*'R. _,.(z)+ (=F)NSi(z) ,if n = 2N+1
v=1
where, now,

56(:2:) = e(2) (l)lz—zo =0
62

, 0e ¢ delt) e 0el
Sl(z) - ( oz - 6_2- oz =9 — — ; - ].) 9z .
Thus
z) + AZ F)~1R,_3,(z) yifn=2
T.(z) = v

(E.79)

(E.80)

(E.81)

(E.82)

(E.83)

N
(E.84)

+AZ F)*7'R._5,(z) + (=F)NSj(z) ,if n = 2N+1.

E.4 SUMMARY

In summary, the generalized boundary condtions at the interface between two

media are summarized below,

o (2) o an-—2u n 0

Ea +AZ ) st + (P - 1) 5elnn (E:85)
and

el o Lo e 0

B " vz*AX_:l ol R - 1) el (B56)

with
{ 1 , nodd
Kn =

0 , neven

(E.87)
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(E.88)
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Reglon 1 €U, T,

g» Y S s

Figure E.1: Geometry of the problem
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APPENDIX F

REFLECTION AND TRANSMISSION BY AN
INFINITE SLAB

To verify the generalized impedance boundary conditions (GIBC’s) between two
homogeneous, isotropic media, the expressions given in Chapter 6 and derived in
Appendix E are used here to calculate the reflection and transmission coefficients
of a uniform plane wave impinging on a slab. This incident plane wave with any
polarization may be decomposed into TE and TM wave components. Figure F.1
depicts the case of a TM wave (also called parallel or vertically polarized wave)
incident upon the slab, where the electric field is parallel to the plane of incidence,
Le. has both x and y components. This case was chosen to verify both boundary
conditions (E.85) and (E.86). Results are compared to the classical derivation which

can be found in many electromagnetics textbooks, e.g. [113].

F.1 Classical Derivation

Consider a plane wave incident from region 1 of permitivity ¢; and permeability y,
onto a dielectric slab of electrical parameters ¢, and permeability y, with boundaries
at £ = 0 and —h. The plane of incidence is parallel to the £ — y plane. The third
region is semi-infinite and its permittivity and permeability are denoted by €3 and

p3. By the phase-matching conditions the k vectors of all plane waves will be in the
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7////,7 7 B

Figure F.1: Reflection and transmission of a vertically polarized plane wave in a slab

z —y plane. Thus all field vectors will be dependent on = and y only and independent

of z. Since % = 0, the Maxwell’s equations may be written as

1 0

H = -——E, F.1
jwp Oy (£
1 0
Hy = _.]—u;é;Ez (F2)
1 0 0
HZ — _J_,U_J; (%Ey - 6_yEz') . (F-3)

For a TM plane wave incident on medium 2, the electric and magnetic fields in
region 1 are the sum of the reflected and incident components, and may be written

as

HY = Eo(Rejk"’+e"jk‘1’)ejk9y

Ea(cl) = iy_Eo(Rejkzlz + e"jk:lf)ejkyy
wer
EM = —kﬂEo(Reﬂ‘“’—e"j"“’)ejk”y (F.4)

weEr
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where Ej is the incident wave amplitude and R is the total reflection coefficient for
the electric field. In region 3, there is only a TM transmitted wave which takes the
form

Hﬁa) - TEOe-jkz:!xejkyy

ky

E®) = L TEe7kazeiku

’ (P

E® = b p pemiknzeitoy (F.5)
weg

where T is the transmission coefficient for the electric field. By applying the bound-
ary conditions of continuity of the tangential £ and H fields at the interfaces, the

reflection and transmission coefficients can be determined as

1 —_ pij
R. = -_Pi F.6
! 1+ p;; (F6)
2
T.. = F.7

where R;; and T;; are the reflection and transmission coefficients from region ¢ to
region j respectively, and where p;; is given, for TM waves, by

Cikxj
pij = J,: (FS)

General relations have been derived for layered media with any given number of
layers [113]. For the slab problem, the reflection and transmission coefficients can be

cast in the following form

Ri2 + Ry3 e3%ks2h

1 + Ry2 Ry e%k=2h
4 ej(kz2-k:3)h'

T = . |
(14 p12) (1 + pas) (1 + Ruz Ry e25=2h) (F.10)

R =

F.2 Alternate Derivation

We shall now derive the reflection and transmission coefficient for a plane wave

impinging on a slab using the higher-order impedance boundary conditions. The first
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step is to expand the electric field in the slab region in a Taylor’s series with respect
to the z =0 interface for the top half of the slab, and to z = —h for the bottom half

of the slab. In region 2, the fields are as follows

oo

50)(z, y) 2 FED =), o if -3 <x<0
E¥z,y)=( " (F.11)
Y A [EENNey)| __ (s +h)" if-h<x< -4

= azn ’ - %= 2

Next, the generalized impedance boundary conditions described in Chapter 6 can
be used to relate the fields in the slab to the fields in the regions outside the slab.
These relations involve the higher-order derivatives of the electric field with respect

to the direction perpendicular to the interface, and are restated here for convenience

anE(2) € o [%] an-2u
. _ & (1) - (1) 3l& (1)
o o 5o Es +Ayz=:1( azn-sz +(=F)lz ( 1)an E k{F.12)
and
FEY_ O g AZ 5"'2" EW 4 (—F)8)(& 1) 0 (F.13)
Bx" ozr" yz = pn—=2 " Y? € ay, n
with
Kn:{l , 1 odd (.14
0 , neven
and
A = k(e - e)
F.15
(52 1
From the continuity of the electric field in the slab at z = —— , we get the following
relations
it = E; x=-b (F.16)
-‘;" = ~; ,x = -2 (F.17)
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where (+) and () represent the fields just above and below z = —— , respectively.

Making use of (F.12) and (F.13) in (F.16)-(F.17), it follows that

FEla TR -ty 3 g 2
+ (1 - z—:) a—g::ti) z=0 ﬂ=°:3,5 (_n%)n ( kgz)[%'-]
= g; (}i)un :2 a'(;ff) . + k(e - 62)2—22 (i)!ni]l(—kﬁ,)"- _6;;2:5%3) .
ca-9%E F GReg) 19
$ERPE pa-w s S H( e T
+ (2—— 1) 6235;1) Mn:is ﬁ-_r-z'%l’: (—k2)(5)
+ (Z_z _1) Q%i)z__h n_i::a,s % 2 (3], (F.19)

To find R and T, the expressions for £®) and E® given by (F.4), (F.5) are
substituted into (F.18), (F.19). Closed-form expressions may be found for the three
types of summations that are encountered in these equations, i.e. first the infinite

summation over n

A
00 _hyn anE(l) . k . .
5 ( 2') 1| = Boeitw T gikad(] 4 Remikah)  (F.20)
ol oz | __, wey
n (3) . C .
, @ (& 3 gmES — E,Teitw Ko gibat (F.21)
n=0 n. al‘n z=-h wes
second, the double summation given by
i ( Z k2 v-1 .a_n_-iE_(_ll = F ejkyy_i !
n=2 gz z=0 we kg(ﬁl - 62)
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[(1 + R) cos kﬂg +j(1- R)%ﬂ sin k,zg- — e*13(1 + Re~7*1%)| (F.22)
T2
1) (!21_)11 [%] 2 \uel 0"-2VE1(:3) _ ity ky ikt 1
nz=:2 n! u=l( ka) axn—2v =0 - EOTC we3e 2 kg(el - 62)
h ks . h o _,n
{cos k,2§ - ]-’ﬁ sin kzg-2- —e ’k"‘:] , (F.23)

and third, the summation over the odd values of n

(£3) 3 _ 4 Sin ko

S i) - (F.24)

o o]
n:-zl;.s n!

After some algebra, the system of two equations for the two unknowns R and T

reduces to
h h h. .
R {cos k,2§ — j pa1 sin k,gg} + T'{-cos k,2§ + J p3 sin k12§} eikssh
h h
= —cos kx2§ — 7 pa1 sin k,g‘é‘ (F.25)

h . ) h ho. ) h, .
R {-cos k,,-zE + 7 p12 sin ’szi} + T{-p13 cos kﬂi + 7 p12 sin k,2§} giksah

h
= —cos krzi — 7 p12 sin kxgg (F.26)

and may be solved in a straightforward manner to yield

R = (1= p13) coskazh — j (p2s — pr2) sinkzh (F.27)

(14 p13) coskzoh — j (a3 + pr2) sin kzoh

2 exp(—jkz3h)
T = - - F.28
(14 p13) coskzah — j (pa3 + p12) sinkgoh ( )

which may be cast in the form of (F.9) and (F.10) using Euler’s identities.
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APPENDIX G

HARMONIC CLOSED FORM EXPRESSIONS

In this appendix, we derive closed-form expressions for the infinite harmonic

summations encountered in the theoretical formulation given in Chapter 6.

e For the (A) term,

= (é)nﬂ 0" [ sinu(z+v
nt42 \2
nzz;)(il) I'(n+2) 9z ( cosu(z + v ) ~ (G.1)
e For the (B) term,
o 2" (3] - :
) o [ sinu(z +v)
1 n+2 (2) an2\-1 .
n}__;;(i ) I(n+2) ;( v Oz \ cosu(z +v) s (G2)
o For the (C) term,
00 £n+l [ ]
1 n+2__ 2 —_u2\|5 )
n;l,;s(ﬂ: ) __F(n+2)( u’) (G.3)

In the above, the + signs correspond to the expressions for the bottom and
top interfaces of the strip, respectively. To simplify the notation, let us define the

following trigonometric functions as

hy = sinu(z + v) (G.4)

he = cosu(z + v) (G.5)



268

and note that an infinite sum of trigonometric derivatives can be decomposed as

follows
oo aﬂ h, [o o] " h' o0
- = (—1 7" + -
nz=;) oz ( he ) n=02,:2,4 ) he n=12,3,5(

G.1 Evaluation of the (A) term

For the (A) term, we consider (G.1)

|

sinu(z + v)

r

cosu(z + v) i
z=x0

|
.

Recognizing that

we can write

[e.o]

2 (£1)

=

h n+1
n+2 (E) an

T(n+2) dz"

)

)

sinu(z + v)

cos u(z + v)

|

=z

|

(cos ug- -1)

=z

|

sinu? [ sinu(

[~

T+v
T+

u

cos u( u

he

" ) . (G.6)

[NTF]

1)

cos u(z + v)

(G.9)

IT=Z0

|

—sinu(z +v)
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G.2 Evaluation of the (B) term

Using (G.6) in (G.2) yields

i(:bl)"” (%)'H.l [Z%%(_wZ)u—l an-zy ( Sinu(x+v) )
= [(n+2) 5 9z™% \ cosu(z + v) -

= n+2 2\v-1 vl \n=2u hy
= E (tl) * I‘(n+2) ;(_w ) (_l)[ ](u) ( hc )

IT=X9

2\v-1 -"—'5?1 n-2v hC
n=3,5,7 : F(n +2) vz=:(—w ) (_1)[ ](u) ( _h-’ )

After some manipulation, the above may be rewritten as
/ ha
he
\ Tr=
/ hc‘
+

Using the following geometric progression formula [111]

(G.10)

i Akt "
S ()
5 (ol W“(")

n=357 (n+2

T=z0

( ) (G

gaqk-l ) a(gn—_ll) L q#1 (G.12)
we obtain
hy R ) M [ R
( he ) z=20 ";2;16(_1) Tn+2)" [ (2) -1
3
he = a8 ()
i ( —hs ) p— n=3,5,7(—1){ ] mu ['(Tz_l— . (G13)

Substitution from (G.7) into (G.13) yields
Ll h
w? — u? h,
he

T=X0 I=1

> (—1)"“2%2—1})u2m-1 [(9>2('""” - 1] } . (G.14)

m=2

T=Xg
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After some manipulation we may write

o s\ (5] n-2u
Z(il)n-n (2) (_wZ)u—l Y ( hy )

oy [(n+2) 5 dz"~% \ h, -
1 3 h, sin w% B sin u%
w? — u? h. w u
=19
h. coswkt -1 cosul -1
+ ( Y ) u [ w:; - u22 ]} (G.15)
=70

G.3 Evaluation of the (C) term

For the (C) term, the summations used are of the form shown below

= (ﬂ:l)"+2 (12‘-)”'.1 (__ 2)[-’,1] — i(il)2m+l (%)2”‘ (_ 2)m-1
n=1,3,5 F(Tl+2) ¢ - m=1 F(2m+1) ¢

o A 2m

- > ;(—1)'"———F(§33 VGO
| & _ (u%)2m

= T

leading to
o (%)n+l [ ]
n+2 ™zl — — (cosu— —1). .
ng:&s(:tl) I,(n+2)(—-u) = ¥ (cos 1) (G.16)
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