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CHAPTER I

INTRODUCTION

1.1 Motivation and Objectives

Planar transmission line structures are essential components in microwave mono-
lithic integrated circuits (MMICS) and monolithic antenna arrays. Current trends
from hybrid technology to higher density planar integration are strongly dependent
on the availability of well characterized passive planar structures for interconnect and
distributed circuit functions. Microstrip is the most commonly used transmission line
structure because of its compatibility with discrete MMIC components, and the ease
with which it can be incorporated into a larger design. Nonetheless, it suffers from
a variety of problems at millimeter-wave frequencies including high radiation and
conductor losses, and dispersion. In addition, parasitic electromagnetic coupling be-
tween circuits in close proximity will complicate higher density MMIC designs. All of
these problems are compounded further by the inability to tune microstrip circuits
after fabrication. Consequently, millimeter and submillimeter-wave MMIC design
cycles are destined to remain lengthy unless accurate and reliable theoretical models
are successfully integrated into the process. The approach and models presented can
eliminate this waste of resources and reduce development cost and time.

Existing microstrip computer aided design (CAD) software is based upon quasi-



ctatic and semi-empirical data. and has demonstrated good performance at irequen-
cies up to X-band. At higher frequencies. non-ideal electromagnetic effects are not
modeled correctly (or at all). and the results can be inaccurate or even misleading.
The fullwave technique applied here makes no simplifving assumptions which limit
its accuracy at higher frequencies. All electromagnetic effects are inherently included
in the analysis. Consequently. this technique can accurately determine the useful fre-
quency range of microstrip, provide improved CAD models. and be used to evaluate

existing models.

1.2 Types of Planar Transmission Lines

Planar transmission line structures are well suited for use in hvbrid circuits or
(M)MICS because of their conformal, two-dimensional nature and their compatabil-
itv with active devices and lumped elements. In addition, they are ideal for mono-
lithic array structures where they can be used both as feeding structures and antenna
elements. Furthermore, they are easily fabricated with photolithographic and etching
techniques. Numerous configurations have been proposed for these structures. They
include, but are not limited to i) stripline, ii) microstrip, iii) slotline, iv) coplanar
strips, and v) coplanar waveguide, all of which are shown in Figure 1.1. Stripline
is included in this class although it is not easily accessible for interconnection to
discrete components. These structures, with the exception of stripline, propagate
hybrid modes having both longitudinal electric and magnetic fields. Nonetheless,
they are called “quasi-TEM” structures because they propagate fundamental modes
which are close to TEM , especially at low frequencies. These lines can be of either
closed or open type as shown in Figure 1.2 for microstrip. (M)MICS are often pack-

aged in some type of cavity or waveguide enclosure with a notable exception being



when they are part of an antenna array.

As previously mentioned. microstrip is the most widely used planar line. However.
more recently coplanar waveguide has found wide usage, because it has easier access
to the ground plane which is located on the top face, and its guide wavelength and
characteristic impedance are less dependent than microstrip on the height of the

substrate.

1.3 Techniques for analysis of planar transmission lines

The methods of analysis of microstrip structures are traditionally divided into
three groups entitled 1) quasi-static,[1]-[6] ii) dispersive[7]-[10], and iii) fullwave [11]-
[28]. Quasi-static techniques assume that the microstrip supports a TEM mode
of propagation and circuit parameters are determined by calculations of the static
capacitance and inductance. Dispersion models are derived semi-empirically, and
provide information concerning the frequency behavior of microstrip. Fullwave tech-
niques provide rigorous solutions for the time-varying electromagnetic fields, and
account accurately for high frequency dispersion, electromagnetic coupling, and ra-
diation. The three categories differ greatly in complexity and accuracy. Quasi-static
and dispersion models breakdown with increasing frequency, and are generally con-
sidered low frequency techniques. Fullwave models are complicated and computer
intensive, and are the most appropriate for high frequencies. A brief review of some

of these techniques is given below.



a. Stripline

b. Microstrip

C. Slotline

D. Coplanar Strips

E. Coplanar Waveguide

Figure 1.1: Types of Planar transmission Lines



a. Open Microstrip

b. Enclosed Microstrip

Figure 1.2: Open and Enclosed Microstrip Lines



1.3.1 Quasi-Static Models

Circuit models obtained with quasi-static techniques are extensively used in com-
mercial CAD packages because they are well understood and numerically efficient.
Included in this class are modified conformal mapping[29], finite difference [30]. and
integral equation techniques [31]. With modified conformal mapping, the open mi-
crostrip geometry is transformed to a parallel plate structure by a complex mapping.
Closed form expressions can then be obtained for the static capacitance of the new
geomet.ry. The quasi-static integral equation approach involves an application of
the method of moments to Laplace’s equation in its integral form, while the finite
difference technique solves Laplace’s equation in its differential form. Integral equa-
tion approaches are applicable to open or closed problems, while finite difference
techniques are difficult to implement without an enclosing boundary. The TEM as-
sumption lirrits these techniques to frequencies where the substrate and conductor

widths are a small fraction of a wavelength.

1.3.2 Dispersion Models

With increasing frequency, the microstrip structure deviates from having a TEM
behavior. Techniques which attempt to semi-empirically account for the hybrid na-
ture of the fields are called dispersion models. Two such techniques are the planar
waveguide [32] and ridged waveguide [33] models. Both of these techniques are based
on the study of structures which resemble microstrip, but can be handled in closed
form. The planar waveguide is a parallel plate capacitor, having a frequency depen-
dent width and dielectric constant to account for dispersion. The ridged waveguide is
an inhomogeneous parallel plate waveguide having three regions. A dielectric section

is sandwiched between two larger free space sections. The entire structure is bounded



with vertica! magnetic walls. Both the planar and ridged waveguides have a zero fre-
quency behavior which is determined experimentally or by quasi-static techniques.

and 1s identical to the corresponding microstrip geometry.

1.3.3 High Frequency Fullwave Models

Techniques which account for the hybrid nature of the microstrip mode by solving
for time-varying electromagnetic fields are fullwave methods. Fullwave models pro-
vide the most accurate characterization of microstrip, especially at high frequencies.
They include the finite difference method[34], and the space domain[19] and spectral
domain integral equation techniques [36]. The finite difference technique requires
the solution of the wave equation subject to the appropriate boundary conditions
in differential form. The technique is more easily implemented with an enclosing
boundary, however, it is possible to treat the open problem with the use of an ab-
sorbing boundary [35]. Integral equation techniques involve solutions to the electric
or magnetic field integral equations by the method of moments. The application of
the technique differs for open and enclosed microstrip by the form of the Green'’s
function, which may be represented as a Fourier integral in the open problem and a
Fourier series in the enclosed problem. Spectral and space domain techniques differ
by the application of the method of moments. In the spectral domain technique,
the representation of the unknown microstrip current is Fourier transformed, and
the method of moments is applied in the spectral domain. In the space domain

technique, the method of moments is applied in the space domain.



1.4 Experimental Techniques for Measurement of Circuit
Parameters

Experimental verification is critical for any fullwave numerical study. because the
theoretical approaches are extremely complex. Therefore, measurments were per-
formed to validate the numerical models at every stage. This section provides a brief
overview to microwave planar circuit measurments. The 8510B automatic network
analyzer can provide error correction for 7 mm coaxial measurements with the aid of
a 7 mm calibration kit containing a coaxial short, open, and precision 50 ohm load.
Unfortunately, in the measurement of microstrip and other planar transmission line
structures, difficulties arise due to the need for a fixture with coaxial-to-microstrip
transitions, and the unavailability of precision microstrip standards (open, short,
load). For example, microstrip open-ends radiate, shorts require a via hole transi-
tion, and precision thin film 50 ohm loads are not available. Consequently, tech-
niques have heen developed to extract network parameter information without the
reliance on known standards. These methods may be divided into resonator [37].
time domain [38], fixture equivalent circuit modeling [39], and fixture de-embedding
techniques[40]-[42]. A comparison of these methods is presented in [43]. Based
on that study and the availability of microwave equipment and computer software,
the Thru-Reflect-Line (TRL) de-embedding technique was judged the best approach

here.

Fixture De-embedding

The TRL de-embedding scheme is a variation on the Thru-Short-Delay (TSD)
approach. Another variation is the Line-Reflect-Line (LRL) approach. All three are

based on the use of simple planar transmission line sections and loads. In particular,



TSD relies on two different length sections of transmission line. and a shorted line.
LRL and TRL are variations which recognize that the short may be replaced with
any load having a high reflection coefficient. For microstrip measurements. an open is
preferred because it is more easily realized than a short. LRL differs from TRL by the
position where the reference plane is established. In TRL the thru line is considered
to be zero length (which implies that the reference will be located at the center of
the line), while in LRL the thru line may be of non-zero length. In either case, the
microstrip line’s phase constant need not be accurately known, and is determined
through the de-embedding procedure. This is also the case for the parasitics of
the open-end standard. All three approaches require that the microstrip-to-coaxial

transitions be repeatable.

1.5 Overview

A comprehensive collection of theoretical data concerning the high frequency be-
havior of open microstrip discontinuities is presented. In the past, fullwave analysis
has been proven a valuable tool for microstrip analysis, but there has been a failure
in effectively using these techniques to improve our understanding of high frequency
behavior. One area where this is particularly true is with radiation losses. This
study not only investigates the impact of radiation losses on microwave circuit per-
formance, but also presents low-loss designs, and explains the improvements from an
electromagnetic point of view.

In Chapter 2, the SDIE approach to microstrip structures is presented, including
the implementation of the method of moments to the electric field integral equation.
A method where scattering parameters are extracted from multiport microstrip net-

works is also described. Furthermore, it is shown how radiation losses are separated
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into space and surface wave contributions. and how radiation patterns within the
substrate, representing surface wave fields, are obtained.

The numerical techniques applied to the solution of this problem are reviewed
in Chapter 3. Analytical methods have been used to reduce this difficult numerical
problem to manageable computer requirements. In fact, results of this study have
all been obtained on a desktop Apollo workstation. The numerical convergence
and accuracy is also investigated in Chapter 3, with specific recommendations and
conclusio‘ns given.

Numerical results obtained by the SDIE approach are presented in Chapters 4 and
5. In Chapter 4, microstrip structures are treated from a circuit perspective, with
results presented in terms of scattering parameters. Examples of microstrip step,
bend, cross-, and T-junction discontinuities are offered. Matching networks with one
and two stub tuners are presented, and meander line sections useful for phase shifting
and filtering are explored. Finally, discontinuities printed on multilayered substrates
are analyzed.

Chapter & investigates the radiation properties of microstrip discontinuities. Pat-
terns depicting surface wave propagation within the dielectric substrate are shown
for a radial stub and a microstrip bend. In addition, the relative levels of space
and surface wave radiation occurring are quantified. The effect of substrate compo-
sition (multi-layers) and the presence of superstrates on radiation properties is also
presented.

The results throughout this dissertation have been fully supported by comparison
with published data and other CAD techniques. For the cases where no verification
was available, experimental studies were performed. In section 4.2, an implemen-

tation of the TRL fixture de-embedding approach used to measure open microstrip
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network parameters is presented. In particular. experimental results were obtained
for microstrip rectangular and radial stubs. The experimental results were found to
be very repeatable as will be shown. In section 5.2, a new method for obtaining
far-field power patterns at the substrate level is presented. This technique was used

to verify the direction of surface wave propagation in the dielectric substrate.



CHAPTER II

THE SPACE DOMAIN INTEGRAL
EQUATION TECHNIQUE

2.1 Introduction

This chapter presents the Space Domain Integral Equation Technique (SDIE),
which has been used to study the high frequency behavior of open microstrip discon-
tinuities. Th= approach is a full electromagnetic or fullwave analysis, and employs the
dyadic Greer.’s function for a grounded multi-layer dielectric configuration, shown in
section 2.3. This results in a technique that is able to analyze microstrip structures
printed on a single or multi-layer dielectric, with or without a superstrate. Fur-
thermore, the method of moments is applied (section 2.4) with two components of
electric current in the plane of the discontinuity, allowing for the treatment of an ex-
tensive class of microstrip elements such as steps in width, corners, T-junctions, and
cross junctions. This microstrip current is represented by summations of sub-domain
rooftop basis functions which are substituted into the electric field integral equation,
and a systern of linear equations is created by the application of Galerkin’s method.
The solution of this system is the current on the conducting strips. An approach,
based on transmission line theory, is then employed to determine the network param-

eters for the multiport microstrip network as detailed in section 2.5. Total radiation

12
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loss may be obtained directly from the scattering parameters, however in section 2.0.
an analvsis is presented which is used to separate total radiation loss into space wave

and surface wave contributions.

2.2 Problem Geometry

In the past, much of the published work on the full wave analysis of open mi-
crostrip disccntinuities has been limited to structures with strip widths much smaller
than the microstrip wavelength (w << A;). Under this approximation, the trans-
verse current component was considered a second order effect and neglected [19].
Therefore, the analysis was restricted to thin-strip discontinuities such as open ends,
gaps, and coupled line filters. Obviously, the transverse current component is critical
in more complicated structures such as steps in width, corners, and T-junctions, and
is therefore included here.

The general multilayer open microstrip geometry is shown in Figure 2.1. The
dielectric layzrs are considered lossless, but the development is not limited by this
assumption. The conductors have infinite conductivity with the strip conductor being
of finite thickness (¢t << A;). An extension of the problem to include conductor loss
is detailed in section 2.4.2. No assumptions have been made which limit the validity

of this study with respect to frequency or the complexity of the microstrip shape.

2.3 Integral Equation and Green’s Function

Assuming the time dependence e’**, Maxwells equations are of the form

<
X
uul]
I

j+juJ6,'E (2.1)

<4
X
oS
Il

—jwpoH (2.2)
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a. Microstrip discontinuity with multi-layer substrate

b. Microstrip discontinuity with superstrate

Figure 2.1: Multilayer open microstrip geometry with and without a superstrate
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with ¢, the aielectric permittivity in the region (i). All the results presented have
non-magnetic substrates (4 = o). In view of (2.3). the magnetic flux density B mayv

be written as the curl of the magnetic vector potential( A4)

B:uoﬁzvxﬁ . (2.
Substitution of equation (2.5) into equation (2.2) results in
Vx(E+jwA)=0 . (2.6)

Introducing the scalar potential ®. the solution to equation (2.6) for the electric field

may be expressed

E=-jwA+Vo . (2.7)
Substitution of (2.5) and (2.7) into equation (2.1) yields
VxVxA=-VIA+V(V-A) = poJ + kA + jwe;uoVd (2.8)

In equation 2.5, only the curl of the vector potential was specified, and the divergence
may now be conveniently defined by the Lorentz condition as

1

JWeEilto

d = V-A . (2.9)

Consequently, substitution of (2.9) into (2.8) results in the inhomogeneous wave
equation

VA4 kA= —pod . (2.10)
In order to solve for the fields radiated by the current on the microstrip discontinuity,
it is required that we first have the solution for an infinitesimal delta source. This

solution is called the Green’s function (G), and is governed by the wave equation

VG + kG = —pob(r — ') (2.11)
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with the infinitesimal source located at '. When the source is of arbitrarv orientation

the Green's function becomes dvadic

(V2+ k3G = —polb(r —1') . (2.12)
The unit dyad present in equation (2.12) has the form
[=33+9)+ 33 . (2.13)

Ctilizing Gteen'’s second identity with equations (2.10) and (2.12) [45] results in
AF) = “Of{vé Jd (2.14)

In view of equations (2.7), (2.9), and (2.14), the electric field may be expressed in

terms of the dyadic Green’s function as
E(7) =f (RI1+99)-G - Jdv (2.15)
v

Referring to Figure 2.1, where the current is confined to the microstrip conducting

strips, the integral equation may be written in the form of a surface integral

I 'Y, 2 //1 7 v? é(z y,z/;lj y Z) j(l",y’)|z'=o dsl (2:0*1"2)

where S’ is the surface of the microstrip conducting strips, k; is the wavenumber, and
G, (z,y,2/2',y',2') is the dyadic Green’s function in region (i). The current (J(z',y"))

present in equation (2.16) is two-dimensional in the plane of the discontinuity and

can be represented as
J(z'y') = T2 y): + J, ()] . (2.17)

The Green’s function appropriate for the open microstrip problem with an arbi-

trary number of layers in the substrate and/or a superstrate [27],[46],[47] is expressed
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in the form of Sommerfeld integrals given by:

: N _ <Ho [ = \55(\) \
Geelz.y.z/2' .y 0) = -2:1;2/ Tl Ap) Zesl =) 5 (2.15)
y ] "‘-"ﬂO S \ \\] )
Goelz.y.z/z'.4,0) = /J\L:—— 219
lzy 2/’ Y, 0) %LQ 1(Ap) 2 A dA - (2.19)
{=1,y
where
p = \/(ﬂv—r’)2+(y—y’)2 (2.20)
cos(o) ==z
d(s) = (2.21)

sin(¢) €=y
and with Mge(X), Me(A), fi(A), and fo(A) given in appendix A. In equations (2.18)

and (2.19), fi(A), and f,()) are analytic functions with discrete zeroes. The contri-
butions from these zeroes give the power propagating in the substrate in the form of

transverse electric (TE) and transverse magnetic (TM) surface waves, respectively.

2.4 The Method of Moments

In the previous section, the electric field integral equation for the open microstrip
geometry was derived. This equation cannot be solved analytically for the compli-
cated microstrip geometry. Consequently, the method of moments, a well known
numerical technique for solving electromagnetic antenna, scattering, and monolithic
circuit problems [48], is used.

A rectangular region containing the microstrip discontinuity is subdivided into
smaller rectangles (see Figure 2.2) and the current is expressed as a superposition of

known basis functions multiplied by unknown coefficients.

Nz+1 M:+1

Z Z m[fnz gmx )] (2.

ny=1 mz=1

o
QW)
o
-
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Ny+1My+1

=3 > Lnlfa(y)gm, ()]

ny=1 my=1

to
[ B
(W]
-

where the pairs (n,,m,) and (n,, m,) indicate the nodes in the mesh for the X-current
and Y-current, respectively. In addition, the function f, (¢') gives the longitudinal

dependence of each component

5ink9(€n§+l—£’)

sink,l¢ '5"( S 61 -<- §n5+1
sin ks (§'~€n, 1)
sink,l - 5"5—1 S él S éne
fae (&) = e (2.24)
0 FElsewhere
(€,¢) = (z,9),(y,2)

while gm, (') gives the transverse dependence
1 Cme S C/ S <m5+l
Im(()=140 Elsewhere (2.

(€,¢0) = (z,9): (v, )

In the above, ¢ = €n.41 =&, and k, is a scaling parameter chosen to vary between kg

Q)
o
(S]]
—

(free space wavenumber) and k; (wavenumber in the highest permittivity dielectric
region). These are “sub”-domain basis functions because they are non-zero over only
a small fraction of the structure.

With the substitution of equations (2.22) and (2.23) into equation (2.16), the

original integral equation can be written in the form

N1+1Mx+l
Y X L [ [ Keela /2y fo, (@ hgmav)) da'dy’ (2:26)
ny=1 my=1
Ny+1My+1
DD IR SRR NI
N:+1Mz+1
B+ 8B, = % I [ [ Kuelew/a'y) o) gm, (v) da'dy’ (2:27)
ny=1 mey=1
N,,+1M,,+1

+ 55 M [ [ Kanla 0/ Yy (1 g (2) da'd

ny=1my=1

E. + AFE,
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V.
4
pg—

a. Typical Discretization

b. X-directed Mesh Y-directed Mesh

Figure 2.2: Sub-division of (M)MIC area around Corner Discontinuity
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where Keo(z.y/2',y')(£,( = z.y) are integro-differential operators given by

- ' > &’ 0’ .
KEC(I,y/I,y) = /0 {(1\‘?55(-%5&:52)1:‘((%-5?8—{-}:( d\ (2.28)

and F;¢ and F,; are functions of A of the following form

Wi Nee(N) ).

Fe = gog o027 5 (2.29)
- w#o JK’;( ( A) 5

Fe = ork2 Q(é)Jl(/\p)Zz((z)—fl(/\)fz()\) (2.30)

In equations (2.26) and (2.27), the errors AE, and AE, are introduced under the
approximations made for the unknown current distributions in equations (2.22)-
(2.23). The z derivative in equation (2.28) may be replaced by an ( derivative

resulting in the modified form for the operator Kg:

., 00 ) 8? 82
Kec(z,y/2'y') /0 ki6£<+5§73_< f((+'5£—8-€:fz( Jo(Ap)dA  (2.31)

fee = Fe (2.32)
_ WHo 4 NZC(A) ;
A VAR ARy 23

where ¢ is the kronecker delta and Z’,(z) is the first derivative of Z,.(z) with
respect to z. In this manner, the first order Bessel function in equation (2.28) is
eliminated and the p dependence of all Sommerfeld integrals is in the argument of a

zero'th order Bessel function of the first kind.

2.4.1 The Impedance Matrix

The application of Galerkin’s method for error minimization reduces equations

(2.26) and (2.27) to a matrix equation
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where [Z] is a square matrix called the impedance matrix and contains the four

sub-matrices shown below

e [ |
2 [

In equation (2.34) the vector [I] is the vector of unknown x and y current amplitudes.

to
(%)
(S]]

and [V] is the excitation vector.
The elements of each submatrix of the impedance matrix are given by the follow-

ing double inner products

Zer(nym, v, ) = ([, (2)9m. (¥), Kooy fua(2)90.(y)) (2.36)
Zey(nom, v, 1) = (fa(2)9m, (v')s Ky £, ()9, (2)) (2.37)
Zye(nymyv, 1) = (fa, (¥)9m, (2)s Kyzy fra ()90, (¥)) (2.38)
Zyy(nom, v, ) = (fa, (4)gm, (2'), Kyys fo, ()9, (2)) (2.39)

where the pair (vg, ¢ )(§ = z,y) indicates the testing points. The terms Z,, and Z,,
are called the direct-coupled terms because the direction of the testing field and the
current component are the same, while the terms Z,, and Z,, are the cross-coupled
terms.

The double inner products in equations (2.36)-(2.39) are expressed in the follow-

Ing manner

(fnggm(, KCCv fucgu(> = /,[g: dx'dy//[gd$dy (f""egmf Kf( fu<gu<) (240)

where S, and S’ represent the surface of the microstrip conducting strips for the
p g

testing and basis cells, respectively.
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2.4.2 Excitation Vector

The elements of the excitation vector are of the form

]
V= (2.41)
-]

with

Vvp) = [ [Ldedy (Exla.y) fugus) (242)

Vivw = [ [ dedy (Efzv) f9.) (2.43)

Lossy Conductors

Resistive losses in the microstrip conducting strips may also be included by the
replacement of the conductive strips with infinitesimally thin surface impedance
boundaries. The boundary conditions on the strip conductors are imposed through

the following relation
ix[Ex Ea,yz)|=2-(Hx3) zy€eS (2.44)

where E, is the tangential electric field over the surface (S) of the conducting strips

and

Z(f) = 2,33 + 2,99 (2.45)

is a dyad whose components represent the appropriate surface impedance boundaries
along the x and y directions. These frequency dependent impedance boundaries are
evaluated by a quasi-TEM analysis in such a way that they provide the overall effect
of the penetration of the fields and the resulting current distributions within the
strips [51). This technique has provided very accurate results for conductor loss at

millimeter-wave frequencies [52].
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The magnetic fields are related to current on the strip conductor by the expression
Ix H=Jy) . (2.46)
In view of equation (2.46), equations (2.42) and (2.43) take the form

V) = = [ [dedy (Ze- o) i) (2.47)

V(v u) = //Sdrdy (2, 4"\ ¥) fo90,) (2.48)

In the above equations, the current is the only unknown, and may be represented
by the sum;nations of equations (2.22) and (2.23). The resulting expressions may
be moved to the left side of the matrix equation and combined with the impedance
matrix. The excitation vector may then determined in the same manner as the for

the case of perfect conductors.

Perfect Conductors

The electric field on the microstrip conductors is the sum of the field excited by
the electric current on the microstrip and the incident field on the strips. When the
strips have infinite conductivity, the total tangential electric field must be zero.

In order to excite the discontinuity, voltage gap generators are utilized. The

presence of the infinitesimally small gap is reflected in the excitation vector where

1 of z,=12
Ve = ! (2.49)
0 Elsewhere

and

Lif wu=y

Vor = e (2.50)
0 Elsewhere

As will be discussed in section 2.5, the number and strength of the gap generators

depends on the number of ports for the microstrip discontinuity.
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At microwave frequencies. radiation from discontinuities introduces losses which
dominate the conductor losses unless long line lengths are present [65].[66]. In this
dissertation, conductor loss will be included and compared to radiation losses in an

example of a meander delay line. In all other examples, perfect conductors will be

considered (Ey(z,y,z =t) = 0).
2.5 Determining N-port Network Parameters

The linear matrix equation may be solved for the electric current according to

NEGE -

The solution for the current on the conducting strips of a T-junction discontinuity
is shown in Figure 2.3. This current clearly shows the formation of standing waves
and the edge effect. From the current distribution, the network parameters may
be computed by transmission line theory assuming that a single microstrip mode is
excited along the feeding line, which is a good approximation for practical (M)MIC
substrates. The microstrip element may be represented as an N-port network (Figure

2.4) with the port voltages and currents related according to the expression
Vi=3 Zpmln Vn € (1,N) (2.52)

where the elements Z,, are commonly referred to as circuit impedance or [Z}-
parameters. Dividing each voltage V,, by the corresponding current I, results in

the following expression for the input impedance Zin, at port n.

N
Zin, = 3 z,,,,,(-iﬂ) . (2.53)
m=1

n

The input impedances Zin, (n=1,N) are determined at a given reference plane from

the method of moments current solution. An N-port discontinuity has N? unknown
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(@3]

network parameters, and therefore. \'? independent equations are required for the
problem. These may be obtained from (2.33) after exciting the N-port microstrip
element by N independent excitations. In addition. scattering parameters can be

obtained from the [Z]-parameters by the well-known matrix equation
[S)= (2] - (M) (2] + (1)~ (2.54)

The total radiation loss can be obtained from the scattering parameters according

to

Prad al 2
=1- m . )
Pin 'm.z:lls 1| (

(§%)
Ut
(&4}
-

The radiation loss is frequently represented by the quantity G which is defined as

Prad al 2 9
G=1- 5 = Y 1Sl . (2.56)
n m=1

Many microstrip discontinuities (eg. bends, stubs), can be represented by two-
port, symmetric networks. In this case, the number of excitations can be reduced to
two with reciprocity and symmetry. For such examples, the [Z]-parameters may be

written in the compact form according to

Zie+ 7

7y = 5 (2.57)
Zn=2n (2.58)
Zyy = ﬁ;—z'li (2.59)
Zvw=2n . (2.60)

In the above, the quantity Z,-l,f(o) is the input impedance at port 1 under an even(odd)

excitation. An even excitation refers to equal sources at both ports, while an odd
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a. X-directed Current on Tee

b. Y-directed Current on Tee

(efl = 4)"1 =

Excited by Gap Generators

10n

Current On T-Junct

.
.
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Figure 2.4: N-port Microstrip Network
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excitation refers to sources of equal strength which are 180 degrees out of phase. The

scattering parameters are then obtained from the [Z]-parameters according to

Sn o= »22="Z—121—_1T—'Zi (2.61)
Sz = Sa= 232 (2.62)
with
D=2%+2Z,-27} (2.63)
and the total radiation loss is given by
1;;: =1-|8[* = |Sp)? (2.64)

2.6 Radiated Power and Surface Wave Patterns

The electromagnetic fields generated by the current on the microstrip element
may be computed directly from the electric field integral equation after the microstrip
current is known. This is done by a numerical integration of equation (2.16) after the
current summations have been inserted. Performing this integration for the radiated
fields at all spatial angles would be extremely time consuming, and is fortunately not
necessary. To quantify the space and surface wave power losses, it is only necessary to
obtain the far-field patterns. These may be obtained by an approximate saddle point
integration, which is much less time-consuming than a full numerical integration of
equation (2.16). Of course, to compute the near field power, as is required for
characteristic impedance evaluation, a numerical integration of equation (2.16) is
needed. In this section, the saddle point evaluation for the far-fields is presented.
The analysis is done for a single substrate layer for clarification purposes without a

loss of generality.



2.6.1 Space Waves

As shown in Figure 2.5(a). the original path of integration is along the positive
real axis. The path contains a finite number of singularities, which correspond to
excited surface waves, between the free space (ko) and the highest dielectric (k)
wavenumber. To obtain the radiated far-fields, the integral is transformed to the

steepest descent plane by the complex mapping
A=kosina . (2.65)

Figure 2.5(b) shows the new path of integration in the a-plane. The quantities
shown in the parenthesis correspond to the points mapped from the A-plane to the
a-plane. The poles now lie along the line defined by Re(a) = 7/2, between the points
Im(a) = 0 and Im(a) = vk. vk is mapped from the point k in the A-plane according
to

k= kosin (7/2 + jvi) (2.66)

vi = cosh™'(e;) . (2.67)

The Green's function may be represented as an integral over the entire real axis as
shown in appendix B for a single dielectric layer. To find the far-field patterns, these
components of the of the Green’s function are transformed to spherical coordinates

according to

p=rsinf (2.68)

z=rcosd (2.69)
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A.plane

a. Integration along real axis in A-plane

a-plane

b. Contour of integration in a-plane

Figure 2.5: Integration Paths
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After substitution of equations (2.68) and (2.69) into (B.1). the form of the Green's

function becomes

JWho (1) ; = ko cos (8) cos (e
Gz =Gy = 47rk2/ Hy '(rkosin () sin (a))e * et
W 2
7 sin (ko m)kg cos (@) sin (a)da
‘ fie)
Gon = tan Gy = _i‘:ll:;(l — € )cos(9) /00 Hl(l)(rkosin(ﬁ)Sin (ar))e™7kor eos () cos ()
2 -0
J'sin(koh\/ér—m(—a_)a)cos(koh\/c'_—va)z)k3 () sin (a)*
o cos (a) sin (a

file) fa(e)

with the surface wave characteristic equations taking the form
fi(@) = —ko cos (@) sin (kohy\/€, — sin (a)®)+jko\/€, — sin (a)? cos (kohy/€, — sin (a)?)
(2.71)

for TE surface waves, and

f2(a) = —ko\/€, — sin (@)? sin (kohy/€, — sin (@)®)+jkoe, cos (a) cos (kohy/€, — sin (2)?)

(2.72)
for TM surface waves. Since far-field patterns(rky >> 1) are desired, the Hankel

functions may be replaced by their respective large argument approximations

) 2 -Jrkosm(ﬂ)sin(a)
Hy ’(rkosin (8) sin ( (2.73)
7""kt)\/sxn ) sin (
2 —Jrkosin(ﬁ)sin(a)
Hfl)(rkosm )sin(a)) = /—F J
mrko ,/sm ) sin (

The contour of integration (Figure 2.5(b)) is then deformed into the steepest descent

(2.74)

path(53]. During this contour deformation, a finite number of surface wave simple
pole singularities are captured as shown in the figure. The green’s function is now

of the form

Jwho | 2] ® JF(Q) _iker cos (8-a)
= — -— or cos d .7
Gz = Gy ir mo{ o fi@) ¢ (2.75)



_jw'/lo 2] ~o G<Q)e-)k0rcos(6’—a)
= e = — =1 (1= !
G.r = tan oG, i ok {(1 € )cos(o)/_m IACSIATS da
NTM a—a } Glam) _irn
+ 217 m m /) —jkorsin(f—ca¢m) 276
> ”[ 7a(@) | oeor, Fil0m)© =10
NIE a—a } Glate) y _ikors
+ oI q £ — e—JkOTSm(e—Gte)}
2 2 [ 7@ o, o))
with
sin (a) cos (a) . | 2 o
F(a) = 7 sin (kohy\/ €, — sin (a)”) (2.77)
\/sin(())sin(a)
: 2
G(a):—sm(a) cos(a) sin (koh\/€, — sin (a)?) cos (koh\/€, — sin (a)?) . (2.78)

sin (#) sin ()

The summations correspond to the excited surface wave modes (NTM,NTE) and
will be discussed further in the following section.

A saddle point integration is now performed on the above integrals, with the
saddle point equal to the spherical observation angle (a = §). The contribution of

the saddle point is given by

Jwi, e=7%R) - P()

Gee = (7ko[z" sin (6) cos (¢)+y' sin (8) sin (¢)]) 2.7
2r koR fi(0 ’h)e .
' (=ikoR) 1G(6)
JWHo e !
GzI = 1 - Cr 2
= ( € )COS(¢) koR fl(g’h)f2(0’h) ( 80)

e(7ko[z" sin (6) cos (8)+y' sin (8) sin (¢)])

These expressions give the far-field space wave patterns above the substrate . These

space waves are spherical waves in nature as seen by their spatial dependence e(_k:;m.
In the phase terms of the above expressions
R =1+ (z'sin(8) cos (8) + y'sin () sin (¢)) (2.81)

and in the amplitude terms r has been replaced by R.
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To obtain the fields for a microstrip discontinuity, one returns to the electric field
integral equation. In the far-field. the electric field density can be written in spherical

coordinates as

Eq = kolrj + 7] (2.82)

Ey = kg[wz-%?rz] (2.83)
with

75 = [ [ [Gercos (0)cos (6) = Guusin (O('y)ds'dy (2580
7 = [ [ [Guycos()sin(8) = Guysin (O, (', y')da'dy’
L //;’[—ersin(¢)]Jx(:£',y')dz'dy’

Ty = /LI[nycos(cb)]Jy(x',y')dz'dy’

Inserting the results of the saddle point analysis from equations (2.79) and (2.80),
and the summations for the microstrip current (equations (2.22) and (2.23)), the

electric field can be written in the form
E = jwuokge('“‘"m[ F(6) JG(O)(1 =€)
21 % koR " fi(0,h) f1(0, k) f2(6, k)
[Arz(8,8) cos (@) + Ary(0, 8) sin ()]
)

Jwi, , ,el77FR) - F(g)
E¢ - - kO
27 koR  fi(8,h)

cos (8) —

sin ()]

[Ar2(8, 8) sin (6) — Ary(6, 8) cos (¢)]

where the terms A,.(6, ¢) and A,,(0, ¢) contain the spatial integrations of the product
between basis functions and the phase of the appropriate Green’s function compo-
nents. These integrations are performed analytically and result in the expressions

given below

N+1 M+1
rr(a ¢) = 4e ,7}\02 sin (6) sin (¢) )[E Z (jyml\'osin(f))sin(dz))e(jznl\’o sin(&)cos(d)))]

n=1 m=
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51n(1\025m( )sin(o)) cos(IKgsin(#)cos(o)) — cos(k,l)

. {2.85)
] . — )
Kosin(0)sin (o) K, sin (K,)[1 = (22)7(sin (8) cos (0))?]
ke J
- /\+1 M+l Ko sin (6 Ko sim (6) s (2]
Ary(e.O) — 46(]}\029m cos ( Z Z Iy e]ym osin(6)sin (o ))e(]rn osin(8)sin (¢ JI
n=1 m=1

sin([\’oésin(ﬂ)cos(O)) cos ({Kgsin (6)sin (o)) — cos (k,!)
Kosin(0)cos(0) K, sin(K,I)[1 - L;-“ 2(sm( 6)sin(0))?]

{2.86)
where the quantities [ and k, represent the subsection length and scaling constant
for the basis functions, respectively.

There are two contributions to the radiated fields: A substrate factor, resulting
from the Green's function and containing all the information about the substrate; and
a shaping factor, resulting from the spatial dependence of the source and containing
all the information about the shape and current distribution over the conducting
strips. Consequently, these two factors may be handled independently to reduce
losses.

The total far-field space wave power is obtained by integrating the Poynting
vector over a hemisphere centered around the discontinuity as shown in figure 2.6
(a).

E? |
P’P—%/O /0 [§j+n—:lrsin(ﬁ)d0d¢ . (2.87)

2.6.2 Surface Waves

During the contour deformation of the previous section, a finite number of sin-
gularities were captured as shown in Figure 2.5. These singularities correspond to
excited surface wave modes that fall into two types: a) Transverse Electric (TE,),
or b) Tranverse Magnetic (TM,) to the dielectric-air interface. The poles are de-

termined by the zeroes of two analytic functions in the denominator of the Green’s



function given by

fi(a) = —cos (a)sin (koh\/€; — sin (@)®) + j\/& — sin (a)* cos (koh\/€, — sin (a)*)
(2.88)

for (TE.) waves, and

fala) = =/ — sin ()’ sin (kohy/€, — sin (@)?) + je, cos (@) cos (koh\/€, — sin (a)?)

(2.89)
for (T M,) waves. It is now a simple matter to obtain field patterns in the dielectric
(6 = m/2) by the application of Cauchy’s residue theorem. The total number of poles
is determined by the operating frequency and the substrate parameters, and can be
determined by a search for zeroes in equations (2.88) and (2.89). The pole locations

are given by

ary = g +jvn n=1,Nry (2.90)
T
arg =5 +jvm m=1,Nrg (2.91)

where N1y and N7g are the number of excited TM and TE modes, respectively.
The far-fields are determined by computing the residues of the singularities and are
given in Appendix C.

The power in a particular mode is found from the Poynting vector. The surface

wave power at the dielectric interface is given by

NTM |2 — cosh®(v,)]cosh?*(vy,)sinh*(v 2
Pt = 3, etalemcooblleelunlontln) iy 1 o in )
| cos (¢) Ar2(9) + sin (8) A,y ()] (2.92)

for TM waves, and
NTE k2 h? - inh? ) -
PTE(¢) = 3 e /(V gsm G )(sm(koh\/e,—sm(a)"’))2
w0 A A(@)Plr/245um

|sin (¢)Arz(6) + cos (8) Ary(6)]* (2.93)




36

for TE waves. In equations (2.92) and (2.93) the terms A,;(¢) and A4, (o) are given
by equations (2.85) and (2.86), with the quantity kg cosh (v,,) replacing ko sin (6).
The total power in TM and TE modes may be found by integrating the Povnting

vector over a cylindrical surface centered at the discontinuity as shown in figure 2.6

(b).

I

2
o r2n .. H*
PTE - /_h/o =2 pdod:. (2.95)

~ (o E, . H:
pT™ —/_h/O L8 dd: (2.94)



a. Integration plane for space wave radiation

b. Integration plane for surface wave radiation

Figure 2.6: Integration Planes



CHAPTER III

NUMERICAL CONSIDERATIONS

3.1 Evaluation of the Impedance Matrix

The evaluation of the impedance matrix requires the majority of analytical and
numerical effort for this problem. The elements contain quadruple spatial integrals
shown in equation (2.40), as well as the semi-infinite Sommerfeld integrals in the
Green's function. A real axis integration of the Sommerfeld integrals is performed
as discussed in section 3.1.1. The evaluation of the quadruple space integrals is
discussed in sections 3.1.2 and 3.1.3. Techniques for filling the matrix with the
minimum computational effort are discussed in section 3.2.

An important aspect of all numerical problems is the accuracy and stability of
the numerical solution. In section 3.4, two types of numerical convergence are in-
vestigated. Results will be presented which show the optimal choices of numerical

parameters for a desired level of accuracy.

3.1.1 Sommerfeld Integrals

The Sommerfeld integrals are computed by a real-axis integration in the complex
A-plane[54] using an extraction of the singularities technique which effectively takes

into account the contribution from the simple poles in the integrand (see Figure

38
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Figure 3.1: Real Axis Integration of Sommerfeld Integral

3.1). As has been mentioned in the previous chapter, for a lossless substrate these
poles lie on the real axis between the free space wavenumber (k) and the highest
wavenumber of the other layers (M AX ki, k3)). The residues of the poles correspond
to radiated power in the form of TM and TE modes propagating within the substrate
layer. For the grounded substrate configuration, the T'M, surface wave mode has
no cutoff frequency. For monolithic arrays and (M)MICS, it is desirable to operate
at frequencies where higher order surface waves are not excited to avoid excessive
radiation losses. Nevertheless, high radiation losses may also be encountered at
frequencies where only the dominant surface wave mode is excited.

The semi-infinite Sommerfeld integrals are divided into two regions with respect
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to A. and a combination of numerical and analvtical techniques are emploved to
evaluate the integrals in each region separately. The first region extends from 0 to

the parameter A. and the second from [A-oc). The parameter A is chosen to satisfy
the condition

A, = tanh (yJA? — k2 ;) = 1 (3.1)

where the index (i) refers to the electrically thinnest dielectric layer adjacent to the
microstrip structure. When A is greater than A, simplifications are made in the
integrand which result in improved accuracy and reduced computational effort.

In view of the above, the elements of the impedance matrix may be written as

Zee = Zig + Zgg £,.(=1,y. (3.2)

3.1.2 Evaluation of the quadruple spatial integrals from [0-A]
Considering equations (2.31),(2.40), and (3.1), Zg‘((n,m, v, 1) is given by the fol-
lowing expression:

Zg(nymov,p) = b Lec(A) (fagGmer Jo(Ap)s fucu) (3.3)

62
+ Rec(A) (fﬂ(g'mp ?a(JO()‘P)» fucguc)

where L¢¢(A) and R¢ (A) are integral operators given by

Lelt) = K [ M (34)

Rec(A) = /()Ad)\(fcc‘**fzc)- (3.5)

The real-axis evaluation of the Sommerfeld integrals with simple pole singularities is
given in [54]. As mentioned, the numerical evaluation of the double inner products
containing quadruple integrals would result in unacceptable numerical error and

excessive CPU time. This difficulty has been overcome by transforming the integrals
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to convergent series. This is accomplished by representing the Bessel function in
equation (3.3) in its integral form. and combining it with the trigonometric functions

in the basis functions. The Bessel function and its derivatives mayv be written as

JolAp) =

80+T
08 T

/’ eIMz=1')cos o s My=v')sino g (3.6)

-7

Jo(Ap) =

2| ] -

/‘ (j/\COS o)”(j)\sin O)Tej,\(r—x’)coswey\(y—y’)sinodo (3.7)
-

Emploving these relations the quadruple integrals can be reduced to convergent series

as shown in Appendix D. These series are of the form

(fregmes Jo(Ap)s fueGue) (3.8)
EEEE o DR ()
A A 'BB/ k+k' o NI+ / :
k=0 k'=01[=01'=0 B 1 ) ( ]) a‘é f | (k+K7) 8|C - Q ‘ U+
a?
<fnggmp ’a?fjo()‘p)* fuggw) (39)

i i i i A kA k’BlB[l )k+k’(_]-)1+[r 8 (k+k’+l)+ l+11 J ()\p)
| (9]¢ = &1)2E+ED(01C = ¢ =1

k=0k'=01=010"=0

2
<fnfgm5-, -5{—3(]0()\/))’ fuch) (310)
32(k+k’+1) +(I1+1") J (/\p)

Y>> AwAwBiBi(— )k+k,(“‘j)l+1,(alé — O RN (G| — (/]) R )

k=0k'=01=01'=0

where £.( = z,y(é # (), and p = \/(éyf —&ne )2+ (Cue — Cmc)?. Although these

=~

summations result in a considerable reduction of computations, they still require the
vast majority of CPU time.
3.1.3 Evaluation of the quadruple spatial integrals from [A-cc]

The contribution for the interval of the semi-infinite Sommerfeld integral from [A

.X) can be written as

ZgO) = (fn:gmx’ }Cioxo)v fuzgux> (3.11)



7(x ~(x)
Z;E‘y ) = <fﬂ:gmz‘ k.i‘y )‘ fl’yguy>
Z(OO) — K(x,) f

yT - <fnygmy' ‘yr v ‘-’ng1’>

()
Zyy <f”ygmy kyy -fuyguy>

where

(o) of 92 ok
KEC = A [(ki5€C+ afag)fC(+ 8{8 fz( Jo(/\/’)d

3.13)

(3.15)

When A is chosen according to equation (3.1), simplifications may be made in the

integrand of the Green's function resulting in the expressions

(00) _ /(o) _ /(4)
KW =He — He

where
0? 9? 1
Hy = {hcc [5ec+ J he
0€0¢ 0¢0¢ 2
Ve + (75)
and
W 52 52 o= AtI(A)
Hee' = /0 dA [h“(5«+5§34) zca—fa—c] Jo(Ap) A

In equations (3.17) and (3.18), f(A), h¢, and h,; are constants given by

L W 1
T 2rk2[1 - eoA)] f(4)

ho- Who 1 ( 1 _ 2 >
= 2rk32f(A) \[1 — €2(A)]  [(era + €1)(1 — €3(A))]

with
k2
f4) = 1+
k2 — k2
A — 2 1
A4 = T
es(A) = o bk

2(er1 + €r2) 4(A? — k)

(3.16)

(3.18)

(3.19)

(3.20)
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for the case of a superstrate/substrate configuration. \When the superstrate is not
present. the quantities ¢.;. and €., are replaced by €,9. and ¢,;. respectively.

Substitution of (3.16) into (3.11)-(3.14) gives
ZE = (freOmee M fucGue) = (FreGme Met'o fogu) (3.24)

where the quantity containing Hé?) can be handled in exactly the same manner as

ZEAC' Substitution of equation(3.17) into (3.24) for the quantity H(Ezo) gives

‘(o0 1 -
<fnsgm¢v Hé( ) ~fu<gu.(> = 6§ChCC<fn€gm¢,- ———Q_—t;‘ fuggu5> (323)
TP
0? 1 0? 1
+ h(((fnegmp 56—2__2'_:_2'- fuégu5> + th(angmp agac ; r 2 fu<gu<>
P+ o+ (i)

The derivatives present in the double inner products can be eliminated through

integration by parts, resulting in the expressions

0* 1
(fncgmp 8_62_2—_2’ fufgw)
+ 7@
(me+1 Cugt1
=/ dc/ ‘ dc/ dé sin (k{1 — 1)
2cos (k IE) (3.26)
\ﬂ)A \/PB+ \/Pc‘*’
and
T A —
nggmes 8 a ) 2’ veSue
: C\/P“f (7%5)
I I
= [ de [ dc'sin(hulle = €D)sin (hlle — €')
1 + 3.97)

\/PD+<‘T>2 \/PE+ \/PF+ \/PG —A
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In equations (3.26) and (3.27). p 4_¢ are functions of £ and ( given by

ph o= (=P HE+E — G+ 1)
pp = ((=¢VP+(E+6 =& — L)

pQD = (IC_CI+§ue_cmg)2+(£+§u5—5n;)2
p%f = (—g/+C#f—Cm()2+(€+£uf—€nc+[f)2

"PF = (_C/+ Cug - Cm<)2 + (£ +£u£ - €n¢>2

o
(078)
Nl

pe = (o= (e =)+ (E4 G = & T 1) (3
3.2 Formation of the Impedance Matrix

As mentioned in the previous section, to solve for a specific microstrip discontinu-
ity, a discretization of the entire (M)MIC surface enclosing the structure (Figure 2.2)
is performed. The reason for this approach is two-fold. On one hand, it allows the
maximum utilization of symmetry inherently present in the open microstrip problem,
as will be discussed shortly. Secondly, when the discretization is performed in this
manner, other circuit elements printed on the same substrate may be analyzed with-
out the re-evaluation of the impedance matrix elements. For the desired microstrip
element, a simple routine correctly fills the impedance matrix from these pre-existing
elements according to the discontinuity shape and the known boundary conditions.
Therefore, if a design is to be made on a specific substrate (such as GaAs or Alu-
mina). impedance matrix elements can be pre-computed and stored in libraries, and
re-used indefinitely for the synthesis of the desired performance. However, it must be
noted that for very large problems, solving the matrix can be more time-consuming

than generating the matrix elements, and the savings from this approach may not



be as significant.

The mesh of Figure 2.2 shows a total of (.N,.\,). {2 = z.y) node points resulting
in 1\ M7= (N, M,)? interactions for the direct terms (Z,.. Z,,) and (N, M N, M)
interactions for the cross-coupled terms (Z,., Z:,) . Fortunately. this number can be
reduced significantly by symmetry and reciprocity. From equations (2.36)-(2.40) 1t
can be shown that the spatial dependence in the direct terms is an even function of the
quantities (z — z’) and (y — y'). Furthermore, the cross-coupled interactions are odd
functions of these quantities. Therefore, elements may be catalogued according to
these properties, resulting in large reductions in computational effort. The number of
elements computed for the particular submatrix Z;; is reduced to N;M;. (1,5 = z,y).
which is the square root of the previously given numbers. This is not true for shielded
microstrip where the position of the cavity or waveguide wall is reflected in the
spatial dependence of the Green’s function. Consequently, the interactions between
subsections are not solely dependent on their relative position to each other, but also
on their exact position in the cavity.

A three-dimensional view of the impedance matrix is shown in Figure 3.2. The
matrix is toeplitz and diagonally dominant with the value of the diagonal elements
the largest contribution by an order of magnitude. The large values of elements
off the diagonal results from interactions of adjacent cells, and their location in the

impedance matrix depends on the ordering of the nodes.

3.3 Effective Dielectric Constant

Before computing the network parameters for a microstrip discontinuity, it is
necessary to determine the value of the guide wavelength on its feeding lines. For-

tunately, this parameter is easily obtained without significant additional effort. The
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Figure 3.2: Impedance Matrix

guide wavelength ();) and effective dielectric constant (e.;s) are related by the ex-

pression

Ao
Vs

with Ag the free space wavelength. For a particular discontinuity under consideration,

Ag =

(3.29)

the guide wavelength for its feeding lines is determined by simulating a long open-
ended line of the same dimensions. The magnitude of the resulting current is of the
form shown in figure 3.3. It is then an easy matter to determine the guide wavelength

by either of the expressions

or
dlmc'n -dl.
Ag = 2( mn mm) (3.31)

(Ivm'n - 1)
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Figure 3.3: Longitudinal current distribution for a long open-ended line (h =
25mal W = 25mal, e, = 10.65)

where d,.(dmin) are the positions of maxima (minima) on the line and I,,2(/min) is
the number of maxima (minima). The accuracy of A, is improved by increasing the
line length and therefore the number of maxima and minima. The effective dielectric

constant is then given by

A ¢ Irmes — 1
€eff = ()‘—0)2 = (ﬁ)z(gmm_T)2

g mazr mazx

(3.32)

Figure 3.4 shows the effective dielectric constant for a 50 ohm line with increasing
line length. As illustrated, an accurate value is obtained for short lengths of line with
only two maxima or minima present. Also note that the subsection size influences
the stability of the effective dielectric constant. For the same physical discretization,
the data at 12 GHz stabilizes at shorter line lengths than the results for 18 GHz. The

electrical size of the subsection is larger at the higher frequency, with the values given
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Figure 3.4: Effective Dielectric Constant For single layer substrate (h = 25mil, W =
25mil, €,; = 10.65) with increasing length of line

in the graph. Furthermore, the greater radiation losses at higher frequencies distorts
the shape of the current, and it has been found that the average of several maxima
or minima is required for accurate results. Convergence tests for the subsection size
will be discussed more extensively in section 3.4.2, and radiation loss in Chapter 5.

It is critical to obtain accurate values of the effective dielectric, because poor
accuracy for the effective dielectric constant will result in less accurate and unstable
network parameter results. In Figure 3.5, the effective dielectric constant of a fifty
ohm line is compared to CAD results [56] for a shielded structure. The agreement
1s excellent, as expected, because the fundamental open microstrip mode does not
radiate.

For multi-layer microstrip, there is far less available data than for single layer.
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Figure 3.5: Effective Dielectric Constant For single layer substrate (A = 25mil. W =
25mal, €., = 10.65)

Consequently, it is important to obtain the effective dielectric constant from the full-
wave simulation. In Figure 3.6, the fullwave results for a two layer structure are com-
pared to a 2-dimensional simulation [55] with good agreement. Two-dimensional sim-
ulations are specifically formulated to determine propagation characteristics and are
considered very accurate. Nevertheless, these results show that a three-dimensional
simulation yields accurate values, which are more than adequate. The effect of the
inclusion of a superstrate laver is shown in Figure 3.7, where a low dielectric ma-
terial (¢, = 2) is covered by a thinner high dielectric constant (¢, = 13) material.
The superstrate layer, which is often included for protection, increases the effective

dielectric constant and line dispersion considerably.
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3.4 Convergence of Network Parameters

3.4.1 Convergence of network parameters for the choice of A

The choice of the parameter A in equation (3.1), influences both the accuracy and
numerical convergence of the network parameters. The CPU time increase linearly
with A for the calculation of ZEAC’ while it is independent of A in the computation
of Zg. Furthermore, the computer time for the computation of ZéA( is significantly
greater than the time required for Zg;. Therefore, the value of A must be chosen as
small as possible, while still achieving numerical convergence. Figures 3.8 and 3.9
show the convergence of the phase of Sy, and the radiated power as a function of A.
Table 3.4.1 shows the correspondence between the quantity A, defined in equation

(3.1), and the parameter shown in the graph. As shown, the network parameters
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show no sensitivity to increasing A; above .95. Below A, = .9, the accuracy of the
phase of Sj, and the radiation loss gradually deteriorate until the estimated values

become completely unacceptable at A, = .7.

3.4.2 Convergence of network parameters with the choice of subsection

size

In this method of moments characterization of microstrip discontinuities, the
spacing of the nodes (number of subsections) in the mesh has a large influence on
the CPU time. A larger subsection size results in faster execution times, but may
result in inaccurate results. Obviously, the choice of this parameter must be made

by seeking a balance between acceptable numerical error and computational effort.
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Fortunately, convergence has been achieved for a wide range of the subsection size.
These results may be used to determine the optimum choice of the subsection size

for a desired degree of accuracy.

Open-End

A convergence experiment was performed on a fifty ohm open-ended microstrip
line printed on a 25 mil substrate (e, = 10.65). Results at 10 GHz for the magni-
tude and phase of S;; were obtained for varying longitudinal discretizations. The
transverse discretization remains constant and is equal to half the lines width. In
Figure 3.10, the magnitude of S;; has converged within one percent for cases greater
than 30 subsections/wavelength. Results obtained with a division of 20 subsec-

tions/wavelength show an error of almost two percent, and 10 subsections/wavelength
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shows an error of 3.5 percent. Note that results from sparser discretizations indicate
higher radiation loss than is actually occuring.

Figure 3.11 displays the convergence of the phase at the open end. which displavs
a similar behavior to the magnitude. The phase settles down within about 1 degree

above 30 subsections/wavelength.

Two-port Rectangular Stub

Figures 3..12 and 3.13 show the convergence of [S]-parameters for a two-port
rectangular stub printed on the same substrate as above. The phase and magnitude
are very stable for discretizations of 30 subsections/wavelength or more. As was the
case In the example above, discretizations below 30 subsections/wavelength yvield
results which show higher radiation losses than are actually occuring.

These examples indicate that discretizations of 30 subsections/wavelength will
vield good results. Higher discretizations can be performed if accuracies smaller
than one percent for the magnitude and one degree for the phase are desired. For
the typical 2-port problem presented in this thesis, discretizations of up to 100 sub-

sections/wavelength can be handled on desktop workstations.



Table 3.1: Choice of A for microstrip Corner Discontinuity of Figs. 3.8 and 3.9
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Figure 3.9: Convergence of the radiation loss as a function of the parameter A for a
microstrip corner discontinuity (w = 56mul, h; = 56mil €,; = 2)
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CHAPTER IV

RESULTS-CIRCUIT CHARACTERIZATION

4.1 Introduction

This chapter presents the results from an extensive study of microstrip structures,
acquired with the theoretical and numerical techniques described in Chapters 2 and
3. In addition, results from the experimental study are presented . Although the
literature provided experimental data for many microstrip discontinuities, an exper-
imental study was undertaken to verify the "step” approximation used to analyze
structures with curved boundaries, such as the radial stub, by a rectangular mesh. A
TRL de-embedding method was used to obtain this data, and it is detailed in section
4.2. In addition, the repeatabilty of these measurements was investigated and results
are presented.

The theoretical examples are arranged in order of increasing complexity. In sec-
tions 4.3, examples of step and two-port shunt stub discontinuities will be shown.
For these exzmples, the accuracy of the fullwave technique will be demonstrated by
comparisons to experimental data. In addition, a high frequency matching circuit
containing two stub tuners will be presented to illustrate the performance limitations
of microstrip circuitry at submillimeter-wave frequencies.

Microstrip meander lines are utilized for a variety of millimeter wave IC and

t
-]
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arrayv applications including phase shifting and filtering. In section 4.3.4. examples
of meander lines appropriate for phase shifting and/or filter applications will be
presented. The effect of electromagnetic coupling, conductor loss, and radiation loss
will be discussed for these lines.

It is well known that mitered bends and radial stubs exhibit improved perfor-
mance over their right-angle and rectangular counterparts. Consequently, the appli-
cation of the fullwave technique has been extended to structures having boundaries
which are no.t rectilinear in section 4.3.5. In order to model these structures with a
rectangular rnesh, the curved boundaries must be approximated with a “step™ ap-
proximation. The accuracy of this approximation has been verified experimentally,
and examples of radial stubs and mitered bends are given.

Results for multi-port networks are shown in section 4.4. In particular, the net-
work parameters for T- and cross junctions will be presented. These structures are
frequently used in large numbers in array feeding structures, and therefore, accurate
models are needed for their high frequency behavior.

Finally, fullwave analysis results for microstrip circuits printed on multi-layer
dielectric substrates are given in section 4.4. The effects of these more complicated

substrate str-ictures on radiation loss will be discussed.

4.2 Experimental Results

TRL fixture de-embedding may be implemented in either one or two tiers. The
two-tier approach requires that a standard 7 mm coaxial calibration be done for
ANA error correction. The TRL calibration is then performed to move the reference
plane within the test fixture. The [S]-parameters of the two fixture halves are deter-

mined in the process. The two-tier approach requires a computer and corresponding



59

software for data acquisition and processing. The one-tier approach does not require
a 7 mm calibration and is therefore simpler and less time consuming, but does not
vield the [S]-parameters for the fixture halves as in the case of two-tier. The com-
puter is not required for data acquisition because test data may be obtained without
additional processing on the ANA display in real time. With the availability of the

HP 8510B and the TRL calibration kit [60], one tier de-embedding was selected for

these experiments.

Fixture and Standard Design

As mentioned, network analyzer measurements of microstrip structures requires
coaxial-to-microstrip transitions. This is usually accomplished by the use of a fixture,
although wafer probe stations are also used. Probe station measurements would
require coplanar waveguide to microstrip transitions, but the TRL de-embedding
approach is still applicable. The fixture employed for these measurements is shown
in figure 4.1. In this implementation, standards and devices are mounted to brass
chip holders which fit into the fixture as shown in the figure. The fixture includes
Eisenhart [59] coaxial-to-microstrip transitions which have shown good repeatability
up to 20 GHz [57). The TRL de-embedding procedure requires a thru-line, delay lines,
and an open-ended line as shown in Figure 4.2 (a) and (b). This implementation
uses two delay lines in order to cover the entire 2-16 GHz band. The reference plane
is set at the center of the thru line. The standards and Devices Under Test (DUTs)
were realized on 25 mil RT duroid dk-10(¢, = 10.25 £ .25). The DUTs, shown in
figure 4.3(a),(b), and (c) are one-port radial, and two port rectangular and radial
stubs. The reference planes, set by the thru line, are marked on the schematics as

a-a and b-b.
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Figure 4.1: Microstrip Test Fixture with Eisenhart Launchers

Effective Dielectric Constant

As mentioned, the TRL de-embedding procedure does not require precise phase
constant information at the onset. The phase constant is determined during the
calibration procedure, and can be obtained from the de-embedded results. After
calibration, the long delay line is re-inserted and measured. The phase of S, is
shown in Figure 4.4. The guide wavelength ();) is related to the phase delay (o4)
by the equation

27,

Gq = _ﬂglg = _/\—"
g

The effective dielectric constant is defined as

A
€ef = (3-:-)? (4.2)

and is plotted in Figure 4.5. Also plotted are the theoretical effective dielectric
constants for various substrate permittivities. The dielectric constant of the substrate

1s found to be 10.6 £ .1.



61

so5 | | 25 i

— -

a. Thru/Delay Lines

T

| —c

737 "

b. Open-ended Line

Figure 4.2: Standards for Microstrip De-embedding (L=.737" for thru line,L=1.014"
and .835” for delay lines)



r=75 mil

938 °

T

737 " i

a. One-port Radial Stub

T

935 "

b. Two-port shunt Rectangular Stub

T
369" 2 °
935 *
25 mil
]
b!
r=75 mil
X
L |
I~ 1.014 " e

¢. Two-port shunt Radial Stub

Figure 4.3: Microstrip Test Structures



Effective Dielectric Constant

8.00

7.50

7.00

6.50

6.00

p— ' —

' 1

L
|

A
— — L Y

-__v — .‘1'

e

——————— Nl

: ' : . 1

—_— .
STMRT 3.000000000 O@

Figure 4.4: Phase of Long Delay Line After TRL Calibration

Theory (e,=10.4)
......... Theory (¢,=10.5)
...... Theory (e= 10.6)

8.

Frequency(GHz)

16.

Figure 4.5: Experimental Effective Dielectric Constant




64

Repeatability

The TRL De-embedding technique requires that the coaxial-to-microstrip tran-
sitions be repeatable. Between measurements, the launcher transition is broken. the
standard or test structure is removed, and a new one is inserted. The launcher transi-
tion is then re-established. This process is entitled cycling. To improve repeatability,
all standards and test devices are etched from the same piece of material in the same
process. Also, launcher and the microstrip line contacting the launcher are kept
scrupulously clean. The specific fixture used has previously been shown to produce
reasonably repeatable results to 20 GHz for shielded structures [58]. Two studies
were performed to determine the repeatability of the open results. In the first study,
a TRL calibration was performed and the rectangular stub was measured. The con-
nections were broken to the stub device, re-established and the measurement was
performed again. This procedure was done 10 times. Results are shown in Tables
4.1 and 4.2 for the phase and magnitude of S5, respectively. The minimum, maxi-
mum, average, and standard deviation are shown for frequencies from 4 to 16 GHz.
It can be seen that the cycling introduced phase errors less than 1 degree at lower
frequency ranges. The error increases with frequency and reaches almost 4 degrees
at 16 GHz. The magnitude showed good repeatability ranging from .0037 at the low
end to .027 at the high end. The second study involved repeating the entire TRL
calibration and measuring the radial stub 10 times. In this manner all connections
for the standards and stub are cycled. Results are shown in Tables 4.3 and 4.4. The
errors introduced in this repeatability study are slightly larger on average than the
previous study. Nevertheless, both tests indicate that the fixture yields results which
are reasonably repeatable in the frequency range it is employed.

The error bars that are present on the following graphs were determined by



Table 1.1: Repeatability for phase(Deg) of Sy, for rectangular stub (10 trials)

f(GHz) | Min. Value | Max. Value | Avg. | Stnd. dev.
4 -103.9 -102.0 -102.9 631
6 -154.4 -153.4 -154.0 540
8 143.8 147.3 145.5 1.11
10 87.2 90.8 89.3 1.17
12 16.0 24.2 24.2 2.51
14 93.4 101.8 98.1 2.4
16 17.7 29.6 23.3 3.98

Table 4.2: Repeatability for magnitude of S;; for rectangular stub (10 trials)

f(GHz) | Min. Value | Max. Value | Avg. | Stnd. dev.
2 989 1.01 .995 0037
3.4 971 993 985 .0063
4.8 95 979 .968 011
6.2 925 971 957 019
7.6 864 .9 .888 015
9 .800 832 815 011
10.4 729 803 718 .023
11.8 475 505 497 010
13.2 079 117 112 012
14.6 .300 336 322 012
16 635 714 682 027
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Table 4.3: Repeatability for phase(Deg) of S}, for radial stub (10 trials)

f(GHz) | Min. Value | Max. Value | Avg. | Stnd. dev.
2 -56.3 -55.8 -56.0 205
4 -116.9 -115.5 -116.1 441
6 -172.3 -168.2 -169.9 1.34
8 121.9 126.6 124.9 1.54
10 68.6 74.7 71.6 1.70
12 1.9 7.4 5.3 2.08
14 98.3 106.3 101.0 2.85
16 7.7 13.0 10.35 2.07

Table 4.4: Repeatability for magnitude of S;, for radial stub (10 trials)

f(GHz) | Min. Value | Max. Value | Avg. | Stnd. dev.
2 .960 972 .966 .00039
3.4 915 953 935 012
4.8 818 850 835 011
6.2 708 761 738 .018
7.6 623 671 653 018
9 471 .503 491 .014
10.4 .368 400 .382 014
11.8 130 154 151 ) .011
13.2 130 154 143 .0092
14.6 397 429 410 011
16 616 114 681 .038
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adding the above standard deviation to the uncertainty introduced by variations in
the dielectric constant (%.1). the substrate height (+1mil), and the conductor width

(1 mil).
4.3 Single Layer Microstrip Discontinuities and Circuits

4.3.1 Step Discontinuity

The discontinuity shown in figure 4.6 has been characterized by the preceeding
fullwave analysis'. This matching section is printed on a 10 mil alumina substrate
(¢, = 9.8), and is characterized from 8-18 GHz. Radiation loss was found to be
insignificant for this example, because the substrate thickness remains electrically
small (< $=),) over this frequency range. Figures 4.6(a) and 4.6(b) show the mag-
nitude and phase of the scattering parameters as compared to measurement. The
agreement with measurements for magnitude and phase is excellent. In particular,

the agreement of the phase is within 2 degrees across the entire frequency range.

4.3.2 Tuning Stubs

Two numerical examples of rectangular stubs, which are frequently used in filter
and matching circuit applications, are presented in this section. Both examples
show excellent agreement with measurement. In Figure 4.7 a two-port shunt stub
is compared with measurements obtained by the TRL de-embedding technique of
section 4.2. The stub was printed on a 25 mil duroid substrate (e, = 10.65), and
includes two type of discontinuities, a T-junction and open-end. Agreement between
theory and experiment for both the phase and magnitude is excellent. In particular,
note the close agreement in the resonant frequency at 13.5 GHz, indicated by the

minimum in |Sj;| and the discontinuous increase in the phase.
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A second microstrip stub printed on a 1.27 mm duroid substrate (¢, = 10.65, 1s
shown in Figure 4.8 . In this example, radiation loss is more significant because of
the thicker substrate. A major contribution of this research is the characterization of
space and surface wave losses. The results are compared to published data obtained
with the spectral domain technique[25]. As illustrated in the figure, the agreement
between our space domain technique and the spectral domain technique is very good.
Note the good agreement at the resonant frequency. The quantity denoted G in the
graph corresponds to |Sy1|2 + |S12|2, which may be subtracted from 1 to determine
the total radiated power. From this quantity it is seen that the radiation loss peaks

at 10.5 GHz which is slightly beyond the stub resonance (10.2 GHz).

4.3.3 Matching Circuit for 94 GHz Oscillator

Figure 4.9 shows a matching circuit for a submillimeter-wave oscillator designed to
operate at 94 GHz. The network is printed on 100 um GaAs (¢, = 12.8). The analysis
was applied to obtain scattering parameters individually for the cross junction stub
(stub A), the T-junction stub (stub B), and the entire matching section. The results
for this example are normalized to fifty ohms. Emphasis will be put on the radiation
losses experienced as the stubs pass through a quarter wave resonance, and the
coupling between the stubs. Frequently, such a design would be done with available
CAD by individually modeling the two stubs, and combining the results with linear
network theory. Consequently, electromagnetic interactions between the stubs would
not be included. For this case, electromagnetic effects will be significant, because the
stubs are in close proximity and have approximately the same resonant frequency.

Shown in Figures 4.10(a) and (b) are the scattering parameters for the cross

junction and the T-junction stub, respectively. The quarter wave resonance of the



1.00 e
I \L T T T T 1
Y =
0% - 3,
O, e, AR
. ‘\ ‘D
0.80 TN -~ i
070 + |
o 060 |- }
he]
=
Eo 0.50 ]
s
040 |
- $12-THIS WORK
0.30 £ )
S12-SPECTRAL DOMAIN
020 b | = $12-MEASUREMENT L n
— -0~ - G-THIS WORK
0.10 b= | cceen. G-SPECTRAL DOMAIN w, l
0.00 N T D

70 75 80 85 90 95 100 105 110 115 120 125

Frequency(GHz)

Figure 4.8: Scattering Parameters for Microstrip Stub, space(spectral) dimensions:
W1=1.44(1.40), W2=1.44(1.40), L=2.16(2.16), ¢,=10.65, h=1.27 mm



-1
(S

200um
15.38W“¥:
261.46pum
153.8um
v
L 30.76um
15.38um

Figure 4.9: Microstrip Oscillator matching network (¢, = 12.8,h = 100um, W =
15.38um)

stubs are 145 GHz for stub A and 160 GHz for stub B as determined by the minima
in the magnitude of Sy,. There is appreciable radiation loss beyond the resonances
of the two stubs. This radiation causes a degradation in the magnitude of S); at
the high frequency end of the simulations for both stubs. The cross-junction stub
radiates less than the T-junction stub because of its balanced resonator geometry
which results in a cancellation of radiated fields. As shown in Figure 4.12, the T-
junction stub is radiating almost half of its input power at 200 GHz.

The scattering parameters for the entire matching network are shown in Figure
4.11. At the lower frequency range (below 140 GHz), the radiation losses are not sig-
nificant. Thus, the network should function adequately at the oscillation frequency.
In this example, although the 100um substrate is physically thin for present tech-

nology, it becomes electrically thick at higher frequencies (one-fifth of a wavelength



Magnitude

0.1F "."\_: b

0.0 L 1 I 1
80. 100.  120. 140. 160. 180. 200.

I
1

Frequency(GHz) U

a. Scattering parameters of stub A

Magnitude

80  100. 120. 140. 160. 180.  200.
Frequency(GHz)
b. Scattering parameters of stub B

Figure 4.10: Scattering parameters of individual stubs found in oscillator matching
circuit (e, = 12.8,h = 100um, W = 15.38um)



------ S, -Touchstone

(9]
'g ------ §,, -Touchstone
b=t
i
&
E 04 F T

02} .

. . v
0.0 1 1 Y 1

80. 100. 120. 140. 160. 180.  200.

Frequency(GHz)

Figure 4.11: Scattering parameters of microstrip matching network (¢, = 12.8,h =
100pm, W = 15.38um)

in the dielectric at 170 GHz), and high radiation losses are encountered, as shown
in Figure 4.12. This result illustrates the difficulty with using microstrip circuits at
submillimeter-wave frequencies.

The entire matching network radiates less than Stub B alone. At first glance this
appears anomalous, but it results from an increased return loss and additional phase
cancellation in the radiated fields. The spacing of the stubs is approximately one
half wavelength at the upper frequencies, therefore, they are radiating fields which
are approximately 180 degrees out of phase. Also note in this example that radiation

loss continues to increase beyond the quarter wave resonance of the stubs.

4.3.4 Meander Lines

Meander lines are often used in (M)MICS as delay or slow wave lines, and also

in monolithic antenna arrays for the phasing of the radiating elements as illustrated
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in Figure 4.13. In this application, a two layer structure is shown with an embedded
meander line feeding the antenna elements on the top of the substrate. Such a feed
structure is also capable of exciting a slot array. The ability to adjust the spacing
(S). the depth (d), the period length (L,), and the number of periods (N) provides
flexibility in the phasing of the radiating elements. Therefore, meander lines are

particularly suited for use in beam forming and steering[61].

Meander lines traveling wave feed with conductor loss

Successful design of such structures requires accurate models, which include the
presence of bend discontinuities and the effect of electromagnetic coupling. Radia-
tion and conductor loss may also have significant effects. Figure 4.14 presents the

transmission parameter as a function of line length for a meander line printed on a



N 4
ooies 4 4 /

Feed Line h

a. Cross-Sectional View

b. Top View

c. Meander Line Parameters

Figure 4.13: Microstrip Meander Line Feeding Dipoles



———

20 mil duroid substrate (¢, = 2.2) at 20 GHz. Two cases are shown: 1) with both
resistive and radiation loss. and 2) radiation loss only. In this example. the sub-
strate is electrically thin and radiation loss is not large. Conductor loss is essentially
the difference between the two curves, and increases steadily with line length. This
example illustrates an interesting point concerning the relative importance of radia-
tion and resistive losses. Radiation loss from microstrip circuits are associated with
fringing fields present at discontinuities, and are minimized through the reduction
of the number of discontinuites, the use of electrically thin substrates, and through
creative designs to be discussed further in the following sections. Resistive loss de-
pends on the composition and shape of conductors, and increases with line length.
For the following examples, where discontinuites are considered with relatively short
lengths of line, only radiation loss will be included. The unit phase delay (Pd,)
can be defined as the phase shift (Pd) of the line divided by the number of periods
(N). To demonstrate the effect of the cascading of several sections has on the phase,
a meander delay line on a 25 mil alumina substrate has been analyzed. In Figure
4.15, the unit phase delay is shown as a function of frequency for cascades of 1, 2
and 3 periods, respectively. As shown, the unit phase delay is independent of the
length of the line from 5-12 GHz. Thus, it can be used to accurately determine the
phase for a line having many cascaded sections (pdy = N X pd;). Deviations in the
linear phase characteristic at the high frequency end result from high radiation and
return loss. Shown in Figures 4.16 are the transmission parameter and radiation loss
of the same line. In this example, the line has good transmission below 13 GHz,
but the performance deteriorates rapidly after that. Furthermore, at high frequen-
cies, the transmission through the line decreases while the radiation loss increases

with line length. From these observations, in addition to acting as a delay line, the
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meander line is particularly well suited for filtering applications. This is true be-
cause the spacing and number of periods control the pass-band corner frequencies

and slopes, respectively. This is a well known characteristic of periodic structures in

general[62],(63],(64].

Meander line narrowband filter

Shown in Figures 4.17 and 4.18, theoretical results from this research are com-
pared to theoretical results and experimental data derived by Jansen [17],(28] for
shielded and open meander lines, respectively. There is good agreement between the
open experimental results and our simulation. This structure has two pass-bands

over the frequency range shown. Radiation losses are quite severe and result in
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degradation of the transmitted power in the 13-20 GHz stopband, and the pencil-
thin passband centered at 22.5 GHz. In particular, notice the difference at 22.5 GHz
between the open and shielded simulations. This example illustrates that meander
lines may be useful for narrowband applications in monolithic arrays, but also that

they may experience severe radiation loss.

Effect of bend discontinuities in meander line

The propagation through a single loop of a meander line is investigated in the
next example, revealing the effect of distributed discontinuities and electromagnetic
coupling on the slow-wave properties of the structure.

The line is printed on a 10 mil alumina substrate (¢, = 9.8). The magnitude of

S21 1s shown in Figure 4.20 (a) as a function of frequency for three values of the width
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to spacing ratio (%). In addition, Figure 4.20(b) shows the normalized phase velocity
around the loop (v'/v) as a function of frequency where v is the phase velocity on
a microstrip line of length equal to the mean path length of the loop. These results
indicate, in this frequency range, that the parasitics in the loop increase the phase
velocity v’ which in turn tends to reduce the overall slow-wave effect of the meander

line.

4.3.5 Using the Step Approximation
Radial Stub

Microstrip radial stubs were fabricated and measured to test the validity of the

step approximation for analysis of microstrip discontinuities. In Figure 4.21, the
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results for a one-port radial stub are shown. Included in the figure is the discretization
employed for its analysis. The agreement between measurement and theory is good.
particularly at higher frequencies. At lower frequencies, the measurements may be
influenced by the proximity of the launchers and fixturing, as well as the finite size
of the substrate. In this experiment, the substrate was of smaller size than for the
two-port structures measured. Also, included is a CAD[56] analysis which are in
good agreement at lower frequencies, but deviate at higher frequencies because it
models a shielded, lossless structure. A radial stub with the preceeding dimensions
and substrate was also fabricated in a shunt configuration across a 50 ohm microstrip
line. The results are shown in figure 4.22 with the corresponding theoretical data.

The resonant frequency of the numerical results (again using the step approximation)
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is smaller by about 100 MHz. This is due to a combination of the step approximation

and experimental error.

Mitered Bend

Figure 4.23(a) displays the network parameters for mitered and right-angle bend
discontinuities. The mitered case has superior behavior as illustrated by its improved
return loss. Nonetheless, it is interesting to note that the two structures exhibit
almost identical radiation properties at lower frequencies as shown in Figure 4.23(b).
At higher frequencies the radiation loss of the right-angle bend becomes higher. It
was found that the mitering, in this case, sharply lowers the return loss by decreasing
the excess capacitance of the bend, and at higher frequencies it lowers the radiation

loss as well.

Comparison of Rectangular, Radial and Triangular Stubs

Open circuit stubs are often used in microstrip matching networks, particularly in
(M)MIC amplifiers. Radiation loss and spurious coupling from a matching network
have a direct impact on the noise performance of an amplifier and must therefore be
minimized. Several stub geometries have been proposed for enhancing various circuit
characteristics including reduced loss. The fullwave analysis presented has been
employed to evaluate three types of stubs: a)rectangular, b)radial, and c) triangular
in terms of their bandwidth, resonant characteristics, and radiation properties. The
stubs are printed on a 25 mil GaAs substrate (¢, = 12), and have dimensions shown
in Figure 4.24. For comparison purposes, all of the stubs are designed to have first
resonance at about 24 GHz. Two-port scattering parameters have been obtained by

positioning the stubs shuntly across a transmission line, as shown. At resonance,
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the magnitude of the transmission parameter reaches a minimum. Due to radiation
loss. which may be viewed as a radiation resistance at the junction. this minimum
1s not zero as it would be in the lossless case. Figure 4.25(a) shows the transmission
parameters for the three cases from 15 to 28 GHz. As shown. the radial stub has
the broadest bandwidth, and the triangular stub has the narrowest. These results
indicate that the bandwidth may be adjusted by varying the angle of the radial stub.
However, it should be noted that such a modification will also shift the resonant
frequency.

As previously mentioned, radiation from matching networks has a direct and
derogatory effect on noise performance in (M)MIC amplifiers. Figure 4.25(b) shows
quite clearly that the triangular shape radiates more than the other two types. Ad-
ditionally, the radial stub shows moderate improvement over the rectangular type.
The loss peaks for all three cases at 27 GHz (about 3-4 GHz beyond resonance),
indicating that the radiation properties are heavily influenced by the characteristics
of the substrate. For the given substrate at this operating frequency, the loss is pri-
marily due to the T M, substrate mode. We conclude that since the triangular stub
has the smallest bandwidth, and radiates most severely, it is only recommended for
narrowband applications where the additional loss may be tolerated. The rectangu-
lar and radial stubs have similar radiation properties, with the radial stub having a

broader band response.
4.4 Multi-Port Networks

Transmission line junctions are found in virtually every type of microstrip layout
and are integral parts of power splitters, matching networks, and couplers. Con-

sequently, a thorough understanding of their parasitic behavior is crucial in high
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frequency (M)MIC design. Network parameters have been determined for three-port

T-junction and four-port cross junction discontinuities with interesting results.

4.4.1 Cross and T-junction discontinuities

As shown in Figure 4.26, the magnitude of the S-parameters of a T-junction on
a 25 mil duroid (¢, = 2.2) substrate agree well with available CAD results [56]. On
the the other hand, as shown in Figures 4.27 and 4.28 for tee and cross junctions
respectivelly, the phase can disagree appreciably with those predicted by commercial
CAD, particularly between ports at right angles. The disagreement arises because
of the parasitic reactance and radiation loss (shown in Figure 4.29) at the junction.

Also shown in Figure 4.29 are the radiation losses of a right-angle bend having
the same strip width and printed on the same substrate. The three types (right-angle
bend, cross, and tee) of junctions exhibit similar radiation losses. The lowest loss

corresponds to the cross junction which is the only one of the three not having a

port current terminate at an edge.

4.5 Multi Dielectric Layer Structures

A powerful advantage of the presented formulation is the ability to model multi-
layer substrates by replacing the single layer Green’s function with a more general
multi-layer Green’s function. This allows the analysis of a much wider class of prob-
lems, previously uninvestigated, involving substrates made of combinations of ma-
terials and/or the presence of a superstrate. The fullwave procedure was applied to
a microstrip corner discontinuity on a substrate having two dielectric layers. The
magnitude of the scattering parameters is shown in Figure 4.30. The multilayer

corner has been analyzed on four different substrates: A) a 40 mil layer of alumina
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Figure 4.26: Scattering Parameters(magnitude) for microstrip T-junction as a func-
tion of frequency (e, = 2.2, h = 25mil, W = 25mul)
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Table 4.5: Substrate parameters of multilaver microstrip bends

Case | €, €2 | hi(mal) | hy(mail)
A | 102 40 0
B | 22 40 0
C | 22102 20 20
D 102 22 20 20

(e, = 10.2), B) a 40 mil layer of duroid (¢, = 2.2), C) a 20 mil layer duroid on a 20
mil layer of alumina, and D) a 20 mil layer of alumina on a 20 mil layer of duroid. It
was found that there is significant difference in radiation between the two multilaver
cases. The radiation from the structure having duroid over alumina is considerably
more than the structure having alumina over duroid, as illustrated in Figure 4.31.
The loss 1s primarily due to surface wave radiation in this structure. Therefore, case
D couples less power into surface waves than case C. This will be discussed more
extensively in Chapter 6.

A two-layer microstrip stub was also analyzed. Shown in Figure 4.32 is the
magnitude of the scattering parameters for a stub on substrate having a layer of
GaAs (e, = 12.2) on Quartz (¢, = 4.0). Both layers are .2 mm thick. Also included
are the scattering parameters for a stub having the same dimensions on a single
layer of quartz. The single layer example has a resonant frequency at 41 GHz. The
higher effective dielectric constant for the 2-layer case creates a stub having a smaller
resonant length, reflected in a downward shift in the null of |S12|. The radiation
losses for both stubs are included in Figure 4.33. As illustrated, the multilayer stub
shows a tendency to radiate less. This indicates that multilayer substrates may be

utilized to reduce radiation losses.
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Table 4.6: Substrate parameters of multilaver microstrip stubs

Case | €1 | €2 | hi(mal) | hy(mal)
1 layer | 10.2 40 0
2 layer | 10.2 | 2.2 20 20
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CHAPTER V

RADIATION PROPERTIES

5.1 Introduction

In previous chapters, open microstrip structures were analyzed with the method
of moments. Circuit elements were characterized by their network parameters, from
which total radiation loss was obtained. In this chapter, total radiation loss is sepa-
rated into the individual contributions of space and surface wave loss. Space waves
refer to the modes radiated into the semi-infinite region above the dielectric; and
surface waves are modes bound in the substrate, which forms a grounded dielectric
waveguide. In addition, theoretical and experimental surface wave patterns depict-
ing the direction of propagation of surface wave radiation in the dielectric substrate
are presented. These far-field patterns are useful for determining where coupling
through surface wave excitation may be strong. Space wave far-field patterns have
a null along the dielectric substrate, except under very rare circumstances (at the
cutoff of higher order surface wave modes), which are not applicable to the presented
results. Furthermore, surface wave radiation is in the form of cylindrical waves which
decay less rapidly with distance than spherical space waves. It is therefore reasonable
to conclude that surface waves play a major role in undesirable electromagnetic inter-

ference. In addition, substrate composition will be shown to have a strong influence
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on radiation properties.

Results in this chapter will provide guidelines for the development of low-loss
microstrip elements. For example, it is well known that the shape of discontinuities
can be altered to improve circuit performance (eg. mitered bend, radial stub). How-
ever, finding the influence of these and similar modifications on the radiation loss
is also important. This analysis will provide the necessary quantitative results for
determining when and why a specific circuit modification decreases radiation loss.

In sectior.l 5.2, the experimental approach for obtaining surface wave patterns
is presented. This is followed by experimental and theoretical results for far-field
patterns, which illustrate the direction of surface wave propagation in the substrate.
Section 5.3 will give examples of total surface and space wave losses for microstrip
stubs and bends. Finally, in section 5.4 the effect of substrate composition on ra-
diation properties is investigated. Microstrip examples presented will include sub-

strate/superstrate and two layer substrate combinations.

5.2 Surface Wave Measurements

Power measurements were made of the dominant surface wave mode excited by
microstrip discontinuities. This mode (T M) is polarized with its electric field in the
direction perpendicular to the microstrip substrate. The measurements were made
on a 96 mil duroid substrate (e, = 2.3). The relatively thick substrates were chosen
to facilitate positioning of the receiving antenna. The substrates were machined into
5 inch diameter circular sections whose edges were gradually tapered as shown in
Figures 5.1 and 5.2 for open-end and radial stub discontinuities, respectively. This
was to minimize the reflection of the surface wave at the edge of the substrate. The

microstrip element, in this case a radial stub, was etched from the copper metalliza-
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Figure 5.1: Open end discontinuity on Printed Duroid Substrate (¢, = 2.3,h =
95mal, W = 100mal)

tion on the top face of the substrate. The experimental setup is shown in Figure 3.3.
The substrates were elevated onto a rotating pedestal and surrounded by absorber
to minimize multiple reflections. Absorber was placed over the microstrip coax-to-
microstrip launcher to minimize extraneous radiation. Each element was fed at the
edge of the substrate with a 10 GHz signal and a resonant dipole was positioned near
the edge to measure the pattern. The pedestal was then rotated to alter the observa-
tion angle (¢). Care was exercised in maintaining the dipole at a constant substrate
level as the substrate was rotated. A typical pattern is obtained in Figure 5.4. The
pattern represents the power in the T M, surface wave mode, because far-field space
wave fields are zero along the dielectric interface, and no higher order surface wave

modes are excited at the 10 GHz operating frequency.

Open-Ended Line

The experimental results for a 100 ohm (W=100 mil) open-ended line was com-

pared to the theoretical results derived by the previously presented method. Initially,



Figure 5.2: Microstrip Radial Stub on Printed Duroid Substrate (e, = 2.3,/ =
95mul. W = 100mil)

Figure 5.3: Experimental Setup for Surface Wave Pattern Measurements (¢, =
2.3, h = 95mil, W = 100mal)
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the theoretical model assumed that the discontinuity was fed by a semi-infinite line.
to remove the radiation effects of the finite line length and isolate the radiation of
the open-end. Figure 5.4 shows that the theoretical results agree well with the exper-
imental results. The open-ended line radiates power in the T M, surface wave along
the longitudinal axis of the line. The experimental results include the effect of finite
line length as demonstrated by the side-lobes in the pattern. To verify the presence
of these lobes, the theoretical results were re-computed considering the finite length
of line as utilized in the experiment. The new theoretical results and experimental
data were now in excellent agreement (Figure 5.5). Also note that the beamwidth of

the surface wave pattern becames narrower.
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Figure 5.5: Surface Wave Pattern of Open-ended Line (finite feed) (¢, = 2.3,k =
95mal, W = 100muil)

Radial Stub

The T' Mo surface wave pattern of the previously shown radial stub (Figure 5.2).
was measured. The 350 mil radial portion swept out an angle of 90 degrees and was
fed by a 100 ohm microstrip line. Radial stubs are useful as broader band elements
in (M)MIC design. Figure 5.6 shows the theoretical results for semi-infinite and
finite length lines, as compared to experiment. The results are very similar to those
obtained for the open-ended line, with the surface wave power excited along the

longitudinal axis.

Bend Discontinuity

A two-port right-angle bend discontinuity, shown in Figure 5.7, was fabricated

and measured. Experimentally, port 2 was left open-ended at a distance of two free
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Figure 5.6: Surface Wave Pattern of Radial Stub (¢, = 2.3,h = 95mil W =
100mil, r = 300mzl)

Bend Discontinuity

A two-port right-angle bend discontinuity, shown in Figure 5.7, was fabricated
and measured. Experimentally, port 2 was left open-ended at a distance of two free
space wavelengths from the bend discontinuity. The theoretical model assumed a
semi-infinite feed line (shown as ¢ = 0 direction in picture), and that the second
port was left open-ended, but extended far from the discontinuity. This extension
maintains the standing wave ratio on the line, but removes the effects of the open
end and finite line lengths; thus, isolating the effect of the bend. Shown in Figure
5.7, the agreement between theory and experiment is good. The experimental results
show the combined effects of finite line length and the open-end. This results in the
disagreement between the theory and experiment around 45 degrees. The side-lobe

present at 90 degrees in both the theoretical and experimental results comes from
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Figure 5.7: Surface Wave Pattern of Right-Angle Bend (¢, = 2.3,h = 95mil| W =
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the power reflected at the open-end which returns to the bend and radiates there.

This lobe would be smaller, if the second port were matched.
5.3 Space and Surface Wave Radiation Losses

Stubs

In Figure 5.8, examples of open-ended and radial microstrip stubs are shown.
These elements are frequently utilized in matching networks. The radial stub is
generally utilized for its greater bandwidth. In Figure 5.9, the contributions of space
and surface waves to total radiation loss is given for the open-ended stub. In the
lower frequency range, the space wave contribution is slightly larger. However, the

surface wave loss increases sharply with frequency, overtaking the space wave power
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Figure 5.8: Microstrip Open-ended and Radial Stubs (¢, = 12,h = 25mil,W =
10mal)

at 20 GHz. Beyond 20 GHz, the total radiation loss increases sharply due to a
corresponding increase in surface wave loss. The total radiation loss approaches half
of the input power at 34 GHz.

Radiation loss for the radial stub, shown in Figure 5.10, exhibits a similar behavior
to the open-ended stub, except that the sharp increase in surface wave and total
radiated power is shifted upward. This behavior results in less radiation loss in the
20-30 GHz range of operation, but greater loss above 30 GHz. The lowest order T E
mode activates between 35 and 36 GHz, therefore, only one surface wave mode is
excited in this example. The loss is expected to continue to increase until the first
higher order mode is excited, and then it will oscillate as reported in [20]. Although
the shape of the metallization has a strong influence on the total loss, it does not

appear to have a greater influence on either type at lower frequencies as shown in
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Figure 5.9: Radiation Loss of Open-Ended Stub (e, = 12, h = 25mul, W = 10mul)

Figure 5.11. However, above 30 GHz the radial stub radiates a higher percentage of

power into the excited surface wave mode.

Mitered bend

Chamfering of microstrip bends is a common practice for the reduction of input
VSWR. The example shown in Figure 5.12 clearly illustrates that mitering can re-
sult in lower radiation loss as well. The losses between the mitered and right-angle
bend are effectively equal until 20 GHz (h = .127);). Beyond this frequency, the
right-angle bend clearly radiates more power. Figure 5.13 shows that, once again, the
radiation is dominated by surface waves at higher frequencies. However, the mitering
produces a reduction in both space and surface wave power as illustrated in Figure

5.14, where both the mitered and unmitered cases exhibit identical percentages of
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Figure 5.10: Radiation Loss of Radial Stub (e, = 12,h = 25mil, W = 10mul)

surface wave loss. Therefore, mitering effectively increases the useful range of oper-
ation of the bend element. A similar discontinuity printed on a lower permittivity

substrate would exhibit lower, but still significant, surface wave losses.

5.4 Reduction of Surface Wave Power with Multiple Layers

As discussed extensively in the literature [70], the efficiency of a printed antenna
depends on the shape and size of the antenna and on the properties of the dielectric
substrate. An extensive study performed by [70],(71] has shown that the use of
an appropriate combination of substrate and superstrate layers can improve the
radiation performance by eliminating surface wave excitation. In monolithic array
applications, where the individual antennas are fed by extensive feeding networks,

an improvement in the radiation efficiency of the antennas will increase parasitic
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radiation. Consequently, the techniques for surface wave suppression have to be
re-evaluated.

In this section, discontinuities on substrate/superstrate and two-layer substrate
combinations made of duroid (¢, = 2.2) and GaAs (¢, = 13) are considered. Specif-
ically, total radiation losses, and the percentages of surface wave and space wave
power are evaluated as functions of the frequency and are compared to the single-

layer substrate case.

Substrate-Superstrate Configuration

Figure 5.15 shows the total radiated power as a function of frequency for a right-
angle bend printed on a 40 mil duroid substrate with and without a 16 mil GaAs

cover. The comparison shows clearly the effects of the superstrate from 10 GHz to
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GHz. In the lower half of the frequency band, the superstrate tends to reduce
es slightly. However, at higher frequencies, the total radiated power is increased
.he presence of the cover. As Figures 5.16 and 5.17 indicate, this excess radiated
rer comes from the enhancement of space wave radiation which is very desirable in
:nnas. On the other hand, in monolithic arrays printed on single layer dielectric
strate a careful design of the feeding network could provide parasitic radiation
1y dBs lower than the primary radiation from the array. The replacement of the
le layer by a substrate/superstrate configuration for array efficiency improvement
d increase the power radiated by all the discontinuities included in the feeding
cture, and as a result, the level of the total parasitic radiation could become
cceptably high and could deteriorate the array pattern substantially. Therefore,

adeoff exists in the design of multilayer structures, and reliable CAD models are
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required for correct design.

Two-Layer substarte

In this case. two different comparisons are performed. At first the total power
radiated by a right-angle bend printed on a 56 mil duroid is compared to the same
bend printed on 40mil-duroid/16mil-GaAs substrate and shows a 20% increase at
the upper end of the frequency band mainly coming from the enhancement of the
space wave radiation (see Figures 5.18 and 5.19). Much higher radiated power is
observed when the geometry of the single layer bend is modified to preserve the
100Qm input/output-port characteristic impedance observed in the two-laver case.
The excess loss observed in this case is due to the effects of electrically thick substrates
which have been reported in [20].

In both of the above reported cases, the frequency range was chosen so that only
one mode is excited in the substrate. Furthermore, the presence of the superstrate
or of a second layer with a higher dielectric constant tends to reduce the power of the
excited surface wave and increase the power radiated into space waves. These effects
have to be taken into account when techniques for enhancement of the radiation

efficiency are applied in arrays fed by extensive feeding networks.
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Figure 5.15: Total Radiation Loss for a microstrip corner discontinuity with (h; =
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CHAPTER VI

CONCLUSIONS

A study of open microstrip discontinuities by the Space Domain Integral Equation
(SDIE) Technique has been presented. The SDIE approach involves the application
of the method of moments to the electric field integral equation in the space do-
main. The integral equation contains the Green’s function appropriate for the open
microstrip geometry, which was formulated such that substrate structures involving
multiple dielectric layers and/or dielectric superstrates could be analyzed. Results
inherently include radiation loss, and conductor loss is included by the replacement of
the conducting strips with surface impedance boundaries. Radiation loss results from
two distinct mechanisms, space wave or surface wave excitation. Space waves refer
to the modes radiated into the semi-infinite region above the dielectric; and surface
waves are modes propagating in the grounded dielectric substrate. A saddle point
analysis was used to separate the total power into these two types. Extensive results
illustrate important and interesting aspects concerning the high frequency behavior
of microstrip discontinuities. Numerical results were validated by experimental data.

In the following sections conclusions of the study are presented.
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6.1 Numerical Considerations

The application of method of moments to the electric field integral equation pro-
duced expressions involving complicated integro-differential operators. In particular.
the elements of the impedance matrix of section 2.4.1 contained a semi-infinite Som-
merfeld integral and quadruple spatial integrals. A numerical evaluation of these in-
tegrals would result in unacceptable numerical errors and unfeasible computer costs.
Therefore, a combination of analytical and numerical methods was employed. For
example, the evaluation of the semi-infinite Sommerfeld integral, performed along
the positive real axis in the complex plane, was divided into two regions: i) From
[0-A] and ii) from [A-00). The parameter A was chosen so that the integrand could
be approximated by an asymptotic expression in the second interval, allowing a
closed form evaluation to be done. Over the first interval, a numerical evaluation
was carried out with fixed point gaussian quadrature.

The quadruple spatial integrals were also computed by a combination of analyt-
ical and numerical techniques. Through an analytical process involving integration
by parts, taylor expansions, and trigonometric identities, the four integrals were rep-
resented by convergent series. These series could be computed far more quickly and
accurately than a full numerical integration.

The analytical and numerical techniques mentioned above were implemented in
powerful computer codes capable of the analysis of advanced open microstrip struc-
tures previously uninvestigated by fullwave techniques. For instance, a meander line
filter structure whose performance was influenced by strong electromagnetic cou-
pling and radiation losses was studied. For this structure, existing CAD software is

completely inadequate and fullwave analysis is needed.
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Another important aspect of the analysis. discussed in section 3.4, is that of
umerical convergence of network parameters. Two types of convergence were inves-
gated: i) convergence pertaining to the choice of the asymptotic parameter A. and
) convergence relating to the choice of subsection size. The choice of both of these
arameters has implications on accuracy and CPU time. In the case of the former.
<cellent convergence was shown for a wide range of the parameter A. As mentioned.
naller values of A result in shorter execution times. Regarding the convergence
lating to the subsection size, results were found to be very stable and accurate for
scretizations greater than 30 subsections/guide wavelength. Results from sparser
scretizations result in less accuracy, but may be acceptable in some applications.
urves in section 3.4.2 may be used to determine the level of discretization required

r a specific application.

.2 Conclusions From Numerical Results

Numerical results were presented in Chapters 4 and 5. In Chapter 4, microstrip
»ments were treated as circuit elements and characterized by network parameters,
ile in Chapter 5, their radiation properties were studied. Experimental verifica-
m demonstrated that the SDIE technique is an extremely accurate method for

aracterizing microstrip structures. From the results several conclusions may be
ade:

2.1 Circuit Performance

icrostrip Tuning Stubs

Results indicate that open microstrip tuning stubs may radiate 20-30 percent of

it input power when printed on a high density substrate (eg. alumina,GaAs) of
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practical thickness. The total radiation loss is influenced by the substrate thickness
and the width of the stub. In addition, when stubs are in a balanced configuration
(Two stubs, one on either side of the line forming a cross) they tend to radiate less

than a single stub because of phase cancellation in the radiated fields.

Meander Lines

Two microwave applications of meander lines were investigated. In the first, me-
ander lines suitable for use as antenna array traveling wave feeds were modeled. It
was found that the phase delay for a long meander line could be accurately deter-
mined from the phase delay of a single period. In addition, meander lines experienced
radiation and conductor losses which increased with increasing line length and fre-
quency.

The second meander line application investigated was filtering. Since meander
lines are periodic structures they exhibit stop and passbands. An example was given
which exhibited a pencil thin passband. This element had high radiation loss, which

must be compensated for if it were to be incorporated into a larger design.

Step Approximation

Experimental results showed that the simulation of irregular structures by the
step approximation was accurate. The approximation was used in the analysis of
a mitered bend discontinuity and a radial tuning stub. The mitered bend demon-
strated superior performance to its right-angle counterpart, having lower return and
radiation loss. The radial stub showed improved bandwidth over the rectangular

stub and a moderate improvement in radiation loss.



Multi-port junctions

A general procedure. discussed in section 2.5. was developed for extracting [S}-
parameters from a multi-port microstrip network. and was successfully employed to
characterize three-port and four port junctions. It was found that junction para-
sitics were greater between ports at right-angles, and that this was not adequately
mnodeled with existing CAD. In addition. it was also found that the radiation loss of
1 right-angle, T-, and cross junction with the same material dimensions were simi-
ar; nonetheless, the cross junction radiated less because of its symmetrical nature.
Radiation loss from microstrip junctions increased steadily with frequency until the
:xcitation of higher order surface wave modes. In general, junctions experienced

ower radiation losses than resonant tuning stubs.

5.2.2 Radiation Properties

A saddle point analysis was applied to study the radiation properties of open
nicrostrip discontinuities in Chapter 6. The technique utilized microstrip current
listributions obtained with the method of moments. Total radiation loss was sep-
wrated into the individual contributions of space wave and surface wave radiation,
und the direction of surface wave propagation within the substrate was shown. These
1ew results represent a substantial contribution to the understanding of the radiation

roperties of open microstrip discontinuities.

surface Wave Excitation

It was shown that on high density substrates of practical electric thickness, radi-
ition loss is dominated by the T'Mj surface wave at high frequencies. This mode is

:xcited along the longitudinal axis for the open-ended stub and bend discontinuities,



and may have a narrow beamwidth.

An example of a mitered bend was shown to radiate less power than its right-
angle counterpart. Such a minor topology change had a significant influence on total
radiated power, without having a more significant impact on either of the two types.
This was reflected in an equal percentage reduction in both space and surface wave

radiation.

Multi-layered Substrates and Superstrates

It is well known that substrate composition plays a major role in microstrip
radiation losses. Examples of microstrip bends printed on two-layered substrates
indicated that combinations having a low permittivity layer over a high permittivity
layer radiated far more than the opposite configuration.

It was found that a superstrate, often used for protection or gain enhancement of
antenna elements, may increase the loss of the microstrip feed network considerably.
This would result in lower overall gain. Therefore, a tradeoff exists between the
enhancement of radiation from the antennas and the undesirable radiation in the
feed network.

A comparison between a corner discontinuity on a single layer of duroid, and on a
two layer structure (GaAs/duroid) having the same total thickness, showed that the
radiation loss was comparable when the conducting strips were of the same width.
However, it was found that the loss was influenced by the strip width. Specifically,
when the width in the single layer case was widened to create the same characteristic

impedance as the two layer case, the loss was substantially higher.
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APPENDIX A

Green’s Function

This appendix contains the functions included in the expression of the Green’s func-
tion in equations (2.18) and (2.19) The functions are given below for three different

substrate configurations.

o Substrate-Superstrate Configuration

The functions for the substrate-superstrate geometry of Figure 1(a) in the

region (0 < Z < hy) are given by

Neh) = A | (A1)
Ne(X) = ui (A.2)
Zee = wuycosh[juy(z = hy)] — upsinh [juy(z — hy)] (A.3)

Ze = [wdwfi(d) - wdfa(M)] cosh [jus(z = hy)]

+ wug [ugfa(A) = €qug fi(A)]sinh ([juy(z = hy)] (A4)

with u; = /k? — A2, The expressions f;(\) and f,()) are the characterisic

equations for surface wave modes given by

fi(A) = wug[ugcosh (jurhy) + ug coth (juzhg) sinh (Fuphy))



+ uy [uy sinh (Juihy) 4+ ug coth (Juahz) cosh (jurhy )] (A.5)
f2(A) = uy[equysinh (Jurhy) coth (juzhy) + €ryug cosh (juyhy )

4+ €up [€roug coth (Jughy) cosh (Juzhy) + €,qugsinh (Juyhy)] (A.6)

o Two-Layer Substrate

The functions for the two-layer case in Figure 1(b) for the region (Z > 0) are

given by

Nee(A) = [us cosh (jurhy) + ugsinh (juyhy) coth (juzhs)] A (A7)
Nee(A) = jeud[esoug cosh (jurhy) coth (jughy) + €qugsinh (jughy)]
[uy cosh (Juqh1) + ug coth (uzhs) sinh (Fuihy)]
— jud[uysinh (juyhy) + ug coth (jughy) cosh (juyhy)) (A.8)
[€,9u; coth (Jughs) sinh (Juzhy) + €.quq cosh (Juihy)] (A.9)

fo = Zzi=e—ju02 (’\10)

o Single-Layer Substrate

The expressions for the single layer case may be obtained from equations (57)-

(60). After some simplification they can be written as

Nee(X) = sinh (Juyhy)A (A.11)
N.e(\) = [(1—¢,)sinhju;hcosh ju;h] A2 (A.12)
fi(A) = wugsinhjuyh 4+ u; cosh ju,h (A.13)

fa(A) = €upcosh jush + uy sinh ju b (A.14)



APPENDIX B

Single Layer Green’s Function

The components of the space domain green’s function for a single layer are

given by

Goe = Gy = ﬂ/”J(A )Me-iuozm Z>0 (B.1)
= T TwE T b YT |

G.: = tan(9)Gy,
Wi 00 —iuezSiDh Jush cosh jush _
= - - € Ji(A Juo A*dAB.2)
e AR VT

Jwio [ sinhu(z + h)

= = —— —MN Z B.3
Gl'-r ny Qﬂ'kz/o JO(/\p) fl(/\) <0 ( )

sinh jujh coshu(z + h)
fi(A)fa(A)

= —-jwﬂo(l - e,)cos¢/°° Ji(Ap) A*d) (B.4)
T 0

with p = \ﬂx —z')2+ (y—y')?% uo = \JA? =k, and u; = /A2 — k% The
equations fi(A) and f,(A) represent characterisic equations for surface wave

modes given by

f1(A) = ugsinh juyh + u cosh ju,h (B.3)
fa(A) = €;,ug cosh ju, h + usinh ju,h (B.6)

where in the above, ¢, is the relative dielectric constant, and A is the thickness

of the substrate. These components of the Green’s function may be tranformed
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from semi-infinite integration along the positive real axis to infinite integrativ:s

by the relationships

1 , 9 o
JolAp) = =[HM(Ap) + Hy (Ap)] B
1
JiAp) = S[H{"(Ap) + HP (V)] B
HE? (\p) = —Hg" (= Ap) B.OY
HP () = HV(=)p) (B.10}

Resulting in the expressions in the free-space region (z > 0)

]w;to (1) o ,sinh ju,h
G,. = / HY 0z AT ) ) B.11)
yy 4 AQ f]( ) (

G.. = tano¢G,,

_jwpo 3 © (1) _uozsinhjulhcoshjulh/\ \{2
47Tkg(1 ET)COS¢[wH1 (/\p)e f}(/\)fQ(/\) fB ")
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APPENDIX C

Surface Wave Fields

surface wave fields resulting from application of Cauchy’s theroem.

€ — cosh?(v,) cosh?(vy) sinh(vy)

f‘«T}\J
E, = kodﬂo\/ cos ( , {C.1)
7 pko Vcosh v, (f2(a, h)]l%-{-_ju"

sm Lm/ —COSn 8 =jkopcosh (vn) ,~koz sinh (vn)

Z>0

NTM \/ € — cosh?(vy) cosh(vy) sinh(vy,)

Ho = V COS (é vco_;h Vn [f;(aﬂh)]|§+.)”n &2

sin [ko\/€, — cosh h]e jkopcosh (vn) , —ko z sinth (vn)

Z>0

v - ]»owﬂo NTM cosh (l/n)Slnh2(1/n)e—jk0pcosh(un) (C.3)
\/ ﬂ’pko Vcosh v,

n-O

cos | km/ —cosh"’(un z + h)] 7 <0
<

|-+Jun

€nkg
2 ko cos _O Vveosh v,
cos [koy/€, — cosh?(v,)(z + b)) 7

[fale W)z 450

<0

nd for the TE case

k2 21 NTE 2 .
Hz = -2 ] sin (¢) Z cosh (Vm’)SZTLh(Um)
2\ wpko =5 Veosh vp[fi(a, )| Fo

sin [ko\/e, - coshQ(u )h)e7kop cosh (vm) o ko z sinh (vm)

P _kowpo sin( }%E cosh(vy)sinh(vy,)
? 2 7rpk0 o Veoshvy[fi(a, h)]lz4

2 NTM COSh(Vn)Sinhz(Vﬂ) —jkop cosh (vy)
e n

(C.4)

(C.5)
Z>0

(C.6)
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. r a3y P ‘4,,‘ ) —v,: . .
Sln'l{o /6, —COS/Z‘(I/n)hlc J"tQCOSh(lfm,e ko zsinh (i, )
L i

k:.) :) NTE .,}Zz . &. } .
H. = _70\/ . sin(o) Z cos (lr/ ‘?‘?77 I(: )
2V mphko m—o \V/cosh z/mlfl(o.h)”%ﬂ%

e—Jkoﬂcosh(um)sin {/\“0 €, — COS}ZQ(I/”)(;; + /l)] 7 <0

kowwo | 27 . “LE cosh(vy,)sinh(v,,)
E, = - sin (o e
2 \ T pkg ) Z \/coshum[fl(a.h)]

' m=0 '%-f-]um

e—JkoﬂCOSh(Um)Sin [ko € — 605}12(1/71)(2 + h)} 7 <0

LT
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APPENDIX D

Evaluation of Quadruple Spatial Integrals

The quadruple integrals in equation (2.40) for direct coupled x-x interactions

can be written

(fra(@)gm. (), Jo(Ap): fue ()90 (4)) (D.1)
= [ [ dedy [ [ dedy(fon(&)gm. (6" Jo(30) fon ()90 (v)

682 ( ) fl/z( )gux( )> (D?)

= [ [ azay [ [ dsey [fn, Dmlt') g u(00) folz >gu,<y>}

(fre(2)gm. (¥),

and for cross coupled x-y terms

&m0 52500 o210 ) D3

62
= [ [ dcay [ [ dady [fn,w)gm,(y') 5237 7900) Sy )guy(x)}

Employing the integral representation for the first order bessel function in

equations (31)-(32), the above may be simplified to the expressions

(fre(2)gm,(¥)s Jo(Ap), frp(2)9,, ()
1

m . . .
— PYRIC —ril,)COS(¢)6M(yu,-y£n,)sm(¢)
27 J-
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(R(Acos{o)))*U(Nsin (0))U{=Asin(o))do Do
5?
(fre(2)gm. (4): 55J0(A0)- i (2)90: (9))
_ _21: : (7 cos 0) 22 ve =Fha ) €05 ()3} 3z =i, ) sin (2]
R(Acos (0))*U(Xsin (0))U(—Asin(0))do (D.5)
82
(frr(2)gm.(¥): 5 % Jo(Ap). fu, ()90, (2))
- L/T (JAsin 0)(jA cos d)e IMZny =Tn;) €08 (9) I AUy ~¥m. ) sin (@)
27
R\ cos(0))R(Asin(¢))U(Acos (@) U(—=Asin(¢))de (D.G

The quantaties R and B are convergent series having the form

R(hcos(6)) = :Z)Aakucosw»% D7)
U(hcos(9)) = éBz(Acos(aﬁ))’ D.3)
where
Ay = kjﬂ ([l—cos(kl )+ é(_l)u(g;);“) (D.9)
B = (-1)(l)" (D.10)

an+1 = j(‘l)n(l:)2n+l-

considering the integral representation for the zero’th order Bessel function
these expressions can be re-written as a summation of derivatives of the zero'th

order Bessel function appearing in the main text (equations (3.8)-(3.9)).
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