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CHAPTER I

INTRODUCTION

The millimeter-wave spectrum ranges from 30GHz to 300GHz whereas the sub-
millimeter wave spectrum extends up to 3THz. This corresponds to wavelengths
between 10 mm and 0.1 mm which lie between the microwave and the infrared spec-
tra. Millimeter-wave frequencies enjoy certain advantages over the corresponding
microwave and infrared frequencies. Millimeter-waves are capable of carrying more
information than microwaves due to their shorter wavelengths. For the same reason
millimeter-wave systems are much more compact than their corresponding microwave
counterparts. Also, because the effects of diffraction diminish as the wavelength de-
creases, quasi-optical propagation in free-space through Gaussian beams becomes
very efficient at millimeter wavelengths. This offers the capability of avoiding losses
associated with conventional propagation media such as waveguides and microstrip-
lines which become severely lossy at millimeter wavelengths [1, 2]. Furthermore,
millimeter-waves suffer less atmospheric attenuation in their transmission windows
compared to infrared and optical wavelengths. For all these reasons millimeter-wave
systems are becoming increasingly important in commercial, scientific and military
applications. Emerging commercial applications include millimeter-wave terrestrial

and satellite communication systems [3], anticollision radars [4], landing systems in
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adverse weather, and Intelligent-Vehicle-Highway-Systems (IVHS) [5, 6]. Military ap-
plications include spread-spectrum communications and radar-systems (7, 8], and also
high resolution imaging and tracking systems capable of operating through clouds fog
and light drizzle [9, 10, 11]. Traditionally, millimeter and submillimeter-wave tech-
nology has been used in radio-astronomy for measurements of molecular absorption
lines that occur in this frequency spectrum and can provide valuable information
concerning the composition of gases in our universe {12, 13]. Also in plasma diagnos-
tics millimeter-waves have played an important role on understanding the effects of
controlled fusion (14, 15].

In recent years, important advances have been taking place in millimeter-wave
technology towards the realization of integrated-circuit millimeter-wave systems. Ad-
vances include the realization of sensitive planar Schottky-diode [16] and SIS detec-
tors [17]. They also include the development of millimeter-wave solid-state sources
such as IMPATT diode oscillators [18, 19], pseudomorphic HEMT and HBT tran-
sistor amplifiers 20, 21] and soliton multipliers [22]. Power combining techniques at

millimeter-wave frequencies have also been developed and a comprehensive review

can be found in [23, 24].
1.1 Millimeter and Submillimeter-Wave Antennas

In order to implement successful millimeter-wave systems, efficient antennas have
to be coupled with the millimeter-wave sources or detectors [25]. The exact mean-
ing of an efficient antenna depends on the application for which the antenna is to
be used. Usually an efficient millimeter-wave antenna should couple well to focus-
ing optics such as to lenses and reflectors. The reason is that for these wavelengths

the effective apertures of the antennas are small and focusing optics is necessary for



collecting as much power as possible. For example in the case of radio-astronomical
receivers, where low-noise requirements are very stringent, the coupling efficiency of
the receiver antenna to the focusing reflector antenna is very important. This cou-
pling efficiency implies that the antenna patterns should be rotationally symmetric
with high main-beam efficiency and low cross-polarization [27, 28]. Also since at
millimeter wavelengths the available power is always limited, the antennas should be
free of surface-wave or dielectric losses. Traditionally, the antennas which are used in
millimeter-wave radioastronomical receivers are the machined conical corrugated [29]
and dual-mode horn antennas [31, 107]. These horn-antennas exhibit rotationally
symmetric radiation patterns, high-gain (20-30dB), low cross-polarization (-30dB)
and a 97%-98% efficiency to the fundamental Gaussian beam. However, they are
difficult to machine at submillimeter-wave frequencies and therefore are also expen-
sive. It is possible to machine corrugated horns up to 300GHz and dual-mode horns
up tp 500GHz [31, 32]. For still higher frequencies (up to 1000GHz) the simple ma-
chined traveling-wave corner-cube antenna is the choice which is customary adopted
[33, 35, 105]. This antenna is compatible with whisker contacted Schottky-diodes
but exhibits relatively high-sidelobes (i.e. reduced beam efficiency) and high cross-
polarization levels.

As discussed before, the machined antennas are difficult and expensive to man-
ufacture at submillimeter-wave frequencies. They also lead to non-planar systems
which are incompatible with integrated-circuit technology. To avoid these problems
various types of printed antennas have been proposed over the years such as the bow-
tie antenna [36], the linear tapered slot antenna [37], the Vivaldi antenna [38] and
the Yagi-Uda antenna [39]. These planar printed-circuit antennas can be thought as

belonging also to the family of the integrated-circuit antennas since their fabrication



utilizes standard integrated-circuit techniques. Their main advantages are that they
allow the easy integration of semiconductor devices on the same substrate. Also they
are reproducible using photolithographic techniques thus leading to reliable and cost-
effective systems. However, these antennas suffer from surface-wave and dielectric
losses {40, 41, 42]. Furthermore, their radiation patterns cannot be compared with
those of the machined horn antennas. For these reason, their widespread use in mil-
limeter and submillimeter-wave frequencies has been limited. The surface-wave mode
problem can be eliminated using a lens of the same dielectric constant attached to
the antenna substrate (substrate lens). The substrate lens approach was first used
by Rutledge et. al [9] at millimeter-wave frequencies to eliminate the power loss to
substrate-modes and to increase the gain of the feeding printed antenna. However, the
substrate-lens still suffers from dielectric losses and its machining can be expensive.

A comprehensive review of the planar antennas can be found in [25, 26, 28].

1.2 The Integrated-Circuit Horn Antenna

A milestone in the development of integrated-circuit antennas has been introduced
by Rebeiz et al. who proposed the integrated horn antenna [43]. In this approach, the
antenna fabrication utilizes micromachining techniques to etch a pyramidal cavity in
silicon. The integrated horn antenna consists of a strip-dipole antenna suspended in a
1pm-thick dielectric membrane in the etched pyramidal cavity. The horn collects the
energy and focuses it on the strip-dipole which is printed on the membrane (Fig. 1.1).
The horn cavity in its simpler form consists of the front- and the back-wafer which
are anisotropically etched and then stacked together and glued to form the pyramidal
cavity shown in figure 1.1 . The opening of the front wafer determines the aperture

size whereas its thickness determines the position of the dipole antenna inside the



horn. It should be understood that the aperture size can be tailored according to the
application by stacking more than two silicon wafers. The etching process is made
using the anisotropic etchant ethylenediamine-pyrocathetol (EDP) as is described in
[44, 45). This results in pyramidal holes bounded by the < 111 > crystal planes
which fixes the horn flare angle to 70.6°. The membrane layer is fabricated either by
silicon-oxynitride PECVD process (Plasma Enhanced Chemical Vapor Deposition) or
by depositing a 3-layer Si02/Si3sN, on the back of the front wafer. This is followed by
etching the underlying silicon until the transparent membrane appears (the membrane
acts as an etch-stop). Also, the horn walls are evaporated with gold in order to reduce
losses. Beam-lead Schottky diodes have been successfully mounted on the membranes
in 94GHz antennas and passed standard industrial vibration and temperature tests.
Also the membranes can be dipped in liquid helium without suffering any breakage.
This allows the integration of SIS detectors on the membranes.

The integrated horn antenna is deprived from surface-wave and dielectric losses,
since the feeding strip-dipole is suspended on a thin ~ lym membrane. Also it has
higher gain and better radiation characteristics than other printed-circuit antennas.
Furthermore, it offers plenty of room at the back of the front wafer for the monolithic
integration of semiconductor devices and interconnects. These advantages together
with its easy repeatability makes the integrated horn antenna ideal for millimeter-
wave imaging applications. Such an integrated-circuit 2-dimensional imaging horn
array is shown in figure 1.2. The integrated array should be understood to be placed
at the focal-plane of an imaging lens [46].

The most important limitation of the integrated horn antenna stems from its large
70.6° flare-angle which is inherent in the anisotropic etching of silicon. This does not

allow for integrated horns with large apertures, due to the introduced phase error



Walls evaporated with
gold

<+——— Sijlicon-nitride
membrane

<«——— Strip-dipole

Back-wafer Front-wafer

Figure 1.1: The basic structure of an integrated-circuit horn antenna.
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[121]. In practice, their gain is limited below 13dB. Also the integrated horn antenna
is just a pyramidal horn and thus cannot compete with the corrugated and dual-

mode machined horn antennas. For this reason the integrated horn antenna is not

well suited for single-channel receivers.

Figure 1.2: The integrated-circuit horn antenna in a 2-dimensional array configura-

tion.

1.3 Outline of the Thesis

In this thesis full-wave techniques are developed and applied for the analysis and

design of the integrated horn antennas. Both single-channel and array applications



are examined. The necessity of developing full-wave analysis techniques derives from
the fact that for the integration of semiconductor devices with the horn antennas,
the driving impedance of the feeding strip-dipole should be accurately known. This
enables the design of the system so that maximum coupling of energy between the
antenna and the device is achieved resulting into optimum system efficiency. Prior
knowledge of the input impedance is very advantageous because it enables the direct
matching of the antenna to the semiconductor device without any matching net-
works and tuning circuitry, the use of which becomes very difficult at millimeter and
submillimeter-wave frequencies. Another objective of this thesis is to optimize the
integrated horn antennas so that they become competitive with the best machined
horn antennas. This is important because it makes possible to realize relatively
cheap integrated-circuit receivers, opening the door to an entire range of scientific
and commercial applications which are currently considered too expensive to under-
take with conventional machining technology (landing systems, radio-astronomical
imaging, mobile-communications). The developed full-wave analysis for an isolated
integrated horn antenna embedded in a ground-plane is based on the mode-matching
technique coupled with the method of moments. For the analysis, the pyramidal
geometry of the antenna is approximated by a staircase waveguide structure and
subsequently the mode matching technique is applied at each waveguide step discon-
tinuity. A comprehensive overview of the thesis now follows:

Chapter II sets the stage for the development of the full-wave analysis. It exam-
ines the mode matching technique of a waveguide step discontinuity and shows that a
proper representation of the step-discontinuity field is the use of a generalized scatter-
ing matrix. Also presented is the algorithm for combining these scattering matrices in

order to describe more complicated geometries consisting of waveguide discontinuities



and sections. Furthermore, some analytical properties of the generalized scattering
matrices are derived. These properties are useful in simplifying and validating the
numerical computations.

Chapter III describes in detail the full-wave analysis of a single integrated horn
antenna embedded in a ground-plane, based on the groundwork of chapter II. The
derivation of the pertinent Green’s function and of the associated moment method
solution of the integral equation governing the strip current is explicitly shown. The
full-wave analysis is then utilized for the investigation of the properties and the radi-
ation characteristics of the integrated horn antennas. Input impedance and pattern
computations are examined and compared to measurements. The full-wave analysis
results enable to establish simple strategies for the design of integrated horn antennas
with tailored impedance and radiation characteristics.

Chapter IV introduces the diagonal step-profile integrated horn antenna in an
effort to overcome the low-gain limitation of the regular integrated horn antenna. In
this approach, the effective flare angle of the horn is reduced by introducing step-
discontinuities in the integrated horn antenna structure. This allows for gains in
the region of 17 dB to 20 dB to be achieved. The symmetry of the horn radiation
pattern is also enhanced by positioning the exciting dipole along the diagonal of the
horn cavity. A specific design example is shown with a gain of 18.4 dB and a 10-dB
beamwidth of 37° in the E, H and 45° planes. The coupling efficiency of this horn to
a Gaussian beam is calculated to be 83%.

Chapter V introduces the quasi-integrated horn antenna which greatly improves
the radiation characteristics of the regular integrated horn antenna making it compet-
itive to the conventional machined horn antennas. The quasi-integrated horn antenna

consists of a flared machined section attached to a standard integrated horn antenna
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to form a multimode horn (Fig. 1.3). The minimum dimension of the machined
section is about 1.4A which permits the fabrication of the quasi-integrated horn up

to submillimeter-wave frequencies. For this antenna a systematic design process is

]
membrane:

]
as
]

]

]

Integrated on Si section Machined gain and phasing section

Figure 1.3: The general configuration of the quasi-integrated multimode horn an-
tenna.
introduced which enables to provide a full range of practical antenna geometries for
millimeter and submillimeter-wave applications. The design methodology is based on
the Gaussian beam approach and the structures are optimized for achieving maximum
fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is em-
ployed in which the integrated part of the antennas is treated using full-wave analysis,
whereas the machined part is treated using coupled mode theory. This results in a
simple and efficient design process. The developed design procedure has been ap-
plied for the design of a 20dB, a 23dB and a 25dB quasi-integrated horn antennas,

all with a Gaussian coupling efficiency exceeding 97%. The designed antennas have
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been tested and characterized using both full-wave analysis and 91GHz/370GHz mea-
surements. The quasi-integrated horn antennas are also examined as feed elements
for Cassegrain antenna systems and are proven to be comparable to the traditional
machined corrugated horn feeds.

Chapter VI examines the properties of the integrated horn antennas in a 2-
dimensional infinite array environment. The approach taken is that of the trans-
mitting mode under scanned array conditions. For this purpose the procedure of
chapter III is coupled together with Floquet-mode theory in order to provide a full-
wave analysis tool for the integrated horn in an infinite array environment. This
enables the investigation of the patterns of the integrated horn antenna ,when em-
bedded in an array, as well as the effects of the mutual coupling on the impedance of
the feeding strip-dipoles.

Chapter VII addresses the problem of device integration with the strip-dipoles
inside the integrated horn antennas cavity. The problem arises from the fact that
semiconductor devices cannot be directly integrated with the receiving strip-dipole,
since the dipole is suspended on the supporting thin membrane. This problem is
solved by inserting a thin GaAs wafer in the integrated horn structure on which the
strip-dipole can be monolithically integrated with Schottky diodes or HEMT transis-
tors. The same approach can also be used with quartz wafers offering better mechan-
ical stability and thermal heat transfer to integrated SIS junctions. Surface waves are
eliminated by synthesizing a cavity around the strip-dipole using metallized via-holes
or etched grooves. Also a simple technique is presented for avoiding trapped modes

in the synthesized cavity leading to relatively wideband impedance characteristics.



CHAPTER II

MODE MATCHING USING GENERALIZED
SCATTERING MATRICES

An analytical solution to the wave equation in a nonuniform waveguide is pos-
sible only when the boundary geometry is a complete coordinate surface in one of
the orthogonal curvilinear coordinate systems. A pyramidal waveguide cannot be
described as such a complete surface in any of the eleven orthogonal curvilinear coor-
dinate systems [47]. However, a pyramidal waveguide belongs to the special category
of non-uniform waveguides with cross-sections described as complete coordinate sur-
faces. For this special category, there are essentially two classes of computational
approaches available in the literature : In the first approach the geometry of the non-
uniform waveguide is treated as a series of cascaded waveguide-step discontinuities,
and subsequently the mode matching technique is applied at every step discontinuity
[48]-[52]. In the second approach, the fields are represented as a summation of the
local waveguide eigenmodes with expansion coefficients which are a function of the
longitudinal distance. A system of ordinary differential equations governing these
expansion coefficients is then formulated to describe the coupling of the local modes
due to the nonuniform boundary surface. This “coupled-mode theory” technique was

originally elaborated in the works of Stevenson [53], Schelkunoff [54] and Reiter [55]
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and its generalization has found a wide range of applications in modern guided-wave
optics. In the modern context, apart from a boundary nonuniformity, the coupling
mechanism could also be attributed to a material nonuniformity, to mutual E-M cou-
pling or even to a material nonlinearity [56, 57, 58]. This “coupled-mode theory”
is usually utilized to provide approximate analytical solutions in the case of weak
coupling mechanisms, and for gradually varying waveguide tapers such approximate
solutions were derived by Solymar [115]. Recently however, numerical techniques
have also been utilized for the solution of the pertinent system of ordinary differential
equations in the case of steep waveguide tapers where there is a strong coupling be-
tween the modes [59, 60, 61]. In this work, it was found that evanescent modes result
in numerical instabilities which are avoided only when treating the taper as several
sections in cascade combined together using generalized scattering matrices. As far
as the integrated horn antennas are concerned, their large 70° flare angle implies a
strong coupling among the local modes. Also, the excitation of evanescent modes is
unavoidable especially near the apex of the horns. Therefore, for the analysis of the
integrated horn antennas, the mode matching technique appears to be the most suit-
able choice. Just for the sake of completeness, it should be mentioned that another
class of techniques which can be used to solve the integrated horn antenna problem
are the fully numerical ones. Such techniques include the finite element[62, 63, 64],
the boundary element [65] and the finite difference methods [66]. However for large
bodies, these methods require large storage memory, fast CPU’s and in addition they
may suffer from problems associated with discretizing open radiating structures. The
integrated horn antennas are both electrically large and open structures. Further-
more, the mode matching technique allows for a preliminary analytical work in order

to precondition the numerical part of the analysis. This results in a much more
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efficient numerical process, both in terms of CPU time and of memory requirements.

2.1 Mode Matching for a Step Discontinuity

Consider the double-step waveguide discontinuity shown below :
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Figure 2.1: A typical waveguide step discontinuity.

The fields in the p** waveguide (p = 1,2) can be written in the form of a modal

series :
Ep _ =~ p bp Efl(:r?y) 21
t(‘r’y) - zﬂ:(an+ n) Y-,f; ( : )
B(z,y) = (-2 y\¥? and B=h,x@ (22

where €? (z, y) is the eigenfunction for the n** transverse mode, Y?? is the corresponding
wave admittance, and 7, denotes the inward unit normal vector to the cross-section
A, = X, x Y, of the p'* waveguide (physical port). The square root appearing in
equations (2.1)-(2.2) is taken to be the positive square root (=7 < arg(Y?) < ). In
this simplified notation, only one index is used to number the modes and there is no

distinction between TE and TM modes. The modes appearing in equations (2.1) and



(2.2) are normalized according to :

<R >, = /A & X R? -7y dA, = cobmn (2.3)

»
Note that in the definition of the inner product in equation (2.3), a complex conjuga-
tion for the mode h” has been suppressed, since for lossless waveguides the eigenmodes
can always be chosen to be real [67]. In order to derive the generalized scattering
matrix S of the step discontinuity of figure 2.1, it will be assumed that the modes
are orthonormalized , i.e ¢, = 1. This orthonormalization of the modes enables the
definition of the modal coefficients a, and b, so that the square of their moduli |a,|?
and |b,|? to be proportional to the incident and the reflected power carried by a
propagating mode (€,), respectively. Furthermore, an evanescent TE mode carries
an incident reactive power equal to j|a,|*/2, whereas an evanescent TM mode car-
ries an incident reactive power of —j|a,|?/2. These definitions for the normalization
of the eigenmodes are quite important because they lead to symmetric generalized
scattering matrices and therefore reduced numerical computations. This issue will be
examined in more detail in section 2.2. The derivation of the eigenmodes in equa-
tions (2.1) and (2.2) is based on the use of Hertzian potentials and the details of their
derivation are given in Appendix A.

The evaluation of the generalized scattering matrix for the step-discontinuity of
figure 2.1 is straightforward and is based on the enforcement of the continuity of the
tangential electric and magnetic fields over the discontinuity interface. The explicit

form of the continuity conditions is :
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Electric field:
<ELRI > =—<ELRE> +<ELRE>4_a=—<ENRE>4 (24)
Magnetic field:
<e HE>a=<é& H >y (2.5)

The above mode-matching equations, along with the orthonormality condition of (2.3)

result in the following relations :

Nf _
Yial—8) = S Y2(8h —ak) < &, kY >4 (2.6)
N, ]
(VY@ +8) = 1/ /V2)(al, +bL) < &b, B2 >4, (2.7)

Ideally, the true values of the wave amplitudes will be obtained only when an infinite
number of modes is used in the mode matching technique. It is important however to
realize that equations (2.6) and (2.7) are enforced to remain valid for any arbitrary
number of modes Ny practically used in the mode matching technique. Equations

(2.6) and (2.7) can also be represented in a matrix form defined by :

Y11/2(al —-b) = WTY12/2(b2 ) (2.8)

WY_II/Z(GI + bl) = Y_21/2(a2 + b2) (249)
where the various Ny x Ny matrices involved are defined by :

{(Whim = <én,hl >y (2.10)

Vi, = diag{(¥7)51/2, (V)52 oooe (VR )E117) (2.11)

Notice that matrix W is real since it involves only real eigenmodes as previously

pointed out. Now, the generalized scattering matrix of a discontinuity connected to
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two physical ports is defined as follows :

- by _ Sn S a (2.12)
by Su Sz az

In equation (2.12) a;, (b;) represents a column vector containing the coefficients for
all modes incident (reflected) to the discontinuity of waveguide #1. In a similar way,
the column vectors a,, by are also defined. Ideally, the generalized scattering matrix
S (S-matrix) should be of infinite order but in practice it is truncated in accordance
to equations (2.8) and (2.9). To avoid any confusion, it is important to define the
generalized scattering matrix S as completely as possible, and to distinguish it from

the usual scattering matrix of circuit theory [68, 69]. For this purpose the following

statements relating to the S-matrix are made explicit :

1. The generalized scattering matrix S directly reflects the mode matching tech-
nique used for its derivation. Therefore, if Ny modes are retained in the mode

matching technique then the corresponding S-matrix should be of order 2Ny.

2. The S-matrix relates both propagating and evanescent modes. Therefore, it
contains information for both the power and the fields existing around the
discontinuity. Incidentally, this is the reason for which the S-matrix is called

“generalized” [70, 71].

3. The S-matrix for a step discontinuity is defined with the reference plane coin-

ciding with the discontinuity plane.

If it is desirable to compute the usual scattering matrix of circuit theory, then the S-
matrix should be computed using (ideally) an infinite number of modes. Subsequently
only the scattering matrix elements of S which relate propagating modes should be

selected for constructing the required usual scattering matrix. Also note that since
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the generalized scattering matrix contains all the field information it can be used to
characterize interacting discontinuities, unlike the usual circuit scattering matrix.
The exact form of the S-matrix for the step discontinuity of figure 2.1 is obtained

after some algebraic manipulations of the matrix equations (2.8) and (2.9) and is

given by :
Sy = (VIV+U)(U-VTV) (2.13)
S = Sp, (2.14)
521 - V(U + 511) (2]5)
522 = VS];)—U (2]6)

Where U denotes the unit matrix of order N; and VT denotes the transpose of V' .

The submatrix V is related to equations (2.8) and (2.9) through (see Appendix B) :
V=YW Y4, (2.17)

Note that the symmetry of the S-matrix is readily revealed in the above explicit form

for the waveguide step discontinuity.

2.2 Properties of the Generalized Scattering Matrices

In this section some properties of the generalized scattering matrices will be re-
vealed and examined. This task is not only of theoretical interest but it also provides

useful information and relations for the verification of the mode matching technique.
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2.2.1 Symmetry: General Case

In section 2.1 we have stated that the orthonormalization of the eigenmodes results
in symmetric matrices. Indeed for the special case of the step-discontinuity of figure
2.1, the S-matrix as given by equations (2.13 - 2.16) verifies this assertion. Here this
statement will be proved in the general case of an arbitrary generalized scattering
matrix. The proof is based on the Lorentz reciprocity theorem [72] and is similar
to the proof used in the case of the usual scattering matrix [69]. For this purpose
consider two cases of exciting the general discontinuity of figure 2.2. In the first case
(case A) physical port #1 is excited by the i** mode of amplitude a}, establishing
the A fields, and in the second case (case B) physical port #2 is excited by the j*
mode of amplitude a?p establishing the B fields.

Lorentz reciprocity theorem states that the relation between fields A and B is

determined by [72]:
/C(E" x Hg) -4 dC = /C(EB x Hy) -7 dC (2.18)

where C denotes the cross-sectional area of both waveguides, i.e C = A; + A;. Using

the normalization condition (2.3) to evaluate the L.H.S of (2.18) yields :
/C(EA x Hg)-# dC =< EA BB >, + < B4 HP >,
= —al,bigci — Y babrpen — Y 0 4blpca + algblyc; (2.19)
Similarly the R.H.S of equation (2.18) yields :
/C(EB x Hy) -7 dC =< EB HA >4, + < EB H* >,
= aj,bigci — Z bl bl gen — E b2 bl ge, — a?Bbecj (2.20)
Equating expressions (2.19) and (2.20) one obtains :

a}Ab}Bc,' = ban?Bcj (2.21)
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Figure 2.2: A discontinuity having port #1 excited by the :** mode establishing fields
of case A (top) , and having port #2 excited by the j** mode establishing
fields of case B (bottom).
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4

Now the definition of the generalized scattering matrix (Eqn. 2.12) yields bJZA =
S(i+ny)i a4 and bjg = Sij4n,) alp, where Ny is the number of modes retained in the
mode matching technique; Since the excitation amplitudes a}, and afB are completely
arbitrary, equation (2.21) readily implies that Sy;4n )ci = S(j+n;)ic;. Therefore, it
is evident that Si; equals S only when the normalization coefficient in (2.3) is a
constant for every mode, i.e ¢; = ¢; = c¢. In order to complete the proof, the case in
which the same physical port is excited by different modes should also be considered.
For this purpose, consider the situation of figure 2.3 where in the first case physical
port #1 is excited by the ¢** mode with amplitude a!, whereas in the second case
the same physical port is excited by the j** mode with amplitude ajp. This time,

Lorentz’s reciprocity theorem (2.18) implies that :

1 11 1 1 1 1 2 2 _
—a;4b;pci + aijjch - Z by abnpcn — Z brabnpen =
n

*G}Bb;ch + a}Ab}Bci - Z b}zAb:chﬂ - Z bfob?chﬂ (2.22)

which reduces to b} 4a}gc; = bjgalsc;. Sincein this case bj, = Sjia, and blp = Sjjalp,
it is implied that S;j¢; = Sjic;. This completes the proof of the assertion that with
a constant normalization factor ¢, = ¢ in equation (2.3) ,the generalized scattering

matrix S becomes symmetric.

2.2.2 Conservation of the Complex Power: Step-discontinuity

The conservation of the complex power for the generalized scattering matrix of
the waveguide step-discontinuity of figure 2.1 is now examined. The complex power

flowing at each of the two physical ports of figure 2.1 is determined by :

1 _ - . 1

St = 5 ) (B'x (H')) 2 dAr= (o = b) (Vo) Voipplen +81)  (223)
1 _ - . 1

S, = 5], (E2 X (H2)*) (=2)dA; = '2'((12 - b2)T(Y12/2)tY_21/2(‘12 + b2) (2.24)
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Figure 2.3: A discontinuity having port #1 excited by the :** mode establishing fields
of case A (top) , and having port #1 excited by the 5 mode establishing
fields of case B (bottom).
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where t denotes the Hermitian operator. In what follows the real power is defined as
the real-part of the complex power S defined in equations (2.23) and (2.24) irrespective
of the number of modes N; employed in the mode matching technique. The issue
here is to determine whether the mode matching technique, implemented using a
finite or infinite number of modes, conserves the complex power i.e whether S$; + S, =
0. For this purpose, consider the matrix mode matching equations (2.8) and (2.9)
which are equivalent to the generalized scattering matrix S of equations (2.13)-(2.16).

Multiplying (2.8) on the left with the inverse of W7 results in :
(W)Y )a(ar = by) = Yiia(by — ag) (2.25)
Taking the Hermitian of (2.25) and multiplying with equation (2.9) yields :
[(WT)™Yypp(ar — b)WY, (a1 + b))
= [Y75(bs — a2)]"[Y?) 5(az + b)) (2.26)
which simplifies to :
(a1 = by)(Yyh) Y2y jpar + b1) = (b2 — a2)(Y{,) Y2, (a2 + b2) (2.27)

Comparing equations (2.23, 2.24) with equation (2.27) it is evident that the complex
power is conserved, i.e §; + S; = 0. It is important to realize that for deriving
this conservation property, it is not necessary to assume that the number of modes
included in the mode matching technique is infinite. Therefore the following are valid

statements:

1. The generalized scattering matrix S of a step discontinuity (infinite or trun-

cated) preserves the complex power.

2. Checking the convergence of the mode matching technique (for a step discon-

tinuity) by just testing the conservation of the complex power across the dis-
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continuity is not a correct procedure. The complex power is always conserved
irrespective of the number of modes used in the implementation of the mode

matching technique.

3. When the number of modes included in the mode matching technique is not suf-
ficient to realistically characterize the step-discontinuity, the predicted complex
power will not converge to the true (measured) value. However, the previous

two statements will always be valid.

4. A tapered waveguide which is treated as a cascade of waveguide step disconti-
nuities connected with waveguide sections preserves the real power, irrespective
of the number of modes retained in the mode matching technique. This is a
consequence of statement #1 and the fact that a mode conserves its real power

upon propagating in a lossless waveguide section.

The above statements are in agreement with the work of [73, 74], in which the conser-
vation of the complex power was used to replace one of the field continuity equations
when deriving the generalized scattering matrix of a waveguide step-discontinuity.
The conservation of the complex power can be utilized in order to reveal a corre-
sponding property of the S-matrix of a waveguide step discontinuity. This is achieved

by noting that the conservation relation of (2.27) can be recasted in the form :

a'Ya-b'Yb+alVb—btYa=0 (2.28)
a1 bl
where a= , b=
a by

and Y is a diagonal matrix with entries either 1 or +; defined by :

| (ry)tye 0
y=| V¥ (2.29)
0 (Y12/2)TY-21/2
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The definition of the S-matrix as given by (2.12) together with equation (2.28) implies

that :
a(Y -StYS+VYS-5)a = 0
or  d(I-SYY(UI+S)a = 0 (2.30)

and since the excitation a is arbitrary the following relation for the S-matrix of the

step discontinuity of figure 2.1 is readily established:

A

(I-SY(I+5)=0 (2.31)

Note that in (2.31) the symmetry of S allowed the replacement of the Hermitian
operation by that of a complex conjugation. Also it should be pointed out again
that property (2.31) is valid for either an infinite or a truncated step discontinuity

S-matrix.

2.2.3 Conservation of the Reaction: Step-discontinuity

In this section the generalized scattering matrix S of a waveguide step discontinu-
ity will be examined from the point of view of the conservation of the reaction. The

reaction at each side of the step discontinuity of figure 2.1 is defined by [76] :

R = /A (B' x HY)- 2 dAy = (a1 — by)T (a1 + by) (2.32)
R, = /A (E? x H?)- (=3) dA; = (az — b)"(az + by) (2.33)
2
Let us now examine the information we can obtain from the mode matching equations
(2.8) and (2.9) with regards to the reaction around the step discontinuity. First
consider the mode matching equations (2.8) and (2.9) recasted in the form :
(a1 —b1) = Y—11/2WTY12/2(b2 — az) (2.34)

(a1+ b1) = Yoy W'YZ) p(a2 + bo) (2.35)



26

Transposing (2.34) and multiplying with (2.35) immediately results in :
((11 - bl)T(al + bl) = (b2 - GQ)T(GQ + bg) (236)

Comparing (2.36) with the definition of the reaction given in equations (2.32) and
(2.33), it is inferred that the mode matching technique conserves the reaction of a
step-discontinuity, i.e. R;+ R; = 0. The conservation of the reaction can be exploited
to reveal an interesting property of the generalized scattering matrix of a waveguide
step discontinuity. For this purpose, note that the conservation equation (2.36) can

be simplified to :

(a1)Tar + (a2)Tay = (b1)Tby + (b5)Tby (2.37)

or  afa = b7b (2.38)

Now the application of the definition of the generalized scattering matrix b = Sa
(2.12) to equation (2.38) and the symmetry of the S-matrix yields: a¥(I — $S)a = 0.
Since the excitation vector a is arbitrary, the following property of the generalized

scattering matrix of a step discontinuity is established :
SS=1 (2.39)

Property (2.39) is a consequence of the conservation of the reaction by the mode
matching technique, and is valid for either the infinite or the truncated generalized
scattering matrix of a waveguide step discontinuity. The simple form of the revealed
property provides an easy way for checking the correct numerical implementation of

the mode matching technique for a waveguide step discontinuity.

2.2.4 Numerical Verification

In this section, some of the previously discussed properties of the S-matrix will

be numerically verified. First, consider the rectangular waveguide step discontinuity
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of figure 2.1 with X; = ¥; = 0.55) and X; = Y; = 0.70A. The step discontinu-
ity is assumed to be excited from physical port #1 by the TE;, mode bearing an
amplitude of al; = 1, and by the TE;, mode bearing an amplitude of a}, = 0.5.
Hence the TE;o carries an incident power of 0.5 (W) whereas the TE;, mode is
evanescent and carries a reactive incident power of j0.125 (W). Because of the
symmetry of the step-discontinuity and of the excitation fields, only modes of the
form (TEmpn/TMma m = 1,3,5---M, n = 0,2,4,6---N) are excited. Therefore the
mode matching technique is implemented using only these modes, reducing signifi-

cantly the associated computational cost. The conservation of the complex power for

this example is examined in table 2.1. The computations are performed on an IBM

RS6000/320H RISC workstation and are implemented in FORTRAN.

Modes up to (M,N) | Complex power §; (W) | Complex power —S; (W)

(1,2) (0.5313097,0.4008319E-01) | (0.5313097,0.4008319E-01)
(3,2) (0.5339280,0.7810672E-01) | (0.5339280,0.7810672E-01)
(5,4) (0.5216161,0.1133412) (0.5216161,0.1133412)
(7,6) (0.5176831,0.1303649) (0.5176831,0.1303649)
(9.8) (0.5168464,0.1341531) (0.5168464,0.1341531)
(11,10) (0.5168735,0.1328174) (0.5168735,0.1328174)
(13,12) (0.5167489,0.1326802) (0.5167489,0.1326802)
(15,14) (0.5164196,0.1346624) (0.5164196,0.1346624)

Table 2.1: Conservation of the complex power by the mode matching technique

(Modes up to (TEmn/TMmn m=1,3,5---M, n=0,2,4,6---N)).

It is observed from table 2.1 that the complex power as given by equations (2.23)

and (2.24) is conserved irrespective of the number of modes used in the implemen-
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tation the mode matching technique. However, to obtain convergence and to realis-
tical!* model the discontinuity, modes at least up to (M =9 and N = 8) should be
included in the mode matching technique.

For the same discontinuity the S-matrix properties of equations (2.31) and (2.39)
are also numerically examined in table 2.2. In order to be able to present the numerical
results, the S-matrix was derived using only three modes, specifically the TE,o, TE;;
and TM;; modes. As previously argued, properties (2.31) and (2.39) should be valid
for any number of modes used in the mode matching technique. From table 2.2 it
is evident that properties (2.31) and (2.39) are indeed validated for the particular
step-discontinuity under consideration. This verification furnishes a practical method
of checking the numerical implementation of the mode matching technique for the

waveguide step discontinuity of figure 2.1.

2.3 Generalized Scattering Matrices in Cascade

The mode matching technique can be extended in order to analyze more com-
plicated structures than simple waveguide step-discontinuities. For this purpose, an
algorithm is described in this section which enables the combination of individual
generalized scattering matrices connected in cascade. A typical application of this
combination process is the analysis of a waveguide taper which can be considered
as a cascade of waveguide step discontinuities connected together through the use of
waveguide sections (see Fig. 2.4). Figure 2.5 shows two generalized scattering ma-
trices S and S which are connected in cascade through an intermediate network
having a generalized scattering matrix denoted by T

The scattering matrices S4, T, SZ are assumed to characterize networks con-

nected with two physical ports and therefore can be partitioned into four submatrices



matrix indices 1, )

x

matrix (I - S*)Y(I+S5)=0

matrix SS =1

11

(-1.1920929E-07,-3.7252863E-09)

(1.000000,1.8626491E-09)

12

(-1.4901161E-08,2.2351742E-08)

(-7.4505802E-09,2.0326483E-16)

13

(2.1316282E-14,2.4868996E-14)

(1.0658141E-14,1.0658141E-14)

14

(-1.1920929E-07,-3.7252856 E-09)

(-2.7939679E-09,-3.7252856 E-09)

15

(3.7252899E-09,1.1175870E-08)

16

(0.0000000,2.8421709E-14)

(3.3750780E-14,3.5527137E-15)

21

1.4901161E-08,7.4505806 E-09)

(-1.4901161E-08,3.7252896 E-09)
(

-7.4505802E-09,2.0326483E-16)

22

-3.7252903E-09,1.7881393E-07)

(0.9999999,1.8626451E-09)

23

(3.5527137E-15,2.2204460E-16)

24

(
(6.6613381E-16,1.7763568E-15)
(7.4505802E-09,1.4901161E-08)

1.4901160E-08,2.2748782E-16)

25

3.7252903E-09,8.940696 7E-08

26

(_
(-8.9406967E-08,1.5358707E-17)
(7.7715612E-15,-3.3306691E-16)

31

(
(- )
(-1.3322676E-15,8.8817842E-16)
(-7.1054274E-15,1.0658141E-14)

(1.0658141E-14,1.0658141E-14)

32

(-6.6613381E-16,-1.7763568E-15)

(3.5527137E-15,2.2204460E-16)

33

(0.0000000,5.9604645E-08)

(1.000000,-7.6232965E-21)

34

(-3.5527137E-15,2.1316282E-14)

(2.1316282E-14,-3.5527137E-15)

35

(-7.7715612E-16,-1.7763568E-15)

(3.5527137E-15,1.8873791E-15)

36

(-6.7762636E-21,0.0000000)

8.9406967E-08,-3.9175274E-21)

41

(-4.2351647E-22,4.5731521E-15)

(-2.7939679E-09,-3.7252856 E-09)

42

(7.4505815E-09,2.1040636E-16)

43

(7.1054274E-15,2.1316282E-14)

(
(-1.4901160E-08,2.2748782E-16)
(2.1316282E-14,-3.5527137E-15)

44

(0.0000000,-1.8626400E-09)

(1.000000,5.1145450E-15)

45

(-1.1175872E-08,7.4505802E-09)

7.4505815E-09,1.1175870E-08)

46

(0.0000000,4.2632564E-14)

(3.3750780E-14,8.8817842E-15)

51

1.4901161E-08,-5.7813413E-16

52

8.9406967E-08,1.5358707E-17)

53

54

( )
(3.7252903E-09,-7.1517334E-17)
(-1.4432899E-15,2.6645353E-15)
(1.4901161E-08,-4.4703484E-08)

(-
(-1.4901161E-08,3.7252896 E-09)
(
(

(3.5527137E-15,1.8873791E-15)
-7.4505815E-09,1.1175870E-08)

395

(0.0000000,1.1920929E-07)

(0.9999999,-3.7252903E-09)

56

(5.9952043E-15,8.8817842E-15)

(-5.7731597E-15,3.6082248E-15)

61

(-3.5527137E-14,1.7763568E-15)

(3.3750780E-14,3.5527137E-15)

62

(-3.8857806E-15,-6.6613381E-16)

(7.7715612E-15,-3.3306691E-16)

63

(2.0977300E-21,8.9406967E-08)

(8.9406967E-08,-3.9175274E-21)

6 4

-4.7961635E-14,3.5527137E-15

(3.3750780E-14,8.8817842E-15)

65

(-5.7731597E-15,3.6082248E-15)

66

( )
(3.0531133E-15,-9.3258734E-15)
(-2.5410988E-21,1.7881393E-07)

(1.000000,8.4703295E-22)

a

Table 2.2: Numerical verification of the matrix properties (I — S*)Y(I + S) = 0
and SS = I for a step discontinuity generalized scattering matrix with
X; =Y =055\ X, =Y, = 0.70\. The modes used in the mode-
matching technique are (TEpn/TMms m =1, n=0,2).
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port #1 port #2

Figure 2.4: A waveguide taper approximated by a series of waveguide-steps connected
through waveguide sections.

b, «— —i> —> -« —>b

Figure 2.5: Combination of S-matrices in cascade.
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according to equation (2.12). For this configuration, it is straightforward to show

that the combined matrix S42 is given by :

o SA 0 L SA4 0 Ty Th S, 0 Si 0
0 SE 0 S5 IR EY 0 S§ 0 Sp
(2.40)

For the special case in which the intermediate network is a waveguide section of length

[, the scattering matrix I is given by :

0D R S|
I'= where D = diag{e M, ™72 ... e N1} | (2.41)

D 0

~vm is the propagation constant of the m* mode and, Ny is the number of modes
used in the mode matching technique. It is then elementary to show that for this
particular case, the expression for the combined matrix S4B of equation (2.40) can

be simplified into the form :

_ SA 0 X S&ED 0 LSED L SA 0 242
0 SE 0 SED R RSADI|| o SB

SAB

where L=(U-SEDSAD)' and R=D'LTD,

and U is the unit matrix of order N;. Note that in the original expression (2.40),
the matrix inversion involved is of the order 2Ny, whereas in (2.42) only a matrix
inversion of order N; is required. Also, expression (2.42) can be repeated iteratively

in order to combine more than two scattering matrices in cascade.

2.3.1 Numerical Stability Issues

At this point it is appropriate to address the question of numerical stability in the

process of combining a number of discontinuities in order to analyze a more complex
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structure, such as the waveguide taper. This issue is quite important and justifies the
choice of the generalized scattering matrix as the appropriate matrix representation
to be used with the mode matching technique. For example, it would have been much
easier to use generalized wave-transmission matrices (7-matrices) in the combination

process defined by :
b Thw Th, az

= (2.43)
a Ty T by

Then the combination of cascaded discontinuities would have been implemented by
just multiplying together the individual T-matrices. This would have saved one ma-
trix inversion at each combination step when compared to the scattering matrix ap-
proach (see Eqn. 2.42). For what reason therefore to employ scattering matrices
instead of transmission matrices when combining discontinuities in cascade ? In or-
der to resolve the situation, let the structure of a T-matrix in (2.43) be more carefully
examined: It is observed that the transmission matrix relates only modes existing in
different physical ports. Therefore, for a long structure which involves evanescent
modes, such as the waveguide taper, the T-matrix must include very large and very
small numbers in order to represent the weak interaction between the evanescent
modes. This results in T-matrices with inherently poor condition numbers. On the
other hand, the scattering matrix S as defined by equation (2.12) accounts for the
interaction between the evanescent modes at different physical ports by the use of
very small numbers only. This leads to numerically more stable matrices. Another
evidence in favor of the numerical stability of the S-matrices is the fact that in the
combination algorithm of equation (2.42) only exponentials of negative argument
appear. A numerical example is examined below from the viewpoint of numerical

stability. The example concerns a pyramidal waveguide taper having an input cross-
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section of dimensions X; = Y; = 0.15), an output cross-section of X, = ¥; = 1.35)
and a flare-angle of 70 degrees. The taper is analyzed by treating it as a cascade of
waveguide step discontinuities connected through 170 waveguide sections (Fig. 2.4).
The analysis is performed both by employing generalized scattering matrices and by
the the use of transmission matrices. In the former case, the S-matrices are combined
using equation (2.42) repeatedly, and in the latter case by direct multiplication of the
individual T-matrices. The taper is assumed to be excited so that only modes of the
form (TEmn/TMma m =1,3,5---M, n =0,2,4,6--- N) are excited, which complies
with the geometrical symmetry of the taper. In table 2.3 the reciprocals of the con-
dition numbers of the combined S-matrix and of the combined T-matrix are being
compared [77]. The condition numbers were estimated through the use of the very
popular linear algebra software package LINPACK which has been developed at the

Argonne National Laboratory.

Modes up to (M,N) | S-matrix (condition nb)~! | T-matrix (condition nb)~!
(1,2) 4.3862179E-2 4.4416655E-8
(3,2) 1.3145911E-2 3.2150078E-11
(5,4) 8.6669676E-4 1.9952361E-11
(7,6) 7.2591385E-5 2.2053927E-13
(9,8) 1.5608929E-5 1.4833988E-13
(13,12) 3.7324592E-9 1.6453993E-16

Table 2.3: Comparison between the reciprocals of the condition numbers for the S-
matrix and T-matrix of a pyramidal waveguide taper (see text).

From table 2.3, it is evident that the transmission matrix T for this example

quickly becomes ill-conditioned as the number of modes in the mode matching tech-
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nique increases. On the other hand, the corresponding scattering matrix is well
behaved and can safely be used with higher order modes. As a conclusion, it can
be stated that in order to describe interacting discontinuities in cascade, the use of
generalized scattering matrices is much more appropriate than the obvious use of
generalized transmission matrices. In the case of the integrated horn antennas, input
impedance calculations require the use of many higher order modes and therefore it

is essential to utilize scattering matrices in the mode-matching technique.

2.4 Summary and Conclusions

The mode matching technique has been examined for the analysis of interacting
waveguide step-discontinuities. It was shown that an appropriate representation of the
fields around the discontinuities is the generalized scattering matrix S. This S-matrix
contains information for both the propagating and the evanescent modes around the
discontinuity. It is numerically stable and can be utilized for the analysis of waveguide
step-discontinuities in cascade. Some properties of the S-matrix describing a single
step-discontinuity have been revealed and numerically verified. These properties are

useful in simplifying and validating the numerical computations.



CHAPTER III

FULL-WAVE ANALYSIS OF THE
INTEGRATED HORN ANTENNA
EMBEDDED IN A GROUND-PLANE

The full-wave analysis of the integrated horn antennas is based on the computation
of the Green’s function for the antenna structure and the subsequent application of the
method of moments to evaluate the strip current. Due to the noncanonical geometry
of the horn, the Green’s function cannot be represented in a closed form as is the
case of most previously solved planar structures [78]-[81], and therefore the Green’s
function can only be evaluated numerically. The approximated geometry is presented
in figure 3.1 where a strip-dipole excites the whole structure and the aperture of the

horn is assumed to be mounted in an infinite ground-plane.

3.1 Construction of the Electric Field Integral Equation
(EFIE)

The electric field due to a volume current density J satisfies the vector wave
equation:

U x ¥ XE - EE = —jwu,J (3.1)

35
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aN<_|

bN —>,

Apex section (0)

§ Source-section (I,II)

Infinite
ground-plane

Y
Aperture section (N)

Figure 3.1: Approximation of the horn geometry by cascaded waveguide step discon-
tinuities.
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where k = 27/ is the free-space wavenumber. A similar equation is also satisfied by

the dyadic Green’s function:

~!

U X ¥ XG = k2G = —jwu.b(F — 7 ) (3.2)

where the vector 7 denotes the position vector of the observation point and 7 is the
position vector of a source point. Using (3.1) and (3.2) together with Green’s second

identity in vector-dyadic form yields [67, 82):

A= [ [ [ I6) G+ ! $(7' % B (3 x ) = (3 x B) (v x G) ds
JWHoJS

(3.3)
In equation (3.3), S is an arbitrary surface which encloses the current carrying vol-
ume V and 7 is the corresponding outward unit normal vector. For the structure
under consideration, the tangential electric field vanishes on the perfectly conducting
walls of the horn and the radiation condition is satisfied at infinity [83]. Also, the
Green’s function is chosen to satisfy the same boundary conditions as the electric
field everywhere except on the current carrying strip surface. Therefore, by choosing
the surface S to be identical with the walls of the horn (including the infinite ground
plane) and to close at infinity, the contribution of the surface-term in equation (3.3)
vanishes. Finally, by assuming that the exciting strip-dipole of the horn is of in-
finitesimal thickness, equation (3.3) yields for the electric field on the source plane
(z=0):

E(z,y,z=0)= / J(z'y')- é(m,y,x',yl)dm'dy’ (3.4)
sd
where S, is the strip-dipole surface. The apparent violation of the preservation of the
dimensions in equation (3.4) is due to the assumption of a unit driving current for
the Green’s function, as implied by the idemfactor Iin equation (3.2).

In order to set up the Electric Field Integral Equation (EFIE), equation (3.4) is
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employed to enforce the boundary conditions of the electric field on the strip-dipole
surface. The strip-dipole is assumed to be driven at its center by a delta-gap voltage
source of unit strength. On the rest of the strip surface, the tangential electric field

vanishes and therefore the pertinent EFIE for a vertical strip-dipole (j-directed) is

given by:
7 / ' = ' ' ! ! = _]‘/6? |y|-<-—5/2’ I:I:IS’U)/2
/ J(z,y) G(z,y,z,y)dedy = E, = (3.5)
*d 0, otherwise

where § is the length of the gap and w is the width of the strip. The EFIE of equation
(3.5) is an inhomogeneous Fredholm integral equation of the first kind and is solved
by the method of moments (71, 84]. The corresponding solution procedure will be
examined in detail in section 3.3 but first the derivation of the required transverse

Green’s function at the source-plane is presented.

3.2 Derivation of the Green’s Function

The pertinent Green’s function is obtained by evaluating the electric field radiated
by the approximate structure of figure 3.1 when it is excited by a Hertzian dipole. To
calculate this field, the mode matching technique is implemented at each waveguide
step using generalized scattering matrices. This method has been described in chapter
IT and enables the derivation of two combined scattering matrices S4 and SB. The
generalized scattering matrix S characterizes the structure right of the source plane
and the generalized scattering matrix S® characterizes the structure left of the source
plane. The scattering matrices S# and S are used to transfer the aperture and the
apex fields on the source interface respectively, and their explicit form is described

below (see Fig. 3.1):
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B B A cA

bo _ Sh Si2 0 brr _ S Stz ar (3.6)

by S8 S8 aj by Sy S3 an
The waveguide indices 0, I, II, N in equation (3.6) denote the apex, source (left),
source (right) and aperture waveguide section, respectively. Note that at the apex
of the horn it is assumed that there are no reflections since the fields in this section
are strongly evanescent. Therefore, the apex is modeled by an absorbing boundary
condition. An additional relation between the waves (an, by) of the aperture section
is obtained by matching the aperture fields to free-space. For this purpose, the free-
space field is represented by its plane wave Fourier expansion [72]. From the continuity

of the electric and magnetic fields over the aperture of the horn the following relations

are obtained (see Appendix C):

o e g ooy £ e o, g
i YJEN YTMN i 7
I F i o

ZZEgEN\/m(bTEN TEN Zzé MN\/')?A/I—]V(bTMN_a?jM,N)
J J

1

! [ e x(kx glemiomeond,di, (3.8)

The plane-wave spectrum of the free-space field g(k,, k,) is eliminated between (3.7)
and (3.8) by Fourier transforming equation (3.7) and substituting it in (3.8). This
provides the required relation among the coefficients of the aperture section which is

given below in a scattering matrix form:

bN = S“”aN = —F2_21F11(1N (39)



40

The matrices Fy; and F3, contain spectral integrals between the modes of the aperture

section and are defined by (Appendix C):

an 0

[ Fin Fn } (3.10)

by 0
To avoid numerical integrations having infinite limits, the integrals are transformed in
the space-domain using Parseval’s theorem (see Appendix C for the details). Now, in
order to compute the required Green’s function of the antenna srtucture, the aperture
and apex fields are transferred into the source section using equations (3.6) and (3.9).
This reduces the problem to finding the fields in a waveguide section which is excited

by a Hertzian dipole and is terminated by two multimode loads defined by (Fig. 3.2):

multimode load source multimode load
7 interface 7
L1 L2

Figure 3.2: The simplified problem in which a Hertzian dipole excites the source
waveguide section which is terminated in two multimode loads.
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Scattering matrix of load Zy, : by = Sha; (3.11)
Scattering matrix of load Zi; : b;y = Qayy (3.12)

where Q= S& —S4(Syh—S57)7'Ss  (3.13)

Since the multimode loads Z;, Zr, are explicitly known, the fields in the source
waveguide section can be completely determined by matching over the source inter-

face. This matching procedure yields:

a; = by—esz,y) (3.14)
by = an+65(9:',yl) (3.15)

where

[ emn (2,Y) ]

9 [y TE,II
’yl) = (316)
Eamn (257

[vTM,II
L 2 mn

and (x,y') is the location of the Hertzian dipole on the source plane. Also, e

II

smn

denotes either the x-component (s = z) or the y-component (s = y) of the mn'

eigenfunction in the case of an Z or a y-directed Hertzian dipole, respectively. The
exact form of the waveguide eigenfunctions €pn = €zmnl +€ymn¥ is given in Appendix
A. Using equations (3.14,3.15) along with the scattering matrices of loads Z, and

7y defined by (3.11, 3.12), the wave amplitudes a;; and by are determined by:

air = Pey(z,y) (3.17)

QPes(a:’,y') (3.18)

brr



where

P = (SEQ-U)"'(SEB +U) (3.19)

To obtain the required Green’s function of the structure, the transverse electric field

on the source interface is expressed in the matrix form:

aﬁ’,’:’” + bﬁf'”
_TE,II _TM,II
19 \/Ynff'” \/Ynz:M,u

n

aTit
In equation (3.20) the dependence of the field on the Hertzian dipole source is implic-
itly included in the wave coefficients a!!, and Il . Therefore, the transverse compo-

nent of the dyadic Green’s function inside the source waveguide section is obtained

when substituting equations (3.17, 3.18) in equation (3.20):

[ eTEMI(g o'y ]
YTE,II
. o [ B (g y) &M ) } [(Q+U)Pl
éTM,II .’IJI,yI
TM,II1
b mn

G(z,y,2,y) = \/YTE,II \/YTM,II 9
mn mn
The required Green’s function is in a quadratic form which is also symmetric (com-

(3.21)

plying with reciprocity requirements). The kernel of the quadratic form is not given

in a closed form, and can only be evaluated numerically using equations (3.13) and

(3.19).
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3.3 Solution of the EFIE Using the Method of Moments
(MoM)

Having derived the Green’s function of the structure, the pertinent EFIE of equa-
tion (3.5) is solved by the method of moments. The method of moments is a general

method for solving an operator equation ({71, 84], of the form:
L[J)=E, (3.22)

where L is a linear operator, J is the unknown function and E, is a known driving
function. In the framework of the method of moments, the unknown function is

formally expanded in a set of suitable basis functions i.e:

N
I~ anfn (3.23)
n=1

where {f,} is the family of the basis functions and a, are the corresponding expansion

coefficients. The substitution of (3.23) into the operator equation (3.22) readily yields:

N
Z_j a.L]f] = E, (3.24)

The residual function Ry is now formed as shown below :

N
By =Y allf] - (3.25)

In the context of the method of moments (MoM) the residual function Ry is required
to be orthogonal to each member of a set of weighting functions (Wm,m =1,2,--+,N)

[71, 84], therefore:

N
S an < W, L[fa] >=< Wi, E;>, m=1,2,---,N (3.26)

n=1
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The inner product appearing in equation (3.26) is defined by:

<fg>= /ﬂf‘ .§dS (3.27)

where Q denotes the domain where the function f and g are defined. Equation (3.26)
is equivalent to an inhomogeneous system of linear equations with the N expansion
coefficients a, as unknowns. The solution of this algebraic system of equations pro-
vides an approximation to the unknown current of (3.22) through equation (3.23).
In the special case in which the weighting functions are chosen to be identical with
the expansion functions, the MoM becomes the very popular Galerkin’s technique.
For the particular problem under consideration which is expressed by the EFIE of

equation (3.5), the unknown surface current density of the strip-dipole is expanded

as follows:
RN TN
Jo(z,y) ~ ) D b0 (y)hi(z) (3.28)
r=1 t=1
PN QN
Jy(z,y) =~ Z Zapq(bg(y)hqy(x) (3.29)
p=1 ¢=1

Note that both longitudinal (J,) and transverse (J;) currents are allowed on the strip
surface providing the capability of modeling arbitrarily wide strips. The application of
the previously described Galerkin’s technique to (3.5) results in the following algebraic

system of equations for the unknown current expansion coefficients:

RN TN QN PN

D 2 bdFE AN D eIl = 0 (3.30)

r=1 t=1 g=1 p=1
RN TN QN PN wf2

Y b AT Yaul = —0%(0) /

=1 t=1 g=1 p=1 -w/2

hy(z)dz (3.31)

where it is assumed that the delta-gap is of infinitesimal length, and w is the strip

width. A typical integral coefficient I appearing in (3.30) and (3.31) is defined below:

it / &%, (y) b (2) 1z, ) drdy (3.32)

rtpq
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and

[%(z,y) = / Guy(2, 9,7,y YRE()®Y(y) da'dy (3.33)
Sd

and the rest of the integral coefficients are defined in a similar way (see Appendix D).

3.3.1 Choice of the Basis Functions

In this section the basis functions used to expand the currents in equations (3.28)
and (3.29) are explicitly described. The strip dipole is assumed in all cases to be
situated symmetrically along the g-axis which is the vertical axis of symmetry of the
horn. The implied symmetry results in the excitation of only the (TEpn/TMmpn , m =
1,3,5,--M, n = 0,1,2,3,--- N) modes. Furthermore, in the special case in which
the geometrical center of the strip-dipole coincides with the geometrical center of the
source waveguide cross-section, the excited set of modes is further restricted to only
even n-indices (Fig. 3.3). This case results in no cross-polarization in the principal
planes of the far-field zone. Fortunately, this case is also numerically efficient, since it
excites only one fourth of the potentially available modes. In addition, for this highly
symmetric case, appropriate entire domain basis functions for the current distribution
can be defined which can lead to a more efficient implementation of the method of
moments. In what follows below there will be a distinction between the case in which
the dipole lies in an arbitrary position along the vertical axis of symmetry (vertical-
strip), and the case in which the center of the dipole coincides with the center of
the source cross-section (centered-strip). For a strip of length Is and of width w, the

following basis functions are used to expand the current:
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Figure 3.3: A centered dipole of length [, and width w.
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A. Longitudinal current (j-directed)

Longitudinal dependence (y-dependence):

This dependence should vanish at the endpoints of the dipole (+/s/2) to satisfy

the correct longitudinal edge condition.

o A.l Vertical strip : Subsectional sinusoidal basis function.

sin[2m(Ay — |y — yl)] .
- if |y — yp| < Ay
®Y(y) = sin(27Ay) ’ (3.34)

0 otherwise

where y, is the coordinate of the center of the p** subsection and Ay is the

length of the subsectional length, i.e Ay = yp41 — yp.

o A.2 Centered strip : Entire-domain even-symmetric sinusoidal basis.

®3(y) = cos (2[) — 1y> (3.35)

ls

Transverse dependence (x-dependence):

The transverse dependence should have even-symmetry and it should have a sin-

gularity of r~'/? at the edges (+w/2) [67, 71, 87].

e A.3 Vertical or centered strip : Entire domain even symmetric basis.

cos (2(q - 1)E>

w

- (%)

h(z) = (3.36)

B. Transverse current (Z-directed)

Longitudinal dependence (y-dependence):

-1/2

This dependence should have a singularity of r at the endpoints of the dipole

(£ls/2).
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e B.1 Vertical strip : Pulse basis function.

o7 (y) = (3.37)

0 otherwise

o B.2 Centered strip : Entire-domain odd-symmetric basis.
sin (2((1 - 1)%)

2y>2
1'(1,

o7 (y) =

(3.38)

Transverse dependence (x-dependence):

The transverse dependence should have odd-symmetry and it should vanish at the

edges (fw/2).

o B.3 Vertical or centered strip:

T
2t—

sin ( )
hi(z) = ——YL (3.39)
&)

1— (==

w
With these definitions of the current basis functions, the integral coefficients appearing
in equations (3.30) and (3.31) can be analytically evaluated and the results are given

in Appendix D.

From the above description of the basis functions it is obvious that whenever the
strip is centered the corresponding basis functions are selected to be entire domain,
otherwise they are chosen to be subsectional. One noticeable behavior of the method
of moments arises when using subsectional basis functions with centered strips. In this
case it was found that if only the excited modes (TEyn/TMmn , m = odd, n = even)
are included in the Green’s function the corresponding impedance matrix of the
method of moments becomes strongly ill-conditioned. One way to overcome this

problem was to use a larger set of modes (TEmy/TMms , m = odd, n = integer)
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with the subsectional basis. However, the best solution proved to be the employ-
ment of entire domain basis functions together with only the excited set of modes
(TEmn/TMmn , m = odd, n = even). Therefore, the use of entire domain basis

functions for centered strips appeared to be the most numerically efficient choice.

3.3.2 Computation of the Input Impedance

The solution of the algebraic system of equations (3.30) and (3.31) enables the
evaluation of the current distribution according to equations (3.28) and (3.29). From
this information the input impedance is obtained by calculating the longitudinal

current at the driving point:

_ w2 rw PN QN -1
Zin = V;y(o)l =1/, w0 @) = | X Sadilg=10)| (@40

where J, is the Bessel function of zero-order. The resonant length of the strip-dipole is
defined as the length at which the input impedance Z;, has a vanishing reactive part.
The major computational difficulty in the above procedure is the numerical calcula-
tion of the Green’s function. To obtain a computationally affordable scheme, the field
in the source section is considered to be a superposition of a primary incident field
due to the dipole source and of a secondary field due to the reflections from the horn
structure. Subsequently, the following simplifying assumption is made: It is assumed
that the reflections of the higher order modes from the horn structure (secondary
field) are very small compared to the corresponding incident source field (primary
field). Thus in the calculation of the Green’s function, only a few secondary modes
are retained. On the other hand, many higher order primary modes are included in
order to achieve numerical convergence. The exact number of the required primary
and secondary modes will be examined in section 3.4.1. The pertinent primary field

on the source-plane (z = 0, see Fig. 3.1) is the field of an infinitesimal dipole exciting
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an infinite waveguide:

r B TE II ,y
YTE I
TP (z,y) ez y) J
T I
B M,I ’y
YTM I

(z,9,2,y) = \/Y[I,TE \/Y”’ME
mn mn
In this scheme, the low-order part of the Green’s function which contains both the

=prim

G

(3.41)

primary and the secondary field is evaluated numerically using equation (3.21). For
high-order modes on the other hand, only the primary contribution to the Green’s
function is taken into consideration according to the closed form expression of equa-

tion (3.41).

3.3.3 Computation of the Far-field Patterns

The far-field patterns are calculated from the plane-wave expansion of the aperture
field of the integrated horn. The exact aperture fields are computed by first evaluating
analytically the integrals appearing in equation (3.4), using the calculated current
distribution from the method of moments. This enables the calculation of the fields
launched by the strip-dipole inside the source section. These fields are described by

I and b1,

sir st~ Once the source

the modal coeflicient column vectors designated by a

field has been calculated it is transferred on the aperture using the relations:

oy = (5% - 5p)7 Shaiy (3.42)

I

B = St (3.43)

Subsequently, the plane-wave spectrum g(k., k,) of the free space field is evaluated
by Fourier transforming equation (3.7) and the far-field patterns are then obtained

from the stationary-phase approximation of this plane-wave spectrum [27].
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3.4 Numerical and Experimental Results

In this section numerical and experimental results for the integrated horn antennas
are presented and discussed. First, the convergence characteristics of the full-wave
analysis are examined and typical values of the involved parameters are suggested
in order to achieve convergence. Following this, some properties of the integrated
horns which have been revealed by the full-wave analysis and verified experimentally
are discussed. Also, some impedance and pattern characteristics are numerically
investigated in order to obtain design guidelines for the integrated horn antennas.

Finally, experimental results are presented which validate the full-wave analysis.

3.4.1 Convergence Characteristics

In this section, the convergence characteristics of the strip-dipole resonant resis-
tance, and of the corresponding resonant length are examined. The validity of the
approximations used in the theoretical model is tested and at the same time, a feeling
for the range of the various parameters required for achieving convergence is acquired.
In this discussion, the antenna under examination is a typical integrated horn with a
70° flare angle, a square aperture of size 1.35A-square which is excited by a centered
strip dipole of width w = 0.015) positioned at a distance of 0.50A from the apex of
the horn. Due to the narrowness of the considered strip , only a longitudinal current
component is used.

A. Convergence with respect to the number of secondary modes.

This type of convergence examines the validity of the assumption of small high
order reflections in the source section. The convergence diagram of the resonant length
and resonant resistance as a function of the secondary modes retained is shown in

figure 3.4. It is clear that at least fifty secondary modes are required in order to
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Figure 3.4: Convergence with respect to the number of secondary modes (up to the

TEss55 and the TMs5 55 mode are included in the primary part of the
Green’s function).
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achieve results with acceptable accuracy. For different horn geometries the same

procedure should be repeated in order to calculate the correct number of sec.adary

modes required for convergence.

B. Convergence with respect to the number of primary modes.

It is observed from figure 3.5 that this type of convergence is quite rapid for both
the resonant resistance and the resonant length and therefore it does not deserve any
particular attention. The only unreliable region is the region of few primary field

modes (less than 300). In this region the spectral content of the Green’s function is

1.2 e

resonant length

--------- resonant resistance

- ’

Relative convergence

Y]] P FUUN FUUEN FUUEN FUUE FUUEN PRI PO B O
0 3 6 9 12 15 18 21 24 27 30

Number of primary modes (x102)

Figure 3.5: Convergence with respect to the number of secondary modes (up to the
TE7 7 and the TM7 7 mode are included in the secondary field).

poor and undersampling of the dipole-strip current takes place leading to numerically

unstable results. As a general rule, the more basis functions are used to represent
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the strip current the more primary field modes should be included in the numerical
cvaluation of the Green’s function.

C. Convergence with respect to the number of waveguide sections.

The convergence of the resonant length and the resonant resistance vs. the num-

ber of waveguide sections is shown in figure 3.6. Since the horn under study has a

Ml—TTT T 7T T 1T 1
O
&
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)
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< 0.9 teneth -
& resonant leng
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10 20 30 40 50 60 70 80 90 100

Number of waveguide sections per wavelength

Figure 3.6: Convergence with respect to the number of waveguide sections in which
the integrated horn is approximated.

large flare angle, this convergence diagram provides a safe universal estimation of the
number of waveguide sections per wavelength required for convergence, in the case
of tapers with arbitrary flare angles. Specifically, it is evident from figure 3.6 that

approximately seventy sections per wavelength are needed for reliable results.
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3.4.2 Interesting Properties of Dipole-Fed Horn Antennas

A. Possibility of no strip resonances.

The wedge termination of the horn at its apex sets up a cavity environment for
the strip dipole, and the dominant mode generates a standing wave in the region
enclosed between the dipole and the apex of the horn. Therefore, the strip-dipole
encounters capacitive and inductive regions as it moves along the axis of the horn.
The strip will not resonate if the limited strip length dictated by the geometry of the
horn is not capable of providing adequate inductance in the capacitive regions. On
the other hand, the strip will always resonate in the inductive regions, because strips
are very capacitive for short lengths. The above mentioned behavior is characterized
both numerically and experimentally in section 3.4.4.

B. Real input tmpedance in the cutoff region.

The cutoff region of the horn is defined as the region in the neighborhood of the
apex where the cross-section of the corresponding waveguide section is less than half a
wavelength. Therefore for a strip-dipole in the cutoff region all the waveguide modes
around the strip are evanescent. Surprisingly enough, the numerically evaluated strip
input impedance in this region has a small but non-zero real part. The same behavior
is observed also experimentally, and the explanation lies in the fact that the linear
combination of incident and reflected evanescent modes is capable of carrying real

power. Indeed for the (m,n) mode, the real part of the Poynting vector is given by :

/Y*
_;’Re[Emn xH: | = %Re[—?::(amne—‘fmnz + b€ ) (@l €77 — b7 gImn)]

= Imfamnb},,] (3.44)

If no reflections are present, then b,,, = 0 and the (m,n) mode does not carry any

real power.
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C. Effect of dipole feed-position on the far-field pattern.

As previously mentioned, a centered vertical Hertzian dipole triggers the TE, (m =
1,3,5,---,M n=0,2,4,---,N) and the corresponding TMy, (m=1,3,5,--- , M n =
2,4,6,---,N) modes. This is exactly the same set of modes which is excited in a con-
ventional waveguide-fed horn [50, 88]. For short distances of the feeding strip from the
apex of the horn, the high-order modes are attenuated significantly before reaching
the horn aperture and therefore the far-field patterns are similar to those of a corre-
sponding TE;o waveguide-fed horn. However, as the dipole approaches the aperture
of the horn, high-order modes can reach the aperture without significant attenuation,
therefore distorting the aperture field. The patterns for a typical 70° horn with an
aperture of 1.35\-square and dipole positions of 0.38\ and 0.80\ from the horn apex
are shown in figure 3.7. The distribution of the aperture electric field for the 0.38\
position corresponds to the dominant TE,o mode (Fig. 3.8). For the 0.80) position,
higher order modes (mainly TE;2/ TM;, ) disturb significantly the dominant mode
distribution (Fig. 3.8). This results in an increased phase error and a corresponding
spreading of the E-plane pattern. It should be noted however that even in the case
of the 0.38) feed-position, the higher-order modes TE,, and TM;, do appear on the
aperture as well, but their excitation is moderate and does not dominate the TE;q
mode distribution (Fig. 3.8). Nevertheless, even in small proportions the presence of
these higher order modes tapers the E-plane aperture field at its edges, resulting into
a rotationally symmetric pattern. The TE;5/TM;, modes do not have any effect in

the H-plane as dictated by the symmetry of their fields.
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Figure 3.7: Far-field patterns for a 70° horn having a square aperture of size 1.35\
and excited by an infinitesimal dipole at a distance of 0.38) from the horn

apex (left), and at a distance of 0.80) from the horn apex (right).
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Figure 3.8: Magnitude of the horn aperture E-field when the feed-position is at 0.38)
from the apex (top) and when the feed-position is at 0.80) from the apex
(bottom).



59
3.4.3 Numerical Results: Design Aspects

The goal of this section is to provide guidelines for the design of efficient inte-
grated horn antennas. For this purpose, the effect of the horn aperture size on both
the radiation-patterns and the input impedance of the feed-dipole is investigated.
This determines the useful aperture sizes of the integrated horn antennas and the
corresponding directivities and aperture efficiencies. It also reveals that the selection
of the strip input impedance and antenna directivity can be achieved independently
from each other.

The input impedance of a strip at resonance, located at two positions deep inside
the horn, is calculated in table 3.1 for three different aperture sizes. As shown in the
table, the aperture size does not have any significant effect on the impedance as long
as the dipole is located within about 0.5\ from the apex of the horn. Therefore in
this region, the directivity of the horn can be controlled independently from the strip

input impedance.

Aperture size | Impedance at Ls = 0.38)\ | Impedance at Ls = 0.45)
1.35A-square 5140; 83+0;
1.61\-square 53-3) 86-Tj
1.80\-square 50-j4 79-8]

Table 3.1: Input impedance for various horn aperture sizes. The strip is at resonance
for the 1.35\-square aperture and is located at a distance Ls from the horn

apex (w = 0.02}).
The effect of the feeding strip-position on the far-field patterns was partially in-
vestigated in section 3.4.2 where it was shown that the patterns deteriorate as the

strip-dipole closely approaches the aperture of the horn. However, when the strip is
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Figure 3.9: The E-plane pattern for a 1.35)A-square integrated horn when excited at
three different positions near the apex of the horn.

positioned deeply inside the horn, the patterns become insensitive to the exact loca-
tion of the strip-dipole. This is demonstrated in figure 3.9 where the most sensitive
E-plane pattern is shown for three feed-positions between 0.34) and 0.50) from the
apex of a 1.35A-square horn. The H-plane and 45°-plane patterns are identical for the
three feeding locations and are not shown. This feature of the integrated horn antenna
is quite useful because the input impedance can be tailored by moving the feed-dipole
in the vicinity of the apex without changing the patterns and the directivity of the
antenna. The results of figure 3.9 and of table 3.1 establish the independence of the
feed-dipole input impedance and the antenna directivity.

The directivities and the aperture efficiencies of the integrated horn antenna are
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tabulated in table 3.2 for aperture sizes ranging from 1\ to 3A. The feeding strip-
dipole is assumed to be infinitesimal and to be located at 0.38A from the apex of the
horn. The maximum cross-polarization level is also presented and as shown, except
of the 1\-square aperture, it remains below -21-dB. For the smaller 1.00A-square
aperture the cross-polarization is higher due to the increased diffraction effects. The
corresponding E-, H- and 45%-plane patterns for all cases, except of the case of the
1.35X-square horn which is considered in detail in the next section, are shown in

figures 3.10 to 3.15 .

Aperture size | Directivity | Aperture eff. | Cross-pol. (45° — plane)
1.00)-square 9.3dB 85.0% -16dB
1.35\-square | 11.9dB 67.6% -21dB
1.61\-square 13.2dB 64.0% -22dB
1.80\-square | 13.8dB 59.0% -29dB
2.00\-square | 14.2dB 52.3% -28dB
2.29)\-square | 14.8dB 45.8% -23dB
2.92\-square | 15.2dB 31.0% -23dB

Table 3.2: Directivity, aperture efficiency, and maximum cross-pol. level for various
horn aperture sizes. The flare angle of the horns is fixed to 70° and the
position of the infinitesimal feeding strip-dipole is at 0.38) from the apex.

An examination of table 3.2 together with the corresponding far-field patterns reveals
that the maximum useful aperture size is about 1.6A which corresponds to a directivity
of 13-dB. Beyond this size, the patterns start to deteriorate due to the excessive phase
error and the excitation of higher-order modes on the horn aperture. This results in

the development of side-lobes and shoulders in the E-plane along with a reduction of
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Figure 3.10: Far-field patterns of an 1.00\-square integrated horn.
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Figure 3.11: Far-field patterns of an 1.61\-square integrated horn.
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Figure 3.12: Far-field patterns of an 1.80\-square integrated horn.
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Figure 3.13: Far-field patterns of a 2.00\-square integrated horn.
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Figure 3.14: Far-field patterns of a 2.29)\-square integrated horn.
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Figure 3.15: Far-field patterns of a 2.92)-square integrated horn.
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the circular symmetry of the patterns. Also the aperture efficiency drops significantly
as a consequence of large phase errors in the horn aperture . Therefore, the integrated
horn antennas are suitable as elements in a phased-array system or as elements in an
imaging array with a moderate f-number system. On the other hand, the integrated
horn antenna is not well-suited for large f-number focal-plane imaging arrays or for
feeding millimeter Cassegrain-antenna systems. In the next two chapters, the diagonal
step-profiled horn and the quasi-integrated horn antenna are presented and examined
in order to extend the range of applicability of the integrated horn antennas and
to make them competitive with the traditional, corrugated or dual-mode waveguide-

based horn-antennas.

3.4.4 [Experimental Results

A. Input impedance:

In order to verify the full-wave analysis and the design considerations of the pre-
vious section , a microwave scale-model was constructed at 1.1 GHz [85]. The scale
model used had an aperture size of 1.35\ and a flare angle of 70°. The measured
resonant resistance and resonant length of a centered feed-dipole as a function of the
strip-position from the apex of the horn is compared to theory in figure 3.16. As
shown, there is a good agreement between theory and experiment suggesting confi-
dence in the results provided by the full-wave analysis. Furthermore, the resonant
resistance depends significantly on the dipole position, and varies from 25§ to 1752
for positions between 0.34) and 0.60) from the apex of the horn. This feature of the
integrated horn antenna is very useful, because an efficient matching of the dipole
to devices such as SIS or Schottky diodes can be achieved, by adjusting the strip-

dipole position. In addition, note that the strip dipole does not achieve resonance
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Figure 3.16: Predicted and measured dipole resonant resistance and resonant length

(I, = 1,/2) vs. dipole position from the apex (w = 0.015)). Notice the
region of no resonance in the center of the horn.
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fo: feeding positions between 0.6A and 0.74A, in accordance with the discussion of
section 3.4.2. In this region the input impedance remains always capacitive due to
the restricted dipole length dictated by the walls of the horn. For dipole positions
greater than 0.74) there is a second region of resonances, but as shown before, the
corresponding patterns are poor due to the strong excitation of higher order modes
on the radiating aperture. The conclusion therefore is that the useful position range
for the feeding dipole is between 0.34) and 0.50A from the apex of the horn. The
upper limit of the useful range is reduced from 0.60\ to 0.50\ because most practical
devices have impedances lower than 100Q2. This range is valid for all horn apertures
since the input impedance is mainly determined by the local cavity environment and
not by the size of the radiating aperture as, demonstrated in the previous section.
The predicted input impedance vs. frequency is compared in figure 3.17 to measure-
ments for feed-positions at 0.41A and at 0.50A from the apex of the horn. Once more
the comparison between theory and experiment is very good. Also note that the
bandwidth for these typical feed-positions is about 10% which is adequate for many
millimeter-wave applications (The bandwidth is defined so that the voltage standing
ratio remains smaller than about 1.5).

B. Far-field patterns: Ezperimental results

A microwave model at 3GHz having a ground plane of 2.5\-square is used for
the pattern measurements. The aperture size is also 1.35A-square and the dipole
position from the apex of the horn is 0.38X. The predicted and measured patterns
are shown in figure 3.18, where it is seen that there is a good agreement between theory
and measurements. Also note that the pattern is rotationally symmetric due to the
beneficial presence of the TE;, and TM;; modes on the aperture which taper the

fields in the E-plane walls. In this particular design, the calculated directivity of the
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Figure 3.17: Predicted and measured dipole impedance vs. frequency for a feed posi-
tion of 0.41\ (top) and 0.50) (bottom) from the apex. The dipole lengths
are [, = 0.38) and I, = 0.41) respectively at the central frequency, and
the dipole width is w = 0.015A.



69

— == Theory
(o4 Experiment
- 30‘ 300
609 60°
|

/ g
|

!

90° 1 L1 1 1 1 go.
(0] -10 -20 dB -20 -10 0
E-plane H- plane
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horn is 11.9-dB which is near the practical directivity limit achieved by the integrated
horn antennas, as was shown in the previous section. Far-field measurements are also
carried out for the actual integrated 1.35)-square horn fabricated at 92GHz by Ali-
Ahmad [85]. The corresponding patterns are shown in figure 3.19 for the E-, H-
and 45°-plane, and as shown there is a very good agreement between theory and
measurements. The cross-polarization in the 45°-plane could not be measured due
to signal-to-noise ratio limitations arising from the use of a microbolometer as the

power sensing device.

3.5 Summary and Conclusions

The full-wave analysis of an integrated horn antenna embedded in a ground-plane
has been presented and verified experimentally. The full-wave analysis can be used
for the design of antennas having prescribed impedance and pattern characteristics.
This greately simplifies the implementation of systems built around the integrated
horn antenna, since the necessity for matching circuitry or extensive microwave scale-
modeling is eliminated. Furthermore, the full-wave analysis enabled the revelation
of some features of the integrated horn antennas which deepen our understanding of
their behavior and their characteristics. Also the problem of the limited directivity
of the integrated horn antennas was addressed and investigated. It was found that
their directivity cannot exceed 13 dB due to the introduced phase error stemming

from their large 70° flare angle which is inherent in the anisotropic etching of silicon.
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CHAPTER IV

HIGH-GAIN STEP-PROFILED INTEGRATED
DIAGONAL HORN-ANTENNAS

As shown in the previous chapter, the main limitation of the integrated horn
antennas stems from their large flare angle of 70° which is inherent in the anisotropic
etching of < 100 > silicon wafers. This large flare angle does not allow the integrated
horns to achieve gains higher than 13-dB and 10-dB beamwidths less than 90°. In
this chapter, a step-profiled horn is described which reduces the effective flare angle
of the horn and allows for gains in the region of 17-dB to 20-dB to be achieved. The
symmetry of the horn antenna radiation pattern is further enhanced by positioning
the exciting dipole along the diagonal of the horn cavity. A specific design example
is shown with a gain of 18.4-dB and a 10-dB beamwidth of 37° in the E-, H- and
45°-planes. The coupling efficiency of the step-profiled horn to a Gaussian beam is
calculated to be 83%. An equivalent smooth envelope-horn (see text) was built at 12.1
GHz and the measured patterns agree well with theory. The integrated step-profiled
horn is well suited for millimeter-wave and Terahertz focal-plane imaging arrays of

large f-numbers.
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4.1 The Step-Profiled Integrated Diagonal Horn Antenna

The integrated diagonal horn is presented in figure 4.1 where as shown, delib-
erate step-discontinuities are introduced between successive wafers resulting in a
step-profiled horn with an effective flare angle around 30°. A spherical wavefront
emanating from the apex of the horn suffers a reduction of its surface each time it
crosses a wafer discontinuity. In this way the wavefront reaches the horn aperture
with a phase error which corresponds more closely to the smaller effective flare an-
gle of the envelope-horn, rather than to the 70° flare angle of each individual wafer.
Furthermore, the exciting-strip dipole is placed diagonally inside the horn to result
in an enhancement of the circular-symmetry of the patterns and a reduction of the
side-lobe level in the principal planes [91, 92]. It should be pointed out here that due
to fabrication limitations, the thickness of each constituent wafer at millimeter-wave
frequencies is around 0.3\, which corresponds to 450um at 200GHz and 200um at
450GHz. Therefore the hybrid-mode which is sustained in corrugated horns is not
supported by the step-profiled horn, since at least ten corrugations per wavelength
are required to support a hybrid mode [29, 121]. Consequently, the step-profiled horn
should be considered as an integrated version of the smooth diagonal horn [91] rather
than of the corrugated horn.

The step-profiled horn is simple to build using integrated circuit techniques. The
etched surface of each wafer is evaporated with gold and therefore the horn walls are
considered perfectly conducting. The antenna structure consists of an electronic-grade
wafer and a number of mechanical-grade wafers. The dielectric-membrane, anten-
nas, detectors, I.F networks and electronics are all integrated on the electronic-grade
wafer. The mechanical-grade wafers are just etched, aligned and glued together to

form the required step-profile. This stepped-horn configuration can also be extended
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Figure 4.1: The step-profiled horn geometry (top) and the excitation membrane with
the diagonal dipole inside the horn (bottom).
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to two-dimensional imaging arrays of large f-number with no additional machining,
fabrication or alignment. The two-dimensional array offers plenty of space for the
receiver electronics since the horn aperture is typically 3A-square and the membrane
size is about 0.6A-square. The antennas therefore occupy 4% of the electronic wafer

space and 96% is available for the receiver electronics.

4.2 Theoretical Analysis

A full-wave analysis has been performed on the step-profiled horn similar to the
one described in chapter III for the smooth strip-excited horn. The geometry of the
horn is approximated by a multistepped waveguide discontinuity and the correspond-
ing generalized scattering matrices are directly combined together to generate the
total scattering matrix of the structure. The horn is assumed to be mounted on an
infinite ground plane and the transition to half space is rigorously taken into consid-
eration. Far-field patterns are calculated from the Fourier transform of the aperture
field. Both TE and TM modes have been included in the analysis and secondary
modes up to the TEz¢ and TM7¢ have been retained in the numerical computations.

The strip-dipole excites the horn along its diagonal resulting in an equal tapering
for the E and H aperture fields and leading to very similar E and H far-field patterns
[91]. The diagonal horn however is circularly symmetric only under the paraxial ap-
proximation, that is for narrow main beams. Otherwise, the H-plane pattern is lower
than the E-plane pattern by a factor of cos?(d). This behavior can be demonstrated
analytically using a simple TE;o/TEo; modal analysis (with no phase error). Under
this approach the aperture fields of a diagonal horn of a square aperture side Xy is
simply given by:

_ s TT |,

Eup(z,y) = cos(—L )2 + cos(—)9
XN

% (4.1)
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This aperture distribution results in an electric far-field given by (Fig. 4.1):

E-plane field (¢ = 45°) :

o = Elu) (4.2)
Es=0
H-plane field (¢ = 135°) :
Es=0
(4.3)
E4 = E(u) cos(6)
where
2V2X% [sin(u/v2)] [cos(u/v/2)
Elu) s [ u/\2 ] ll — 2u2/7r} (4.4)
and
u = k);N sin (6) (4.5)

For horns without excessive phase error the same behavior is also verified when using
the full-wave analysis instead of the simple TE;o/TEo; analytical approach. In figure
4.2 the E- and H-plane patterns have been computed from the full-wave analysis of
an integrated horn antenna having an aperture size of 1.35\-square. As shown the
H-plane is indeed lower than the E-plane since the aperture size is relatively small and
the paraxial approximation is not valid. A diagonal feed-dipole therefore enhances the
pattern symmetry of horns with moderate flare angles and large apertures but fails
for horns with small apertures. For this reason the diagonal excitation is well-suited
for the step-profiled antenna structure which allows for small effective flare angles

and large apertures.
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Figure 4.2: The E- and H-plane patterns for a 70° diagonal horn of 1.35A-square
aperture size. The horn is excited by an infinitesimal diagonal dipole

located at 0.38A from the apex.
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4.3 Coupling to a Gaussian Beam

The coupling of the horn antennas to a Gaussian beam has been calculated by
expanding the aperture field into Hermite-Gaussian modes [97, 112]. Since it is as-
sumed that the horn is mounted on a ground plane, the tangential aperture field is

of the form :

_ E.p(z,y) , on aperture
gap(x,y) = (46)

0 , otherwise.

The copolarized component of the aperture field (the one that is parallel to the direc-
tion of the exciting strip-dipole) can be expanded into a set of orthogonal Hermite-

Gaussian modes :

[o <IN o]

gﬂpyco(x,y) = Z Z dmn Gmn(x, y) (47)

m=on=o

In equation (4.7) above, the Gaussian modes Gp, on the horn aperture can be ex-

pressed in the form [99] :

Gmﬂ(x’ y) =
22142 . Azg _z24y?
ﬂ_e(-jkza,,)e(—"“znfpu)e(’(m”“)m“‘(_g"% ))e( —}Lwap )Hm ()@) i, (_\/_52)

Wap Wap Wap

where Hy, is the Hermite polynomial of order m, w, is the beam-waist half-width

and z,p is the distance from the beam-waist to the aperture of the horn (Fig. 4.3).

Furthermore, the beam radius of curvature at the aperture of the horn is given

by Rep = Zzap [l + (ﬁ%)z] and the beam half-width at the aperture by w,, =
w2

2 1‘/2
W, [1 + (ﬁ"-) ] . In order to facilitate the notation, we define the inner product

between two functions a(x,y) and b(x,y) on the aperture plane to be :

<a,5>=/°° /°° a* b dzdy (4.8)
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The dot product in (4.8) should be replaced by ordinary multiplication when the
arguments of the inner product, & and b are scalar quantities. With this definition of

the inner product, the Gaussian modes Gpy satisfy the orthogonality relation [100):

2
< Gramy Gy >= %W"m! 1! Smp Ong (4.9)

strip-dipole

A- - --------

H
H
»

Ly

Figure 4.3: The coupling of a Gaussian beam to a horn-antenna.

Also it is assumed that the electric and magnetic fields on the aperture of the

horn are related by :

A, = ZXZ P (4.10)

where Z, is the free-space intrinsic impedance. This assumption is valid for elec-

trically large apertures with moderate phase error. In this case the corresponding
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aperture waveguide section appears to be oversized for the excited modes of signifi-
cant amplitude. Therefore, their modal impedance tends to the free-space intrinsic
impedance. Under the above assumption the fractional power carried by the (mn'")

Gaussian mode is determined by :

_Ndmal* < Grnny G > /27,
B < EapyEap > 122,

Nmn (4.11)

Using the orthogonality of the Gaussian modes as expressed in (4.9) to evaluate the

modal coefficients dpy, of equation (4.7) yields :

2
T] _ |< Gmnagap,co >|
" < Gmny Gn >< Eap, Eap >

(4.12)

The above expression for the coupling efficiency complies with the expression derived
in [95] using a far-field analysis approach. For the fundamental Gaussian mode G,,

equation (4.12) readily gives :

. . 2
1 g 45V 2Re =2 B (0,4 dady]

Moo = rw? _ 2
_22ffaperture Eap(mvy)l dfvdy

In equation (4.13) the aperture beam half-width w,j, is chosen so that the coupling

(4.13)

Noo is maximized [112]. The copolarized component of the aperture field E,, ., is
obtained directly from the full-wave analysis. Also the beam radius of curvature on
the aperture R, is assumed equal to the smooth envelope-horn axial length Ly (Fig.
4.3). This assumption is verified by calculating the phase error of the aperture field
and then determining the corresponding wavefront radius of curvature at the aperture

of the horn.

4.4 Design Examples and Measurements

As was demonstrated in chapter III, the 70° flare angle of the smooth integrated

horn antennas, does not allow for large aperture efficiencies and high gains. The
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same argument is also true for diagonally-fed smooth integrated horn antennas. This
is verified by considering a 70° flare angle diagonal horn of a 2.92)-square aperture
size attempted to be designed for a gain around 18-dB (i.e expected to have a typical
60% aperture efficiency). The resulting patterns as computed from the full-wave

analysis are shown in figure 4.4.

Relative gain (dB)

Elevation angle (degrees)

Figure 4.4: A 70° smooth diagonal horn with a 2.92)-square aperture. The exciting
strip dipole is at 0.39) from the apex.

It is apparent from figure 4.4 that the excessive phase error does not allow either for
a high aperture efficiency or for satisfactory circular symmetry. Indeed the computed
aperture directivity is 15.2-dB corresponding to a 31% aperture efficiency instead of

the desired 60% efficiency.

The same problem of designing an integrated horn with an aperture efficiency
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around 60% and a gain around 18dB is now addressed by employing the step-profiled
approach. For this purpose two step-profiled horn antennas are designed using twelve
and sixteen 70° flare angle wafers resulting in an aperture size of 2.92)\-square. The
idea behind these two designs is to approximate the radiation characteristics of a 30°
flare angle diagonal smooth-walled envelope-horn (see Fig. 4.1). The corresponding
wafer thicknesses are chosen to be 0.4\ and 0.31), respectively. The results of the
computer simulations for the patterns of the 12- and 16-step horns are shown in figures
4.5 and 4.6, respectively. The copolarized and cross-polarized far-field components in

the 45°-plane E., and E;, are calculated according to Ludwig’s 3™ definition [27, 111]:

V2

Ep = - (Es + Ey) (4.14)
E., = —‘2[3(39 _E,) (4.15)

It is interesting to compare these patterns to the initially obtained patterns of the 70°
smooth horn which has the same aperture size (see Fig. 4.4). The new step-profiled
antenna patterns appear to be more symmetric and more directive than those of the
70° smooth horn due to the smaller effective angle.  The 12-wafer and 16-wafer
antenna patterns are compared in Figure 4.7 with the patterns of their 30° smooth
envelope horn in order to examine how well the step-profiled horn antennas approxi-
mate the smooth-walled envelope horn. Furthermore, the radiation characteristics of
the profiled horns are compared with those of the 30° envelope-horn in table 4.1 From
this comparison it is obvious that the 16-wafer horn performs almost like its smooth
envelope-horn counterpart. The 12-wafer on the other hand is not as efficient. This
is because the 12-wafer horn involves relatively large step-discontinuities (S = 0.17),
see Fig. 4.1) as opposed to the corresponding (S = 0.13)) step-discontinuity for

the 16-wafer horn. The numerical computations indicate that for achieving a good
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Figure 4.5: Patterns for the diagonal 12-wafer, 2.92)\-square aperture horn. The
thickness of each wafer is 0.4). The exciting strip dipole is at 0.7A from
the apex.

Relative gain (dB)
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Figure 4.6: Patterns for the diagonal 16-wafer 2.92)-square aperture horn. The thick-
ness of each wafer is 0.31). The exciting strip dipole is at 0.62) from the
apex.
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Figure 4.7: Comparison of the 45° copol. (left) and E-plane patterns (right) between
the 12-wafer horn, the 16-wafer horn and their smooth 30° flare angle

envelope-horn.

Antenna type | 12-wafer | 16-wafer | 30°-smooth

Gain 17.9-dB | 18.4-dB 18.6-dB
Aperture effic. 58% 64% 67%
10-dB Beamwidth 35° 37° 37°
Gaussian Coupl. 68% 83% 85%

Cross-pol (45°) |-11.5-dB | -14-dB | -16.5-dB

Table 4.1: Radiation characteristics of diagonal 2.92)\-square aperture horns. The
wafer thickness is 0.4\ for the 12-wafer and 0.31) for the 16-wafer horn.
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approximation to the radiation characteristics of the smooth-walled envelope-horn,
the size of the step-discontinuities involved in the the profiled horn should not exceed
the value of S = 0.15). Larger step-discontinuities result in additional phase error
effects, higher cross-polarization in the 45°-plane and a corresponding reduction of
both the antenna aperture efficiency and its coupling to a Gaussian beam. Another
interesting observation from figures 4.5, 4.6 and 4.7 is that the 45°-plane patterns de-
velop a characteristic shoulder for both the profiled and the smooth-walled 30° flare
angle horn. The reason for which these shoulders are induced is that, for diagonal
horns of moderate flare angle, the amplitude of the aperture field distribution on the
intercardinal planes is not well tapered and does not vanish at the aperture edges. In
this case, essentially only the TE;q and TEo; modes are triggered and the amplitude
of the aperture field can be approximated by the expression given in equation (4.1).
For example, in the intercardinal plane z = 0 (Fig. 4.1) the aperture field is given
by:

Eop(z,y) = cos(—y—)i + 9 (4.16)

which shows that the § field component is non-tapered and does not vanish at the
edges of the aperture. Now, this non-tapered component is modulated by the phase
error which attains its maximum at the edges of the aperture. The consequence of this
non-tapered phase error on the intercardinal planes is that the 45° patterns develop
the observed characteristic shoulders. It should be noted here that in the case of
the wide flare angle horn of figure 4.2, higher order modes taper the aperture fields
in the intercardinal planes and therefore the 45°-pattern does not have very distinct
shoulders.

Since a step-profiled horn with a step-discontinuity not exceeding 0.15A has com-

pared well to its envelope-horn, a 12.1 GHz dipole-fed microwave model for the
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smooth-walled envelope-horn was built, measured and compared to theory. The an-
tenna has a 30° flare angle, a 2.92)-square aperture and is diagonally fed with a 0.4\
strip dipole placed at 1.12) away from the apex. The measured patterns in the E- H-
and 45°-planes are compared to the theoretically predicted patterns in figures 4.8 and
4.9 respectively. As it is observed the agreement between theory and experiment is

very good.

-15

20+

Relative gain (dB)

25 F

-30

Elevation angle (degrees)

Figure 4.8: Comparison between measurements done at 12.1 GHz and theory for the

E-plane (left) and H-plane (right) patterns of the 30° flare angle smooth
envelope-horn.

In figures 4.10 and 4.11, the resonant length and the corresponding resonant resis-
tance of the exciting strip-dipole in the equivalent 30° smooth envelope horn are
given as a function of the dipole distance from the horn apex. In these figures
only the first resonant region is shown which extends from the apex of the horn
to a distance of 1.1\ away from the apex. To compute the input impedance of

the diagonal horn, the assertion is made that for a given membrane cross-section



87

0 1 1 . | 1
45°cross-pol. _ 45°copol.
5k n
0] measur
10 F : theory |
15 F R

Relative gain (dB)

25 -

-30

Elevation angle (degrees)

Figure 4.9: Comparison between measurements done at 12.1 GHz and theory for the
+45° cross-pol (left) and copol. (right) patterns of the 30° flare angle
smooth envelope-horn.

the impedance of a centered vertical dipole is the same as the impedance of a cen-
tered diagonal dipole. To support this argument, consider first a vertical dipole
which as shown in chapter III excites the set of (TEmy/TMmn, m = odd, n = even)
modes. On the other hand the same horn fed by a diagonal dipole excites the modes
(TEmn 2nd TEpym /TMpn and TMpm , m = odd, n = even). Now if for example
at the membrane cross-section, the vertical dipole excites the TE;o mode with an
amplitude a¥e™ then by symmetry the diagonal dipole excites each of the modes
TE10/TEe with an amplitude of V2/2 a&t. Therefore, the complex power around
the dipole and the associated input impedance remain invariant for the vertical and
the diagonal excitations. This relation between the excited amplitudes of the vertical
and the diagonal excitation amplitudes has been verified numerically using the full-

wave analysis of chapter III. Furthermore, microwave measurements at 8GHz for a
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30° horn antenna verified that the resonant resistance at a distance of 1.05A from the
apex is 2202 for both the vertical and the diagonal excitation. An interesting feature
observed from figure 4.11 is that for the same membrane cross-section the resonant
resistance of the 30° flare angle horn is two to three times larger than the resistance
of the 70° flare angle horn of chapter III. This is due to the fact that for a given
cross-section the volume of the cavity formed behind the strip is 2.6 times larger for
the 30° horn. Therefore, for a given cross-section the strip-dipole can radiate more
power into the apex cavity in the case of the 30° flare-horn rather than for the 70°
horn. Eventually this power is reflected by the cavity and radiated into free-space.
The consequence of this observation is that in contrast to the 70° horn of chapter
I11, useful input resistances (between 30Q2 and 100§2) are obtained within the cutoff
region, i.e when the cross-section of the membrane is smaller than 0.5)-square.

Membrane size (X(/A)

0428 0482 0536  0.59
0.22 T T T T
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0.20 .
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0. 15 1 1 P | 1 "
0.7 0.8 0.9 1.0 1.1 1.2

Strip distance from apex (Lg/A)

Figure 4.10: The resonant length (I, = [,;/2) vs. the dipole position from the apex
for the 30° diagonal envelope horn antenna.
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Figure 4.11: The resonant resistance vs. the dipole position from the apex for the
30° diagonal envelope horn antenna.

4.5 Practical Recommendations

For any practical realization of a step-profiled horn, the step-size should be kept
below 0.15). In this case the effect of the step-discontinuities in all planes but the
45° cross-pol-plane is insignificant, and the step-profiled horn is very similar to the
equivalent smooth envelope horn. Furthermore, it is numerically verified that for
dipoles located deep inside the horn, the resulting patterns are identical to those of
the corresponding waveguide-fed horn (see Chap. III). Since the effective flare angle
of the step-profiled horn is small, simple dominant-mode theory for waveguide-fed
diagonal horns can be employed for the design of practical integrated step-profiled
horns [91, 92, 121]. In this simple design process it should be taken into account that
the 45° cross-polarization level will be underestimated by about 2.0-dB. However,

input impedance information can only be obtained from the full-wave analysis.
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4.6 Summary and Conclusions

The low-gain problem of the standard integrated horn antenna has been overcomed
by the introduction of the step-profiled diagonal integrated horn antenna. The step-
profiled horn antenna can reach a gain of 20 dB with a fundamental Gaussian coupling
efficiency of 83%. This antenna can be fabricated using integrated circuit techniques
and therefore is well suited for imaging array applications requiring many elements

of large f-number system.



CHAPTER V

THE QUASI-INTEGRATED HORN
ANTENNA: DESIGN AND ANALYSIS

In the previous chapter the step-profiled horn antenna was examined in order to
overcome the intrinsic low-gain nature of the integrated horn antenna. The step-
profiled antenna is suitable for focal-plane imaging arrays with a large number of
elements that can be integrated monolithically using silicon wafers. In this chapter
another kind of antenna is introduced, the quasi-integrated horn antenna, which
is best suited in applications requiring very high efficiency feed horns such as in
radioastronomical and remote-sensing systems.

The quasi-integrated horn antenna consists of a machined small flare-angle pyra-
midal section attached to the integrated portion as shown in figure 5.1. The structure
results in a simple multimode pyramidal horn with circularly symmetric patterns
and low cross-polarization. The minimum machined dimension involved in its ge-
ometry is around 1.5\ which enables its fabrication up to Terahertz frequencies. A
systematic approach towards the design of these horn antennas is presented below
which enables the implementation of a full range of practical quasi-integrated horn
antennas. The developed design methodology is based on the optimization of the

quasi-integrated horns for achieving maximum fundamental Gaussian coupling effi-
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Figure 5.1: The general configuration of the quasi-integrated multimode horn an-
tenna.

ciency [1]. The Gaussian coupling efficiency is particularly important in quasi-optical
receiver applications because it directly influences the total system performance with
a pronounced effect on the receiver noise temperature [105]. The “Gaussian-beam”
approach, proposed here towards the design of multimode horns with symmetric pat-
terns, utilizes the aperture fields directly and determines the excitation level of each
mode in a simple fashion. This is unlike traditional methods which require cum-
bersome manipulations of the far-field radiation patterns [109]-[111]. Also, the large
difference between the flare angles of the integrated and the machined parts of the
quasi-integrated horn antenna enables the treatment of these two portions indepen-
dently, resulting in a simple and efficient design process. Specifically, the short and
wide flare-angle integrated portion is treated using full-wave analysis whereas the long

but gradually flared machined section is analyzed using an approximate model.
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An outline of the work presented in this chapter is as follows. In section 5.1,
a radiating aperture (both with and without phase error) is analyzed for providing
maximum coupling efficiency to a fundamental Gaussian beam, and the corresponding
necessary conditions for the aperture modes are derived. In section 5.2 the optimum
aperture fields are examined as feeds to a Cassegrain reflector. The approximate
technique for the analysis of the machined section is presented in section 5.3 along
with the description of the design procedure. Subsequently, in section 5.4, specific
quasi-integrated horn designs are considered and verified both numerically using a

full-wave analysis technique and experimentally at 91GHz and 370GHz.

5.1 Multimode Aperture Analysis

Consider a square aperture of side a in a ground-plane which is radiating in the
half-space z > 0. The transverse electric field of the aperture at = = 0 can be

expanded in terms of the modes of a square waveguide of the same side a :
E.op(z,y) Z{Amnemn 2,Y) + ConiM(z,4)} , Co =0 (5.1)

The TE/TM waveguide modes €éX£, eTM are defined in Appendix A and are

mn

considered orthonormalized according to:

< Emn, €pg >= // emn(T,Y) - €pg(z,y)dzdy = bpmpbyg (5.2)
apert.

In Equation (5.1) it is assumed that only modes with indices (m = 1,3,5... M and n =
0,2,4,6...N) are present as is the case for a pyramidal horn which is fed either by
a centered Hertzian dipole or by a waveguide which supports only the dominant
TE;o mode [85] (see chapt. III). We now proceed to determine the modal coefficients
Amn, Bmn so that the coupling between the aperture field and a fundamental Gaus-

sian beam is maximized. If the copolarized and cross-polarized components of the
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aperture field are defined to be the E, .5, and the E, ,, components respectively, then

the transverse electric field can be rewritten in the form :

MN MN
Eyep(z,y) = E 42 Y0 (2,y) s Erp(T,y) = Z A5 Vih(zy)  (5:3)

where the orthonormalized copolarized and cross-polarized hybrid modes g2, W7F
are defined by :
E(—l)m 7= cos(™F%) cos(*2Y) x| < af2,|y| < a/2
Uoa(z,y) =91 ° (5.4)
0, otherwise
@(—l)m 7 sin(222) sin(*22) |z] < a/2,]y| < a/2
VP (zy)=9 ° (5.5)

0, otherwise

In Equations (5.4) and (5.5) the origin of the Cartesian coordinates is located at the
geometrical center of the aperture and ¢, = 2 — 6,9 is the Neumann number. The

corresponding copolarized and cross-polarized modal coefficients of (5.3) are related

to the TE/TM modal coefficients of (5.1) through :

ncmn - mAmn zp nAmn + mCmn

vm? +n? P omn Vm?+n?

As shown in chapter IV, the coupling efficiency n(w,) of the aperture to a fundamental

&, = (5.6)

Gaussian beam of waist radius w,, which has its waist on the aperture is calculated

from:

mn m'n wo
n(wo) = — 75 (5.7)
3"&” > (1d2, 2 + 1422, %)

where, Ipq(w,) // e (z,y)exp(—(z* + y?)/w?) dz dy (5.8)
apert.
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At this point it is desired to determine the modal coefficients d5°, and d?, so that the
coupling efficiency n(w,) is maximized. For this purpose, the application of Schwarz’s
inequality to Equation (5.7) immediately implies that the maximum coupling effi-

ciency fmaz(w,) in the presence of cross-polarization is obtained from :

MN

M,N
E |Imn(w0)|2 z |d$:n|2

nmaz(wo) = — w27r M.N (59)
5 Y (R4

with the corresponding copolarization modal coefficients determined by :

COo
o

m = constant (510)

Condition (5.10) is recognized to be the condition required for approximating (in the
mean square sense) a fundamental Gaussian beam in terms of the aperture modes
e . Furthermore, the best maximum coupling efficiency is achieved with zero cross-

polarization and is given by :

M,N
2 Momn(wo)[?

maz\Wo) = ———5 5.11
Nmaz(Wo) i ( )

2
and the corresponding condition on the modal coefficients is :

nAmn = =mCrin (5.12)

The maximum coupling efficiency fmqz(w,) of equation (5.11) still depends on the
waist radius w, and is shown in figure 5.2 as a function of the ratio w,/a for various
indices (M,N).

Some interesting features of this graph are discussed below from the point of view

of using the aperture modes to synthesize a certain fundamental Gaussian beam:
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Figure 5.2: The maximum Gaussian coupling efficiency as a function of the w,/a ratio
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1s assumed embedded in an infinite ground plane.
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1. For each pair of indices (M,N) there exists a corresponding optimum ratio

W, opt/@ for which the coupling efficiency attains a global maximum.

2. Large values of w,/a result in poor coupling efficiencies since most of the syn-
thesized Gaussian power spreads outside the aperture where the electric field

vanishes.

3. For a large number of modes available for beamshaping on the aperture, any
fundamental Gaussian mode satisfying w,/a < 0.34 can be synthesized with cor-
responding coupling efficiencies approaching 100%. A 100% coupling efficiency

is not possible because the synthesized Gaussian beam is always truncated.

Table 5.1 shows the optimum relative magnitudes between the modes as computed
numerically from equations (5.8) and (5.10), along with the corresponding optimum
W,,0pt/ @ Tatio, for some practically encountered aperture sets of modes. In figure 5.3
the calculated universal far-field E- and H-plane patterns are also shown for the two
cases (M=1,N=2), (M=3,N=2) when the aperture modes are excited according to ta-
ble 5.1. It is interesting to point out that for the case (M=1,N=2), the corresponding
ratio of the coefficient of the copolarized hybrid mode cos(rz/a) cos(2my/a) to the
dominant mode cos(rz/a), is found to be v/2d55/dio = 0.72. This ratio is a com-
promise between the value of 0.66 required for equalization of the 10dB beamwidth
in the E and H far-field planes and the value of 0.84 required for the cancellation
of the E-plane sidelobe [108]. The “far-field” approach of determining the excitation
levels of the aperture modes requires the computation of the Fourier transforms of the
aperture fields, in contrast to the Gaussian beam approach which directly utilizes the
aperture fields. Furthermore, the application of the above far-field design criteria for

achieving symmetric patterns becomes cumbersome as the number of aperture modes
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Available modes (M,N) | (1,0) | (1,2) | (1,2)+TEs | (3,2)
Wo,0pt/ @ 043 | 03¢ | 032 | 029

cpl. efficiency : Nmor | 84% | 98.5% 99.2% 99.7%
—d53/dyg 0.51 0.56 0.64

43 /dyo 011 | 017

—d22 [y : 0.1

Table 5.1: Optimum parameters for maximum fundamental Gaussian coupling ef-
ficiency for certain practically encountered aperture modes available for
beamshaping (up to TEyn/TMumn).

Y T r M| T T T T T

(M=3,N=2)

0 —T1—T1—
(M=1, N=2)

E-plane

Relative gain (dB)
23
g

. ..1:/\1..1..:
-3 0 3 6 9 12

Normalized theta, u/x

Figure 5.3: Universal E and H patterns for the cases (M=1,N=2) (left), and

M=3,N=2) (right), v = Zasin(§). In the H-plane, the paraxial ap-
A

proximation is assumed, i.e cos(f) =~ 1 in the main beam.
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increases, unlike the Gaussian beam approach which determines the excitation level
of every available mode through the simple condition of equation (5.10).

The above analysis is valid exactly provided that there is no phase error on the
radiating aperture. However, if the aperture is excited by a horn-taper then a spher-
ical phase error is introduced which can be approximated by a quadratic wavefront

Qr(z,y) whose radius of curvature is R, i.e :

Qr(z,y) = erp( iR(x +y )> (5.13)

The consequences of this phase error to the performance of dual-mode horns has been
studied by Profera [114] who showed that the general effect is the deterioration of the
circular symmetry of the patterns and the increase of the sidelobe-level. The Gaussian
beam analysis presented above can be extended in a straightforward manner to the
case of a non-zero phase error and thus can still provide design conditions for the
aperture modes. In this case, the optimum fundamental Gaussian beam must have
its beam waist located at a distance Z,, behind the aperture and inside the horn
so that its aperture radius of curvature (Rg) equals the radius of curvature of the
aperture field (R). In the presence of phase error, the copolarized component of the

aperture electric field is assumed to be represented in the form :

Eyap(z,y) = Qr(z,y) Z dco vo.(z,9) (5.14)

The corresponding coupling efficiency to a fundamental Gaussian mode of aperture
beam radius w,, and of aperture radius of curvature Rg was derived in chapter IV

and is given by:

2
FLI 12+y2! - gi';ﬁ)
ffaperturc € *Ra € Yap Ey,ap(xa y) d(l:dy

() = | | (5.15
' e (] perire |Eupl, )| dady

aperture
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If now in (5.15) the aperture field radius of curvature is chosen to equal the Gaussian
beam radius of curvature, then the quadratic phase factors are eliminated and the
corresponding Gaussian coupling efficiency retains the form of equation 5.7. However,
in this case the beam waist radius w, should be replaced by the aperture beam
radius w,, and the copolarized field expansion coefficients d2?, should be replaced
by the quadratically phase-modulated coefficients d°_. Therefore, the conditions on
the coefficients (iﬁ,‘:n for maximum coupling efficiency are still governed by equations

(5.10), (5.12) and the corresponding Gaussian coupling efficiency is still given by

equation (5.11).
5.2 Coupling to a Cassegrain Antenna

In this section the multimode horns of table 5.1 are examined as feed elements for
Cassegrain reflectors comprising typical submillimeter quasi-optical antenna systems.
For a distributed object, the pertinent coupling efficiency of the Cassegrain antenna
system is the Gaussian coupling efficiency. Therefore, the optimum coupling efficiency
of the Cassegrain system coincides with the optimum coupling efficiencies of the feed
elements as tabulated in table 5.1.

In order to complete the efficiency analysis for a Cassegrain antenna system |,
the case for which the object is a point source at infinity is also investigated. This
time, the pertinent coupling efficiency of the system becomes the coupling to a plane
wave. For a long focal-length Cassegrain reflector, the image of a point source at
infinity can be accurately represented by the corresponding Airy intensity pattern
Ji(kpsin6,)/(kpsin ), where 8, is the semi-angle subtended by the subreflector on

the secondary focal plane and p is the distance from the reflector axis [29, 106] (see

Fig. 5.4). If a horn-feed having an aperture field distribution E,,(x,y) is placed on
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Figure 5.4: A Cassegrain antenna system and the associated ray-optics.

the secondary focus, the corresponding coupling efficiency can be directly computed

from the normalized overlapping integral with the Airy function :
1 ) 2

kpsin
‘/Aorn apert (kpzma ) Eap co(l‘,y) d(l?dy

Nsec. =
kpsmG,
/J (kpsm9a d:zdy //horn apert.

where E.,(z,y) is the copolarized component of the aperture field. For a given horn-

(5.16)

Ea,,(a: y)| dzdy

aperture distribution, the semi-angle 6, should be selected for maximum coupling
efficiency. The coupling efficiency can also refer to the confocal tertiary focus, which
can be computed by transferring the Airy pattern from the secondary to the tertiary
focus (see Fig. 5.4) . Since the lens configuration is confocal, and assuming a thin
lens of infinite extend and of focal length f, the Fourier transform of the Airy pattern
is formed on the tertiary focus , which is a uniform circular distribution of radius

~ = fsin@,. Hence, on the tertiary focus the coupling efficiency becomes :

‘// Eopeolz y)dxdy
disc T2

o T

(5.17)
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Table 5.2 presents a comparison between the optimum coupling efficiencies of the
multimode horns of section 5.1 ,the optimum efficiencies achieved by a diffraction
limited conical corrugated horn of radius a, and by a fundamental Gaussian-beam
feed of waist radius w,. Also, following Padman [106] we decompose in table 5.3 ,the
fields of the multimode horns, the field of the diffraction limited corrugated horn,
and of the Airy pattern into their first few Gauss-Hermite modal components (for

details see Appendix F). From table 5.2 it is observed that the multimode horn

Optimum (sin§,) | Cpl. Efficien. | Cpl. Efficien.

Type of feed for cpl. to Sec. focus | on Sec. focus | on Ter. focus
Conical Corrug. , p = a/2 i—‘}f 83.7% 86.9%
Gauss. beam, 05745 = 72- 1.12 05745 81.5% 81.5%
Multimode up to (1,2) %/O—f 83.0% 83.6%
Multim. up to (1,2)+TEs3 z/—lf 83.4% 83.8%
Multimode up to (3,2) Z/—Qf 82.8% 82.9%

Table 5.2: The coupling efficiencies on the secondary and confocal tertiary foci of
a Cassegrain antenna for the multimode feeds of table for a diffraction
limited conical corrugated horn of radius p = /2, and for a Gaussian-
beam feed of waist radius w,.

antennas present 2% higher coupling efficiencies to the Cassegrain reflector than a

pure Gaussian-beam feed, which is due to the presence of higher order Gauss-Hermite

modes in their fields (see Table 5.3). The corresponding optimum edge-taper for the
multimode horns is found to be around -10.2dB which is close to the value of -10.9dB
required in the case of a pure Gaussian-beam feed (see Appendix E). Furthermore

on the tertiary focus, the corrugated horn couples better than the multimode horns.

This higher coupling efficiency is achieved because the Fourier transforming action
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Gaussian | Airy Patt. : Multimode Horns Corrug.

Mode Gun 1’(%%%2 Up to (1,2) | Up to (1,2)+TE5 | Up to (3,2) | Horn
00 0.9025 0.9925 0.9958 0.9984 0.9903
02 0.0 -0.0268 -0.0068 0.0023 0.0
20 0.0 0.0238 0.0046 -0.0183 0.0
04 -0.1418 -0.0305 -0.0299 -0.0393 | -0.0737
40 -0.1418 -0.0907 -0.0575 -0.0302 | -0.0737
22 -0.1158 -0.0006 -0.0377 0.0044 | -0.0602
06 -0.1028 -0.0048 -0.0041 0.0058 0.0243
60 -0.1028 0.0277 -0.0070 -0.0008 0.0243
24 -0.0797 -0.0070 -0.0012 0.0019 0.0188
42 -0.0797 0.0024 0.0155 -0.0010 0.0188

Table 5.3: Decomposition of the aperture fields of the multimode feeds, of the Airy-
pattern on the secondary focus, and of a diffraction limited conical corru-
gated horn into the first few Gauss-Hermite modes. These decompositions
are associated with the Cassegrain secondary focus coupling efficiencies.
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of the lens reverses the phase of the Gog, Ggo, G24 and Gy Gauss-Hermite modal
components of the Airy pattern, enabling a better match to the aperture distribution
of the corrugated horn (see Table 5.3 and Appendix F). However, the lens diameter
should be at least six beam radii, in order to ensure that the involved modes pass
through the lens [106]. In the case of the multimode horns, the component Gauss-
Hermite modes are already excited in antiphase as it can be observed from table 5.3.
Therefore, for the multimode horns the effect of the lens on the tertiary focus is not

very beneficial to the coupling efficiency of the Cassegrain antenna system.

5.3 Analysis of the Machined Section and Design Process

Consider the gradually-flared pyramidal machined section of axial length Ljs and
of half flare-angle 8, (Fig. 5.1) which is assumed excited at its throat by the (m =
1,3,5...M and n = 0,2,4,6... N) locally propagating waveguide modes. Since
the machined section is gradually flared and the incident modes are propagating,
reflections at the throat are considered negligible and the corresponding transverse

electric field is given by :
E' ”‘”‘ z y Z {Amn :r’:nTE )+ Crt:n :r}:nTM(m’y)} (518)

To a first order approximation we can assume that each mode preserves its carried
power upon propagating from the throat to the aperture. Also, each mode acquires a
phase shift which can be computed by integrating the phase shift contributions from

each infinitesimal section of length dz :

Ly .
... =/0 Bmn(z) dz (5.19)

where Bnn(2) is the local propagation constant of the mn**-mode. The above phase

shift has been used extensively for the design of multimode horns [107]-[110] and it
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can be rigorously justified through a coupled-mode analysis of gradually flared tapers
(115]. The aperture field is assumed to be modulated by a quadratic phase factor
QL (z,y) of curvature Ly = a/(2tan §,) with L7 being the total virtual length of the
taper. Under the above assumptions and neglecting reflections from the aperture of
the tapered section (considered electrically large), the aperture field is simply given

by :
Eiop(2,y) = Qur(2,y Z{A;'fn eanTE(z,y) + Cop ™ (z,y)) (5.20)

with the quadratically modulated aperture modal coefficients related to the throat

modal coefficients through :

A = A%\ YarTE | Y, exp(—j®rmn) (5.21)
Cer = Cor\/ Y™ | Y, exp(— j®mn) (5.22)

where Y* is the throat admittance for the mntt

mode and Y, is the free-space
intrinsic admittance which has been assigned to the aperture modes. Also, the corre-
sponding copolarization and cross-polarization quadratically modulated coefficients

d= d’”” are still related to A% C”;‘n’; through (5.6). For convenience, from now on

mn) mn)
these quadratically modulated coefficients will be simply referred to as the radiating
aperture modal coefficients. This approximate model can be used for predicting the
radiating aperture modal coeflicients once the throat modal coefficients have been
determined. Note that just for predicting the magnitude of the radiating aperture
modal coefficients, knowledge of the machined section length Ly, is not required.

In order to optimize the structure of figure 5.1 to achieve maximum coupling
efficiency to a fundamental Gaussian beam, the integrated portion aperture size a;

and the mode converting step-size s should be selected so that the magnitudes of

the modal coefficients at the radiating aperture (determined by 5.21-5.22) satisfy
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conditions (5.10) and (5.12). On the other hand, the length Lys and the flare-angle 6,
of the machined taper should be selected using the phase shift expression of equation
(5.19) to bring the radiating aperture modes in phase. It should be noted here that
the 180° phase difference between the TEr,-mode and the corresponding TMpn-mode
required for the cancellation of the cross-polarization (see Eqn. 5.12) should also be
provided by the integrated portion and its step-discontinuity. This is because those
modes are degenerate and therefore the machined taper cannot change their phase
difference. Along those lines a three-stage design process has been established for the

quasi-integrated horn antennas and is summarized below :

1. The integrated 70° flare-angle section of the antenna structure of figure 5.1
(including the step discontinuity) is selected and analyzed independently of the
machined section. For this purpose, the dipole-fed integrated portion is assumed
to be terminated by an infinite square waveguide of side (a,+2s) and is analyzed
using the full-wave analysis technique of chapter III to obtain the throat modal
coefficients A%, C . The junction cross-section a, and the step size s (see
Fig. 5.1) are selected so that the magnitudes of the radiating aperture modal
coeflicients, as predicted by Equations (5.21-5.22) and (5.6), satisfy the optimal

conditions (5.10) and (5.12) as closely as possible.

2. The infinite waveguide is now replaced by the gradually flared machined section
and the assumption is made that the modal coefficients at the throat of the
machined section retain their computed values of stage 1 (Fig. 5.5). This is a
good approximation since the actual excited modal coefficients are determined
by the difference between the integrated portion flare-angle and the machined
section flare-angle and this difference is always dominated by the large 70°

flare-angle of the integrated portion [108]. The length Lys and the flare-angle
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6, ~f the machined section ure then selected iteratively (using 5.19) so that the
modal coefficients df,‘jn appear in phase on the radiating aperture. The shortest

possible length is chosen in order to achieve the maximum bandwidth.

3. Finally, the length and the flare-angle of the machined section are “fine-tuned”
using the full-wave analysis of chapter III for the entire quasi-integrated horn
antenna and again for achieving maximum Gaussian coupling efficiency. For this
fine-tuning, the coupling efliciency expression of equation (5.15) is used and the
aperture field is obtained directly from the full-wave analysis. As a general rule,
we have found that this fine-tuning only slightly modifies the initially computed

parameters Ly and 6, and therefore its implementation need not be automated.

In table 5.4 several practical geometries of integrated portions which have resulted
from the first stage of the design process are quantified. The optimum aperture
coefficients have been determined from equations (5.8), (5.10) and (5.12) and have
already been tabulated in table 5.1, whereas the magnitudes of the radiating aperture
modal coeflicients have been predicted from the full-wave analysis of the integrated
portion and the approximate model of equations (5.21-5.22) for the machined section.

Table 5.4 suggests that necessary condition (5.10) for achieving maximum fun-
damental Gaussian coupling efficiency can in practice be closely satisfied, especially
with the introduction of a mode converting step-discontinuity. However, the rela-
tive modal ratio required for the cancellation of the cross-polarization (Eqn. 5.12)
cannot be satisfactorily generated when maximum Gaussian coupling efficiency cri-
terion (5.10) is realized. Fortunately, the associated 180° phase shift can exactly be
achieved, resulting in non-zero but low cross-polarization of the order of -23dB in the
45°-plane. In the next section, the integrated section geometries of table 5.4 are used

for the design of particular quasi-integrated horn antennas.
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Figure 5.5: The quasi-integrated antenna and the corresponding excited modes at
the throat and aperture (top). The machined section Ljs is replaced
by an infinite waveguide and the throat modes are assumed unchanged
(bottom).
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Optimum | a;, = 1.35A | a, = 1.52) | a, = 1.35) | a, = 1.57\
s=00 | s=00 |2s=0.17\| s=00
|d9°®|/|d8] | 0.56(0.51%) |  0.52 0.50 0.55 0.51
|d22| /|2 0.114 - 0.110 0.117 0.146
arg(CI2JA%) | 180° 200° 183° 182° 179°
|Cep|/| A% 2.0 4.5 4.4 5.1 4.3

Table 5.4: Comparison between the optimum relative magnitudes of the aperture
modes and the relative magnitudes of the modes launched at the aper-
ture by four practical integrated portion sections. The exciting dipole is
positioned at a distance of 0.39) from the apex of the horn. * The first
geometry excites modes up to the TE;2/TM;, and the pertinent optimum
value is 0.51, whereas the rest three geometries excite also the TE3y mode
and the pertinent value is 0.56.

5.4 Numerical and Experimental Results

The algorithm of section 5.3 has been employed for the design of a 20dB, a 23dB
and a 25dB quasi-integrated horn antenna, all with a fundamental Gaussian coupling
efficiency exceeding 97% and with a full-null beam efficiency of about 99%. These
designs provide a complete set of quasi-integrated horn antennas for applications in
the millimeter and submillimeter-wave spectrum. Although in the design process the
analysis of the machined section is performed using the approximate method of sec-
tion 5.3, the computation of the radiation characteristics of the finally designed horns
is also carried out using the full-wave analysis technique of chapter III. Furthermore,
as indicated in chapter III, the input impedance of the feeding strip-dipole in the inte-
grated portion of the horn is not affected by the attachment of the machined section.
This is due to the fact that the input impedance of the feeding strip-dipole is mainly

determined by its local geometrical environment which remains unaffected by the at-



tachment of the machined section. The input impedance for the integrated-circuit
horn antennas has already been analyzed theoretically and characterized experimen-
tally in chapter III where it was shown that by adjusting the dipole position along
the horn axis, the input impedance can be matched to either Schottky or SIS diodes.
Therefore, the selection of the required input impedance can be based directly on the
results of chapter III.

For the pattern measurements the antennas were mounted on a two-axis computer-
controlled gimbal mount, and for a source a tunable 85-96GHz Gunn diode oscillator,
modulated at 1KHz, was used. For the 20dB horn, the signal was video-detected by
a beam lead Schottky diode which was soldered to the feeding dipole on the dielectric
membrane of the quasi-integrated horn antenna. The corresponding detected signal
had a 40dB S/N ratio and was fed to a PAR-124A lock-in amplifier. For the 23dB
horn, the output of the Gunn oscillator was fed to a 350-370GHz quadrupler and the
signal was detected by a bismuth microbolometer integrated with the feeding dipole
on the dielectric membrane. In this case, the corresponding S/N ratio was 35dB.

A. 20dB quasi-integrated horn antenna.

The geometrical parameters for the 20dB realization are calculated to be (a, =
1.35),s = 0.0, Lps = 7X,0, = 9°) and are shown in figure 5.6. The measured principal
far-filed patterns are compared to the patterns obtained by analyzing the machined
section using the approximate method of section 5.3 in figure 5.7. As shown, the
approximate model agrees well with both the full-wave analysis and the measurements
thus verifying the approximations used in the design process. Note that the circular
symmetry of the patterns is excellent down to -20dB and the sidelobe-level in the
E-plane is -27dB. The intercardinal patterns are shown in figure 5.8 and as indicated

the cross-polarization is about -23dB.
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Figure 5.7: The E- (right) and H-plane (left) patterns of the 20-dB quasi-integrated
horn. The 91GHz measured patterns are compared to the full-wave anal-
ysis and the approximate analysis patterns.
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Figure 5.8: Predicted and measured at 91GHz 45°-patterns for the 20dB quasi-
integrated horn antenna.

Apart from the measured patterns, input impedance measurements have also been
conducted for a microwave scale model at f, = 6GHz. The measured impedance as
a function of the frequency for a resonant dipole (at f,) positioned at Lg = 0.38A
from the horn apex is compared to theory in figure 5.9. The impedance has been
predicted without modeling the machined extension whereas the measurements have
been conducted with the extension in place. The close agreement between the pre-
dicted and the measured impedance verifies once more the assertion of chapter III
that the input impedance is dictated by its local cavity environment. The mesured
resonant resistance is 50§) in agreement with the results of chapter III.

In order to examine the frequency sensitivity of the antenna, pattern measure-
ments have also been carried out at at 86.5GHz and 95.5GHz, i.e at the edges of the

+5% bandwidth. Figures 5.10 to 5.13 show the corresponding numerically computed
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Figure 5.9: Predicted and measured input impedance vs. frequency for a resonant
feed-dipole at f,=6GHz positioned at 0.38) from the apex of the 20dB
quasi-integrated horn antenna.
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vs. the measured patterns and as shown, the 10dB beamwidth does not vary by more
than 3° in this frequency range. The calculated phase center is found to be located at
a distance of 1.5\ from the horn aperture for the E-plane and at 1.4 for the H-plane.
The phase center has been computed using the standard method of a least-square fit
to the residual far-field phase pattern [116]. The phase center is also estimated by
fitting an elliptic Gaussian beam having an astigmatic location of its beam waist to
the aperture field (see Appendix G). Due to the high Gaussian coupling efficiency of
the quasi-integrated horn the two methods yield similar results to within a margin
of 15%. The full radiation characteristics of this horn at the design frequency and at
the edges of the £5% frequency bandwidth are presented in table 5.5. The indicated
10-dB beamwidth fluctuation corresponds to the variation of the beamwidth in an
azimuthal far-field cut. The Gaussian coupling efficiency is computed from the full-
wave analysis of the entire antenna structure in conjunction with coupling formula
(5.15). For this purpose the aperture radius of curvature of the Gaussian beam (Rg)

was obtained from the expression:

_ Re + Ry

Rg 5

(5.23)

where Rg and Ry are the radii of curvature of the aperture-field in the E-plane
and H-plane cuts respectively, as obtained from a least-square fit to the phase of
the aperture field. The Gaussian-beam rolloff is calculated at the edges of the 5%
bandwidth using the Gaussian-beam parameters which were calculated at the design

frequency f,.
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Figure 5.10: The measured at 86.5GHz E (right) and H-plane (left) patterns vs. the
full-wave patterns of the 20-dB quasi-integrated horn.
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Figure 5.11: The measured at 86.5GHz E/H and 45°-plane patterns vs. the full-wave
patterns of the 20-dB quasi-integrated horn.
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Figure 5.12: The measured at 95.5GHz E (right) and H-plane (left) patterns vs. the
full-wave patterns of the 20-dB quasi-integrated horn.
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0.95f, fo 1.05f,

Gain 19.4dB 20dB 20.6dB

Aperture efficiency 60.6% 62.8% 65.4%
10dB Beamwidth J7°+1° [ 34°£1.2°|32°£1.8°

Sidelobe-level (E-plane) | —23dB | -27dB | —26.3dB

Cross-pol.(45°) -22.5dB | -22.7dB | -23dB
Beam-efficiency (to -10dB) |  85% 86% 86.5%
Gaussian Coupling 96.4% 97.3% 96.9%

Gaussian Coupling rolloff | 95.5% 97.3% 96.5%

Table 5.5: The main radiation characteristics of the 20dB quasi-integrated horn an-
tenna.

B. 23dB quasi-integrated horn antenna.

The optimized design parameters for a 23dB quasi-integrated horn are found to
be (a, = 1.52X,2s = 0.17\, Ly = 13),0, = 8.5°) and are shown in figure 5.14. The
computed principal patterns from both the full-wave analysis of the entire antenna
and from the approximate model of section 5.3 are compared in figure 5.15 to cor-
responding 370GHz measurements. In figure 5.16 we include also the computed
patterns from the full-wave analysis and the measured patterns for the 45°-plane.
The corresponding E/H and 45°-plane patterns at 358GHz are shown in figures 5.17
and 5.18 respectively and the radiation characteristics of this horn are being summa-
rized in table 5.6. For the 23dB horn the phase center is calculated to be at 3.7\
inside the horn for the E-plane and at 3.5\ for the H-plane. It should be noted that
although the 10dB beamwidth is sensitive to frequency variations, the corresponding

Gaussian coupling efficiency is quite insensitive as it can be inferred from table 5.6.
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horn. The 370GHz measured patterns are compared to the full-wave
analysis and the approximate analysis patterns.
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Figure 5.16: The measured at 370GHz E/H and 45°-plane patterns vs. the full-wave
patterns of the 23-dB quasi-integrated horn.
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Figure 5.17: The measured at 358GHz E (right) and H-plane (left) patterns vs. the
full-wave patterns of the 23-dB quasi-integrated horn.
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Figure 5.18: The measured at 358GHz GHz E/H and 45°-plane patterns vs. the full-
wave patterns of the 23-dB quasi-integrated horn. In this case, the S/N
ratio was 23dB limited by the dynamic range of the lock-in amplifier
used.

0.965f, fo 1.035f,

Gain 22.2dB 22.8dB 23.6dB

Aperture efficiency 48.5% 52% 58.4%

10dB Beamwidth 276 £0.2° | 25° £ 1.1° | 22.5° £ 1.3°

Sidelobe-level (E-plane) —28dB -33dB —-29.8dB
Cross-pol.(45°) —-20.5dB —-21dB —22dB

Beam-efficiency (to -10dB) |  86.6% 86% 86.6%

Gaussian Coupling 97.2% 97.3% 96.8%

Gaussian Coupling rolloff 96.3% 97.3% 96.0%

Table 5.6: The main radiation characteristics of the 23dB quasi-integrated horn an-

tenna.
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C. 25dB Quasi-integrated horn antenna.

In order to evaluate the efficiency of the design process and to provide a full
range of practical designs, a 25dB quasi-integrated horn has also been designed and
the computed geometrical parameters are found to be (Fig. 5.19): (a, = 1.52\,s =

0.0\, Ly = 19.51,8, = 10° ). The radiation patterns, as calculated from the full-

Figure 5.19: The geometry of the 25dB quasi-integrated horn antenna.

wave analysis and shown in figure 5.20 still exhibit excellent circular symmetry, low
cross-polarization and suppressed sidelobes. The main radiation characteristics of
this horn antenna are tabulated in table 5.7. For this longer horn a step discontinuity
at the throat of the machined section is avoided in order to provide wider bandwidth.
The abrupt change of flare-angle at the throat of the machined section still provides
adequate mode conversion as was indicated in table 5.4. The corresponding pattern-
bandwidth for the 25dB horn as computed from the change of the 10dB beamwidth
is calculated to be around 7% and the location of the phase center is computed to be

at a distance of 13\ from the aperture for the E-plane and at 11\ for the H-plane.
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Figure 5.20: The calculated from the full-wave analysis patterns of the 25-dB quasi-
integrated horn.

0.965f, fo 1.035f,
Gain 24.7dB 25.5dB 26.2dB
Aperture efficiency 36% 40% 44%
10dB Beamwidth 21.6 £0.8° { 19.2° £ 0.7° | 17.5° £ 0.5°
Sidelobe-level (E-plane) —28.7dB —-30.8dB —-30.8dB
Cross-pol.(45°) _996dB | -24dB | —24.7dB
Beam-efficiency (to -10dB) |  84.5% 85% 85%
Gaussian Coupling 97.1% 97.5% 97.4%
Gaussian Coupling rolloff 96.5% 97.5% 97.1%

Table 5.7: The main radiation characteristics of the 25dB quasi-integrated horn an-

tenna.
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5.4.1 Some General Remarks

Below, some general remarks for all the designed quasi-integrated horn antennas
are discussed. First, the pattern bandwidth that was used to characterize the fre-
quency sensitivity is quite conservative and depending on the particular application
one may choose other criteria to define the bandwidth such as the 10-dB beam ef-
ficiency, or the Gaussian coupling efficiency rolloff, in which case the antennas will
appear more wideband. In table 5.8 the Gaussian coupling efficiency rolloff is exam-
ined for all three antennas in a wider bandwith of 30%. From this table it is observed
that the performance of the quasi-integrated horns is not symmetric around the design

frequency but it degrades faster for lower frequencies. In the case of the 20dB and

0.85f, | 0.90f, | 0.95f, | 1.0f, | 1.05f, | 1.10f, | 1.15f,

20dB | 7% | 86.5% | 95.5% | 97.3% | 96.5% | 93% | 89%

23dB | 88.4% | 88.7% | 95.5% | 97.3% | 95.5% | 93% | 89%

25dB | 80% | 89.6% | 95.3 |97.5% | 96.0% | 95.6% | 95%

Table 5.8: The Gaussian coupling efficiency rolloff for all three quasi-integrated horn
antennas in a 30% bandwidth.

23dB antennas, the frequency sensitivity of the Gaussian coupling efficiency (rolloff
and maximum) and of the aperture efficiency is shown schematically in figures 5.21
and 5.22.

Second, it is found that the phase center of all the antennas considered above is
insensitive to frequency variations, at least within the used £5% pattern-bandwidth.
Third, the maximum efficiency of a Cassegrain antenna system is obtained when the
focus of the antenna coincides with the far-field phase center of the quasi-integrated

horns. In this case the computed coupling efficiency (to a plane wave) of the Cassegrain
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Figure 5.21: The frequency sensitivity of the the Gaussian coupling and aperture
efficiencies for the 20dB quasi-integrated horn antenna.
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antenna is about 82% for all of the three designed quasi-integrated horns and for both

the secondary and the confocal tertiary foci of the Cassegrain antenna.

5.5 Summary and Conclusions

A multimode quasi-integrated horn antenna has been introduced with radiation
characteristics comparable with those of the traditional machined horn antennas. The
antenna is inexpensive to fabriacate up to Terahertz frequencies. Typical radiation
characteristics of the quasi-integrated horn antenna is a 23 dB gain, a 97% funda-
mental Gaussian coupling efficiency a -23 dB cross-polarization level and a 99% main
beam efficiency. Also it achieves a coupling efficiency of 82% to a Cassegrain reflector
(with plane-wave illumination). For the quasi-integrated horn antenna a systematic
design procedure has been developed based on Gaussian-beam considerations. The
antenna is well suited for single channel quasi-optical receiver applications and en-
abled the implementation of the first integrated-circuit submillimeter-wave receiver

at room temperature [113].



CHAPTER VI

TWO-DIMENSIONAL INTEGRATED HORN
ANTENNA ARRAYS

In this chapter some aspects of the integrated horn antennas in a planar two-
dimensional array configuration will be described. The main focus of the discussion
will be on millimeter-wave focal-plane imaging-arrays for which the integrated horn
antenna was originally introduced [43]. The element pattern of an integrated horn
antenna in a 2-D array environment was solved in [43] by examining the array under
receiving mode conditions. In this approach, an infinite spatially periodic array of
integrated horn antennas is assumed to be illuminated by a plane-wave. This excites
an electric field of linearly varying phase shift over the array surface and along the
direction of the plane-wave incidence. The receiving patterns of an element in the
array are then obtained by using the mode matching technique, with transmission
matrices, together with Floquet-mode theory. The receiving pattern so obtained is
by reciprocity identical to the pattern transmitted when only a single horn antenna is
excited in the array (element pattern). Notice that this transmitted pattern is difficult
to evaluate directly since in this case only a single horn is excited in the array, and
therefore the corresponding array fields do not possess any kind of periodicity. On

the other hand, the receiving mode approach suffers from the disadvantage that it
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does not allow for obtaining any information concerning the input impedance of the
feeding dipole inside the horn cavity in the array environment.

In this chapter, the array problem is treated using generalized scattering matrices
in the scanned-array transmitting mode. This approach allows the extraction of
information concerning both the element pattern and the mutual-coupling among the
integrated horn antennas. In this technique the feeding strip-dipoles in the array
are assumed to be excited by voltage sources having a progressive linear phase-shift.
The underlying periodicity of the aperture fields enables the representation of the
free-space fields by Floquet modes [119]. Furthermore, the use of scattering matrices,
instead of transmission matrices, provides the required numerical stability for the
impedance computations as was discussed in chapters I and III. In the next section
the appropriate Floquet modes will be derived and in section 6.2 the details of the

employed method will be presented.

6.1 Derivation of the Floquet-Modes

Consider an infinite periodic two-dimensional array of horn antennas which is
shown schematically in figure 6.1. The horn aperture cross-section is denoted by
XN-square whereas the periodic cell cross-section is denoted by a-square. In order to
examine the properties of the infinite array, the feeding strip-dipoles are assumed to

be excited by voltage sources bearing a linear phase taper of the form:
Vi = Vooe—j(Wszy) (6.1)

where V,, is the amplitude of the applied voltage at the terminals of the (s,t)th strip-
dipole. Also 1, and 1, are the fixed incremental phase-shift from element-to-element

in the z and y directions, respectively. The phasing of the strip-dipoles results in a



Figure 6.1: An infinite integrated horn antenna array with the feeding strip dipoles
suspended on the membranes.
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main beam radiated in the direction (o, ¢,) defined by:
¥z = (ka)sin(6,) cos(¢.) (6.2)
by = (ka)sin(6,) sin(¢.) (6.3)

where k = 27 /) is the free-space wavenumber. A Hertz potential II(z,y, z)Z defined

in free-space (z > 0) satisfies the homogeneous Helmholtz equation:

(V?+ F)I(z,y,2) =0 (6.4)
Equation (6.4) is admissible to plane-wave solutions of the form:

(z,y,2) = e Tz, y) (6.5)

where T' is the propagation constant and II;(z,y) is the transverse component of the
potential II(z,y). Inserting this expression into Helmholtz’s equation (6.4) and using

the method of separation of variables yields:

L4 k)@ =0 (69
(g% +k2)g(y) =0 (6.7)

where II,(z,y) = f(z)g(y) and k;, k, are the separation constants satisfying the
consistency condition:
K2+ k2+T% = k? (6.8)
A solution to the wave-equation (6.4) is determined only when the periodic boundary
condition, arising from the assumed form of the excitation given in equation (6.1), is
imposed, 1.e:
IIi(z + a,y + a) = IIy(z, y)e I (W=tvy) (6.9)

Noting now that the function F(z) defined by:

F(z) = f(z)e =l (6.10)
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is periodic with a period a and hence is expandable into a Fourier scries, the general

solution for the separation function f(z) is given by:

flz)= Y Cpellrmovslie (6.11)

where Cy, is a constant. Note that (6.11) satisfies the wave-equation (6.6) and is
also subject to the periodic boundary condition (6.9). Therefore the general solution
to the Helmholtz equation (6.4), under the periodic boundary condition (6.9), is a

superposition of the following scalar Floquet-modes:

Hmn(zvya Z) = e—jk:{mxe—]k!{nye—jl"mnz (612)
where
=2
Koo= wfgﬂ (6.13)
—9
K = ﬁa—’m (6.14)
and K = (KL,)?+ (k) + T2, (6.15)

The propagation constant I'y,, for the (m,n)th Floquet mode is real, if the mode is
propagating, and imaginary if it is evanescent. If the beam pointing direction cosines
determined by (6.2) and (6.3) are denoted by T, = sin 6, cos ¢, and T, = sinf, cos ¢,

then

T = ky/1 = T2, — T2, (6.16)

where

A

sz = m;_Tx (617)
A

Tyn = n__]y (618)
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are the direction cosines of the (m,n)th Floquet mode. From (6.16) the condition for

the (m,n)th Floquet mode to become evanescent (“invisible”) is determined by:

(m% ~ T+ (n% ~T,) =1 (6.19)

Equation (6.19) describes a family of displaced unit circles in the T, — T, plane. If
the values of T, and T, describe a point within the (m,n)th displaced circle, then I'ysn
is real and the (m,n)th Floquet mode is propagating. Otherwise, it is evanescent at
these (T, T,) values. Such a family of circles comprises the so called grating lobe
diagram [119)].

The associated vector Floquet-modes are derived from the Hertz potential of equa-
tion (6.12) in a way similar to that by which the modes in a waveguide are derived
(see Appendix A). The results of the derivations for the Transverse Electric (TE) and
Transverse Magnetic (TM) Floquet-modes in the E-plane scan and the H-plane scan

are given below.

6.1.1 E-Plane Scan

For the E-plane scan, the progressive linear phasing is imposed along the E-plane

and therefore:
¥y, = (ka)sin(6,) (6.21)
Under this excitation, symmetry considerations require that the H-plane walls of the

Floquet cell defined by z = 0 and = a are magnetic walls (Fig. 6.1). Therefore, for

the TE and TM modes, the appropriate Floquet-mode expressions are:



TE-modes:
For the TE-modes modes the only non zero Hertz vector is the Electric Hertz

vector which is defined by:
Mrn(2,9,2) = dpa(e,y)e ™2 (6.22)
Frn(@,y) = Bl sin(kla)e (6.23)

Therefore the orthonormalized TE Floquet-modes obtained from equations (A.4),

(A.5) and (A.14) of Appendix A are given by:
é,f,;ZE(x, y) = B,f,m {jkyfn sin(k,{mz)i + ka{m cos(kgmm)gj} e~ Tkiny (6.24)

where the orthonormalization constant B/ is determined by:
V2 —0p
B! = = (6.25)
@/ (khn)? + (kfn)?

TM-modes:
In this case the non zero Hertzian vector is the Magnetic Hertz vector which is

defined by:
M.(z,9,2) = ¢na(z,y)e Tz (6.26)
dma(2,y) = B, cos(kl,z)e ny (6.27)

Therefore, the orthonormalized TM Floquet-modes obtained from equations (A.4)

)

(A.5) and (A.28) of Appendix A are given by:

el (2,y) = Bl {kL sin(kl,2)d + jk, cos(kf,z)g} emhimy (6.28)

6.1.2 H-Plane Scan

For the H-plane scan the progressive phasing is imposed along the H-plane and

therefore:

Y, = (ka)sin(6,) (6.29)
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Under this excitation, the symmetry considerations require that the E-plane walls of
the Floquet cell defined by y = 0 and y = a are electric walls (Fig. 6.1). Therefore,
the appropriate Floquet-mode expressions are:
TE-modes:

For the TE modes the only non zero Hertz vector is the Electric Hertz vector

which is defined by:

ﬁfnn(l‘,y,z) = fnn('ray)e—jrmnzé (6.31)

¢S (z,y) = B,f,mcos(kgny)e'jki'"r (6.32)

Therefore for the H-plane, the orthonormalized TE Floquet-modes obtained from

equations (A.4), (A.5) and (A.14) of Appendix A are given by:
el TE(z y)= B! {kf sm(kyny):r — gkl cos(kyny)y} e~ kine (6.33)

TM-modes:
In this case the non zero Hertz vector is the Magnetic Hertz vector which is defined
by:
7(2,9,2) = $malz,y)e ™ (6.34)
m(z,9) = Blsin(kly)e i (6.35)

Thus the corresponding orthonormalized TM Floquet-modes obtained from equations

(A.4), (A.5) and (A.28) of Appendix A are given by:

LT (@,y) = Bl ikl sin(kfup)é — Kl cos(Kfuy)g} e™ons (6.36)
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6.2 Full-wave Analysis

6.2.1 Patterns

The full-wave analysis for the infinite periodic array of integrated horn antennas
closely parallels the analysis presented in chapter III for the case of a single horn
antenna embedded in a ground-plane. The only difference lies in the computation of
the scattering matrix S for the transition into free-space, which has been defined in
equations (3.9) and (3.10) of chapter III. In the infinite array case, the corresponding
aperture scattering matrix is evaluated by mode-matching between the fields of the
aperture waveguide section and the free-space Floquet fields. The appropriate modes
in the modal expansion of the aperture waveguide fields are as given in Appendix
A, whereas the Floquet-modes for the expansion of the free-space fields have been
derived in section 6.1. The mode matching procedure is similar to the procedure
followed in chapter II (and Appendix B) for the determination of the scattering ma-
trix of a waveguide step-discontinuity. Note however that for the infinite array case,
the aperture scattering matrix has to be revaluated at each scan direction (6., ¢,)
because the involved Floquet-modes are a function of the scan-angle. This may seem
inconvenient at first, but the scattering matrix elements involve integrals between
sinusoidal functions which can be carried out analytically, in contrast to the cumber-
some integrals appearing in the case of a single horn antenna element embedded in a
ground-plane (see Appendix C).

The E-plane pattern of a single horn element in the array environment can be
determined from the analysis of the scanned array in the transmitting mode based
upon the principle of pattern-multiplication [119]: Because the array is assumed

infinite, the array factor becomes a delta function pointing to the direction of the scan-
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angle. Therefore, the element pattern of a horn in the infinite array environment can
be recovered by calculating the relative amplitudes of the far-fields in the direction of
the scan-angle 8,. Note that in case that grating-lobes are present, the element pattern
is just sampled at the grating-lobe directions as well. For computing the patterns,
the infinite array is assumed to be scanned in the E-plane and at each scan-angle 6,
the aperture scattering matrix is evaluated. For evaluating the aperture scattering
matrix, the employed appropriate free-space Floquet-modes are as described in section
6.1.1. Subsequently, the full-wave analysis of chapter III is invoked to compute the
corresponding aperture fields. The computed aperture fields of a single element are
Fourier transformed and sampled at each scan-angle 6, to provide the required relative
amplitudes of the far-fields (element pattern). The same procedure is followed for the
determination of the H-plane pattern but this time the corresponding Floquet-modes
are as given in section 6.1.2. Any other far-field plane can also be treated in a similar
way but in this case the appropriate Floquet modes are a superposition of the E-
plane and H-plane Floquet modes considered in section 6.1. Note that the evaluation
of the patterns from the scanned array transmitting mode approach enjoys certain
advantages over the evaluation of the patterns from the receiving mode approach of
[43]. First, no special precautions are necessary for correctly taking into account the
polarization of the fields at each far-field plane and second this approach enables to

account the effects of the finite length of the feeding strip-dipole.

6.2.2 Impedances

The mutual-coupling effects among the integrated horn antenna elements in the
array environment can be assessed by computing the active input admittance at each

scan-angle (6,, ¢,). With the excitation described in equation (6.1) and without loss
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of generality the active input admittance Yinoo (%2, ¥y ) of the (0,0)th element is defined
by:

Yinoo(¥z, ¥y) = Z Z Yooste V7 eIty (6.37)

$=—00 t==00

where Y,,,; is the mutual admittance coeflicient between the (0,0)th antenna element
and the (s,t)th antenna element (Y, is the self admittance) . The mutual admittance
coeflicients are independent of the excitation and thus they completely characterize
the array under any arbitrary excitation. To assess the effect of the mutual-coupling
among the elements, the active input admittance is computed at each scan-angle
(6o, @) using the full-wave analysis which has been described before. Namely, at each
scan direction the aperture scattering matrix is computed by mode-matching between
the fields of the aperture waveguide section and the free-space Floquet fields. Then
the procedure of chapter III is employed for the computation of the input admittance
of the feeding strip-dipole. If the mutual coupling coefficients (Y05, s # 0, t # 0)
are weak compared to the self admittance Y,..,, then the active input admittance
of equation (6.37) will not be a strong function of the scan direction and therefore
the input active admittance would be practically equal to the self admittance (see
later Fig. 6.12). In this way an assessment of the mutual-coupling effect among the
integrated horn antenna elements can be obtained. For a more precise treatment the
mutual-coupling ‘coefﬁcients Yo0st appearing in equation (6.37) should be explicitly
determined. This can be accomplished by noting that expression (6.37) can be con-
sidered as being the Fourier series representation of the active input admittance Y;,,,
with the mutual-coupling coefficients Y,,,; being the Fourier coefficients. Therefore,

the mutual-coupling coefficients Y, can be recovered by inverse Fourier transforming
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expression (6.37), i.e:

1 0 00 . .
Viow = i |, |, Yol )™ diuds, (6.38)
6.3 Numerical and Experimental Results

6.3.1 Patterns

First, consider a relatively large 2.1\-square horn antenna in an array configura-
tion. The computed E and H element patterns for this antenna in an array environ-
ment are compared to measurements and to the corresponding computed patterns
of an isolated horn antenna in a ground-plane in figures 6.2 and 6.3. The measured
patterns are obtained from [43] and they refer to measurements done at 242GHz for
a Tx 7 array. The discrepancy between theory and experiment observed in figures 6.2
and 6.3 is due to the unmetalized walls of the fabricated integrated horn antennas.
From the same figures it is also observed that the element E and H patterns in the ar-
ray environment match well the patterns of the corresponding isolated horn antenna
(in a ground-plane). This is expected since the horn antenna aperture size is large and
therefore there is no significant interaction among the horn antenna aperture fields
in the array configuration. Also note that the E-plane pattern (Fig. 6.2) develops
shoulders at about 6, = 24° due to the excessive phase error introduced by the large
aperture size of the integrated horn antenna under consideration (Chap. III) [121].

As a second case consider the 1.35\-square horn antenna which has been exam-
ined extensively in chapter III when embedded in a ground-plane. Figures 6.4 and
6.5 present a comparison of the computed patterns of a horn antenna in an array
environment, the corresponding measured patterns, and the computed patterns of a
single element in a ground-plane. The measured patterns are taken from [120] where

a 16 x 16-element imaging array has been fabricated and tested at 802GHz. Note that
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Figure 6.2: The computed E-plane pattern of an integrated horn in an infinite array
is compared to measurements (central element in a 7 x 7 array) and to the

computed E-plane pattern of a single horn in a ground-plane. Aperture
size=2.1 A\-square.
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Figure 6.3: The computed H-plane pattern of an integrated horn in an infinite array
1s compared to measurements (central element in a 7 x 7 array) and to the

computed H-plane pattern of a single horn in a ground-plane. Aperture
size=2.1)\-square.
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for these measurements the horn walls were coated with gold. As shown in figures
6.4 and 6.5, there is a good agreement between theory and experiment validating the
approach taken for determining the element-pattern in the infinite integrated horn
array. When the E-plane pattern of the horn antenna element in the array is com-
pared to the E-plane pattern of the corresponding isolated integrated horn antenna
in a ground-plane (Fig. 6.4), it is noticed that the former pattern develops charac-
teristic dips at certain angles . At the angles where the dips appear, a particular
Floquet-mode (m,n) starts or ceases being propagating according to whether the
corresponding propagation constant I'y,, of equation (6.15) is becoming real or imag-
inary, respectively (for convenience, no notational distinction is made between the
(m,n)th TE and the corresponding (m,n)th TM Floquet-modes). For the particular
E-plane pattern of figure 6.4, it is observed that a null occurs at about 45° where the
Floquet-mode (1,0) ceases to propagate. Note that the corresponding ground-plane
pattern does not possess any null which demonstrates the importance of examing the
element pattern in the array environment [119)].

As far as the H-plane patterns are concerned, figure 6.5 indicates that the pattern
of a horn antenna element in the array and of a horn antenna element in a ground-
plane do not differ significantly. The reason for this behavior is that the horn aperture
fields of the dominant TE,o waveguide mode are vanishing on the H-plane walls and
therefore the mutual-coupling effects are weak. On the other hand, in the E-plane
the fields of the dominant mode are perpendicular to the E-plane aperture walls
(i.e do not vanish), making the mutual-coupling effects more prevalent in the array
environment (Fig. 6.4). It should be pointed out here that the potential locations
of the dips in the element patterns inside the array environment can be determined

from the propagation constant [, (Eq. 6.15) of the Floquet-modes. However, the
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Figure 6.4: The computed E-plane pattern of an integrated horn in an infinite array is
compared to measurements (central element in a 16 x 16 array) and to the
computed E-plane pattern of a single horn in a ground-plane. Aperture
size=1.35A-square.
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Figure 6.5: The computed H-plane pattern of an integrated horn in an infinite array is
compared to measurements (central element in a 16 x 16 array) and to the

computed H-plane pattern of a single horn in a ground-plane. Aperture
size=1.35A-square.
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intensity of these dips depends on the particular structural geometry of the antenna
under consideration. The geometry eventually determines the excitation amplitudes
of the Floquet-modes and thus the depth of the dips. To clarify this point, the E-plane
element pattern of the infinite horn array is compared to the corresponding element
pattern of an infinite array of matched waveguides (i.e no reflections from their feed-
end) having the same aperture size 1.35\-square (Fig. 6.6). As is demonstrated in
this figure, the waveguide array does not exhibit any sharp dips, although the two

arrays share the same Floquet-mode propagation constants I'r,,.

Relative gain (dB)

Elevation angle (degrees)

Figure 6.6: The E-plane pattern of an integrated horn in an infinite array is compared
to the E-plane pattern of a corresponding waveguide array. Aperture
size=1.35)-square.

The principal-patterns for the case of a 1.00\-square integrated horn array are
shown in figures 6.7 and 6.8. The corresponding measurements are taken from [43]
where a 7 x 7 imaging array was fabricated and tested at 93GHz (the horn walls were
coated with gold). Note that although the array is only 7x 7 thereis a good agreement

between the theory and the measurements, suggesting that the infinite array approach
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can predict well the patterns of finite arrays (at least as far as the central elements are
concerned). For this array of smaller aperture horn antennas, the mutual-coupling
effects are expected to become noticable. Indeed as shown in figure 6.7, the E-plane
element pattern starts deviating from the pattern of an isolated element in a ground-
plane. On the other hand the corresponding H-plane patterns match well to each
other as shown in figure 6.8. Some dip-structure also starts appearing in the H-plane

(Fig. 6.8) again due to the denser packing of the horn antenna elements.

Relative gain (dB)

Elevation angle (degrees)

Figure 6.7: The computed E-plane pattern of an integrated horn in an infinite array
is compared to measurements (central element in a 7 x 7 array) and to the
computed E-plane pattern of a single horn in a ground-plane. Aperture
size=1.00\-square.
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Relative gain (dB)
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Figure 6.8: The computed H-plane pattern of an integrated horn in an infinite array
is compared to measurements (central element in a 7 X 7 array) and to the
computed H-plane pattern of a single horn in a ground-plane. Aperture
size=1.00\-square.

In order to investigate further the effects of the mutual-coupling among the in-
tegrated horn antenna elements an even denser array is examined with elements of
aperture size 0.67\-square. In this case, the computed E and H element patterns in
the array are compared to the corresponding patterns of the isolated element in a
ground-plane as shown in figures 6.9 and Fig. 6.10. From figure 6.9 it is observed
that in the E-plane a sharp and deep dip is excited at 6, = 30°, corresponding to
the triggering of the (0, 1) Floquet-mode. Also note the significant discrepancy ex-
isting between the patterns of an element in the array and the patterns of an isolated
horn antenna. In this case, even the H-plane pattern is modified by the effects of
the mutual-coupling and thus deviates from the corresponding pattern of an isolated
horn antenna (Fig. 6.10). Also, shallow dips at 30° are appearing in the case of the
H-plane, this time due to the triggering of the (1,0) Floquet-mode. For this array,

the corresponding grating lobe diagram is not too complicated and is shown in figure
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Figure 6.9: The computed E-plane pattern of an integrated horn in an infinite array

is compared to the computed E-plane pattern of a single horn in a ground-
plane. Aperture size=0.67)\-square.
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Figure 6.10: The computed H-plane pattern of an integrated horn in an infinite ar-

ray is compared to the computed H-plane pattern of a single horn in a
ground-plane. Aperture size=0.67A-square.
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6.11. From this diagram the relation of the Floquet modes (0,+1) and (£1,0) to the

dips observed at +30° in the E and H plane patterns becomes more clear.

('110)

(0,0)
(visible-space)

Figure 6.11: The grating lobe diagram for the array of integrated horns with aperture
size=0.67A-square.

6.3.2 Impedances

The comparison between the patterns of an integrated horn antenna element in
the array environment and the patterns of a corresponding isolated element in a
ground-plane provides a good deal of information concerning the effects of the mutual-
coupling in an infinite array. A better understanding of the mutual-coupling can be
obtained by supplementing the pattern information with the information concerning
the active input admittance of equation (6.37). A convenient way of examining the
variation of the active input admittance with the scan-angle, in the E and H planes, is

to assume that the array is matched at broadside and to define the associated active



standing wave ratio (swr) by:

swr(8,) = —1—:*:—:':: (6.39)
where: P(ao) — Y;noo(oo)_)/inoo(go) (640)

Yinoo(o ) + }/inoo(ao)

The above standing wave ratio (swr) has been computed for the four previously
considered integrated horn antennas and the results in the E-plane of scan are com-

pared together in figure 6.12. The length of the dipole is selected such that to be at
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Figure 6.12: The E-plane active (swr) as a function of the scan-angle 6, for three
infinite integrated horn arrays of different element aperture size. The
dipole position from the apex is 0.40A, and it is at resonance for the
corresponding isolated horn antenna. Strip width w = 0.015).

resonance when the corresponding integrated horn antenna is embedded in a ground-
plane. Some interesting observations are obtained from the active input admittance

information provided by figure 6.12 which are summarized below:
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1. The discontinuities (of the derivative) appearing in the (swr) plots of figure
6.12 correspond to the dips in the associated E-plane Floquet patterns of fig-
ures 6.2, 6.4, 6.7 and 6.9. These phenomena are related to the appearance or

dissappearance of propagating Floquet-modes.

2. The E-plane Floquet pattern of the 1.35\-square integrated horn antenna shown
in Fig. 6.4 has a deep dip (a null) at about 6, = 45° which is associated with
(1,0) Floquet-mode ceasing being propagating. Therefore, judging only from
this E-plane pattern, one would presume that no real power is transmitted at
this angle, creating a large input reflection coefficient. However, as seen from
figure 6.12, there is only a small variation of the standing wave ratio (swr) in the
vicinity of 6, = 45°. The reason for this apparent paradox is that the aperture
size of 1.35\-square is larger than 0.5A-square and this enables more than one
Floquet-modes to propagate (grating-lobes). For example, the Floquet-mode
(0,1) is always propagating in addition to the fundamental (0,0) Floquet-mode.
A similar argument is also valid for the smaller 1.00)-square aperture size horn
array. The reader is reminded that the 1.35) and 1.00) horns are not used in
a phased array but only in an imaging array even though the element pattern
calculations and the mutual coupling considerations are carried out using phased

array concepts.

3. The size of the admittance mismatch depends on how strong the mutual-
coupling effects are. Therefore the smallest aperture size horn antenna array
suffers from the largest mismatch at the directions where a Floquet- mode is
triggered or switched-off. For this reason, the 0.67\-square aperture size array
presents a sharp admittance mismatch at 30° associated with the triggering of

the (0,1) Floquet-mode (Figures 6.9-6.12).
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4. The 2.1\ and 1.35) aperture size horn arrays do not present any significant (swr)
variation over the entire range of scan-angles (0 —90°). On the other hand, the
mutual coupling effects are starting to become significant at the aperture size
of 1.00A where the maximum (swr) is about 1.7. Therefore, only for aperture
sizes larger than 1.00), the mutual coupling coefficients (Yooue, s # 0, t # 0)
are expected to be much smaller than the self admittance coefficient Y,,,, (Eqn.

6.37).

Another useful procedure for assessing the effects of mutual coupling is to compare
the input impedance of the strip-dipole for the isolated horn antenna in a ground-plane
with the corresponding active input impedance at a scan-angle of 0° (at broadside).
In compliance to chapter III, the input impedance at resonance for a strip which is
located at a distance of 0.40) from the apex of a horn (in a ground-plane) is 569 for
aperture sizes > 1.00A-square. For the 2.1\-square 2D-array, the corresponding active
impedance at broadside is computed to be 57 — 25 Q. This shows the small effect of
the mutual coupling at this aperture size. Also, for the 1.35)-square horn antenna the
corresponding active input impedance is computed to be 63 —3; ) which again shows
a small mutual-coupling effect. Furthermore, the input impedance at resonance for
the 1.00\-square horn antenna in a ground-plane is found to be 54§, at the same 0.40
distance of the dipole from the apex of the horn. This time, the corresponding active
impedance at broadside is calculated to be 62—115 Q which indicates that the mutual-
coupling effects are starting to become noticable at 1.00\-square in compliance with
the results of Fig. 6.12. Finally for the smallest aperture size of 0.67\-square, the
resonant input resistance for the isolated horn antenna element is found to be 44
(at 0.40A from the apex) whereas the corresponding active impedance is computed

to be 50 + 20 ©. This indicates the non-negligible effect of the mutual-coupling for
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the small aperture size horns.

The conclusions of the above mutual-coupling considerations can now be summa-
rized. For focal-plane integrated horn imaging arrays of horn antenna elements with
aperture sizes greater than 1.0\-square, corresponding to f-number systems larger
than about 0.7 (so that a 10dB edge-taper is imposed on the imaging lens), the
effects of the mutual coupling on the impedance of the feeding dipoles can be consid-
ered negligible. Thus the input impedance of an element in the array can be obtained
from considering the corresponding isolated horn antenna element embedded in a
ground-plane. However, for aperture sizes smaller than about 1.00\-square, mutual-
coupling effects start becoming significant altering the value of the input impedance
of an element in the array from that of the corresponding isolated horn antenna (in
a ground-plane). Usually, these smaller aperture sizes are used for phased arrays
in order to avoid grating-lobes (multiple-beams) and therefore the active input ad-
mittance of equation (6.37) is the most appropriate quantity for investigating the
array matching properties. On the other hand, imaging arrays with elements of very
small aperture size are usually avoided due to the aberrations associated with small
f-number imaging systems. If however, high resolution imaging arrays are desired
(i.e having elements of aperture size smaller than 1.00A-square ) then the active in-
put admittance computation of equation 6.37 can only provide an assessment of the
effect of the mutual-coupling, but cannot determine directly the appropriate input
admittance. This pertinent input admittance corresponds to the input admittance of
a strip-dipole when it is the only excited element in the array environment. In order
to compute this impedance the inversion formula of equation (6.38) should be used
for computing the mutual admittances from the active admittance Yinoo(0s, #0). Once

the mutual admittance coefficients Y,,;; have been determined, the input impedance
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of the strip dipoles can be determined under any desired excitation conditions.

6.4 Summary and Conclusions

In this chapter the properties of the integrated horn antennas in a 2-dimensional
array environment have been examined. The utilized analysis has been based on
infinite scanned array concepts although the results are applicable to both scanned
and imaging array applications. In this approach the element patterns of an integrated
horn antenna in an array environment can be computed and the effects of the mutual
coupling can be assessed. It is found that for integrated horn antennas of aperture
size larger than about 1.00A-square, the mutual coupling effects can be ignored when

designing imaging arrays.



CHAPTER VII

INTEGRATED HORN ANTENNAS EXCITED
BY A STRIP-DIPOLE PRINTED ON A
DIELECTRIC WAFER

In the previous chapters we have investigated the properties of the integrated horn
antennas when the exciting strip-dipole is printed on a very thin membrane inside
the horn cavity. This approach has the advantage of avoiding surface-wave and di-
electric losses. However, the membrane approach does not allow for the monolithic
integration of semiconductor devices directly with the feeding-dipole. Therefore, such
devices should be mounted in a hybrid fashion with the strip-dipole, which is unde-
sirable at millimeter-wave frequencies. One way to circumvent this problem is to use
a strip-monopole instead of a strip-dipole to capture the incoming radiation. In this
approach, the received energy is probed on the membrane-wafer where the semicon-
ductor devices can be monolithically integrated. This technique was investigated first
by Rebeiz [122] and then by Guo [123] and it was found that the resulting input
impedance is narrowband, having a small real-part and a large capacitive reactance
part. Therefore, the monopole probe feed presents a practical matching problem to
Schottky-barrier diodes. Another problem associated with the monopole approach
is revealed using the full-wave analysis of chapter III. Specifically, it can be verified

that a monopole feed introduces substantial cross-polarization in the H-plane. The
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patterns of a monopole-fed integrated horn antenna are presented in figure 7.1 and
as shown the cross-polarization in the H-plane rises up to a level of -9dB. This con-

tributes to a significant efficiency loss in most practical applications. The introduction

Relative gain (dB)

Elevation angle (deg)

Figure 7.1: The patterns of a monopole-fed integrated horn antenna having an aper-
ture of 1.35\-square. The monopole has a length of 0.2A and is located
at a distance of 0.39) from the apex of the horn.

of cross-polarization is attributed to the distorted symmetry in the H-plane, which

results into the excitation of the modes {TEn/TMmn, m=0dd, n=o0dd} in addition

to the modes having m = odd and n = even excited in the regular centered fed

integrated horn antennas (see Fig. 3.3).

In this chapter another approach is presented and investigated for overcoming the
device integration problem. In this new approach the feeding dipole is printed on

a thin GaAs wafer inserted into the integrated horn structure, which replaces the

membrane inside the silicon cavity as shown in figure 7.2.
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Figure 7.2: A thin GaAs wafer is inserted into the integrated horn antenna geometry
on which a centered strip-dipole is printed (left). A cavity environment

is synthesized around the strip-dipole using metallized via holes (right).
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In order to suppress any surface-wave modes in the GaAs wafer a cavity environment
should be synthesized around the dipole. One way to achieve this is to use closely-
spaced metallized via holes in a way similar to the employment of shorting pins in
conventional printed antenna arrays [124]. The via-holes should also be connected
electrically together at both sides of the GaAs wafer, as shown in figure 7.2, in order
to suppress both the parallel and the perpendicular (to the via holes) components of
the electric field. Another way of creating a cavity environment is to use metallized
grooves etched on the dielectric. This approach yields better electric walls but it leads
into more fragile structures. Although, the synthesized cavity suppresses the surface
waves there is still the possibility of trapping modes inside the synthesized planar
dielectric cavity. A trapped mode is a mode which is propagating inside the dielectric
cavity but is evanescent immediately outside. Such trapped modes should be avoided
because they carry only reactive power and also exhibit resonant characteristics with
the potential of making the input impedance reactive and narrowband. In order
to ensure that no modes are trapped, the thickness of the GaAs wafer should be
appropriately chosen. For this purpose the transverse resonant technique is utilized
to select the required dielectric thickness as discussed in the next section.

If instead of a GaAs wafer, a quartz wafer is inserted in the integrated horn an-
tenna structure then SIS junctions can be integrated with the receiving strip-dipole.
This has the advantage of better mechanical stability and better heat transfer char-

acteristics than the membrane approach for implementing SIS receivers.

7.1 Selection of the Dielectric Thickness

A necessary condition for a mode to be trapped inside the dielectric wafer is to

be propagating in the dielectric but to be at cutoff outside. Therefore, a trapped
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mode is localized and “sees” only its local waveguide environment. This enables the
examination of the trapped modes using the simple equivalent waveguide model of
figure 7.3. The pertinent cross-section of the equivalent waveguide is selected to be
the largest cross-section of the synthesized dielectric cavity since it determines the
lower frequency for which a mode becomes trapped at every other dielectric cross-
section of the cavity. This cross-section will be denoted by Y = X? in the rest of this
chapter (see Fig. 7.2). In any case, to ensure that the equivalent waveguide model
is meaningful, the thickness of the dielectric should be thin enough so that its two

outer cross-sections do not differ very much. A trapped mode can be sustained in this
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Figure 7.3: The equivalent waveguide environment seen by the trapped modes (left).
The equivalent transmission line circuit used in the transverse resonant
technique (right).

equivalent waveguide structure only if it satisfies the transverse resonant condition

(TRC). Using transmission line theory, as shown in figure 7.3, the appropriate TRC

is expressed by the condition:

Zo+ 2t =0 (7.1)

where Z, is the wave-impedance for an evanescent mode in the air-filled waveguide

and Z7 is the input waveguide impedance seen at the left air-dielectric interface and
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when looking towards the dielectric. In an explicit form Equation (7.1) can be written

as:
Z, + j Z4tan(8d)

Z.+2 .
T 247 15 17, tan(Bd)

=0 (7.2)

where Z; is the waveguide impedance for a propagating mode in the dielectric-filled
waveguide, 3 is the corresponding propagation constant and d is the thickness of the

dielectric. The TRC of Equation (7.2) can be put in a more concise form given by:

jZaZd

tan(ﬂd) = (—Zg+—Zd2)-

(7.3)

The appropriate quantities appearing in Equation (7.3) for the mn** TE and TM

modes are as given below:

TEn-mode:
Jwho W
Ly = , 2= 7.4
7mn d /B'mn ( )
TM,-mode:
Zo=2m g Brmn (1.5)
Jwe, WELEr
Furthermore, the propagation constants S, and 4, are defined by:
mm nw
(FV + (W)2 +p2, = ke (7.6)
mn nw
(72)2 + (17;)2 —Yon = K (7.7)

where X¢ = Y? is the largest cross-section of the dielectric cavity (see Fig. 7.2 )
and k, is the free-space wave-number. With these definitions the exact conditions for
trapping a TE or a TM mode are given by:

27mn ﬂmn

TEmn-mode:  tan(fBnnd) = - (7.8)
mn — Tmn
27mn('ﬂ£)

TMmn-mode:  tan(fn.d) = —5——4— (7.9)
(ﬂ)? - 772nn

&



Since conditions (7.8) and (7.9) are frequency-dependent, a change in the frequency
can trap or release some of the waveguide modes inside the dielectric. When this
happens a large amount of reactive energy is switched on and off around the strip-
dipole forcing the input impedance to become reactive and narrowband. Therefore,
for wide bandwidth operation the thickness d of the dielectric should be chosen in
order to avoid trapped modes within the frequency-range of interest. To achieve this
the TR conditions (7.8) and (7.9) should be used for investigating the trapping of
modes at various cross-sections Y¢ and as the frequency is swept around the design

frequency.

7.1.1 Dielectric with ¢, = 3.75: Fused Quartz

The results for the trapped modes at four cross-sections of the dielectric cavity
in the case of ¢, = 3.75 are shown in figure 7.4. The independent variable in this
figure is normalized frequency and the dependent variable is the dielectric thickness
in dielectric wavelengths (\z) at the design frequency f,. As an example of how
to read these diagrams, consider a dielectric cross-section of Yy = 0.45), at the
design frequency f,. Suppose now that a wafer of thickness 0.1)4 is chosen which
corresponds to the horizontal line indicated in figure 7.4. This line intercepts the
curve which describes the trapping of the TE;o mode at f/f, ~ 1.02. This implies
that if the frequency increases by 2.0% from the design frequency, then the dominant
mode TE;o becomes trapped inside the synthesized dielectric cavity.

Although the examined cross-sections are only four they can provide information
for any other practical cross-section. To understand how this is possible, the line which
corresponds to the trapping of a particular mode should be visualized to be moving

downwards and to the left with increasing Y¢; In this abstraction the right tip of
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the TE;o line moves downwards as Y increases, intercepting the x-axis at f/f, = 1
when Y? = 0.5),, and disappearing to the left when Y? approaches 0.60),. The
thickness of the dielectric should be chosen as small as possible to minimize dielectric
losses. Using the above considerations, it can be inferred that the best dielectric
cross-sections to use for avoiding trapped modes with wafers thinner than 0.1\, are
specified by Y¢ < 0.42), and 0.53), < Y? < 0.60),. Cross-sections between 0.42),
and 0.53), should be avoided because they can trap the dominant mode within a
bandwidth of +£5%. It should be pointed out here that the finally selected cross-
section will depend also upon the range of the impedances that can be achieved at
a specific cross-section. For example impedances with very large real or imaginary
part are impractical even if the corresponding bandwidth is wide. Another important
point to clarify is that the avoidance of trapped modes is only a necessary condition
for wideband impedance characteristics. There are also other factors contributing to
the frequency response of the input impedance such as the proximity of the feeding
dipole to the apex of the horn and the length of the dipole. To investigate the exact
nature of the input impedances, the full-wave analysis must be utilized as will be
described in the next section. As a general rule, dielectric cross-sections smaller than
0.5),-square should be avoided since in this case all the non trapped modes are at

cutoff, leading to a small real part of the input impedance.
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Figure 7.4: Trapped modes for a dielectric of ¢, = 3.75. At the design frequency
f=foand A /Ag =1.924

7.1.2 Dielectric with ¢, = 12: Si/GaAs

In this case the trapped modes are investigated for four dielectric cross-sections
in figures 7.5 to 7.8.

When these figures are compared to figure 7.4 it is observed that for a given
cross-section more modes can be trapped in the case of the larger €, = 12 dielectric
constant. For this dielectric constant, the best cross-sections to chose for avoiding
trapped modes within a 5 bandwidth and with dielectrics thinner than 0.1A4 are

determined by Y¢ > 0.53),.
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7.2 Numerical and Experimental Results

7.2.1 Dielectric with ¢, = 3.75: Impedances

First the case of the low dielectric constant ¢, = 3.75 is considered. Figure 7.4
indicates that the dielectric cross-sections specified by Y¢ < 0.42), and 0.53), <
Y?¢ < 0.60), do not trigger any trapped modes for dielectric wafers thinner than
0.1)\4 in at least a bandwidth of £5%. The full-wave analysis is now employed for
the examination of the corresponding achievable impedances and impedance band-
widths. The employed full-wave analysis is a straightforward extension to the analysis
described in chapter III for membrane integrated horn antennas. In this case how-
ever, the pertinent geometry for obtaining the higher-order mode contribution to the
Green’s function is the waveguide structure of figure 7.3. To determine exactly how
many higher order modes are to be considered (secondary modes), it is necessary to
examine at each time the convergence diagrams for the particular geometry under
consideration.

One convenient way of obtaining a figure of merit for the impedance bandwidth
is to examine the relative variation of the standing wave ratio (swr) as the frequency
is varied. Let the standing wave ratio at the design frequency be designated by swr,.
Now, suppose that the strip length departs by +:5% from the original length, resulting
into the corresponding standing wave ratios swr~ and swrt. Then the bandwidth

figure of merit v% is defined by:

S
% = 100 | 2L~ 0T (7.10)

swr,

Note that the so defined figure of merit v% does not represent the total effect of
frequency variation, since it assumes that only the strip length varies with frequency.

Therefore, v% will generally overestimate the true (measured) bandwidth. However,
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it leads to a simple evaluation of the dielectric cross-section with the wider impedance
bandwidth. In table 7.1 the resistance at resonance and the corresponding bandwidth
figure of merit v% are given at various cross-sections Y'¢, and for a dielectric thickness

of 0.1);. From this table it can be inferred that the cross-sections which are smaller

Cross-sect. Y | Strip posit. from apex | Res. resist. R, | Bandw. fig. v%
0.39), 0.23), 80 42%
0.42), 0.25), 139 48%
0.53), 0.32), 58 12%
0.56, 0.35X, 95Q 28%
0.60), 0.38), No resonance -

Table 7.1: Resonant resistance and bandwidth figure of merit for various dielectric
cross-sections Y in an integrated horn antenna of aperture size 1.35).
The dielectric constant is ¢, = 3.75 and the dielectric thickness is 0.1
dielectric wavelengths (A4) at the design frequency f, (w=0.017)},).

than Y? = 0.42), suffer from a large impedance bandwidth variation. Also for cross-
sections larger than Y¢ = .56, the strip does not exhibit any resonances, a situation
which has also been observed with the membrane integrated horn antennas (chapter
I11). The smaller bandwidth variation occurs when the cross-section Y equals 0.53),
in which case the resonant resistance is about 60(2, a value which should not present
any particular matching problem. The process of selecting a dielectric cross-section
by examining the figure of merit introduced in equation 7.10 has been supported
by experimental evidence. Specifically, it was found that the figure of merit v%
(Eqn. 7.10) can be useful in selecting a dielectric cross-section with a wide impedance

bandwidth. However, v% does not provide an exact value for this bandwidth.

For the selected cross-section of Y¢=0.53),, the full-wave analysis is verified by
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comparing the input impedance as a function of frequency with microwave scale mea-
surements conducted at 2GHz. The results of the comparison are shown in figure 7.9.
As shown, there is a very good agreement between theory and experiment indicating
that the full-wave analysis can reliably predict the impedance characteristics of the
feeding strip-dipole. Just for verification purposes we also include in figure 7.10 a sim-
ilar comparison for the input impedance as a function of the frequency at a dielectric
cross-section of Y?=0.50),. Again the theory predicts very well the measurements.
For completeness, the resonant resistance is also examined for a dielectric thickness
of 0.2)4 in table 7.2. For this thickness there is no danger of trapping the dominant

mode TEyo within a bandwidth of £5% around the design frequency (see Fig. 7.4).

Cross-sect. Y | Strip posit. from apex | Res. resist. R, | Bandw. fig. v%
0.39, 0.18), 19 150%
0.42), 0.20), 6 31%
0.45), 0.22), 25Q 27%
0.48), 0.24), 709 26%
0.52), 0.27), No resonance -

Table 7.2: Resonant resistance and bandwidth figure of merit for various dielectric
cross-sections Y in an integrated horn antenna of aperture size 1.35).
The dielectric constant is ¢, = 3.75 and the dielectric thickness is 0.2

dielectric wavelengths (\4) at the design frequency £, (w=0.017),).
To examine more closely the full-wave analysis we include in figure 7.11 the con-
vergence characteristics of the input impedance as a function of the secondary modes
retained in the Green’s function. The convergence refers to the geometry described in

figure 7.9 and at the design frequency f,. As shown, convergence is achieved when ap-

proximately 320 secondary modes are included in the Green’s function. Note that in



165

theory
---------- measur
v 09f,
1.0f,
A L1f

Figure 7.9: Input impedance as a function of frequency for an integrated horn antenna
of aperture size 1.35), and excited by a strip-dipole of length [, = 0.29),
and width w = 0.017),. The strip is printed on a dielectric wafer of
¢, = 3.75, of cross-section Y¢ = X¢ = 0.53), and of thickness d = 0.1),.

The measurements correspond to a microwave scale model at 2GHz.
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Figure 7.10: Input impedance as a function of frequency for an integrated horn an-
tenna of aperture size 1.35), and excited by a strip-dipole of length
[, =0.29), and width w = 0.017A,. The strip is printed on a dielectric
wafer of €, = 3.75, of cross-section Y = X? = 0.50), and of thickness
d = 0.1)4. The measurements correspond to a microwave scale model

at 2GHz.
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the case of a membrane integrated horn antenna the corresponding required number
of secondary modes is only about 50 (see Figure 3.4 of chapter III). Further increment
of the dielectric constant results into computational problems which are related to the
large number of secondary modes required for representing the fields in the dielectric,

as it will be pointed out below for the case of ¢, = 12.

1.20 T T T T
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1.00
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080 F /

0.70

Relative convergence

0.60 | ]

050 F 3

0.40: s L
0 100 200 300 400 500

Number of secondary modes

Figure 7.11: Convergence diagram for the real and imaginary parts of the input
impedance. Dielectric: Y¢ = 0.53),, d = 0.1)\4, ¢, = 12. Strip:
I, =029\, , w = 0.017),. (Up to the TEgsg4/TMgs94 mode are in-
cluded in the primary part of the Green’s function)

7.2.2 Dielectric with ¢, = 12: Impedances

Note that the chosen dielectric constant ¢, = 12 represents silicon rather than
GaAs, the latter of which has a slightly larger dielectric constant of €, = 13. However,
this smaller value of €, was chosen due to practical issues related to the availability of
materials at our disposal for conducting the microwave scale measurements. From the
convergence diagram of figure 7.11 (corresponding to €, = 3.75) it can be speculated

that the under consideration larger dielectric constant will exhibit computational
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problems associated with the number of secondary modes required for convergence.
In particular the number of these modes increases up to a value at which the involved
generalized scattering matrices become numerically unstable due to a poor condition
number. This phenomenon was examined in chapter II where it was shown that
although the generalized scattering matrices are more stable than the corresponding
transmission matrices, they too start becoming unstable as the number of modes
retained in the mode matching technique increases. In figures 7.12 and 7.13 the
convergence of the real and imaginary part of the input impedance for a dielectric
cross-section of Y'¢ = 0.6), is examined when single and double precision arithmetic
1s used for the corn.puta.tions. As shown, the real-part of the impedance converges to
the same value either when using single or double precision arithmetic. On the other
hand, the imaginary-part converges to different values depending on the precision of
the arithmetic used. This indicates that the real-part of the impedance is not very
sensitive to the condition number of the scattering matrices involved in the mode
matching technique, but the imaginary part is quite sensitive. Also it should be
noted here that the computed real part of the impedance converges to the measured
value. On the other hand the computed imaginary part is more capacitive than what
is measured (even using double precision).

To investigate further the convergence behavior of the strip impedance we show
in figures 7.14 and 7.15 the double precision convergence behavior of the real and
imaginary part of the impedance for various strip-widths. What one observes from
these diagrams is that for all the considered widths the real-part of the impedance
converges to the measured value. On the other hand, the imaginary-part converges
to the measured value only in the case of the narrow w = 0.006), strip. For wider

strips the computed reactance is more capacitive than the measurements.
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Figure 7.12: Convergence diagram for the real-part of the input impedance. The
dielectric has Y = 0.60),, d = 0.1\4 and ¢, = 12. The strip has length
13 = 030/\0 and width w = 0012A0 (Up to the TE155,154/TM155'154
mode are included in the primary part of the Green’s function)
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Figure 7.13: Convergence diagram for the imaginary-part of the input impedance.
The dielectric has Y¢ = 0.60\,, d = 0.1); and ¢, = 12. The
strip has length I, = 0.30), and width w = 0.012X,. (Up to the
TE155.154/ TMis5,154 mode are included in the primary part of the Green’s
function)
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Figure 7.14: Convergence diagram for the real-part of the input impedance for various
strip widths (see Fig. 7.15 for geometry).
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Figure 7.15: Convergence diagram for the imaginary-part of the input impedance for
various strip widths. The dielectric has Y?¢ = 0.60),, d = 0.1); and
€» = 12 and the strip-dipole has I, = 0.275), for w = 0.006),, otherwise
l; = 0.30),. The measurements correspond to 1.35 GHz and 2.7GHz.
The absolute measured impedances for the w = 0.023),, w = 0.012),
and w = 0.006), are 46 + 71800, 58 + 742 and 49 + 7430 respectively.
(Up to the TE;s5,154/TMis5,154 mode are included in the primary part of
the Green’s function)
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From the previously considered convergence diagrams it is inferred that there is a
limitation of the full-wave analysis, when wafers of relatively high dielectric constant
are introduced in the integrated horn antenna structure. Below we summarize the key
results pertaining to the limitations of the full-wave analysis in an effort to identify

the source of the problem:

1. The full-wave analysis yields reliable results for the impedance of the feed-dipole

when printed on a membrane (¢, = 1.0) or on a dielectric with ¢, = 3.75.

2. When the feed-dipole is printed on a dielectric with €, = 12, the full-wave
analysis gives reliable results for its impedance only for very narrow strips (w =
0.005X,). For wider strips only the real part is predictable; In this case the

imaginary part converges but not to the measured reactance.

3. For the ¢, = 12 case, the real part of the impedance is not sensitive to the
condition number of the involved scattering matrices. However, this is not the

case for the imaginary part.

4. Also it can be verified that the effects of transverse currents on the feeding-
dipoles (chapter III) are negligible for the strip widths under consideration

(w < 0.023),).

Since the full-wave method predicts the measured impedance well for lower dielectric
constants, it can be inferred that the problem is of a numerical nature. The most
reasonable explanation is that for the ¢, = 12 case we are faced with a relative con-
vergence phenomenon. This phenomenon has been identified and investigated in the
past as a limitation of the mode matching technique [126]-[131]. It is associated with
the truncation of the doubly infinite system of equations arising in the mode match-

ing method. Specifically, it was found that the convergence in the mode matching



172

method can be affected by the way in which the ratio of the modal terms in different
regions is selected. It was demonstrated that the problem arises in oversized step-
discontinuities where there is a unique choice of this ratio, and any other choice but
the correct one converges into false values. One key result concerning the relative
convergence phenomenon was pointed out by Leroy who showed that the required
condition for avoiding the relative convergence problem is to have a well conditioned
linear system of equations associated with the mode matching technique [129]. In
the case of the high dielectric constant (¢, = 12), more modes are required to rep-
resent the fields in the dielectric leading to ill-conditioned scattering matrices and a
vulnerability to the relative convergence phenomenon. Also this explains the reason
for which very narrow strips have a predictable input impedance. The narrow strips
require less modes to satisfy the boundary condition of zero tangential electric field
on their surface. With fewer modes, the scattering matrices are well conditioned and
the relative convergence phenomenon is avoided. Furthermore, the real part of the
impedance is less sensitive due to its well known stationary nature [72].

For the narrower strip of w = 0.006,, the computed frequency variation of the
input impedance is compared to measurements for a dielectric thickness of 0.1} at
a dielectric cross-section of Y = 0.60) as shown in figure 7.16. From this figure it is
observed that the comparison between theory and experiment is satisfactory within
the examined 20% frequency bandwidth. This verifies the conclusion drawn from
convergence diagrams 7.14 and 7.15 that the theory can predict well the impedance
for very narrow strips. Note that the dipole under examination is not at resonance
but it has an inductive reactance part of about 409. This feature is in practice
desirable since it can provide the inductance required to cancel out the junction ca-

pacitance of a Schottky diode. The bandwidth figure of merit defined by equation
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7.10 is computed to be v = 14% which indicates a relatively small impedance vari-
ation with frequency. It should be noted here that for wider strips similar behavior
is observed experimentally except that the imaginary part of the input impedance
becomes less inductive. Also included in figure 7.16 is the frequency variation of the

computed input impedance when the dielectric thickness is 0.21)4. In this latter case

d=0.12,, theory

Figure 7.16: Input impedance as a function of frequency for an integrated horn an-
tenna of aperture size 1.35), and excited by a strip-dipole of length
[, =0.275), and width w = 0.006),. The strip is printed on a dielectric
wafer of ¢, = 12, of cross-section Y = X? = 0.60), and of thicknesses
d = 0.1A; and 0.21);. The measurements correspond to a microwave

scale model at 1.35 GHz.

the equivalent waveguide model predicts that the TE;, mode becomes trapped at the
design frequency f, as is indicated in figure 7.7. The observed behavior of the input

impedance indicates that the impedance becomes narrowband and highly reactive
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which complies with the predictions of the simplified waveguide model of section 7.1.
Therefore, the assumption that the trapped modes can be investigated using a sim-
plified waveguide model is justified here by the full-wave analysis. The verification
of the simple waveguide model presented in section 7.1 , for selecting the dielectric
thickness, has been also verified experimentally at f,=13.6 GHz by video responsivity
measurements. The video responsivity measurements concern a fabricated integrated
horn antenna with an inserted GaAs wafer. The synthesized cavity has been imple-
mented using a combination of etched via-holes and grooves. The results of the video
responsivity measurements for a beam lead diode mounted on the GaAs wafer are
shown in figure 7.17 [125]. As shown there is a drop of about a factor of 13 when
the frequency reaches the point where the TE;; mode becomes trapped (f/f, = 1.2).
This frequency factor of f/f, = 1.2 is very well predicted by the waveguide model of

section 7.1 as can be inferred by extrapolating from the results of figure 7.7.
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Figure 7.17: Measured video responsivity at 13.6GHz for a beam lead Schottky diode.
The thickness of the inserted GaAs wafer is d = 0.1)\; and the cross-
section is Y¢ = 0.60),. Antenna aperture size=1.35\-square
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7.2.3 Dielectric with ¢, = 12: Patterns

The patterns of the dielectric loaded horn antennas are also investigated using
the full-wave analysis. First we present in figure 7.18 the computed patterns vs the
measured patterns from a microwave model at 2.7GHz and when the dielectric cross-
section is Y% = 0.60)\,. As shown, there is a very good agreement between theory
and experiment. For the same configuration, a second set of patterns is also obtained
from a 13.6GHz dielectric loaded antenna. This time however the measured patterns
are obtained from the fabricated antenna with a GaAs wafer in place which has been
described in figure 7.17. The cavity environment is synthesized around the strip-
dipole using metallized via-holes in the E-plane walls and metallized grooves in the
H-plane walls. The results of the pattern measurements are compared to theory in
figure 7.19. As shown in this figure the measured patterns match the theory well
except from a discrepancy appearing in the E-plane at large angles. This is in part
due to the replacement of the ground plane by an absorber in the tested antenna
configuration and in part due to the imperfect electric walls in the E-plane. Also it
should be noted here that the patterns of the horn antenna are practically the same
with the membrane or with the dielectric wafer. For example this is verified when
the membrane patterns of a 1.35\-square horn antenna (Fig. 3.19) are compared to
the corresponding dielectric patterns of figure 7.18. The same statement is found to
be true in the case of the quasi-integrated horn antennas of chapter V and therefore
these designs can also be used when the dipole is printed on a dielectric wafer.

The dielectric loaded antenna lends itself easily for array applications since it en-
ables the monolithic integration of semiconductor devices. Therefore, the far-field
patterns are now being examined in an infinite array environment using a straight-

forward extension of the theory presented in chapter VI. The computed patterns for
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Figure 7.18: Predicted and measured far-field patterns for a microwave model at
2.7GHz. The thickness of the dielectric is d = 0.1A; and the cross-
section is Y = 0.60),, ¢, = 12. Antenna aperture size=1.35\-square
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Figure 7.19: Predicted and measured far-field patterns at 13.6GHz. The thickness
of the inserted GaAs wafer is d = 0.1)\; and the cross-section is Y¢ =
0.60)\,. Antenna aperture size=1.35A-square
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¢, = 3.75 and ¢, = 12 are compared in figure 7.20 with the corresponding patterns of
a membrane integrated horn antenna (¢, = 1.00). From this figure it is observed that
the patterns corresponding to the smaller dielectric constant (¢, = 3.75) do not differ
appreciably from those of the membrane integrated horn antenna. On the other hand
the ¢, = 12 loaded horn has a smoother E-plane pattern within the main beam than

the membrane integrated horn antenna.

Relative gain (dB)

Elevation angle (degrees)

Figure 7.20: Computed patterns in an infinite array environment for €, = 1.00, €, =
3.75 and ¢, = 12. The thickness of the inserted GaAs wafer is d = 0.1)4
and its cross-section is Y¢ = 0.60), for €, = 1.00 and 12 and Y? = 0.53),
for €, = 3.75.

7.3 Summary and Conclusions

Semiconductor devices can be monolithically integrated with the feeding strip-
dipole by inserting a GaAs wafer in the integrated horn antenna structure. If instead
of GaAs, a quartz wafer is inserted, then the integrated horn antenna can be used
for integrating SIS junctions. This offers better heat transfer and better mechanical

stability characteristics than the membrane approach. In order to suppress any sur-
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face wave modes in the inserted wafer , a cavity should be synthesized around the
dipole using either etched via-holes or grooves metallized with gold. The trapping of
modes in the synthesized cavity should also be avoided by selecting the thickness of
the inserted dielectric wafer. This is achieved by applying appropriately the trans-
verse resonant technique. The resulting antennas have impedance bandwidths and
pattern characteristics similar to those of the membrane integrated horn antennas.
The full-wave analysis is capable of predicting the input impedance of the feeding
strip-dipole in the case of quartz. For the GaAs case (high dielectric constant) the
impedance can be predicted only for very narrow strips (~ 0.005),). Otherwise only
the real part of the impedance is reliably obtained. It is speculated that the numerical
problem arises from the required larger number of modes to represent the fields in the
high dielectric constant wafers. This results into ill-conditioned scattering matrices
which lead into relative convergence phenomena concerning the imaginary part of the
input impedance. This issue requires further investigation in order to explore ways

to overcome the numerical limitation under consideration.
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APPENDIX A

Modal Expansion in a Waveguide

Consider a perfectly conducting rectangular waveguide for which the transverse

cross-section A, = X, x Y} is shown in figure A.1. To derive the associated modal

A
y
Yp
—
0
XP X

Figure A.1: A rectangular waveguide of cross-section A, = X, x Y,.

eigenfunctions, standard Lorentz gauge potential theory is used [67, 76]. For this
purpose an Electric (II°) and a Magnetic Hertz vector (II™) are defined to satisfy

Helmholtz wave equation (a e/*! dependence is assumed):

VAT 4 RO = ——Je (A.1)

Jwe
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VAT 4 R = o m (A2)
Jwh

(A.3)
where J¢ and J™ are the exciting electric and magnetic currents respectively. To find
the modal eigenfunctions in the waveguide, the Hertz potentials should be associated
with the homogeneous Helmholtz equation in which case the fields are derived from

the Hertz potentials through the relations :

E = —jwpV xII™+V x VII° (A.4)

H = jweVxII*+V xVI™ (A.5)

Below, equations (A.4) and (A.5) are used to derive the Transverse Electric (TE) and
Transverse Magnetic (TM) modal eigenfunctions.

TE-modes:

In this case E, = 0 and the pertinent Hertz potentials are defined for each mode

gr in waveguide #p by :

M = ¢3(a,y)e o 3 (A.6)
and ¢37(a,y) = BY, cos(k,a) cos(k,y) (A7)

where B?, is the orthonormalization constant to be defined later. The eigenvalues k%,
and kP are determined from the application of the boundary conditions of vanishing
tangential electric field on the walls of the waveguide. Therefore, in view of equations

(A.4) and (A.6) through (A.8), these eigenvalues are obtained from:

qm
o= I 020123 A9
zq Xp’q ( )
L, rT
IX;T = 7, 7‘20,1,2,3"‘ (AIO)
p
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Furthermore, the propagation constant 47, is determined from the consistency equa-

tion :

kB2 + (KB )2 — k2 if (KB,)2 + (kP.)? > k2
(kzq)? + (kyr) (k5g)" + (KF,) (A1)

Vor =
]\/ k% — ((k%:)% + (k}q)?) otherwise

With these definitions the contribution of the ¢r* TE-mode to the transverse EP and

H? fields is determined from equations (A.4-A.5) and (A.6-A.8) to be:

ETE? = jupe Mo €lF7(z,y) (A.12)
HIE? = e r® BIE2(g,y) (A.13)
where
TEp(x y) = Zx V¥ (A.14)
BZ;E’p(a:,y) = Zx TE”(m Y) (A.15)

The modal eigenfunctions e15”(z,y) and hIE?(z,y) are orthogonal to each other [67]

and are orthonormalized according to :

< &TB» RTEp 5 / &TBP x JTED. 5 dA (A.16)

qr Y Yuv qr

X
/ ’ / TEP TP dody = 6,6, (A7)

Equation (A.16) determines the normalization constant B?, of equation (A.7) to be :

B 1J X,Y5(2 = 6,0)(2 = 610)

T\ (@)t () (A.18)

TE p(

The explicit form of the modal eigenfunction &,°?(z,y) is determined from equations

(A.14), (A.15) and (A.7) and is given by:
EZ;E"’(:E, y) = B, {k;’, cos(kp,z) sin(kf.y)Z — k%, sin(k? x) cos(kzry)ﬁ} (A.19)

The general form of the field in waveguide #p due to the TE modes is obtained from

the superposition of the modal contributions and therefore from equations (A.12) to
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(A.15) one obtains:

~TE o~ N~/ TEp TEp, e Ear (2, Y)

ElPPay) = X Elagre™ 4 b fre i) tomes (A20)
q=0 r=0 }/‘J{E‘p

_ X = P P -

HtTE,p(m,y) — Z Z(aZ;E,pe Ygr +bZ;E'p€ Ygr )\/Yq{E’p hZ;_E'p(:L‘,y) (A?l)

-
1l
o
.
i
o

Note that in equations (A.20) and (A.21) both forward and backward waves have

been included. Also, the wave admittances Yq?;E"’

are defined by equations (A.12)
and (A.13) to be:

yTEs - Jor (A.22)
T jwp '

The Transverse Magnetic (TM) modal eigenfunctions are obtained in a similar

fashion, but in this case the pertinent Hertz vectors are:

r = 6pr(ey)e ™ 5 (A.23)

and ¢7P(z,y) = BP sin(kP, z)sin(kP y A.24
qr q rm yn

e =0 (A.25)

The corresponding eigenvalues as obtained from the application of the boundary

conditions are :

qm

kz = _7q=13233"' (A26)
q Xp
rm

o= L =123 (A.27)
! Y,

The TM modal eigenfunctions as obtained from equations (A.4),(A.5) and (A.23) to

(A.25) are:

EIMP(a,y) = Vigp? (A.28)

7 , 2 -TM,
REMP(z,y) = 2 xeM¥(e,y) (A.29)
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TIW p(

The explicit form of the modal eigenfunction €,"?(z,y) is determined from:

EZ;M"’(m,y) = Bf, {kiq cos(k%,z)sin(k},y)Z + k%, sin(k? ) cos(kP y)g } (A.30)

Note that the dot product between the ¢r* TE eigenfunction (Eqn. A.19) and the
corresponding ¢r** TM eigenfunction (Eqn. A.30) is identically zero and therefore
the TE and TM modes are orthogonal to each other according to the inner product
definition of equation A.16. The corresponding general form of the field in waveguide
#p due to the TM modes is obtained from:

T™, —~ w—, TM, z | 1 TMp — TrM'p(z y)
EM(z,y) = ) Y (agMPe” r + b, e "q'z)q—— (A.31)

g=0 r=0 \/ YTM’p

BEMA(e0) = 32 S g i) (VT o) (132

=0 r=0

Also, this time the wave admittances Y,T™? are given by:

Jwe

TM,p __
Y, - P
Yqr

(A.33)



APPENDIX B

S-matrix of a Waveguide Step-Discontinuity

The generalized scattering matrix S of the double-step waveguide discontinuity
of figure 2.1 of chapter II is determined from the mode matching equations (2.8) to
(2.11) as it is below described.

First the mode matching equations (2.8) and (2.9) of chapter II are transformed

into the matrix form:

U VT b1 U VT ai
= (B.1)
-V U b, vV -U as
where submatrix V has been defined in chapter II by equation (2.17):
V= Y12/2W Y_ll/z. (B.2)

and U is the corresponding square unit submatrix. Furthermore, matrices W and

Y /2 have been defined in chapter II to be:

{W}”m = <é1l'mili > A (B3)
Vi = diag{(YDA (V5 o (VR )HR) (B4

Detailed expressions for the computation of the submatrix V will be presented at

the end of this appendix. In order to derive the S-matrix of the waveguide step-
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discontinuity in terms of the V matrix, equation (B.1) is written in the form:

b] Sll = (VTV + U)—l(U - ‘,TV) 512 = S2Tl a;
by Sy =2(VT + V1! Sp=WVVT+U) Y (VVT -U) | | a,
(B.5)

This equation completely determines the S-matrix. However, it is computationally
more efficient to transform this expression of the S-matrix into the form given in equa-

tions (2.13) to (2.16) of chapter II. For this purpose consider the matrix expression:

VSn+V = VIVIV4+U) (U -VTV)+V
= (VI4v )y 4 (VT4 v ) H(=VIV + VTV 4+ 1)

= VT4V Hl=6, (B.6)

Therefore the relation S3; = V(U + S1;) is established. Now in a similar way consider

the matrix expression:

VSi-U = 2V(VIV +U)WWT —U
= VT 4+v T U
= (VI+v vl —(vT 4+ v

= (VT4 VYV -V =8y (B.7)

With these expressions for the submatrices Sy, and S, the form of the S-matrix given

in equations (2.13) to (2.16) of chapter II is derived, i.e:

Sn = (VIV+U) (U -VTV) (B.8)
512 = 52Tl (Bg)
521 = V(U + Su) (BlO)

522 = VSn-U (Bll)
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Note that in these expressions, the computation of the S-matrix of a waveguide step-
discontinuity requires only one matrix inversion of half the order of S. The explicit
form of the reaction submatrix V in terms of which the S-matrix is expressed is of

the form:
Vib Vhe
V= (B.12)
Ve Vin
where the subscript h denotes the TE modes and the subscript e denotes the TM
modes. Thus, for example, V}. denotes the interaction between the TE and the TM

modes. Now with reference to Figure 2.1 of chapter II and from the defining equations

(B.2) (B.3) (B.4) one obtains:

Viij = \ﬁf / " /Y' e; & P dady (B.13)
Vs = \’;Z /Xl /“ (T M2 oy (B.15)
Veeij = \ixj /Xl /Y’ eTML. g™ ddy (B.16)

The modal eigenfunctions é7E* and e and the corresponding wave-admittances
YTE? and YTM? have been defined in Appendix A. However, here the modes are

assumed renumbered so that only one index is required to characterize each mode.



APPENDIX C

S-matrix for the Transition into Free-Space

The free-space field is represented in its plane-wave expansion [72] and the con-
tinuity of the fields over the radiating aperture leads to equations (3.7) and (3.8) of

chapter III, namely:

o — .'TjE'N(x»y) TE,N TEN = 3;MN ) TMN TM,N
ZZ TE,N (a @i +b +ZZ \/}m aij +b )
J

Y;™ J
= o [0 ke ke, (C1)

o — TE,N TE,N/;TE,N TEN 2 - M,N TM,N /1 TM,N TM,N
DDy Yy by - Zzé VYl = e
J

i

T Lo [ e (©2

To determine the generalized scattering matrix S (by = S°Pay) which characterizes
the transition into free-space, the plane-wave spectrum g(k;, k,) should be eliminated
between equation (C.1) and (C.2). For this purpose consider the following Fourier

transform pair:

~ +oo _

Jllerb) = 5= [ Fla,u)etess dady (C.3)

-I-oo~

FU) = flzy)= % /_  Jlke ke Remem Ry dk,dk, (C.4)

M
=
I



189

With this Fourier-pair definition the transverse part of the plane-wave spectrum is

obtained by inverse Fourier transforming equation (C.1), i.e

TE,N bTE,N TM,N bT.M'N

X . EN a; ~TM,N, @ i
k::,k Z;e: JyTEN+\/}jiZ‘E,N)+eij (\/)23"M,N+\/}23'M,N)(C5)

1 ij
Equation (C.5) should now be substituted in equation (C.2) in order to eliminate the

plane-wave spectrum g(k,, k,). To achieve this, the relation between the transverse

and the longitudinal component of the plane-wave spectrum given by [67]:

~

k-g=krg: +kygy + k.9, =0 (C.6)

is used to establish the relation:

1 -
- X

271-(_‘)#0 * gt (C-7)

The spectral-domain dyad Z: is defined by:

i- _ 1 (k2-—k§)§:+kkyy
2TwiL, k,
B - _ 1 kok,Z + (K2 — k2)g
2Twi, k,
(ke k,) = 2A+9B (C.8)

With these definitions the substitution of equation (C.5) into equation (C.2) yields:

») { _TE,N /YTE NBTEN _ GTENY | gTMN(g ) /Y;’;(‘M,N(b?;M,N B ag;M,N)} _
J

1

= _TEN

_ZZ TEN+bTEN / / —re e~ ihekyg=iksky gp gk
V ij

i

= _TMN

_ZZ TMN+bTMN / / YTMN = ikzky =ikzky dkdk, (C.9)
V-°u

The application of the orthogonality of the waveguide-modes of the aperture waveg-
uide section #N in equation (C.9) as expressed by equation (A.16) of Appendix A

yields:
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TE,N TE,N\, [\ TEN _
_(bmn —Qpy ) Ym" -

TE N TE,N Z 1 ~-,TE,N
o [Z S (afF 48] / / YTJ‘E . dk,dk,

=— _TM
 g*TEN
t(d TM,N bTMN / / YTEN dkxdky} (C.10)

TM,N TM,Ny, / TM.N —
—(bmn _amn ) -

Z_ ~t,TM,N
e L e

:— _TM
TMN | \TMN) ' e TMN
+ (aZMN 4T / / YTEN : dkrdky] (C.11)
For obtaining equations (C.10) and (C.11) we have made use of the fact that the

modal-eigenfunctions are real and therefore:
€ (—=kz,—ky) = € (ks, ky) (C.12)

where * denotes the complex conjugate. The designated dot products in equations

(C.10) and (C.11) are carried out and the notation is simplified to yield:

(12 — e =

ap N ,N

oo oo 2
ZZZ 2 If&mn Igfjmn + Ig:)]mn)

Who J p=lg=1 \/YpN \/
(C.13)

where the indexes g and p take the value 1 for a TE mode and 2 for a TM mode. The

integrals I (s = 1,2,3) are defined as follows:

stjmn

oo fOO

k2

=

.. = /_ ] /_ T vgpNemaN g dk, (C.14)
0o oo k2o k2

. = / ) /_ = =g Nemal gk, d, (C.15)
0 0 k;,;k . . -

B = [ [ H@ienl +2faa)) dudy,  (C16)
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To avoid numerical integrations with infinite limits the above integrals are trans-

formed into the space domain using Parseval’s theorem :

/_o:o /_Z fiz, ) f3(z,y) dedy =/_°;/_°; filke, k) fo(key ky) dkedk,  (C.17)

For example the integral If{, ., becomes in the spatial-domain:
Y
B = [ [ F0) B4 g @ es) dedy (C19)
The first Fourier transform in equation (C.18) recovers the space-factor f,(z,y) =
je~3**[p. To prove this assertion consider the Fourier transform of the space factor
fs(p) which can be expressed as a Hankel transform due to the involved cylindrical

symmetry, i.e:

e—jkp (o] .
— —Jkp
f[ p ] - /0 e=3* ] (up) dp (C.19)

where u = \/W , p= \/m (C.20)
and J, is the Bessel function of zero order. The above integral is tabulated on page
712 of reference [139] where it is shown to be equal to —j/k,. The branch of k, =
m is chosen to satisfy the radiation condition (see Equation A.11). The
second Fourier transform in equation (C.18) is carried out using the Fourier transform
of a convolution. In a similar way all three kinds of integrals I3’ (s = 1,2,3) are
transformed into the space-domain. The resulting expressions are obtained when
taking into account that the modal eigenfunctions are separable functions of z and y

and have the explicit form given in equations (A.19) and (A.30):

W”W‘I jee L
B = e [ [ I oy 2

[Rffn(x)Rji(y)]}dwdy (C.21)
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Up vg, je Ik 0?
Pg — .2
I2:]mn - / / { 6y2)
[R:;<I)R;a<y)]}dzdy
—3kp 2
Pq _ Je ’ 6 14 q cs
ISumn - / / { p axay [U WmmRm:

WEU: R,

mn= tm

+ (2) B(—)] } dady

Note that in the expression (je™*#/p) the quantity j denotes
and it should not be confused with the index j. In the above

convolutions over the radiating aperture Ay = (Xn x Yy) are

Rile) = cos) B oos()
Ri(y) = sin(y-) @sin(g)
Rin(z) = sin ;’p ®sin(§)
Rji(z) = cos(g)@cos@:)
Rin(z) = cos XN)®S“‘<§§>
R5() = o3 @sin(2)

(=) R, (y)

(C.23)

the square root of -1
integrals the following

involved:

(C.24)
(C.25)
(C.26)
(C.27)
(C.28)

(C.29)

Also W and U are normalization coefficients defined as follows:

W~ S (&) ifp=1 (TE)
B () ifp=2 (TM)
2| PG o=t am
B (£) ifp=2 (TM)

(C.30)

(C.31)

where BN is the modal orthonormalization factor which has been defined in equation

(A.18). The convolutions are evaluated analytically and the singularity at p = 0 is

removed by performing the integrations on the polar plane.

Romberg’s method is
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used to compute numerically the integrations [132]. The explicit form of the matrix
F which determines the aperture scattering matrix S° and has been defined by
equations (3.9) and (3.10) of chapter III can now be derived from equation (C.13) as

follows:

Fz[Fn Fzz]

where the block matrices Fy; , Fy, are defined by:

an 0
[ Fn Fyp ] = (C.32)
by 0
and are of the form :
fll,+ f12 fll,— f12
Fin = Fo = (C.33)
f21 f22,+ f21 f22,—

The various quantities involved in the definition of Fy;, Fy, are given below:

Yot = S8+ Simbin YN0 if (g = p)
(C.34)

N, .
VY = S it (0 # )
where

1 3
Siimn = IR /. (C.35)

Wito s=1

and &, is the Kronecker delta.
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APPENDIX D

Integral Coefficients for the Method of Moments

The system of equations for the unknown current expansion coefficients arising
from the application of Galerkin’s technique to the Electric Field Integral Equation

has been derived in chapter III and given in Equations (3.30) and (3.31):

RN TN QN PN

S b AY Y e, = 0 (0.1)
r=1 t=1 g=1 p=1

RN TN QN PN w/2

> D bn ,’ffrﬁz Zamlszy,,q = '(I)y (0) /w/2 dz (D.2)

r=1 t=1 g=1 p=1
All of the integral coefficient I appearing in the above system of Equations are defined

below:

rtrt

oy = /(Dx (z)I7F(z,y) dzdy (D.3)

where

I

) = [ Gule,a,y)i(@)00) de'dy (D.4)
sq

Y= /(D’ (z) ¥ (z,y) dzdy (D.5)

r't'pg

where

Bey) = [ Guleyey)iE)0y) do'dy (D-6)

Sd
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e = /adéz,(y)h:,(x)lﬁ’f(z,y) dedy (D.7)
where
By = [ Gula,y,e,y)hi(a)0(y) do'dy (D3)
Sd
w o= /M@g,(y)h;’,(z)fgg(x,y) dady (D.9)
where
I%(z,y) = /Sd Gyy(z, 9,2,y )h¥(z)BY(y') da'dy’ (D.10)

With the current basis functions as defined in chapter III (section 3.3.1), the above
integral coeflicients can now be evaluated explicitly. For this purpose the required

dyadic Green’s function is obtained from Equation (3.21) as has been derived in

sTE,II

chapter III. Also the modal eigenfunctions e eTM.IT

(z,y) and € (z,y) appearing in
the definition of the Green’s function are given explicitly in Equations (A.19) and

(A.30) of Appendix A. The resulting expressions for the integral coefficients are given

as follows:
T -QP + P-
r't'rt = [V’B]T 2 [V’L‘] (Dll)
sz (QP + P]
Ir't?pq = [Vl 9 Vi (D.12)
- QP + P
e, = W2 w (0.13)
_ r [Q@P + P]
m = W[5 wl (0.1)

where the matrices V, and V,, are defined in the following manner:
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[ 11 min4l 1 - mindt
VeI Pl (F) (= 1) L1, L3,y 7B (35)(-1) z‘um'mmt']

I
h<
gF
~
~
"<|:s
ol ]

T _ Bll mr m4n—1 B” nr min—1
W = |~ () ()™ L2 Ly P (3)(-1) 5 LGp,L4mq,]

To construct the vector matrices V; and V, the running indices are the m,n indices.
Furthermore, the expressions L1 to L4 are defined in terms of the basis functions of

section 3.3.1 by:

L1, = sm (nmy/ Y1) 97 (y) dzdy (D.15)

L2,, = / cos(nmy/Yrr)®3(y) dzedy (D.16)
L3.: = / sin(mrz /X r)hi(z) dzdy (D.17)
Ldn, = /

cos(mrz/X1)h7(z) dzdy (D.18)

d

and the exact values of these coefficients for the entire domain basis functions are

(centered strip):

ol 2r—=1 nl, 2r—1 nl,
le‘ = - Jo - - Jo
4 { [’r( 5 2 )] [’r( > Ty, )]}

sin [(ko + kyn)lz—s] sin [(ko - kyn)%’]
L2, = , +
? (ko + kyn) (ko - kyn) T
),
TWw [ muw mw ]
L mt — T 0 ~ v 0 T
3mt i {J Wty )] J [”(t+ %5, ) }
TW [ muw
Ling = Z2{0 7 Hlo=1+ 75 )] +J, [ (q 1+—2X”)]}

where k, = (2p— 1)7/l, ,  kyo =nx/YIr.
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APPENDIX E

Coupling to the Secondary Focus of a Cassegrain
Antenna

Gaussian beam feed:

In the case in which a Cassegrain antenna is fed by a Gaussian beam of waist
radius w,, the corresponding coupling efficiency to the secondary focus is given by

equation (5.16) of chapter V :

J1(kpsind,)
l//i;orn apert. (kpSll'l 03) ECO(x,y) dxdy

J1(kpsinb,)
(kpsind;)

2

Mgs = 2
»n-wo o0 o0
2 Jeod-co

By the substitution of u = kpsin(f,), the above equation becomes:

2

dzdy

4 u?

7 / T(w)exp(-23) du

/OOOMdu

u

Ngs (E.2)

where J; is the Bessel function of first order and § = kw, sin(f;) (0, is the half angle
subtended by the reflector of figure 5.4). The integrals appearing in equation (E.2)

can be computed analytically [139] and the resulting expression is:

AN

Mgs = 2 (g;) 1-e 4 (E.3)
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The coupling efficiency 7,,(3) attains a maximum value of 81.5% at fn.. = 2.24.
Therefore for a given reflector half angle 6,, the corresponding maximum coupling
efficiency is obtained by a Gaussian beam having an 8.7dB power beamwidth given
by 0s.74B,0pt = sin(f,)/1.12. The corresponding optimum edge-taper is found by the

use of the far-field expression for the power radiated by the optimum Gaussian beam

Pys(0) = exp {—2 (98.7403 opt) } (E.4)

Therefore, the optimum edge-taper is determined from equation (E.4) at the § = 6,

P[1, 99]:

point to be 10.9dB.

Conical corrugated horn feed:

For a diffraction limited conical corrugated horn of aperture radius a, the aperture

field is given by the expression [29, 112]:
E = J,(k.p) U(p/a) (E.5)

where U is the unit step function and k. = 2.405/a. In this case the corresponding
coupling efficiency to the Cassegrain reflector antenna as obtained from equation

(5.16) can be put into the form:

“ n(ke)2405S) de|
]/ 1()Jo(2.4057) de

= z > (E.6)
/0 £J2(2.405 ; ) d¢

(o]

Neorr = 2

where { = asin(f,). The above coupling efficiency expression attains a maximum of

83.7% at the optimum point £, ,,; = 0.58.
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APPENDIX F

Field Expansion into Gauss-Hermite Modes

The diffraction limited aperture fields of the multimode antennas of table (5.1),

can be expanded in terms of Gauss-Hermite modes :

Eco(:r,y) = denGmn(xay) (Fl)

where the orthonormalized Gauss-Hermite modes G, are given by :

Gonl#:4) = \[smgr=—eop(~ ) Hn (Va ) B (Vay ) (F2)

In (F.2) , w, is the beam waist radius and H, is the Hermite polynomial of order p. If

the expansion coefficients d,,, are normalized so that the square of their magnitudes
represents the fractional power radiated into the G,,, mode, then the normalized

coefficients D,,, can be defined by :

d // Eco(x, y)Gmn(x,y)dzdy
mn horn apert.

E. = 1/2
Eel| (// |Eco(m,y)|2d:cdy)
horn apert.

In table (5.3) these normalized expansion coefficients are tabulated for the Airy-

(F.3)

mn —

pattern, for a diffraction limited corrugated horn, and for the multimode fields of
table (5.1). The beam waist radius w, is chosen in each case so that the fractional

power radiated in the fundamental Gauss-Hermite mode Ggo is maximized. Also,
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note that if the Airy-pattern normalized expansion coefficients are denoted by D2
and the multimode field normalized expansion coefficients are denoted by D%  and
assuming that the same beam waist radius is used for the expansions , then using the
orthonormality of the Gauss-Hermite modes in equation (5.16), it is implied that the

coupling to the secondary focus of the Cassegrain antenna is given by :

2

Nsec. =

> DrnDis (F.4)

Furthermore, upon a Fourier transformation a Gauss-Hermite mode G,,, maps into
itself within a scale factor and with a sign change determined by :™*", where 1 is the

square root of -1. This behavior is revealed using the integral [139] :

/oo eikze—l‘zﬂHn(z)dx = i"\/é;r_e‘kQ/f"Hn(k) (F5)

Therefore for the Airy pattern, which excites only Gauss-Hermite modes having both
indices even, the modes which reverse sign upon a Fourier transformation are those
for which (m +n)/2 is odd. From this reasoning it is implied that the corresponding
coupling to the tertiary focus is given by:

2

Mer. = |32 (=1) 72 D2, DY (F.6)

m,n



APPENDIX G

Phase Center Estimation Using a Gaussian Beam

The far-field phase center of the quasi-integrated horns can be estimated from the
position of the beam waist of the corresponding matched fundamental Gaussian beam.
In principle, higher order Gauss-Hermite modes should be taken into account [117],
but the high fundamental Gaussian content of these antennas guarantees reliable
results from only the fundamental Gaussian mode. However, for accurate phase
center calculations an elliptic Gaussian beam with an astigmatic location of its E and
H plane beam waists should be used. In this case the coupling efficiency of equation

(5.15) becomes:

2 2

o EN 2)
’/»/aperture eJk(2RH+§¥G) € “H ‘J‘fg Ey,ap(x,y) d(l,'dy

Nel =
wwﬁwg//
2 aperture

where wg, wy are the aperture beam-radii in the E and H plane respectively and

- ; (G.1)
Ea,,(z,y)l dzdy

Rp, Ry are the corresponding radii of curvature of the phase distribution of the
aperture field (computed directly from the full-wave analysis). To estimate the phase
center, the aperture beam radii wg and wy are selected iteratively so that the coupling
efficiency 7 attains its maximum. The corresponding location of the phase center in
the E and the H planes is then obtained from the positions of the beam waists inside

the horn Zg, Zy, according to :



Zpy = —%{E—H— (G.2)
L4 (—=)

7er,H

Note that for computing the coupling efficiency and in view of the modal expansion

of (5.1), the double integral in the denominator of (G.1) is obtained directly from the
aperture modal coefficients using Parseval’s theorem, whereas the double integral in
the numerator is separable and splits into single integrations which are numerically
carried out.

Derivation of the elliptic Gaussian beam:

A Gaussian beam is a solution to the paraxial wave-equation given by [133, 134]:

2 2
ij@_*_au au_

. @+a—yz——0 (G3)

where a Cartesian field component E is related to the envelope function u(z,y, 2)

through the expression:
E =u(z,y,2) &** | and a e~ time dependence is assumed (G.4)

The implied approximation which enables the derivation of the paraxial wave-equation

from the wave equation is the slowly varying envelope approximation:

0%u

922

Ou

<<5z

or |u (G.5)

Using standard Fourier transform theory it can be shown that the scalar Green’s
function corresponding to the partial differential equation (G.3), with the source at

the origin is of the form:

. -k 2 2
)ejéz(x +9°) (G.6)

J
ug(x,y,z) = (_X;

Note that equation (G.6) is the Fresnel zone approximation to the free-space scalar

Green’s function. The easiest way of obtaining the elliptic Gaussian beam is to employ
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the concept of rays emanating from a complex point which has been introduced for
the case of circular Gaussian beams by Keller and Deschamps [136, 137]. Within
this framework, in order to derive an elliptic Gaussian beam one can begin from the

following shifted version of equation (G.6):

: k 2 k 2
jej 2(:—21)1 CJ 2(:—12)y

u(z,y, 25215 22) = (G.7)
)\\/(z —21)(z — 22)
Now the shift points z; and z; are assumed imaginary and of the form:
21 = ]bH (GS)
29 = ]bE (Gg)

Under this assumption the singularity of equation (G.7) at the origin is removed
and by straightforward differentiation one can verify that equation (G.7) is indeed a
solution to the homogeneous paraxial wave equation (G.3). Equation (G.7) can be

algebraically manipulated to take the form of an elliptic Gaussian beam:

2 €xp ["%(¢H + ¢E)] 2?2y (2
o) = (3) g oo (G i) o (7 )|

where the various Gaussian beam parameters are defined in terms of the confocal

parameters by and bg as follows:

wy = %TH<1+%) (G.10)
wp = %(H%) (@.11)
-}—21; = zHZfbg, (G.12)
RLE = ZEZbeE (G.13)
¢y = tan"'(Zy/by) (G.14)

¢g = tan™'(Zg/bg) (G.15)
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Note that equation (G.2) can be derived by eliminating by and bg from equations

(G.10) to (G.13).
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