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1 Introduction

To better simulate the material properties of a surface or layer, a method
that has attracted attention is to include higher derivatives in the boundary
specification of the field. The result is a generalized boundary or transition
condition whose order is specified by the highest (Mth) derivative present.
The conditions are logical extensions of the first order ones corresponding
to the usual surface impedance or sheet conditions, but when applied to a
surface with a discontinuity either in the structure itself or the condition, they
do not produce a unique solution to the problem if M > 1. The inclusion of
the standard edge conditions is no longer sufficient, and additional constraints
are necessary to have a well-posed problem.

For simplicity we consider the case of a planar surface y = 0 illuminated
by an H-polarized plane wave. In Section 2 the connection between general-
ized sheet transition conditions (GSTCs) and generalized impedance bound-
ary conditions (GIBCs) is discussed, and this allows us to confine attention
to the latter. Some of the ways to generate the conditions are presented in
Section 3. All are based on the expansion of the fields inside the simulated
layer or coating in powers of a small parameter §, and because of this, some
restrictions can be placed on the form of the GIBC. The uniqueness of the
solution of the resulting boundary value problem is examined in Section 4,
first for a GIBC whose coefficients are continuous functions of position, and
then for a line discontinuity in the properties. In the latter case, the role
of the standard edge conditions is indicated, and the additional constraints



necessary when the GIBC is of order M > 1 are developed. The physical
interpretation of the constraints is discussed in Section 5.

2 Generalized Conditions

For a planar surface there is a simple generic form of a GSTC that includes
a GIBC as a special case. To show this, consider an electromagnetic field
whose only non-zero components are F,, F, and H, (H polarization) incident
on a surface y = 0 where z, y, z are Cartesian coordinates. At the surface
the following transition (or jump) conditions are imposed:
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for some 7,, and 7,,, where the superscripts refer to the upper (+) and lower
(=) sides of the surface, and a time factor e=** has been suppressed. For
M odd the conditions are identical to those considered by Senior [1992], but
for M even the conditions are interchanged. For all M, even as well as odd,
(1) and (2) specify magnetic and electric current sheets respectively. The
magnetic current is a function of the v, alone, the electric current depends
on the #/ alone, and there is no coupling between them. In general, the
surface is partially transparent, but if v, =4/, (m =1,2,..., M) the surface
becomes opaque. By adding (1) and (2) we then obtain

ﬁ (a% + uwm) E, =0 (3)

m=1

at y = £0, and (3) represents Mth order GIBCs [Senior and Volakis, 1989)].
More generally, since any planar magnetic current radiates a field F,
(or H,) which is symmetric about the plane, i.e.
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(1) is equivalent to the GIBC

M

I1 (5% + ik'ym) E,=0 (y=+0) (4)

m=1

for the even component of the field. Similarly, the electric current radiates
an antisymmetric field for which

EY =—-E7 OF; = QE_
y Yy Ay dy
and (2) is then equivalent to the GIBC
M (9
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for the odd component of the field. It is therefore sufficient to confine atten-
tion to GIBCs of the form (4) for specified 7,, (m = 1,2,..., M).

Equation (4) is a scalar condition for the component E,, and is a natural
generalization of the first order (or standard) impedance boundary condition
expressed in the form

a .
(‘a—y + Zk’)’) Ey = 0

At an edge or other line discontinuity in the properties of the surface, %;“
=3/2_and its Fourier transform does not then exist in
the classical sense. We can avoid this problem by integrating with respect

to & [Senior, 1987), and since

may be as singular as =

1z 0H,
By = ko
the condition (4) can be written as
M 9
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applied at the surface y = 40, where the constant of integration has been
set to zero. This is the GIBC which we will use. We note in passing that
when M =1, (6) is simply

E,=7vH, (7)
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which is the Leontovich boundary condition for an opaque surface having
normalized surface impedance 7.

The form (6) is quite convenient for many analytical purposes, e.g. a
Wiener-Hopf analysis, but there is an equivalent form that we will also use.
As noted by Senior and Volakis [1989], (6) can be written as

M bm om
mzzzo L BFHZ =0, (8)

and boundary conditions of increasing order M are then as follows:
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and so on. As M increases, higher order even derivatives with respect to z
appear on first the right hand side and then the left, and only if b,, = 0 for
all odd m > 1 are there no () derivatives on the left.

3 Derivation of the Coefficients

The GSTCs (1) and (2) were originally introduced to better simulate the
scattering properties of a thin layer of material of thickness 7 < A, and



(6) then represents a dielectric layer of thickness 7/2 backed by either a
perfect magnetic conductor (corresponding to the antisymmetric field due to
an electric current sheet) or a perfect electric conductor (corresponding to
the symmetric field due to a magnetic current sheet), as shown in Fig. 1.

In the case of a homogeneous material having relative permittivity ¢, and
relative permeability y, the first order (M = 1) conditions are those for a
resistive sheet of resistivity R and a conductive sheet of conductivity R*, viz.

with

and

with

(?,HZ = —1kY2RH,
dy
861[;2 _ —-;%:Hz

(13)

(14)

Unless the layer is very thin and/or lossy, the simulation is not very good,
but it can be improved by replacing the conductive sheet by a modified one



[Senior and Volakis, 1987] satisfying the boundary condition

0H, kY R 1 9
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and (15) is a second order GIBC. The additional terms in (15) model the
effect of the normal component of the electric polarization current within the
dielectric.

To develop these (and higher order) conditions, one method is to expand
the field component H, inside the layer in a Taylor series in y and then match
to the exterior field at the upper surface y = 7/2. For the symmetric field
we have
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where the superscript ‘in’ denotes the interior field, and we have shown only

the y dependence. But
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from the boundary condition at a perfect electric conductor, and
a . (T d T
—H*(-) = ¢—H, (<
dy ° ( > “ dy (2)
0? 0* o (T 0? T
. Hm (_) - _ N2k2 — | gin <_) - _ N2k2 — | H. (_)
By ( Toa2) 13 Toa2) "3

etc., where N = /e1pi1 is the complex refractive index of the layer material.
Hence
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and accurate to the third order in 7, a boundary condition on the exterior
field at y = 7/2 is

O\ 0H. _ 0? 0?
T a2 _ 272 T v2g2
{1 8 (Nk (9 >} 3y 2 (Nk ax ){1 24 (Nk +8w2

(16)
This is a fourth order GIBC expressed in the form (12), but to the same
order in 7 it can be written as

oH, 7 9,9 02 010 . 0%
dy  2¢ (N e 8——) { 2 (N et dz? He (A7)

This is still a fourth order condition, but now b5 = 0.
Similarly, for the antisymmetric field
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and since H*(0) = 0, we have

le.

9*\) OH,
21,2
{ 24<Nk 8 )}By
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This is also a fourth order GIBC. 1t is accurate to the fourth order in 7, and
to this same accuracy it might seem that it could be written as

OH, 2 22, O T 2,2, O
8y_617'{1 12(N]”+07)_1152(N]”+% H..(19)
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A slightly different method has been employed by Ljalinov [1992] to treat
the problem of a curved homogeneous layer of constant thickness using two-
dimensional curvilinear coordinates. It also produces an expansion in powers
of 7, but involves the explicit solution of the wave equation in the dielectric.
To illustrate, consider the case of the antisymmetric field for a planar layer,
and introduce the normalized coordinates

€ = kz, n=2y/t with 6 = k7 /2.

If U = H™, the equation satisfied by U(¢,7) is

with U(€,0) = 0. Expand U as
U =Us+8Uy + 82U, + 8°Us + 6*Uy + O(8°).
Then

9*Uy

an? =0

implying
Uo(§;m) = co + c1m
and since U(¢,0) = 0,

Uo(€,m) = cin = nUs(€,1).

Similarly
Ul(fa 77) =1 Ul(és 1)
For U(&,7n) we have

U 0? 9?
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implying
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and since U(¢,0) =0,

Uz(é,n) = cin — l713 (N2 + a—) Uo(€,1).
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and therefore
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On matching to the exterior field at n = 1 and then reverting to the original
coordinates, we obtain

OH, 2 72 2\ T 0%\
2 - _ N2k2 I I 2k2 - Hz
dy  r {1 12 < + 81‘2) 720 (N + 51:2) } (20)
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accurate to the fourth order in 7. This differs from (19) in the coefficient
of 7, but when Ljalinov’s method is applied to the symmetric field, the result
is identical to (17).

A knowledge of the reflection coefficient can also be used to generate a
GIBC. For the homogeneous layer in Fig. 1, the reflection coefficient at the
upper surface y = 7/2 is

VN? = cos? ¢, tan (—21\/ N? — cos? ¢0) — 1€ 81N ¢g
VN? — cos? @y tan (% — cos ¢0) + 2€; sin ¢

for the symmetric field, and

. \/mcot( N? — cos2¢0)+i61sin¢o (22)

VvV N? — cos? @g cot ( T\/N? — cos? ¢0) — 261 sin ¢y

for the antisymmetric field. If = is small

Ry =—

(21)

¢ +x3+2:v +
= 4 — _
anz 5 T

1 22 2
cotr = —|l—-———=—"--"
T 3 45

and hence, for small kr,

152—T¢’V2—cos2¢0{1+i%ﬁ(N2—cos'2¢0)+-~}——i61sin¢0
Rs = T kr Ao (k7)? } .. (23)
—fN“—cosMSo{l—}- v (N2—c0s2¢0)+~-'}+zelsm¢o
T2
R 1727{ —L%L(N2_cos2¢0)_ }+Z€181n¢0 (20)
)

In either case, the only odd power of sin@y present is the first, and the
corresponding boundary conditions then have b3 = by = --- = 0. If this is
50, (8) can be written as

512 bz 2 8 b42 2 \* -
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and the corresponding reflection coefficient is

b() + b2(1 - COS2 ¢0) + b4(1 - COS2 ¢0)2 40— bl sin ¢0

k= b + ba(1 — cos? o) + ba(1 — cos? ¢g)? + - - - + by sin ¢y

(26)

It now follows that for the symmetric field the fourth order boundary condi-

tion is
2 2
T a2 2 T A212 2,2) 9
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2 01 0
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which is identical to (17), and for the antisymmetric field

) 7.2 7.4 2 62

SN - N - (14 SN )

L i - - 5 (0 5w) 3
7.4 84

0
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~ 505 + O(r )] clay} H, 0 (28)

in agreement with (20) but not with (19). It would therefore appear that the
inversion of the differential operator in going from (18) to (19) is only valid
to the leading order in 72.

The preceding analyses have all involved Taylor series in 7, and the res-
ulting boundary conditions are most appropriate for a layer of low contrast
material whose complex refractive index N is not large in magnitude. Using
the reflection coefficients (21) and (22) we can also develop boundary condi-
tions applicable to a high contrast material for which |N| > 1, and fourth
order GIBCs of this type were derived by Senior and Volakis [1989]. These
have proved to be remarkably accurate, and there is almost no reduction in
accuracy if the coefficient b, is put equal to zero. The general form of the
resulting third order condition is then

by & b 2\ b )\ o
- -_ = ‘)
{bo+ T W (k +—0$)+—(k +al>a}Hz 0 (29)

for specified b, (m = 0,1,2,3), and the fact that b3 # 0 is due to writing tan z

San

as £ and expanding numerator and denominator separately. Equation (29)
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is simply

b, 1 02 b, bs 1 0%\ 0 B
{bo[l'i'b—o(l'}'ﬁa—)}'i‘ k[1+bl (1+k232)8—y}}H2_0’

and to the same order in |N| it can be rewritten as
b, 1 0 b 0

b 1 H,=0 30

{0[1+b0( +k28:c2)l+zk3y} (30)

baby — b3bo

bl '
This is a second order condition, and it has been verified that it provides
almost the same accuracy as the previous third order condition. Indeed, a
more consistent approach would never have produced a GIBC of third order,
and suggests that a second order condition whose coefficients are chosen
appropriately may often suffice.

More generally, for the two-dimensional problem of a curved layer of high
contrast material, asymptotic analyses [Senior, 1990; Buldyrev et al., 1990)
based on Rytov’s [1940] technique produce boundary conditions of the form

2 2
o, _ —aH, + 2 ( aHz) -5 (78 HZ) (31)

with
by, =

on 0s 0s 0s? 0s?

where n and s are variables normal and tangential to the surface respectively,
and a, # and 7 are functions of the surface shape and material properties.
In the particular case of a planar layer, (31) reduces to

0H, 0? 4
:—(a—ﬁ—+7a )H (32)
oy

which is a fourth order GIBC in agreement with the boundary conditions
above. When expressed in the form (8), the coefficient b3 is zero.

There is one final matter to discuss. All of the boundary conditions
considered so far have been applied at the upper (y = 7/2) surface of the
layer, but in practice it may be more desirable to impose the condition at
the location of the backing, i.e. at the mid-surface y = 0 of the original layer.
If R is the reflection coefficient at y = 0, then

Rl — ezk‘rsquoR
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where, for a homogeneous layer, R is given in (21) or (22). By a Taylor
expansion in powers of T

kT

eikT sin ¢g — et— sin %o
e—z-"z— sin ¢
1-— M sin® ¢ + z-—- sin ¢g {1 - % sin? qSo} + O(r4)

8

1—1’°—7)—s1n qSO-—z%squ {l— (kr)? sin ¢} (T“)’

and by dividing numerator and denominator by 1 — L—L sin? ¢y, we obtain

_ (kr)2 a2 kT
eikrsind)o — 1 2 (1 Cos (b )+Z 2 sin ¢0 + 0(7‘4). (33)
1— i——2—(1 — cos? ¢g) — 1% sin ¢y

This has the form of (23) and (24), and shows that we can displace the
location of the simulating surface and still keep b3 (and all subsequent b,, for
m odd) zero.

In view of these considerations we shall henceforth restrict attention to
the GIBC (32) for specified a, 3 and 4, or (equivalently) to (8) with M < 4
and b3 = 0. Comparison of (32) and (8) for M = 4 then shows

bo + b2 + by v by + 2b4 1 by

bl ) 6:'_—

=1k —_—
! b, T @b

(34)

and it is sufficient to choose by = 1.

4 Uniqueness

Consider the region ¥ bounded internally by a cylindrical surface with bound-
ary curve C and externally by a cylinder of infinitely large radius whose
boundary curve is Cy. Application of Green’s theorem (or the divergence
theorem with u = fVg) to this region gives

/ (Vf.Vq+ [V2) (/ /) agds

provided f and Vg are continuous with continuous first derivatives inside
and on the boundaries of ¥, and 7 is the unit vector normal directed into X.
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Let U be a scalar function of position satisfying the two-dimensional scalar
wave equation

(VP4 KU =0

and choose g = U, f = U* where the asterisk denotes the complex conjugate.
Then
Vig = -k

and

VfVg=|VU]

k2//|U|2dE //|VU|2d\“_(/ /oo)U*—ds

Assume U originates from sources of finite extent in ¥, and let k have
a small positive imaginary part, corresponding to some loss in ¥. Since U
must decrease as exp{—plm.k} at infinity, the integral over Cy, vanishes by
virtue of the radiation condition, and

so that

Im. k2//1U|2d2 Im. / U*—ds (35)

This is the basis of the uniqueness proof.
If Uy and U, are two solutions satisfying the same boundary condition
on C, W = U; — U, must also satisfy this condition, and

Im. k2//|W|2d2 Im. / W*ﬂds (36)

The classical cases are now as follows.

(i) U = 0 on C, implying W* = 0 on C. The right hand side of (36)
is therefore zero, requiring that |W| = 0 at every point of ¥. Hence
Uy = U; and the solution is unique.

(ii) g—g = 0 on C, implying % = 0 on C. By the same argument, the
solution is unique.

14



(iii) —?9% = —aU on C for specified o continuous as a function of s. Equation
(36) then gives

Im. k? //|W|2dz - -/ (Im.a)|W [ ds,
C
z

and if Im.a > 0 at all points of C'

Im.k? // W2 dE < 0.
b

Hence |W| = 0 throughout ¥, and a necessary condition for uniqueness is
Im. a > 0. (37)

If a = tkn or ik/n where 7 is a normalized surface impedance, (37) implies
Re. n > 0 corresponding to a passive surface.

For the GIBC (31)

a (0w 9 [ *W
2 2408 = — ¥ — 9. \P5T
Im.k /E/|W| 4z =~Im. [ W {aW 83( o ) o3 (7 e )} ds.
(38)
32U

and provided a, ,3% and 8% ('7W) are continuous on C, two integrations
by parts give

2

} ds.

W
Im. k2// W[ dS = —Im. / {a|W|2 + ﬂ‘a
Im. a,8,y >0 (39)

Then if
the solution is unique by the same argument as before.

When there is a discontinuity in the boundary condition on C, a know-
ledge of the boundary condition alone is not sufficient, and additional in-
formation is required concerning the allowed behavior of the field at the
discontinuity. This is hardly surprising since the boundary condition is not
defined there, and a change from U = 0 to % = 0 at (say) s = 0 corresponds
to an abrupt change from a = 0o to @ = 0 in a first order impedance bound-
ary condition. The additional information is the so-called edge condition

32W
0s?
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which ensures that the edge does not appear like a true source by demand-
ing that the energy density be integrable in the vicinity of the edge. This
restricts the maximum singularity of any field component at the edge, and
in the case of a discontinuity in a plane, implies that there is no singularity
greater than p~'/2. Some of the consequences are

e a (total) field component parallel to the edge is finite and continuous
there,

e a current component perpendicular to the edge is, in general, zero there,

e a field component perpendicular to the edge, or a current component
parallel to the edge, may be infinite (as p™'/?) there.

In most instances, the physically meaningful solution is the one with the
maximum allowed singularity consistent with the above.

For a first order impedance boundary condition, including U = 0 and
% = 0 as special cases, the addition of an edge condition is sufficient to
ensure uniqueness, and allows us to dispense with the requirement that a be
continuous. For the junction of two first order impedance half planes it is
found that U(z,0) is continuous and finite at = 0, but is non-zero unless
one of the impedances is infinite, i.e. @« = oo on left or right. However, for
a GIBC of higher order, additional constraints are necessary, and these have
been referred to as contact conditions [Ljalinov, 1992].

To see this, let A and B be points of discontinuity in # and/or 4 on C,
(see Fig. 2) with

16



a = ag(s), B = B+(s), v = 7x(8)

on C; making up C. When the right hand side of (38) is integrated by parts,
we obtain

. o (. OW\ 0 [ o'W
/CW{“W‘a(E)*La;‘f("W)}dS

2117 |2
= /{a|W|2+ﬁ|QW- ald }ds
c ds

2
I 0s?

w500 0 (WAL oW [ 5tw o
* 9s 05\ 952 s st )],

oW o ([ W ow* [ o*w\1%*
‘[W {ﬂa“ﬂusz)}* 75 (7532)] » 10)

B-

and provided U and % are continuous and finite at a discontinuity, the
additional constraints required are, in general,

ou o ( oo\t
[/’a—‘d—(u—)l =l

I

Ayg— (41)

PO
7 9s? o ds

for specified A; and Aj;. The right hand side of (40) then becomes

owl  |ow ] ow |*

W|? — — d 2 _
/C{al |+ﬁ|88 + 5 T2 } s+ MWL+ A, os |,
ow |°

+A1“/V|%3+A2 —_—
0s B

and if
Im.AI, A2 2 0 (42)

where A, and A, are defined for passage through the discontinuity in the dir-
ection of increasing s, the solution of the boundary value problem is unique.
It should be emphasized that (41) and (42) are additional to the standard
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edge conditions, and are necessary if 3 and/or v is discontinuous. Special
cases are those in which U = 0 at the discontinuity, eliminating the first of
the constraints (41), or £ = 0 at the discontinuity, eliminating the second.
If both are zero, neither constraint appears.

5 Physical Interpretation of the Constraints

When applied to the junction of two uniform planar surfaces the constraints
(41) become

U Pult

[ﬂ—a;—‘r%] = AU (43)
Ut U
] = MG )

For two abutting half planes each subject to a GIBC of the form (32), it is
found that prior to the imposition of the constraints, the solution involves
two arbitrary constants ¢; and cy. U, gU, %2[2] nd 8 U have finite limits as
z — £0; U and ‘Mi are continuous at ¢ = 0 for all Values of the constants,
and are zero for a particular choice of ¢; and ¢;; and 2 az4 Y has a logarithmic
singularity at * = 0. When (43) and (44) are imposed, the resulting solution
is uniquely specified and satisfies the reciprocity condition for all A; and A,
infinite as well as finite, provided A; and A, are independent of the incident
field direction Mathematically, A; = oo impliesU = 0at z = 0 and A, =
1mphes =0 at z = 0. For a second order GIBC, i.e. ¥ = 0 in (32), the
solution mltlally contains a single arbitrary constant ¢;. U is continuous
at = = 0, but % has a logarithmic singularity there. Imposition of (43)
specifies ¢;.

The description of (41) as contact conditions is taken from mechanics. In
the study of wave propagation in elastic solids, the conditions correspond to
the vanishing of successive moments at the junction of two structures, and
there is a similar interpretation in our problem. Let

M, / s %ds (m=1,2,...) (45)
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for small 6 > 0. From (31) with H, = U
§ a (,0U 0 o*U
= [s{-at 5 (550) - 7 (v ) &

ou 9 ( Pu\\]° U d ( oU
sUa w05} Lo 95 5 () |
Since U, 2V and Z lzj are all finite at s = 40, the first term on the right hand

side vanlshes as 6 — 0, as does the first term in the integral. From the first
of the constraints (41) it now follows that

lim M, = 0 (46)

and similarly
%iné M, =0. (47)

It is interesting to note that these do not involve A; and A,.

We now revert to the case of a planar structure and consider the applic-
ation of the constraints (43) and (44); in particular, the specification of A,
and A,. It is natural to expect that these will depend on the geometry being
simulated, especially the nature of the contact between the two surfaces, and
will differ for the symmetric and antisymmetric components of the field. As
we shall show, however, there is no flexibility in the choice of A; and A,.

The additional constraints are (43) or U = 0 at = 0 and (44) or & = 0
at = 0. From the boundary condition (32)

(48)

and hence, for small § > 0,

oU ou U
/, (a_ ““U) dr = [ﬂa”axs}_é-

_ oU . .
Slnce Y has a logarithmic singularity at z = 0, 5 also has, implying

/ a—Ud”ccxé(ln(S—l)—»O as 6 — 0,
s Oy
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and since U is finite and continuous at z = 0,

5
/aaUd:vocé—ﬁO as § — 0.

It follows that
(49)

showing that the only allowed value of A, is zero, and (49) can be written
alternatively as

PulT L oU
[76_1:3—}_ = [8]% P (50)
The above process implies
z (QU , oU *U
/ (5; ¥ “U) e =B = o (51)

and a further integration then gives

5 (e (OU Y1/ 02U’
/_5{/ (a—y-i-aU) dm—a?ﬂ}dx_—[yw] .

-8

Since g—g is finite and continuous at ¢ = 0, the same argument as before
shows N
o*U
—| =0 52
5] (52

and thus A, is also zero.
The extension to GIBCs of still higher (even) orders is evident.
There are now four possible pairs of constraints:

(i) U=0at z =0 or (50)

and

/
(i) %L;:O at £ =0 or (52).



In each case, the solution of the boundary value problem is unique, and can
be shown to satisfy the reciprocity condition concerning the interchange of
transmitter and receiver [Senior, 1993].

To see when each combination applies, we recall that higher order GIBCs
are used to improve the simulation provided by conditions of zeroth and first
orders. In the case of the symmetric field with U = H,, a first order condition
models the magnetic current attributable to the magnetic properties of the
layer material, but a higher order condition is necessary to include the effect
of the normal (y) component of the electric polarization current. The mag-
netic current is parallel to the edge, and in the absence of the layer, would be
infinite there. Accordingly, (50) is the appropriate constraint from group (i),
and since % = 0 at 2 = 0 would imply that the field did not have the
maximum singularity allowed by the edge condition, this is not acceptable.
The required constraints are therefore (50) and (52). For the antisymmetric
field with U = H., the current is an electric one perpendicular to the edge,
i.e. J = U, and in the absence of the layer, U = 0 at ¢ = 0. Accordingly,
U =0 at z = 0 is now the appropriate constraint from group (i), and by the
same argument as before, (52) must be chosen from group (ii). The required
constraints are therefore U(0) = 0 and (52).

In the simpler example of a second order GIBC (y = 0) the constraints
reduce to

(a)

U=0atz=0
(b) .
ou

For two abutting layers without any gap or insert between them, these are
identical to the constraints employed by Senior [1992], who developed (53) by
requiring continuity of the normal component of the electric polarization cur-
rent across the junction. The condition (53) is also the same as that derived
by Rojas et al. [1991] (see also Leppington [1983]) for homogeneous layers by
matching the (exterior) field to a postulated low frequency expansion of the
field inside the material.
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Fig. 2 : Geometry for discontinuities
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