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1 Introduction

A problem of some interest is the diffraction of an electromagnetic field by
the junction of two half planes at which generalized impedance boundary
conditions (GIBCs) are imposed. The conditions simulate a thin dielectric
layer backed by a perfect electric or magnetic conductor. Their order M
is specified by the highest derivative present, and the conditions are logical
extensions of the first order ones corresponding to the standard impedance
boundary conditions. By increasing the order, it is possible to improve the
accuracy of the simulation, but when applied to a problem where there is
a discontinuity in the surface properties, GIBCs in conjunction with the
standard edge conditions are no longer sufficient [Senior, 1991] to ensure a
unique solution if M > 1. Additional constraints are necessary to produce
a well-posed problem, and these have been referred to as contact conditions
[Ljalinov, 1992] by analogy with the similar situation that occurs in mechan-
ics in wave propagation across the junction of two elastic solids. Without a
knowledge of these constraints, the expressions for the induced electric and
magnetic currents contain arbitrary constants associated with solutions of
the source-free problem.

For the two-dimensional problem of an H-polarized incident field, the
general form of a GIBC imposed at the surface y = 0 is

(2 ) =0 "

m=1



which can be written alternatively as

>

m=0

b O™
e 6ymHz =0. (2)
The parameters 4, or, equivalently, b,, are determined by the properties of
the layer and are typically obtained by expanding the interior fields in terms
of a small parameter §. When this is done, it turns out that to any given
order in § it is sufficient to confine attention to even values of M if M > 1
with, moreover, b,, = 0 for all odd m > 1. As shown in a recent report
[Senior, 1993], it is then possible to develop a uniqueness proof that specifies
the additional constraints that must be imposed at any surface discontinuity.
To illustrate the application of these constraints, we consider here the
diffraction of a plane wave by the union of two half planes having first,
second or fourth order GIBCs imposed at them.

2 First Order Conditions

Although a first order GIBC does not require an additional constraint, it is
convenient to examine this case first.
The problem considered is the plane wave

Ui(.’L', y) — e-ik(zcos¢o+ysin¢g) (3)

incident on the surface y = 0 at which the following boundary conditions are
imposed:

a .
9 ik \U = 0 >0 (5)
By Ri! = z

where a time factor e™**! has been assumed and suppressed. We seek the
resulting field U(z,y) in y > 0 and note that if U = H,, then %%J = —kYE,.
In accordance with the standard edge condition, it is necessary that the
singularity of F, at z = 0 be integrable.
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If the boundary condition (4) were to apply for all z, then

U(.’L’ y) — e—ik(zcos¢o+ysin¢o) + Fe—ik(xcos¢o—ysin¢o)
)

with .
_ _n—sm o
™ +singy
Denoting this field by the superscript ‘0’ we now write

Ulz,y) = U(,y) + U*(2,y)

and represent U*(z,y) as

0o e d
Us(x,y) — /_oo P(f) e tiyy/ k2 =¢ \/]ﬁﬁj

On the surface y = 0 the boundary conditions on U*® are

0
(——H'k'yl)Us =0 z<0
dy
a ! s —iéoz
— kY | U = Mpe™ z>0
dy
where g = k cos ¢y and
. in ¢
My = 2ik(y — ) ——
1= 2ik(n 71)71+Sm¢0

From the edge condition it is necessary that |P(£)| — 0 as [£] — oo.

When (10) is applied to (9) we obtain

. © (1] k -
7,71/;00 (;_{_W) P(f)61fzd€ =0

for z < 0. Let )
1 k - ,
(; s ﬁ) = Ki(§) K (=€)
where 1
©) = K (6.7

(12)

(13)

(14)



is the uper half plane (split) function defined by Senior [1952]. From the
expression given there or, alternatively, from Leppington [1983],

I(l(iﬁ):ﬁ{lx%ln?%ﬁjLO(g—l)} (15)
for large |€| provided 4, # oo, but if 4, = 0o
Ky(x6) = 228 (16)

On inserting (13) into (12) we have

. © P(é) 13 _
- gmene =

for z < 0, and therefore
P(¢) = Ki(¢) L(¢) (17)

where L(€) is a lower half plane function. Similarly, for z > 0
o [ P(§) € -t
z'y’/ ————— e df = Mye " 18
o KO KD ‘ 1)

where K{(¢) differs from K(¢) in having 4] in place of ;. Hence

_ Ki(=¢)
£+ &

where U(€) is an upper half plane function, and on combining (17) and (19)
we can write

P(¢) U(é) (19)

Ki(€) Kq(&o) K1(=€) K{(—6o)
£+ &o

where A(¢) is a function analytic everywhere. It is therefore at most a poly-
nomial in £, and because of (15) and the edge condition, A(¢) is simply a
constant A;. When (20) is inserted into (18), we have

P(§) =

A(§) (20)

= Ky\() e
o K{(6) €4 &

i1 A1 Ky (&) K1(=&) ¢ = Mye™o",
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and a residue evaluation now gives

=21y, Ay K1 (&) K1(—éo) e~%oT = M, e~ 0%,

But -
- , 71 81N @g
K Ki(=§&) = ————
1(é0) K1(—6o) o+ sin do
and therefore L
7 1 1
Ai=—|—-—]. 21
! T (’YI 7{) ( )
Hence
T 3 N B N
U(z,y) = ?(Z—V_i) K1(&) Ky(—&o)

./00 M eifz«}-iy\/ﬁL (22)
—oo £+ & Vi =g

and we observe that the standard edge condition has ensured a unique solu-
tion.

It is of interest to examine the behavior of U(z,0) for small |z|. From (22)

© Ki(§) K[(=€) €

U*(z,0) = Bik(m —m) o V-8 16

d¢ (23)

where

By = —— K\ () Kl(~t), (24)

™M

and the first step is to additively decompose the non-exponential portion of
the integrand into functions analytic in overlapping half planes. A simple
analysis shows

K& Ki(-§ 1 {7, Ki(§) ., K{(—ﬁ)}
VEE=8 k(i) | "E(6) T K(=¢)

and therefore

U'(e,0) = [ Tug e de+ [T (€) e ae (25)

—00



where

_ Ki(§) S Ki(=6)| L
0 = i Ve £ 9
1s analytic in the upper half plane Im. ¢ > —Im. k, and
LK) Ka(g))
1O =8 {niCh Vi) e 0

is analytic in the lower half plane Im. ¢ < —Im. &,.
The first (second) integral on the right hand side of (25) represents a
function which is zero for 2 > (<)0, and accordingly, for z > 0,

U*(2,0) = /_ Z T_(€) € dt. (28)

When the expression (27) for 7_(¢) is inserted, the contribution of the second
term can be evaluated by path closure, giving

© Ki(=¢) e

Ki(— :
U?(z,0) = —Bim de + 27riBl7{M e~ ibo7

oo Ki(=€) €+ 6 Ki(=&)
and since - Ka(—o) e o
171[{( é)e - ('Ta )a
h
we have Vo) = —in K’( _£) et &, (29)
’ M K (=8 E1 6
For large |¢|

K= ¢+& Vmle "

and hence, as = — 04 (see Appendix A)

: k
U(z,0) = =271 B/, {1 —i(y 71) Inz + O(CE)} . (30)
For 2 <0

U(,0) = [ Ti(e)e de
_ , (2 [ K()  Ki(=&)| e
- i [ %G meg) e @

6
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and though we cannot now evaluate the contribution of the second term
by path closure, when its asymptotic expansion for large |¢| is inserted, the

resulting contribution for small |€| is precisely the expansion of —U°(z,0).

Thus .
o I(l (E) ec{x

and since
BO 1 mfr o, k2 -2
K6 Tr6 | {e ton=mzghn g +OL )}
for large |¢|,
k
U(z,0) = =271 B/ 17 {1 —i(m — n)-zlnlz] + 0(23)} (33)
as x — 0—.

Comparison with (30) shows that (33) is also applicable as * — 04 and
demonstrates that U and % are continuous at z = 0. If 73 and/or 7] # oo,
U(0,0) is finite but % is infinite logarithmically, and as evident from the
boundary conditions, g—(; has a finite jump discontinuity at = 0 as long as

M #F M-

3 Second Order Conditions

These are the lowest order GIBCs for which additional constraints are ne-
cessary over and beyond the standard edge conditions to ensure a unique
solution of the boundary value problem. The boundary conditions imposed
at the surface y = 0 are

2 (0
H <é_+ik7m)b = 0 z <0 (34)
m=1
LA,
H (8_ + zk'y:n) U =0 z>0 (35)
m=1
which we write as
0 .0 9
(5?4—2+zkb1%—k bO)U =0 z<0 (36)



a_2+ikb’g—k2b’ U=0 z>0 (37)
where ; b
1="+ 72, 0 = N2
38
b =7 +72 b = M- 9

If the plane wave (3) were incident on a surface y = 0 having the boundary
condition (36) applied for all z, the total field would be as shown in (6) with

Ym — SIN ¢g
,,Hl Ym + sin ¢ (39)

Denoting this field by the superscript ‘0’, we again write
U(z,y) = U%z,y) + U°(z,y) (8)

and represent U*(z,y) as

e ot 2 g2 d
U(z,y) = /_oo P(¢) etetuViE-t \/ﬁé_{ (9)

We note the requirement that |P(§)| — 0 as || — oo from the edge condition,
and on the surface y = 0

& +zkb—0———kb Us =0 <0 (40)
ayr oy -
& + zlcb'2 — ko | US = Mye %" >0 (41)
8y Loy - e ’
where \ )
M, = k? { H —singg) + T H (), + sin qSo)} . (42)
=1 m=1

Application of (40) to (9) gives

i [V ﬁ( L)(i k ) i g
kb [ + =) (ot =) PO d{—(:;)



for £ < 0 and hence

k
PO =157

where L(€) is a lower half plane function and
. 1 1
)= K (6. 2) e (6.2, ()
N V2
Similarly, for z > 0

e JESE P e
i | Ky Ky(=0) e 4 &,

where K3 (¢) differs from K;(€) is having 4, and 74 in place of 4; and v,, and

therefore - (—e)
Kj(=¢ -
PO =\ gy VO (47)

where U(€) is an upper half plane function. The combination of (44) and
(47) gives

_ [k K Ko() Ka(&o) Ki(—€) Ki(—&)
HO‘J e k2 —¢ €16

where A(¢) is an analytic function, and since |P(£)] — 0 as [{] — oo, A(£)
is at most a first order polynomial in £. Hence

K3 (€) L(¢) (44)

dé = Mye % (46)

A(§)

k2 k2 o + le
P(¢) = . Ky (¢ K Ky (=¢) K (— 4
(€) \/k2“§2 ey (2(€) K2 (o) K3(=€) K3 (o) e (48)
for some constants ¢y and c;.
When this is substituted into (46), we obtain
kbg * K5(€) co + 1€ -
] Irl z{xd M z{oz
and a residue evaluation now gives
e = (i) tsinga)

27 kboby sin ¢g



i.e.

i b=

— o0y = — 2_ g2 49
Co éocl ﬂ'k bob6 (3 60) ( )
where bl b
2 12 109 — 0p0}
S—k{l+—b1—b’l } (50)
From (49)
co +&c v by — b {32"53 }
= — ; + Co
£+ 6o Tk boby | €+ 6o
where by
—rk 0%
Cy = Zﬂkbl — b’l C1

is an arbitrary constant, and thus

_ 1 bl - bll 1 . . ) 82 _ éé
P& = T bobl sin do /R — &2 K5(8) Ka(€o) K3(=€) K3 (—&o) { Y3 (+ ;2}
a1
For large [€], P(€) = O(€["!) if ¢, # 0 and O(€["%) if ¢z = 0, and the

expression for U*(z,y) is

b — b K K (- o K K'(—
Us(z,y) = ;?r_ 160661 m(&;?rl;zo( §o) /_oo ‘2(152):25(2 £)

2 _ ¢2 e
N

The presence of the arbitrary constant c, shows the need for an additional
constraint to ensure a unique solution, and we discuss this later.
We now consider the behavior of U(z,0) for small |2|. From (52)

IS I, ]’/ _ 2 _ ¢2
U*(a,0) = Bafbi = #) [ _ ‘2(152)—\2(2 : {86 +§:

+ c2} e“Td¢  (53)

where

B, = L L [a(b) Ks(~6o)

~ 7 boll, singg (54)
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Appearances to the contrary, B, is finite for ¢o = 0, 7. The first step is to
additively decompose the first factor in the integrand of (53), and a simple
analysis shows that

2 _ ¢2 < ¢
Kg(é) ]‘r;(_g) — 1 k 6 {bobl 1‘2( 5) b bl 1‘2(6) } )

by — b €2 —s2 | VK (=6 CKj(E)
Hence
Ko (€) Ki(—¢ 1 1 K
2(2)_‘2(2 ) T {b"bll(E g tent e
X,
- {blbgl,,gg + o+ 02] } ) (55)

and since this is true for any a; and ay, we can choose them to eliminate the
poles at £ = —s (+s) from the first (second) group of terms in (55). Then

o = l{bblxz() bb’I (s)}

VORY(s) T K (s)
= 3w
mpling a2 — a?s? = bobybLb,
and
(e 0) = B [ 50 - U0 T +eaf e (30
where
S_(6) = bob, Izzg g +ané +ag (57)
S.(6) = bl +ané o (59

Finally, on eliminating the pole at £ = —&, from the upper half plane func-
tion, we have

U'(e,0) = [ T e de+ [T T-(6) e de (59)
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where

__p | 546 [-& } 5+(—€o)]
o= Bz[f?—s"’{uso“? TG )
is analytic in the upper half plane Im. ¢ > —Im. k, and
S-(6) [ -& } 5+(—60)J
=e)= 348 {€+&+Q e (61)

is analytic in the lower half plane Im. ¢ < —Im. &,.
The first integral on the right hand side of (59) represents a function
which is zero for z > 0 and hence, for z > 0,

U*(2,0) = / YT (6) e de. (62)

The term involving Sy (—£o) can be evaluated by path closure and the residue
at £ = = gives

27TiB2 S+(—§0) e“’foz = —'UO(.’IZ,O) - QWiBg(alfo - 02),

but instead of doing this, we introduce the asymptotic expansion of 7_(¢) in
total. From (15) and (45)

Kot = {15 25w 5 o)} (63

for large |¢|, and therefore

S 1 1 R
= g {on e g (ons /) — st itin — ) 2 06

Also

32 _ {2 oo 1 2 L
T e e = 2+£(s &)+ 07 (64)
giving
T_(¢) = % {(Cz —&o)ar + g + é [(02 —&o)ag + ays® + b bobf)]
— eab /bbby - b’)?ln 2 Lo 2)}
& ,1{2(_60) _ 6_0 -2
T R e {1 ¢ Ho )}’
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and hence (see Appendix A)
U*(z,0) = 2miB, {(c2 —&)ag + az + 1z [(c2 — &)ag + a8* + b b0b6]

— k
- Cgbll bgb6(b1 - b,l)ﬂ.’f? Inz + O(.’Ez)}

2b1 sin ¢0 . 9
- (71 + sin @o)(7y2 + sin ¢o) {1 — 126 +0(2 )}

for small z. We recognise the last term as the expansion of U°(z,0) and
therefore

U(.’If, 0) = 27FéB2 {(02 — fo)a] + (0 %] + 1z [(CQ - 60)&2 + a132 + Cgbll\/ b0b6]

k.
— b1/ boby(by — bll)gi'«'z Inz + 0(5”2)} (65)

as ¢ — 0+.
Similarly, for z < 0,

Ur(e,0) = [ Tu() e (66)
and for large |¢]
1) = 2 (- Gar+art [l tas + e + o/

ko2
— cabyy/bobh(by — b)) — In %5 + 0(5-2)}

€2
_ &b bl 1{2(—‘60) { 50

Y -2
Zhdie -2 4o )},

implying
U(z,0) = 2miB, {(Cg —é)ar + ay + iz [(cz —&o)ag + ays® + coby bob{,]
k
— ¢2b11/bobly(by — b'1)2—7r:1572 In|z| + 0(12)} (67)
as £ — 0—. Comparison of (65) and (67) shows that

13



x,0) is finite and continuous at z = 0 for all (finite) c,,
0,0) =0if Cy = fo - Q’g/al,

52 has a finite jump discontinuity at 2 = 0 for all (finite) c,,

BII% = lim,_o4 31,1—% if ¢ = & — 15/ a3, and
(v) from the boundary conditions, % has a logarithmic singularity at
r=0.

The boundary conditions (36) and (37) are particular examples of the
second order GIBC

au 9*
a—y———(a—ﬂa—lj)(] (68)
discussed by Senior [1993] with
L 1+b o
a =1k b ﬁ_—kbl (z <0)
1+ o
a =1k b ﬂ__kb’l (z >0).

As shown there, the solution of the boundary value problem is unique if
Im. «, Im. >0

and, in addition to the standard edge condition,
U1t
[Uﬂ.—U} —0 (69)
dz | _
The added constraint is therefore

+
U(0,00=0 or [ﬂaU} =

Wl = 0 (70)

and which is appropriate depends on the physical problem.
If U = H, and the boundary condition specifies the electric current J
induced in the surface, then J(z) = # U(z,0), and since the electric current is

14



perpendicular to the edge, the required constraint is U(0,0) = 0, demanding
(see (ii) above)

ngfg—az/al. (71)

On the other hand, if the condition specifies the magnetic current J*, U is
not required to be zero at the edge, and the appropriate constraint is then
the second of (70), demanding (see (iv) above)

Cy = 60 - 0152/02. (72)

In both cases it can be verified that the resulting solution is in accordance
with the reciprocity condition.

4 Fourth Order Conditions

For many layered structures, fourth order GIBCs are capable of providing
a very accurate simulation of the scattring properties, and we now consider
the diffraction of the plane wave (3) by the junction of two half planes each
subject to the special form of fourth order GIBCs discussed by Senior [1993].
The boundary conditions imposed at the surface y = 0 are

ﬁ( +zk7m)U =0 z<0 (73)

m=1

f[( +Z/»’ym)U =0 x>0 (74)

m=1

with

4 bm amU

mzﬂ(ik)m g = z<0 (76)
I L

Z (Zk)ma*y—nt =0 x>0 (77)
m=0
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where

by =1, bs =0, b =mY2 + M3 + M1y + Yov3 + Y2Y4 + V374
bi = Y1773 + MY2ve + MY¥3va + Y2Y3V4s bo = MY2Y374

with analogous definitions of the ¥/ .

If the plane wave were incident on a surface having the boundary condi-
tion (73) for all z, —oo < 2 < oo, the total field would be as shown in (6)
with

’Ym - Sln ¢0
,}-Il Ym +sin g (78)

Denoting this field by the superscript ‘0’, we again write

U(z,y) = U%z,y) + U*(z,y) (8)
with
)= [ P@EVEE R )
where |P(£)| — 0 as || — o0o. The boundary conditions on U* are then
4
H( +zk7m> U = 0 z<0 (79)
m4=1
I1 ( + Z’Wm) U = Mye™™® >0 (80)
m=1
where 4
{ m = Sin go) + Frgl(’ﬂn + sin ¢0)}- (81)

1
When (79) is applied to (9), we obtain

for z < 0 and hence




where L(§) is a lower half plane function and

1 1 1 1
Kq(§) = K4 (fa ;1‘) Ky (f, %> Ky (f, %) Ky (5, g) . (84)

From the condition for z > 0

sy [© (VK=& s k i€z 10 _ —ikoz
implying B
_(_F )" K9
PO = () Sy )

where U(¢) is an upper half plane function and Kj(¢) differs from K4(¢) in
having 4;, in place of 4,,. The combination of (83) and (86) shows

K\ K¢ K!(-
P(¢) = (k2—£2) (?_*_&E £)A

where A({) is an analytic function, and the allowed behavior of P(¢) as
€] — oo limits A(£) to at most a second degree polynomial in . We can
therefore write

(6)

k2 KO\ , co + e + cré?

PO = (g ) KO Kot K- Kt
(87)
for some constants ¢y, ¢; and ¢;. When this is substituted into (85) we obtain

317
% 6) Ki(—t0)

sin3 0

© K4(€) co+ 1€ + a2
—o K4(6) €+ &

and a residue evaluation now gives

kY,

sin3 ¢0

eiﬁx dé — M4e—i£0:c,

271

Ky(éo) Ka(—&o) (Co —abo+ 6253) = M,.

But

4

1(4(60) [(4(—50) = b() Sin4 ¢0 { H (7m —|- sin ¢0)}

m=1
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and thus

_ 2 _ __L_{ : - g
co—cibo+ ey = Dmbobl 5 9o mzl(ym + sin ¢o) (7., — sin ¢o)
4
— T1 (1 = 5in o) (4 + sin o).
m=1
Moreover 5
{}=gt=t)singo(s} - 2h)(s} - =}

where

/ _b bl
sSt+sk = k2{2+%2_—72—1} (88)
1 1
! AN Y
sisy = k' {1 4 hllot bz) - Z}(b" . bz)} (89)
1— 0
so that e
: _
co = c1bp — €3 + ) _lb—Og,_l (s1 — €3)(s5 — &2).
0
Hence
co + c1€ + e i b= b (s} - &)(s3— &)

F 16 =c1+ € — &)+

which can be written as

co+ b + ef? 1 b= {(3% ~&)(s3 - &)
E4+6 TR bobp £+ 6

for some constants c3 and cq4, at present arbitrary, and the resulting expression

for P(£) is

k3 bobj E+ &

+ 3+ cq(é — fo)}

15 01— by Ky(€) Ky(&o) Ky(—€) Ki(—=&o)
= L
N

.gﬁ—ﬁW%w&+%+q@_w} (90)

£+ &

18



giving

s 0 by — b Ka(&o) Ki(—&o) [ K4(€) Kj(—¢
U (w,y) = % bob/ (:1)113¢f) )/_Oo (2‘2)_ 62)2 ) (91)
) (si—&)(s3 = &) ent ealf — itetiy\/K2—€2
{ f1 e + 3+ ca(é éo)}e d¢.

We note the similarity to (52), and the presence of two undetermined con-
stants indicates the need for two constraints.
On the surface y = 0

. (51"50)(32—53) ot ealf — eiée
(e

where ,
gt 1 Ky(bo) Ka(— 50)
= —
7 bobj, sin® ¢y
To find the behavior for small |z, the first step is to additively decompose

the first factor in the integrand of (92), and a straightforward but tedious
analysis shows

' _ 1 (k2 - 62)2 / 1(4(6) / Kt,l(_E)
KO = oy m e = {”"’°1<4<f> ~ boly K4<—s>} |

(93)

(94)
Hence
Ky Ky(=¢) 1 1 _
CErz e o o RCRURERU D)
where
P 1(3)
Sp(€) = byb) K,(£)+ﬂ1§3+ﬂ252+ﬂ3€+54 (96)
(/
S_(§) = bob;f(g ;+ﬁ1£3+ﬂ2£2+ﬂ3£ + Bs. (97)

Since (95) is valid for any 8;, 7 = 1,2,3,4, we can choose the §; to elim-
inate the poles at £ = 51,2, and —s1, —s, from the factors involving S+(&)
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and S_(£) respectively. The resulting expressions for the §; are given in Ap-
pendix B. The final step is to eliminate the pole at £ = —¢; from the upper
half plane function, and then

U'(@,0)= [~ Tt + [ T(€) e g (98)
where
~ 54(6) (S-)t-)

H@ = B [(52 —E ) { T A 5")}

o] "
T_(¢) = —By [( _)E Z ) {(S%_goj_(zg—&]) +C3+C4(§—§0)}

Se(=6o)
- m - 0451] (100)

and the term c4/3; has been subtracted to make each integral converge.
The first (second) term on the right hand side of (98) represents a function
which is zero for > (<)0 and hence, for z > 0,

U*(2,0) = / T_(€) € de. (101)
Once again, the term involving Sy (—¢;) can be evaluated by path closure in
the upper half plane, and the residue at £ = —¢; gives, in part, U°(z,0). To
isolate this contribution we write

T = T(6) + B~
where
/ _ S-(&) (st —&5)(s3 - &) ok ealf —
£O = By | e e e -0)
C
e ] (102)
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with

C= ﬂ]ﬁg - ﬁzfg + B3éo — B (103)

Then ¢

Us(z,0) = / T’ (€)% de + 27riB4b1bgﬁ-;—eig°z

oo e

and since

oy Ka(=6o) iee _ 261 Ka(bo) Ka(=&) _ 4
27”B4blbol{4(—€0) (4 = bO sin3 ¢0 =-U (.’I?, 0),

we have -

U(,0)= [ () de. (104)

We seek the behavior of T (¢) for large || and, hence the behavior of U(z, 0)
for small z > 0.
From the definition of K4(¢),

1 1 4 2
Ka(€) Ka(—€) mg( [ +k7m)
! 2 2 kb, kb,
= M{k(l+bz)*f +\/P_—_£f+k2_§z}

since b3 = 0, and therefore

k
Ka(£6) = \/bo Wib{:té {140 me)

for large |¢|, implying

Ky(£6) = /b {1 + g (1 - m> + o lng)}. (105)

Then

_ ﬂ2 ﬂ 1 / ,
S = €& {ﬂ1 + T + 5—: + & (ﬂ4+blM)

_ E’f;b;\/bobg (\/1 +b— /14 bs) +0(¢7 lné)} ,
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and since

1
(2 — $)(&2 — %) = 6_4 {1 + Z‘g’(sf+32) 24(51 +s 32+52)+0(§ )}

S _ By g
({»2_3%)(52 2) - 6{51+ é + [ﬂ3+,81( 1+ 2)]

¥ e [ +ﬂz(s1 +52)+ b/t

b g+ )+ st + st

— kbl bt <\/1 +b— /14 bg)] +0(E mg)}.

Writing
(51— &)(s2 — &) =

we have

A 1 A Azy Azl _5
n 60-i~63+64(€—§0) =¢ {04 + Z(Cs — cao) + = + 3 +0(¢” )},

and therefore

S-(¢) ( 50)(32 fo) _
R e Fortalé -6 =

cafr + ! {0351 + ca(f2 — Préo)}

;2 {c3ﬂ2 te [53 + (51 + s3) — ﬂ250] + ﬂlA}
53 {Cs [ﬂs + 51( )]
T [ﬂ‘% + Ba(s1 + 53) — Babo — Prbo(st + s3) + bll\/l:b{)] + A(B2 — 5150)}

614 {63 [ﬂ4 + Ba(s 4 s2) + ¥ \/-[,07]

+ ¢4 [53(91 +83) + Bu(s] + ssk + s5) — Babo — Babo(s? + s2)
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b {k (T 0 1) + 6]

+ABy+ Bi(sk + 1) + Bi6d — Batol} + O(€* n)

Finally, since

£+ & ¢ ¢ e

c C_Ch, cq_c8

—cfy = -+ — +0(67%),

the expansion of 17 () is

B B B
T'(¢) = -—=To— 5 I1—— {1‘2 + c4b’1\/bobg}

¢ e
B ry il [ e (T = T8

+0(£7°n¢) (106)

= c3f +ca(fa— Pibo) +C

(cs = €5)(B2 = Brko) + csPr + Babo — B (107)
c3fPy + 4 [53 + Ba(st +s3) - ﬂzﬁo] + A= Cé
(cs— &) [Bs + Buls? + 52) — Bato] + cafe + Babo + Bus?s]  (108)
s [Bs + Bils] +53)| + e [Ba+ Bols? + 52) — Babo — uto(s + 53)]
+ A(B2 — Bi&o) + C&
(cs = ) [B1+ Ba(s? + 53) — Bsto — Prbo(s? + s3]
+¢5 [Ba+ Bu(s? + 53)] + (B — Brbo)sts? (109)
cs [Bs + Bals} + 53)]
+ ¢ [ﬂs(sf +53) + Bulsi + sis3 + s3) — Babo — Babo(s? + 5%)]
+ A [Bo+ Bils] + 83) + Bi&d — Bato| - CE
(ca =€) [Balst + s1s3 + s3) + (B — Babo) (53 + 52) — Buko]
+c3 [ﬂzx + Balsi + Sg)] + [ﬂa + (s + ) — ﬂzfo] 5153 (110)
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and hence (see Appendix A)

Uz,0) = —2riB, {ro + il — %x*’ [r2 + c4b;,/bobg,] - L [r3
+ b/bob {c3 — cik (\/1 +h— 1+ bg) }]
+ O(z* lnx)} (111)

for small z > 0.
For z < 0

U'(e,0) = [ Ta(e) e (112)

and since the analysis is similar to the above, we will omit the details. It is
found that

U(.’E,O) = —27TiB4 {Fo + z:z:I‘l - %3)2 [Fg + C4b1\/b0b6] - 'é(l?3|:F3
+ i/t {eo = eak (it b - 14 ) }]
+O(x4ln|:r|)} (113)

for small z < 0. Comparison of (111) and (112) now shows:
(i) U and 52 are finite and continuous at z = 0 for all (finite) c5 and c,
(i) U(0,0) = 0 if c3 and ¢4 are such that 'y = 0,
(iii) % =0 at £ =0 if ¢3 and ¢4 are such that I'; =0,
(iv) %% and ‘%{ have finite jump discontinuities at z = 0 if ¢3 and ¢4 # 0,
(v) limg_o_ %g’% = lim,_ oy %%{ if ¢3 and ¢4 are such that [’y = 0,

. . 3 o 3 .
(vi) limg_o_ é% = limg_o4 %%Z%J if ¢3 and ¢4 are such that I's = 0,
.o ar7 o, . . .
(vii) 25 and (from the boundary conditions) %—lj have logarithmic singular-

ities at z = 0.
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The boundary conditions (73) and (74) with (75) are particular examples
of the fourth order GIBC

aUu 0* o
- fa-pLZ 44 L 114
dy (a ﬁazﬁ +73x4) v (114)
discussed by Senior [1993] with
3l +bo+ by 224 by ?
Y Sl L = — = —
a=1k b, , Ib} ik b ¥ i (z <0)
51+ bg + b3 L2+ :
_ 13 o T 0 — 2 -
a =1k b , Io} ik o ¥ i (z >0)

The additional constraints necessary for a unique solution of the boundary
value problem are

ou  9*UT ou 9*rult
s IR R

oz ' 92°
that is,
U=0 atz=0 or [ﬂ%—y%}+—0 (115)
o0 U Ut
- =0 atz=0 or [7%-2-] = 0. (116)

On inserting the expressions for # and 4 and using (88), the constraints
reduce to

FO =0 or Fg = (Sf + sg)Fl (].].7)

and
I'=0 o Ty=0. (118)

As was true for second order GIBCs, the appropriate constraints depend
on the physical problem simulated, and this is discussed by Senior [1993]. In
particular, if U = H, and the conditions specify the induced electric current,
then

F():O, F2=0 (119)



whereas for the induced magnetic current
F3 = (S% + sg)Fl, F2 =0. (120)

The corresponding values of the constants c3 and c4 are derived in Ap-
pendix C, and the resulting expressions for P(¢) are in accordance with
reciprocity.
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Appendix A: Initial Value Relations

Let
f(z) = fi(z) + fal2)
where
file) = f(z)u(z),  folz) = f(z) {1 - u(z)}

and u(z) is the unit step function. Then fi(z) = 0 for < 0 and fy(z) =0
for £ > 0. Consistent with the representation (9) we define the Fourier
transform pair as

FO=Ffa) = o [ o)
f@)=FHF@Y = [ FEed,

so that
Fi(¢) = 51; /000 fi(z) e~ e dz, Fy(¢) = 2%/000 fz(.'r)e_i'5$ de.

We seek to connect the behavior of F;(¢) as & — oo with the behavior of
fi(z) as |z] = 0, ¢ =1,2, and vice versa.
If fi(z) ~ 2> as z — 0+, integration by parts shows that
1 o

Fl(ﬁ) ~ T‘Z—;(if)““

as { — oo.

We now differentiate with respect to a. Since

d

%a! =alyP(a+1)
where (a) is the digamma function [Abramowitz and Stegun, 1964], we
have P p

a7 alnz) __ |« X

P _8a<e )—:Lln:L
and
Jd a a!

daligpm (g eVt D
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In the particular case when a is a non-negative integer n — 1, we have the
following results:

Fi(¢) as £ = o0 fi(z) asz — 0+

1 (iz)™!
§_" 27rz(n — 7).

1 (iz)"!
f—nlnzf —27m(n_1)! {lnz + O(1)}

For the function f3(z) it is convenient to write y = —x so that

BA6) = - [ hl-u) ey

:271'

Then if fo(—y) ~y* as y — 0+

a!
Fz(é) ~ ‘L

e e

and if fo(=y) ~ y*Iny,

a!

(&) ~ " or (i {In(—3¢) — ¥(a + 1)}

!

= —%(_“W{lniuoa)}.

In the particular case when a is a non-negative integer n — 1, the results are
as follows:

Fy(€) as € — o0 fa(z) as ¢ — 0—

il —2m ix)”—‘

¢n (n—1)!

1. (dz)"!

é—nhllé 27”(71_1)' {lll I$I+O(1)}
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Appendix B: The Constants ;

In (96) and (97) the functions S;(¢) and S_(£) are defined for the fourth
order conditions, and for these to be analytic in the upper and lower half
planes respectively, it is necessary to choose the constants §;, i = 1,2,3,4,
to eliminate the poles at £ = s; and s; from S;(€) and the poles at ¢ = —
and —s; from S_(§). When this is done, the equations that result are

p(s1) + b1} + Past+ Basi+ B = 0
p(s2) + 5132 + Posy + Pasa+ Py = 0 (B-1)
q(s1) = Bis} + Post — Bss1+ B = 0
q(s2) — Bisy + Bast — PBasa+ B4 = 0
where Ka(s:) Ki(s)
; 1440 8; . AT
p(si) = blbom, q(si) = boby Ka(s) (B-2)
implying
p(si) q(s:) = bobibyby
for 2 = 1,2. The solutions of (B-1) are
1
%= wmg s {ls2) - atsa)) = < otsr) — a1}
B = =) {[p(s2) + q(s2)] = [p(s1) + ¢(s1)]}
! 1 2 52 (B-3)
Bz = m{ [p(s1) — q(s1)] = —[P(Sz —Q(Sz)]}

B = g {lpls) + (o)) = silbls2) — a(s2)]}

“\°1

There is a relation connecting the 3; that turns out to be important.
From (B-1)

p(si) = —2(Bas! + B) — q(s:)

p(si) = —2si(Prsi + Ba) + q(s:)
and hence, on using (B-2)
{p(s)Y = —2Bas? + B1) p(s:) — bobi by
{p(s:)Y* = —2si(Brs? + Bs) pls:) + bobibyb..
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When p(s;) is eliminated from these we obtain
(Bas? + Ba)? — s2(B1s? + Ba)? = bobibyby,
and since this is true for 1 = 1,2,

(Basi + Ba)® — (Bas + Ba)? = s3(Bus? + Bs)? — s3(Brs2 + Ba)?

which simplifies to give

(s1 4 sis3 +53)B7 = (s} + 53)(B2 — 28:85) — (B2 — 2B284). (B-4)

Appendix C: Admissible Expressions for cs
and ¢4

The reciprocity condition concerning the interchange of the transmitter and
receiver requires that P(£) be symmetrical in € and &, i.e. unchanged under
the transformation € < &,. This restricts the admissible expressions for the
constants ¢ and ¢4 in (90).

A simple analysis shows that the most general expressions for ¢3 and ¢4
consistent with reciprocity are

c3 = a+ {20+ (st +s2)} o+

ca = b+ck+EE (C-1)

for any @, b and ¢ independent of &, and then

(s1 —&)(s3 — €2)
£+ &

1
tetalé-&) = E+_&){5333+(sf+33)§€0+5253}

+a+ b€+ &) + ctéo. (C-2)

Application of either of the constraints (115) and either of the constraints
(116) specifies c3 and ¢4 in accordance with (C-1), and the values of a, b and
c obtained are as follows:

[0=0,1'=0

BB+ PriBasisy + BiPa(s? + s3)
BiBs — B3 + BE(s} + s3)
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B By + Pisis?
B1fs — BE + Bi(s? + s3)
_ B1Bs — B2Bs
1Bs — 3 + Bi(st + s3)

I'y=0, I''=0

B3 + Bisist + PafPa(s? + s)
B1Bs — P23
_ B34 + 51ﬂ2338§ + 5154(3% + 3%)
B1Bs — BapBs
B2 + Bistss + P1Ba(s} + s3)
ﬂlﬂ4 - ﬂ2ﬂ3

F3 = (S% + S%)Fl, F] =0

{83 + Bisiss + BiBa(st + 53)} sis)
BB + P1B2siss + B1Ba(s? + sd)
(/3253 - ﬂlﬂzt)SfS%
Bafs + PiP2siss + B1Ba(st + s3)
B4 B 4 sl 4 )
B3y + BiPasish + Bifa(s? + s3)

F3 = (S%-{-S%)Fl, Fz =0

_ {B3Ba+ BiPasis] + Bafia(si + s3)} sis)
B + B1Bssisy + {Bafa + Bisiss} (s + s3)
{82 — B2B4 + P1fa(s3 + s3)} sis)
B+ P1Bastsy + {B2fa + Bisisi} (st + s3)
3 P1Ba(s] + s1s3 + 53) + Bafasis] + (Bsfa + P1Bastsd) (st + 53)
B2+ B1Bastst + {Bafs + Bists3) (st 4 s3)

In some of these cases, the verification that the expressions for ¢; and ¢4 do
have the form (C-1) requires the use of (B-4).
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