RL-897

Manual of the FEM-ATS code used for computing
three-dimensional scattering (preliminary)

A. Chatterjee, J. L. Volakis and M. Nurnberger

August 1993

RL-897 = RL-897

PRELIMINARY

August 19, 1993

MANUAL OF THE FEM-ATS CODE USED FOR
COMPUTING THREE-DIMENSIONAL SCATTERING

Arindam Chatterjee, John L. Volakis
and Mike Nurnberger
Radiation Laboratory

Department of Electrical Engineering
and Computer Science
University of Michigan

Ann Arbor MI 48109-2122

For FEMATS-related questions and bug reports, please call either Arindam
Chatterjee at (313) 936-0183 or Mike Nurnberger at (313) 764-0502.

1 Introduction

The FEM-ATS program incorporates first order edge-based finite elements
and vector absorbing boundary conditions into the scattered field formulation
for computation of the scattering from three-dimensional geometries. The
code has been validated extensively for a large class of geometries containing
inhomogeneities and satisfying transition conditions (see [1] for formulation).
The FEMATS code has been optimized to run on the Cray Y-MP and par-
allelized to run on the Kendall Square Research (KSR) architecture and the
Intel iPSC/860.

2 Installation

FEMATS is designed to run on multiple computing platforms to best utilize
various machine capabilities. Because of the large amount of time required
to run FEMATS, it has been written to run on a supercomputer, while
[-DEAS and most of the preprocessing programs only need to be run on
a UNIX workstation. Hence there are two sets of source code included on
the tape, along with two installation procedures. Also included is a small
sample session, starting with the -DEAS universal file, and ending with the
FEMATS output files.

Note: While FEMATS was designed to run on a supercomputer, it may
also run on the same workstation that performs the preprocessing, or any
other machine (likewise for the preprocessors). Please see Section 4 for more
details.

Installation Instructions

1. Place the distribution tape in the tape drive. If the drive is not the
default system drive, you will need to find out what device it is.

[§

. Retrieve the files from the tape to the appropriate directory. If, for
example, you wanted to install FEMATS in your home directory, you
would say (assuming the tape drive being used is the system default
tape drive):

cd
tar xv * .

This will place two files in your home directory:

femats.reg.tar.Z
femats.ksr.tar.Z

femats.reg.tar.Zis a compressed tar file containing source code and
test files for the workstation-based portion of FEMATS.

2

3

(&2

10.

femats.ksr.tar.Zis a compressed tar file containing source code and

test files for the KSR-based portion of FEMATS.

. ftp the supercomputer portion of FEMATS to the supercomputer,

putting it in the appropriate directory. (If you are going to run both
sections of code on the same machine, don’t do this...)

If femats.reg.tar.Zis not in the directory where you want to install
FEMATS, then put it there. Note: When the files are ‘untar’d, a di-
rectory named femats will be created, and the appropriate files placed
in it.

. Uncompress femats.reg.tar.Z: type

uncompress femats.reg.tar.Z
Untar femats.reg.tar: type
tar xvf femats.reg.tar

Change directories to femats, and type install.reg. This will com-
pile the preprocessors, and place them in the femats directory.

Follow the same steps for the supercomputer, starting with step 4, and
changing femats.reg to femats.ksr in all cases.

. If FEMATS will be run in some other directory than that in which it

has been installed, the installation directory must be included in the
search path. To do this, insert the following line after the path is set
in your .cshre or .profile startup file (csh or sh):

set path=($path femats_ dir)
where femats_dir is the full path of the femats directory. For example,

set path=($path /1/usr/femats) .

Then type rehash to ensure the new path takes effect. If any difficulties
are encountered, ask your system/site administrator.

If any problems occur, don’t hesitate to look in the scripts—they are
quite simple, and there may be some machine or OS version dependen-
cies that were missed. ..

Data Generation

The computation of scattering from a specific geometry with FEMATS is a
multi-stage process, as is shown in Figure 1. Once the geometric parameters
of the target are known, a solid model is constructed in the Solid Modeling
family of SDRC I-DEAS, a commercial CAD/CAE/CAM software package.

3

DEAS | 5| 1DEAS
Geometry | ———>1 g4id Modeling Mesh generation

Universal
file

m FEMATS [«— Preprocessor [e——

Figure 1: Stages involved in scattering computation from arbitrary 3D ge-
ometries

The solid model is then exported to the Finite Element Modeling and Analy-
sis family of I-DEAS, and the nodes and elements necessary for the scattering
analysis are generated. This data is written to a output file, called a Univer-
sal file, and operated on by several preprocessors, generating the necessary
input files for FEMATS.

The process of object modeling and mesh generation is an art, not a
science. Hence, it cannot be taught, or demonstrated—it must be learned
through experience. Hence, this manual is not by any means an [-DEAS
FE mesh generation manual. In fact, it assumes (and requires) a working
knowledge of, and familiarity with, the -DEAS Solid Modeling and Finite
Element Analysis families of tasks.

3.1 Solid Modeling

Once the geometry of the target is specified, it is constructed using the
[-DEAS Solid Modeling Family of tasks. There is a tendency to downplay
the importance of the solid model, and treat it only as a stepping stone
towards a final product. However, the solid model is the framework for the
finite element mesh, and as such, has a direct bearing on the quality of the
mesh. Because of this, it is wise to keep the mesh generation problem as
simple as possible. This helps to ensure a better mesh, and a more accurate
answer.

In general, the object or body being meshed will contain various planes
of symmetry. It is nearly always advisable to take advantage of whatever
symmetry is available, as doing so will greatly reduce the amount of time
necessary to generate the mesh. In fact, the geometry may require such
subdivision to make meshing possible. For more details about the creation
of the solid model for FEMATS, please see the [-lDEAS Solid Modeling User’s
Guide.

Note: When creating the Solid Model, FEMATS requires the dimensions
to be in wavelengths.

3.2 Mesh Generation

[-DEAS generates the finite element mesh by creating mesh areas on surfaces,
and then combining these mesh areas into mesh volumes (21-D mesh gener-
ation). Each mesh volume is then filled with the chosen element type. When
the solid model is imported into the Finite Element Modeling and Analysis
Family of I-DEAS, these mesh areas and mesh volumes are automatically
created. Generally, however, -DEAS does not choose the correct element or-
der (linear vs. parabolic), and the mesh volumes must be modified to reflect
the correct element order. Even if the guidelines mentioned in Section 3.1
are followed, the mesh areas that are auto-created by I-DEAS can become
quite complex. It is then prudent to break the mesh volume into smaller,
more manageable mesh volumes. For more details on mesh creation, please

see the [-DEAS Finite Element Modeling User’s Guide.

3.3 Modifying material property labels

After all the mesh volumes have been created , the material property labels of
each need to be modified according to the type of material each mesh volume
contains. The elements in the volume between the target and the outer
boundary usually have a material property label of 1. If the target contains
a dielectric-filled volume, the material property labels of the elements in that
volume should be 2—actually any integer greater than 1. In this way, the
code can accommodate up to 9 different material fillings. If the geometry
requires more than 9 different materials, the dimensions of the vectors ¢ and
pt should be modified (wherever they appear) to reflect the necessary number
of materials.
Please see Section 6.1 for more details.

3.4 Type of meshing

The global element length also needs to be specified (usually .075-.085 units);
finer meshing can be done in regions with rapidly changing fields or large cur-
vatures by specifying the local element length or curvature-based size param-
eters. The geometry is then free-meshed using the I-DEAS Mesh Creation
Task. It is essential to use free meshing and not mapped meshing, since the
latter maps the mesh volume into a rectangular box and back, thus distorting
the elements. No such distortion occurs in space when an electromagnetic
wave travels through it; a mapped mesh, therefore, alters the physics of the
problem and leads to inaccuracies in the final result.
Please see Section 6.1 for more details.

3.5 Grouping nodes

The finite element method essentially solves a boundary value problem; thus,
it is crucial to identify surfaces or surface edges on which the boundary

5

conditions are imposed. In the current version of FEMATS, this is carried
out by grouping the nodes which lie on the surfaces where the boundary
conditions are imposed. If the surface nodes coincide with a perfect electric
conductor, the group is labeled C, if the nodes lie on a resistive sheet, the
group is labeled R, and so on. Detailed information about node grouping is
given in the Appendix.

Care must be taken when grouping surfaces that intersect, since edges
connecting two such nodes may not lie on the surface at all. For example,
suppose three surfaces intersect at the corner of a cube. If the nodes on each
of these surfaces are not grouped separately, the processing program will
generate ‘surface’ edges which actually do not lie on the surface. Another
anomaly may arise when the surfaces are separated by a single element. This
is due to the fact that the processing program considers an edge to lie on
the surface if two nodes in the group connect to form an edge. As a rule
of thumb, it is best to group each surface separately. They may be grouped
together only when the user is certain that spurious surface edges will not
be created by the processing program.

Please see Section 6.1 for more details.

3.6 Universal file

The mesh information obtained from I-DEAS is then written to an ASCII
file called the Universal file. The Universal file has a specific format for
identifying the nodes, elements and groups which can be obtained from the
[-DEAS User’s guide.

It should be noted that only the FE entities and Groups need to be
included into the Universal file. Also, while this discussion has dealt primarily
with I-DEAS, any mesh generator that writes a Universal file will work just
fine. ..

4 Preprocessing

The necessary preprocessing is performed by a number of smaller programs
that operate on the Universal file generated by I-DEAS. Because FEMATS
is designed to be run on a supercomputer, and I-DEAS and the preprocessors
are generally run on a workstation of some sort, some of the preprocessing
is performed on the workstation, and some of it on the supercomputer. In
both cases, a script runs the necessary preprocessors, and presents the user
with the necessary FEMATS input data files. (Note that while FEMATS
has been designed to run on a supercomputer, it can peacefully co-exist with
the preprocessors, etc. on the workstation. However, if FEMATS is to be
run on the workstation, certain variable types must be changed to reflect the
decreased precision inherent to most workstations.) To run the script that
runs the preprocessors, type

femats.reg file.unv

where file.unv is the name of the universal file containing the mesh infor-
mation. The femats.regscript extracts the necessary information from each
preprocessor, and terminates with instructions informing the user of which
files need to be transferred to the supercomputer for further preprocessing.
After the appropriate files have been transferred to the supercomputer, a
script is also run there to finish the preprocessing. To run this script, type

femats.ksr file

where file is the name of the original universal file, without the ending
(.unv). This script will present the user with the necessary input files for
FEMATS, along with a list of numbers required for input by FEMATS.

Note: For efficiency, the dimensioning of the arrays in the preprocessors
may be changed to reflect the size of the problem. On the UNIX workstation,
the relevant dimension statements are contained in the file

(path)/femats/src/reg/parmvl

For the re-dimensioning to take effect, re-run the install.reg script file.
Similarly, on the supercomputer, the relevant dimension statements are in

the file
(path)/femats/src/ksr/femdata.h

For these changes to take effect, the install.ksr script must be re-run.

5 Running FEMATS

5.1 KSR-specific runtime information

Before executing FEMATS, the user must inform the operating system of
the required number of processors. To do this, type

allocate cells -A ##

where ## is the requested number of cells. This command starts a new shell,
and gives that shell control of ## cells. Because of this, it is important to
exit the shell when FEMATS finishes, so that others may use the processor
cells.

After the new shell is running, the user must let the operating system
know how many total threads it may run on the allocated cells by typing

setenv PL_NUM_THREADS ##

where ## is the same as in the previous command. FEMATS may now be
run safely.

To execute FEMATS, type

femats

at the shell prompt. FEMATS will then prompt the user for the necessary
input (see following documentation).

FEMATS will also accept commands from standard input. This is nec-
essary for use in batch mode. The commands from above are inserted into a
shell script, along with the following statement:

femats < input.dat

where input.dat is a text file containing the input, just as it would be
entered at the keyboard when running FEMATS interactively. The example
in Section 6.3 shows this format.

If any problems arise, consult the KSR manuals, and the system adminis-
trator. The above steps assume that everything works the way it is supposed
to.

5.2 FEMATS input documentation

It is faster to read the input data from a file; however, for the first-time user,
interactive input provides more insight (see Section 5.1).

Number of edges
Input the no. of edges obtained from proc.

No. of elements with surface edges on 1) pec 2) r-card 3) ibc
4) dielectric 5) outer boundary 6) outer surface of scatterer

Enter the no. of elements with surface edges on the various materials as
obtained from proc.f.

If inhomogeneous, enter 0

Enter 0 as long as there are two or more material property labels (see Ap-
pendix) present in the geometry. This holds for r-cards as well, since the top
and bottom elements on a r-card have different material property labels.

Number of distinct dielectric materials

Enter the no. of distinct material property labels. Note that material prop-
erty label 1 is free-space by default. If the mesh designates material property
label 1 to anything other than free-space, the program won’t run.

constitutive relative parameters for region ,i

Input the epsilon and mu of the dielectric in that order. For a r-card whose
top and bottom surface is free-space, enter ¢, and y, of free space, i.e., unity.

If resistive card inside geometry enter 1

Number of different r-cards
Input the no.of r-cards having different resistivity values for the geometry.

Input: a) Material property label on top surface of card
b) Material property label on bottom surface of card
c) Normalized resistivity

The mesh must be constructed in such a way that the material property
labels on the top and bottom surfaces of the R-card are different.

If impedance sheet inside geometry enter 1

Input: a) Material property label on top surface of impedance sheet
b) Normalized impedance

Most of the data entered until now has been related to the geometry. The
data entered from this point will be related to the iteration count, number
of look angles, etc.

Tolerance, maximum iterations

The tolerance of the residual is usually kept between 0.001 and 0.0005. This
is 0.1%-0.05% of the solution norm. Max. no. of iterations is determined by
trial and error. A typical value for PEC targets is N/100 for N > 25000
and N/120 for N > 75000. The largest problem run to date contained 93000
unknowns and converged, on the average, in 800 iterations. The code uses a
diagonally preconditioned biconjugate gradient method to solve the system,
so the residual error will jump to abnormal values quite frequently.

1) Bistatic 2) Backscatter
Enter 1 for bistatic pattern, 2 for backscatter
All angle values should be integers

Bistatic

Angle of incidence: theta,phi

Fix 1) phi 2) theta to specified angle

Angle of observation: start,end,increment
Polarisation angle: alpha=0(H_z=0); alpha=90(E_z=0)

In order to fix ¢ to 90° (say), the input should look like
190

To fix 0 to 90° (say), the input should be

290

Backscatter

Fix 1)phi 2)theta to specified angle
Angle of incidence: start,end,increment
Polarisation angle: alpha=0(H_z=0); alpha=90(E_z=0)

Enter 1 for spherical outer boundary; 2 otherwise

The code works for a spherical termination or terminations having flat outer
faces. The sphere should be centered at the origin.

6

6.1

Appendix

Stipulations for mesh generation

the region surrounding the scatterer should have a material property
number label of 1, i.e., the least possible value.

for a surface draped by a resistive card, it is essential to differentiate the
top surface from the bottom surface. The only way the program can
discern this from the available data is by checking the material property
number labels of the elements on the top and bottom surfaces. The
material property number label of the top surface must be different
from that of the bottom surface.

when meshing a mesh-volume filled with a dielectric having a cer-
tain permeability and permittivity, the material property label number
should be different from that of surrounding space.

when grouping surface nodes, the group labels should start with a

— C if the nodes lie on a perfect electrical conductor
— R if the nodes lie on a resistive card
— D if the nodes lie on a dielectric

— A if the nodes lie in free space (i.e. on the mesh termination
boundary)

— O if the nodes lie on the outer surface of the scatterer

The above order (C, R, D, A, O) must be maintained when grouping
nodes.

Nodes on the interfaces of materials having different constitutive pa-
rameters must be grouped.

10

6.2 Code Theory of Operation
6.2.1 proc.f

proc.f converts the mesh information stored in the Universal file into a more
usable form for analysis by FEMATS. It first reads in the nodal co-ordinates,
nodal connectivity and the grouped nodes from the Universal file. Since FE-
MATS uses edge-based shape functions, the edges and the nodes connecting
them need to be identified. Because each edge is shared by more than one
element, care must be taken so that the same edge is not counted more than
once. A comparison of the connecting nodes must therefore be made to iden-
tify the old edges, and create the new ones. This can be a computationally
intensive task if a brute force approach is taken, especially if the problem size
is very large. It is necessary to use an algorithm that would scale at most
linearly with the number of nodes or edges, i.e. the number of comparisons
required for identifying old or new edges should be an O(N) process.

In order to realize this requirement, the ITPACK scheme [2] is utilized to
store the node connectivity information. The ITPACK scheme is attractive
because the number of comparisons required while augmenting the connec-
tivity matrix depends only on the locality of the corresponding node and not
on the total number of nodes or edges. In the ITPACK storage scheme, the
number of rows of the connectivity matrix is equal to the number of nodes
and the number of columns equals the maximum number of nodes connected
to a particular node. However, this approach wastes space when the number
of connecting nodes varies widely, so a modified ITPACK format is used—
the number of columns in the connectivity matrix now equals the average
number of nodes connected to a particular node, and the number of rows is
slightly more than the total number of nodes. The storage requirement for
such a matrix is usually 1.1NV,, x 16 integers, where N, equals the number of
nodes.

After generating the edges, FEMATS uses the same storage scheme for
finding the surface edges and elements from the grouped nodes. These surface
edges are then sorted in ascending order by element number for the various
materials and boundaries on which they lie. All components of the code are
extremely fast, with the slowest being the sorting routine.

The output files from proc.f are

e enode

contains co-ordinates of all the nodes in the geometry.

o eglob
contains the edges making up each element.

o edge
contains the nodes making up each edge.

¢ esurfed
contains the element number, node numbers nad corresponding edge
numbers of the on-surface edges.

11

e otpt
contains the number of edges in the geometry and the number of ele-
ments with surface edges on the PEC, R-card, dielectric, outer bound-
ary and outer surface of scatterer.

Required storage is about 18N real Words, where N is the number of un-
knowns and is equal to the number of edges making up the mesh.

6.2.2 count.f

count.f asks for the number of edges in the geometry and generates cntr
as the output. cntr contains the number of non-zero entries per row for the
finite element system. The number usually varies from 9 to 31 for a typical
system. Required storage is about 13N real Words, where N again denotes
the number of unknowns.

6.2.3 fem.f

This is the main program (FEMATS) which computes backscatter or bistatic
patterns after reading in the mesh files created by proc.f and count.f. Pa-
rameters like the number of edges, number of surface elements, type of pat-
tern, etc. can be read in interactively or from a file. The backscatter or
bistatic pattern is returned in a separate file. If the code fails to run for
some reason, a list of errors is returned in the error file. The flow of control
of FEMATS is given in Figure 2. The formulation for the methodology is
given in [2].

Input files: The input files containing the mesh information and parame-
ters for running the probelm are read in, usually in binary format. The ASCII
format is quite slow for most machines and prohibitively slow on the KSR1.
A small program usually converts the mesh files from ASCII to binary.

Processing data: Some preliminary processing is done to find the radius
of the outer boundary if a spherical mesh termination scheme is used.

FE matriz generation/assembly: The finite element matrix generation is
done on an element-by-element basis. The elemental matrix is first computed,
and then assembled into the global sparse matrix. The assembly is simplified
since the number of non-zero entries per row of the matrix is known aprior:
and the order of the entries is not important. The non-zero entries of the
final sparse matrix are stored in a long complex vector, the corresponding
column numbers are stored in an integer vector, and the location of the first
non-zero entry for each row is stored in another integer vector. This is the
well-known Compressed Sparse Row (CSR) format used in public domain
software packages like SLAP and SPARSPAK. The coefficient matrix is not
a function of the angle of incidence.

The code also uses a simple diagonal preconditioner for speeding up the
iterative process. Other complicated preconditioning strategies are also avail-
able. However, except for the block ILU preconditioner, none of them com-

12

C Input files)

(Processing data)

Finite element

matrix
generation/assembly

othe

No

angle?

€S

Excitation vector
generation

*gterzO

BCG iteration

iter=iter +1

Compute far-field

Figure 2: Flowchart for FEMATS

Stop

pare favourably with the point diagonal preconditioner in terms of solution
time.

FExcitation vector generation: The excitation vector generation is not very
cpu-intensive, since the vectors are always quite sparse. It is a function of
the angle of incidence.

BCG iteration: The biconjugate gradient (BCG) algorithm is used with
preconditioning to solve the sparse, symmetric system of linear equations.
Each iteration of the algorithm involves 1 sparse-matrix vector product, 3
vector updates and 3 inner products. The norm of the residual vector is
computed after every iteration to check for convergence. Reliable results
have been obtained by setting the convergence criterion to be

I7¥]| < 0.001 = ||b||

where ¥ is the residual vector after the kth iteration and b is the excitation
vector.

Far-field evaluation: The far-field is evaluated by integrating the near-
zone fields over a closed surface using the Stratton-Chu integral equation.
The surface is usually taken to be very close to or on the body itself to
achieve maximum accuracy.

Storage required for the code is at present 36N complex Words, where
N is the number of unknowns. The storage can be cut by 40% if only the
symmetric upper triangular part of the object matrix is stored; the code,
however, slows down significantly.

6.2.4 Subroutine functions in fem.f

basis.f
Calculates the two constant vectors of the bases for the finite element
discretization as well as the element volume.

calc.f
Computes the volume integral for the finite element discretization
analytically.

ccross.f
Takes the cross product of two complex vectors.

cdot.f

Takes the inner product of two vectors.

comput.f
Calculates the basis functions at the mid-point of each edge.

cross.f
Takes the cross product of two real vectors.

13

crux.f
Computes the element matrix from the volume integral.

cruxd.f
Imposes the boundary condition for dielectric volumes and generates the
corresponding excitation vector.

dist.f

Calculates the distance between two points in space.

dot.f

Computes the dot product of two real vectors.

exchg.f

Exchanges one variable with another.

f1.f

Carries out the volume integration of W; - W; analytically.

finc.f

Computes the volume integral for a dielectric volume to be used in the
excitation vector.

fu.f

Carries out the surface integration for the absorbing boundary condition
employed on the mesh termination boundary.

incc.f

Imposes the boundary condition for a perfect electric conductor. If iter is 0,
the excitation vector is computed, otherwise changes are made to the
element matrix.

incd.f

Imposes the boundary condition for a dielectric surface.

incr.f
Imposes the boundary condition for a resistive card.

mult.f

Carries out the sparse matrix-vector multiplication.

norm2d.f
Computes the element normal for a 2D geometry.

norma.f
Computes the element normal for a surface element.

ord.f

Identifies the global nodes and edges in the local context.

14

sort.f
Sorts the edges in a element according to a specific numbering scheme.

surfint.f
Imposes the absorbing boundary condition on the mesh termination
boundary.

value.f
Computes the far-field using the Stratton-Chu integral equation.

volume.f
Calculates the element volume.

6.2.5 References

1. A. Chatterjee, J.M. Jin and J.L. Volakis, “Application of edge-based
finite elements and ABCs to 3-D scattering,” IFEE Trans. Antennas
Propagat., vol. 41, pp. 221-26, February 1993.

2. D.R. Kincaid and T.C. Oppe, “I'TPACK on supercomputers,”
Numerical Methods, Lecture Notes in Mathematics, vol. 1005, pp.
151-61, Springer, Berlin, 1982.

6.3 Example FEMATS Run

A perfectly conducting cylindrical inlet was run on the KSRI machine. The
geometry was enclosed by a rectangular outer boundary and the backscatter
pattern was sought for = 0°-90° aaand a = 90°. The problem had
213,832 unknowns and a diagonally preconditioned BCG solver was used.

Input file:

213832
13656 0 0 10704 7704
0

2

(1.,0.) (1.,0.)

0

eg

.001 10000

2

1 90

0 90 5

90

2

Output file:

Number of threads = 56

Backscatter pattern will be computed

Polarisation angle= 90

Incident angle from 0 to 90

in steps of 5

Sweep through theta ; phi= 90

ok Kok ook ook ok ok K ok kK sk ok ok ok ok ok ok ok K Kok ok ok K
Problem size

Number of nodes = 32453

Number of elements = 176048

Number of edges/unknowns = 213832

sk ko ok kKo sk ko koK sk KK sk koK sk koK sk ok ook Kok Kook ok ok ok kK kK

Finished reading in data

Outer boundary shape is

Rectangular
Time spent for unformatted I/0 = 1.0519631999999999 secs
Time spent for I/0 = 1.0754451999999999 seconds

10000

Generating finite element matrix

Generated finite element matrix

No.\ of non-zeros = 3414496

Average no.\ of non-zeros = 15

Total time spent= 25.834841199999996 secs

Time spent in loop= 24.807681599999999 secs

Generated diagonal preconditioner

Time for preconditioner = 1.1077387999999999 secs

stk sk sk sk sk sk sk sk K sk kKR sk ks ksl Rk sk skt sk ok sk ko ko sk o ok

90.000000000000000 O. 90.000000000000000

(23874.682292021858, 0.)

Time spent in gen. soln. vector = 19.514778000000000 secs
Convergence achieved in 4397 iterations

Time spent in 4397 1iterations = 584.26175160000003 secs
Backscatter = 13.132205300654515

90.000000000000000 5.0000000000000009 90.000000000000000
(23874.649727818964, 0.)

Time spent in gen. soln. vector = 20.677881599999978 secs
Convergence achieved in 1878 1iterations

Time spent in 1878 iterations = 248.19567480000001 secs
Backscatter = 12.346785646714235

90.000000000000000 10.000000000000002 90.000000000000000
(23874.552995090075, 0.)

Time spent in gen. soln. vector = 20.646470399999998 secs
Convergence achieved in 6561 iterations
Time spent in 6561 iteratiomns = 866.82569879999994 secs

16

Backscatter = 10.984172458513957

90.000000000000000 15.000000000000002 90.000000000000000
(23874.394947730074, 0.)

Time spent in gen. soln. vector = 20.678055200000017 secs
Convergence achieved in 6112 iterations

Time spent in 6112 iterations = 807.46988880000004 secs
Backscatter = 8.0404387189358921

90.000000000000000 20.000000000000004 90.000000000000000
(23874.180257205706, O0.)

Time spent in gen. soln. vector = 20.636231199999656 secs
Convergence achieved in 6430 iterations

Time spent in 6430 iteratiomns = 849.45422520000011 secs
Backscatter = 4.5520666697643231

90.000000000000000 25.000000000000000 90.000000000000000
(23873.915286302414, 0.)

Time spent in gen. soln. vector = 20.640396400000100 secs
Convergence achieved in 6303 1iterations

Time spent in 6303 iterations = 832.76715800000011 secs
Backscatter = 1.8286943794696267

90.000000000000000 30.000000000000004 90.000000000000000
(23873.607915069253, 0.)

Time spent in gen. soln. vector = 20.624299199999768 secs
Convergence achieved in 4543 iterations

Time spent in 4543 iterations = 600.40641159999996 secs
Backscatter = 2.1870075445461543

90.000000000000000 35.000000000000007 90.000000000000000
(23873.267321948337, 0.)

Time spent in gen. soln. vector = 20.654717999999775 secs
Convergence achieved in 6015 1iterations

Time spent in 6015 iterations = 794.75217840000005 secs
Backscatter = 2.9538913638132449

90.000000000000000 40.000000000000007 90.000000000000000
(23872.903724276915, O0.)

Time spent in gen. soln. vector = 20.636641200000668 secs
Convergence achieved in 6215 iterations

Time spent in 6215 1iterations = 821.00750359999984 secs
Backscatter = 4.3094572190189613

90.000000000000000 45.000000000000000 90.000000000000000
(23872.528083709803, O0.)

17

Time spent in gen. soln. vector = 20.691929999999957 secs
Convergence achieved in 3213 iterations

Time spent in 3213 iterations = 424.64956839999923 secs
Backscatter = 4.0201582083152863

90.000000000000000 50.000000000000000 90.000000000000000
(23872.151783594894, 0.)

Time spent in gen. soln. vector = 20.679000399999495 secs
Convergence achieved in 3196 iterations

Time spent in 3196 iterations = 422.23548159999973 secs
Backscatter = 6.0710219487833603

90.000000000000000 §5.000000000000000 90.000000000000000
(23871.786286832561, 0.)

Time spent in gen. soln. vector = 20.649760399999650 secs
Convergence achieved in 5037 iterations

Time spent in 5037 iterations = 665.48518600000079 secs
Backscatter = 6.0386806852857617

90.000000000000000 60.000000000000007 90.000000000000000
(23871.442784137245, 0.)

Time spent in gen. soln. vector = 20.630159599999388 secs
Convergence achieved in 5096 1iterations

Time spent in 5096 iterations = 673.35249359999943 secs
Backscatter = 2.9883959797387871

90.000000000000000 65.000000000000000 90.000000000000000
(23871.131843785708, 0.)

Time spent in gen. soln. vector = 20.649902799999836 secs
Convergence achieved in 5096 1iterations

Time spent in 5096 1iterations = 673.46241600000030 secs
Backscatter = 4.1405354898674034

90.000000000000000 70.000000000000014 90.000000000000000
(23870.863074712492, 0.)

Time spent in gen. soln. vector = 20.627787199999148 secs
Convergence achieved in 4893 iterations

Time spent in 4893 iterations = 646.38884879999932 secs
Backscatter = 3.4527505854226375

90.000000000000000 75.000000000000014 90.000000000000000
(23870.644815085496, 0.)

Time spent in gen. soln. vector = 20.643494799998734 secs
Convergence achieved in 3459 iterations
Time spent in 3459 1iteratiomns = 457.10817280000083 secs

Backscatter = -0.42219432577245863

18

90.000000000000000 80.000000000000014 90.000000000000000
(23870.483858181193, 0.)

Time spent in gen. soln. vector = 20.630811200000608 secs
Convergence achieved in 4885 iterations

Time spent in 4885 iterations = 645.37610479999967 secs
Backscatter = 4.9808095185448629

90.000000000000000 85.000000000000000 90.000000000000000
(23870.385226404902, 0.)

Time spent in gen. soln. vector = 20.668981599999825 secs
Convergence achieved in 1924 iterations

Time spent in 1924 iterations = 254.26892960000077 secs
Backscatter = 8.0244739010739181

90.000000000000000 90.000000000000000 90.000000000000000
(23870.352002710646, 0.)

Time spent in gen. soln. vector = 20.646247599999697 secs
Convergence achieved in 1747 iterations

Time spent in 1747 iterations = 231.11860320000051 secs
Backscatter = 8.7459369327904284

Total time = 11978.956639599999 seconds

19

