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Dyadic Green functions, denoted by G, are introduced to integrate the vector wave equa-
tions for E and H to provide an integration solution of these differential equations [1]. A
dyadic Green function is made of three vector Green functions, denoted by G w with
i = 1, 2,3 such that

G = 25 “ %; (1

i

where %; with i = 1,2, 3 correspond to %, 9, 2,_the unit vectors in cartesian coordinates.
In [1], the eigenfunction expansion of various G’s are found by dealing directly with the
differential equation of G. In this note we are going to find the expansions for the vector
Green function by means of (1). We consider the eigenfunction expansion for the vector

Green function in a rectangular waveguide as an example.

Maxwell equations for the field quantities E and H in a region assumed to be occupied by

air (vacuum) are:
VE = iop,H @)
VH = J-iwg,E 3)

In this note we are using the new notations [1] for the divergence and the curl in writing
the equations. The dot and the cross signs are used exclusively for the scalar and the vector
products. For an infinitesimal current source with current moment c;%; located at R’ we

write
J= ¢;i8(R-R) (4)
We introduce the vector Green functions Eii) and —(—},5:) such that
E = G, )
iop,H = G, (6)

iop,J = iop,ci8 (R-R') (7



and let the current moment be so normalized that i c; = 1, then the equations for G; )
and G,,,

VG =G, (8)

VG, =18(R-R) +kG ©)
where k% = (ozuoeo. The functions _Ge(l) and G,El[) with i = 1, 2, 3 are called, respec-

tively, the electric and magnetic vector Green functions.

There are three functions for each set corresponding to three different orientations of the
. o =) =) s
infinitesimal current source. By eliminating G, ~ or G,,” between (8) and (9) we obtain

the equations for Ge( Y and _G,ill) . They are

V‘VG(’) —k2 = %8(R-R) (10)

VG, - k%G, V[iiS(R—R’)] (11)

To find G 1t 1S more convenient to find G ﬁrst because G ’s are solenoidal while
G :l) s are not. The elgenfunctlon expansion of G requlres only the solenoidal vector
wave functions. Once G W, ’s have been found we can use (9) to find G ’s. The vector

wave functions appropriate for the rectangular waveguide are

\v} C Cy ihz
(h) = VX [ e 2}
S S (12)

and

(b = —VxM (b (13)

where



mm mm

C, = cosTx S, = sin—a—x
nn . nm
C.‘, = €S-y S), = sin—-y
k= (iP+k)' "’
2 mT 2 nt 2
k.= (7) + (7)

a, b = width and height of guide

To solve (11) by the Ohm-Rayleigh method we let

oo

V(53 (R-R)] = [dnY [N (A" (h) +M, (1) B (h)] (14)

m,n

—o00

where N, (h) and IT/IO (h) represent, respectively, Nem,, (h) and Momn (h),and A and
B are two scalar coefficients to be determined. The reason that we place these coeffi-
cients after the two vector functions will become clear later. The orthogonal properties of
the vector wave functions are discussed in detail in [1, pp. 102-103]. By taking the scalar
products between (14) and N, (~h') and M,,,,» (—h') , respectively, and integrating

throughout the entire volume of the waveguide we can determine the coefficients A “ and

Bt they are
. (2-9,)K__ ;
AV (h) = —— M, (-h) -2 15
nabk;
; (2-6,)K__ ;
BY (h) = ——N',(h) 2" (16)
nabk

where 8, = 1 when m or n equal to one and zero for other integers.

The primed functions in (15) and (16) are defined with respect to primed variables x';
associated with R', the position vector of the infinitesimal source. The eigenfunction

expansion of V [%,8 (R—R")] is therefore given by



- (2-3,) 0
V(28 (R-R)] jdhz [N, (WM, (~h) - %

mn nabk"2

+M, (N, (-h) 3] -

We let Z},E,l) have a similar expansion with unknown coefficients a, and b, attached to the

eigenfunctions. By means of (11) we find

thus

oo

G (2-9,)
G = [ dh 0

monabk? (k% - k%) (18)

[N, (WM, (-h) - £ + M, ()N, (=) -2]

The integration with respect to 4 can be evaluated by means of a contour integration that

yields

— (i) it

G\ =Gy = T CukIN. (24 I, (3k,) -3 2+ M, (k) N, (k) 5] 22

The top line applies to _G,i,i) " for z> 7' and the bottom line to E,Ef) ~forz<z',and
- (K- kz) 12,

To find (_?(fl) , we make use of (9). The function 5,5:) , however, is discontinuous at 7 = 7'.

If we write

GY =6 U-)+6P U -2 20).

where U (z—z') and U (z' —z) are two step functions defined at z = 7', then



(i)
VG, =

+

VG VU(z=2) +28(z-2) x G
+ VG, 1U(z-2) -28(z-2) x G’
- [VE“”“]U( ~2) + VG, 1U(z ~2)
X (Gy -G\ 18 (2= 2)
(21)

Equation (21) can be simplified by applying the boundary condition for the G,,I s. We
start with

T S )
x[H -H] =7, (22)

where 75( ) denotes the surface current density at z = z'. For an infinitesimal source (22)

can be converted to the form

ix GV -G = s D8 (R-F) 23)

fori = 1,2 and

ix (60 =69 =0 (24)

I

for i = 3. With the aid of (9),(21),(23), and (24) we find

=) <) 7 FV7 N N 2 '
Ge' =8, = Y Cpp[M, (£k) M, (Fk) + N, (k) N, (Fk)] %, 222
mn

(25)

fori = 1,2 and

3
Gj):-;sz R) +5" 6)

for i = 3 where

i(2-8,)
abklk,

mn ~



To find the dyadic Green function ?}e we use (1) that yields
G, = ——1228(R-R') +85, @7)
where

Se = D, Coun (Mo (k) Mo (Fky) + N, (2k )N, (Fh,) ], 227

m, n

By comparing the formulation used in [1] and the present formulation it is seen that the
dyadic Green function approach is more direct and perhaps simpler than the vector Green

function method even though dyadic analysis is being used therein.
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