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CHAPTER 1

INTRODUCTION

Rough surface scattering has long been a topic of interest in remote sensing. Im-
proved models of electromagnetic wave scattering at rough surface interfaces benefit
both investigators who study natural surfaces (e.g., geologists and volcanologists)
and those for whom surface scattering effects are an undesirable corruption of sig-
nals from other targets above or below the surface. Measurements of backscatter
from forest canopies, for instance, must make assumptions about the surface scatter-
ing properties before the canopy scatter can be determined. If the surface scattering

is modeled incorrectly, interpretation of canopy scatter can be adversely affected.

1.1 Interest in Power-Law Surfaces

Models of scattering by rough surfaces typically model surface elevation as a
random process of position having some distribution of surface height and some
correlation function representing the dependence between surface elevations at two
surface locations. Over the last few decades, a large majority of studies of scattering
by land surfaces have assumed that surfaces possess a Gaussian correlation function
(and corresponding Gaussian roughness spectrum). Use of non-Gaussian surface

models has been increasing, however. In particular, numerous studies have shown



that many natural surfaces are better described by power-law roughness spectra of

the form
Sz(f) = elfI™, (1.1)

where f is the spatial frequency, and ¢ and 3 are constants, with 1 < 8 < 3. Power-
law surfaces are scaling; they may be described using a fractal dimension Dy, which
varies between 2.0 and 3.0 for a surface, or between 1.0 and 2.0 for a linear surface
profile. (The relation between Dy for a linear profile and J is given by (2.10).)

Examples of natural surfaces that are well-described by power-law spectra include
land surfaces [21, 30, 31, 52], rock surfaces [10], and seafloor topography [6, 7, 22, 26).
Ocean surfaces may also be described by a power-law spectrum having a form related
to (1.1) [25). Although synthetic topographies appear most realistic with Dy ~
2.2 (34, 60], yielding linear profiles of Dy =~ 1.2 and B ~ 2.6, several studies [6, 7, 30,
31, 52] report measured values of 3 near 2.0. For example, Sayles and Thomas [52]
show measured roughness spectra for 23 surfaces ranging from lunar terrain to the
surface of a hip joint (reproduced here as Figure 1.1). Sayles and Thomas conclude
that natural topography has a characteristic power-law exponent of 8 = 2.0; this
claim is also made by Huang and Turcotte [30]. If true, the fixed value of § would
allow rough surface characterization using a single parameter, ¢ in (1.1).

Two current research projects in the Radiation Laboratory are studies of scatter-
ing by volcanic terrains and the diffuse radar backscatter from Mars. Both terrestrial
volcanic terrains and Martian terrains (formed largely through volcanism and aeolian
processes) seem likely candidates for modeling by a power-law roughness spectrum.
The interest in these specific surfaces led to the study of power-law surfaces described

in this dissertation.
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length X. (Figure reproduced from Sayles and Thomas [52].)



1.2 Questions to be Answered in This Dissertation

The studies described in this dissertation were designed to answer five principal

questions:

1. Does the power-law roughness model apply to targets of interest in remote

sensing?

2. If the power-law model applies to volcanic terrain, what are typical values of

the power-law roughness parameters?

3. Given a power-law roughness model, how does the backscattering coefficient

vary with incidence angle as a function of surface parameters?

4. How well do various rough surface scattering models predict scattering by a

power-law surface?

5. In particular, is Eftimiu’s Phased Wiener-Hermite model [16] useful for power-

law surfaces?

The first question has been partially answered by the cited sources; the interest
here is in verifying whether volcanic terrains belong to the class of surfaces having
power-law roughness spectra. The parameter values sought in the second question
drove the design of synthetic power-law surfaces used in laboratory scattering mea-
surements; these measurements provided answers to the third question.

The fourth question was approached by applying the more common rough surface
scattering models to the cases represented by the manufactured surface analogues.
A recent scattering model by Eftimiu, the Phased Wiener-Hermite (PWH) model,

was examined in some depth (question 5). The PWH model uses a novel approach



that seemed promising for modeling scattering by extremely rough dielectric surfaces;
however, there were no published comparisons of experimental results to the PWH

model at the outset of this study.

1.3 Format of This Dissertation

Chapter II discusses the random process representation of a rough surface and
compares Gaussian and power-law surface properties. Potential ambiguities associ-
ated with the description of power-law surfaces by use of Gaussian parameters are
discussed.

The field work at Mount St. Helens is described in Chapter III. The laser pro-
filometer system used for collecting small-scale surface profiles is discussed, along
with descriptions of the filtering and interpolation processes made necessary by
problems with the profilometer. Large-scale roughness was surveyed; the survey-
ing techniques are described here. A summary of the measured surface profiles is
given in Appendix A.

Chapter IV discusses spectral estimation and the special problems encountered in
obtaining estimates of the surface roughness spectrum of a power-law surface. The
chapter includes a description of a spectral estimator designed for use with limited
data sets and shows the application of this estimator on the surface profiles from
Mount St. Helens.

The design and manufacture of artificial power-law surfaces is the subject of
Chapter V. The design algorithm, selection of materials, and milling procedure are
discussed, along with a summary of difficulties encountered during milling operations.

Chapter VI describes the scattering measurements, in which backscattering from

the surface analogues was measured using a 35 GHz scatterometer. The radar com-



ponents, measurement configuration, calibration procedure, and measurement pro-
cedures are detailed here. The chapter concludes with a description of the data
reduction process, in which the measured fields are converted into estimates of the
backscattering coefficient. A brief derivation of the calibration technique is included
in Appendix B.

Measured values of ¢ are compared with those predicted by rough surface scatter-
ing models in Chapter VII. Results using classical models are presented, and results
derived from the PWH model are also given. A brief derivation and description of
the PWH model is given in Appendix C.

Chapter VIII presents the conclusions of the dissertation, applications of the
results, and recommendations for future work.

The study of scattering by power-law surfaces (the subject of this dissertation)
is the third project in the remote sensing of natural terrains undertaken by the
author. The first study, Fluctuation Statistics of Millimeter-Wave Scattering from
Distributed Targets, was completed in 1987. Results of the study were reported by
Ulaby, Haddock, and Austin [57] in 1988; this paper is included here as Appendix D.
The author participated in a second study, Millimeter-Wave Radar Scattering from
Snow, in 1988-89. Results of this study were reported in 1991 by Ulaby, Haddock,

Austin, and Kuga [58]; this paper is reproduced as Appendix E.



CHAPTER II

STATISTICAL DESCRIPTION OF ROUGH
SURFACES

Most rough surface scattering models describe natural rough surfaces as realiza-
tions of random processes. Natural rough surfaces often have a random appearance,
making the random process description plausible even if the underlying processes
that produce the terrain are not random. While a random process description does
not readily allow for surfaces with overhangs (because the surface elevation becomes
a multiple-valued function), the majority of rough surface scattering studies do not
consider such complex surfaces.

The rough surface elevation process Z(z,y) is typically described in terms of
its surface height probability function (pdf), fz(z), its mean function or ensemble
average, uz(z,y), its correlation function, Rz(z1,y1; T2, y2), and its surface roughness
spectrum, Sz(fz, fy), also called the power spectral density or PSD. Rough surface
random processes are usually assumed to be stationary; i.e., the surface statistics are
independent of position. (The correlation function, for instance, would depend on
the distance between two points and not on their absolute positions.) An additional
and usually necessary assumption is that the surface process is ergodic, meaning that

ensemble averages may be replaced by spatial averages.



The surface height pdf, fz(z), is nearly always assumed to be Gaussian. Es-
timation of the pdf is extremely difficult for rough surface random processes (the
interesting ones, at least) due to the very high quantity of data required.

The mean value of the random process, pz(z,y), which is more commonly written

E[Z(=,y)] or (Z(z,y)),

ElZay)= [ 2f2(a)dz, (2.1

is usually set to zero by choosing a proper coordinate system. For a zero-mean

surface, the covariance function, Kz,

Kz(z1,91;22,92) = El(Z(21,11) — p2(21,31))(Z(22,92) — pz(22,%2))],  (2:2)

reduces to the identical form of the correlation function, Rz:

Rz(xl,yl; -’52,?/2) = E[Z(xl,yl)z(%,yz)], (2-3)

so we will often use the terms covariance and correlation interchangeably. The co-
variance of a surface point with itself is called the variance and is usually denoted
2,

by o
0® = Rz(z1, 91,21, 41) = E[Z2($1,y1)]- (2.4)
As mentioned above, for stationary surfaces, the correlation function is a function

of the offset between two points and not their absolute locations. If 7, = z; — z; and

Ty = Y2 — Y1, then
Rz(7e,7) = E[Z(2,y)Z(z + =,y + 7). (2.5)

The correlation function, R(7;,7y), is a measure of the correlation between surface
elevations separated by a given distance. The Fourier transform of the correlation

function is the surface roughness spectrum, Sz(fz, fy), which is a measure of the



spectral content of the surface roughness as a function of spatial frequency. (Unless
noted otherwise, roughness spectra will be shown as a function of spatial frequency
f in m~! rather than spatial wavenumber k = 2/}, which has units of rad/m.) We
shall see in later chapters that the roughness spectrum is often of interest because it
allows comparisons between the spatial wavelength of surface roughness components

and the electromagnetic wavelength of a remote sensing radar.

2.1 Gaussian Surfaces

In this dissertation, the term Gaussian surface denotes a surface random process
having a Gaussian correlation function. For surfaces with isotropic surface statistics
(the surfaces considered in this dissertation all share this property), the correlation

function has the form of a Gaussian:
- Rz(7) = o? exp(—7*/1?), (2.6)

where 7 is the radial lag (r? = 724-77), 0? is the surface variance, and [ is a parameter
called the correlation length. For lag 7 = [, the correlation function drops to a value
equal to e~! times its maximum. Thus the correlation length becomes a figure of
merit; surfaces with small  decorrelate over short distances.

A two-dimensional Fourier transform gives the roughness spectrum for a Gaussian
surface:

SZ(fr) =o’l'r exp(-ﬂjﬂff)’ (27)

where f, is the radial spatial frequency (f? = f2 + f2). The familiar property that
the Fourier transform of a Gaussian is also a Gaussian function and the continuity
of the Gaussian roughness spectrum make Gaussian surfaces amenable to analytical

solutions in some cases.
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As shown in (2.6), the Gaussian correlation function is completely specified by two
parameters, the standard deviation o (equal to the square root of the variance), and
the correlation length, I. In rough surface scattering studies, o and ! often appear in
products with the electromagnetic wavenumber k, so they are usually specified as the
normalized quantities ko and kl. While ko and kl are convenient parameters for the
specification of, for example, regions of validity for a rough surface scattering model,
care must be exercised when determining ko and k! (or ¢ and /) from measurements

of a surface. This problem will be illustrated in the next section.

2.2 Power-Law Surfaces

The studies cited in Chapter I found that linear profiles of many natural sur-
faces have (one-dimensional) roughness spectra that are well-described (over some

measurable range of spatial frequencies) by a power-law function of the form

Sz(f) = lfI™, (2.8)

where f is the spatial frequency, and ¢ and 3 are constants, with 1 < 8 < 3. Bis
sometimes called the spectral slope; a power-law spectrum is linear with slope —f
when plotted on a log-log scale. The roughness amplitude ¢ is a multiplicative factor
scaling the roughness at all spatial frequencies.

Power-law surfaces with isotropic statistics have a two-dimensional roughness

spectrum that has a similar form:
Sz(f:) =af7, (2.9)

where f, is the radial spatial frequency and 2 < v < 4.
Power-law surfaces have significant multi-scale roughness, that is, the variations in

surface elevation have components with long, intermediate, and short spatial wave-
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Figure 2.1: A power-law roughness spectrum in the form of (2.8).

lengths, as is evident in the plot of the power-law roughness spectrum shown in
Figure 2.1. It is this multi-scale roughness that makes power-law surfaces resemble
natural rough surfaces. Just as a hammer or other object is included in photographs
of geological formations to show the scale, power-law surfaces also seem independent
of scale to the eye.

Rough surfaces which have structure over a wide range of spatial scales may also
be described using the concepts of fractal geometry introduced by Mandelbrot [34].
Fractal objects are continuous but not differentiable; the fractal dimension Dy is a
real-valued measure of how a line (surface) fill a plane (space). For a one-dimensional
(1D) surface profile, Dy takes on values between 1.0 (smooth and differentiable) and
2.0 (plane-filling). Two-dimensional (2D) surfaces have D; between 2.0 and 3.0.
Adler [1] shows that the surface profile created by the intersection of a plane and
a 2D fractal surface is itself fractal with a fractal dimension equal to that of the
2D surface decreased by one [28]. Random rough fractal surfaces have power-law
spectra; Mandelbrot and Van Ness [35] and Voss [60] derive the relation between D;

and the spectral slope 3 of a 1D profile of a rough fractal surface:

Dy = 5—-_2—@ (2.10)
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Thus the spectral exponent satisfies 3 > § > 1 for 1 < Dy < 2.

Synthetic topographies appear most realistic with Dy = 2.2 [34, 60], yielding
linear profiles of Dy ~ 1.2 and # = 2.6. Estimation of § from measured surface
profiles is not straightforward; problems associated with the estimation of power-law
spectra are described in Chapter IV.

The correlation function for a power-law surface is obtained in the usual manner,
by inverse transforming the roughness spectrum, but difficulties arise in the power-
law case. Spectra of natural topography clearly cannot conform to a power-law
model] at all spatial frequencies—roughness features on the scale of millions of meters
are unphysical, as are those at subatomic scales. We therefore must specify the
form of the roughness spectrum for both very high and very low spatial frequencies.
In general, the piecewise-defined roughness spectrum will not yield an analytical
expression for the surface correlation. In addition, there will most likely be some
uncertainty as to the accuracy of the assumed form of the roughness spectrum at
very high and very low frequencies because these portions of the spectrum have not
been measured.

Synthetic surface profiles generated from Gaussian and power-law spectra are
shown in Figure 2.2. The multi-scale roughness of the power-law surface is evident.

A question that often arises when comparing the power-law and Gaussian sur-
faces is “What are the ko and kl for the power-law surface?” Defining o and [ for
a multi-scale surface is difficult because there are several possible methods that give
very different answers. Some examples of the problem are summarized in Table 2.1,
in which ko and k! are computed in three different ways for the three artificial
power-law surfaces manufactured as part of this study. (The surfaces are described

in Chapter V.) The first method used the rigorous definition of the surface corre-
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Theoretical Bandlimited Experimental

Rz(0,0) | 0.1f, < f <10f, | (from sample rows)

Surface kl ko kl ko kl ko

A (UHMW1) | 5768 | 61.6 | 9.02 0.986 47.4 3.24

B (UHMW3) | 6317 | 108.8 | 9.79 0.774 84.1 4.07

C (UHMW2) | 6782 | 194.7 | 10.43 | 0.616 | 108.6 5.56

Table 2.1: Values of kl and ko for the artificial power-law surfaces described in Ta-
ble 5.1, calculated using three different methods.

lation to obtain the variance (equal to the value of the correlation function at zero
argument). The correlation was evaluated numerically at zero by integrating (Fourier
transforming at zero frequency) the modified power-law spectrum given in (5.8). Us-
ing a frequency of 9.75 GHz to obtain k, values of ko and k! for the theoretical
method are two to three orders of magnitude higher than those commonly seen in
scattering studies.

Because some rough surface scattering models specify that ko and kI model inputs
should be calculated based on the part of the spectrum that influences the scattering,
values of ko and k! were calculated using the same formulation but using a bandlim-
ited roughness spectrum that had been set to zero outside the (arbitrary) limits of
0.1 to 10 times the spatial frequency corresponding to the radar wavelength. These
values, listed in the table under “Bandlimited,” are much more reasonable when com-
pared to values commonly reported, but it must be noted that the frequency band
was arbitrarily chosen. A different set of bandpass limits would produce different
values of ko and kl.

For an additional comparison, values of ko and kl were “experimentally” deter-
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mined by calculating estimates of the surface correlation function based on sample
rows of the synthetic profiles described in Chapter V. This method was used to simu-
late the results obtained from field data in which neither the roughness spectrum nor
the surface correlation function are known beforehand. For each surface, estimates
of the correlation function were calculated for three rows, and the resultant values
of ko and kl were averaged. As shown in the table, these estimates of ko and kI are
markedly different from estimates produced by either of the other two methods. The
experimental estimates varied widely from row to row. Furthermore, the nature of
a multi-scale surface suggests that the estimated values of ko and kl will vary with
the length of the sample profiles, although this dependence was not verified in this
study.

The parameters ko and k! are not particularly useful as descriptors of power-law
surfaces due to the variety of values they can assume for a single surface. For this
reason, power-law surfaces in this study are characterized using the constants ¢ and
B in (2.8) or the corresponding 2D parameters a and v in (2.9). The difficulties in
estimating these statistical parameters from (often) limited samples of the surface
elevation are described further in Chapter IV. Estimation of the roughness spectrum

is particularly difficult in the power-law surface case.



CHAPTER III

MEASUREMENTS OF SURFACE
ROUGHNESS

In the last chapter, we saw how rough surfaces may be modeled as realizations
of random processes. This chapter and the following chapter describe the methods
used in finding the proper random process model for a specific group of volcanic
terrains. The first task was the collection of elevation profiles of debris flow surfaces

near Mount St. Helens.

3.1 Mount St. Helens

Mount St. Helens is the youngest major volcano in the Cascade Range of the
northwestern United States. It is located in the southwest corner of the state of
Washington, about 70 kilometers northeast of Portland, Oregon. Its rim is 2549
meters above sea level. Mount St. Helens was chosen for this study because it has
extremely young terrains and because access to the surrounding debris flows via
logging roads is relatively easy. (Mount St. Helens is located within the Gifford
Pinchot National Forest.)

Mount St. Helens was named by Captain George Vancouver, a British navigator

and explorer, in 1792 after the British ambassador in Spain, Baron St. Helens [23).

16
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The volcano was dormant for 123 years before seismic activity began on March 20,
1980. On March 27, a system of fractures formed high on the north flank, marking
the upper edge of a bulge. By April 12, the bulge measured as much as 100 meters
over an area nearly 2 kilometers in diameter. Measurements starting on April 25
showed that the bulge was expanding up to 1.5 meters per day [11].

On May 18, 1980, an earthquake of about magnitude 5 was followed by the break-
ing away of the bulge and the north flank of the volcano in an enormous avalanche.
The debris avalanche consisted of about 2 cubic kilometers of rock debris and glacial
ice, fluidized by exploding steam and entrapped air. Traveling at speeds up to 250
kilometers per hour, the debris avalanche extended northeast to Spirit Lake, north
to Johnston Ridge, and northwest and west for about 21 kilometers along the North
Fork Toutle River valley (Figure 3.1). The debris was deposited in large mounds,
with depths up to 150 meters in the center of the valley near Johnston Ridge [11].
The loose debris mixture is quite susceptible to erosion by water, as evidenced by
the deep channel cut by the Toutle River since 1980. A geological description of the
various debris flows is given by Glicken [27].

The eruption also produced a huge mudflow composed of a mixture of volcanic
debris, water from Spirit Lake, the Toutle River, and trapped snow and ice. The
mudflow continued down the North Fork Toutle River valley, past the limit of the
debris avalanche, and on to the Cowlitz and Columbia Rivers [11].

Debris flow surface topographies were measured in two areas on the debris flows
extending along the North Fork Toutle River valley. The principal site (profiled on
September 19-22, 1990) was near the west end of Johnston Ridge, about 10 km
northwest and within view of the crater (JRS in Figure 3.1). Two distinct surface

types were apparent here; elevation profiles were collected on each. The primary
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Figure 3.1: The Johnston Ridge site (JRS) is located about 10 km northwest of the
crater. The Elk Rock site (ERS) is located farther west, about 19 km
west-northwest of the crater.

debris flow surfaces consisted of a loose mixture of rocks, cinders, ash, and dust.
These surfaces were extremely rough, making equipment transport difficult on foot.
They were formed as part of the original landslide-avalanche that accompanied the
main eruption on May 18, 1980. Since then, they have been modified only by erosion.

The other surface type observed at Johnston Ridge was much smoother and
occurred in low-lying areas between debris mounds. These surfaces were formed
either by the mudflows during the eruption or by the deposition of water-borne ash
and sediments that were eroded from the primary debris flow surfaces in the years
since the eruption. These two terrain types are compared in Figure 3.2. The surfaces
at Johnston Ridge were rocky and exhibited less than 15% vegetation cover (less than
5% in many areas). The rougher surfaces supported only sparsely scattered weeds;
the low-lying, smoother surfaces had scattered short grasses.

Additional surface profiles were collected at a site farther down the North Fork
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Figure 3.2: The smoother, low-lying secondary surfaces occurred between the
rougher (primary) debris mounds.

Toutle River valley on September 25 and 26. The Elk Rock site (ERS in Fig-
ure 3.1) was located on the valley floor due west of Elk Rock and about 19 kilo-
meters west-northwest of the crater. The terrain here was also deposited by the
landslide-avalanche associated with the May 18, 1980 eruption; however, the surface
here differs from the Johnston Ridge site in that the smoother mudflow- or water-
deposited surfaces dominate. The floor of the valley, over two kilometers wide, is
a plain covered with the smooth deposits accompanied by hummocky mounds of
rougher debris. These mounds generally measured less than 25 meters across.
Vegetation at the Elk Rock site was less sparse than that nearer the crater,
approaching 40% coverage. Grasses on the smooth surfaces were a bit thicker (though
certainly not dense), and weeds were more noticeable on the rocky debris mounds.
One goal of this study is to investigate scattering effects due to multi-scale sur-
face roughness. The surface roughness of the debris flows was characterized at spatial
scales smaller than, on the order of, and larger than the electromagnetic wavelengths
of common remote sensing radars (66 cm for a P-band radar, 3 cm for an X-band
system) using two measurement techniques. A computer-driven, 2D laser profilome-

ter recorded surface height profiles of square grids with sides ranging from 8 cm to
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1 m in length. Larger areas measuring 32 meters square were surveyed at one-meter

intervals using a surveying level and stadia rod.

3.2 2D Laser Profilometer System

A two-dimensional laser profilometer system was designed and assembled for field
use at Mount St. Helens. A laser-based system was chosen because it allows mea-
surements of surface elevation without requiring physical contact that may disturb
the surface. Easy adaptability to computer control was an additional advantage
over contact-probe profiling methods. Requirements for the profiling system were as

follows:

1. Transportable by two or three people up to one mile away from vehicle

(3]

. Operable from battery power
3. Unattended operation, freeing operators for other tasks
4. 1 square meter scan area

5. Reasonable cost

The 2D Laser Profilometer System is pictured in Figure 3.3. A list of components

and accessories follows:

e Pulsar 50 Surveying Electronic Distancemeter (EDM) (manufactured by GEO

Fennel)
o XY table and stepper motor controllers (manufactured by Jasta, Inc.)
e Zenith PC-compatible laptop computer

e Two 12 V, 105 ampere-hour deep-cycle marine batteries
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Figure 3.3: The 2D Laser Profilometer System.
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o Four heavy-duty photographic tripods

e Protective frame for mounting and transport of XY table

o Case for external switches, stepper motor controllers, and power distribution

o Army surplus stretcher for carrying computer, switch box, batteries, tripods,

and EDM
e Counterweight for EDM mount

The Zenith computer and EDM were owned by the Radiation Laboratory. The EDM
had been used previously in a linear (1D) profilometer system built by Roger De Roo.

The EDM is the principal component of the profilometer system. It uses an
infrared laser to measure the distance from a reference plane to a target surface.
The EDM and counterweight are mounted on the XY table with the laser directed
downward through the table frame.

The XY table consists of three ball-screw assemblies that are driven by two
stepper motors. The profilometer software, written in Microsoft QuickBasic, controls
the EDM and XY table through the serial port of the Zenith laptop computer and
records surface elevation data from the EDM in disk files. The computer has only
one serial port (and no means of adding expansion cards), so it was necessary to
build an external switching circuit, controlled through the parallel port, to allow
communication with either the EDM or the XY table as needed. The switching
circuit is shown in Figure 3.4.

Automatic operation of the EDM was complicated by the random occurrence
of “HARDWARE ERROR” messages. | was unable to determine the cause of the errors

myself or through inquiries to the manufacturer. The error could be cleared by
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cycling the power, but there was no means of doing so remotely through the serial
interface. A workaround was devised whereby the EDM battery leads were routed
through an external relay controlled through the computer’s parallel port. A lack of
response within seven seconds of a measurement command prompts an EDM power
interrupt by the computer. The scan location of the hardware error is noted in the
data file of measured surface heights, and the measurement is attempted again. On
a grid of 2500 points, it was not uncommon to have 15 to 30 hardware errors. No
correlation was observed between the error frequency and duration of operation. The
hardware errors have not been found to affect measurement accuracy.

Two 12 V marine batteries provided DC power for the computer, stepper motors,
and EDM, while a third battery was held as a spare. A full day of operation did not
seem to weaken the batteries significantly; nevertheless, the batteries were charged
nightly and rotated with the spare.

The XY table was mounted in a protective frame and supported by four heavy-
duty tripods. The table was carefully leveled at a height of approximately 1.5
meters—near the minimum working range of the EDM. The EDM laser has a spot di-
ameter of about 1.5 mm. It was used in its most precise mode, in which the standard
deviation of the measured surface height is 3 mm. Measurements using this mode
require two to three seconds per surface point, depending on the sampling interval,
A. A typical scan measuring 10 cm x 10 cm with A = 2 mm (2601 points) takes 1.8
hours. To reduce on-site times to acceptable levels, each surface was scanned along
grids of 40 x 40 or 50 x 50 points using at least two values of A (e.g., 2 mm and
1 cm), rather than scanning a single large grid using a very small A.

One of the rougher scanned surfaces is shown in Figure 3.5. The surfaces had poor

reflectivity at the laser wavelength, causing EDM measurements to fail. Painting
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Figure 3.5: One of the rougher surfaces scanned by the EDM (scan site 3, Johnston
Ridge). The surface has been spray-painted to increase its reflectivity.

the surfaces (including the surface in Figure 3.5) with white or yellow spray paint
increased the reflectivity. The spray can was held sufficiently far from the surface to

avoid disturbing the small rock fragments.

3.3 Profilometer Data Processing

Errors in the profilometer data prevented the direct application of standard spec-
tral estimation techniques. Replacing the data by repeating the on-site work was
not feasible; instead, error effects were minimized through a combination of error
detection and correction algorithms and a modified spectral estimation technique.
The errors were of two types: incorrect surface elevation values due to overheating

of the EDM, and intermittent level shifts due to an instability in the EDM.
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Figure 3.6: Grayscale plot of a surface elevation grid (scan 2b, Johnston Ridge site)
showing a single outlier due to overheating. High points are light; low
areas are darker. The black pixel is the outlier.

3.3.1 Overheating Errors

Two factors combined to produce an overheating of the EDM that had not been
observed indoors: unusually hot weather (sunny and clear with highs of 27-31 °C)
and placement of the EDM such that the underside and battery connection module
(both colored black) were exposed to direct sunlight. A sun shield installed for the
last scan at Johnston Ridge reduced the frequency of these errors. Overcast skies
during the Elk Rock debris flow scans prevented overheating errors at that site.

The overheating introduced negative outliers in the measured surface elevation
grid, i.e., measured elevations that were markedly lower than those at adjacent points.
The outliers resembled holes in the surface and were easily distinguishable in plots
of the surface elevation (see Figure 3.6).

A variety of filtering schemes for the removal of these bad pixels were exam-
ined. The simplest was the imposition of a lower limit beyond which all pixels were

classified as outliers. This technique failed for surfaces not having low relief.
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Figure 3.7: A histogram of a bimodal distribution of median residuals. The left
group, corresponding to outliers, is clearly separable from the main dis-
tribution.

The majority of the outliers were removed using median residual filtering, in which
a statistic called the median residual, r,,, is calculated for each pixel by subtracting
the median, msp, of the N x N surrounding subregion from the surface elevation,

Z(1,7), at the pixel of interest:
Tm(i’j) = Z(iaj)_m50- (31)

Pixels with overheating errors have large (negative) r,, because their elevations differ
greatly from the surrounding pixels. Residuals outside some lower bound are deemed
unphysical, and pixels associated with these residuals are designated as outliers. N
might range from 5 to 9—I used the smallest N for which the median was stable.
If enough outliers were present, the median of the entire scan was used for the first
iteration.

A data set ideally suited for median residual filtering would have a bimodal
distribution of residuals in which the modes were widely separated. For example,
there would be little uncertainty in labeling the left group of residuals in Figure 3.7
as being due to outliers. Of course, such a clear separation of residuals is rarely

the case. More often one faces a distribution like that shown in F igure 3.8, which
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Figure 3.8: A histogram of median residuals (scan 3a, Johnston Ridge) for which
values due to outliers are not easily distinguishable.

is from a measured data set (scan 3a, Johnston Ridge site). Rather than choosing
some arbitrary cutoff (and risking the elimination of good pixels or the acceptance
of outliers), one can use an iterative approach, setting the cutoff at a conservative,
low value such that confidence is high that pixels with residuals below the cutoff
are indeed outliers. A new set of residuals based on the remaining pixels is then
calculated, and the process is repeated. While only a small portion of the erroneous
pixels are removed in each iteration, the majority of the outliers may be eliminated
in this manner.

After a number of iterations, the median residual filter becomes impractical be-
cause residuals due to overheating errors become indistinguishable from those due
to edges of rocks or pixels having few neighbors because they are located near the
edge of a scan. One can decrease the area over which the median is calculated, but
cutoff selection eventually becomes subjective, and it becomes difficult to determine
when to terminate the filtering process.

The problem at this stage is one of distinguishing between the two distributions

of N x N subregion surface elevations (not residuals) shown in Figure 3.9. If mg
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Figure 3.9: Elevation distributions for 5 x 5 subregions on two surfaces. Point X in
(a) is probably not an outlier, but point X in (b) probably is, yet both
have the same median residual.
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designates the median height for the N x N region, then we see that the median
residual calculated at point X is the same for both surface A and surface B (—0.3 m).
However, we can see from the surface height distribution that pixel X on surface A
is less likely to be an outlier than pixel X on surface B. One way to quantify this
difference is to compile a lower quartile difference statistic for each pixel. The lower
quartile point, mgs, is the pixel for which 25% of the other pixels have lower elevations
and 75% have higher elevations. The lower quartile difference, d,, is calculated for

each 5 x 5 pixel subregion similarly to the median residual:

dy(i,5) = 2(1,7) — mas (3.2)

A high value of |d,| indicates that the pixel elevation differs significantly from
most of the other points in the subregion and should therefore be discarded. The
cutoff value of d; in this study was determined in a reproducible manner by plotting
a histogram of all d, values in a data set and discarding those pixels having a d,
value outside the main lobe of the distribution.

In summary, the median and quartile difference filtering procedure consists of the

following steps:

1. Compute median residuals, ,,, using the smallest subgrid (9 x 9, 7 x 7, 5 x 5)
that does not corrupt the median. (For some data sets, it will be necessary to

use the median of the whole grid in the first iteration.)

2. Filter out pixels whose residuals exceed some conservative limit—whose resid-
uals are sufficiently large that there is a high probability that the pixels are
outliers. Increase the lower residual limit only moderately in successive itera-

tions.
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3. Repeat steps 1 and 2 until the obvious outliers are fairly sparse; i.e., there
remain no more than two in any 5 x 5 subregion. Steps 1 and 2 may be

unnecessary in data sets where the outliers are already sparse (e.g., scans 2b

and 2c).

4. Compute the lower quartile difference d, for each remaining pixel based on
valid pixels (those not filtered out in previous steps) in a 5 x 5 subregion. (The
scan site 4 data sets had so many points missing that 7 x 7 subregions were

necessary.)

5. Determine the lower cutoff value for the quartile differences using a histogram
of d; values. Set the limit equal to the first minimum on the left of the peak

or the point on the left at which the histogram has a definite corner.
6. Filter out pixels whose d, values are below the limit set in step 5.

The median residual and lower quartile difference filtering procedures are illus-
trated in Figure 3.10. Figure 3.10(a) shows an unfiltered profilometer scan measuring
100 cm x 100 cm in which the pixel spacing is 2 cm. In Figure 3.10(b), each pixel
has been replaced by the median of a 9 x 9 subregion; we see that the 9 x 9 subregion
medians are corrupted badly in the last few rows. (This is not unexpected because
surface scans are completed from top to bottom; overheating errors become more
frequent as the EDM becomes warmer.) Five rows and five columns were discarded
because these rows were considered uncorrectable. Figure 3.10(c) shows the result.
Figures 3.10(d), 3.10(f), and 3.10(h), show histograms of median residuals based on
9 x 9 pixel subregions. Lower cutoff values of —30, —20, and —14 cm led to the fil-
tered data sets shown in Figures 3.10(e), 3.10(g), and 3.10(i), respectively. (Filtered

pixels are displayed as white.) The isolated dark pixels in Figure 3.10(i) are the re-
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Figure 3.10: Successive stages of the median residual and lower quartile difference
filtering procedure for scan 3a, Johnston Ridge site. The steps leading
to the final filtered set (k) are explained in the text.
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maining outliers, for which the surface height appears artificially low. Lower quartile
differences were computed for each remaining pixel in Figure 3.10(i). A histogram
of the 1871 d, values appears in Figure 3.10(j). (The peak of the histogram is 561,
well off the top of the figure.) Using the histogram, a lower cutoff was set at the first
minimum and all pixels with d, < —15 cm were discarded. The resulting surface
elevation data set is shown in Figure 3.10(k). Note that the isolated dark pixels have
been removed while dark pixels in low areas are intact.

The median residual and lower quartile difference filtering procedures seem to
eliminate outliers accurately with minimal loss of valid pixels. Because the modified
spectral estimation technique described in Chapter IV is most direct when using
equally spaced data points, it was necessary to replace the pixels removed by the
filtering process. The next task, then, was to find a method of assigning a value to
each missing pixel such that the spectral estimate based on the “patched” profile is
as accurate as possible.

Median interpolation was selected as the interpolation method. Tests in which
holes were introduced and then replaced (via median interpolation) in synthetic data
sets showed that median interpolation has a minimal effect on the resultant roughness
statistics when spectra from different rows are averaged. (These tests are described
more fully in Chapter IV.)

The median interpolation algorithm consists of two steps:

1. Find the median of the 3 x 3-pixel subregion around each hole and count the

number of valid pixels.

2. Replace the hole by the median of the 3 x 3 pixel subregion if at least 5, 3, or

2 non-holes are present in the inner, edge, and corner-pixel cases, respectively.
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For data sets with numerous adjacent holes, multiple passes of the interpolation
algorithm are necessary. Steps 1 and 2 are repeated until all holes are filled. The
procedure is illustrated in Figure 3.11.

The filtering and interpolation steps performed on each data set are listed in

Tables A.1 through A.7 in Appendix A.

3.3.2 Level Shift Errors

The second source of error in the profilometer scans was an occasional shift in
measured elevations due to an instability in the EDM. After 20 to 30 minutes of
normal operation, the EDM reference plane would shift by 2-7 mm and then become
stable again. The shifts occurred at irregular intervals and did not seem to be
correlated with overheating errors or with the occasional hardware errors.

The level shifts are manifested as horizontal bands across the profilometer scans.
Because the magnitudes of the level shifts were rather small (only slightly larger
than the standard deviation of the EDM), they were noticed only in grayscale plots
of very smooth surfaces at Mount St. Helens.

The presence of the level shifts was verified by running a 51 x 51-point profilometer
scan with the XY table disabled to prevent movement. The sequence of 2601 points
was mapped onto a square grid as if the EDM had been moving. (The total scan
time was one hour and 46 minutes.) The grayscale plot of this grid is shown in
Figure 3.12. The pixel at the upper left corner represents the first measurement.
Subsequent pixels follow along this row to the right, then continue along row 2 from
right to left, and then continue along successive rows in alternating directions. The
only variation in Figure 3.12 should be due to the limited precision of the instrument,

but there are obvious level shifts between (for example) rows 15 and 16 and between
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(c)

Figure 3.11: Median interpolation for scan 3a. (a) The data set immediately after
medial residual and lower quartile difference filtering. (b) The data set
after one iteration of median interpolation. (c) After three iterations.
(d) After six iterations.
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Figure 3.12: A profilometer scan showing the level shifts. (The EDM did not move
during this scan.)

rows 21 and 22; these shifts measure 4.42 mm and 7.62 mm, respectively. The level
shifts were small compared to changes in elevation due to topography; nevertheless,
I felt that they might corrupt the spectral estimates enough to make their mitigation
or elimination worthwhile.

To avoid the effects of the level shifts, I assumed isotropic statistics and employed
a procedure of spectral estimation by linear sampling; i.e., I used linear profiles (rows
of the profilometer scan) as samples of the surface. By using individual scan rows and
removing the mean surface height from each, the level shifts are avoided because the
reference level is stable within most rows. The shifts usually occurred over a sequence
of 10 to 15 points, so rows with visible level shifts were discarded. (The discarded rows
for each data set are listed in Table 3.1.) Averaging the spectral estimates obtained
from different rows within a scan reduces the effect of any remaining (undetected)
errors as well as the variance inherent to the surface random process. The procedure
for spectral estimation by linear sampling is described in detail in the next chapter.

The assumption of isotropic surface roughness statistics seems reasonable due to
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Scan Data file Rows with visible level shifts

2b | 1p2bdata.fql |1, 2,35, 8, 13, 14, 24, 25

2c | 1p2cdata.fql | 4,5,6,7,8, 13, 22

3a | lp3axdata.fq4 | 13, 14, 24, 28

3b | 1p3bdata.fqd |3, 4, 24, 25, 35, 36

3c | 1lp3cxdata.fq6 | None discernible

4a | lp4axdata.fq5 | 1, 2, 4, 5, 10, 13, 18, 29, 30, 31, 40

4c | lp4cdata.fqbs | 1,2, 8, 33, 34

5a | lpSadata.all |1,2, 16, 21, 38, 41, 59, 61, 71

5b | lpSbdata.all |1, 19, 32, 33, 42, 43

6a | lpbadata.all | 1,2, 3,4, 23, 24, 25, 26, 28, 29, 30, 38

6b | 1pébdata.all |1, 2,6, 11, 24, 25, 38

Table 3.1: Rows excluded from spectral estimates due to visible level shifts
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the structure and origin of the surfaces. The flow units examined were formed in
a debris avalanche when the north flank of the volcano collapsed. The avalanche
was composed of a loose mixture of rock and ash that had no obvious directional
structure, unlike a viscous lava flow which has a definite flow direction. While the
assumption of isotropic statistics can be neither proven nor disproven from the data
collected as part of this study, the isotropic statistical model provides a useful first-

order approximation for initial scattering studies such as the present work.

3.4 Surveying Measurements

Surveying equipment was used to collect elevation data over larger areas. The sur-
veying tools included a self-leveling surveying level, a stadia rod (both on loan from
the Department of Civil and Environmental Engineering), three 100-meter lengths of
airplane cable (multi-strand stainless steel cable about 1/16 inch in diameter) with
markers (crimp-on wire splice connectors) installed at one-meter intervals, and eight
pitons that were used to anchor the cables in the ground.

The surveying level is essentially a telescopic sight mounted on a tripod. The
sight may be rotated about the vertical axis; its plane of rotation becomes a reference

plane. Surveying measurements consisted of the following steps:

1. Using the angular scale on the surveying level to obtain right angles, lay cables
on three sides of the area to be surveyed, as shown in Figure 3.13. The area
surveyed was 32 x 32 meters for each of the four surveys, although the first

survey was initially configured for a 50 x 50-meter area.

2. Anchor the two cables on opposite sides using pitons (cables A and B in Fig-

ure 3.13).
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Y
surveying level A

Figure 3.13: Top view of survey configuration.

. Anchor the third cable (C) on top of A and B. This cable will be moved along

cables A and B as each row is completed.
. Mount the surveying level securely in place.

. The stadia rod bearer places the stadia rod on the ground at the marker and

holds the rod vertically.

. The surveyor reads the elevation on the stadia rod (the distance between the
reference plane and the base of the rod) by noting where the cross-hair in
the level’s telescopic sight crosses the rod. He announces the elevation to the

recorder, who records it and signals the rod bearer.

. The rod bearer then moves along C to the next position (1-4 meters away),
and the last two steps are repeated. This continues until the end of the row.
Every fifth marker has been painted—the rod bearer signals the recorder when

moving to these markers as a position check.
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8. After the row is complete, cable C is moved 1-4 meters along cables A and B
to mark the next row to be surveyed. The surveying continues along the new

Tow.

The surface height was measured at intervals of 1, 2, or 4 meters, depending
on the surface roughness. Surveying was very slow. In spite of the time advantage
gained through use of the self-leveling feature of the surveying level, each data point
required 20 to 40 seconds to measure and record. In surveys 1 and 4, the level was
used in multiple locations either because the surface height variation exceeded the
length of the stadia rod (survey 1) or because the entire grid was not visible from a
single location (survey 4).

The principal source of error in the surveying measurements was difficulty in
reading the stadia rod when the wind caused it to sway. When wind was a problem,
the surveyor took readings more slowly. Slight departures of the rod from the vertical

should not introduce large errors.

3.5 Measured Profiles

Grayscale plots of all profilometer and survey data are shown in Figures A.1

through A.6 in Appendix A.



CHAPTER IV

SPECTRAL ESTIMATION

The surface elevation profiles described in the previous chapter provide quan-
titative measures of the surface roughness at specific locations on selected debris
flows near Mount St. Helens. This data has practical value only through its ability
to represent statistical properties of large debris flow areas. In Chapter II, rough
surfaces were modeled as random processes of surface elevation; we therefore seek a
description of the statistical properties of the random process. One key descriptor is
the roughness spectrum or power spectral density of surface elevation. The rough-
ness spectrum is useful because it allows surface structure to be interpreted as a sum
of sinusoidal components with differing wavelengths. Some rough surface scattering
models utilize the roughness spectrum directly, while others use its inverse Fourier
transform, the surface autocorrelation function.

This chapter describes methods of finding estimates of the roughness spectrum
based upon finite samples of single realizations of rough surface random processes.
We shall see that this task, called spectral estimation, is not trivial. Kay [32] states
the spectral estimation problem (for a 1D data set) formally: “Based on the N
contiguous observations {z[0],z[l],...,z[N — 1]} of a single realization of a WSS

[wide sense stationary] random process, it is desired to estimate the PSD [power

42
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spectral density] for —1/2 < fa < 1/2.” (I have departed from Kay’s notation and
written [normalized] frequency as fa for reasons that will be explained later.)

I should probably italicize the word estimate in Kay’s definition to emphasize
that we cannot obtain an exact solution for the PSD in general because an infinite
amount of information would be required. A good estimate is the best one can hope
to achieve; the degree of “goodness” will be dependent on the quantity of sample
data, the form of the true PSD, and the suitability of the estimation algorithm.

Signal processing and spectral estimation texts (e.g., [32], [36], and [47]) list a
wide variety of spectral estimation algorithms ranging from classical Fourier methods
to autoregressive spectral estimators to minimum variance estimators. The novice
who asks “Which is the best spectral estimator?” will quickly learn that there is
no simple answer. Various spectral estimators have different strengths and weak-
nesses. Selection of an estimator is very application-dependent, involving trade-offs
among desirable characteristics such as low bias, low variance, high resolution, low
leakage, and minimal spurious features. Many spectral estimators are based upon
assumptions regarding the form of the underlying spectrum. Such an estimator may
provide enhanced accuracy if the assumed model is correct (or may fail miserably if
it is not). It is therefore advantageous to have some knowledge of the form of the
spectrum when selecting an estimation algorithm.

Other factors influencing the selection of an estimator are the quantity and char-
acter of sample data (e.g., irregularly sampled data sets require special measures)
and the specific questions one seeks to answer. For example, we may want to deter-
mine whether a signal is present among background noise and may not need to know
its strength precisely. Conversely, as in the present work, we might assume that no

narrow signals are likely to be present and may only want to estimate the magnitude
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of the spectrum across a band of frequencies. We would therefore be less concerned
with high resolution and would seek an estimator with low bias.

Another issue, perhaps less appreciated than it should be, is the importance of
the sample size N. Most spectral estimators assume large values of N—very large
values, from a remote sensing viewpoint. This dependence on N may be overlooked
when consulting a text on spectral estimation theory. The importance of sample size
is perhaps best stated in Numerical Recipes [48, p. 456]: in the description of variance
given in the chapter on the statistical description of data, the authors explain the

presence of a factor of 1/(N — 1) rather than 1/N and remark:

We might also comment that if the difference between N and N —1 ever
matters to you, then you are probably up to no good anyway—e.g., trying

to substantiate a questionable hypothesis with marginal data.

For purposes of spectral estimation, then, we would like to have surface profiles
with very large N. This is not always possible: in remote-sensing studies, surface
profiles are often only one of many “ground-truth” parameters to be collected. As
a result, investigators are often faced with the problem of estimating the surface
spectrum using a limited data set. In the case of 1D profiles, a typical record might
consist of at most 500 points; 2D profiles are even shorter, rarely exceeding 50 x 50
points. Numbers of this magnitude are considered small from a statistical inference
viewpoint, where samples of thousands or hundreds of thousands of points are more
common. The profiles in this study are limited; we shall consider this when selecting
an estimator.

In this chapter, I review some spectral estimators, examine some difficulties in
spectral estimation of power-law spectra, determine an estimation algorithm that

avoids these difficulties, and apply the algorithm to the surface profiles described in
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the previous chapter. (Much of the material here has been summarized in recent
papers by the author [2, 3]). For simplicity, one-dimensional spectral estimation will

be considered first.

4.1 Classical Spectral Estimators

Fourier-based spectral estimators (e.g., the periodogram) render an estimate of
the power spectral density whose expectation or mean value is a convolution of the
spectrum of the sampled profile and the Fourier transform of a window function
introduced by the finite extent of the sample profile. Several window functions are
used; common windows include rectangular, triangular, and Hanning windows. The
selection of a particular window is based on a trade-off between spectral resolution
and spectral leakage.

Spectral leakage refers to the inaccuracy of a spectral estimate at a given fre-
quency due to convolution with the transformed window function; i.e., spectral power
“leaks” from nearby frequencies according to the shape of the transformed window.
Spectral domain window functions corresponding to a periodogram and a modified
periodogram with Hanning window are shown in Figure 4.1. At each point or fre-
quency at which the spectrum is to be estimated, the true spectrum is weighted by
the window function centered on that frequency and then averaged over frequency.
Contributions from frequencies other than the frequency of interest constitute spec-
tral leakage. Spectral leakage can be reduced by choosing an estimator whose window
has side lobes which decay quickly (such as Wy in Figure 4.1), but such a window
will have a broader main lobe, decreasing the spectral resolution. (See [48] for a
discussion.)

Spectral estimates derived from sampled data suffer from aliasing if the sampled
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Figure 4.1: Spectral domain window functions Wr (4.8) for the periodogram and
Wy (4.11) for the modified periodogram with Hanning window, both
with N = 256. The convolution of the window function with the true
spectrum (e.g., the power-law spectrum shown as the dashed line) may
result in a spectral bias (an inaccuracy in the mean value of the estimate).

process has spectral components at frequencies greater than the Nyquist frequency

fcs
1

fc= E’ (41)

where A is the sampling interval. In the sections that follow, it is assumed that
aliasing is not present. Modifications due to aliasing will be presented in a later
section.

Consider a one-dimensional surface Z(z), where Z, the surface height, is a single-
valued function (i.e., there are no overhangs). Suppose that the surface height has
been measured at N locations {zo,z;,Z2,...,Zn-1} Which are spaced at intervals
A. The periodogram spectral estimator, PPER( fa), for the sampled surface height
is given by Kay [32]:

) 1 |N-1 2
Ppgr(fa) = v né% Z[z,)exp(—j2r fan)| . (4.2)
The hat in PPER denotes an estimate. The frequency is written fa as a reminder

that (4.2) is given in terms of a normalized frequency fa, which is related to the



47

spatial frequency in m™! by

fa=f4, (4.3)
and fa satisfies —1/2 < fa < 1/2. Most spectral estimation texts use normalized
frequency; I shall follow this convention until a later section when considering how
to combine spectra obtained from sampled profiles with differing A.

While the periodogram may be evaluated for any |fa| less than 1/2 (the nor-
malized Nyquist frequency), it is often calculated using a fast Fourier transform
(FFT) and consequently is evaluated only at discrete frequencies fa; = i /N, where
¢ = -=N/2,...,-1,0,1,...,N/2. If additional frequencies are desired, the original
data series should be zero-padded to length M by adding M — N zeros to the end.
The periodogram will then be evaluated at frequencies fa; = i/M. Most FFT algo-
rithms require that N (or M in the case of an extended series) be equal to an integer
power of two (e.g., 256, 1024). Series for which N is not equal to an integer power
of two must be zero-padded up to the next higher power of two.

The periodogram is an unreliable estimator of the power spectral density because
it has a variance which is equal to the square of its expected value and independent
of N [32]. The usual practice in the field of spectral estimation is to average multiple
periodograms to reduce the variance, but this may not be possible if the quantity of
data is limited.!

A modified periodogram PHAN( fa) may be obtained by multiplying the data

series by a Hanning window before calculating the spectral estimate:

) N-1 2
Puan(fa) = 55 | S Zleuluntn]exp(—j2n fan)| | (44)

!For example, suppose the data record is 1000 points long. To reduce the variance by a factor
of 8, we can divide the data record into 8 segments of length 125, calculate 8 spectral estimates,
and average the results. The bias of the estimate will be increased (due to the broader main and
side lobes of the window), and the reduction in variance may be less than eightfold if the segments
are not uncorrelated. If the entire data record has only 125 points, this procedure is not useful.
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where the Hanning window,

wyln] = % 1 cos Af”_” ), (4.5)

replaces the rectangular window (wg[n] = 1) implicit in (4.2), and an extra normal-

ization factor is introduced:
1 N-1 )
U= i Y win]. (4.6)

n=0

(Equation (4.4) follows the formulation of Welch [61] using a single data segment.)
The transform of the Hanning window wg{n] has side lobes which are lower and a
main lobe which is roughly twice as wide as that of the transform of a rectangular
window wg[n| of the same width. Convolution with a transformed Hanning window
results in less leakage from low spatial frequencies (because the side lobes are smaller)
at the cost of decreased spectral resolution (smoothing due to the wider main lobe).
One must consider the smoothness of the spectrum and its roll-off rate and then

decide whether the leakage reduction is worth the loss in resolution.

4.2 Estimation of Power-Law Spectra

As stated in the beginning of this chapter, the selection of a spectral estimator
should be guided by the expected form of the unknown spectrum. The previous
studies mentioned in Chapter II suggested that the debris flow roughness spectra
might conform to a power-law spectral model. The consequent task was to determine

the best estimator for a power-law spectrum using a limited data set.

4.2.1 Fourier-based estimators

We begin by examining the expected values or ensemble averages of the classical,
Fourier-based estimators described in the previous section, when applied to a one-

dimensional surface profile having a power-law roughness spectrum. The expectation
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of the periodogram (4.2) is given by [32]:

1/2

E [Prenlfa)] = [ Wrlfa - €Sza() e, (4.7)

where Wr(fa) is the transform of a triangular window:

_1 sint faN 2
Wr(fa) = N ( sin 7 fa ) ' (4:8)

and Sza(fa) is the normalized form of the true power spectral density of Z(z) chosen

such that [Sza(fa) dfa = [S2(f) df:

Sza(fA)

[
l
iR
=

Sza(fa) cafa’, (4.9)

where we have defined ¢y = AP~ 1c.
The expected value of the modified periodogram estimator 13;1 AN (4.4) has a form

similar to (4.7) [47, p. 553):

B [Puantia)] = [ Walda - )52a(6)de (4.10)
where
WH(fA)zﬁﬁ (bl+—;-b2+%b3)2, (4.11)
b= s—’s%ﬁgl (4.12)
s - Sty s
- Sl + ) i

sin{x[fa + Nl-_ll} ’

and U is given by (4.6).
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Figure 4.2: Expected value of the periodogram spectral estimator for power-law sur-
faces with 8 = 2.0 and 2.4 and cs = 1.0 x 107®. The estimates are based
on 256-point profiles which were zero-padded to 16 384 points so that
the periodogram would be evaluated at many frequencies. Solid dots
indicate the expected values of the periodogram when evaluated without
zero-padding.

The performance of these Fourier-based estimators may be determined by calcu-
lating their expected values using (4.7) and (4.10). The singularity at the low end

of a pure power-law spectrum is eliminated by modeling the exact surface spectrum

as a Rayleigh function at low spatial frequencies:

4

(a/c®)|falexp(=f3/[207]), |fal| < 0.0001

Sza(fa) =19 calfal™, 0.0001 < |fal <1/2 » (4.15)

L 01 |fA| > 1/2

where the parameters o and ¢ are chosen by enforcing the continuity of Sz and its
first derivative at |fa| = 0.0001. Aliasing has been avoided by setting the spectrum
to zero for |fa| > 1/2.

Figure 4.2 shows the expected value of the periodogram spectral estimator calcu-
lated from theoretical spectra with spectral exponents of 2.0 and 2.4. The oscillatory
behavior is due to the side lobes of Wr(fa). These oscillations are not visible if the
periodogram is evaluated only at frequencies f; = i/N (i.e., without zero-padding)

as indicated in the figure. Since it is difficult to fit power-law functions to such
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Figure 4.3: Expected value of Ppgr for five 256-point power-law profiles evaluated
at frequencies corresponding to the case of no zero-padding.
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Figure 4.4: Exact values of the power-law spectra used in calculations of the expected
values of the spectral estimates.

oscillatory estimates, one may sample the expectations of periodograms of surfaces
with five different spectral exponents at frequencies corresponding to the case of no
zero-padding (Figure 4.3).2 These curves may be compared to the exact spectra in

Figure 4.4.> While the exact spectra in Figure 4.4 vary in slope, the periodogram

2It is emphasized that Figure 4.3 shows ezpected values, E[Ppgg(f)], (mean values) of the
periodogram estimator, calculated using equation (4.7) at frequencies corresponding to the case
of no zero-padding for random profiles Z(z) having power-law spectra given by (4.15) with five
different values of 3. Plots of the estimator itself, Ppg R, would show wide variance and departures
from linearity (similar to the estimates shown in Figure 4.8) and would vary for different realizations
of the random process, i.e., for different samples of a given surface.

The expected values of the estimator appear linear at the low-frequency end because the assumed
form of the true surface spectrum (4.15) is power-law (with linear slope) down to a frequency of
fa = 0.0001—a frequency too low to be accurately measured by the sampled profile segment. This
assumption was used because surface profiles are often too short to show very long wavelength
roughness components. (This was certainly true for the field work at Mount St. Helens.)

3The expected values of the periodogram estimator in Figure 4.3 have a higher total energy
level than the corresponding exact spectra in Figure 4.4 due to the spectral leakage that is also
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Figure 4.5: Expected values of Pran(fa) for five different 256-point power-law pro-
files. The profiles were zero-padded to 16 384 points.

estimates are insensitive to the slope for several values of 3. Fitting power-law func-
tions to the linear portions of E[Ppgr], fa < 0.2, we see (Table 4.2.1) that the
estimated spectral exponent B clusters near 2.0 for 2 < 8 < 3.4 These values of
B correspond to fractal dimensions that are typical for natural terrains (1.0-1.5 for
profiles, 2.0-2.5 for surfaces). This slope insensitivity due to spectral leakage may
well explain the number of studies [6, 30, 31, 52] reporting B = 2.0 for a variety of
natural topographies.

Slope insensitivity is not a problem with PHAN( fa), whose expected value is
shown for various 8 in Figure 4.5. The expected values of these estimates closely
approximate the exact values for frequencies for which the main lobe and first two

side lobes do not overlap the low-frequency peak (fa > 0.015625). (Power-law fits

responsible for the slope insensitivity. Remember that E[f’pER] is the convolution of the true
spectrum Sza with the transform of a window function introduced by the finite surface sample
(Wr in (4.7)). If the estimator were perfect, Wr would be a delta function, and the estimate at
frequency f would reflect only power in the true spectrum at that frequency. In the periodogram
case, however, Wy is given by (4.8) (a sinc? function), so power from many frequencies above and
below f affect Pppr(f). Leakage from lower frequencies is particularly significant in the power-law
case.

4For a given single periodogram, B may indeed take values between 2.0 and 3.0, due to the
variance of the periodogram. Long data records do not reduce this variance; the variance is in-
dependent of N (see [20], page 422). One may reduce the variance by segmenting the long data
record as described previously, but this process will lead to the expected values shown in Figure 4.3.
Sampling Ppgr at frequencies other than fa; = i/N could lead to a variety of incorrect slopes, as
can be seen in Figure 4.2.
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to the upper regions of these estimates are listed in Table 4.2.1.) While Py4n has
a mean value which closely approximates the exact spectrum, this estimator suffers
from a deficiency which is common to Fourier-based estimators: undesirably high

variance. The variance of Pyan(fa) is examined in a later section.®

4.2.2 Pre-whitening

The periodogram (Figure 4.2) and, to a lesser degree, the modified periodogram
(Figure 4.5) suffer from spectral leakage in the power-law case, especially for spectra
with 2 < B < 3. Fox and Hayes [22] and Gilbert and Malinverno [26] avoid the
leakage problem by using pre-whitening procedures in which they modify the surface
height data to have a relatively flat spectrum, perform spectral estimation, and
correct the estimate according to the original modification.

We can derive the simplest pre-whitening approach similar to that used by Gilbert

and Malinverno as follows: If the power spectral density of the surface height is

defined as [64, p. 270)

T/2
/ " Z(z)exp(—j2rfz) dz

2} : (4.16)

then the derivative of the surface height dZ(z)/dz will have a related spectrum:
2‘I

The Blackman-Tukey Spectral Estimator [9), Pgr, was also examined. For processes other than
white noise, the BT estimator decreases variance but increases bias as compared to the periodogram
(Kay [20], p. 80). Ppr was not included in this comparison because it is even more susceptible to

spectral leakage (and thergfore, slope insensitivity) than Ppgr. The expected value of Pgr is equal
to the expected value of Ppgr convolved with another window, as derived in Kay [20] (p. 98):

/T/ 2 dZ(z)
-T/2 dz

Sz(f) = Tlim —I—E[ exp(—j2r fz) dz

3 1/2 ,
E[Ppr(fa)l = \ W(fa — §)E[Pper(€)]d¢
Since the BT estimator has an expected value which is the result of the convolution of the true
spectrum with two window functions, its value at a given frequency can be greatly corrupted by
leakage from lower frequencies.
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T2
= hm TE J?ﬂ'f/ z)exp(—j2rfz) d
= 47’ f2S5(f)

= d4ric|f|7P¥?

d

Sz(f) = ¢IfI?, (4.17)

and we see that the spectral exponent 8 of the derivative process takes on values
between —1 and 1 for 1 < B < 3. The spectrum of the derivative process is more
nearly flat (it is white noise for /' = 0). Since there is no pronounced peak at low
frequencies, spectral leakage is less of a problem.

Gilbert and Malinverno approximate the derivative by taking first differences of
the sampled data: Z'[z;] % Z[zi41] — Z[z:]. They apply a Hanning window and use
a periodogram to obtain a spectral estimate of Sz:a(fa). After averaging multiple
periodograms, an estimate of the spectral exponent 3 is obtained from an estimate
of B’:

B=p+2. (4.18)
This procedure is now examined for the limited data case in which multiple pe-
riodograms are not available for averaging. The Hanning window is omitted for
simplicity.

Define a pre-whitened spectral estimate Ppw( fa) in terms of the first differences

of the sampled data:

2

Z{Z[xnﬂ — Z[z,)} exp(—j27 fan)| . (4.19)

n=0

PPW (fa)=

The expected value of the pre-whitened estimator may be derived by a procedure

similar to the derivation of (4.7):

ElPrw(f)] =2 [ Wrlfa = 0S2a(€)1 - cosl2nt)) 6. (420)
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Figure 4.6: Expected values of Ppw( fa) for five different 257-point power-law pro-
files. The profiles were zero-padded to 16 384 points.

The expected values of the pre-whitened estimator are calculated using (4.20) and
the modified power-law spectrum defined in (4.15) and are shown in Figure 4.6.
These estimates are based on 257-point profiles.

Power-law functions are fit to the linear portions of these estimate expectations
(fa < 0.2), and the parameters ¢ and B are converted to ¢ and 3 using (4.18) and
¢ = &/(4n?). The results, given in Table 4.2.1, show that the expected value of the
spectral slope is reasonably accurate because the spectral leakage has been largely
eliminated. A Hanning window may still be useful in practice (since one does not
know a priori that a spectrum is power-law), but we see that leakage is not a problem
for the pre-whitened estimator in the power-law case. The variance of Ppw( fa) will

be examined in a later section.

4.2.3 Capon’s estimator

An alternative procedure which is more direct than the pre-whitened periodogram
is the use of Capon’s estimator [13] (the so-called “minimum variance spectral esti-
mator”) described in Chapter 11 of Kay [32]. This estimator was developed originally

for geological signal processing problems in which the number of sensors (and there-
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fore the number of spatial samples) were extremely limited and posed restrictions
on what could be inferred from standard spectral analysis. Capon’s estimator es-
sentially customizes a filter at each frequency to minimize the total power output,
subject to the constraint that the gain at the frequency of interest is unity. There-
fore, the filter may be asymmetric in side lobe level according to the shape of the
signal spectrum; in the power-law case, the side lobes are adjusted to reduce the
leakage from low-frequency components.

Capon’s estimator, Pc aP(fa), is obtained by first calculating an estimate of the

autocorrelation matrix Rzz, whose elements are defined as
[Rzz)i; = E[Z*[n)Z[n + 1 - j]]. (4.21)

We can estimate the elements of the autocorrelation matrix using the modified co-

variance method, described in [32]:

N-1 N-1-p
[Rzz)i; = val__p) };P Zln—14)Z[n - 5]+ 2 Zin+dZn+;3]|. (4.22)

Capon’s estimator is then given by

5 p
P = — 4.23
earlf) = e (4.23)

where p is the dimension of the autocorrelation matrix and

T
e=|1 ei2rfa eitmfa ... ei2r(p=1)fa . (4.24)

Since (4.22) is an unbiased® and consistent estimator of the covariance matrix,
we can evaluate the expected value of Capon’s estimator by substituting the exact

covariance matrix (obtained from the exact theoretical spectrum) into (4.23). This

6(4.22) is approximately but not strictly unbiased because all lags are not weighted equally and
overlapping lags are used. A variety of covariance estimators have been examined, and (4.22) was
found to be the preferred estimator for short data records. See Kay [32] or other texts for more
information.
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Figure 4.7: Expected values of f’c ApP(fa) for synthetic profiles with various 3 using
an autocorrelation matrix of dimension p = 70. Estimates are evaluated
at the same 16 384 frequencies used in Figures 4.2, 4.5, and 4.6.

procedure was used to calculate the expected values of Pe Ap(fa) for five values of
B using a covariance matrix of dimension p = 70. The expected values of these
estimates (Figure 4.7) have good agreement with the exact spectra over a wide range
of spectral slopes. Parameters of power-law functions fit to the expected values
of PCAP( fa) for fa > 1/(2p) are compared with the exact spectral parameters in
Table 4.2.1.

The bias of Capon’s estimator is independent of N because (4.22) is an unbiased
estimator of Rzz. However, the bias does depend on p (pA is the longest lag for
which the covariance is estimated). For a given data set, an increase in p will result
in reduced bias at the cost of increased variance. Thus N indirectly influences the
bias because the range of p is constrained by N. I generally found p ~ 0.3N to be a
good compromise between variance and bias.

In the power-law case, the bias of Capon’s estimator was found to increase no-
ticeably for spatial frequencies corresponding to wavelengths much longer than pA.

Calculated values of Ppap(fa) for spatial frequencies below 1/(2p) were therefore

discarded.
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4.2.4 Variance comparison

Capon’s estimator, the modified periodogram with Hanning window, and the pre-
whitened periodogram all produce parameter estimates whose expected values closely
approximate the exact values for a power-law spectrum. It is instructive to compare
the performance of these estimators in terms of variance. The exact expression for the
variance of the modified periodogram involves higher-order moments and is usually
evaluated only for a Gaussian white-noise case [61). The statistical properties of
Capon’s estimator for time series data are not known [32], although some results have
been derived for array data. To avoid these problems and test these estimators under
actual-use conditions, short synthetic topographic profiles of known statistics were
generated using a spectral synthesis algorithm. Parameters obtained from Capon’s,
the modified periodogram, and the pre-whitened periodogram estimates computed
from the synthetic profiles are then compared with those of the spectra used to create
the profiles.

The spectral synthesis algorithm closely follows [51] and consists of the following
steps: (i) Generate a set of discrete Fourier amplitudes which, when squared and
multiplied by 1/N, satisfy the desired power law. While [51] used a pure power-law
spectrum, this study uses the modified spectrum (4.15) to assure a zero-mean surface
height. (ii) Multiply the amplitudes by a Gaussian random variable such that the
mean value of the amplitude satisfies the power law. (iii) Generate a set of complex
discrete Fourier coefficients (the FFT of a real surface) using the randomized am-
plitudes and a uniformly distributed random phase, enforcing symmetry conditions
such that the inverse FFT will be real-valued. (iv) Calculate the inverse FFT of the
coefficients, resulting in a synthetic surface profile.

Using this algorithm, 10 synthetic 64-point surface profiles were generated with
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Figure 4.8: Capon’s, modified periodogram, and pre-whitened periodogram spectral
estimates for ten different power-law profiles. The profiles were 64 points
long. The modified periodogram and Capon’s estimates have been offset
for clarity. The solid lines represent the exact spectrum.

B = 2.4 and ca, @, and o chosen as before. I then calculated (i) Capon’s estimates
using a covariance matrix of dimension p = 20, (ii) modified periodogram estimates
using a Hanning window, and (iii) periodogram estimates based on the first differ-
ences of the surface profiles. We see in Figure 4.8 that the modified periodogram
and pre-whitened periodogram estimates have noticeably greater variance.

Estimation of power-law parameters ¢ and § from the spectral estimates is an es-
timation problem in itself, independent of the spectral estimation problem described
thus far. In this analysis, estimates of ¢ and # are obtained by performing a min-
imum absolute deviation fit of a power-law function to the estimated values of the
power density spectrum. The minimum absolute deviation fit, which is performed
in log-log space, is more robust than a least-squares fit. To make the power-law fit
independent of the frequency sampling of the spectral estimates, the estimates were
evaluated at frequencies spaced very closely together so that the estimator would be
a smooth curve between the sampled points.

Values of the spectral estimates outside their regions of high accuracy (4/N <

fa <0.5 for Pran, 1/N < fa < 0.2 for Ppw, and 1/(2p) < fa £0.5 for PCAP) were
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Estimator | mean ¢p std. dev. éx | mean 3 | std. dev. A

Pyan | 0.724 x 107 | 0.819 x 107 | 2.767 0.631

Prw 1.310 x 1076 | 1.690 x 107° | 2.469 0.567

Poap 0.891 x 107 | 0.433 x 1076 | 2.371 0.313

Table 4.1: Spectral statistics derived from fits to modified periodograms, peri-
odograms based on pre-whitened data, and Capon’s estimators of ten
synthetic 64-point profiles with ca = 1.0 x 1076 and 8 = 2.4.

discarded as before. The mean and standard deviation of the estimated roughness
amplitude éx and spectral slope B are given in Table 4.1. We see that the spec-
tral parameters predicted using Capon’s estimator have roughly half the standard
deviation or one-quarter the variance of estimates derived from either the modified
periodogram with the Hanning window or the periodogram based on pre-whitened
data. Capon’s estimator is therefore selected as the preferred estimation algorithm

for use with short data records in the power-law spectrum case.

4.2.5 Formulas for real frequency

Expressions for the spectral estimators listed in the preceding sections were given
as functions of the normalized frequency fa that is dependent on the sampling inter-
val of a measured surface profile. In remote sensing studies, estimates of the surface
spectrum in terms of real spatial frequency f (in m™!) are necessary so that surface
features may be compared to the electromagnetic wavelength and so that spectral
estimates derived from profiles with different sampling intervals A may be compared
or combined into a composite spectrum.

The following expressions correspond to (4.2), (4.7), (4.8), (4.4), (4.10), (4.11),
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(4.12), (4.13), (4.14), (4.19), (4.20), (4.23), and (4.24), respectively, for the case of

real (non-normalized) frequency f, where f satisfies —1/(24) < f < 1/(24):

2

A N-1
Prer(f) Z Z[z,]exp(—j2n fAn)| , (4.25)
" 1/24
E[Poeaf)] =4 [ o W = €)S2(6) (4.26)
1 [sintfAN\?
i) = 3 (SRZBEY (a21)
: A N . ’
Pyan(f) = NU Z Z[zn)wn[n] exp(—j27 fAn)| | (4.28)
R 1/24
ElBua()] =8 [ Wils - 2(6)de (429)
Wru(f) = 4_]%,‘(7 (bl + - 5 b2 + - b3)2 ; (4.30)
sin(w fAN
by = %{)—), (4.31)
sin{w[f — m]AN}
b2 = : .
STy — 32
_ sin{7[f + W]AN}
= ROt g la) (4.33)
N sy Tny1] — L|Tn . ’
Prwlr) = 5 |% {Z o] — 41 ]}exp(—mfAn) L e
. 1/24
E[Bow(n] =28 [ Wi(f-€Sa(€)1 - coslere)) de,  (435)
pA
Poap(f) = e (4.36)

T
e= [1 Q2N anfA | pitn(p-1)fA | (4.37)
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Figure 4.9: Aliasing in the power-law spectrum case. Points marked (x) are dis-
carded to reduce errors due to aliasing.

4.2.6 Aliasing

The estimates presented in the previous sections assumed that aliasing was not
present, and the synthetic surface profiles were constructed to be bandlimited; i.e.,
they had no spatial frequency components above the Nyquist frequency f. = 1/(2A).
Real surfaces will generally have frequency components at spatial frequencies above
f.. As a result of a necessarily insufficient sampling rate, power at frequencies higher
than f. will be aliased into the range —f. < f < f.. We can derive an equation show-
ing this result in terms of real frequency by extending the derivation of Oppenheim
and Schafer [47, pp. 26-28], obtaining

Sraimlf) = Y S27+3) (4.3%)

In the power-law case, the power spectral density falls off quickly with increasing
frequency. The n = 0 (exact) and n = 1 (first alias) terms and their sum are plotted
for a simulated power-law case in Figure 4.9. We see that the effects of aliasing are
most significant at the high-frequency end of the spectral estimate. As a first-order
correction to avoid the aliasing problem, values of the spectral estimate computed

for frequencies greater than f./2 may be discarded, as indicated in the figure.
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4.2.7 Applicability to real data

Real geological data possess a variety of irregularities and surface statistics. Spec-
tra of natural topography clearly cannot conform to a power-law model at all spatial
frequencies: roughness features on the scale of millions of meters are unphysical, as
are those at subatomic scales. However, in the studies cited in Chapter II as well
as in the present investigation, measured spectra of topography are well modeled by
a power-law spectrum in the form of (2.8) over some range of spatial frequencies.
The comparison of spectral estimators here has been based on an idealized spectrum
with constant slope (except for the very low frequency roll-off introduced in (4.15) to
avoid an unphysical singularity) in order to have an easy reference for comparison.
Because both the Fourier estimators with windowing and Capon’s estimator are
local-neighborhood estimators, this comparison also illustrates the relative perfor-
mance of these estimators for spectra which have variations in slope with frequency

or local perturbations in level that violate monotonicity.

4.3 Estimation of Two-Dimensional Spectra

While the previous techniques allow the estimation of the spectrum of a linear
profile, we would in general prefer a two-dimensional spectrum of surface topography.
Such a spectrum might show hidden anisotropy or may indicate that the surface is
isotropic in the statistical sense. In either case, the full 2D spectrum provides valuable
additional information.

Two-dimensional spectral analyses are precluded when 2D data are not available.
Spectral studies of seafloor morphology, for example, usually utilize profiles collected
by bathymetric instruments which are towed by a ship, producing a seafloor profile

along the ship’s path. Some directional insight can be obtained by obtaining profiles
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in orthogonal directions.

On land, 2D data are somewhat more accessible. Huang and Turcotte [30, 31]
and England [21] use digital elevation models to estimate surface spectra, but their
methods average over azimuth angle in the spectral domain. Two-dimensional data
at scales of centimeters to tens of meters can be tedious and costly to obtain, neces-
sitating smaller dimensions of a sampling grid, i.e., fewer than 100 x 100 measured

points per 2D profile.

4.3.1 Two-dimensional estimators

Two-dimensional Fourier-based spectral estimators such as the 2D periodogram
suffer from the same problems as the corresponding 1D estimators: leakage in the
power-law case and high variance. A 2D Capon’s estimator is one solution to these
problems. The 1D Capon’s estimator is readily extended to the two-dimensional
case [32, §15.8], at the cost of increased complexity. Inversion of the covariance
matrix may become problematic because the matrix expands from dimension p x p
to p? X p?. For a similar level of resolution, the 2D Capon’s estimator will require a
much greater volume of data (as will the other 2D estimators). If such high quantities
of data are not available, as is often the case for 2D data sets, the variance of the

Capon’s estimate will be correspondingly higher.

4.3.2 2D spectral estimation of isotropic surfaces

If a surface area is known to have or can be assumed to have isotropic statistics
(from knowledge of the origin of the surface, or perhaps from measured 1D spectra in
several directions), then an estimate of the 2D roughness spectrum can be obtained

from estimates of the 1D spectrum. These 1D spectral estimates may be calculated
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from individual rows of the 2D surface elevation grid; we can calculate a spectral
estimate for several or all rows and then average the estimates together. The resulting
estimate will have a variance which is much lower than that of a single row estimate
even though the grid rows are not completely independent.

Suppose that an isotropic surface has a 2D power spectral density Sz(f, f,)
which has the form of a power law down to some low spatial frequency fi,,, and some

unspecified finite form below that:

afr—‘y, T 2 ow
Sz(fe, fy) = S2(f:) = 2 di (4.39)

finite, f; < fiow

where the radial spatial frequency f, = (f2 + fj)l/ 2, We now need to relate the
parameters a and < to the parameters of the 1D spectrum of surface heights measured
along a straight line on the same surface. This 1D spectrum will also have the form
of a power law for f > fj,, and can therefore be described by the parameters ¢ and
B.

To obtain this relation, begin with the general expression for the Wiener-Khintchine
relation in terms of the Fourier transform and write Rz(7.,7,) for the surface corre-

lation E [Z(z,y)Z(z + T2,y + 7)):

Ro(rr) = [ [ Salfuf)emplinlfers + fin)dfedfy  (440)

Changing to radial coordinates (7, = 7,cos7s, 7, = 7,sin7p) and noting that

Sz(fr, fe) is independent of f;, we obtain

RZ(TraTe) = -[)oo Sz(fr)fr /02” exp(j27rf,‘r, Cos C) dC dfr’ (4'41)

where ( = fp — 74, leading to

Ra(r) =2 [~ Sol£)Jo2nf,m)f, s (4.42)
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where J, is the zero-order Bessel function. This expression differs from a similar (but
incorrect) expression given by Voss [60, equation (1.52))].

The 1D and 2D roughness spectra of an isotropic random field are related by an
Abel transform [28]. This relation is more easily visualized using the surface autocor-
relation functions (the inverse Fourier transforms of the 1D and 2D surface spectra).

The 1D autocorrelation function is a slice of the 2D autocorrelation function:

Soo(fe) = [ [ Ralrem,) b(r) b drdr,. (443)

Using Fourier transform properties:

Sanlfe) = Salfer f) #80) = [ Salfun 1)) df. (4.44)

Let Sz(fz, fy) be given by (4.39), and let f, be restricted to the power-law region,

e |fz] 2 fiow:

i 2] ~/2 !
Szolf) = 2 [ (7 + (R @, (4.45)
Changing variables, we have

Soun(fe) =2a | f:’—ﬁi_—? ¥, (446)

which can be integrated analytically [4, p. 201]:

a/m T (2
SZID(fz) = %(Q)Z—)Ifxl_(’y_l)’ (4'47)

where I'(z) is the gamma function.

Therefore, if Sz1p(fz) = c|fz|™ for |fz| > fiow, the 1D and 2D spectral parame-

ters are related by

v = B+1 (4.48)

a = Mc (4.49)

VAT (32)
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Equation (4.48) agrees with the result derived by Voss; he does not give an expression
comparable to (4.49).

As discussed in Chapter II, 1D profiles of a fractal surface with 1 < Dy < 2
have power-law spectra with exponent f given by f = 5 — 2Dy, so that 3 > 8 > 1.
From (4.48), the 2D power-law exponent + satisfies 4 > 4 > 2, corresponding to 2D
surfaces with 2 < Dy < 3, where Dy = (8 — v)/2.

The performance of the linear, averaged Capon’s estimator in the determination
of the 2D power-law parameters a and v is examined next. A variation of the 2D
spectral synthesis algorithm described by [51] was used to generate 2048 x 2048-
point synthetic topographic surfaces with spectral exponents of 3.0, 3.4, and 3.6
with sampling intervals A of 1 cm. The exact surface spectrum was modeled as

isotropic, with a form similar to (4.15):

)

(/o) fr exp(=f7/120°]), fr < fiow

Sz(fr) =9 af7, Jow < fr < fe (4.50)

|0, fr> fe
where f, is the radial spatial frequency, a = 2.384 x 107, fi,,, = 0.0l m™!, and a
and o are chosen as before. The cutoff frequency, f. = 1/2A = 50 m™!, is equal to

the Nyquist frequency along the f, and f, axes.

As noted previously, arrays of data containing over a million points are rarely
available. In practice, in situ surface height measurements yield data sets which
are much smaller, say, 40 x 40 points. Since such a data set is useful over a rela-
tively narrow band of frequencies, several sparse grids may be collected at different
scales, a spectral estimate calculated for each, and a composite spectrum formed
from the individual spectral estimates. Scale factors are particularly important in

the calculation of these multi-scale spectra.
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Figure 4.10: 41 x 41-point sample of a 2048 x 2048-point synthetic power-law surface
with a = 2.384 x 107! and 4 = 3.0. The sampling interval is 50 cm.
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Figure 4.11: Averaged Capon’s estimates from 2D synthetic surface height data at
three scales with power-law fit.

Each 2048 x 2048-point synthetic surface is sampled at sampling intervals of
50 cm, 10 cm, and 4 cm, yielding three 41 x 41-point data grids. (A sample data
grid is shown in Figure 4.10.) At each scale, a 1D Capon’s estimate (with p = 12) is
calculated for each grid row at frequencies 1/(2pA) < f < 1/(4A), and the estimates
are averaged over the rows. A power-law function is then fit to the averaged spectral
estimates at the three scales. (A sample fit is shown in Figure 4.11.) The upper
frequency limit of 1/(4A) was chosen to reduce the effect of aliasing. Estimates of
1D power-law parameters ¢ and 3 are then converted into estimates of a and + using

(4.48) and (4.49).

This process was performed on ten synthetic surfaces at each of three spectral
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Surface (exact) Estimated parameters
a v mean @ std. dev. @ | mean 4 | std. dev. ¥
2.384 x 10711 | 3.0 | 2.3¢ x 10711 | 2.83 x 10712 | 2.971 0.041
2.384 x 10711 | 3.4 | 2.28 x 1071 | 1.55 x 10712 | 3.386 0.041
2.384 x 1071 | 3.6 | 2.17 x 10711 | 1.14 x 107! | 3.555 0.061

Table 4.2: Power-law parameters derived from fits to averaged Capon’s estimates at
three scales.

exponents. The mean and standard deviation of @ and 4 are listed in Table 4.2. We

see that the mean a and 4 are quite close to the exact values.

4.4 Roughness Spectra of Mount St. Helens Debris Flows

The linear, row-averaged Capon’s estimator has been shown to be the preferred
method for obtaining roughness spectra from data sets like those collected at Mount
St. Helens. Before applying the estimation algorithm to the surface elevation profiles,
it is appropriate to use this estimator to re-examine the median interpolation proce-
dure used in the last chapter to replace holes in the surface profiles due to filtered

outliers.

4.4.1 Verification of median interpolation

The effects of median interpolation on spectral estimates were tested using three
synthetic 2D surface profiles generated using the spectral synthesis technique de-
scribed in the last section, with @ = 2.384 x 107! and 4 = 3.0. The synthetic
profiles were sampled at three sampling rates. Holes were introduced into the grid

samples in positions corresponding to the holes in the measured debris flow surface
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¢

Exact spectra 4.768 x 10711 | 2.0

Original sampled profiles: mean 1.974 x 10711 | 2,013

std. dev. | 0.232 x 1071 | 0.040

Interpolated profiles: mean 1.693 x 101! | 2.006

std. dev. | 0.129 x 10~11 | 0.032

Table 4.3: Verification of median interpolation.

profiles. These holes were then filled in using multiple passes of median interpola-
tion, and the linear, row-averaged Capon’s estimator was used to produce spectral
estimates over three ranges of spatial frequency. The mean elevation was subtracted
from each row before calculating the spectral estimate. A power-law function was
then fit to the three spectral estimates for each surface.

A second set of spectral estimates were obtained directly from the original grid
samples for comparison to those arising from the interpolated profiles. The mean
and standard deviation of ¢ and 3 are compared in Table 4.3. Values derived from

interpolated profiles are quite similar to those obtained from the original data.

4.4.2 Primary debris flow surfaces

A Capon’s spectral estimate was calculated for each row of each profilometer and
survey profile using a covariance matrix of dimension p ~ 0.3N, where N is the
length of the profile row. (The mean row height was subtracted before calculating
the estimate.) The spectral estimates were then averaged over the rows of each grid.

The high-frequency half of each averaged estimate was discarded to reduce aliasing
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effects. Parameters used in preparing spectral estimates from each profile are listed
in Table 4.4. Averaged estimates at a single scale or at multiple scales were then
fit with a power-law function (2.8), where appropriate, using a minimum absolute
deviation fit. Profile (1D) spectra fitting the power-law model were then converted
to surface (2D) spectra using the formulation given in section 4.3, in which the 1D
and 2D roughness spectra are related through their corresponding autocorrelation
functions and the 2D autocorrelation function is assumed isotropic.

The first terrains examined were at the Johnston Ridge site, a debris flow area
adjacent to and due west of Johnston Ridge (see Figure 3.1). This debris flow had
areas exhibiting large variations in elevation (e.g., 8 m in a 32 m x 32 m survey
grid). The roughest surfaces that we measured in this area were the primary debris
flow surfaces—surfaces formed during the landslide-avalanche and modified through
the removal of material by wind and water. Spectra from the roughest of these are
shown in Figure 4.12(a).  The survey spectrum is the curve extending from 0.05
to 0.25 m™; the higher frequency spectra were computed from profilometer scans.
The linear character of the A =1 m, A =2 cm, and A = 5 mm spectral estimates
suggests that a power-law spectrum is appropriate for this surface over some range

of spatial frequencies. The equation of the power-law fit to these three estimates is

A

Sz(f) = (3.21 x 107*%)| f| 7234, (4.51)

where the hat denotes an estimate. This fit is shown as a dashed line in Fig-
ure 4.12(a). While we have no evidence that the surface spectrum follows this
power-law at the intermediate spatial frequencies, it does seem significant that both
the meter- and centimeter-scale spectra are well fit by the same power law.

The spectral estimate in Figure 4.12(a) derived from the A = 2 mm profile seems
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dataset [ N| A | p | 1/(2pA) | 1/(4A) | Niow | Niign
scan 2b | 51 | 0.002 | 16 | 15.625 125 16 | 128
scan 2c | 41 | 0.01 | 13 | 3.84615 25 20 | 128
scan 3a | 46 | 0.02 | 14 | 1.78571 12.5 19 | 128
scan 3b | 41 | 0.005 | 13 | 7.69231 50 20 | 128
scan 3c | 41 { 0.002 | 13 | 19.23077 | 125 20 | 128
scan 4a | 55 | 0.005 | 17 | 5.88235 50 16 | 128
scan 4c | 51 | 0.002 | 16 | 15.625 125 16 | 128
scan da | 71 | 0.005 | 22 | 4.54545 50 12 | 128
scan 5b | 51 | 0.002 | 16 | 15.625 125 16 | 128
scan 6a | 51 | 0.002 | 16 | 15.625 125 16 | 128
scan 6b | 41 | 0.01 | 13 | 3.84615 25 20 | 128
survey 1 | 33 1 10 0.05 0.25 26 | 128
survey 2 | 9 4 3 | 0.04167 | 0.0625 | 86 | 128
survey 3 | 9 4 3 | 0.04167 | 0.0625 | 86 | 128
survey 4 | 17| 2 6 | 0.04167 | 0.125 | 43 | 128

Table 4.4: Spectral estimation parameters: N is the dimension of the sample grid, A
is the sampling interval in meters, p is the dimension of the autocorrelation
matrix, 1/(2pA) and 1/(4A) are the low- and high-frequency limits for
the spectral estimator in m™!, and N,,,, and Nhigh are the indices of the

low and high estimator data points used.
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Figure 4.12: Spectra of primary debris flow surfaces: (a) JRS, survey 1, scans 3a,
3b, and 3c; (b) JRS, survey 1, scan 2c; (c) ERS, survey 4, scan 5a.
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inconsistent with the A = 5 mm estimate for the range of spatial frequencies where
both apply (19-50 m~!). This is true for all spectral estimates based on scans with
A = 2 mm. The time interval between EDM measurements was shortest for these
scans because the EDM moved only a short distance. It is suspected that the high
measurement rate adversely affected the elevation measurements and resultant spec-
tra. The blurred appearance of the A = 2 mm grayscale images in Appendix A
supports this interpretation. Another possibility is that the laser spot size was mea-
sured inaccurately. Because of these uncertainties, I have omitted spectral estimates
based on A = 2 mm scans from the remaining figures and from the spectral analysis.
No claims will be made regarding the spectrum at frequencies estimable by the A =
2 mm scans alone.

We can convert (4.51) to an estimate of the surface (2D) spectrum using (4.48)

and (4.49), obtaining the following power law:
Szap(fr) = (177 x 1074) 733, (4.52)

In Figure 4.12(b), the same survey spectrum is shown together with a profilometer
spectrum derived from profilometer scan 2c, which was collected on a similar flow
unit adjacent to the one surveyed. A power-law fit to these estimates gives the

following spectra:

Sz(f)

Szn(fy) = (1.95 x 1074)£7331, (4.54)

(3.57 x 1074)|f| 23! (4.53)

The other group of terrain measurements were at the Elk Rock site, in the
North Fork Toutle River valley due west of Elk Rock. The valley was a mixture
of hummocky debris mounds scattered across a flat, sedimented plain. A profilome-

ter scan from one of the debris mounds yields the spectral estimate shown at the
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high-frequency end of Figure 4.12(c) (A = 5 mm, scan 5a). The figure also shows an
estimate from a survey grid (survey 4) containing both terrain types. (The debris
mounds were typically smaller than the 32 m x 32 m survey area.) A power-law fit
may be appropriate for the A = 2 m and A = 5 mm spectra here as well; the fit is

shown in the figure. Equations for this fit are

Sz(f) (4.98 x 1074)|f| 7! (4.55)

Szap(f,) = (1.95 x 1074) 733, (4.56)

!

4.4.3 EDM noise floor

While investigating the problems with the A = 2 mm scans, it became necessary
to determine the minimum spectral amplitude detectable by the EDM using the
selected estimation algorithm. The minimum detectable spectral magnitude was
determined by generating spatial domain traces having single-frequency roughness
(i.e., a sinusoidal surface profile) with amplitude equal to the minimum vertical
resolution of the EDM (3 mm). Traces were generated for single-frequency roughness

1. Spectral estimates of these four surfaces are

components of 1, 4, 10, and 40 m~
shown in Figure 4.13. Each spectral estimate has a single-frequency peak; the peaks
trace out a linear equivalent noise floor for the EDM. Portions of a surface roughness

spectrum that lie below this level will not be observable above the spurious spectrum

of noise due to the limited precision of the EDM.

4.4.4 Mudflow- or water-deposited surfaces

The smoother surfaces formed by the original mudflows or by water-deposited
sediments had spectra that were markedly different from those of the primary sur-

faces. For example, in Figure 4.14(a), we see that the spectral estimate from a scan
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Figure 4.13: The noise floor of the EDM was determined by calculating spectral
estimates of surfaces with single-frequency roughness.

(scan 6a) of such a surface (at the Elk Rock site) lies on the EDM noise floor dis-
cussed in the previous section. The true spectrum of this surface must lie below this
level and therefore cannot form a power-law trend with the survey spectrum of the
local mixed terrain (A = 2 m from survey 4 in the figure). This difference in spectral
behavior is consistent with the visible character of the sedimented surface, which
appeared quite smooth and flat. Similar remarks apply to the profilometer spectrum
of a mudflow- or water-deposited surface at the Johnston Ridge site, which is shown
in Figure 4.14(b) along with the survey spectrum of the surrounding primary debris
flow.

Spectral estimates derived from two low-resolution (A = 4 m) surveys on sed-
imented (survey 3) and mixed (survey 2) surfaces at the Johnston Ridge site are
shown in Figure 4.15 together with the primary debris flow survey from Johnston
Ridge and the mixed, lumpy terrain survey at the Elk Rock site. These spectral
estimates are very short due to the small number of sample points (9 x 9 in each).
The mixed terrain spectrum is similar to the primary debris flow spectrum at low

spatial frequencies, while the sedimented surface has a much lower roughness.
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Figure 4.14: Spectra from scans of smooth surfaces shown together with survey spec-
tra of surrounding areas: (a) ERS, survey 4, scan 6b; (b) JRS, survey
1, scan 4a.
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Figure 4.15: Survey spectra

4.5 Summary

The preceding anaIysis shows how leakage causes some Fourier-based estimators
to yield an estimated spectral exponent of 2.0 for surface profiles having power-law
spectra with spectral exponents between 2 and 3. This may explain the number of
studies reporting power-law exponents of 2.0 for natural terrains. It has also been
shown that Capon’s estimator may be used to avoid the leakage problem and measure
the surface spectrum more accurately. In addition, Capon’s estimator has reduced
variance, which is useful when surface data records are short, as is often the case in
remote-sensing studies.

For surfaces which are known or can be assumed to be isotropic, a linear, averaged
Capon’s estimator can be used to estimate the 2D power-law parameters. This
procedure was used on the debris flow profiles collected at Mount St. Helens. The
rough surfaces associated with the 10-year-old debris flows possess spectra that are
well modeled by a power-law function over a range of spatial frequencies. These
measured spectra will drive the design of artificial power-law surfaces, which is the

subject of the next chapter.



CHAPTER V

DESIGN AND MANUFACTURE OF
ARTIFICIAL POWER-LAW SURFACES

The spectral estimates in the previous chapter show that certain volcanic debris
flow surfaces at Mount St. Helens belong to the class of power-law surfaces discussed
in Chapter II. The cited references and the present study show that power-law
surfaces are common and often of interest in remote sensing. A better understanding
of electromagnetic scattering by these surfaces may be obtained through scattering
measurements and application of rough surface scattering models.

In situ scattering measurements of natural power-law surfaces are difficult to per-
form and even more difficult to interpret for purposes of model verification. Aside
from common logistical problems (e.g., operation of radars in dusty environments,
cost and time constraints for on-site work), there are several measurement uncertain-
ties which interfere with model verification. Natural rough surfaces rarely conform
to a single statistical description over extended areas due to the variety of processes
that contribute to their formation. For land surfaces, volume scattering by subsur-
face inhomogeneities is usually present. Both of these factors yield effects that are
difficult to decouple from those due to surface roughness. More important, inter-

pretation of scattering measurements is hindered by the difficulty of obtaining an

80
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accurate statistical description of surface roughness. As discussed in Chapters III
and IV, estimation of the surface roughness spectrum is particularly problematic for
power-law surfaces, requiring a large quantity of surface height data and specialized
spectral estimation algorithms.

The uncertainties just discussed may be largely avoided through the use of man-
ufactured surface analogues. The analogues are homogeneous, conforming to a single
specified statistical model. They are constructed from a homogeneous material to
eliminate subsurface scattering, and their surface statistics are well known. Because
the surface roughness is specified by the investigator, particular cases of roughness
may be studied, or a single roughness parameter may be varied in order to study its
effect on surface scattering. Finally, the scattering measurements may be performed
under more controlled conditions, typically indoors, allowing greater accuracy and
repeated measurements if necessary.

This chapter describes the design and manufacture of artificial power-law sur-
faces. The design history, material selection, and surface generation algorithm are
discussed, and the milling system is described. The milling procedure is explained, in-
cluding time and disk space requirements, and difficulties in milling complex surfaces

are discussed. The chapter ends with a description of surface verification efforts.

5.1 Analogue design history

The original project plan called for the manufacture of power-law surfaces mea-
suring one meter square. The surfaces were to be composed of a dielectric material
with permittivity near that of soil. Scattering by the surfaces was to be measured
using an X-band (9.75 GHz) radar and radars of other frequencies if available.

Surface construction was planned to be similar to that used by Nance [44], who
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presented scattering results from artificial Gaussian conducting surfaces [45]. As in
his study, the surface fabrication was to be performed by a contractor; however,
requirements for the present study were more sophisticated due to the more complex
surface roughness (power-law instead of Gaussian) and the use of a homogeneous
dielectric rather than structural foam that was to be coated with conducting paint.

After an extensive search of machining companies in southeast Michigan, I was
unable to find a contractor who was able to fabricate the surfaces for a manageable
cost. One obstacle was the desired surface size: one meter square was too large for
several companies’ equipment. A more significant impediment was insufficient data
capacity. The design specification for the artificial surfaces called for the replication
of surface features on the scale of one-tenth or one-twentieth of the radar wavelength.
A high number of surface points were therefore required to represent the surface for
fabrication (the surfaces eventually required 1318 x 1318 points). This quantity of
data was quite beyond the capabilities of numerous machining firms, several of whom
specified their data capacities in feet of paper tape.

One company was found in Brighton which would probably have been able to
fabricate the surfaces. However, the eventual cost per surface and inconvenience of
working with an out-of-town company, as well as the likelihood of needing several
attempts to get a usable surface, led to the decision to purchase milling equipment

and manufacture the surfaces at the Radiation Laboratory.

5.2 Dielectric materials

Although a dielectric surface introduces greater complexity in construction and in
backscatter modeling, the greater similarity to natural terrains led to the selection of

a dielectric surface rather than a conducting surface. There were multiple conflicting
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requirements for the dielectric material:

e homogeneous (to avoid volume scattering)

e high permittivity (to assure a measurable return signal)

o lossy (to eliminate reflections from the bottom surface of the dielectric)

e machinable using standard milling equipment

e inexpensive

o low density (to eliminate need for elaborate target mount or special handling)

A variety of candidate materials were examined [55]. Machinable wax and mix-
tures of machinable wax and graphite were rejected as too expensive and insuffi-
ciently strong to support their weight (a one meter square slab might crack when
being moved). A mixture of graphite, titanium dioxide, and silicone resin suggested
by engineers at Texas Instruments was attempted but was never made to solidify. A
mixture of plaster and conductive paint was rejected due to concerns about homo-
geneity and durability (cracking under tension). The material ultimately selected,
ultra-high molecular weight polyethylene (UHMW), was chosen for its good machin-
ability, homogeneity, and reasonable cost.

The search for dielectric materials led to a change in the dimensions of the arti-
ficial surfaces. This change was principally due to mass and cost constraints. A 1 m
X 1 m X 15 cm slab of these materials could measure from 130 to 260 kg, requiring
a very strong (and probably highly scattering) surface mount and special support
to prevent the material from cracking under its own weight. By changing the sur-
face scale by a factor of 3.538, the X-band measurement could be simulated using a

35 GHz radar with a smaller and shallower target surface. Surface strength was less
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Figure 5.1: Configuration for measuring UHMW dielectric constant.

critical at the new scale, and obtaining a measurable return was less a problem at
35 GHz than at X-band. The decision to reduce the surface scale was fortuitous in
view of problems with the milling table that will be described later. A surface size of
18 inches (45.72 cm) square was selected based on availability of UHMW slabs. This
size corresponds to an X-band surface measuring 63.7 in. (161.8 cm) square and is
sufficiently large to allow two radar looks with minimal footprint overlap.

Because UHMW polyethylene is not lossy, elimination of reflections from the
bottom surface of the slabs was accomplished using the time-gating feature of the
network analyzer that processes the radar signals. Several 6-inch slabs of UHMW
were placed beneath the milled slab to move the bottom interface away from the
milled surface. This configuration is described and illustrated in Chapter VI.

The dielectric constant of the UHMW slabs was measured using the 35 GHz radar
as shown in Figure 5.1. The radar was pointed vertically downward at a stack of
UHMW slabs (two 6-inch and one 2-inch) and the radar bandwidth set to 3 GHz

for maximum resolution. A metal plate was inserted at various levels in the stack to
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identify the reflections from the top, bottom, and internal interfaces. Removing the
plate, the time interval between the returns from the top and bottom was found to
be 3.397 ns. The round-trip time for travel through free space at the same distance
(0.355 m) is 2.37 ns; the ratio of these times gives the index of refraction, n = 1.433.

The dielectric constant is then obtained directly:
e = n? = 2.05. (5.1)

Polyethylene has extremely low loss in tabulated values below and above 35 GHz;
it was believed that the loss tangent would be too small to measure at 35 GHz
using techniques available in the Radiation Laboratory. The dielectric constant was

therefore assumed to be completely real.

5.3 Surface Design Algorithm

The surface height was specified over a 1318 x 1318-point grid with a point
spacing of 1.23 mm (0.04843 in.) at the X-band scale or 0.3477 mm (0.01369 in.) at
the 35 GHz (milling) scale. The surface profile was generated using a variation of the
two-dimensional spectral synthesis technique described by Saupe [51] and explained

as follows: The desired surface spectrum is the two-dimensional power-law spectrum:
Sz(fr) = af;7, (5.2)

where f, = (f? + f2)"/2 is the radial spatial frequency. First, a set of 2048 x 2048

discrete Fourier amplitudes Z;(f,, f,) is generated such that

1
N2A?

\A*Z(for £,)* = Sz(fz, £,) (5.3)

for all points within the circle f, < f., where f., the maximum spatial frequency, was

(2A)™' = 406.5 m™'. Point spacing in the frequency domain was A; = (NA)T =



86

0.39698 m™!. In other words,

B(for ) = VAL, (54

A dimension of 2048 is chosen because the FFT algorithm requires N to be an integer
power of two, and 1024 is not large enough. The amplitudes 7, are then multiplied

by a randomness factor and a phase factor:

2(fer ) = 220 £,)G€°, (5.5)

where G is a Gaussian random variable with zero mean and unity variance, and
® is a phase random variable uniformly distributed over [0,2r]. In this way, the
mean value of the normalized square of the spectral amplitudes still satisfies (5.3).
To ensure that the surfac heights are real-valued, the above procedure is used to
generate half the surface amplitudes, and the other half are obtained by enforcing

Hermitian symmetry:
Z(fzafy) = Z*(—fr’ _fy)v (5'6)

The randomized coefficien s Z(fom, fu#) constitute the fast Fourier transform (FFT)
of one realization of a rough surface random process having a roughness spectrum
given by (5.2). To obtain the two-dimensional surface profile, an inverse FFT is

performed on the coeflicient array:
] N-1N-1
Z(zk,y1) V2 Z Z(fom, fyn) exp(—12w[km + In]/N). (5.7)
m=0 n=0
The resultant synthetic surface array has 2048 x 2048 points; profiles were truncated
to 1318 x 1318 points for surfaces in the present study.
The surface roughness parameters, a and v in (5.2), were selected to be similar

to those measured at Mount St. Helens and to be physically realizable on UHMW

slabs using the milling machine. At the time the first artificial surface was designed,
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the estimated two-dimensional roughness spectrum based upon survey site 1 and
profilometer scans 3a and 3b had @ = 1.52 x 107* and 4 = 3.29. (The surface
spectral estimate was subsequently changed to a = 1.7672 x 10~* and 7 = 3.345.)
The UHMW slabs were 2 inches thick; reserving a minimum thickness of one-half
inch for stability left a possible total relief of 1.5 inches. In order to obtain a surface
profile having this amount of relief after scale reduction by a factor of 3.538, it was
necessary to reduce the roughness amplitude, a, by a factor of 7. The final roughness

spectrum used for the first surface analogue, UHMW]1, had the mixed form of (4.50):

(

(a/0®)frexp(=f2/[207]), fr <0.01 m™

Sz(fr) =9 af7?, 000m™ <f,<f»  (58)
0, f2 1

\

where

a = 217143 x 107°

vy = 3.29

a = 1.6438

o = 0.00482805
f. = 406.5m™!

The parameters « and o were chosen as in Chapter IV by enforcing continuity of the
spectrum and its first derivative. In effect, however, these parameters had no effect
(except at frequency zero) due to the limited resolution of the spectral synthesis
technique; the lowest non-zero frequency (equal to 1/NA) was 0.39698 m~!, which
fell outside the Rayleigh region of the mixed spectrum.

Spectral parameters for the second and third surface analogues were selected to

span the range of spectral slopes (or alternatively, fractal dimensions) that natural
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Surface UHMW1 UHMW2 UHMW3

a 2.17143 x 107 | 2.17143 x 1075 | 2.17143 x 10~°

¥ 3.29 3.8 3.545

a 1.6438 19.8523 5.70356
o 0.00482805 0.00456435 0.00469065
D; 2.355 2.1 2.2275

Table 5.1: Spectral parameters (a, 7, @, and o in (5.8)) used and fractal dimension
Dy of the surface analogues.

terrains reasonably assume. The roughness amplitude, a, was held constant; the
spectral slope, v, was set to 3.8 for UHMW?2 and to an intermediate value of 3.545
for UHMWS3. The values of the four spectral parameters and the associated fractal

dimensions are summarized in Table 5.1.

5.4 Milling System

The milling system was ordered in November 1991 and arrived in early 1992. The
system has existed in two forms: the original configuration, as supplied by Techno,
and the upgraded configuration made necessary due to reliability problems with the

Techno components.

5.4.1 Origi al Milling System n

The system as originally purchased (see Figure 5.2) consisted of a Techno three-
axis gantry positioning table, a Kress variable-speed electronic grinder, and a Techno
MAC 100 programmable position controller, all purchased from Techno, New Hyde

Park, New York; CNC Software’s Mastercam CAD/CAM software, purchased from
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PDS 486/33 Techno MAC 100 3-axis milling table
computer

X drive - X-axis motor

serial port ¥ y drive > y-axis motor

z drive > z-axis motor

Figure 5.2: The original milling system supplied by Techno.

CIM Solutions of Canton, Michigan; and a Peer Data Systems 486/33 MHz DOS-
compatible computer, purchased from Peer Data Systems of Ann Arbor, Michigan.
The components of the system are described in this section.

The three-axis gantry positioning table holds the construction material in place
and allows the milling tool to be moved to designated zyz coordinates. The table and
z- and z-axis supports were constructed from extruded aluminum section. Precise
motion in the z, y, and z directions was obtained via the rotation of ball screw
assemblies by stepper motors. The ball screw mechanisms were covered by expanding
vinyl bellows to protect them from dust and shavings. Limit switches at one end
of each axis’s range of motion provided a mechanism for zeroing the table. Table
positioning was theoretically accurate to 0.01 mm (0.0004 inch), which was the linear
motion obtained by rotating a stepper motor one step. This precision far exceeded
the requirements for this project. The table was ordered in a special size, 48 x
49 inches, and with extra clearance (8 inches) for the z axis to allow milling a fairly
thick slab measuring one meter square in a single piece.

One problem that became apparent soon after starting work with the table was

that the table sagged somewhat under its own weight due to support beams that were
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insufficient for the table size. A test load of 227 kg (500 pounds) distributed over
a 1 m? area in the center caused a sag of 4.3 mm. To reduce the sag to acceptable
levels, Techno provided an iron L-beam that was attached to table surface. The
L-beam corrected the sag problem but reduced the usable table area. Fortunately,
the desired surface size had been reduced by this time.

The Kress electronic grinder rotates the milling tool, removing surface material
as it travels along a programmed path. The grinder was attached to the z-axis and
held an endmill (milling tool) in a collet of 3/8, 1/4, or 1/8-inch diameter. The
rotation speed was adjustable from 8,000-20,000 rpm.

The MAC 100 programmable position controller accepts toolpath coordinates
from a post-processing program running on the 486 computer and translates these
into properly timed currents in the windings of the stepper motors on the three axes.
The MAC 100 controller was built by Techno, using some Techno-designed boards
and other components built by Compumotor. The controller operated as an open-
loop system; i.e., there was no position feedback from the axes to the controller, so
the controller had no way to verify that the stepper motors and axes had moved to
specified positions. Open-loop control is not uncommon in stepper motor systems,
but it is less reliable than closed-loop control, as will be discussed later.

The CNC Software Mastercam Mill package is an extensive program for designing
complex objects, producing machine toolpaths for the fabrication of these objects,
and controlling the machining equipment while executing the machine toolpath in-
structions. (However, the Techno controller must be operated by a Techno post-
processor program and not from within Mastercam.) Because the surfaces in this
study were extremely large and complex, and because they were produced by an

external program on another computing platform, many of the features of the Mas-
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tercam package were not used. The principal use of the Mastercam package was to
read a file of surface height coordinates and write files of toolpath coordinates for
different milling tools. (Several sizes of tools were used in different stages of the
milling process.) Techno sells a version of Mastercam designed for 286 computers;
the faster and more sophisticated 386 version was needed in this study, so it was
purchased from CIM Solutions.

Both Mastercam and the post-processor program were run on the Peer Data
Systems 486/33 MHz DOS-compatible computer. The computer had 16 megabytes
of random access memory and a 210 megabyte hard disk drive, and was augmented
with an Ethernet board to allow file transfer with the Unix workstations on campus.
The communications link was necessary because Mastercam could process only a
section of the artificial surface at a time. In the process, very large disk files were

generated; it was not possible to retain all the surface files on the hard disk.

5.4.2 Failure of the Techno System

The Techno system began having problems in October 1992. The z-axis motor
either slipped or rotated in the wrong direction and seemed to be overheating during
some test runs on wood surfaces. Upon inspection, the solder joints on the connector
card inside the motor housing had heated up enough to melt the solder. Engineers
at Techno were unable to determine a cause for the failure.

In January 1993, it was proposed that the z-axis motor might be overheating due
to excess weight on the z axis. The z axis was reverse-mounted on the Techno table
to allow the full 8 inches of clearance; i.e., it was installed so that the movable carrier
stayed fixed while the rest of the z-axis assembly moved up and down. To relieve

part of the load on the z-axis motor, an 11.5-inch tension spring and support rod
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endmill

Figure 5.3: A load-bearing spring was installed on the z-axis to help support its
weight.

were installed as illustrated in Figure 5.3. The spring constant and position were
selected such that the spring force balanced the weight of the z-axis assembly in its
mid-position. The spring seemed to solve the slippage problems. Milling on the first
UHMW slab commenced in February 1993.

By early March, the machine seemed sufficiently reliable to leave it operating
overnight, which was a great advantage, considering the very lengthy milling times.
However, the machine began to malfunction again in late March: this time, the y
axis became confused during a finishing run, resulting in a deep gouge in the slab.
Manual commands to the mill were sporadically executed incorrectly. At this point,
AC line noise was suspected, so an isolation transformer was installed. Machine
operation was then normal again.

In mid-April, the problem recurred. Both the y and 2z axes malfunctioned during
an overnight roughing operation. The 1/4-inch endmill had milled down through the

slab and through part of the table itself. The simultaneous failures of two axes led
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PDS 486/33 Kress Electronic Techno
computer Grinder MAC 100
AT6400 indexer 118, 26 VAC
(in slot) # transformer
AT6400 Compumotor SC30 3-axis milling table
connector box Drive Rack
- X drive > x-axis motor | encoder
> y drive > y-axis motor | encoder
- Z drive > z-axis motor | encoder |||
I ~]
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Figure 5.4: The upgraded mill configuration.

to the conclusion that the Techno MAC 100 controller was not reliable. This was
a reasonable assumption in view of the other engineering problems with the Techno

equipment.

5.4.3 Upgraded Milling System

The upgraded milling system is shown in Figure 5.4. The Techno MAC 100 was
replaced by a Compumotor AT6400 Indexer and a Compumotor SC30 Motherboard
Rack, purchased from Amerinetics of Novi, Michigan. Optical encoders (part num-
ber MOD5641-25-100-L) were purchased from BEI Motion Systems of Plymouth,
Michigan. Motion Architect software, included with the AT6400 from Compumotor,

was used with Microsoft Visual Basic to write new control software. The indexer,
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drive rack, and encoders arrived in late July 1993.

The AT6400 indexer is the central controller of the upgraded system. The indexer
receives ASCII-format move instructions from the control software, for example,
“move z axis 100 steps right.” The indexer then converts these instructions to step
pulses and direction signals that are sent to the stepper motor drive card for each
axis. These drive cards were removed from the MAC 100 but were manufactured by
Compumotor; they were installed in the Compumotor SC30 Motherboard Rack for
use in the upgraded system. The three stepper motor drivers use the step pulses and
direction signals to drive the windings in the stepper motors in sequence, producing
rotation in the specified direction.

The optical encoders were installed to provide feedback to the indexer. They
were mounted on the stepper motor cases using epoxy such that the motor shafts
projected through the encoders. The encoders consist of two LED’s and a rotating
glass disc with 100 equally spaced lines. As the encoder turns, light from an LED is
alternately blocked and then transmitted through the glass disc. The two detectors
are in quadrature, resulting in 400 encoder pulses per revolution. The encoders are
relative sensors—they do not provide absolute coordinates, so the indexer must keep
a count of encoder pulses. The control software was written so that after each mill
move, the encoder step count was compared to the stepper motor step count. If the
counts disagreed by more than two steps, the program stopped, and the mill was
deactivated.

In addition to the encoder inputs, the indexer also had inputs from a home limit
switch on each axis and a limit switch on the z axis that stopped the mill if the 2
axis went too low. Additional inputs from jog switches allowed manual control of the

mill position. The indexer also had programmable outputs, one of which was used
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to operate a relay that activated and deactivated the grinder motor.
One other component of the MAC 100 was retained: the large transformer that
converted 115 VAC down to 18 and 26 VAC to supply the motherboard rack and

stepper motor drives. A transformer malfunction seemed unlikely.

5.5 Milling procedure

5.5.1 Generation of Toolpath Files

Surface fabrication begins with the spectral synthesis procedure, described earlier
in this chapter, which results in an 22.6 MB ASCII file of surface elevations arranged
in a 1318 x 1318-point grid. Because the Mastercam software cannot accept input
of more than 100 lines of ASCII surface elevations, the surface must be segmented
into thirteen sections of 99 lines plus a fourteenth section of 31 lines. The FOR-
TRAN program ds2mcinv.f performs this segmentation and applies the scale factor
converting the surface from the X-band scale down to the 35 GHz scale. The pro-
gram writes the surface sections as long lists of zyz coordinates. The resultant files
measure about 5 MB each.

The edges of the surface analogues were rounded by subtracting the random
scaled height from a 1/4-inch radius along each edge, as shown in Figure 5.5. The
rounding was performed so that no non-random sharp edges would be illuminated
by the radar. Most rays striking the rounded edges should be scattered away from
the radar. The FORTRAN program edgemax.f reads the surface file and writes a
3.8 MB file of edge coordinates.

A couple of sections at a time are downloaded to the 486 computer. Mastercam is
then used to convert the surface elevation files into toolpath files at two resolutions.

Roughing files contain toolpaths for a 1/4-inch ball-end endmill. This tool is used to
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T~
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Figure 5.5: Edges of the artificial surface are rounded by subtracting the surface
elevation from a rounded reference surface with a 1/4-inch radius of cur-
vature.

remove the bulk of material at a rate much faster than the smaller tools. Finishing
toolpaths are much more detailed (and much larger) and are used for the passes
using the 1/16-inch and 1/32-inch ball-end endmills. Cross toolpaths are for the
orthogonal finishing pass with the 1/32-inch endmill.

The toolpath (.NCI) files are produced in several steps [54]. An ASCIIfileis input,
and the resultant surface description is saved in Mastercam format as a geometry
(.GE3) file. The next step is to chain the surface, i.e., to define the contours to
be milled. This creates a chaining (.NCS) file. After chaining, which need be done
only once per section, the tool parameters and desired resolution are entered, and
Mastercam writes surface (.CDB), offset surface (P.CDB), and toolpath (.NCI) files,
in addition to some miscellaneous small intermediate files. When all three toolpaths
have been written, the roughing toolpath is filtered by removing points within a

specified distance from the splines used to define the surface. This significantly
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File type | extension | roughing | finishing | cross
geometry | *.GE3 12
chaining | *.NCS 12.5 12.5 12.5
surface *.CDB 0.4 3.2 3.2
offset *P.CDB 0.4 3.2 3.2
toolpath | *.NCI 0.02 4.6 4.6

Table 5.2: Types and sizes (in MB) of Mastercam files.

decreases the size and execution time of the roughing toolpath.

Entering, processing, and transferring the generated files for a single section takes
about 3 hours. The sizes of the various Mastercam files are given in Table 5.2. Some
of these may be deleted (the offset surface and all but one of the chaining files), but
the rest are uploaded to a Unix workstation and saved on magnetic tape, to avoid

lengthy re-processing if a toolpath file is lost.

5.5.2 Milling machine operation

The surface slab, which has been milled flat using a flat-end endmill, is mounted
on the milling table after aligning its edges with the z and y table directions. It is held
in place using aluminum angles tightened against each side of the slab. The mounting
brackets are tightened carefully because re-aligning the slab would be extremely
difficult if it came loose. In several instances, it was necessary to mill the aluminum
brackets down a few millimeters in places where the surface was low near its edge.

A Visual Basic program called mill controlled the entire milling process. Vi-

sual Basic was quite useful because it allowed easy construction of virtual control
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panels and readouts describing the milling machine status. During operation, the
program displays the current position of the mill (in steps and in inches), the encoder-
determined position (in steps and in inches), and an estimate of time remaining until
completion.

To begin roughing, a 1/4-inch ball-end endmill is placed in the grinder collet and
tightened firmly. After homing the mill to zero using the limit switches on the three
axes, the endmill is positioned over the starting corner of the surface. It is lowered
carefully until a sheet of paper can no longer slide between the endmill and the
surface. This position is recorded as the reference level. Next, the endmill is moved
over a small block of metal attached to the table near the slab, and the process
is repeated. The z coordinate is recorded and is used later to verify the endmill
position. For example, the indexer and program have no way to detect when an
endmill slips within the collet, but the metal block test will show the slippage. The
block also provides a way to determine the starting position after changing tools.

The first roughing pass is offset above the reference plane so that the maximum
depth milled is 0.2 inches. Subsequent passes remove 0.2-inch layers; roughing is
continued until only 0.1 inch of material to be removed remains. The electronic
grinder is set to speed 2 for roughing. Roughing takes about 45 minutes per section
per pass.

An intermediate pass is next made using the finishing toolpath and a 1/16-inch
ball-end endmill. The intermediate pass is offset 0.025 inches above the final surface.
The grinder is set to speed 1 for the intermediate and finishing passes. The slower
speed is necessary due to the reduced rate at which shavings are cleared from the
flutes in the smaller endmills. (Shaving buildup causes the endmill to become hot.)

The intermediate passes last about 5 hours per section.
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radius = 0.0156 inch
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spacing = 0.0137 inch

Figure 5.6: The spacing between adjacent finishing rows (0.0137 inch) was slightly
less than the radius of the 1/32-inch ball-end endmill (0.0156 inches).

The edges are milled after the intermediate pass using the 1/16-inch endmill and
the toolpath written for the edges. Two edge passes are completed: one with offset
0.1 inch, and another with an offset of 0.025 inches.

The finishing passes are run using a 1/32-inch ball-end endmill. The miniature
endmills were purchased from R & F Micro Tool Co. of Pembroke, Massachusetts.
Finishing passes last 5 hours as well. In milling test wood surfaces and the first
UHMW surface, it was determined that often the surface material was not completely
removed in the finishing passes. This was partially due to the limited overlap between
adjacent rows when using the 1/32-inch ball-end tools (as shown in Figure 5.6), and
partially due to the endmills becoming less sharp with use. The residue remaining
could sometimes be pulled off in strips, but often it formed individual fibers that could
be described as plastic “peach fuzz.” Sanding, singeing, and brushing were tried in
attempts to remove the fibers, but the procedure found to produce the fewest fibers

was to make the initial 1/32-inch finishing pass in the cross direction (i.e., orthogonal
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to the section’s long dimension) using zero offset, followed by a lengthwise finishing
pass (i.e., along the section) with a positive offset of 0.002 inches. This procedure
reduced the fibers to acceptable levels.

Keeping the tools sharp was a constant task. The endmills tended to become dull
quickly due either to the material or to the high rotation speed. Tool dullness was
particularly troublesome with the 1/32-inch endmills, which have very little cutting
area, and which need to be the most sharp. Some of these endmills seemed dull when
new. After consulting with R & F Micro Tool, endmills coated with titanium nitride
(TiN) were found to keep a sharp edge longer.

The finishing process was quite lengthy, with 28 section passes at 5 hours each.
The mill ran unattended, but was checked by an operator every few hours. Three

sections per day was the effective maximum rate of completion.

5.6 Surface Completion and Temperature Sensitivity

Programming and testing of the upgraded system continued through September
1993. Improvements during this period included the addition of a blower fan to keep
the z-axis motor cool and optimization of mill travel speeds for roughing, intermedi-
ate, and finishing passes. In late September, work was started on the first artificial
surface, UHMWI.

A new problem appeared during the intermediate-scale milling on UHMW1. Af-
ter noticing that the slab was slightly loose within the holding clamps early in the
morning, a heat gun was used to heat the surface slightly. The slab soon became
immobile, having expanded due to the increase in temperature. The thermal expan-
sion and contraction became a significant problem in the milling process. When the

temperature dropped, the slab became loose; when the temperature rose too high,
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the slab bowed upward because the mounting brackets prevented lateral expansion.
Either of these changes left visible ridges in the milled surface. The thermal contrac-
tion and expansion tended to lag behind the room temperature by several hours. A
heat lamp and space heater were tried as means of keeping the surface warm, but
neither could keep the slab at a constant temperature. In October, the steam supply
to the room heater was turned on, but the radiator was unable to keep the room
above 20 °C at night even at its maximum setting. (The milling machine was located
in room 422-4 in the Aerospace Engineering Building; this room is quite large with
a 20-foot ceiling and has windows on three sides which are poorly sealed.)

The ambient temperature had been 24-27 °C when the surface was first mounted,
maintaining this temperature became more difficult as outside temperatures fell
through October. After repeated maintenance work on the room heater and im-
proved sealing on the windows failed to help, a cubical enclosure (“the Greenhouse”)
was constructed from light wood and plastic sheeting around the milling machine.
A compact electric heater with thermostat and a blower fan were placed inside in
an attempt to stabilize the the temperature. The electric heater could not maintain
an 80 °F air temperature around the clock, but it did provide sufficient heat during
the day to allow UHMW!1 to be completed on 19 November. A verification scan was
performed on the surface before removing it from the mounting clamps. The scan is
described in the next section.

Milling on UHMW?2 began on 11 March 1994 and was completed on 14 April.
Temperature stability was less problematic because the milling was started at a lower
temperature that was maintainable by the electric heater.

The milling machine was moved to room 422-15 before starting UHMW3 on

14 June. Room 422-15 had an air conditioner, which was necessary to avoid slab
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expansion due to overheating. UHMW3 was completed on 9 July.

5.7 Surface Verification

After each surface was completed, the electronic grinder was removed and a small
ranging laser mounted on the milling machine. The new laser, which was purchased
to replace the surveying laser used in Chapter III, produced elevation measurements
over a limited range at a very rapid rate. The laser generated an output voltage
proportional to the measured distance; this voltage was read by a sampling multime-
ter and relayed to the 486 computer through an HP-IB link. The surface scanning
program, millscan, was written in Visual Basic and was quite similar to the milling
program.

The laser beam was carefully adjusted to be vertical and was aligned as closely as
possible to the origin of the milled surface. The surface scan consisted of 264 x 264
points with a point spacing equal to five times the point spacing used in the original
surface specification. The elevation at each point was based on the average of 100
samples measured at two-millisecond intervals.

An error estimate was calculated by subtracting the scanned elevations from the
elevations specified in the original surface file. The error estimate from UHMW1 is
shown in grayscale in Figure 5.7. No systematic features are visible in the file. The
surface in the figure is actually a subset of the error estimate; several rows around
the edge were removed because the laser range estimates were visibly wrong near
the mounting brackets. The corrupted readings were most likely due to the angled
orientation of the detector which senses the reflected laser light. This configuration
seemed to decrease the laser accuracy on sloped surfaces, suggesting that the width of

the error distribution (shown in Figure 5.8) was inaccurately large. The repeatability
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Figure 5.7: Grayscale file of estimated error in UHMW1, calculated by subtracting
the scanned height from the specified height in the original surface file.
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Figure 5.8: A histogram of differences between the specified surface elevations and
the scanned surface height.
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of the endmill position on the metal block position to within 3-6 steps (0.03-0.06 mm)
after numerous milling sessions supports the hypothesis that errors in the milled
surface elevations are below the resolution of the scanning laser.

Fabrication of the surface analogues was by far the most time-consuming part of
this study. Measurements of radar backscatter from these surfaces is described in

the next chapter.



CHAPTER VI

RADAR MEASUREMENTS

Backscatter from the artificial power-law surfaces was measured at 35 GHz us-
ing the Radiation Laboratory Millimeter-wave Polarimeter. Measured values of the
scattering coefficients of the scaled surfaces were then interpreted as X-band scatter-
ing coefficients of equivalent larger-scale surfaces. (The scale factor turns out to be
unity.)

In this chapter, the radar components and measurement configuration are de-
scribed. The calibration and measurement algorithms are discussed, and final post-

processing and data reduction steps are detailed.

6.1 35 GHz Radar

The Radiation Laboratory Millimeter-wave Polarimeter (MMP) was first assem-
bled in 1986 [62] and was most recently rebuilt in 1994. The MMP is a dual-antenna,
network-analyzer-based scatterometer designed for operation at 35 GHz. A phase-
locked on-board local oscillator signal is mixed with the 2-4 GHz IF sweep received
through cables from the network analyzer to produce a transmitted wave sweep from
34 to 36 GHz. The received signal is downconverted by mixing with the signal from

a second local oscillator, resulting in a 2-4 GHz IF signal that is transmitted to the

105
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network analyzer through coaxial cables. The transmit and receive local oscillators
are phase-locked by split signals produced by an on-board X-band oscillator that are
multiplied up to the LO frequency. Motorized rotating wave plates in the transmit
channel allow the transmission of arbitrary polarizations, and separate horizontal (H)
and vertical (V) receive channels allow the simultaneous measurement of H and V
return signals when using a network analyzer with dual-channel reception capability.
The transmit and receive assemblies may be separated for use as a bistatic radar. In
addition, the removable transmitter module may be installed in the receiver assembly
allowing monostatic operation using a single antenna. A block diagram of the radar
is shown in Figure 6.1.

For this study, the radar was configured as a dual-antenna, quasi-monostatic
instrument operating at the near edge of the far-field region. The transmit and
receive antennas were installed adjacent to each other and offset by 4.8° so that the
transmit and receive antenna boresights converge at the target range. The 3 dB
product beamwidth was 3° and the 6 dB product beamwidth measured 4.2°. While
the original radar specifications called for components with a bandwidth of 2 GHz, a
slightly wider bandwidth of 2.4 GHz (33.6-36 GHz) was used for the measurements
in this study.

An HP 8720 network analyzer was used to process the returned signals and trans-
late them for output to a Gateway 2000 DOS-compatible computer. The HP 8720
was preferred over an HP 8753 because its frequency range allows input and output
of signals up to 4 GHz, making IF sweeps of 2-4 GHz (or 1.6-4 GHz) possible. This
advantage was offset by the test set of the HP 8720, which has only two ports, pre-
cluding reception of both V and H channels simultaneously. An external microwave

switch was used to connect either the V or H receive channel to the network analyzer.
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Figure 6.1: Block diagram of the 35 GHz radar.
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This switch was operated by the computer using an HP 3488A switch/control unit.

The time-gating capability of the network analyzer allows the operator to isolate
the response from a selected range interval in the time domain. This feature was used
in the present study to mask out reflected signals from the bottom of the UHMW
stack, the turntable, the wall behind the target, and other objects in the room,
making accurate cross section measurements possible without an anechoic chamber.

The network analyzer, transmit polarization switches, receive channel switch, and
target turntable were all controlled by a Gateway 2000 4DX2-66V DOS-compatible
computer using control software written in Visual Basic. Raw and time-gated trace
data were stored on the computer’s hard disk drive. The radar and measurement

control system is shown in Figure 6.2.

6.2 Measurement Configuration

The scattering measurements were performed in a side area of the Radiation Lab-
oratory Bistatic Scattering Facility, Room 422-4, Aerospace Engineering Building.
Figure 6.3 shows a measurement schematic.

The milled surface was placed atop an 18-inch stack of UHMW slabs (two 6-
inch slabs on top of three 2-inch slabs) in order to increase the delay between the
reflections from the top and bottom surfaces, allowing use of a time gate to isolate
the upper surface reflection. The slabs were flat except for a small air gap around
the edges of the two 6-inch slabs and a slightly larger air gap (maximum thickness:
1 mm) between the milled surface slab and the top of the UHMW stack. This
larger air gap was due to a slight warping of the milled slab caused by the release

of internal stresses during the milling process. A dielectric filler (Vaseline petroleum

jelly, e, = 2.16 — j0.0022 at 10 GHz [29]) was used to fill the air gaps. Plots of
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Figure 6.3: Schematic of measurement setup.

the time-domain response before and after applying the filler showed a reduction in
reflections from the internal interfaces.

The UHMW stack was placed on a square piece of Eccosorb AN-PXP-74 foam
absorber. Surfaces UHMW1 and UHMW?2 were measured with the slab stack and
absorber placed on the large turntable used for the sandbox in the bistatic system. A
much smaller turntable was used for the UHMW3 measurement; a square of 1/4-inch
plexiglass was placed between the turntable and absorber to increase stack stability.

The target turntable was placed about a meter in front of an absorber wall to
eliminate reflections from the corner of the room. Other objects were removed so
that the artificial surface was the sole object at target range near the main beam of
the antenna. A large section of absorber was placed in possible sidelobe directions,
but no significant reflections due to sidelobes were detectable.

The radar transmitter and receiver assemblies rotated about a front axis that
was mounted on the front of a large steel frame. The incidence angle was adjusted
by pivoting the radar around the front axis, using a small electric motor to reel in a
cable attached to the rear plate of the receiver. The steel frame was attached to a
manually operated, mechanically telescoping lift (a Genie Superlift, manufactured by

Genie Industries of Redmond, Washington). The lift was used to raise the radar to
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heights up to 3.5 m, making measurements at near-normal incidence angles possible.

The system had a high signal-to-noise ratio. The signal peak corresponding to a
1.75-inch sphere was about 58 dB above the noise level before calibration. Isolation
between the co- and cross-polarized channels was about 25 dB before calibration and

about 42 dB after calibration over most of the bandwidth.

6.3 Calibration

The radar was calibrated using a recent technique for polarimetric coherent-on-
receive radar systems [46]. The technique uses two calibration targets (a metallic
sphere and a depolarizing target) for the initial system calibration and a sphere
alone for subsequent gain corrections. A 1.75-inch (4.445 cm) diameter steel sphere
and a pair of 0.028 cm diameter x 5.4 cm lengths of wire mounted in styrofoam were
used as the calibration targets for these measurements. The calibration technique is
described in Appendix B.

The radar system stability needed to be established before measurements of scat-
tering by the artificial surfaces could begin. Repeated calibrations using a sphere and
depolarizing target were used to test system stability as reflected in the calibration
coefficients. Several problems were fixed in order to get repeatable values for the

time-invariant calibration constants c;, ¢;, c3, 71, and 7:

e The use of trace subtraction to remove the response from the calibration target
mount was discontinued because the mount position changed when placing or
removing the calibration target. Fortunately, the scattering cross sections of

the calibration targets were much higher than that of the styrofoam mount.

e A sturdier styrofoam column was used. The steel sphere used as a calibration

target was heavy enough to compress and give a slight tilt to the original
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styrofoam mount.

e A phase-lock problem was fixed by slightly changing the frequency of the X-

band oscillator used to phase lock the two local oscillators.

e The radar temperature was stabilized, first by installing sheets of clear plastic
to make the radar assembly near-airtight, and later by installing a heater inside

the enclosure.

e The calibration target was allowed to settle for at least 15 minutes after placing
it on the styrofoam target mount. Repeated tests indicated a non-visible sway
introduced by placing the target (especially the heavy sphere) on even the
sturdier styrofoam column. Target stability is particularly important while
measuring c;, 3, €3, 71, and 72; the settling period increased the repeatability

of these factors.

¢ A minimum warm-up period of one hour was selected for both the radar and

network analyzer.

These measures, together with more mundane practices like avoiding contact with
the radar cables or mount, brought the system to a sufficient level of stability, as
reflected in the time-invariant constants and the channel gains R; and Rj.

Test measurements of the calibration sphere (Figure 6.4) and a smaller sphere
measuring 1.188 inches in diameter(Figure 6.5) showed that deviations from theoret-
ical scattering cross sections were less than 0.5 dB (usually less than 0.3 dB) and that
cross-polarized isolation was good, usually 40-45 dB or more. Although the system
stability seemed good over fairly short periods, it was suspected that longer-term

variations would be greater. A conservative approach of calibrating before and after
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Figure 6.5: Test measurement of 1.188-inch diameter sphere.
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each rough surface data set was adopted. During the processing of the measured
data from UHMW1 and UHMW?2, it was noticed that the magnitudes of R; and
R, computed after a measurement run were slightly different from those measured
before the run. The relative phases also varied as a function of frequency. Linear
interpolation of the magnitudes and phases of R; and R; with time was used as a
first-order correction to minimize the effect of the changing R parameters. Values
of R; and R, for a given trace are based on linear interpolations computed with
respect to the actual times of the previous and subsequent calibrations and the start
and stop times of the measurement set. Test measurements in which the phases
of R; and R, were 180° off showed that errors in ¢ were only about 0.6 dB; the

linear-interpolation-based values should be considerably more accurate in phase.

6.4 Measurement Procedure

After characterizing the system by performing a full calibration to determine
the time-invariant calibration coefficients, the UHMW stack was placed upon the
turntable, and the surface to be measured was placed on the stack, as discussed in
Section 6.2. Dielectric gel was used to fill in air gaps under the edges of the surface
to be measured.

Before beginning measurement, the calibration sphere (1.75 inches in diameter)
was placed on its mount. The radar was moved to the operating range for this
study, 2.7 m. (The range was measured using a 2.7-meter length of wire attached
to the radar faceplate.) After carefully peaking the sphere signal by adjusting the
radar azimuth and elevation angles, a red targeting laser (attached below the receiver
antenna) was adjusted to point at the center of the antenna beam at the operating

range. The laser made later pointing much simpler.
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The artificial surfaces were measured at incidence angles ranging from 15° to 60°
at 5° increments. The measurement sequence at each incidence angle consisted of

the following steps:
e with radar lowered, set incidence angle, 6
e set h, radar height, and d, distance from lift base to target surface
e raise radar in elevation to point at sphere and calibrate
e reset incidence angle, §
e raise back to height h and position using target laser and range wires

e measure 60 samples of surface backscatter using VV, HV, VH, and HH polar-

izations, rotating the target 5° between measurements
e raise radar in elevation to point at sphere and recalibrate
A few additional sphere measurements were inserted between calibration sets.

6.5 Post-Processing and Data Reduction

During the measurement runs, raw trace data is saved to disk files in binary form
for reasons of speed (it is much faster than saving gated data) and flexibility (the
data may be gated later in various ways).

Gating refers to the process of transforming a frequency-domain data trace to the
time domain; applying a time gate (i.e., a bandpass filter of specified width that is
used to eliminate signals from objects at ranges outside the gate), and transforming
the result back to the frequency domain. The network analyzer was set to its standard

gate shape; the gate width was set to 5 ns in order to include reflections from both
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near and far parts of the illuminated surface while excluding reflections from the
bottom of the stack. The gate width was reduced to 4 ns for incidence angles of 25°,
20°, and 15° due to the smaller range difference between the closest and most distant
surface points. The gate center was set at the mean target range, usually 18.01 ns.
After the surface and calibration target files have been gated, they are uploaded
to a Unix workstation for further processing. Measurements of the calibration target
are first converted into values of R; and R; as a function of frequency (i.e., for each of
the 401 discrete frequencies that make up a data trace). Next, files of gated surface
data are converted into average radar cross sections, o, for each polarization as if the

targets were point targets (rather than distributed targets) using

Urt(fi) = (|2\/7_r5,t(f,)|2), (61)

where r and t indicate the receive and transmit polarizations and may be either V
or H, and S,; is an element of the scattering matrix given by (B.43). The angle
brackets (-) in (6.1) denote averaging over all traces in a set (i.e., over all surface
measurements at various azimuth angles). Averaging is done separately for each of

the 401 trace frequencies.

6.5.1 Scattering Coefficients

Values of the scattering coefficient ¢°( f;) are obtained by applying an illumination
integral correction to o(f;). The correction may be derived from the forms of the
radar equation used for point and distributed targets. The point target form for a

target at boresight is [62)

_ PtGOtGOr)‘2 _];_

PO =~ ) (62)
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and the distributed target form is

_ PGuGor X

P(0)= =70 1(h,8)0°(6), (6.3)

where I(h,8) is called the illumination integral:

01(00 8)9, (01, 61) e dA. (64

1) = | @9)

Nlum. area

The illumination integral accounts for the variation in antenna gain and range
across the distributed target. The illumination integral correction is obtained by

setting the ratio P,(8)/P; equal in (6.2) and (6.3) and solving for ¢° in terms of o:

0 _ ]‘ .
o’(fi) = ma(ﬂ)- (6.5)

The program measillum.f was used to convert values of o(f;) to values of ¢°(f;)
for four polarizations at 401 frequencies per data set based upon the range and
incidence angle for each measurement. Normalized antenna patterns were based
upon data supplied by the manufacturer.

Final values of 6° were obtained by averaging over frequency. Errors in the
measured cross section of test spheres were greatest at the upper and lower ends
of the frequency band; frequencies outside the range 33.8-35.8 GHz were therefore
omitted from the frequency averaging.

The values of the scattering coeflicient were obtained using a surface model scaled
for use with a 35 GHz radar instead of an X-band radar. Using Table 11-6 of
Ruck [50], we see that the scaled quantities (denoted by primes) of length, conduc-
tivity, frequency, wavelength, permittivity, permeability, and radar cross section are

related to the unscaled quantities as follows:

I' = 1lp, (6.6)
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o' = po, (conductivity) (6.7)
= »f, (6.8)
N = Ap, (6.9)
¢ = ¢ (6.10)
b= (6.11)
o' = ofp, (radar cross section) (6.12)

where p is the scale factor (3.538 in this study). The conductivity scaling is not a
problem because UHMW has negligible conductivity.
The scale relation for the scattering coefficient of a distributed target, o, is

obtained by noting that the surface area, A, scales as length squared:

A= (1) = (1)2 _A (6.13)

p

Writing the scattering coefficient as the average radar cross section normalized by
area, we obtain

— @ — (a./pZ) — (0’) 0 (614)

Because 0¥ is a normalized quantity, it is independent of the model scale.

6.5.2 Independent Samples

Independent samples of the surface scattering were obtained through a combi-
nation of target rotation, spatial sampling, and frequency averaging. The radar
6-dB footprint was positioned as close to the surface edge as possible to minimize
overlap between footprints (Figure 6.6). Overlap of the 3-dB footprints was smaller
still. The surface was rotated 5° between measurements. A few measurement runs
were executed using smaller angular increments, A¢, in order to study the decorre-

lation as a function of target rotation. Based on limited angular decorrelation sets,
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Figure 6.6: Arrangement of footprints on slab

decorrelation angles for UHMW3 are approximately 1.1° for 60° incidence and 4.5°
for 15° incidence (based on 60-sample traces with A¢ = 0.5°). For UHMW1, the
decorrelation angle is approximately 1.5° for 60° incidence (based on a 90-sample
trace with A¢ = 2°). A data set with fine angular increments was not taken on
UHMW]1 at 15° incidence, but estimates based on the regular data sets indicate a
higher decorrelation angle, though probably still less than 10°. No decorrelation sets
were collected on UHMW?2. The number of independent samples obtained through
surface sampling N,, therefore varied from 300°/7.5° = 40 (estimate for UHMW]1 at
15°) to 60 (the nymber of samples collected) for UHMW1 at 60° and UHMW3 at all
incidence angles.

Values of ¢ were averaged over a 2 GHz bandwidth, increasing the effective
number of independent samples by a factor dependent on the footprint’s extent in
range. Ulaby et al. [57] give an expression for the effective number of independent

samples obtained through continuous integration over a swept-frequency bandwidth
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surface 6 Nss Nfa.vg Ntotal

UHMWI | 15° | 40 (est.) | 1.3 | 52

60° 60 5.1 306

UHMWS3 | 15° 60 1.3 78

60° 60 5.1 | 306

Table 6.1: Estimated number of independent samples

/OB (1 _ %) (Sizgg)zdg] —1, (6.15)

where o = 2rD/c and D is the difference in range between the nearest and most

B
Navz_
favg 2

distant points in the radar footprint. Using the dimensions and bandwidth from the
present study, Nyq, can be shown to vary from 1.3 at 15° incidence to 5.1 at 60°
incidence.

The total number of independent samples, N;oq1, is calculated by multiplying the

numbers gained by spatial sampling and frequency averaging:

Niotal = NsaNfaug (616)

The resulting numbers are listed in Table 6.1. Values of N;oe for UHMW2 were
probably slightly lower than those of UHMW3 due to decreased roughness.

Values of the backscattering coefficient measured for the three surfaces are given

in Chapter VII.



CHAPTER VII

ROUGH SURFACE SCATTERING MODELS
AND COMPARISONS TO EXPERIMENT

The surface scattering measurements described in the previous chapter were per-
formed in May and July of 1994. In this chapter, results of those measurements are
shown and compared to predicted values of 0° resulting from several rough surface

scattering models.

7.1 Experimental Results

Measured values of 62, and o}, for the three artificial surfaces are shown in Fig-
ure 7.1. The open symbols represent VV polarization and the filled symbols represent
HH. Backscatter dependence on the surface roughness behaves as expected, with the
roughest surface (UHMW1) having the highest backscatter, followed by the interme-
diate surface (UHMW3) and the smoothest surface (UHMW?2). The backscattering
coefficient decreases with increasing incidence angle for all three surfaces, as ex-
pected, although there is a small upturn in ¢° values for both polarizations at 5.5°

for the two smoother surfaces. There is little difference between the ¢° and od,

Vv

0

for a given surface—o,,

is usually slightly higher, but never more than a couple of

decibels. The difference becomes small at small incidence angles, as it should.
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Figure 7.1: Measured co-polarized backscattering coefficients, 02, and o9,, of the
three artificial surfaces: Surface A (UHMW1), Dy = 2.355; Surface B
(UHMWS3), Dy = 2.2275; and Surface C (UHMW2), Dy = 2.1.

Measured values of the cross-polarized backscatter, 0%, and o9, , are shown in Fig-
ure 7.2. The measured o}, and o2, also follow expected trends, decreasing with in-
creasing incidence angle, and decreasing for smoother surfaces. The measured values
are generally 20-23 dB lower than the co-polarized backscattering coefficients. Values
of 0%, and o2, are roughly equal, with the exception of a couple of anomalous points
for surface UHMW1 (the roughest surface) at low incidence angles. The backscat-
tering coefficients seem somewhat noisier in the cross-polarized case. Because there
was no test target that allowed easy and direct verification of measurement accuracy
for cross-polarized returns, it is difficult to state probable measurement errors for

0% and of,.
7.2 Comparison to Physical Optics Model

The Kirchhoff or physical optics model is one of the most widely used surface

scattering models [59]. The Kirchhoff model represents the scattered field in terms
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Figure 7.2: Measured cross-polarized backscattering coefficients, ¢?, and o}, , of the
three artificial surfaces: Surface A (UHMW1), D; = 2.355; Surface B
(UHMWS3), Dy = 2.2275; and Surface C (UHMW?2), Dy = 2.1.

of the tangential field on the rough surface. It makes use of the tangent plane ap-
proximation to the surface field, in which the surface field at a point is approximated
by the field which would be present if the rough surface were replaced by a planar
surface tangential to the surface at that point [56]. The tangential plane approxi-
mation is valid if the radius of curvature at every point on the surface is large with
respect to the radar wavelength. Use of the Kirchhoff model is usually limited to
small incidence angles [14].

An additional simplification usually performed to make the physical optics so-
lution more tractable is obtained by expanding the integrand of the scattered field
integral into a series in terms of the surface slope and keeping only the lowest-order
terms. This simplification is called the scalar approximation because it reduces to
the scalar formulation of Beckmann and Spizzichino [5]; it requires that the radius

of curvature be larger than the radar wavelength and that the rms surface slope be
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small. Commonly cited constraints are [56]:

kKl > 6 (7.1)
R. > A (7.2)
m < 0.25 (7.3)

where k is the wavenumber of the incident field, [ is the surface correlation length,
R. is the average radius of curvature of the surface, and m is the rms slope.

The scattering coefficient under the scalar approximation is given by [59]
Opg = Opgc t L (7.4)

where the subscripts p and ¢ indicate the scattered and incident polarizations and
the subscripts ¢, n, and s indicate the coherent, non-coherent, and slope terms. For
backscatter at non-normal incidence, we omit the coherent term.

The non-coherent term is given for the backscatter case by

2 | |Ryiol? ?
agpn % | Bl cos? fe=4K* cos* oo
| Rjol®
00 k2 200"
3 CEem 0L paksin, 0 "
= n.
. (7.6)

where R, and R are the Fresnel reflection coefficients for horizontal and vertical

polarization, respectively, and

Wea)= [ [~ (&y) ela=+9) dudy (7.7)

For the power-law case, Rz(u,v) was calculated numerically from the modified
roughness spectrum given by (5.8) using an inverse fast Fourier transform (FFT).

The result was raised to the power n and then re-transformed to obtain I{7).
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The slope term o, was omitted for the power-law case because the non-analytical
correlation function prevented the direct evaluation of the slope terms. The o7, is
much smaller than o3, in the Gaussian case, so it is assumed that the term is of
little consequence.

The physical optics results are compared with the measured ¢° in Figure 7.3.
The model values underestimate the measured backscatter by about 5 dB in the HH
case, although they do follow the trend of the measured values out to about 45° or
s0.

The VV predictions start about 5 dB low at 15°, but rapidly grow worse due to the
Brewster angle effect which the model has but which is not found in the measured
data. The first-order physical optics formulation does not predict cross-polarized
backscatter.

The roughness spectra used in the physical optics power-law solution had a low-
frequency cutoff of fi. = (10A)~!, where ) is the radar wavelength. The low-frequency
cutoff was imposed due to programming constraints in the calculation of the I{®)

terms. Letting fi. vary from (51)~! to (25))~! resulted in a change in ¢° of less than

1 dB at 15° and still less at higher incidence angles.

7.3 Comparison to Geometric Optics Model

An alternative simplification to the Kirchhoff formulation involves the use of
the stationary phase approximation, which means that scattering can occur only
along directions for which there are specular points on the surface [59]. This high-
frequency solution is valid when the average radius of curvature and the surface

standard deviation are large compared to the radar wavelength. Commonly cited
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Figure 7.3: Physical optics results for (a) HH and (b) VV backscatter compared to
the measured values for the three artificial surfaces.
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criteria for this solution are [56]

kIl > 6 (7.8)
R. > A (1.9)
ko > _vio (7.10)

cosf; — cos b,
where o is the standard deviation of surface height, 6; and 8, are the incident and
scattered angles, and k, I, R., and A are defined as before.

The geometrical optics solution is given by Ulaby et al. [59):

o _ |R(O)I*
o =
i 2 cos? 02| p"(0)]

o =0 (7.12)

(7.11)

where R is the Fresnel reflection coefficient and p”(0) is the second derivative of the

normalized correlation function, p(7),

p(r) = ==, (7.13)

evaluated at zero.

It is the p”(0) term that provides the main difficulty in applying (7.11) to the
power-law case. Because the power-law correlation function has no analytical form,
it must be evaluated numerically at discrete points. A discrete approximation was

used to evaluate p"(0):

pg ~ P’l“P:)
r—To
_ l(P2_Pl _Pl—Po)
A A A
1
= E(P2—2p1+po) (7.14)

where the first three correlation values po, p1, and p, are numerically calculated

using the same bandlimited spectrum used for the physical optics case. For the three
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Figure 7.4: Geometrical optics results for backscattering compared to the measured
values for the three artificial surfaces.

artificial surfaces, A = 1.23 mm, and estimates of the rms slope, m = y/o?|p"(0)|,
were 0.31, 0.13, and 0.20.
The geometrical optics results are compared with the measured backscatter in

Figure 7.4. The model performs quite poorly for the power-law surfaces.

7.4 Comparison to Small Perturbation Model

The small perturbation model was first applied to electromagnetic scattering by
Rice [49], who used the Rayleigh hypothesis to represent the scattered and trans-
mitted fields near a rough surface in terms of waves traveling away from the surface
only. These fields are expanded in a power series about some small parameter such
as surface height or slope. The fields are then calculated to some low order, usually
first order, by neglecting series terms of higher order [56]. Validity limits on the

small perturbation model are

ko < 0.3, (7.15)
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m < 0.3, (7.16)

where o, the standard deviation of surface elevation, is computed “from frequency
components of the surface responsible for scattering at a given electromagnetic wave-
length” [59]. The small perturbation model is usually used for larger incidence angles
(6; > 20°) [14]. In a study of non-Gaussian surfaces by Chen et al. [15], the authors
found that the small perturbation model has a wider range of validity when applied
to a surface with a non-Gaussian (in their case, exponential) correlation function for
large angles of incidence.

The first-order small perturbation model solution for the backscatter case is given

by
op, = 8k*0? cos* 8]ay, |*W (2k sin 6,0), (7.17)
where
Qhh = RJ—(G),
o = (6 —1)—010 = &(1+sin’0)
v €, cos 6 + (e, — sin® 9)1/2]2’
Quh = Qpy = 0,

and W (k, k,) is the normalized roughness spectrum,

1 00 foo
Wk, k) = o= / / p(u, v) exp[—j(kyu + k,v)]dudv (7.18)
which is written in terms of the normalized surface correlation, p(u,v). The Fourier

transform in (7.18) uses a different form than that used elsewhere in this dissertation,

where the non-normalized correlation function, Rz(7;,7,), is defined as

Ry(rsym,) = /_ Z /_ Z So(fer fy) expli2n(fur, + ) ldfudf,.  (7.19)

The normalized spectrum W (k,, k,) with k, and ky in rad/m is therefore

o102 2 \or’ o1

W(ks k) = ——8 (k“ ky), (7.20)
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and we see that

. 1 ksin 6
W (2ksin8,0) = 53 Sz ( - ,0) , (7.21)
and therefore
1 ksin@
oo, = 8k* cos40|apq|22—7;Sz (T’O) ) (7.22)

where the spectrum, Sz, is given by (5.8) or an equivalent expression. Note that the
o? term drops out of the final SPM equation.

The SPM results are shown in Figure 7.5 along with the measured backscatter.
The SPM values track the measured data trends fairly well but have a negative
offset of about 5 dB. In spite of this offset, the SPM results are the most useful of
any of the models examined thus far. Because the SPM values are calculated based
on a single frequency of the roughness spectrum, the offset cannot be attributed to
an incorrect bandwidth choice. Because an error in the dielectric measurement was
possible, different values of ¢, were tried. Changing ¢, from 2.05 to 2.3 raised ° by
about 1 dB. Errors in the €, measurement of more than 0.3 are considered extremely
unlikely. Adding an imaginary component of € = 2 raises o2 by about 5 dB, but it
1s difficult to believe that the UHMW or the dielectric filler has a lossy part that is so
radically different from tabulated values. In the absence of other explanations, the
offset in the SPM predictions is viewed as a limitation of the model in the power-law

case.

7.5 Comparison to PWH model

The last model examined is the Phased Wiener-Hermite (PWH) model for di-
electric interfaces by Eftimiu [16], which is an extension of earlier work by Ef-
timiu [17, 18, 19] and Eftimiu and Pan [20]. The model, which is relatively recent

and which had no experimental verification, is based on an expansion of the surface
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compared to the measured values.
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current in a series of orthogonal Wiener-Hermite functionals. Earlier uses of Wiener-
Hermite functional expansions in the study of turbulence led to their application to
the problem of rough surface scattering by Nakayama et al. [41, 42, 43] and Meecham
and Lin [38], among others. The expansion is attractive because it represents the
surface current in terms of functionals based on the rough surface random process,
((z,y), and because lower-order terms in the expansion contain reflections of all
orders [38]. An overview of the PWH model is the subject of Appendix C.

The PWH formulation is algebraically intensive in comparison with the other
models in this chapter, perhaps because it relies on few simplifying assumptions.
Aside from use of the Wiener-Hermite functional expansion (and the assumption
that a first-order expansion is adequate), Eftimiu’s formulation uses the extinction
theorem and the tangentiality of surface currents. The formulation is shown to reduce
to the physical optics and small perturbation solutions in the appropriate limits. The
PWH expression for ¢° is rather lengthy and involves a number of intermediate terms,
and is therefore left in the Appendix.

The PWH solutions for ¢° of the three surface analogues are shown for HH
and VV polarizations in Figure 7.6. The modeled o, which were calculated using
the bandlimited roughness spectrum truncated at fi. = (10A)~!, display a more-
or-less linear dependence on incidence angle and predict higher backscattering for
the rougher surfaces. However, the theoretical curves do not match the measured
values very well, either in magnitude, difference between the rougher and smoother
surfaces, or in angular trends. Recalculations in which a wider roughness spectrum
(down to (251)!) was used resulted in rough and smooth o° values that were closer
together in magnitude, but the values overestimated the measured values worse than

in the narrower spectrum case. Values of 2, were closer, differing from the measured
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values by 6 dB or less. The trends of 0%, vs.  are closer than those of o7, but still
not as close as those predicted by the small perturbation method.

While there are no obvious flaws in the PWH approach, one can imagine sev-
eral possible reasons why the model performs poorly in the power-law case. The
algebraic complexity of the model is quite high, increasing the probability of math-
ematical or programming errors. (The cited articles by Eftimiu contained numerous
typographical errors; the author was supplied with a copy of Eftimiu’s derivation
notes to aid in reproducing the derivations.) The model requires the evaluation of a
number of double integrals. These may be analytically reduced to one dimension in
the Gaussian case but not in the power-law case, where the dynamic range (several
orders of magnitude) may introduce problems in numerical precision. Finally, the
power-law surface may simply be too complex to represent by a first-order Wiener-
Hermite expansion, due to the presence of surface structure over a wide range of

spatial scales.
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Figure 7.6: Phased Wiener-Hermite model results for (a) HH and (b) VV backscat-

ter for the roughest and smoothest surfaces compared to the measured
values.



CHAPTER VIII

CONCLUSIONS, CONTRIBUTIONS, AND
RECOMMENDATIONS

This chapter summarizes the conclusions of the present work and describes some
of the lessons learned while carrying out the investigations described in the previous
chapters. The principal contributions of the dissertation are reviewed, and recom-

mendations for future research are given.

8.1 Conclusions of This Dissertation

The conclusions reached through the efforts described in the previous chapters

are perhaps best related as answers to the questions originally posed in Chapter I:

1. Q: Does the power-law roughness model apply to targets of interest in remote

sensing?

A: Yes. In addition to the cited reports, the surface profile measurements at
Mount St. Helens (Chapter III) and the resulting spectral estimates (Chap-
ter IV) show that some (but not all) volcanic debris flow terrains there have
a power-law roughness spectrum over some range of spatial frequencies. Low-
and high-frequency spectral estimates from the primary debris flow surfaces

seemed to conform to a single power law from about 0.05 to 25 or 50 m™!. It

135



136

is expected that the intermediate-frequency region (roughly 0.25 to 2 m™") fol-
lows the same power law, but this cannot be verified without additional surface

profiles with A in the 12.5 cm range.

. Q: If the power-law model applies to volcanic terrain, what are typical values

of the power-law roughness parameters?

A: Equations for the one- and two-dimensional power-law fits to the spectral
estimates derived from the volcanic debris flow profiles are given by (4.51)
through (4.56). Values of B ranged from 2.31 to 2.51, corresponding to sur-
face fractal dimensions of 2.245 to 2.345, which are close to the value of 2.2
cited by Mandelbrot [34] and Voss [60] as producing realistic synthetic profiles.
Estimates of the spectral slope having values greater than 2.0 would not be
measurable using a spectral estimator subject to spectral leakage. The leakage
problem described in Chapter IV may be responsible for the fixed values of

B = 2.0 reported by Bell [6, 7], Huang and Turcotte [30, 31}, and Sayles and

Thomas [52].

. Q: Given a power-law roughness model, how does the backscattering coefficient

vary with incidence angle as a function of surface parameters?

A: Measured values of ¢°, and o}, are shown in Figure 7.1 as a function of in-
cidence angle for three artificial dielectric surfaces having power-law roughness
spectra with the spectral amplitude, a, held constant and the spectral slope, 7,
allowed to vary. Measured cross-polarized backscatter is shown in Figure 7.2.
In both cases, 0° decreases with increasing incidence angle. The co-polarized
difference, 02, — 09, is largest between 45° and 50°. Measured o2, and oy,

seem most sensitive to the spectral slope between 40° and 50°; o}, and o9, are
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most sensitive between 45° and 50°.

4. Q: How well do various rough surface scattering models predict scattering by

a power-law surface?

A: None of the models examined were outstanding. The small perturbation
model was most accurate in following the trends of o° vs. incidence angle and
in reflecting the difference in ¢° between the rougher and smoother surfaces,

but the model underestimates the backscatter by roughly 4 dB for all angles.

5. Q: In particular, is Eftimiu’s Phased Wiener-Hermite model [16] useful for

power-law surfaces?

A: The PWH model did not seem to perform well for the power-law surfaces,
although 0%, was much closer than ¢2,. While the model was not grossly
wrong, it did not model the trends vs. angle nor the rough/smooth backscatter
difference as well as the small perturbation model or the physical optics model
(o9, case only). Possible reasons for the poor performance of the PWH model

are discussed in Section 7.5.

8.2 Comments on Methods and Theory

One of the principal lessons of the rese—arch performed for this project is a much
deeper appreciation of the data requirements of statistical and spectral estimation.
In the multi-faceted aspects of a remote-sensing study, it is easy to underestimate
the amount of data needed for the estimation of some target parameter. The author
has certainly learned that if spectral estimation, for example, is difficult, spectral
estimation based on limited data sets is extremely difficult. Attempts to infer statis-

tical information based on limited knowledge or data may do more than just spread
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out the error bars a bit—the answers may be quite wrong. Many remote sensing
studies would benefit from the advice of signal processing engineers.

The use of manufactured surface analogues in scattering studies has great benefits
but high costs as well. The time and data requirements for surface construction
are quite high, especially for complex surfaces like the power-law surfaces. The
development of new fabrication techniques, such as a recent technique in which a
desired object is fabricated by solidifying a layer at a time using a laser scan, may
reduce the costs in money and time to more manageable levels.

Increased stability and automation would allow the radar measurements to have
greater productivity. The use of surface analogues contributes to these goals, which
are much more difficult to achieve in a field setting.

While the accuracy of the Phased Wiener-Hermite model was disappointing for
the power-law surfaces measured here, the concept of a Wiener-Hermite expansion
of currents in terms of the surface random process still has appeal. Perhaps an
application to a simpler surface might reveal how to adapt the model to the power-

law case with more success.

8.3 Contributions of This Dissertation

The research described in this thesis comprises five principal contributions. First,
estimates of the roughness spectra of volcanic debris flows were measured and found
to have, in some cases, a power-law roughness spectrum. The parameters k! and ko
were shown to be poor descriptors of power-law terrains. Second, special problems
in the spectral estimation of power-law surfaces were explored and documented.
Spectral leakage was shown to be particularly problematic, giving false estimates of

the spectral slope. Third, a computer-driven, mechanical system was assembled for
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the manufacture of artificial surface analogues, and the system was used to produce
three artificial surfaces. Fourth, radar measurements of two-dimensional, dielectric,
power-law surfaces were performed. Fifth, a comparison of measured backscatter
with that predicted by several rough surface scattering models was made, including

an initial comparison with the Phased Wiener-Hermite model.

8.4 Recommendations for Future Work

Because of the statistical nature of most of the measurements in this study, an
obvious recommendation would be the repetition and expansion of the various mea-
surements, i.e., collection of more volcanic (and other) surface profiles, calculation
of improved spectral estimates of roughness spectra, and construction of more sur-
faces for indoor scattering measurements. Each of these tasks can become a major
enterprise.

A more targeted list of recommended research might include a few different items.
For example, construction of larger (in area) and thicker surface analogues, if it
could be made practical, would allow radar measurements with more independent
samples, fewer edge concerns, and fewer problems with matching separate slabs to
reduce reflections. If power-law surface construction could be made simpler or faster,
additional surfaces could be used to determine the effect of the roughness amplitude
(cin (2.8) or @ in (2.9)) on ¢° and whether the performance of scattering mod-
els improves for certain ¢ and . Knowledge of the ¢ dependence would aid in the
selection of angles and polarizations for radar measurements designed to map rough-
ness features, such as the SIR-C study of volcanic terrain associated with the work
described here. Knowledge of the ¢ dependence, and information on whether the

local (high-frequency) ¢ and  parameters are physically dependent on slope (due to
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low-frequency roughness), would also contribute to another current research project,
the modeling and interpretation of the diffuse radar backscatter from Mars.

Another research goal should be to try additional scattering models on the power-
law surfaces, such as the Integral Equation Model by Li and Fung [24, 33], or one of
the two-scale models used in other scattering studies. The question of measurement
scale and footprint size should be examined in detail. The different ranges of sur-
face scales observed by orbiting, airborne, and truck-mounted radars may produce
different estimates of ¢°. If roughness of many scales, both smaller and larger than
the radar footprint, is present, then the scattering mechanisms may be completely
incoherent (since the wavelength is very small compared to the surface relief), and
differences in observed ¢° may be entirely due to differences in the sample size. If
this were the case, averaging over more samples should make the truck-based o°
approach the estimate derived from space-borne instruments.

Finally, the Phased Wiener-Hermite model deserves further analysis, but experi-
mental comparison might be better started with a simpler Gaussian surface, perhaps
one with roughness in the intermediate range between the regions of validity of the

classical scattering models.
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APPENDIX A

MOUNT ST. HELENS DATA

The filtering and interpolation steps performed on each data set are listed in
Tables A.1 through A.7. The tables should be read from left to right. For example,
the original file for scan 2b (described in Table A.1) was 1p2bdata.all. A lower
quartile difference (LQD) was then compiled for each 5 x 5 subregion and stored in
file 1p2bdata.all.qdf25. (A median residual statistic is indicated by MR.) Pixels
with lower quartile differences lower than —0.01 m were then discarded, resulting
in file 1p2bdata.fql. One iteration of median interpolation was then performed,

resulting in the final profile, file 1p2bdata.fqlel.

file subregion size | statistic residual file limit (m)
lp2bdata.all L) LQD | 1p2bdata.all.qdf25| -0.01

lp2bdata.fql 1 iteration of median interpolation

lp2bdata.fqlel | final surface profile

Table A.1: Filtering and interpolation steps for scan 2b (Johnston Ridge site).
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file

subregion size

statistic

residual file

limit (m)

lp2cdata.all

5X5

LQD

lp2cdata.all.qdf25

-0.02

lp2cdata.fql

1 iteration of median interpolation

lp2cdata.fqlel

final surface profile

Table A.2: Filtering and interpolation steps for scan 2c (Johnston Ridge site).

file subregion size | statistic residual file limit (m)
lp3adta.all Remove last 5 rows and columns
lp3axdata.all 9x9 MR | 1p3axdata.res8i -0.3
lp3axdata.fl 9x9 MR | 1p3axdata.f1.res81 -0.2
lp3axdata.f2 9x9 MR | 1p3axdata.f2.res81 | -0.14
lp3axdata.f3 5x5 LQD | lp3axdata.f3.qdf25 | —0.015

lp3axdata.fq4

6 iterations of median interpolation

lp3axdata.fq4e6

final surface profile

Table A.3: Filtering and interpolation steps for scan 3a (Johnston Ridge site).

file subregion size | statistic residual file limit (m)
lp3bdata.all 41 x 41 MR | 1p3bdata.restt -04
lp3bdata.f1 9x9 MR | 1p3bdata.fq.res81 | -0.25
lp3bdata.f2 X7 MR | 1p3bdata.f2.res49 | -0.15
lp3bdata.f3 5X5 LQD | 1p3bdata.f3.qdf25 | —0.01

lp3bdata.fq4

11 iterations of median interpolation

lp3bdata.fq4ell

final surface profile

Table A.4: Filtering and interpolation steps for scan 3b (Johnston Ridge site).
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file subregion size | statistic residual file limit (m)

1p3cdata.all Remove last 10 rows and columns.

lp3cxdata.all 41 x 41 MR | lp3cxdata.restt -04
lp3cxdata.f1 9x9 MR lp3cxdata.fi.res81 | —0.25
1p3cxdata.f2 X7 MR | lp3cxdata.f2.res49| -0.15
lp3cxdata.f3 X5 MR | 1p3cxdata.f3.res25 -0.1
lp3cxdata.f4 59X MR | 1p3cxdata.f4.res25| -0.06
lp3cxdata.f5 5x5 LQD | 1p3cxdata.f5.qdf25 | -0.01
1p3cxdata.fq6 14 iterations of median interpolation

lp3cxdata.fq6eld

final surface profile

Table A.5: Filtering and interpolation steps for scan 3c (Johnston Ridge site).

file subregion size | statistic residual file limit (m)
lp4adata.all Remove last 10 rows and columns.
lp4axdata.all 55 X 55 MR | lp4axdata.restt -0.4
lp4axdata.f1 9x9 MR | lp4axdata.fi.res81| -0.25
lp4axdata.f2 X7 MR | lp4axdata.f2.res49 | -0.15
lp4axdata.f3 dXd MR | lp4axdata.f3.res25 -0.1
lp4axdata.f4 X7 LQD | lp4axdata.f4.qdf49 | -0.01

lp4axdata.fqd

5 iterations of median interpolation

lp4axdata.fq5eS

final surface profile

Table A.6: Filtering and interpolation steps for scan 4a (Johnston Ridge site).
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file subregion size | statistic residual file limit (m)
lp4cdata.all 51 x 51 MR | 1p4cdata.restt -0.4
lp4cdata.fl 9x9 MR | lp4cdata.fi.res81 | -0.25
lp4cdata.f2 X7 MR | lp4cdata.f2.res49 | -0.15
lp4cdata.f3 5X5 MR | lp4cdata.f3.res25 ~-0.1
lp4cdata.f4 Tx7 LQD | lp4cdata.f4.qdf49 | -0.01
lp4cdata.fqg5 7 iterations of median interpolation
lp4cdata.fq5e7 | final surface profile

Table A.7: Filtering and interpolation steps for scan 4c (Johnston Ridge site).
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Grayscale plots of all profilometer and survey data are shown in Figures A.l
through A.6. Filtering and median interpolation have been performed on the pro-

filometer data sets where necessary.
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(b)

Figure A.1: (a) Scan 2b, Johnston Ridge site, 51 x 51 points, A = 2 mm. (b) Scan
2c, Johnston Ridge site, 41 x 41 points, A =1 cm.
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(c)

Figure A.2: (a) Scan 3a, Johnston Ridge site, 46 x 46 points, A = 2 cm. (b) Scan 3b,
Johnston Ridge site, 41 x 41 points, A = 5 mm. (c) Scan 3c, Johnston
Ridge site, 41 x 41 points, A = 2 mm.
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Figure A.3: (a) Scan 4a, Johnston Ridge site, 55 x 55 points, A = 5 mm. (b) Scan
4c, Johnston Ridge site, 51 x 51 points, A = 2 mm.
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(b)

Figure A.4: (a) Scan 5a, Elk Rock site, 71 x 71 points, A = 5 mm. (b) Scan 5b, Elk
Rock site, 51 x 51 points, A = 2 mm.
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Figure A.5: (a) Scan 6a, Elk Rock site, 51 x 51 points, A = 2 mm. (b) Scan 6b, Elk
Rock site, 41 x 41 points, A = 1 cm.
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(<) (d)

Figure A.6: (a) Survey 1, Johnston Ridge site, 33 x 33 points, A =1 m. (b) Survey
2, Johnston Ridge site, 9 x 9 points, A = 4 m. (c) Survey 3, Johnston
Ridge site, 9 x 9 points, A = 4 m. (d) Survey 4, Elk Rock site, 17 x 17
points, A = 2 m.
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APPENDIX B

COHERENT-ON-RECEIVE RADAR
CALIBRATION

The radar was calibrated using a new calibration technique designed for polari-
metric coherent-on-receive scatterometers. The new procedure is convenient because
it uses a sphere and an unspecified depolarizing target to determine time-invariant
distortion parameters and afterward uses only a sphere for gain calibrations. Knowl-
edge of the scattering matrix of the depolarizing target is not required. The calibra-
tion technique is fully described in Nashashibi et al. [46]; a short derivation is given
here because the notation and polarizations used differ from the cited article.

A basic schematic of the radar system was given in Figure 6.1. The received

signal due to scattering of the transmitted field from a target may be written:

E; e—i2kor Rll 0 1 C1 = 1 C3 =)=y .
E = =—Ty S T,T,E', (B.1)
r
E}Z 0 R; C2 1 C3 1
where
Ty = transmitter gain/loss,
R\,R, = receiver losses in V and H channels,

c1,¢; = receiver cross-talk (distortion) factors,
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optical axis

Figure B.1: Coordinate system of transmitter polarizers

S = target scattering matrix,
c3 = transmitter distortion factor,
'i‘,l, ’i‘; = polarizer transmission matrices,
, 1
E = = initial field input to polarizers.
0

Let the transmission coefficients along and orthogonal to the optical axes of the

transmitter polarizers be denoted by 7, and 7, respectively. Using the coordinate

system shown in Figure B.1, we can write the following relationships among the unit

vectors:

& = vcosa+ hsina,
fi = —Vsina+ hcos Q,
V = 0Ocosa-—nsing,
h = ésina+ficose.

(B.2)
(B.3)
(B.4)

(B.5)

We can therefore write the polarizer transmission matrix as a function of the
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rotation angle, a:

.y cosa —sina Y% 0 cosa sina
T =

sina  cosa 0 —sina cosa

cos’a+ 7sina  sinacosa(l — 1)
= ’70

sinacosa(l —7) sin’a+ 7cos’ e

= 70T, (B6)

where 7 = 7,/7,, and the above equation holds separately for each polarizer, i.e.

T, = ‘701'i‘1(011,71), 'i‘,z = 702T2(02,T2)-

Now define
t - = .
t=| | =Ti(a,n)Ta(c2,m)E, (B.7)
t2
and
1 C3
E! = t. (B.8)
C3 1

We can prepare a table of t and E' for the principal six polarizations (Table B.1).

Let Ry = R\ Tyvo1 and Ry = RyTyry,2. We now have

e—i2kor Rl 0 1 C1 - 1 C3 tl

E = (B.9)

'I'2
0 R2 c 1 cz 1 t2

There are seven unknowns in (B.9): Ry, Ry, ¢1, ¢, ¢3, and 7 and 7, which are
contained in t. Of these, only R; and R, vary with time; the others are fixed for a

given system. Notice also that only t varies with transmit polarization.

Let

= Rl 0 1 C1 Rl R] 1
R= = , (B.10)
0 R, c 1 Rye; Ry
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polarization | a; | a3 t E!
1 1
\Y% 0° | 0°
0 C3
. w5 | 4 | 1 1+ mnm s (14 ¢3) + 1172(1 — c3)
l1—-m7 i (14 ¢3) — 1i72(1 — ¢3) ]
147m (14 72) 4+ c3m(l — 72)
45° linear 0° | 45° % % :
Tl(l—Tg) i C3(1+72)+T1(1—T2) ]
1+ (14 7)) +cn(r—1)
135° linear | 0° | -45° % : % 2) + eam(
T1(m = 1) i cs(l+ 1)+ n(re—1) |
1+T (1+C3)+T1(1—C3)
LHC |4 | 0o | Ll | |2
1—7'1- (1+Cs)-Tl(1—C3)
14T l—c)+7n(l+c
RHC |5 | 0o | 1| | |2 (1-a}+nll+a)
n-1 —(1=¢3)+7(1+4cs)

Table B.1: Values of t and E! for various transmit polarizations.
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and

=g
Il

(B.11)

We can write the received field vector due to transmitted polarization p as

e—i2ko'r oo tl
E,= > RST (B.12)
t2
»
Let the first calibration target be a sphere, making
- 10
Ssphcre = So ) (B13)
01
and
e—f2kor - - tl
E,= > Rs,T . (B.14)
ty

P
Examining the cases of transmitted V, LHC, RHC, 45° linear, and 135° linear with

received V, we can write

e-—i2koro

Ew = 7‘2 SoRl(l + CIC3) (B15)

0

and similar expressions apply for the other polarizations. Now define

o B (S500],
B, = ‘g’* = [(4+m)- (ffclc;) (1-m)|. (B.17)
By inspection,
n=A4,+B, -1 (B.18)
Similarly, define
D, = F2=Fla+m+(2EL)a-m), (B.19)
Ro= 22t f0em- (252 0-0]. @
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and obtain

T2 =D‘U+F‘U-1 (B21)

The remaining five unknowns will be obtained using vertical and horizontal po-
larizations only. Write (B.14) as a matrix composed of the transmit vertical and

horizontal cases:

Evu Evh e—t?ko"‘o = = tlv tlh
Bl . . (B22)
E}w Ehh 0 t‘2v t2h

Post-multiply both sides by s times the inverse of the ¢ matrix and define the left

side as A,:
-1
= 1 Evv Evh tlv tlh
A, = —
S
°| Eny Em toy ton
e=iZkoro _ _
= —RT
To

~i2koro | Ry(1+4c1c3) Ri(er+ec
_ ¢ : 1( 1C3 1(e1+ ¢3) , (B.23)

"o Ray(ca+¢3) Ra(l+ cacs)

and noting that A, is composed of known quantities, we can write four equations

using the components of A,

e—i2k01'o
aii 1‘2 Rl(l + C163), (B24)
0
e—i2koro
a1 = 7‘2 Rl(cl -+ C3), (B25)
0
e—i2koro
a1 = 7‘2 RQ(Cg + 63), (B26)
0
e—i2koro
o = 2 R2(1 + C2C3). (B27)

To

We still need one more independent equation. We obtain it by writing similar
expressions for the depolarizing target and enforcing reciprocity. Note that we need

not know the scattering matrix of the depolarizing target.
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Writing an expression similar to (B.23):

B=

Ehv

-1

Ey Eu tiv tm e—iZkory _ _

= ———RSprT, (B.28)
T
Ep tav tom !

where the scattering matrix of the depolarizing target Spr has replaced that of the

sphere. Solving (B.28) for Spr:

where

and

Spr = rle®nR BT (B.29)
R —R;c
- 11 ? s (B.30)
1 2( - C1C2) '—R2CZ Rl
=_ 1 —c¢
e ’ (B.31)

T 1-¢ e 1

The fifth equation is obtained by setting expressions for S, and S,; equal:

- R202(b11 - C3b12) + Rl(b21 - Csbzz) = R2(bl2 - Cabn) - Rlcl(b22 - Csb21)- (B-32)

This equation is independent of r;, the range to the depolarizing target.

Solving (B.25) and (B.26) for R, and R;, substituting into (B.24) and (B.27)

and solving for ¢; and c,, then substituting all four into (B.32), we obtain a quartic

equation for c3:

where

Ho

51

d-oBle 1ol 1oy, (B.33)
o Ho

= axnbiz — a12by; + ag1byy — byyayy

= 022511 + a21b12 - 012b21 - aubzz-
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Two of the roots are +1; these are discarded as unphysical. The remaining two roots

are given by

S Ly Y} (B.34)
Ho

We select the root with |cs| < 1. The remaining unknowns follow directly:

C3@11 — Q12

g = —, (B.35)
C3a12 — Q11
o = mTin (B.36)
C3a21 — G322
12 9 i2kor
R, = ———rpe’™ e, B.37
! a+tes 0 ( )
021 2 i2kor
R, = ——rje*™", B.38
2 Cy+¢C3 0 ( )

Values of ¢, c;, ¢3, 1, and 7, for each frequency are stored in a disk file; these
quantities are constant unless the system components are altered or replaced.

Subsequent calibrations need only involve a metal sphere, measured with vertical
and horizontal polarizations only. From (B.15), the equation for the VV sphere

response is

e—£2kor,
E,, = 2 soR1(1 + c1¢3), (B.39)
and the HH response is
e—i?kor, So
Ew, = ) ERz[Cz(l + 1173) + caca(l — i) + ea(1 + 1i72) + (1 — 1i7)]
e—i2ko1’, SO
= S FaD, (B.40)
Solving for R; and Ry:
—_ Ev'u 2 12kor,
R, = s CICsr,e (B.41)
_ Enn 2 2_i2kor,
R, = D sor,e . (B.42)

After calibration, the target scattering matrix may be obtained directly from



161

measurements of the scattered field:

Ev'u Evh tlv

- . = _1
Starget = Ti "R
Eny Enn | | t2v

where R and T are given by (B.30) and (B.31).

tin

tan
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APPENDIX C

THE PHASED WIENER-HERMITE MODEL

The Wiener-Hermite (WH) functional expansion [12, 63] has been applied to a
number of problems in turbulence and wave propagation in random media. Applica-
tions of the WH functional expansion in studies of rough surface scattering include
works by Nakayama et al. [41, 42, 43] and Meecham and Lin [38, 39]. The paucity of
rough surface scattering models that were applicable to dielectric interfaces and that
had potential for use on very rough surfaces led to an examination of the Phased
Wiener-Hermite (PWH) model described by Eftimiu [16], which is an extension of
earlier work by Eftimiu [17, 18, 19] and Eftimiu and Pan [20].

The use of functional or series expansions is widespread in science and engineering.
Expansion of a complicated function in terms of a series of simpler functions with
convenient properties (e.g., odd or even symmetry, smoothness) permits operations
to be carried out term-by-term, and with luck (or skill), the number of terms needed

will be small. Consider the Fourier series expansion of a periodic function f(t) [53]:

£(t) = ij ™. (C.1)

The coefficients ¢, are constants and are determined by multiplying each side of (C.1)

by the corresponding e~™* term and integrating over a period. Because the ™!
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terms are orthogonal, all the integrals on the right side equal zero save one, and the

coefficient is given by

o= [ Ft)e s, (C:2)

.
where 7 is the fundamental period of f(t).

Observe that if the function f(t) has a form that is similar to or mathematically
related to the form of the expansion functions (e in the above example), the series
expansion will have fewer terms. The function sinwt is perhaps a trivial example;
its Fourier series has only two non-zero coefficients, ¢; and c_;.

The Wiener-Hermite functional expansion is another form of series expansion—
one that is designed to work with functions of a random process. The WH functional
expansion is a series representation of a function of a random process written in terms
of Hermite polynomial combinations of some random function. For example, the
first four Wiener-Hermite functionals based on a one-dimensional stationary random

process ((z) are [38]:

HO(Q) = 1, (C.3)
HY(Q) = ((), (C4)
H®(() = ((z1)¢(22) — R(z1 - 22), (C.5)
HO(Q) = ((z1)((2:)¢(xs) = R(z1 — z2)((23)

~R(z; = 23)((21) - R(ws — 2:1)((2), (C.6)

where R is the correlation function of the random process. The WH functionals are

constructed to be statistically orthogonal; i.e., they are orthogonal under an ensemble

average or expectation operation:

(H™(OH™() =0 for m #n. (C.7)
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The WH functional expansion of f(z) = €*¢(*) is a simple example. The ex-

pansion will use WH functionals that are a special case of those given by (C.3) to

(C.6):
HOQ) = 1, (C8)
HO©Q) = ((a), (C.9)
HO(Q) = ()= (C.10)
HO) = ((z) -30%(2), (C11)

where o2 is the variance of the random process.

The WH expansion has the form
f@) =™ = aHO Q) +a HI(Q) + aHP() + -
= ao+a;((z) + a[C*(z) — 0¥ + - (C.12)

The coefficients a,, are non-random constants and are found using a procedure like

that used to find the coefficients ¢, of the Fourier series. The coefficient a, is found
by multiplying both sides of (C.12) by the WH functional H™(() and ensemble

averaging both sides. For example, the n = 1 term is found as follows:
(1640 = (1 ag) + (1 axl(@)) + (1 al®(@) =0T 4+, (C13)
and all terms except one are zero on the right side due to orthogonality, giving
6 = (M@

= [ a0

—00

@ = e¥IP (C.14)

where we have used the normal Gaussian probability distribution function to calcu-

late the ensemble average. The a; and a; terms may be calculated similarly, giving
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the WH expansion

fwi(z) = e {1 4 ik((2) + 5[0 () - o714}, (C.15)

Note that the WH expansion is still a function of random quantities; however, the
random process ( is known (i.e., its moments are known) and the ( are now in
the form of a polynomial rather than in the argument of an exponential. While
the distribution function of the { function is usually specified to be Gaussian, the
correlation of the { random process is left unspecified.

The chief attraction of the WH expansion is its ability to closely approximate
a function f(z) of a random process using a small number of terms. Meecham

((z) to the mean and variance

and Lin [38] compared the mean and variance of e
calculated using the second-order WH expansion (first three terms of (C.15)) and

the first three terms of a perturbation (power series) expansion fpr of e**¢(2):

fer(z) = 14+1k((z) + [ﬂéﬂ (C.16)

Values of the moments were compared for several values of ko (Table C.1).

Note that the expected value of f(z) is exactly equal to the first term of the WH
expansion, therefore (f) = (fwn), regardless of ko. The perturbation expansion
mean is badly off for ko = 2. The variance is also significantly closer for fwy than

for pr.

The most general form of the WH functional expansion is [40]

flz) = KOHO 4 [ KOz = 2))HO(21)day
+ // K(z)(x — T2, T — $3)H(2)(z‘2, .’L'3)d.’1!2d2)3
+ /// K(a)(z — ZT4,T — T5,T — :rs)H(3)(.7:4, Ts5,%6)dT4dTsdTe

T (C.17)
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Exact WH PT

ko | (f) | o |{fwn)| o* |({fer)| ©°

0.5 | 0.882 | -0.172 | 0.882 | -0.170 | 0.87 | -0.250

0.75 | 0.755 | -0.245 | 0.755 | -0.230 | 0.719 | -0.563

1.0 | 0.606 | -0.233 | 0.606 | -0.183 | 0.500 | -1.00

2.0 |0.135|-0.018 | 0.135 | 0.073 | -1.00 | -4.00

Table C.1: Comparison of moments of WH and perturbation expansions of ek¢(2)
with moments of exact expression (data from Meecham and Lin [38]).

where the “coefficients” K™ are non-random integral kernels. (The kernels leading
to (C.12) were products of a; and delta functions.) This general form, which can
be shown to be complete [63], shows the dependence of f(z) on surface quantities
at other points (z, =3, 73, etc.). The original form of the WH expansion utilized
Hermite polynomial combinations of the “ideal random function”—the Gaussian
white noise function [63]. Later works introduced basis functions that vary with
time [37] and the use of the surface random process itself as the expansion basis [38],
as in the example given earlier.

In his formulation of surface scattering by a rough dielectric interface [16], Eftimiu
expands the surface electric current, J, the surface magnetic current, M, and an
exponential function of the surface height into WH expansions in terms of the surface

random process, ((z,y):

J(z,y) = exp(ik[ysin — {(z,y) cos])[Fo
b [[[Ble oy ) i c18)

M(z,y) = exp(iklysind — ((z,y)cosf])[Go
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+ // G(z -2,y — y')((z',y)dz'dy’] (C.19)

expl-in¢(a'y)] = 1 -ind(ay) - S - ) (C20)

We see that the forms of (C.18) and (C.19) are based on the general form (C.17)
written to first order, modified by a multiplicative phase term. The phase factor
is the origin of the name “Phased Wiener-Hermite model.” This exponential term
represents the value of the phase of the incident field on the surface. The exponential
in (C.20) is written using terms up to the second order, but second- and higher-order
products of the exponential and current terms are later reduced to zero or first-order

expressions.

C.1 General Outline of PWH Formulation

The random surface z(z,y) is considered to be a single realization of the two-
dimensional random process ((z,y). The random process is assumed to be at least

wide-sense stationary, having a zero-mean, Gaussian distribution:

(C(z,y)) = 0 (C.21)

(*(z,y)) = o (C.22)

and having a normalized correlation function ¢(7;,7,) defined by

1
o?

(((2,9)¢(z + 720y + 7)), (C.23)

(72, Ty) =

whose form is not specified. The unspecified correlation allows the model to be
applied to both Gaussian and power-law surfaces, as will be shown later.

The surface geometry and principal vectors are shown in Figure C.1. The upper
medium is assumed to be free space, while the lower medium has a relative permit-

tivity €, and free-space permeability yo. The incident field is defined in the yz-plane
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Figure C.1: Geometry of PWH model
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as

E'(r) = & exp[ik(ysin 8 — 2 cos 0)], (C.24)

where the incidence unit vector is

A

X for horizontal incidence,

ysinf + Zcosf for vertical incidence,

—twt

and a time dependence of e™*“* is suppressed.

The scattered field in the upper medium is given by the electric field integral

equation:
E*(r) = [”’“v x [[o(, i) ds' - [[a(e,ymyas’|.  (c29)

Expressing the free space Green function in an eigenfunction expansion:

B(r,r') = exp(zk|r — r'| o /// explik - (r— r,)]d3n, (C.26)

47r|r—r’| KK —k?

where & = £,X + £,¥ + &2, and normalizing the current by the differential surface

area gives another form of E*:

o101 s 5255

// de' dy'k x e [In x J(',y') + M(a',y")|.  (C.27)

Similarly, the transmitted field below the interface is

1 d3n, ‘gt
t _ iK'
I')_z'27r3./././ K')? — k""e )

// dz’ dy'k’ x gmik [k,n x J(z, )+M(x',y')]. (C.28)

where k' = kX + £, ¥ + &,'Z.
We now have two integral equations in which the surface currents are unknowns

to be determined. Once these currents are known, the scattered field above or below
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the surface may be obtained directly from (C.27) and (C.28). Because the surface,
and therefore the surface current, is a random function, the scattered fields will
also be random functions. We therefore seek a WH functional representation of the
surface currents so that moments of the scattered fields may be written as moments
of the surface currents, which in turn (using the WH expansion) may be written in
terms of moments of the surface random process, which are known.

The surface electric current J is expanded into a WH expansion of first order:

J(z',y") = expliky'sin 6 — 1k((z',y") cos 0]

. {FO + // F(.’E’ _ xll, yl _ yll)(-(xll, yll) dxll dyll} , (C29)

where Fy and F are nonrandom vector constants or functions which must be de-
termined. The inclusion of the {(z’,y’) term in the exponential differentiates the
Phased Wiener-Hermite formulation from Eftimiu’s previous models [17, 18, 20].

The magnetic current M is handled similarly:

M(z',y") = expliky’sin 8 — ik((z',y") cos b]

: {Go + // G(z' - 2"y - y")((z",y") dz" dy”} . (C.30)

The exponential exp[—ik.((z',y')] will also be expanded into a WH series. Prod-
ucts of this series and the current expansion will have terms of order H® that must
be removed in order to retain a model consistent to the first order. This process will

be shown for the electric current, which we now rewrite using a transformed integral:

J(z',y") = exp[iky'sin § — ik((z',y') cos ]

Ao+ o [ Bl il dags)

= exp[—ikcos8((z',y")]{I® + IV} (C.31)
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where

JO = exp[iky'sin6]F, (C.32)

=
i

exp[tky’ sin 6] (2;)2 // F(a,8)((e, B)e =+ dadf  (C.33)

and the tildes represent the Fourier transforms of the indicated variables.

We now write the product
J(@',y) exp[~ir.((2',y")] = exp[~iu((z,y") {IO + ID}, (C.34)

where u = &, + k cos 8, and note that the WH expansion of the exponential term on
the right side was given as (C.20). Substituting in the first three terms of (C.20),

the product becomes

J(z',y") exp[—ik.{(2',y")] = e_“z"z/z{J(o) + 30 —jul(2,y')IO
—iuC(.’l}’, y,)J(l)
wla s 217(0)
_E[C (.’E ’y)-a ]J
u2 20,0 1 217(1)
Sl ) ()
The last three terms can be written as linear combinations of H(™:; the H® and

H® parts are omitted, resulting in the first-order expression

I,y ) expl-in((,y)] = €T IH{IO L IO —du((e!,y')IO
~iu{((z/,)I0)
—u*{((a,) M) (', ¥} (C.36)
Substituting in the definitions of J© and J() gives

J(:L", y,) exp[_inz<($,7 y’)] =

™7/ expliky' sin 6] {F,
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//F a [3 ”'*'ﬂy')dadﬂ
,y')Fo

-—zu(
&(a, B)dadp

&a, f)dadB((2',y)},

(C.37)

where u = , + k cosf. The magnetic current M has an identical expression with Fo

and F replaced by G¢ and G.

To repeat, Fo, Go, F, and G are the non-random coefficients of the WH ex-

pansions of the electric and magnetic surface currents. We can find these coefficient

functions by writing the equations for conditions on the surface currents and applying

orthogonality as before. The first two conditions are applications of the extinction

theorem below and above the surface:

Ei(.'.) + E-’(r) =0 for z < C(.’L‘, y)a

Ei(») = 0  for z > ((z,y).
The incident field E' is expressed in an eigenfunction expansion:

E = & exp[ik(y sinf — z cos )]

thr

- (2n)p /// — 5 (27)&6(x2)8(xy — ki sin 0)(i2k cos )’

and then substituted into (C.38), resulting in

(27)&'6(k;)8(ky — k sinf)2k cos § =

// K x e FT [%n x J(z',y') + M(z',y')] dz'dy’
The transmitted field yields a similar equation, from (C.39):

0= // k' X e—in’.r/ [%K/ X J(zl,yl) + M(m',y')} d:L‘Idyl.

(C.38)

(C.39)

(C.40)

(C.41)

(C.42)
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The WH expansion for the electric current, (C.37) and the similar expression
for the magnetic current are substituted into (C.41); both sides are multiplied by

H© = 1; and both sides are ensemble averaged. Equation (C.41) leads to
— @2cosf = néi (el - Fo) + nél (&' - Fo) — & (& - Go) + &' (8} - Go),  (C.43)

where the delta functions in E' have forced

kz = 0,

Ky = ksind,

K: = — Jk*—£K;2— K, =—kcosb,
u = —kcosf+kcosf =0,

K = Yksinf — zkcosé.
The current-exponential product similar to (C.37) for the dielectric medium case
1s
I(z',y') exp[-in;((z’,y)] =
e~V exp[iky'sin 0]{Fo
i(az'+8y')
P / [ F(a,8)i(@,B)e dadp
—va(.’L' 'Y ) 0
2 -~
/ F(a, )i, B)dads

—iv

B)dadB((z',y")}, (C.44)

where v = £; + kcos 0, and a similar expression may be obtained for the magnetic
current-exponential product. Substituting these into (C.42), multiplying both sides

by H® =1 and ensemble averaging leads to

0 = 7'[ysinw(k'sinwFy, + k' coswkFy,)
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+2 cos w(k' sinwFy, + k' coswFy,)

—XK'F., — §K'F},

— k' F},]

+x(k sinwGy, — k' coswFy,) + §k' cos wGo, — 2k sinwGy,, (C.45)
where
F! = Fo—1vd?A,
G = Go—ivo’B,
and
A = B)dadp, (C.46)
B = oo / / G(a 8)dads, (C.47)

and the delta functions have forced

v = k'cosw+kcosé,

k' = Vk'sinw + 2k cosw.

Returning to (C.41), multiplying both sides by an H (M functional Cﬂ(a,ﬁ) and

ensemble averaging yields (after some manipulation)

n

0 = “KXKX [I:‘(nr, Ky — ksin @) — u(Fo — iuazA)]

k

+K X [é(n,, ky — ksin ) — iu(Go — iuazB)] (C.48)

where

K, =

—_— /kZ + ,%2 + Kiy2,

= K, + kcosé.
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A similar process using (C.42) yields

!

0 = Lw'xk x [i‘(n’z,n;—ksinH)—iu’(Fo—zua A)]

X
+K' X [G , Ky — ksin8) — iu'(Go — du azB)] (C.49)
where
Ky = —J(K)2 4 ko2 + Ry
v = k. +kcosf.

The extinction theorem equations are not sufficient to completely specify the
surface currents. We supplement (C.38) and (C.39) by explicitly requiring that the
surface currents be tangential, resulting in two additional equations:

n-Jz,y) = 0 (C.50)

n-M(z,y) = 0 (C.51)

. [, e, ¢ ac\*|
n—[z—axx Byy] [1+<8z) +<-a—y)}

Expanding the electric current and neglecting H® and higher terms in the current

where
1/2

dot product as before, we obtain

0 = F0,+ (a, B)e=+P dadp

% ~ :(ax+ﬂ )
Oz Fo - <(9.7: 2r)? // "dodp

g (B
33/

'("’“’”)dadﬂ> (C.52)

We now apply orthogonality as before: multiply (C.52) by H(® = 1 and ensemble
average, leading to

—i0?

For= oo J[ laFule,8)+ (e, 8) &ax f)dads. (C.53)
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A parallel procedure gives the magnetic analogue:

i 57t /[ [0G=(28) + 86, (@) e, dads.(C5Y

Multiplying by H® functional {" (e’ #") and ensemble averaging gives two more

equations:

Fya,8) = i(aFo + BF,), (C.55)

G.(a,8) = i(aGos + BGoy). (C.56)

Equations (C.43), (C.45), (C.48), (C.49), (C.53), (C.54), (C.55), and (C.56) contain
sufficient information to solve for Fo, Go, F, and G. Once these are available, the
surface currents and functions dependent on them may be obtained directly, usually
in the form of integrals of the surface currents. The algebra is somewhat daunting;
use of a symbolic math program such as Mathematica can ease the task significantly
(although Mathematica also needed assistance from time to time).

We now review the steps leading to Fg, Go, f‘, and G. First, notice that A, =
B, = 0 by inspection of (C.46) and (C.47) together with (C.55) and (C.56) and
knowledge that &(a, f) is even in both a and B. Taking the X and § components of
(C.48) and (C.49) gives four equations which are solved for F, ﬁ’y, G,, and éy in
terms of ten other variables:

Fo(kz hy —ksin®) = ¢4,A; 4 @4, Ay + ¢8,B: + ¢5,B,

+9r, For + ¢R,, Foy + 65, Fo:

+66o. Goz + $6o, Goy + 96, Go: (C.57)
Fy(ksyky — ksin®) = ta,A; + 14, Ay + 95, B; + ¥5,B,

+9F,. Foz + ¥r,, Foy + ¥Ry, Fo.

+"I)G03 GO.‘Z‘ + ¢Goy GOy + '(bGo: G()z (C.58)
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G’z(nz, Ky —ksinb) = a4, Az +7v4,Ay+78.B: + vB, By

Gy(Kzy Ky — ksind)

+YFos Foz + VR, Foy + VR, Fo:

+760: Goz + V6o, Goy + 7Go, Goz

EA:AI + éAy Ay + éBzBl‘ + éByBy
+£Fo, FOz + EFoyFOy + £Fo, FOz

+€Go; GO-'E + éGOy GOy + £G0z GOz

(C.59)

(C.60)

where the ¢(k;, Kk, — ksin8), P(kz, ky — ksinb), y(kz, &y — ksinb), and €(kz, &, —

ksin 6) (whose arguments were suppressed) are complicated rational expressions of

/ !
k, k', ks, Ky, Kz, ., and 6.

These four equations are multiplied by é(«;, k, — ksin8), the transform of the

normalized correlation function, and integrated with respect to «, and k,. Using

(C.46) and (C.47), we obtain

A,

where (e.g.)

Q4, =

T

= Oy, A; + Oy, Ay + ®p.B; + ®p, B, + O, Fo.

+®r, Foy + ®R,, Fo: + Dg,, Goz + D6,, Goy + Py, Go:
= Wy, Az + Yy, Ay + Vg, B, + Vg B, + Vg, Fo,

+¥ g, Foy + YR, Fo: + Y6, Gor + Ya,,Goy + Ya,, Go:
= T A:+TaA,+T5,B, +T5,B, + ', For

+T,, Foy + Ty, For + Ty, Gos + T, Goy + T, o
= Z4a,Ac+Z4,Ay+Z8,B; + Zg,By + =g, For

+~:Foy FOy + EFO; FOZ + EGO: GO.’L‘ + :—:Goy GOy + EGQ,GOZ

1
(27)

/ ¢4, (Kzy £y — ksin0)&(k,, ky — ksin 0)dk,dk,.

(C.61)

(C.62)

(C.63)

(C.64)

(C.65)
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Exactly half of these terms are zero due to the odd symmetry of the integrands

in K

oy, = bp, = O, = Or, = gy, = 0, (C.66)
Uy, = Up, = Vg, = Vg, = U, =0, (C.67)
T4, =T, =T, = L, = Tao, =0, (C.68)
Z4, = EB. = R, = SR, = Zp, = 0. (C.69)

Therefore, the four equations can be split into two uncoupled sets:

A, = V4 A, + Vg, B, + Vg, Foy + Vg, Fo. + ¥a,, Gos, (C.70)

B, = T4,Ay+TB,B: + TR, Fo, + 'R, Fo: + LGy, Goz, (C.71)
and

A, = ®4,A:+ 0B, B, + OF, For + 96,,Goy + D, Go-, (C.72)

B, = Z4,A;+Z8,By+ZR, For + Z6,,Goy + Z6,, G- (C.73)

We can solve for the A and B components in terms of the others:

Ay = filFoy, Foz, Goz), (C.74)
B; = fa(Foy, Fozy Gos), (C.75)
Ar = fo(Fos, oy, Gos), (C.76)
By = fu(Foz, Goy, Go:). (C.77)

We now have two sets of three unknowns remaining. The horizontal and vertical
incidence cases are considered separately.
Let & = & = %. The 2 components of (C.43) and (C.45) give two (polarization-

specific) equations in Fyy, Fy,, and Go,:

k
(Goz — 1Bz0%) + %[Foz cosw + (Fo, — 1A,0%v)sinw] = 0, (C.78)
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Goz + n[Fo; cosw + Fyysinw] = 0. (C.79)

To get a third equation, we examine (C.53), which is in terms of F,, etc., which
have already been solved for. Some terms of the integrand drop out due to odd sym-
metry, leaving the following equation, which is not specific to vertical or horizontal

polarization:

Fy, = (éAy + @Ay)+(&>ﬂz + \BB,)'*'(&)FOB, + li;Fo,,,)ﬁ'((i)sz + @F03)+<&)G01 + ‘I’GOz) )

(C.80)
where (e.g.)
- —i0? 5
40 = a3 | @ay(e B, B)deds (C81)
and
—i0?
Vs, = o [[ 894, (e, )dads. (C.82)

Equations (C.79), (C.78), and (C.80) make a homogeneous system of equations
that has a non-vanishing determinant; the equations are therefore independent, and
the only solution is therefore Fy, = Go, = Fo, = 0, implying A, = B, = 0 for the
horizontal polarization case.

We now need to solve for Fy;, Goy, Go., Az, and By, which will lead to ﬁ',, éy,
and G, and then to F,, F,, and G,. We have four equations: (C.76), (C.77), and the
X components of (C.43) and (C.45). (C.54) will provide the fifth, similar to (C.53).

This equation is also not polarization-specific:

Go, = (fA, + 2,4:) + (FBy + .E-By) + (FFO, + EFO,) + (f‘Goy + EGo,,) + (me + 2Go:) ’
(C.83)
where (e.g.)

- —i0?

Th = Gy // a4, (e, B)&a, B)dadB (C.84)
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and

5, = (‘2) ] Bl Bita B)dads (C.85)

We now have five equations in five unknowns, which may be solved for Fy,, Goy,
Gos, A, and B,. Fy, F,, G, and G, follow from (C.57), (C.58), (C.59), (C.60), and
the surface currents follow directly. The vertical polarization case is complementary.

It should be noted that, while the normalized surface correlation, ¢(7;,7,), and
its transform, é(a, 3), are still unspecified, it is better in practice to use an analytical
expression for ¢(a, 3) in the hope that some of the two-dimensional integrals (®4,,
etc.) might be solved analytically (not likely) or at least reduced to one dimension.
Such a reduction is extremely advantageous from a numerical analysis viewpoint.
For example, in the Gaussian correlation case, the two-dimensional integrals were
converted into radial coordinates and reduced to one dimension analytically, with
integrands in terms of Bessel functions. The power-law case has no similar reduction.

The use of a symbolic algebra program like Mathematica is highly recommended
due to the number of algebraic manipulations and the high probability of algebraic
errors. Use of an algebra package alone does not guarantee usable solutions, how-
ever. The author found that Mathematica often needed very specific hints before
it could reduce complicated formulas to simplest form. Also, the direct solution of
the three-equation linear system in which the coefficients were rational functions led

to incredibly complex solutions. The problem was avoided by introducing dummy

coefficients and implementing Cramer’s Rule via explicit Mathematica commands.
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C.2 Derivation of the Backscattering Coefficient ¢°

The bistatic 'scattering cross section in direction (6°,¢*) for the scattered field

with polarization &° is given by

o0,6) = g (I £~ (e E)P) (c9)

where A is the illuminated area (which drops out of the final expressions) and £ is

the amplitude of the scattered far field:

tkr
E(r) =

£(6°,°), (C.87)

Tr

where
£(6°,4°) = - x / / [M(c',3') + nF x J(',y')] exp(—iki - ¥)de'dy’.  (C.88)
Defining unit vector f in the direction of the scattered field,
I = Xsin 6’ cos ¢’ + ¥sin 6’ sin ¢* + z cos 6°, (C.89)

and vector r’ to a general position on the surface,

=%z’ + Jy' + 2{(",y"), (C.90)
we can show that, for scattering in the plane of incidence (¢* = 7/2),
& = x (C.91)
€ = —ycosf +zsinf’ (C.92)
P = ysin6’+2cosb’ (C.93)
f-r' = y'sind’ +{(z',y’) cos 6. (C.94)

The expression inside (C.86) may be written
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= -1 // &*- J(z',y") exp[—1k((z', ") cos %)~V ¥ d'dy’
+// & - x M(z', y') exp[—ik((a', y') cos 82" " dz’ dy’
+n // 2',y') exp[—ik( (e, ') cos 0°])e Y S 4o’ dy’
// s £ x (M(',y") exp|—ik((a', ") cos 6*])e ' " da'dy’. (C.95)
If the surface electric current J(z,y) is written in a first-order Wiener-Hermite

expansion as in (C.31), then the current-exponential product in (C.95), written to

first order, becomes

I(2',y e keost ") =

., PN ihen! g
e tkp((z ,y)ezky sin § {F

ﬂ)e"(“’+ﬁv'>dadﬁ} , (C.96)
where p = cos 6 + cos 6°, and the ensemble average of the product becomes

<J(w', yl)e—ikcos 0’((1",y’)> —

—12:2,2 /9 kol g
e kpa/2etky sin @ {FO

i, )dadﬁ}. (C.97)

Substituting these expressions and their magnetic current counterparts back into

(C.95) and simplifying results in

= [[ e (ones - Fo 4808 x GollTofa'sy') — (To(e' )

(,8) +& - x G, B)]

'[Tl(aa ﬂ; xla y’) - (Tl (aa /B; xls y'))]dadﬂ}dm'dy', (098)

where

g = sin6® —sinf (C.99)

To(z',y') = exp[—ikp((z',y’)] (C.100)
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(To(z',y)) = exp(—sp"/2) (C.101)
Ti(e, B;7y") = To(@',y')((a, B)expli(az + By)] (C.102)
(Ti(a,B;2y)) = —ikpi(e, B)oe™ 2 (C.103)
s = k*o? (C.104)

The next step is to calculate the ensemble average of the squared absolute value

of (C.98). The following ensemble averages are calculated separately:

([To = (To)[To" = (To*)]) = e [P ele=="w=v) 1), (C.105)

([To = (To))[Ti* = (T1"))) =

-—ikpa%(a,ﬁ)e"”z {esch(z—z'vy-y') gia(e—z")+iB(y-y') _ 1] + ]_} , (C.l()ﬁ)

(1T — ()T - (1)) =
(27)20%¢(a, B)6(a — o' )8(B — B')e(@z—o="+By=F"Y) o~ gmPe(az' =)
_30'2112&(&, ﬂ)é(a', ﬁ/)e_,pl’{l

+eap2c(x-—:c',y-!/')[_1 + eia(x—z’)+iﬁ(!/-!l')

el e B =) _ gila+a!)(z=a)Hi(@+8)5=4)]}. (C.107)
Let
Qo=-n€& -Fo+& fxGo (C.108)
and
Qa, B) = —né* - F(a, B) + & - x G(a, ). (C.109)

The ensemble average of the squared absolute value of (C.98) is the sum of four

integrals:

(1 £(6°,3) — (& (0% ) =
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[ € 00q (T2, 9) - (Tofa, )]
[T (&/,y) - (T (a', ")) dedyda'dy’
tams [ 0@ 8 (Ble) - (Tl
(T7( B2, 9') = (T3 (@), B3/, ))))dotdf' dodyda’dy’
e S 0w Qe (I e - (1(e' )

[Ti(a, B; 2,y) — (Ti(e, B; 2,y))])dadBdzdydz’dy’

i S €t 81 @ ) e, 852, - (T 2,0
[Ty (e, B52,y') = (Ty*(, 85 2, y'))] ) dadBda’ dB' dzdydz'dy'. (C.110)

+

+

After much algebra, some changes of variables, and some intermediate integra-
tions, the bistatic cross section in the plane of incidence is given by the following

general expression:

k2

05 = g QM
240t [ 1m{QuQ (e, )t Mo, )dts
02
+ 1o | 100 9)Pelo, 6)Mo(a, B)dads
2,2
~ Gyt J[] @le:8)@"(@! B, it )
Ms(a, B;d, B')dedBde’dB'}, (C.111)
where
M, = // e~k [eP'e(u0) _ 1)dudy (C.112)
Mi(e,B) = (27r)26(a)5([3~—kq)+f(a,ﬂ)—Mo (C.113)
M(a,B) = M(e,8)+ Mo (C.114)

Ms(a, B;, ) = Mi(a,f) + My(c,B') = Mi(a+ o/, +8) (C.115)

f(a, ﬂ) = // e—ikqu[eapzc(u,v) _ I]Ciau-{-iﬁvdudv. (C116)
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Eftimiu shows that (C.111) reduces to the physical optics and small perturba-
tion expressions in the appropriate limits. For example, consider a long correlation
surface, where

&a, B) = (27)%6()6(B). (C.117)

All terms in (C.111) go to zero except the first, leaving

k? \
0%(6°,2) = —e~*"'|Qo|* M. (C.118)
4r
For horizontal incidence, &' = &}, and
Qo = —nFo; — cos 6°Goy + sin 6°Go,. (C.119)

The integrals @ 4, , etc., appearing in the expressions for Fo,, Goy, and Gy, become

much simpler in this limit (through the appearance of (C.117) in the integrands),

and we can show that, for the backscatter case (§° = —0),
—2k' cosw cos 8
ke = k' cosw + k cos 6 (C.120)
2k cos 0
Goy = k' cosw + k cos (C.121)
Go. = 0; (C.122)
therefore
k' cosw — kcos §
Qo = 2cosf (k’ cosw + k cos 0) ’ (C.123)
and for the backscatter case,
k2 k2 2 2
0°(—0,%) = yr (20674 cos? 0| R |* M. (C.124)
For ¢(7;,7,) =1 and 6° = -4,
Mo = [[ iesnty [t od _ 1)y, (C.125)

and (C.124) reduces exactly to (7.5), the physical optics solution.
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C.3 Evaluation of (C.111) for the Power-Law Case

The expression for the scattering coefficient, (C.111), is evaluated by substituting
the explicit expressions for Qo and @ and performing the indicated integrations.
Eftimiu remarks: “This calculation is, by far, easier said than done” [16]. Use of
a power-law roughness spectrum (and the associated correlation function for which
there is no analytical expression) only serves to increase the difficulty.

The evaluation of (C.111), shown here for HH polarization, generally follows the
procedure used by Eftimiu. We begin by calculating all the integrals similar to @4,

using the normalized roughness spectrum

&, B) = , (C.126)

where Sz(a, ) is given by (2.9), modified for use with arguments in rad/m instead
of m™!. The next step is to expand the exponential containing the normalized cor-

relation function in (C.116) into a power series. We therefore write

F(ka,kB) = g:l (—3%2:—): // ™ (u, v)eltoutkB=ka)l gy gy, (C.127)

Each term of this function is calculated by filling a 2D array with values of ¢,
using an inverse FFT to calculate c, raising c to power n, and transforming back to
the frequency domain, resulting (after convergence) in a table of values for F. Values

not in the table may be found by interpolation.

The expression for ¢ is divided into two parts:
0=5°+5° (C.128)

where

k2
Z;e_”’z {|Qo|2Mo

Qi
o
—~
5N
]
A
N’
I
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+2kpo’ J[1m4Q0@" (2, )}, )M (e, B)dads

) é(avﬂ)M2(a,B)dadﬂ} ’ (Clzg)

and the &° part contains the term in (C.111) with the quadruple integral involving
M;. Evaluation of this integral is impractical in the power-law case. Eftimiu remarks
that this term has little or no effect in the (Gaussian) cases he has considered, so its
omission here seems reasonable.

Rewriting 6° as o after some manipulations:
2

o%(6°,%) = L;e"”z{lQol’JE(O,O)+SC(0,kq)IIDQo+162(0,/c<1)l2

ko / Im{QoQ" ke, kB)}&(ka, kB)
-[.F(ka, kﬂ) — F(0,0)|k*dads

&(ka, k) F(ka, kﬂ)k2dadﬂ} , (C.130)

where

F=3 (sp*) // (u, v)eilkaw+ 8=kl gy gy, (C.131)

|
n=2 n.

For HH polarization,

Qo

Q(ke, kB) = —nFy(ka,kB) - cos6°G,(ka, kp)

—nFor — cos °Gyy + sin 6° G, (C.132)

+5in 0°G, (ka, k). (C.133)

The scattering coefficient in (C.130) was computed by the program plhang4.f.
The integrals are rather messy because the integrands are products of radially sym-
metric functions with offset centers. However, the most taxing calculation by far
was the summation for F(ka,kB). This function was calculated by the program

convbl5.f; values were stored in files for use in the other program. The sum for F
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did not converge when the entire spectrum from (5.8) was used. Use of a bandlimited
spectrum formed by enforcing a low-end cutoff of (10X)~! allowed F to converge, but
not always quickly (as many as 18 terms were required). The slow convergence is
believed to be accurate, however, because F is essentially an n-fold self-convolution
of ¢, which has a very high peak.

Results of the PWH calculations are shown in Section 7.5.
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Fluctuation Statistics of Millimeter-Wave Scattering
From Distributed Targets

FAWWAZ T. ULABY. reLtow, ek, THOMAS F. HADDOCK, MEMBER. IEEE, AND
RICHARD T. AUSTIN. STUDENT MEMBER, IEEE

Abstract—The applicability of the Ravleigh fading model for char-
acterizing radar scattering from terrain is examined at 33 GHz for
hoth backscattering and bistatic scattering. The model is found to be
in excellent agreement with experimental observations for single-fre-
quency observations of uniform targets such as asphalt and snow-cov-
ered ground. The use of frequency averaging to reduce signal fading
variations was examined experimentatly by sweeping the radar signal
from 34-36 GHz in 401 steps. The results show that the formutation
hased on the Ravieigh model relating the reduction in signal fluctuation
to the bandwidth used provides a reasonable estimate of the improve-
ment provided by frequency averaging.

[. INTRODUCTION

O fade. as defined in Webster's dictionary {1]. is ""to

change gradually in loudness. strength, or visibility,
when used (in connection) with a motion picture image or
an electronics signal.”" In radio communications [2], sig-
nal fading refers to fluctuations in the received signal
caused by multipath interference. and in radar sensing of
terrain the terms fading, scintillation. and fluctuation have
all been used interchangeably to describe random-like in-
tensity variations corresponding to signals backscattered
from cells at different locations on a distributed target 3.
pp. 463-495, 1803-1804]. If the radar is of the imaging
type. the random variations produce a “‘speckle’ pattern
or appearance on the image, which complicates the image
interpretation problem and reduces the effectiveness of in-
formation extraction algorithms.

Consider. for example, the two image segments shown
in Fig. 1. These two segments, one of which corresponds
to a corn field and the other to a forest parcel and which
were part of the same strip of X-band radar imagery. have
different average rones, exhibit significantly different rex-
tures, and both exhibit large pixel-to-pixel intensity vari-
ations. The average tone of an image is the average value
of the image intensity for all pixels contained in that im-
age. (Each image segment contains approximately 10
pixels.) This average tone is proportional to the average
received power, which, in turn. is directly proportional to
the backscartering coefficient 0" of the imaged target. In
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Fig. 1. X-band SAR images of (a) a corn field and tb) a forested area. Note
the textural ditferences between the two images.

other words. ¢” of the imaged target is. by definition, the
mean value of the random process characterizing the in-
tensity variations in the image. Texture refers to the low
spatial-frequency variations of intensity across the image
[4]; the corn field. being more spatially uniform than the
forest parcel, exhibits the same type of random variations
in all regions of the image, whereas the image of the for-
est parcel contains *‘clumps’ of dark and bright regions,
on which the random variation is superimposed. If we
adopt the strict definition that the concept of ‘‘a back-
scattering coetficient for a distributed target’” is meaning-
ful only for targets with uniform electromagnetic proper-
ties, then texture becomes the spatial variation of 0" from
one region of an image to another. In the case of the forest
parcel, these variations are related to the spatial nonuni-
formity of tree density.

Unlike textural variations, which may or may not have
specific directional properties and which are govemed by
the spatial variation of the target scattering properties rel-
ative to the dimensions of the radar resolution cell, the
random variations that give the image its speckled ap-
pearance are due to phase-interference effects and are a
characteristic feature of the scattering pattern for any dis-
tributed target (provided the target satisfies certain con-
ditions. as we shall discuss later). Image speckle is simply
a visual manifestation of fading staustics. which is the
central topic of this paper.

Thus. there are three types of intensity variations that
one may observe in a radar image: 1) variations in average
tone from one distributed target (such as a bare-soil field)
1988 IEEE



191

ULABY. HADDOCK er al.: FLUCTUATION STATISTICS OF mm-WAVE SCATTERING 269

to another (such as a forest parcel), 2) textural vanations
from one region of a distributed target to another, and 3)
random fading variations at the pixel-to-pixel scale. These
variations are governed by different processes and are
characterized by different probability density functions
(pdf’s).

In some radar applications, these three types of van-
ations are lumped together, treated :s a single variation,
and characterized as terrain clutter. To determine the sta-
tistics of the clutter random variable for a given terrain
type or geographic area, the area is imaged and then a pdf
of the received voltage or power is generated. Next, the
data is tested against theoretical pdf’s to determine which
fits best. Such an empirical approach may produce a sta-
tistical description appropriate to the imaged area, but it
has some severe limitations. The empirically generated
pdf is, in essence, a convolution of the three pdf’s char-
acterizing the three types of variations referred to above.
Hence, it is both target-specific and sensor-specific. It is
target-specific in that it pertains to the specific mix of ter-
rain categories and the specific conditions of those cate-
gories at the time the radar observations were made. Most
terrain surfaces exhibit dynamic variations with time of
day, season, and weather history. The pdf is sensor-spe-
cific because one of the underlying variations, namely that
due to signal fading, is governed by the detection scheme
used in the receiver (linear or square-law) and the type of
filtering or smoothing technique employed in the signal
processor. Filtering techniques are used to reduce fading
variations; they may include spatial averaging and/or fre-
quency averaging schemes and may be performed coher-
ently or incoherently [4]-[9].

To characterize the fading statistics associated with a
terrain surface of uniform electromagnetic properties, the
usual approach is to model the surface as an ensemble of
independent, randomly located scatterers, all of compa-
rable scattering strengths. Such a model leads to the result
that the amplitude of the backscattered signal is Rayleigh-
distributed {3, pp. 476-481]. If the return is dominated
by backscatter from one or a few strong scatterers, the
fading process is characterized by the Nakagami-Rice
distribution [10]. Some experimental observations sup-
port the Rayleigh behavior [4], [11], [12] while others,
particularly those measured for complex terrain cate-
gories, are in closer agreement with the lognormal or the
Weibull pdf's [13]-[17], or other more complicated dis-
tributions [18].

The purpose of this paper is to:

1) examine the applicability of Rayleigh fading at 35
GHz for both backscattering and bistatic scattering from
uniform terrain media,

2) examine the statistics associated with the use of fre-
quency averaging to reduce fading varations, and

3) determine if the statistical character of the back-
scatter is affected by the size of the ground cell (antenna
footprint) illuminated by the radar.

To this end, both experimental measurements and the-
oretical analyses were performed.

Fig. 2. The illuminated area A contains N, randomly distributed scatterers.

[I. RAYLEIGH FADING STATISTICS
A. Underlying Assumptions

The Rayleigh fading model used for describing radar
scattering from an area-extended (distributed) target is es-
sentially the same as the model used for random noise and
is based on the same mathematical assumptions. A review
of these assumptions will prove useful in later sections.

The sketch shown in Fig. 2 depicts a radar beam illu-
minating an area A of an area-extended target. The illu-
minated area contains N, point scatterers designated by
the index i = 1, 2, - -+, N,. For simplicity, we shall
confine our present discussion to the backscatter case. The
field intensity at the input of the receiving antenna due to
backscatter by the ith scatterer may be expressed as

E = KEqexp [ j(wt = 2kr; + 6,)] (1)

where Ej is the scattering amplitude and 6, is the scatter-
ing phase of the ith scatterer; r; is the range from the an-
tenna to the scatterer; k = 2« /\ is the wavenumber; and
K; is a system constant that accounts for propagation losses
to and from the scatterer, antenna gain, and other radar
system factors. The expression given by (1) may be ab-
breviated as

E = KiEqge'* (2)

where

¢ = ot — 2kr; + 6, (3)

is the instantaneous phase of E;.

Assumption 1: The scatterers are statistically indepen-
dent. This assumption allows us to express the total in-
stantaneous field due to the N, scatterers contained in the
area A as a simple sum

Ns
E = 'ZI K,’E,'Q e’°’ (4)
i=
and it implies that interaction effects between adjacent
scatterers may be ignored.

Assumption 2: The maximum range extent of the target
Ar = |r, = rj |max is much smaller than the mean range
to the target area A, and the antenna gain is uniform across
A. This allows us to set K; = K for all i. For convenience,
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Fig. 3. The vector E is the phasor sum of N, fields.

we shall set K = |. Hence

Ny

E= Z| Ege'®. (5)

The total field E is a vector sum of N, phasors. If we
express these phasors graphically (Fig. 3) with the first
one starting at the origin and the successive one starting
each at the tip of the preceding one, the resultant is a vec-
tor from the origin to the tip of the last phasor. The length
of this vector and its phase angle are denoted E, and ¢,
respectively. That is

E=Ee (6)

Assumption 3: N, is a large number. This assumption
allows us to use the central-limit theorem, which. in turn,
allows us to assume that the x- and y-components of E,
E,, and E,, are normally distributed. However, it can be
shown through computer simulation that this condition can
be satisfied (approximately) for N, as small as 10. (The
same conclusion was reached by Kerr [19] in the 1940’s.)

Assumption 4: The scattering amplitude E;q and the in-
stantaneous phase ¢, are independent random variables.
This condition is easily satisfied if E, is independent of
the range r;, which would be the case if the scatterers are
randomly distributed in range.

Assumption 5: The phase ¢; is uniformly distributed
over the range [0, 27 ]. To satisfy this condition it is not
only necessary that the scatterers be randomly distributed
in range, but the maximum range extent of the target Ar
must be several wavelengths across also.

Assumption 6: No one individual scatterer produces a
field intensity of magnitude commensurate with the re-
sultant field from all scatterers. In other words, the field
E is not dominated by one (or few) very strong scat-
terer(s). If this condition is not satisfied, the Rayleigh

noiselike statistics do not apply and the statistics devel-
oped by Rice [20] for one or more large signals contained
in a background of noise should be used instead.

Use of Assumptions 3-6 can be shown to lead to the
following properties (3, p. 479]:

p(E) = Fexp (-EH/26), E20 (1)

p(e) = 1/(27) (8)
T 1/2

E, = <'2"> s (9)

E? = 25 (10)

where p(E,) and p(¢) denote the pdf’s of E, and ¢, re-
spectively, E, is the ensemble average (mean value) of £,
and s is the standard deviation of E, and E,. Equation (7)
is known as the Rayleigh distribution.

B. Output Voltage

1) Linear Detection: If the receiver uses a linear de-
tector, its output voltage ¥, is directly proportional to £,

VL = KlE,

E,
= K E. =%
" E,

= KIKz(UO)I/Zf

=V f (11)
where K, is a system constant, K; relates the mean field
E. to the backscattering coefficient of the target o® (ac-

tually, o° is directly proportional to £7, but £ = 4/
E?), and fis the normalized fading random variable given
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5

<

f=E.JE.
Using the relation p(E,) dE, = p( f) df, we obtain

(12)

p(f) = Lew (/). r= 0

f=1
sp=s,,/V, = 0523

Because the output voltage V, is a product of its mean
value ¥, = K,K,(c®)""* and the random variable £, the
process is sometimes referred to as a multiplicative noise
model.

2) Square-Law Detection: The voltage output of a
square-law detector is directly proportional to the power
of the input signal rather than to 1ts field intensity £.. Thus

Vs = K:P

— E}
K:iK.E} =

K\K.Kso'F

I

(16)
where
F=E/E (17)

is the normalized fading random variable for power. The
pdf characterizing £ is the exponential distribution (3, p.
480]

p(Fy=e¢f F=20 (18)

with
F=1 (19)

and
sp=5p/P = 1. (20)

C. Interpreration

What do these statistics tell us? To answer this question
we start by examining Fig. 4(a), which shows plots of
p(f) and p(F) for the Rayleigh and exponential distri-
butions, respectively, and Fig. 4(b), which shows the cor-
responding cumulative distributions. We observe that the
range of fading associated with these distributions is very
large. That is, if one takes a single sample of the signal
from a Rayleigh-distributed or exponentially distributed
ensemble, one has very little chance of selecting a value
close to the mean. To illustrate this with a specific ex-
ample, according to the Rayleigh distribution in Fig. 4(b)
the value of f that exceeded S percent of the time is 1.95
(relative to the mean) and that exceeded 95 percent of the
time is 0.25. In decibels, these levels correspond to +35.8
and —11.9 dB, respectively. If we select a sample at ran-
dom, the probability is 90 percent (95 to 5 range) that its
value will be within the range extending from 11.9 dB
below the mean to 5.8 dB above the mean. We may think
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Fig. 4. Plots of (a) probability density functions and (b) cumulative dis-
tributions for fand F.

of this as the 90-percent confidence interval associated
with our measurement. The important point to note here
is the fact that this interval (17.7 dB) is very large indeed.
The situation is not much different when square-law de-
tection is used; the 5- and 95-percent levels of the cu-
mulative distribution for the exponential pdf are +4.8 and
—12.9 dB. also totalling to 17.7 dB.

Now let us illustrate the fading behavior with measured
data. Fig. 5(b) presents a trace of radar backscatter mea-
surements made by a 35-GHz truck-mounted scatterom-
eter as the truck was driven across an asphalt surface with
the radar beam pointing downward along the aft direction
at an incidence angle of 40° relative to normal incidence
(Fig. 5(a)). The antennas were mounted atop a telescopic
boom at a height of 10.3 m above the asphalt surface. The
sampling rate was such that the footprints (on the asphalt
surface) corresponding to adjacent samples were totally
independent (no overlap). More detailed information on
the system and measurement procedure is given in Section
Iv.

The vertical axis in Fig. 5(b) represents £, the ratio of
the received power to the average value computed for all
1000 measurements, expressed in decibels. (It is assumed
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Fig. 5. The sketch in (a) shows how the measurement of the backscattering
from asphalt (shown 1n (b)) were acquired. The incidence angle was 40°.
the platform height 10.3 m. and the polanzation VV. The measured
backscattering coeflicient (corresponding to P ) was —5.25 dB.
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that the mean of 1000 independent samples is a good es-
timate of the true mean.) We observe that

1) The measured values of F extend over a range of
50.2 dB, and that 90.8 percent of these data points are
within the —12.9- to +4.8-dB range (which corresponds
to the 90-percent interval for the exponential distribu-
tion).

2) The standard deviation sy = 0.97, which is in close
agreement with the value of 1 predicted by (20).

3) The measured pdf of F closely resembles the expo-
nential distribution (Fig. 6); an acceptance hypothesis test
using the chi-square goodness of fit test shows agreement
with a probability of 86 percent.
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D. Independent Samples

To improve the uncertainty of a radar measurement of
the backscatter from a terrain surface, it is necessary to
average many independent samples together. An easy way
to increase the number of independent samples N con-
tained in an estimate of the radar backscatter is through
spatial averaging, which amounts to trading spatial reso-
lution for improved radiometric resolution. Other ways to
increase N are discussed in Section I1I.

1) Linear Detection: If N randomly selected samples
of a Rayleigh-distributed voltage ¥, are averaged to-
gether, the average value V,y has the following proper-
ties:

l N
Vy== %V,
Yt
[ N 1
1,21 |
= K K (0" ﬁgf,J
= KKy (0" (21)
where we defined
l N
fo=5 L4 (22)
Yi=1

as the fading random variable corresponding to the aver-
age of N independent samples. Its properties are

=1
0.52
Sy = —F/—— (23)
MTOUN
and its pdf may be obtained by N-successive convolutions
of the Rayleigh distribution (13). Plots of p( fy) are shown
in Fig. 7(a) for several values of N. As expected. as N
increases the distribution becomes more peaked and nar-
row (the standard deviation decreases as N™'/2).
2) Square-Law Detection: If the receiver uses square-
law detection i

Vv = K3K,,K5<7°FN (24)

with

M=

l
Ni

]

|
The mean value of Fy is 1, its standard deviation is
Spy 1
Spy = = = ——
Fn P \/X’

and its pdf is a x * distribution with 2N degrees of freedom
(3, p. 1914)

(26)

Fz- INNe—NFv
Fy)=——— F,20.
p(Fy) (N=1) v

Plots of p(Fy) are shown in Fig. 7(b).

(27)
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N=10

(a)

(b)
Fig. 7. Probability density functions for N = 1|, 4, and 10 for (a) f, (linear
detection) and (b) F, (square-law detection).

E. Applicability of the Rayleigh Model

Does the Rayleigh fading model provide an appropriate
approach for characterizing the statistics of radar back-
scatter from terrain? The answer is a qualified yes. If the
assumptions underlying the Rayleigh fading model are
reasonably satisfied. the available experimental evidence
suggests that the Rayleigh model is quite applicable (4],
[11]), [12]). Terrain targets satisfying the Rayleigh as-
sumptions include bare ground surfaces, agricultural
fields, dense forest canopies, and snow-covered ground.
In all cases the target has to have stationary statistics,
which requires that its ‘‘local-average’" electromagnetic
properties be uniform across the extent of the target.

Rayleigh fading is inapplicable for a sparse forest ob-
served by a high-resolution radar because the high spatial
variations in tree density at the scale of the radar resolu-
tion violate the stationarity assumption. Thus, a very im-
portant parameter governing applicability of Rayleigh sta-
tistics to backscatter from terrain is the size of the radar
resolution cell relative to the spatial frequency spectrum
characterizing the scattering from the terrain target under
consideration.

An urban scene is another target class/condition for
which Rayleigh statistics may not apply. If the resolution
cell size is such that the backscatter is likely to be domi-
nated by the return from one or a few strong scatterer(s),
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such as a building or a comner reflector formed by two
intersecting flat surfaces, the Rayleigh pdf is no longer
applicable.

In a recent study on image texture {4], Scasat SAR data
was examined for five land use categories in a test site in
Northeastern Oklahoma. Comparison of pdf's based on
the data from the digital SAR image with the Rayleigh
pdf revealed a good fit between data and theory for back-
scatter from a lake surface, a fair fit for grasslands and
cultivated terrain, and poor agreement for forests and ur-
ban areas, particularly for the latter.

[II. WAYS TO INCREASE THE NUMBER OF INDEPENDENT
SAMPLES

According to the preceding section, if a radar is used to
measure the backscattering from a uniform. randomly dis-
tributed target with backscattering coefficient ¢, the volt-
age observed at the receiver output will be proportional
10 (¢°)", with n = 1/2 for linear detection and n = | for
square-law detection. However, associated with the mea-
surement process there will be a multiplicative error rep-
resented by the random variable fy (for linear detection)
or Fy (for square-law detection). These random variables
both have means of | and standard deviations proportional
to N™'/2. Hence, the key to improving the precision of
the measurement process is to make N as large as possi-
ble.

Fundamentally, increasing N is equivalent to trading off
spatial resolution for improved radiometric resolution.
This statement is true when discrete measurements (cor-
responding to discrete resolution cells) are averaged to-
gether after detection, as well as when the averaging pro-
cess is an integral part of the detection process (as we
shall discuss later).

A. Spatial Averaging

1) Discrete Samples: 1If N measurements correspond-
ing to statistically independent nonoverlapping footprints
are averaged together, then the number of independent
samples characterizing the average value is simply N. Sta-
tistical independence requires that the spacing between
adjacent footprints be greater than the spatial correlation
length of the random surface L,. Thus, reflections from
two nonoverlapping footprints on a very smooth surface
are not considered independent because the correlation
length of a smooth surface is very long (it is infinite for a
specular surface). Conversely, for a random surface the
returns from two footprints may be considered indepen-
dent even if the footprints do overlap, provided that the
spacing between the centers of the two footprints is greater
than a certain distance which we shall call the fading de-
correlation distance L,. Expressions for L, are given in
succeeding sections for specific antenna pointing config-
urations. In all cases the condition L, > L, has to be sat-
isfied in order for the samples to be statistically indepen-
dent.

2) Continuous Averaging in Azimuth: Consider the an-
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Fig. 8. Antenna with cffective beamwidth 3, illuminating a target at range
R and incidence angle 6

tenna beam shown in Fig. 8: the boresight direction is in
the x-z plane. pointing at an angle 8. and the effective
beamwidth is 8, in the y-direction. The antenna is moving
along the y-direction (azimuth) at a velocity u,, the nom-
inal range to the antenna footprint is R. and the nominal
azimuth resolution (width of the footprint in the y direc-
tion is)

r. = B.R. (28)
If the radar output voltage is recorded as a function of
time as the beam traverses the ground surface at the ve-
locity u,, the beam performs a form of continuous aver-
aging equivalent to low-pass filtering. From considera-
tions of the time it takes to travel over a distance r, and
the Doppler bandwidth of the signal backscattered from
the illuminated cell. it can be shown [3. pp. 585-586] that
the output voltage represents an average of N,-equivalent
discrete independent samples. and that N, is given by the
approximate expression

N = r /(1/2)

where /, is the length of the antenna along the y-direction.
The above result. which is independent of u,, may be in-
terpreted as saying that the fading signal decorrelates
whenever the antenna moves a distance /,/2 in the v-di-
rection. and therefore a resolution cell of width r, con-
tains r, /(/,/2) independent samples. Thus. the fading

(29)

decorrelation distance is simply
Ly=1/2. (20)

The result given in (29) is equally applicable to a pen-
cil-beam scatterometer and to a fan-beam side-looking
real-aperture-radar (RAR). In the case of a side-looking
fully focused synthetic aperture radar (SAR), the Doppler
bandwidth is used to improve the azimuth resolution from
r, = f,R to the resolution r, = [,/2 corresponding to a
synthetic aperture of length [, = §,R. Thus, for the fully
focused SAR

Ny = r /(1,/2)

= 1.

Looked at another way, N, represents the degradation in
spatial resolution from the best achievable (1,/2) down
tor,.

3) Continuous Averaging in Range: For a narrow pen-
cil-beam scatterometer traveling in the x-direction, con-
sideration of the time-bandwidth product leads to

N, =r/Ly (31)

and
Ly = (1,/2) sec’ 6 (32)

where r is the ground resolution in the x-direction, and
[, is the height of the antenna in the elevation plane.

B. Frequency Averaging

The criteria used to decide whether or not a pair of sig-
nals ¥, and V, backscattered from two ground footprints
may be treated as statistically independent observations is
based on the magnitude of the correlation coefficient be-
tween them, p(V,, V5). If, on the average, p is smaller
than some specified value. such as 0.2, the two observa-
tions may be regarded as statistically independent. De-
correlation is a consequence of differences in the instan-
taneous phases of the scatterers present in the observed
cells. The phase of a given scatterer, as given by (3) .

¢,‘=U)[—2kr,‘+0,
4
=wl—~—7rvr,»+0,
c

may be changed by altering the range r, between the scat-
terer and the antenna, or by changing the wave frequency
v. Birkemeier and Wallace [21] derived an expression for
the correlation function for two signals (one at frequency
v, and the other at frequency »,) scattered from the same
randomly distributed target as a function of the illumina-
tion geometry and the frequency separation Ay = v, —
vy. If Vs is the output voltage after square-law detection
(i.e., Vs = KP, where P is the input power), the autocor-
relation function for Vs (v,) and ¥ (v,) is given by

R(vi. v2) = V() Vs(v,)

= P(») P(»n) (33)
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where K has been set equal 1o unity for convenience. For
the randomly distributed target depicted in Fig. 9, Bir-
kemeter and Wallace [21] argued that the process is sta-
tionary; i.e., R(»,, v») = R(Av), and showed that the
autocovanance function, defined as

R.(Av) = R(Av) - P (34)
1s given by
R,.(AV)=;‘>1‘SmaA” (35)
L aly

where P = P(v,) = P(v,) is the mean value of the input
power (assumed constant over the frequency separation
Av), and

12

27D T

a = = —r, sinf. (36)
¢ c

The correlation coetficient is the normalized autocovari-
ance function

o(4) = R.(Av) _ (’sin aAv>"

R.(0) X (37)

adv

The two signals P(v,) and P(v,) may be regarded as sta-
tistically uncorrelated, and therefore independent, if the
separation Ay corresponds to the first zero of p(Av),
which occurs at ady = 7. This was called the critical
frequency change by Birkemeier and Wallace [21], but we
shall refer to it as the decorrelation bandwidth Avy, and
it is given by

c 150

Av; = — = — MHz

2D D (38)

with D in meters.
For continuous integration over a swept-frequency
bandwidth B extending from v, to v,, the variance of

P(B) = é 5 P(v) dv (39)
is given by {20]
. 2 f ¢
sp(B) = 3 go <1 - E) R.(£) d& (40)

where £ is Av. Use of (35) in (40) leads to

52 8 . 2
s3(B) = %— SO <1 - %) <%> & (41)

The effective number of independent samples realized
as a result of frequency averaging may be obtained by
relating the variance of P to its mean value as in (26)
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Fig. 9. Backscatiering geometry for an illuminated cell with ground-range
dimension r,.

This result will be evaluated in Section V through com-
parison with measured data.

If @B >> 1. the term & /B is negligible over the region
where the autocovariance tunction is of significant size in
the integrand. which allows us to integrate the function
analytically and obtain the approximate solution

2D
—B
c

B/Av,

N

m

1l

(43)

Here D is the slant-range resolution of the radar system.
We may show the equivalence of the above result to the
chirped pulse-radar case (as in a RAR or SAR) by noting
that B is the chirp bandwidth and 2D /c is the de-chirped
pulse length 7. Hence

N = Br
= B/B, (44)

where B, = 1/ is the receiver bandwidth. If the trans-
mitted pulse is de-chirped in the receiver to obtain the
narrowest possible pulse length, the receiver bandwidth
B, has to be equal to the modulation bandwidth B. Hence,
N = 1. However, if it is desired to have N be larger than
1, the pulse may be de-chirped only partially, thereby
using the excess bandwidth to provide frequency averag-
ing. This is referred to as coherent frequency averaging
[8], in contrast with incoherent frequency averaging
wherein the averaging operation is performed after the de-
tection and sampling operations. That is, full de-chirping
is performed to retrieve the best possible range resolution
possible, and then after the image is produced, several
range pixels are averaged together to increase N.

IV. EXPERIMENT DESCRIPTION

Two types of experiments were conducted in support of
this study, one involving backscatter measurements using
a truck-mounted platform and another experiment involv-
ing bistatic scattering measurements conducted in the lab-
oratory. To maintain continuity in this presentation, only
the backscatter measurement system will be described in
this section, and description of the bistatic configuration
will be deferred to Section VI.
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The backscattered data analyzed in succeeding sections
was measured by a 35-GHz scatterometer that was
mounted on a truck-mounted telescopic boom as depicted
in Fig. 5(a). The system, which is part of The University
of Michigan's millimeter wave polarimeter {22], uses an
HP8510A vector network analyzer to sweep frequency
from 34 to 36 GHz in 401 discrete steps. Subsequent to
calibration against a metal sphere of known radar cross
section, the output is presented in the form of a frequency
spectrum of the measured backscattering cross section per
unit illuminated area (i.e.. 0") or in the form of a plot of
the received power versus round-trip delay. A more de-
tailed description of the system’s operation and signal
processing capabilities is given in Ulaby er al. [22].

The scatterometer uses a pair of 15-cm diameter lens-
corrected horn antennas mounted onto a common posi-
tioner one above the other in the elevation plane. The an-
tenna tar-ficld distance 1s approximately 5.2 m and the
effective beamwidth of the product gain pattern 1s 3°. The
antenna positioner may be set at an angle of incidence ¢
from 0° (nadir) to 90°. and the platform height may be
extended up to a maximum of 20 m above the ground
surface.

Two types of terrain targets were selected: 1) an asphalt
surface. as a representative of targets from which the
backscatter is due primarily to surface scattering, and 2)
a layer of dry snow over a soil surface, as a representative
of media from which the backscatter is due primarily to
volume scattering. Several experiments were conducted
for each of these targets to evaluate the statistical vari-
ability of the backscattered power for various combina-
tions of incidence angle and platform height. The mea-
surements for asphalt were acquired with the antennas
pointing in the aft direction as shown in Fig. 5(a). To
insure that measurements from adjacent footprints were
statistically independent. the truck was moved a distance
greater than the extent of the antenna footprint between
successive measurements. The arrangement for snow was
similar to that employed for asphalt except that the truck
remained stationary and the boom was made to move in
azimuth in order to avoid disturbing the snow surface.
The rms height of the asphalt surface was measured to be
0.4 mm (from a surface mold). and the snow was 15 cm
deep and had an average temperature of —1°C.

To limit the scope of the data-collection segment of this
investigation, all observations were made with the VV
polarization only.

In addition to the scatterometer system, the truck-
mounted platform carried three microwave radiometers
that were mounted on the same platform and their beams
pointed along the same direction as that of the scatterom-
eter. Their center frequencies were 35, 94, and 140 GHz.
and all three had temperature resolutions better than | K.
At the time of this investigation, however, only the two
upper-frequency radiometers were in operating condition.
These instruments proved extremely useful in verifying
that 1) the targets were uniform, and 2) the snow was dry
(i.e.. it contained no water in liquid form).

Table I provides a summary of the statistics of the ra-
diometric observations. Al 94 GHz, the mean value of the
brightness temperature Ty based on measurements from
10 spatially independent footprints was 252.8 K and the
standard deviation was only 1.2 K, which is an excellent
indicator that the asphalt surface was electromagnetically
uniform. For snow, the radiometric observations were
made at both 94 and 140 GHz, and from heights of 11 and
19 m. The two 94-GHz sets of observations (each con-
sisting of 50 measurements from spatially independent
footprints) had mean value that were within 1 K of one
another and standard deviations of only a few kelvins
cach. In spite of the slighly greater difference between the
mean values of the 140-GHz observations (which is at-
tnbuted to the greater sensitivity of the 140-GHz radi-
ometer (relative to the 94-GHz radiometer) to vanations
in cloud conditions between the times corresponding to
the 11- and 19-m experiments), the resuits again indicate
that the snow medium was fairly uniform from one loca-
tion to another. The magnitude of Tp = 166 K at 94 GHz
is characteristic of dry snow {23], and considering that a
change in liquid water content by only 2 percent would
cause T to increase by about 100 K [23], the measured
standard deviation of only a few kelvins is a clear indi-
cator that the snow layer was indeed dry everywhere. By
way of comparisons, we show in Fig. 10 radiometric ob-
servations that were made later in the season for wet snow.
We observe that T, of wet snow is about 266 K at 94 GHz
(compared to 166 K for dry snow) and 270 K at 140 GHz
(compared to about 208 K for dry snow), and again the
standard deviations are only on the order of 1-2 K.

A. Single-Frequency Observations

As was mentioned in the previous section, the scatter-
ometer measures the backscattered power at 401 equally
spaced frequencies (channels) extending from 34 to 36
GHz. In this section we shall consider only the statistics
associated with single-frequency measurements, namely
the 35-GHz channel. It should be noted. however, that
the results and conclusions realized at 35 GHz are statis-
tically indistinguishable from those found at lower and
higher frequencies in the 34-36 GHz range.

Our first example showing the variability of the back-
scattered power as a function of spatial position was pre-
sented earlier in Fig. 5(b) for an asphalt surface, and the
associated probability density function was compared tc
the exponential distribution in Fig. 6. Similar results were
obtained for snow and a summary of the observed stats-
tics is given in Table II.

The asphalt results given in Table II are divided into
two groups: (a) the near-nadir group (0° and 4°), and (b)
the higher-incidence-angle group (20° and 40°). This di-
vision is necessary because the mechanics of signal fading
are different in these two angular regions. At incidence
angles near normal incidence, the backscattered power
consists of a coherent component P. and an incoherent
component P; [3, p. 1812], and only the latter is subject
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Brightness Temperature of Wet Snow
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Spatial Position Index
Fig. 10. Measured vanation of the brightness temperature ot wet snow at
94 and 140 GHz. Each data point represents an independent footprint.

TABLE I
SUMMARY OF VERTICALLY POLARIZED RADIOMETRIC OBSERVATIONS MADE
CONTEMPORANEOUSLY WITH THE RADAR OBSERVATIONS
(The incidence angle was 40°, and the staustcs are based on
observations of N spatially independent footprints. S, 1s the measured
standard deviation of T,.)

TARGET FREQUENCY HEIGHT N T8 sTg

Asphat 94 GHz Sm 0 2528 *2

Snow 94 GHz 1mm 50 166.8 35

Snow 94 GHz 19m 50 1658 '9

Snow 140 GHz "mm 50 206.8 13

Snow 140 GHz 19m 50 2108 r2
TABLE Il

SUMMARY OF THE STATISTICS ASSOCIATED WITH THE BACKSCATTERING
MEASUREMENTS FROM ASPHALT AND SNOW (INDEPENDENT FOOTPRINTS).

2 -

Incidence Angle Helght(m) a x b(cmxem) Area(m ) Sp P

0° 40 29x29 0.07 035

4° 98 T\ x72 0.41 0.59

20° 41 31x33 0.08 299

20* 99 76 x 82 0.50 13

40* 42 39x 52 0.16 082

40° 103 98 x 129 1.01 107
SNOW

2 =

Incidence Angle Helght(m) a x b (cmxem) Area(m ) sP/ P

40°* 42 40x 52 0.16 1.10

40 10.7 101 x 134 1.08 121

40 185 175 x 231 324 100

FLUCTUATION STATISTICS OF mm-WAVE SCATTERING 7

to signal fading fluctuations. Thus

P=P +P (45)

Sp = Sp, (46)
and

Sp Sp,

L AN 4

P P, .+ P, (47)

For the incoherent component, Rayleigh fading suggests
that s, = P, (20). Hence

o
<

=P,/(P. + P,) (48)

ol

which is always significantly smaller than I if P, is sig-
nificant in magnitude relative to P,.

The coherent component P, is largest at § = 0. de-
creases exponentially with increasing §, and becomes
negligible in comparison with P, (for most natural sur-
faces) at angles greater than a few degrees [24]. Conse-
quently. the value of sp/I—’ computed on the basis of the
experimental data was found to be 0.35 at 6 = 0°, 0.59
at @ = 4°, and close to [ at 20° and 40°.

The major conclusions reached on the basis of the sin-
gle-frequency observations are

1) The Rayleigh model is a reasonable descriptor of
signal fading for uniform targets. This is supported by the
good agreement shown in Fig. 6 between the measured
pdf and the exponential distribution and by the result that
sp/P = 1 for both asphalt and snow (the deviation from
an exact value of | is attributed to the fact that the sample
size is only 50. and therefore the values of sp and P given
in Table II are merely measured estimates of the true val-
ues).

2) No discernable difference between the statistics for
the backscatter from snow and those for asphalt is ob-
served.

3) No discernable dependence on footprint size is ob-
served over the range of values examined in this study.
which varied in footprint area from 0.07 to 3.24 m*. The
corresponding dimensions of the major and minor axes of
the elliptically shaped footprint were 0.29 m x 0.29 m
for the smallest footprint and 1.75 m x 2.31 m for the
largest.

B. Frequency Averaging

Fig. 11 displays a typical example of the frequency
spectrum of the measured power for a given footprint. We
observe that P varies relatively slowly as a function of
frequency, implying high correlation between adjacent
frequency points, but the overall variation across the 34~
36 GHz band is on the order of 23 dB.

The improvement (reduction) in spatial variability of
the return provided by frequency averaging is demon-
strated in Fig. 12, which shows both single-frequency
measurements and the 2-GHz averaged measurements of
the return from snow as a function of spatial position. The
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Fig. I'1. Typical trace of the frequency variation from 34 to 36 GHz of the
recetved power for a given footprint of snow.
10
SNOW incidence angie a 40 deqrees |
H =103 meters A 'l‘
b AR
0
't
. X il
@ [
2 . [
e 1 V J ::
a [
]
.20 :
— === CW(35GHa), SD/F = 1.0
———— 34-36 GHz Average, S /P 2 0.27
-30 2
[ 10 20 10 a0 50
Spatial Position index
Fig. 12. Reduction of signal variability through frequency averaging.

associated normalized standard deviation is 1.0 for the
single-frequency data, compared to 0.27 for the fre-
quency-averaged data.

1) Correlation Function: Now we shall examine the
role of frequency averaging relative to the theoretical ex-
pectations presented in Section III-B. We have 50 traces
corresponding to 50 independent footprints. each consist-
ing of measurements at 401 frequencies. Let us denote
P, (v;) as the measured power corresponding to spatial

position i (with i = 1,2, - -+, 50) and frequency v,
where v| = 34 GHz, », = (34 + 0.005(j — 1)] GHz,
andj = 1, 2, , 401. For each position i, we compute

the autocovariance

1Y
R.(Av) = — )y [P,(Vj)

T 1P0) = PIR0 - P (49)
and the correlation coefficient
Rm(AV)
(Ay) = ———— 50
pi(4v) R.(0) (50)

where k is the displacement index, Ny = 401 — k, Ay =
0.005k (GHz), and P is the mean value of P, (v;) aver-
aged over both i and j. The correlation cocrﬁcmnt 1s com-
puted for integer values of & from 0 to 200, corresponding
to a range of Av from O to 1 GHz. Once this process has
been completed for each position i. the correlation func-
tion p; (Av) is averaged over all i to obtain a better esti-
mate of its frequency spectrum. Thus, the measured cor-
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Measured vs. Theoretical Autocorrelations - Snow

1.0

0.8
>
s
c 0.6 Eqn. 37
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Fig. 13. Companson of theoretical autocorrelation function given by (37)
with that computed on the basis of the spectral measurements ot the radar
backscatter.

relation coefficient is given by

| ®
,D,,,(AV) - 50 :—Zl p'(AV
Aplototp,(Av)is shown in Fig. 13 for snow. The figure
also includes a plot of the expression given by (37). We
observe that the measured correlation coethicient de-
creases with increasing frequency shift Av in an exponen-
tial-like manner and at a rate somewhat faster than the
theoretical function. Similar results were observed for as-
phalt.
2) Normalized Standard Deviation: From (37) and
(40), the normalized standard deviation associated with
the received power P, when averaged over a bandwidth

B. is given by
r "8 £ 172
= 1 -= d 52
LBi ( )p(&') E} (52)

SF(B
where ¢ = Av. Fig. 14 shows plots of the normalized
standard deviation as given by (52) with p(Av) =
pn(Av), the measured correlation function. and with
p(Av) as given by (37). The figure also includes a plot
of the normalized standard deviation as computed directly
from measured data. For a given bandwidth B, sp is based
on the values of P measured at all frequencies between
B/2 below and B/2 above 35 GHz. We observe that the
“*measured’’ normalized standard deviation is close to the
curve calculated using the theoretical expression for
p(Av) given by (37) and that using the experimental func-
tion p,,, (Av).
To provide a simple formula for estimating s,(B)/P,
we propose to use

R
JN B’
L, for B < Avj

with Av; selected to provide a good fit to the data. This
process led to

(s1)

for B = Ay

~oll

(53)

Avy = 138/D, (in megahenz) (54)
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Fig. 14. Normahzed standard deviation versus bandwidth 8. Theoren-
cal™ refers 1o (52) with p(Av) given by (37): *"Measured " reters 10 (52)
with p(Av) = p,, (dr). (a) Snow and (b) asphalt.
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Fig. 15. Comparison of measured normalized standard deviation with sin-
gle model given by (53) and (54).

and is shown graphically in Fig. 15. In the above expres-
sions, B is in megahertz and D (the slant-range resolution
defined in Fig. 9) is in meters.

These formulas, which provide an excellent fit to the
measured normalized standard deviation for N > 2, in-
dicate that the effective decorrelation bandwidth is ap-
proximately equal to the theoretical value predicted by
(38).

V1. RESULTS OF THE BISTATIC SCATTERING
OBSERVATIONS

The scatterometer system that was used to acquire the
backscattering data reported in the preceding section had

been designed to operate in a bistatic mode as well [22].
Bistatic scattering measurements were made for several
sand and gravel surfaces using the arrangement shown in
Fig. 16. Details of the results and their significance are
given elsewhere [25]; our present interest pertains to the
variability of the bistatically scattered signal only. More-
over, we shall limit the discussion to a typical example.
In one of the bistatic scattering experiments, the re-
ceived power was measured at many azimuth angles ¢
ranging between 10° and 180° for fixed and equal values
of the incidence angle 6, and scattered elevation angle 6,,
namely 6; = 6, = 66°. The configuration with ¢ = 180°
corresponds to the spccular case. At each angle ¢, the
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TRANSMIT
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RECEIVE
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Fig. 16. Bistatic arrangement.
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Fig. 17. Standard-deviation to mean ratio versus the azimuth angle for the
bistatic scattering measurements for smooth sand. Each data point s
based on measurements of 10 spatial positions (tootprints).

received power was measured for 10 independent (non-
overlapping) footprints on the target surtace. This was ac-
complished by partially rotating the target platform be-
tween successive measurements. In each case the recorded
power was the received power averaged over the 34-36
GHz band. _

Fig. 17 presents a plot of 5,/P as a function of ¢. At
each value of @, sp, and P were calculated using the 10
observations described above. Except for the near-spec-
ular directions (¢ = 180°), the normalized standard de-
viation exhibited an approximately constant value of 0.2.
The equivalent total number of independent samples is N
= (1/0.2)* = 25. Thus. frequency averaging provides
about 2.5 independent samples per spatial sample. The

power scattered in the specular direction was dominated
by coherent scattering that is not subject to fading. Con-
sequently, the measured normalized standard deviation
was found to be only 0.015. This result is analogous with
the backscattering result for the normal incidence case (see
(48) and Table II).

VII. CoNCLUSIONS

This paper has shown that the Rayleigh fading model
is indeed appropriate for characterizing the fluctuation
statistics associated with radar scattering from terrain,
provided the target's properties satisfy the model’s un-
derlying assumptions. One of these properties is spatial
uniformity. If the terrain target is an asphalt surface.
snow-covered ground, or a grass surtace, the Rayleigh
model gives resuits in good agreement with experimental
observations at 35 GHz for both backscattering and bi-
static scattering. When frequency averaging is used to re-
duce the vanability of the radar return, however, the for-
mulations based on the Rayleigh model provide a good
estimate of the improvement provided by frequency av-
eraging.
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Millimeter-wave radar scattering from snow:
2. Comparison of theory with experimental observations

Fawwaz T. Ulaby, Thomas F. Haddock, Richard T. Austin, and Yasuo Kuga
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Using a truck-mounted platform, backscatter measurements were made at 35, 95, and 140 GHz for
a variety of snow conditions to evaluate the radar response to incidence angle, surface roughness,
and liquid water content. Good agreement was obtained between the experimental observations and
theoretical calculations based on the numerical solution of the radiative transfer equation presented
in the preceding paper. A notable exception is when the snowpack is in the refreezing phase of the
diurnal cycle, during which the snowpack is characterized by a dry surface boundary with wet layers
underneath. To accommodate this type of condition, a hybrid first-order numenical solution is
proposed. The hybnd approach provides excellent agreement between theory and expeniment.

1. INTRODUCTION

In Part 1 (Kuga et al., this issue] of this two-part
sequence we proposed a radiative transfer model
for characterizing radar scattering from snow at
millimeter wavelengths. The purpose of the present
paper is to (1) provide a summary of the observed
behavior of the radar backscattering coefficient ¢°
at 35, 95, and 140 GHz, including its dependence on
incidence angle, surface roughness, and liquid wa-
ter content, (2) compare the measured data to
theoretical calculations, where possible, and (3)
propose a hybrid first-order numerical model for
explaining the diurnal variation of o°.

The measurements reported in this paper were
acquired by the University of Michigan's truck-
mounted millimeter-wave scatterometer {Ulaby et
al., 1988a; Haddock and Ulaby, 1990]. A summary
of the system’s specifications is given below.

35, 94, 140 GHz;

0 to 2.0 GHz;

35 GHz, +3 dBm;

94 GHz, 0 dBm;

140 GHz, -4 dBm;

| m-s/frequency, 51, 101, 201, 401;
frequencies/sweep;

HH, HV, VV, VH;

0° to 70°;

3 m minimum, to 18 m maximum;

frequencies
IF bandwidth
transmit power

sweep rate

polarization
incidence angles
platform height

Copyright 1991 by the American Geophysical Union.

Paper number 90RS02559.
0048-6604/91/90RS-02559$08.00

35 GHz, -22 dB;

94 GHz, -28 dB;

140 GHz, -21 dB;

35 GHz, 23 dB;

94 GHz, 20 dB;

140 GHz, 10 dB;

35 GHz, ~1 deg/hour;

94 GHz, ~1 deg/min;

140 GHz, ~10 to 50 deg/s;

35 GHz, 2.7 m;

94 GHz, 7.3 m;

140 GHz, 2.7 m;

35 GHz, R: 4.2° T: 4.25

94 GHz, R: 1.4°T: 2.8°%

140 GHz, R: 2.2° T: 11.8°%
35GHz, R: 6in T: 6 in;

94 GHz, R: 6in T: 3 in;

140 GHz, R: 3in T: 0.36 in; -
HP 8510A/8511A based; v
received power versus range;
received power versus
frequency (at fixed R);

phase and amplitude for each
frequency.

noise equivalent ¢°

crosspol isolation

phase stability

near-field distance

beamwidth

antenna diameter

signal processing
output products

Ground-truth observations were made for the fol-
lowing parameters: (I) air temperature, (2) near-
surface snow temperature, as well as the tempera-
ture at deeper locations in the snow layer, (3) snow
density p, (g/cm?), (4) height profile of the snow
surface using a graded metal plate inserted edgewise
into the snow, from which the rms height s is calcu-
lated, (5) depth of the snow layer, (6) volumetric liquid
water content of the surface S-cm layer, m,(%),
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measured using the freezing calorimeter technique,
and (7) microscope photographs of thin snow sam-
ples, from which the ice crystal size is estimated.
The standard measurement procedure consisted
of measuring the backscattered power for hh, hv,
vh, and vv polarizations at each of 30 or more
spatial locations. The backscattering coefficient was
obtained by averaging the measurements for the
different spatial locations. In addition to spatial
averaging, frequency averaging was used to further
improve measurement precision [Ulaby et al.,
1988b]. The estimated uncertainty associated with
the values reported in this paper is 0.5 dB. Anal-
ysis of the data shows that the hv and vh measure-
ments are essentially identical (within a fraction of |
dB), which is expected from the reciprocity rela-
tion. In almost all cases the copolarized responses.
o and ¢, were within 1-2 dB of each other.

2. ANGULAR RESPONSE

The data shown in Figure | were measured for a
12-cm-thick layer of dry, freshly fallen, unmetamor-
phosed snow composed of ice crystals with diame-
ters on the order of | mm. The measured rms height
was 1.4 mm. Only hv- and vv-polarized data are
shown because the difference between a,?,, and ¢,
is 1 dB or less across the entire angular range at all
three frequencies. The curves shown in the figure
were calculated according to the theoretical model
described in the preceding paper. For vv polariza-
tion, theory and experiment are in good agreement
at 35 and 95 GHz. At 140 GHz, however, the level
predicted by theory is lower than the experimental
observations for vv polarization by about 4 dB. We
attribute the difference to the backscattering en-
hancement effect, which the model does not take
into account.

A typical example of the angular dependence for
wet snow is shown in Figure 2. The theoretical
curves were computed assuming a mean ice crystal
diameter of | mm and a rms slope of 0.07. Reason-
able agreement between theory and experiment is
obtained except for vv polarization of 140 GHz; we
again attribute the difference to the backscattering
enhancement effect, although no strong evidence
exists to support this contention.

3. EFFECT OF SNOW SURFACE ROUGHNESS

According to the model results presented in the
previous paper, snow surface roughness should
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Fig. 1. Measured and calculated backscattering coefficient

for a dry snowpack with the following parameters: depth, 12 cm;
snow density, 0.2 g/cm’; mean crystal diameter, | mm: and rms
surface slope, 0.07.

have a minor effect on the level of o” (except at
normal incidence) when the snow is dry. For wet
snow, however, ¢° should increase by as much as $
dB at 35 GHz if the surface is made rough relative to
the wavelength, but the increase should not be
significant at 95 GHz or higher frequencies. There is
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Fig. 2. Measured and calculated backscattering coefficient
for a wet snowpack with the following parameters: depth, 27 cm;
snow density, 0.4 g/cm’; mean crystal diameter, 1| mm; and rms
surface slope, 0.07.

plenty of experimental evidence to support the
model expectations with regard to dry snow, both at
35 GHz ([Stiles and Ulaby, 1980] and 95 GHz
[Williams et al., 1988]. Additional support is pro-
vided by the data shown in Figure 3 which shows
plots of o versus the incidence angle 6, for dry
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snow at 95 GHz. The data includes measurements
for a 25-cm-deep snowpack made before and after
artificially roughening the surface. The measured
rms height was found to be 0.7 cm for the undis-
turbed surface and 2.0 cm for the roughened sur-
face. Considering that A = 0.3 cm at 95 GHz, both
surface conditions are electromagnetically rough,
so it is not surprising that the angular curves shown
in Figure 3 for the two surface conditions are within
1 dB of each other for both vv and hv polarizations.

A more detailed examination of the effect of
surface roughness on the radar response from snow
was conducted by observing the radar backscatter
as a function of time for three sections of a 71-cm-
deep snowpack with different surtace roughnesses.
Twelve sets of observations were made, all at g, =
40°, for each surface roughness, starting at 0630 LT
and ending at 2200 LT; each set consisted of mea-
surements at 35 and 95 GHz for all linear polariza-
tion combinations. The measured rms heights of the
three surfaces were s, = 0.49 cm, 5, = 0.89 cm, and
s3 = 1.98 cm, and the liquid water content of the
S-cm surface layer exhibited a Gaussianlike varia-
tion with a peak value of 4.8% (Figure 4).

Figure 4 shows a sample of the measured data,
specifically the cross-polarized diurnal responses of
all three roughnesses at both 35 and 95 GHz.
According to the 35 GHz data, increasing the rms
height from 0.49 to 0.88 cm (which corresponds to
increasing s/A from 0.57 (slightly rough) to 1.02
(rough)) causes o” to increase by 1-3 dB, but
increasing the roughness further to s; = 1.98 cm
does not seem to have much of an impact on ¢°. At
95 GHz, even the least rough surface (with s,/A =
1.5) is electromagnetically very rough. Hence o
exhibits approximately the same diurnal pattern for
all three surface roughnesses. A similar behavior
was observed for vv polarization.

4. DIURNAL RESPONSE

The plot shown in Figure 5 depicts the temporal
variation of the volumetric liquid water content of
the top 5-cm snow layer over a period of 14 hours,
starting at 0800 LT. The snowpack was dry until
1100 LT, then m, increased rapidly to a peak value
of 7% at 1400 LT, and then returned to the dry
condition by 1900 LT. This description applies to
only the top S-cm layer, treated as a single layer; it
does not provide any information on lower layers or
on the depth profile of m, within the S-cm layer.
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A A - Very Rough Surface (s = 2cm)

Backscattering Coefficient (dB)

hv Polanizaton

2 O ®m - Modenately Rough Surface (s = 0.7cm)

m, =0
4. Density = 0.35 g/em’

95 GHz
[ Sroviepti=llan ]
Y P S il N R R R
0 10 20 0 0 50 %0 70

Incidence Angle (degrees)

Fig. 3.

Measured backscattering coefficient of a dry snowpack at 95 GHz under two different surface

roughness conditions.

The significance of this statement will become ap-
parent later when we compare measured values of
m,, with those predicted by theory.

Ideally, it would be desirable to measure the
entire depth profile of m,, with a vertical resolution
on the order of millimeters. In practice, however, it
is very difficult to make accurate measurements of
m, for samples thinner than 5 cm. Furthermore,
because it takes about 30 min to process each snow
sample (using the freezing calorimeter technique)
and because m, varies rapidly with time, it is
impractical to sample more than one depth layer,
unless additional trained manpower is used (two
people, working full time, were required to generate
the data in Figure 5).

The radar response to the observed variation in
liquid water content is shown in Figure 6 for 35, 95,
and 140 GHz, measured at an incidence angle of
40°. We observe that:

1. The shapes of the diurnal patterns of ¢° are
qualitatively mirror images of the m,, pattern for all
polarizations and frequencies.

2. The dynamic range of the variation is greater at
35 GHz and smallest at 140 GHz.

3. The dynamic range of the varation is slightly
greater for cross polarization than for like polariza-
tion.

All three observations are consistent with the
predictions of the theoretical model given in the

preceding paper. However, as we will see later,
quantitative agreement between theory and experi-
ment for the melting part of the cycle is quite
different from the agreement for the freezing part of
the cycle. To examine this question, we computed
o” as a function of m, using the numerical solution
outlined in the preceding paper for the snowpack
parameters measured in the field (depth, density,
crystal size, etc.). It was assumed that the value of
m,, measured for the top 5-cm layer is valid for the
entire depth of the snow layer. The results are
shown in Figure 7 for hh polarization at §, = 40°.
(Also shown in Figure 7 is the computed response
of ¢ based on the first-order solution of the radia-
tive transfer equation, which will be discussed later
in section 4). Allowing for a possible level shift
between data and theory, we used the measured o
data shown in Figure 6 (relative to o° of dry snow)
to compute m,, according to the numerical solution
curves given in Figure 7. The plots shown in Figure
8 depict the diurnal variation of m, as measured in
the field and as predicted by the o data and the
model calculations at 35, 95, and 140 GHz. We
observe good overall agreement between the mea-
sured values of m,, and those predicted by the 35-
and 95-GHz data for the period between 0800 and
1300 LT, and although the values predicted on the
basis of the 140-GHz data are somewhat lower in
level than those predicted by the lower-frequency
]
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S. T Y T
o L Snow Wetness

ot
¢
LE
0. 1 L o 4
6. 8 10. 12 14 16. 18 20 2
0 T 14 T T v T T
—o— Smooth
2 --@e- Slightly Rough b

--a-=- Very Rough
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Fig. 4. Observed diurnal vanation of m,, the liquid water
content of the top S-cm layer, and o° at 35 and 95 GHz for cross
polarization. The snowpack was 28 cm deep, had a mean crystal
diameter of 0.6 mm, and a density of 0.4 g/cm?. The measured
rms heights of the surfaces were: s; = 0.49 cm (smooth), s; =
0.89 cm (slightly rough), and sy = 1.98 cm (very rough).

channels, the temporal variation is similar to that
exhibited by the other plots.

A totally different situation is observed in Figure
8 for the period from 1300 to 1900 LT, during which
the snowpack undergoes a refreezing process. In
fact, when the measured m, is at its peak value of
7% (at approximately 1400 LT), all three radar-
predicted values of m, are in the 0.8-1.5% range.
Clearly, the models, as used thus far, are inappro-
priate for modeling the backscatter from wet snow
under these ‘‘refreezing’’ conditions. This lack of
correspondence between theory and measurement
is caused by the fundamental assumption that m,

10. T T T T T T T

4— Liquid Water Coatent (%)

Snow Temperature (*C)

—————  Snow Temperatare

Time of Day ( hour )

Fig. 5. Measured air temperature, snow surface tempera-
ture, and liquid water content of the top 5-cm layer on March I,
1990.

has a uniform depth profile between the snow and
ground surfaces. During the melting phase of the
diurnal cycle the melting process starts at the air-
snow interface because the source of thermal en-
ergy is the warmer air mass above the snow pack or
direct solar radiation (under cloud-free conditions).
For the experiment under discussion the air temper-
ature rose from —8°C at 0800 LT to a high of +6°C
at 1145 LT, and then decreased down to —3°C at
2000 LT. As the snow surface layer starts to melt,
its thermal conductivity increases, thereby allowing
the transfer of thermal energy down to lower layers.
During the melting phase, m, is highest at the
surface and decreases in an exponentiallike manner
with depth. At millimeter wavelengths the penetra-
tion depth in dry snow is of the order of 1 m at 35
GHz, 5 cm at 95 GHz, and 1 cm at 140 GHz; and for
m, = 3%, the penetration depth is only 3 cm at 35
GHz and less than | cm at the higher frequencies.
Hence, when the top snow layer is wet, it alone
governs the radar backscatter, and the lower layers
exercise an inconsequential influence on o0

A different situation occurs during the refreezing
phase. As the air temperature starts to decrease, we
have a reversal in energy balance with the snow-
pack becoming the source of excess energy. Freez-
ing starts at the surface and proceeds slowly down-
ward to lower layers. This results in an inverted
profile with m,, = 0 at the surface, increasing slowly
to a maximum value at some depth below the
surface, and then decreasing again as the depth is
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Backscattening Coefficient a®(dB)

Backscattering Cocfficient co( dB )

Backscattering Coefficient a®(dB)
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8 10 12 14 16 18. 20 2 24

Time of Day ( hour )

Fig. 6. Backscattering variation measured at 35, 95, and 140
GHz on March 1, 1990. The incidence angle was 40°. The
snowpack density was 0.32 g/cm?, depth was 12 cm, and other
parameters are given in Figure S.

increased further. Figure 9 shows a family of pro-
files generated on the basis of this simple logic,
constrained by the condition that the value of m,
averaged over the 5-cm layer has to be equal to the
value measured by the freezing calorimeter. With
the uppermost surface layer being dry in the invert-
ed-profile case, the radar response will be governed
not only by the dry surface layer, but by the wet
layer immediately underneath it as well. It is not
surprising, therefore, that the model-predicted val-
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Fig. 7. Calculated backscattering coefficient for a deep
snowpack versus liquid water content for hh polarization at an
incidence angle of 40°. The calculations are based on the first-
order and the numerical solutions of the radiative transfer
equation for a snowpack with the following properties: mean
crystal diameter, | mm; and snow density, 0.32 glem?.

ues of m, are quite different from the 5-cm average
measured in the field. To solve this problem, we
propose to use a hybrid first-order numerical model
for characterizing the radar response of snow.

4.1. Hybrid first-order—numerical model

Let us consider the advantages and limitations of
the first-order solution and the numerical solution of
the radiative transfer equation as we apply them to
the snow problem. The first-order solution takes
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Fig. 8. Diurnal variation of liquid water content. The plot

labeled **measured’" refers to the value of m, of the top S-cm
layer as measured by the freezing calorimeter. The other three
plots refer to m, as predicted by the model using the radar
observations at the noted frequencies (with hh polarization and
8y = 40°).

into account only single scattering in the snow
volume, whereas the numerical solution takes into
account all orders of muitiple scattering. Conse-
quently, the first-order solution may underestimate
the magnitude of ¢°, particularly when the scatter-
ing albedo is large. The scattering albedo decreases
with increasing liquid water content because of the
increased absorption by the background material
(*‘wet’ air) and because the ratio of the index of

Moisture Profile
10 T 1 T T T T T A 1
—_— 1130
9
........ 12.00
S oo |
TE T e e 1430 7
o} T Tt
BN S— 130

---- 1818

Volumetric Liquid Water Content m_ (% )

Depth (cm)

Fig. 9. Proposed depth profiles for m,,. The pack is assumed to
be totally dry both prior to 1100 LT and after 2200 LT.

refraction of the ice crystal to that of the back-
ground decreases with increasing snow wetness. To
compare the first-order solution with the numerical
solution, we refer to the plots in Figure 7 which
show o, versus m, for an incidence angle of 40°.
For dry snow (m, = 0) the first-order solution
underestimates o by about 3 dB at 35 GHz, 8 dB at
95 GHz, and 11 dB at 140 GHz. The differences
between the two solutions decrease with increasing
m,, becoming insignificant at 35 GHz for m,, = 2%,
but not so at the higher frequencies. Another major
advantage of the numerical solution is that it pro-
vides a result for the cross-polarized scattering
coefficient of,, whereas the first-order solution does
not predict cross polarization because the scattering
particles are assumed to be spherical in shape.

Having stated the advantages of the numerical
solution over the first-order solution, let us now
consider the converse. The numerical solution re-
quires a great deal of computation, in spite of the
fact that the snow medium is assumed to have
uniform properties throughout. If we are to formu-
late the solution for a multilayer structure in order
to accommodate a nonuniform depth profile for m,,,
the complexity of the numerical approach would
make the solution computationally impractical. On
the other hand, the first-order solution is perfectly
amenable to computing the backscatter from a
medium with nonuniform properties in the depth
dimension. Hence, we propose to use a hybrid
model that takes advantage of the more accurate
feature of the numerical solution and the easier
structure of the first-order solution. The procedure
is as follows.

For a snowpack with specified density and crystal
size distribution, we compute ¢® for the semi-
infinitely deep case (at the angle of incidence,
frequency, and polarization of interest) as a func-
tion of m, (assuming a uniform profile with depth)
using the numerical solution outlined in the preced-
ing paper. We shall denote this backscattering co-
efficient ¢2(6y, f, pq), where p and g denote the
polarization configuration of the receive and trans-
mit antennas, respectively. Figure 10 shows the
results of such a calculation at 35, 95, and 140 GHz
for 8y = 40° and pq = hh. The form of the variation
can be fitted to the functional form:

10 log [o,?(m,,)] =ay+ a,m;fz +aym, (¢)]
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Fig. 10. Numerical fits using the form given by (1).

where ay, a;, and a, are constants (for a given set
of radar parameters (6, f, pq)).

For a snow medium with wetness profile m(z)
observed at an incidence angle 6, the first-order
solution of the radiative transfer equation leads to
the following expression for the pg-polarized back-
scattering coefficient.

o} = T,[680, m,(0)]T,[69, m,(0)]

d 4
X f M, exp | -2 f K, sec 8’ dz | dz’ ()
0 0

where T, and T, are the transmissivities of the
air-snow boundary for backscattered polarization p
and incident polarization g, m,(0) is the snow
liquid-water-content at z = 0 (air-snow surface), d is
the depth of the snow layer, ¢ is the refraction
angle in the snow medium, «, is the extinction
coefficient, and 7, is the volume backscattering
coefficient in m%/m?. Both K, and 7, are functions
of z if m,(z) is nonuniform. The form of (2) is very
convenient for computing the backscattering coef-
ficient when m,(2) is not uniform with depth, but as
was mentioned earlier, the first-order solution un-
derestimates the level of ¢° for like polarization,
and it does not predict a cross-polarized component
because 7, = 0 if p # q for spherical particles. The
transmissivity coefficient T,T, is identical for both
the numerical and first-order solution, and the same
approach used for computing the extinction coeffi-
cient «, can be used in both cases.

The key difference between the two computa-
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tional techniques is in 7, (or its ‘‘equivalent’ in the
case of the numerical solution). We propose to use
the resuits of the numerical technique to obtain a
more exact estimate of 71, and then use it in (2) to
compute ¢° for any m(z) profile. We do this by
evaluating (2) for a semi-infinite medium with uni-
form liquid water content m,:

1.(m,) cos 64

ai(m,) = T,(89, m,)T,(8¢, m,) 6)

2k,(m,)

and then equating the result to (1). This process
leads to

ZUS(M‘.)K,’(MP) sec 8

T,(80, m.)To(89, m.)

nylm,) =

2x.(m,) sec 6y
" T,(89, m,)T,(60, m,)

ap +a|m,‘,n+agmu
10

antilog [
(5)

Thus n,(m,), as given by the above expression,
represents the ‘‘effective’” backscattering coeffi-
cient per unit volume of the snow medium at the
specific frequency f and polarization combination
pq used in computing o,? .

To summarize, the proposed procedure consists
of the following steps:

1. For a given set of snow parameters (density
and particle size distribution), the QCA method
(adjusted with respect to experimental data as dis-
cussed in section 2.3 of the preceding paper) is used
to compute «,(m,), and the numerical solution is
used to compute a,?(mv) versus m, (for a medium
with uniform wetness profile) at the specified wave
parameters (6q, f, Pq).

2. For convenience, ¢(m,) is fitted to a function
of the form given by (1).

3. Equation (5) is used to compute 7,(m,).

4. Equation (2) is then used to compute ¢° for any
specified profile m(z).

4.2. Results

This procedure was applied to the wetness pro-
files shown in Figure 9, and the results are shown in
Figure 11 for hh polarization at 35, 95, and 140
GHz. The plots compare the measured diurnal
variation of o° (relative to its value for dry-snow
conditions) with the variation computed using the
hybrid solution outlined above. Very good overall
agreement is observed at all three frequencies, and
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similar agreement was obtained for the other polar-
izations and for other diurnal experiments.

5. CONCLUSIONS

The radiative transfer model with the quasi-crys-
talline approximation presented in the preceding
paper, and the hybrid first-order numerical solution
proposed in this paper, together provide an excel-
lent tool for examining the radar response of snow
at millimeter wavelengths. This conclusion is sup-
ported by comparisons of theoretical predictions
with experimental observations made at 35, 95, and
140 GHz.
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