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CHAPTER 1

INTRODUCTION

1.1 Background

Remote sensing is not an alien concept to people. Every person practices remote
sensing on a daily basis through a unique biological sensor, called the eye, intended
for detecting optical waves. It is not surprising that the oldest and perhaps the most
mature area of remote sensing is optical sensing. The ease at which the human brain
can process and analyze an optical image has allowed optical sensors to become the
primary remote sensing tools in many applications, such as mapping of snow, cloud,
and vegetation cover. Of similar interest is the use of microwaves and millimeter-
waves in remote sensing.

Development of radars during World War II and its success in detecting targets
in adverse weather conditions and during night missions has directed the attention
of the remote sensing community to two branches of the electromagnetic spectrum,
namely, microwave and millimeter-wave frequencies. In particular, microwave remote
sensing of the Earth has become an important source of information in monitoring
the Earth’s environment. The microwave spectrum of the electromagnetic waves offer
certain advantages over the optical spectrum for the purpose of remote sensing the

environment. For example microwaves have the ability to penetrate through clouds



(and to some extent rain) and microwave sensors can operate independent of the sun
as a source of illumination. As a result, microwave remote sensing has been applied
to many branches of science such as meteorological studies and weather prediction
[32], geologic mapping [2], and hydrology for the estimation of the moisture content
of soil [63].

Millimeter-waves are, on the other hand, late arrivals to the remote sensing arena.
Millimeter-waves enjoy, for the most part, the same advantages as microwaves have
over optical waves, and millimeter-wave sensors surpass microwave sensors with their
high resolution and compactness. Nevertheless, milliméter-wave remote sensing has
not received as much attention as microwave and optical remote sensing. The trail-
ing of millimeter-wave remote sensing can be attributed mainly to the technological
difficulties associated with building reliable millimeter-wave sensors. With recent
advancements in solid-state technology, reliable millimeter-wave components have
become available and similarly, interest in millimeter-wave remote sensing is on the
rise. Because of the high resolution and compactness of millimeter-wave radars, they
have become primary sensors for certain applications such as target discrimination
and detection. Nevertheless, the study of millimeter-wave interactions with natural
terrain is still at its initial stages [21], [67], 6], [29], [4], [64).

Radar polarimetry is another subject of great importance in remote sensing. As
opposed to the conventional single polarization radars, where only one component of
the scattered wave is measured and analyzed, polarimetric radars permit the measure-
ment of the full polarization response of the target thereby gathering more information
about the target. The full polarization response of a target can be expressed through
the scattering matrix, which is a 2 x 2 matrix of complex numbers, or equivalently,

the Mueller matrix, which is a 4 x 4 matrix of real numbers [60]. In general, the



full polarimetric respbnse of a target contains information about the structure and
composition of the target which cannot be revealed from the single polarization re-
sponse. In many geophysical applications, this additional information can be used
for estimating the desired physical parameters of the target. For example, in the
case of snow, these physical parameters may be the depth and fractional volume of
a snowpack. Polarimetric response can also be used as part of a polarization synthe-
sis technique to discriminate between man-made targets and the background clutter.
While a microwave polarimetric radar is configured to measure the complete scat-
tering matrix of a target by measuring the magnitude and phase of the scattered
electric field for all linear polarization combinations, a millimeter-wave polarimet-
ric radar measures the full polarimetric response using a different technique, called
the coherent-on-receive technique [61],[30]. In this technique, the receiver consists of
two orthogonal polarization channels that are capable of measuring simultaneously
the magnitudes and phases of the two orthogonal components of the reflected signal.
With this technique, the Mueller matrix of a target is obtained from four receiver

measurements corresponding to four different transmit polarization states.

1.2 Motivations and Objectives

This thesis is concerned with microwave and millimeter-wave propagation and
scattering from dense random media. Examples of naturally occurring dense media
are snowpacks, bare soil surfaces, and sand dunes.

The study of millimeter-wave interactions with bare soil surfaces is of impor-
tance since soil surfaces contribute both directly and indirectly to the backscatter

response from different types of terrain. Radar backscatter from bare soil is influ-



enced, in general, by two sets of parameters: (1) physical parameters such as the
permittivities, fractional volumes, and size distributions of the different constituents
of the soil medium, and surface roughness statistics, and (2) radar parameters such
as frequency, polarization, and incidence angle. At microwave frequencies a set of
polarimetric measurements, aimed at characterizing the backscatter response from
soil surfaces, was conducted over a number of bare soil surfaces with different rough-
ness and moisture conditions [33]. These measurements, which were supported by an
extensive collection of ground truth data, were able to shed light on the dependence
of the backscatter response for a given frequency, incidence angle, and polarization
configuration on the physical parameters of the soil medium. In addition, an em-
pirical surface scattering model was developed [33] to predict the microwave radar
backscatter response from bare soil surfaces. A similar study would be of value to
millimeter-wave radar design engineers as they design sensors that can discriminate
between man-made targets and bare soil surfaces. Unfortunately, very few docu-
mented studies of polarimetric radar backscatter from bare soils that were conducted
at millimeter-wave frequencies can be found in the open literature [9], [36], [66], [7].
Due to the lack of precise ground truth data, accurate calibrations, complete angular
and/or polarization response measurements, the existing data sets have not been able
to contribute much to the understanding of the scattering from soil surfaces. There-
fore, no reliable model that can predict the backscatter response from soil surfaces at
millimeter-wave frequencies is available.

Volume scattering from dense random media has received a lot of interest over
the past decade. This is because the depth and fractional volume of a snowpack and
the wetness of a soil surface cannot be determined from the microwave backscatter

response without considering the volume scattering contribution from within the scat-



tering layer. It should be noted that in a dense random medium where the scatterers
occupy a substantial fractional volume (f > 0.01), the location of one particle is not
independent from the locations of other particles and electromagnetic wave interac-
tions with any one particle cannot be considered in the absence of nearby particles.
A number of theoretical models were developed over the years to predict the vol-
ume scattering contribution from layered random media. They can be categorized
into two groups: (1) continuous media perturbation approaches such as the Born ap-
proximation [22], [5], [55], [23], and (2) discrete scatterer approaches such as radiative
transfer [62], [52], [21], [19]. In either of these two approaches, characterization of the
propagation constant of the mean-field in the random medium is of great importance.
The effective propagation constant specifies how the mean-field propagates in a scat-
tering medium. The real and imaginary parts of the effective propagation constant
are respectively proportional to the phase velocity and the attenuation rate caused
by absorption and scattering within the medium. For dense random media, analyti-
cal models, such as the effective field approximation (EFA) and the quasicrystalline
approximation with coherent potential (QCA-CP), are widely used to compute the
effective propagation constant. The QCA-CP model which includes in its derivation
the effects of multiple scattering between particles has been used in the development
of the dense medium radiative transfer theory (DMRT) [53]. In turn, the DMRT has
been used to model the backscattering response from layered dense random media
[68],(69]. The applicability of these models depends in part on the range of validity of
the QCA-CP model which has not yet been determined. Accurate measurements of
the effective propagation constant can be used for establishing the range of validity
of the existing analytical models. Unfortunately, the inaccuracy associated with the

existing free space transmission measurement technique intended for measuring the



effective propagation constant of dense random media (see [27], [17]) hinders any seri-
ous effort to determine experimentally the regions of validity of the QCA-CP model.

The goals of this thesis are: (a) accurate characterization of the polarimetric
radar backscatter response from bare soil surfaces at millimeter-wave frequencies,
and (b) determination of the validity region of existing analytical models that were
developed for computing the effective propagation constant of dense random media.
To achieve the first goal, the following steps were taken: (1) development of an ac-
curate calibration technique for the millimeter-wave coherent-on-receive polarimetric
radars, (2) collection of the radar backscatter response from soil surfaces with differ-
ent roughnesses and moisture conditions, and (3) collection of ground truth data for
the surface roughness, soil moisture, and particle size distribution. A semi-empirical
surface scattering model is developed based on the measured polarimetric backscatter
response from wet surfaces. The volume scattering contribution from the dielectric
inhomogeneities underneath dry soil surfaces is modeled using radiative transfer the-
ory. The total backscatter response from soil surfaces, whether wet or dry, can be
predicted by adding both the surface scattering contribution, computed using the
semi-empirical model, and the volume scattering contribution, computed using radia-
tive transfer theory.

To achieve the second goal, the following steps are taken: (1) development of a new
technique for measuring the effective propagation constant of dense random media
that circumvents the problems associated with the free space transmission measure-
ment technique, (2) performance of an experimental examination on the dependence
of the effective propagation constant on the physical and electrical parameters de-

scribing a dense random medium.



1.3 Thesis Overview

In this section, the outline of the thesis is first presented, then the contents of each
chapter are discussed briefly. In chapter 2, a detailed description of the coherent-on-
receive millimeter-wave polarimetric radar, to be used in the measurements reported
in Chapters 3 and 4, is discussed. In addition, a new and accurate calibration tech-
nique is developed. In Chapters 3 and 4, polarimetric backscatter measurements of
bare soil surfaces conducted at millimeter-wave frequencies are described and a hy-
brid model that characterizes the surface and volume scattering contributions from
soil surfaces is developed. In Chapter 5, a new techniq.ue for measuring the bistatic
scattering matrix of a point target using a monostatic radar and a ground plane
is explained. This technique is the backbone of a second technique, developed and
verified in Chapter 6, which is intended for measuring the effective propagation con-
stant of dense random medium regardless of the physical properties of the medium.
In Chapter 7, an experimental study of the effective propagation constant aimed at
establishing the regions of validity of existing theoretical models is conducted.

In Chapter 2, the principles of operation of the millimeter-wave coherent-on-
receive polarimetric radar are discussed and a new technique for calibrating the radar
is introduced. The calibration technique requires the use of two calibration targets, a
metallic sphere and any depolarizing target (for which knowledge of its scattering ma-
trix is not required) to determine the system distortion parameters. In comparison,
other technique requires the use of a sphere and a wire grid (limited by polarization
purity of the wire grid). The validity of the new calibration technique is examined
by measuring the scattering matrices of spheres and cylinders as test targets using a
coherent-on-receive radar operating at 34.5 GHz.

In Chapter 3, the millimeter-wave backscatter response of bare-soil is examined



by conducting experimental measurements at 35 and 94 GHz using a truck-mounted
polarimetric scatterometer. The experimental measurements are conducted for three
soil surfaces with different roughnesses under both dry and wet conditions. Analysis
of the data shows that volume scattering from beneath the soil surface is significant
when the soil is dry. This chapter will be devoted to studying the surface scattering
component of the total backscatter response. Hence, only wet soil surfaces are exam-
ined here while analysis of the measured response from dry soil surfaces is deferred to
Chapter 4. The measured backscattering response of wet soil is analyzed and com-
pared to theoretical models. From this, semi-empirical surface scattering model is
developed that relates the surface scattering component of the total backscatter to
the roughness parameter and the dielectric constant of the soil surface. The proposed
model is compared with independently conducted experimental observations of wet
soils at 60 GHz done by Yamasaki et al. [73].

In Chapter 4, the surface and volume scattering contributions to the measured
backscattering response from dry soil surfaces are considered. Evidence on the pres-
ence of significant volume scattering from dry soil surfaces at millimeter-wave fre-
quencies is presented. A model based on radiative transfer theory is introduced to
compute the volume scattering contribution from a thin dry soil layer with an undu-
lating surface. Then the sum of two contributions, the surface scattering contribution,
computed using the semi-empirical model developed in Chapter 3, and the volume
scattering contribution, computed using the radiative transfer-based model, is com-
pared with the measured backscattering response from dry soil surfaces.

In Chapter 5, a novel technique for the bistatic scattering measurement of point
targets is developed. In this technique, a monostatic radar with fine spatial resolution

in conjunction with a rotatable ground plane is used to measure the bistatic scattering



matrix. The new technique circumvents the difficulties associated with the traditional
measurement technique. It is shown that for depolarizing targets, an independent
radar measurement after loading the ground plane with a dielectric slab is required
for determining the cross-polarized components of the bistatic scattering matrix. The
accuracy of the new method is demonstrated by comparing the measured bistatic
scattering matrices of cylinders and spheres with the theoretical ones over a wide
range of scattering angles.

In Chapter 6, a new technique for measuring the effective propagation constant
of dense random media is introduced. The proposed method is not restricted by the
physical properties of the random medium such as particles size, shape and density.
In this technique, the mean bistatic scattered fields of a cluster of random medium,
confined in a known geometrical boundar'y, are measured using a monostatic radar and
a rotatable ground plane. The measured mean bistatic scattered fields are fitted to the
bistatic scattered fields of a homogeneous lossy material with the same geometrical
boundary. Thus, the effective propagation constant of the random medium is the same
as that of the homogeneous body that exhibits similar scattered fields. The accuracy
of the new technique in measuring the effective propagation constant of a dense
random medium was verified both experimentally and numerically in the low volume
fraction limiting case. It is also shown that using this technique, the permittivity of
low dielectric materials such as styrofoam can be measured very accurately.

In Chapter 7, an experimental study of the effective propagation constant of dense
random media aimed at establishing the region of validity of existing theoretical mod-
els is performed using the measurement technique developed in Chapter 6. Measure-
ments of the effective propagation constants of different dense random media com-

prising homogeneous spherical particles with different packing densities are compared
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with existing analytical models. It is shown that none of the existing analytical mod-
els, including the QCA-CP model that was developed specifically for dense media,
are able to predict the extinction accurately at volume fractions beyond 10%. It is
also shown that Polder-Van Santen mixing formula can be used to predict the real

part of the effective propagation constant with a reasonable accuracy.



CHAPTER II

MILLIMETER-WAVE
COHERENT-ON-RECEIVE POLARIMETRIC
RADAR SYSTEMS: A NEW CALIBRATION

TECHNIQUE

2.1 Introduction

In general, polarimetric radars can be categorized into three major groups: 1)
coherent radars, 2) incoherent radars, and 3) coherent-on-receive radars. With coher-
ent radars, which are capable of measuring both the magnitude and the phase of the
scattered signal, the scattering matrix of a target can be determined directly. This
is accomplished by measuring the scattered waves from the target using two receive
channels with orthogonal polarizations for two successive transmissions at each of the
two orthogonal polarizations. Although capable of measuring only the magnitude of
the scattered wave, incoherent radars can be used to determine the Mueller matrix of
a target by measuring the power received in the co-polarized channels for each of six
different, independent, transmit polarization states [18]. At microwave frequencies,

coherent radar systems are often used because the coherence requirements of the mea-

11
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surement technique can be met by available microwave technology. The incoherent
technique, on the other hand, is used mostly at optical wavelengths. Neither of these
two types of radar systems is of interest to the present study.

In this thesis we are concerned with the third type of polarimetric radars, namely
the coherent-on-receive configuration, which is intermediate between the other two
techniques in terms of the coherence requirements imposed by the measurement tech-
nique. In this configuration, which has been used successfully at millimeter wave-
lengths [61],(30], the receiver has two orthogonal polarization channels and is capable
of measuring simultaneously the magnitudes and phases of the two signals. With
this type of radar, the Mueller matrix of a target can be obtained from four receiver
measurements corresponding to four different transmit polarization states.

Measurement accuracy and precision are critical elements of any meaningful anal-
ysis or interpretation of the measured data. For radar systems, it is customary to
use external calibration techniques to determine the overall system transfer function.
By measuring the backscatter from a set of calibration targets with known scattering
matrices, the radar distortion parameters, which include channel imbalances, antenna
gain, and antenna distortion parameters, can be determined. Then, by applying an
inverse algorithm to the data measured for a target of interest, the errors introduced
by these parameters can be removed. Several techniques are available for calibrating
coherent polarimetric radar systems, including those proposed by Barnes [1], Sara-
bandi et al. [47], and Whitt et al. [71]-[72].

Traditionally, calibration of a coherent-on-receive radar is performed in two steps
[30]. First, the receiver is calibrated using a wire grid placed in front of the receive
antenna at three different orientations (see Fig. 2.1). Then the polarization states of

the four desired transmitted waves are determined by measuring the wave backscat-
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Figure 2.1: In the traditional calibration technique the receiver is calibrated
using a wire grid placed in front of the receive antenna.

tered from a corner reflector with the calibrated receiver. In this technique calibration
errors caused by the wire grid itself are not considered. The sources of error intro-
duced by the wire grid include: (1) the polarization purity (axial ratio) of the wire
grid, which is on the order of that of the receiving antenna (20-30 dB), (2) the prox-
imity of the wire grid to the receiving antenna, which affects the antenna radiation
characteristics and (3) errors associated with the grid orientation angles.

In this chapter we propose an alternate technique with which calibration can be
performed in two steps and requires measuring the backscatter response of a metallic
sphere (or trihedral reflector) in addition to any depolarizing target for four and
two transmitted wave polarizations respectively. In this algorithm the knowledge
of the scattering matrix of the depolarizing target is not required. By applying this
technique, it is possible to determine the polarization states of the transmitted waves,
the antennas cross-talk factors and receiver channel imbalances, while avoiding the
use of the wire grid.

In the next section, principles of operation of the coherent-on-receive radar are
presented in detail. In Section 2.3, the imperfections of the coherent-on-receive radar

components are modeled and a system distortion model is constructed. A calibration
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procedure is proposed in Section 2.4 that requires the use of two targets, a target
with known scattering matrix and any depolarizing target. Finally, in Section 2.5
the validity of the new calibration technique is examined by measuring the scattering

matrices of known targets at 34.5 GHz.

2.2 Coherent-on-Receive Polarimetric Radars

The main advantage of the coherent-on-receive radars is in the measurement of
random fluctuating targets or when the radar platform is not stable. In this section we
briefly introduce the basic concepts of this system to guide the reader in understanding
the calibration procedure.

By defining a set of orthogonal directions (f), h) in a plane perpendicular to the
direction of propagation, the components of the scattered field E® from a given target
can be related to the components of the incident wave E' through the scattering
matrix of the target, i.e.,

e~tkor | Sy Sun

B= E (2.1)
Shy Shh

where kg is the propagation constant and r is the range from the target to the re-
ceive antenna. In general, the polarization state of the transmitted wave can be any
arbitrary elliptical polarization. An elliptically polarized wave can be characterized
by two angles known as the rotation angle (1) and ellipticity angle (x) [60]. The

modified Stokes vector F,,(¢, x) provides an alternate but equivalent representation
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of wave polarization:

| Ey |*

| By |?
Fo(¥,x) =
2Re [E, E}]

2I'm [E, E})

(1 + cos 2t cos 2x)
1(1 = cos 24 cos 2x)
= ¢ (1B, +]Enl?) (22)
sin 2t cos 2y

sin 2y

Upon using (2.1) the scattered (received) modified Stokes vector F7, can be related
to the incident (transmitted) Stokes vector via the modified Mueller matrix L, by
T 1 - t
F, = = L, F, (2.3)
where L, is a 4 x 4 matrix whose entries in terms of the scattering matrix elements

are given by
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2Im(SySt,) 2Im(SunShy)
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Re(57,Sw) —Im(57,5)
Re(S5,Sho) —Im(ShSts)

Re(SySin + SunSi,)  —Im(SuwSiy = SunSi,)

Im(SuwShh + 5unSk,)  Re(SuwSipy — SunSiy)

When dealing with natural targets, such as soil surfaces and vegetation canopies,
the quantity of interest is < Zm >, the ensemble average of Zm. Given < Z',m >, the
technique of polarization synthesis can be used to compute the polarization response
of the target under consideration [[60], Chapter 2]. With a coherent polarimetric
radar, the process starts by measuring the scattering matrix for many statistically
independent samples of the target. Each scattering matrix is converted to its corre-
sponding modified Mueller matrix Zm, and then all the £,, matrices are averaged
together. With incoherent and coherent-on-receive polarimetric radars, < L, >is
measured directly. To examine how the coherent-on-receive radar functions, consider
the two-antenna system shown in Fig. 2.2. The transmitter part of the system consists
of an upconverter followed by an RF amplifier with a rectangular waveguide as its
output port. The rectangular waveguide is connected to a circular waveguide through
a transition, followed by two waveguide polarizers which are connected to the antenna
structure. The waveguide polarizers are independently rotatable in a plane perpendic-
ular to the direction of propagation. The dielectric card inside a waveguide polarizer
enforces two different wave velocities for waves with polarization vectors parallel and
perpendicular to the card’s surface. The position of the dielectric card with respect
to the polarization of the incoming wave determines the polarization of the outgoing
wave from the waveguide polarizer. To minimize reflection by the card, the dielectric

constant of the card must be chosen to be relatively small. The dielectric cards are
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Figure 2.2: Block diagram of the coherent-on-receive radar system operating

at 34.5 GHz.

designed such that the phase difference between two outgoing waves corresponding
to two incoming waves whose electric fields are parallel and perpendicular to the card
is 90°. This feature allows the generation of any polarization configuration of inter-
est including vertical (V'), 45° linear (45), left-hand circular (LHC), and right-hand
circular (RHC), which together are used to obtain the elements of the Mueller matrix.

The receiver part of the radar includes a dual polarized antenna capable of re-
ceiving the vertical and horizontal polarization components of the scattered wave
simultaneously. After down-converting the frequency of the received signals, the two
IF signals are measured in both magnitude and phase. The Stokes vector correspond-
ing to the transmitted polarization is computed from the coherent measurement of
the scattered field components as given by (2.2). For coherent systems, phase coher-
ence must be maintained during the measurement of the scattering matrix elements.
Therefore, if the relative position of the radar platform with respect to the target

is not fixed to within a very small fraction of a wavelength, the phase information
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will be lost. However this is not the case for coherent-on-receive systems, since each
column of the Mueller matrix is completely determined from a single pulse.

To measure the Mueller matrix with 16 unknowns, we are required to perform at
least four measurements. The entries of the Mueller matrix can easily be obtained
by transmitting four different polarizations, namely, vertical, 45° linear, right-hand

circular, and left-hand circular, whose modified Stokes vectors are given by

roo oo r r T
| : : :
1 1 1
t 0 t 2 2 2
F,= y Fys = , Frue = , Fruc = (2.5)
0 1 10 0
0 ] 0 1 -1

The received Stokes vectors can also be computed using the measured E] and E},
in (2.2). By denoting the ith column of the modified Mueller matrix by £ it is a

straightforward matter to show that

£ = SR

c, = rlz [Fiac + Fruc — FV]

L, = lz [Ff;s - % (Fiae + F;%HC)]

£‘rtn = “15 [%( LHC ~ FTRHC)] (2.6)

where F} represents the received Stokes vector corresponding to the transmit polar-
ization p.

In case of distributed targets, measurements of F are repeated many times to
estimate the expected value < F, >. Then, < Zm > can be determined from

< F} > following the procedure outlined by equation (2.6), from which the radar
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cross section can be computed for any desired combination of transmit and receive
antenna polarizations using the polarization synthesis technique [60].

This procedure of computing < L., > works well for an ideal radar system with the
transmitted Stokes vectors as given in (2.5). In practice, the measurements required
to compute < Zm > are contaminated by two types of errors: systematic errors due
to imperfections in the radar components and non-systematic errors due to noise and
finite sampling of the random process. The systematic errors can be removed using
the calibration procedure described in section 2.4, while the non-systematic errors can
be reduced by estimating < L, > using the received Stokes vectors corresponding
to N (> 4) different transmit polarizations. One possible computation procedure to
estimate < L., > , as suggested in [30], is to use the least mean squared procedure
for individual rows of the Mueller matrix.

Let V and W be 4 x N matrices whose columns represent the received and
~transmitted Stokes vectors respectively. It is easy to show from (2.3) that V and

W are related to Lo, through
<V>=<Lp>W (2.7)

Here, the coefficient (1/r?) has been suppressed for simplicity. The error in the ith

row is defined by

N 4 2
&= (Uij - Z £ikwkj)
k=1

j=1
and elements of C;; are chosen such that e; is minimized. This procedure ends up

with the following expression for the measured Mueller matrix

0o

< Lp>= |(WW) T W<V >T
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A better estimation of the Mueller matrix from the measured data is perhaps
the global minimization instead of minimization from individual rows. Moreover in
backscattering there are only nine independent parameters in the Mueller matrix.

The Mueller matrix in terms of the independent parameters can be represented by

I I3 g —Z9
= I3 ) Te —T7
< L, >=
2.1‘8 216 (1134 + Ig) —Ts5
21’9 2(E7 Ty (584 - xS)

where 7, = [Sy,|%, 72 = [Swl? T3 = |Swl?, 74 = Re[SwSh), 5 = Im[Sy,S5),
z6 = Re[Sh,Sh] s z7 = Im[ShySiy), ©s = Re[SwSi,), and z9 = Im[S,,S;,]. Using
global minimization, elements of the Mueller matrix (L;;) are obtained such that the

global error
4

N 4 2
E=Y% ( -y c)
i=1 j=1 k=1

is minimized. Basically, a linear system of equations for the nine unknown parameters

is obtained by setting the partial derivatives of E (with respect to z;) equal to zero.

2.3 System Distortion Model

The technique described in the preceding section for measuring the Mueller matrix
is for a distortion-free radar system. It minimizes the error due to random variations
and finite sample size, but it does not correct for system biases. In practice, however,
the radar components are not perfect. For example, it is not possible to construct
antennas that are totally free of polarization contamination (coupling between the or-

thogonal polarization ports of the antenna). Also, the polarization state of the trans-
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Figure 2.3: Signal flow diagram of a coherent-on-receive radar.

mitted wave depends primarily on the phase-shift characteristics of the waveguide
polarizers and the transmit antenna polarization contamination. Another factor that
affects the measurement accuracy is the receive channel imbalances which include the
variation in magnitude and phase of the system transfer function for different ports
of the receiver. A simplified block diagram of such a system is depicted in Fig. 2.3.
These imperfections in the radar system components can lead to serious errors in the
measured Mueller matrix. The role of calibration is then to correct for these system-
atic errors in the measured target response before constructing the measured Mueller
matrix.

In this section, the imperfections of the radar components will be modelled and
a mathematical system distortion model will be constructed. This system distortion
model will then form the basis of the new calibration technique discussed in the next
section.

First, let us examine the effect of the phase shift introduced by the dielectric cards
on the polarization tate of the transmitted wave. As mentioned earlier the thickness
and dielectric constant of the dielectric cards are chosen such that the reflected field

is minimal and can be ignored. Suppose the transmission coefficient of the card for
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the waves whose electric fields are parallel (slow wave) and perpendicular (fast wave)
to the dielectric card are, respectively, denoted by the complex quantities T,, and 1.
Further assume that the card is oriented such that it makes an angle o with respect
to a specified horizontal direction as shown in Fig. 2.4. The unit vectors parallel and

perpendicular to the card are denoted by § and f, which are given by

§ = slnav-—cosah

f = cosav+sinah

If the wave incident on the card, is denoted by E' = E! © + E} h, then by decom-
posing each component into components along f and 4 and multiplying the resultant
components, by the corresponding transmission coefficients Ty and T, the outgoing

field through the polarizer can be obtained from

E°=TE
where T is the polarization transformation matrix given by

1
cos’a Ty +sin’a¥, sina cosa (YTy—1,)

L]
Il

sina cosa(T;—1T,) cos’a T, +sin*a Ty

Now by cascading two polarizers and ignoring reflections from the cards, the trans-
mitted wave E¢ at the output of the second polarizer is related to the wave at the

input of the first polarizer E™ by



Figure 2.4: Orientation of the principal axes of the dielectric card with respect
to 0 and h.

Here ’_=[‘1 and 'i‘2 are the transformation matrices of the first and second polarizers
corresponding to the rotation angles «; and ap respectively. It is assumed, without
loss of generality, that the electric field in-the rectangular waveguide preceding the
polarizers coincides with the specified vertical direction % (E™ = T;(1,0)). Intro-
ducing the phase-shift factor 7, = %—ﬂ (1 = 1,2) the transmitted wave through the

fi

polarizers is givén in terms of the phase-shift factors and orientation angles by

{cos (a1 — az) (cos @ cos ay + 717y sin oy sin o)

+sin (@ — a2) (sin @ cos apT — o8y sin a,7s) }

{cos (a1 — az2) (sin @y cos @z — cos ay sin Ty Ty)

—sin (o — @) (cos @y cos apTy + sin oy sin a7y }

where T = T;Y ;1 Y, includes the transmitter transfer function (7;). The nominal
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Rotation Angle | v | h [ 45° | 135° | LHC | RHC
o 4510 0 45 | 45
ay 045 45 | -45 0 0

(e

Table 2.1: Wave plates rotation angles for the desired polarization states of the
transmitted wave.

— Y ﬂ.
value for the phase-shift factors (7;) is e "2 and for this value Table 2.1 gives the
T
rotation angles for the desired polarizations. In general 7; is not exactly e ' 2 and
is a function of frequency. Using the above rotation angles, the actual polarizations

of the waves transmitted through the polarizers are

1+7 1+
frtLHC 2 fitRHC _ 2 , (2.9)

where E* = E®/T . Deviations of 7, and 7, from their nominal values lead to
errors in the presumed polarization states.

The physical structure of the antenna may modify the polarization of the bounded
wave as the wave transforms into an unbounded wave and vice versa. The transmitted

unbounded wave in terms of the bounded wave at the input is given by

E.=T E! (2.10)
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where ¢3 ( |cs| < 1) is the transmit antenna cross-talk factor. The off-diagonal terms
in (2.10) are assumed to be identical because of the circular symmetry of the transmit
antenna. It is worth noting that the polarizers and the antenna structure are passive
devices, thus the phase-shift factors 7, and 7, as well as the antenna cross-talk
factor c3 are time invarient.

Now we can turn to study the distortions caused by the receiver. In a recent study
reported by Sarabandi and Ulaby [40], it was shown that for a dual polarized receiver

the measured signal E” is related to the wave incident upon the receive antenna by

E = Er (2.11)

where ¢; and c, arethe receiver cross-talk factors and R, and R, are the vertical
and horizontal system transfer functions of the receiver ports. It was also shown that
c; and ¢, areonly a feature of the passive devices in the antenna system and hence
are not affected by instability of active components in the radar system. On the other

hand, the unbounded transmitted and received waves at the antennas are related by

e—2ik07‘

E

0,11}

E =

- ¢ (2.12)

where r is the range between the radar antenna and the target. By inserting (2.10)
and (2.12) into (2.11), we can relate the measured signal E” to the bounded wave at

the output of the polarizers Et by

e—Qikor Rl 0 1 C1 Sv‘u Svh 1 C3

r?

E = E'  (2.13)

0 R c 1 Sho  Shh cz 1
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where we have included the transmitter transfer function into the receiver transfer

functions, i.e., Ry = TR, and Ry = T R;. Furthermore, let

T, = . (2.14)

The system distortion model for the coherent-on-receive radar shown in Figs. 2.2 and

2.3 can be expressed in matrix format by

e—?ikor

=3
aa
=1

S

p=v]

E" =

B (2.15)

2.4 Calibration Procedure

So far the system distortions have been modelled mathematically. The next step
is to determine the distortion parameters and then, by applying a correction algo-
rithm, calculate the actual Mueller matrix. The standard approach used to find the
distortion parameters is to measure a target with a known scattering matrix. A metal-
lic sphere is an excellent candidate for this purpose because its scattering matrix is
orientation-independent and its radar cross section is known theoretically. However,
as will become apparent later on, the measurements of only a metallic sphere with
any combination of transmitted polarizations is not sufficient to determine the seven
unknown distortion parameters of the radar system. The measurement of an addi-
tional independent depolarizing target is needed in order to determine all distortion

parameters. Fortunately, the scattering matrix of the additional target need not be
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known. It should be noted that once the distortion parameters are determined care-
fully using the two calibration targets, a simpler procedure using only a sphere can
be used to find the time varient parameters R; and R; in subsequent calibration
of the radar.

The fields, detected at the V-channel of the receiver, that are scattered from a
sphere with a radar cross section ¢ = 47 | S° |* due to vertical, 45-linear, right-

hand circular, and left-hand circular polarizations can be expressed in terms of the

distortion parameters as follows

EY = RS°(1+cc)

ESLHC = fa 5" [(1+cres)(14+71)+ (a1 +¢3) (1 —71)]

2
£ = B0 ) (14 m) ~ (e ) (1 )
E3450 = R1250 [(]. + c103) (1 + 7'2) + T1 (]. - 7'2) (Cl + 63)] (216)

Here, the quantities on the left-hand side are the components of the received signal
modified by r?e?*o and the first superscript denotes the sphere and the second
one denotes the polarization of the transmitted wave. Solving (2.16) simultaneously

provides the following expressions for the distortion parameters 7 and 7,

T = AU+B.U—1
2 _ A2
ZQwﬁn+@—&-&ym+%é
(1-A2)+(1-B,)’

T2

where

EZLHC E:J)RHC
A, = FoV B, = FoV
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The field Ef can now be determined from (2.9) for any given rotational angles ; and
o, of the dielectric cards. The system distortion model given by (2.15) can be cast
into a matrix equation by juxtaposing the measured responses due to two transmitted

polarizations; for example for the transmit V' and 45° linear polarizations,

=7 6—2“{:07‘: =
E="—5—R;S

r

t

. E (2.18)

=i

where E = [Ew’fgms} and E = [E’V,E"“’]. Noting that the scattering matrix of

the sphere is diagonal, the following equation can be obtained from (2.18)

¢ -1 e—2ik0ro = =
) ¢ " s R T (2.19)

A=F" (ﬁ

where E ~ is the matrix of the measured response of the sphere for two transmit-
ted polarizations. Equation (2.19) shows that the sphere measurements can provide
at most four independent equations. Since there are five unknowns in R, and T,
matrices ( Ry, Rg, ¢, ¢z, and c¢3), an additional independent equation is needed.
This can be accomplished by measuring any depolarizing target for any two transmit
polarizations and then enforcing the reciprocity theorem.

If f)rd represents the matrix of the measured response of the depolarizing target
for two given transmit polarizations, using (2.18) and defining B=E" <I=Ct)_1, the

scattering matrix of the depolarizing target can be obtained from

B T, (2.20)
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Obtaining ﬁ;l from (2.19) and substituting in (2.20), the scattering matrix of the

depolarizing target can be expressed by

- 2 R = = - = = -
§'oTd kter) g0 By AT B T, (2.21)

which is only a function of cs. Enforcing the reciprocity condition ( 5%, = S2), the

following quadratic equation for cs can be obtained

Q
A+ 2(—2—%3 +1=0 (2.22)
where
Q, = a?.lbn - (111521 + a2zb12 - 012522
Q1 = a1zby — axgbyn — asibia + ar1ba

Parameters a;; and b;; (1,j =1,2) are the elements of A and B matrices respec-
tively. The acceptable root of (2.22) is the one that satisfies the condition [cs| < 1.
The only restriction on choosing the depolarizing target is that its scattering matrix
must have non-zero eigenvalues; otherwise ég cannot be computed from (2.22). Once
¢3 is found, the other system distortion parameters can be obtained systematically

from (2.19) and are given by

Cs(au/alz) -1

C =
! C3 — (au/alz)
63(022/021) -1
Cy =
C3 — (022/021)
. 1 a
R, = Ryric¥m R 2
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/2 2tkoro R12 — ?0’ +
C2 TC3

R, = Ryrle

2.4.1 Special Cases

1 an

(2.23)

If the transmit antenna cross-talk factor is very small (¢3 ~ 0), the depolarizing

target is not required and the distortions can be determined from the sphere alone.

The phase-shift factors 7 and 7, can be determined as before while the other

parameters can be determined as follows

where

. A, — B,
' 7 9_ A, —-B,
_ 2-A,-B,
“ A, — By
EY EYV Ay - By
k= =& &‘502—&—&
EoLHC EoRHC
Ay = By = —=

If in addition, the receive antenna cross-talk factors are very small, then measurements

of Ay and By, are very noisy and unreliable. In such cases where ¢; = ¢, ~ 0, (2.16)

reduces to

EV = RS

EoLHC Ry Sol_'%ll

EgLHC R,S° 1_—21]_
| B Rys° 142
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These equations can be solved to obtain

EoLHC

T = 2——_‘20‘/ -1
EO‘;}S

Ty = 2 E}V -1

Rl _ EZV, = E[C.)LLHC . EEV
Se (E'L)V _ EgLHC) ge

2.4.2 Correction Schemes

Now we are in a position to correct for the distortions in the measurements of
an unknown target. For a coherent-on-receive radar, two correction schemes are
considered:(1) Coherent, and (2) Incoherent. The Coherent correction scheme can be
used whenever the relative distance between the target and the radar remains constant
during the measurements as it is usually the case for indoor measurements. In this
case, the scattering matrix is determined from the scattered fields when the target is
illuminated by two independent polarizations, for example V' and 45° linear. The
incoherent correction scheme must be used whenever the relative distance between
phe target and the radar changes during the measurements (unstable platform or
moving target) as it is usually the case for. outdoor measurements. In this case, the
received stokes vectors for at least four different transmitted polarizations are used
to construct the modified Mueller matrix directly, as was discussed in section 2.2.

In the coherent correction scheme the scattering matrix of the unknown target

can be determined from (2.18) directly

1 -1

U T, (2.24)

u

0]

.2 _2kors T
=r, € R,

t =TU
)yland E = [ELV, EZ45} is the measured target response and

=TUu

where U =E (E
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ry 1s the range to the unknown target.

In the incoherent correction scheme the unbounded transmitted wave, Ef, can be
determined from (2.8) and (2.10) for any prescribed rotation angles o; and a; of
the dielectric cards. Furthermore, the unbounded received wave, E", can be obtained

from the measured field E™ and is given by
Er =12 glkor ﬁ;l E (2.25)

The transmitted and received Stokes vectors, needed to compute the modified Mueller
matrix, can be determined by substituting Ef, and E", respectively, into the definition

of the Stokes vector given by (2.2).

2.5 Comparison With Measured Data

The validity of the new calibration technique is examined by measuring the scat-
tering matrices of cylinders and spheres as test targets using a coherent-on-receive
network analyzer-based scatterometer operating at 34.5 GHz. A block diagram of the
system is shown in Fig. 2.2. For each transmitted polarization, the network analyzer
sweeps over a bandwidth of 1 GHz in 401 steps and collects simultaneously the re-
ceived fields at the V' and H channels. Using the time domain capability of the
network analyzer, the target return can then be separated from the unwanted short-
range returns and nearby objects. The received signal at the target range includes
the target response in addition to disturbances due to the thermal and background
noises. The effects of the thermal noise, which is a zero-mean random process, can
be minimized by averaging over many samples and the effects of the background,

which is due to returns adjacent to the target can be eliminated by subtracting the
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Figure 2.5: The measured variations of the magnitude (a) and phase (b) of the
phase-shift factors, 7 and 7, , as function of frequency.
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background response (in the absence of the target) from the response of the target
and background.

Target orientation was facilitated by an elevation over azimuth stepper motor
positioner. An 8.1 cm sphere and a finite array of parallel wires were used as the
calibration targets. The test targets include a 4.45 cm sphere and a conducting
cylinder with a diameter of 0.552 ¢cm and a length of 6.045 cm. The cylinder is
measured for two different orientations: vertical and 45° in a plane normal to the
direction of incidence. The measured scattering matrices using (2.24) are compared
with those computed using the exact eigenfunction expansion solution and the method
of moments in conjunction with the Fourier transform technique (body of revolution)
for the sphere and cylinders, respectively.

Using averaging and background subtraction, a signal-to-noise ratio of better than
65 dB was achieved. For targets with S,, = Sp, =0 (sphere and vertical cylinder),
 the signal-to-noise ratio in the cross-polarized channels was better than 40 dB.

Applying the calibration technique, the magnitude and phase of the phase-shift
factors of the two polarizers, 7 and 7, are measured and shown in Fig. 2.5 as a
function of frequency. As expected, both polarizers exhibit negligible transmission
losses as the magnitudes of the transmission coefficients vary between 0.968 and 0.98
over the measured bandwidth. The phases of 7, and 7, are measured to be around
—92°, which is very close to the expected phase shift of —90.0°. The measured
antennas cross-talk factors of the system as computed by (2.22) and (2.23) are shown
in Fig. 2.6.

Fig. 2.7 compares the theoretical and measured scattering matrix elements of
the 4.45 cm sphere. The error in the magnitudes of co-polarized terms is less than

0.5 dB and the error in the phase-difference between the co-polarized terms is less
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than 4°. The cross-polarized term is shown in Fig. 2.7a and shows that an effective
cross-polarization isolation of at least -40 dB is obtained which represents a 20 dB
improvement in the system cross-polarization isolation.

Excellent agreement is also achieved between the theoretical and measured scat-
tering matrix elements of the cylinder oriented at vertical and 45°. The comparisons
are shown in Figs. 2.8 and 2.9 which show a maximum discrepancy of about 0.4 dB
in magnitude and 4° in phase. In Figs. 2.8a and 2.9a, the values of 7,, and o, are
overlapped. The experiments were repeated many times and consistant results were

achieved.

2.6 Conclusions

Practical aspects of a calibration procedure for a coherent-on-receive polarimetric
radar system are discussed. The polarization state of the transmitter is related to the
transmit antenna cross-talk factor and the phase-shift factors of the waveguide polar-
izers in the radar system. Distortions in the receiver, such as channel imbalances and
cross-talk factors, together with the transmitter distortion parameters are obtained
from measurements of a metallic sphere and a depolarizing target with unknown scat-
tering matrix for four and two transmit polarizations respectively. The validity and
accuracy of the calibration technique is verified by measuring the scattering matrix

of independent point targets with known scattering matrices.
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CHAPTER III

POLARIMETRIC RADAR MEASUREMENTS
OF BARE SOIL SURFACES AT
MILLIMETER-WAVES: A SEMI- EMPIRICAL

MODEL

3.1 Introduction

The millimeter-wave (MMW) backscatter response of bare-soil was examined by
conducting experimental measurements at 35 and 94 GHz using a truck-mounted po-
larimetric scatterometer and by developing appropriate models to relate the backscat-
tering coefficient to the soil’s surface and volume properties. The experimental mea-
surements were conducted for three soil surfaces with different roughnesses under both
dry and wet conditions. The experimental measurements indicate that in general the
backscattering coefficient is comprised of a surface scattering component ¢° and a vol-
ume scattering component o”. For wet soil conditions, the backscatter is dominated
by surface scattering, while for dry conditions both surface and volume scattering
are significant, particularly at 94 GHz. Because theoretical surface scattering models

were found incapable of predicting the measured backscatter, a semi-empirical surface

40
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scattering model was developed that relates the surface scattering component of the
total backscatter to the roughness parameter ks, where k = 27/) and s is the rms
height, and the dielectric constant of the soil surface.

An extensive experimental investigation was conducted over the past Five years
to examine the polarimetric backscatter behavior of bare soil surfaces in the 1-10 GHz
frequency range [33]. Using a set of truck mounted coherent polarimetric scatterom-
eters with center frequencies at 1.25, 4.75 and 9.5 GHz, measurements were made
of the Mueller matrix as a function of incidence angle for soil  faces covering wide
ranges of surface roughness and moisture content. Using the relaiions outlined in [33]
and [34], the measured Mueller matrices were then used to compute the co-polarized
backscattering coefficients o2, and ¢}, the cross-polarized backscattering coefficient
o4, and the probability density functions of the co-polarized and cross-polarized
phase differences. Comparison of the measured data with calculations based on the
physical optics model, the geometric optics.model, and the small perturbation method
revealed that all three models are incapable of correctly predicting the backscatter
response of random rough surfaces, even when applied within their presumed ranges
of validity. This realization led Oh et al. [33] to develop a semi-empirical model that
relates of;, for i,j = horv, to the incidence angle 6 and the surface parameters ks
and ¢,, where k = 2r /), s is the rms height and ¢, is the complex relative dielectric
constant. The semi-empirical model, which was developed on the basis of measure-
ments made during one season of experimental observations, was found to provide
excellent agreement with observations made during two succeeding years for different
sets of soil surfaces and conditions.

The work presented in this chapter and in the next chapter extends the preceding

work by examining the backscatter response of soil surfaces at millimeter wavelengths



42

(MMW), specifically 35 and 94 GHz. One of the major lessons learned from the
present study is that at centimeter wavelengths it is reasonable to assume that the
backscatter from a half-space soil medium is due to scatter by the soil surface alone,
but at millimeter wavelengths the backscatter may consist of both surface and volume
scattering contributions. Furthermore, for dry soils the volume-scattering component
may be comparable to or greater than the surface-scattering component, but for wet
soil the volume scattering component becomes negligibly small in comparison with
the surface-scattering component. This behavior is consistent with calculations based
on radiative transfer theory.

The next section contains detailed descriptions of the 35 and 94 GHz radar sys-
tems, the measurement procedure, and the measured properties of the soil surfaces.
Section 3.3 provides an overview of the observed angular variation of ¢° for various
surface roughnesses and compares the measured response for wet soil surfaces with
~predictions by classical surface scattering models. A semi-empirical surface scatter-
ing model is introduced in Section 3.4 that provides a better fit to the data than
the expression previously derived by Oh et al. [33] for surface scattering at cen-
timeter wavelengths. Then, the semi-empirical model is compared to experimental

observations reported by Yamasaki et al. [73] for wet soil surfaces at 60 GHz.

3.2 Experimental Setup

The first part of this section provides a brief description of the polarimetric scat-
terometers used in support of the present study. It is then followed with discussions
of the techniques employed in preparing the surfaces and the methods used in char-

acterizing the physical properties of the observed surfaces.
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3.2.1 Polarimetric Scatterometer System

The University of Michigan’s Millimeter-wave polarimetric scatterometer system
is designed with the capability of measuring directly the Mueller matrix of distributed
targets at 35 and 94 GHz. The coherent-on-receive measurement technique described
in Section 2.2 is used to measure the Mueller matrix. The scatterometer consists of
a computer, an automatic vector network analyzer (HP 8753C), polarization control
circuitry, IF switch box, and 35 and 94 GHz front end RF circuitry as shown in
Fig. 3.1. A block diagram of the 35 GHz front end RF circuitry is shown in Fig. 2.2.
Each radar enjoys a 1 GHz bandwidth (corresponds to 15 cm range resolution). The
effective beam widths of the 35 GHz and 94 GHz antenna systems are 3° and 1.5°
respectively. This corresponds to a spot size of 0.6 m at 35 GHz and 0.3 m at
94 GHz at a range of 10 m. The computer is used to control the network analyzer
to insure automatic data acquisition. The computer also controls the IF switch box
and the polarization control circuitry to select the desired frequency and polarization
configuration.

To allow for an easy access of the soil surfaces, the polarimetric scatterometer
systems were mounted on a truck (see Fig. 3.2). In this configuration, the system
operates from a variable-angle mount on the end of an extendable boom mounted
on the truck. The front end RF components, the IF switch box, and the network
analyzer were all mounted on the boom top while the computer and polarization
control circuitry were mounted in a control house on the bed of the truck. In this
setup, the network analyzer is connected to the radars via short IF cables as opposed
to the long IF cables normally required in the conventional setup of mounting the

network analyzer along with the computer and other equipment in the control house.
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Figure 3.1: System block diagram of the MMW polarimetric scatterometer.
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3.2.2 Measurement Procedure

Backscatter measurements of each soil surface were performed at three incidence
angles (20°, 45°, and 70°) during which the distance to the soil surface was kept con-
stant at 10 m. Measurement sessions started by pointing the scatterometer system
towards the target at the appropriate range and incidence angle. While the boom was
not moving, the computer first selected the 35 GHz radar to measure the backscat-
tering response for six different sequentially transmitted polarizations (V, H, 45L,
135L, LHC, and RHC). The measurement was then repeated for the 94 GHz radar.
The process was repeated after the scatterometer system was moved to a new spot
by rotating the boom around its axis. Overall, 60 independent spatial samples were
collected for each surface.

Raw data was saved on the computer hard disk in binary format to reduce the
data acquisition time. To process the data, the raw traces were sent back to the
network analyzer where the signal of the desired target was isolated from signals
of other (unwanted) targets using the gating capabilities of the network analyzer.
Once the gated data was calibrated and the received Stokes vectors were computed
and averaged ov‘er all spatial samples, the Mueller matrix was computed using the
procedure described in Section 2.2.

Additional independent samples were obtained by performing frequency averaging
over the 1 GHz bandwidth. Overall, between 120 samples at § = 20° and 240 samples

at 8 = 70° were collected for each target.
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3.2.3 Surface Preparation

The wavelengths corresponding to 35 and 94 GHz are 8.6 mm and 3.2 mm, re-
spectively. Special care was taken in preparing the ‘hree soil surfaces in order to
insure that the backscattering measurements cover a wide range of surface roughness
relative to A and to replicate a wide range of naturally occurring surface conditions.
[nitially, all surfaces were cleared from grass and vegetation debris. Then, in order to
have a “smooth” surface with rms height less than 1 mm, a heavy roller was moved
across surface S1. This technique resulted in a compacted soil medium with an rms
height s = 0.66 mm. Surface S1 resembles a packed-down dirt road surface. For
surface S3, the top layer was turned over by a hand shovel resulting in an undulating
surface with s = 7.77 mm, and the surface represented a freshly plowed soil surface.
Surface S2 was a slightly rough surfa,ce; with s = 2.62 mm and it represented what
surface S3 would look like after cultivation by a farm implement to break down the
large soil clods or after natural smoothing action by rain and wind. Surface height
characterization was performed by a laser profiler, as will be discussed later.

Two sets of measurements were conducted, one for dry soil conditions and the
other for wet soil conditions. A tree sprayer with an adjustable nozzle was used
to spray a fine mist of water droplets to insure a constant surface wetness during
radar measurements while preserving the surface roughness. As an example of the
effectiveness of this technique, the gravimetric moisture content collected during mea-

surements of surface S3 under wet conditions is shown in Fig. 3.3 as function of time.
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3.2.4 Surface Characterization

Surface height profiles and soil samples were collected for each soil surface under
wet and dry conditions in order to determine the surface height statistics, the bulk
soil density and moisture content. In addition, size distributions of the solid soil

particles and the air voids were generated.

Surface Height Profiles

The height profile of each soil surface was measured by a laser profiler mounted on
an x-y table. The profiler, which is driven by stepper motors, measured 30-cm long
linear segments with 0.3 mm horizontal resolution and 0.3 mm vertical resolution.
An IBM-PC was used to control the stepper motors and to collect and store the
heights measured by the laser profiler. At least five height profiles of different areas
were recorded for each surface. Samples of surface profiles of the three surfaces
and their auto-correlation functions , each normalized to its maximum value at zero
displacement, are shown in Fig. 3.4. The rms height s and correlation length [ are

listed in Table 3.1 for each of the three surfaces.

[ surface [ s(mm) | [(mm) | Freq(GHz) | ks | k|

S1 0.66 27 35 0.48 | 19.8
94 1.3 | 33

S2 2.62 30 35 1.92 | 22
94 5.16 | 59

S3 .77 20 35 5.69 | 14.7
94 15.3 | 39.4

s = rms height
| = correlation length

k=2r/X

Table 3.1: Surface roughness statistical parameters for the three soil surfaces.
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Soil Density and Moisture Content

In conjunction with the radar measurements, the soil bulk density p, and the
volumetric moisture content m, were measured by collecting 1-cm thick soil samples
for each of the top 3-cm soil layers. The procedure is shown in Fig. 3.5 where a
15 x 15 cm metallic frame of 1-cm thickness is placed on top of the soil surface and
gently forced into the soil with minimal disturbance to the soil medium. The soil
within the metallic frame is then removed to a container and immediately weighed
via a sensitive electronic scale, baked overnight in an oven and weighed once again
when dry. The moisture content and the bulk soil density were determined using the

following relations:

(Wwet - Wdry)

Wdry

Wdr

Po = Ty
m, = mgxV

where W, is the weight of the soil before baking, Wjy,, is the weight of the soil
after baking, m, is the gravimetric moisture content, and V' is the volume of the soil
sample (15 x 15 x 1 em?). The average values of p» and m,, are listed in Table 3.2, for

all three surfaces.

Soil Particle Size Distribution

The soil particle size distrik is shown in Fig. 3.6, indicating that the bulk
of the soil material consists of ad (diameter > 0.02 mm). To investigate the
void size distribution of the soil ...cdium, thin soil slices were collected and then

photographed by a microscope camera. Two histograms of the void-size distribution
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Figure 3.5: The procedure used to collect 1-cm thick soil samples and estimate
the gravimetric moisture content.

were generated, one for bulk soil density p, = 1.69 g/cm?® (for soil surface S1) and
another for p, = 1.32 g/cm?® (for soil surface S3), by treating the voids as spherical in
shape. The mean void diameter was calculated to be 0.165 mm for the high-density
soil, compared to 0.242 mm for the low-density soil. The void size distribution of the
soil with py = 1.69 g/cm?® and py = 1.32 g/cm? are shown in Fig. 3.7.

In order to compare the radar observations to theoretical models, we need to
obtain good estimates of the soil’s dielectric constant or relate the dielectric constant
to the soil’s physical properties. Unfortunately, no theoretical or empirical model is
available in the literature that can correctly predict the effective dielectric constant
of soils at MMW frequencies. In this thesis, the effective dielectric constant of the
soils observed in this study were estimated by applying the semi-empirical formula
found in [62], [14]. The results are given in Table 3.2. For the measured dry surfaces
with low moisture content, it is difficult to determine accurately the amount of free

water. In addition, it was observed that the first few millimeters of the soil medium
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My €r
Surface || p» v, | d, mm|d, mm |0-1cm 2-3cm | 35 GHz 94 GHz
Sl-dry || 1.69 | 0.36 | 0.3 0.165 0.02 0.08 |(3.1,0.05) | (3.1, 0.05)
Sl-wet || 1.69 [ 0.36 | 0.3 0.165 | 0.23 0.19 (7.3,4.5) (5.0,2.4)
S2-dry || 1.37 | 045 | 0.3 0.165 0.04 0.07 | (2.5,0.05) | (2.5, 0.05)
S2-wet || 1.37 | 0.45| 0.3 0.165 | 0.12 0.12 (4.6,2.0) (3.5,1.1)
S3-dry || 1.3210.50 | 0.3 0.242 | 0.04 0.07 | (2.5, 0.05) | (2.5, 0.05)
S3-wet || 1.32 1 0.50 | 0.3 0.242 | 0.19 0.18 (5.9,3.5) (4.1,1.9)

py = soil bulk density (g/cm®).

v, = air-voids volume fraction.

d, = mean soil particle diameter.

d, = mean air-void « neter.

m, = volumetric mc  re content.

¢, = effective dielecti constant.

Table 3.2: Summary of soil properties.

were very dry, and the soil wetness increased gradually with depth. The values given
in Table 3.2 for the dielectric constants of the dry soil surfaces are for the very top
surface layer. The thickness of that dry surface layer plays an important role in
determining the relative contribution of volume scattering to the total backscatter,

as discussed later in Chapter IV.

3.3 Experimental Observations and Comparison with

Classical Models

This section examines the experimental behavior of the backscattering coefficient
¢° as a function of (1) the radar parameters: frequency, receive-transmit polarization
configuration, and the incidence angle 6, and (2) the soil surface parameters: the rms
surface height s, the surface correlation length [, and moisture content m,.

In general, two scattering mechanisms contribute to the backscattering coefficient

o° (Fig. 3.8), a surface scattering contribution o° which is a function of the surface
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Figure 3.6: Soil particle size distribution p(d,).

height statistics and ¢, of the lower half space, and a volume scattering contribution
oV that is due to inclusions underneath the rough interface:

ol =05+l i,J=horv. | (3.1)

The volume scattering contribution is in turn governed by the height statistics of
the rough interface and the size, shape, and orientation distributions of the inclusions
in the soil medium (air voids in this case) and the dielectric constant of the host ma-
terial (soil particles). Depending on the surface roughness, the density of the volume
scatterers, and the dielectric properties of both the scatterers and the background
medium one type of scattering can dominate over the other [35]. Calculations based
on radiative transfer theory reveal that oV is much smaller than the observed scat-
tering coefficient ¢°, and hence much smaller than ¢°, except for dry soil at 94 GHz.

This can be explained by noting that at 35 GHz the air voids are very small in size
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Figure 3.7: Histogram of the air void-size distribution p(d,) for the soil with
(a) p» = 1.69 g/cm®, and (b) pp = 1.32 g/cm®.
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Figure 3.8: Surface and volume-scattering mechanisms contributing to the to-
tal backscatter.

(see Fig. 3.7) relative to A, and at 94 GHz the attenuation in wet soil reduces the
penetration depth to a very thin surface layer, thereby reducing the volume scattering
contribution to a negligible level. In this chapter, we will limit the analysis to the
wet soil cases in order to examine the surface scattering component alone and then in
the next chapter we will use radiative transfer theory to model the volume-scattering

component. Hence, for the cases presented in this section, 0° = o°.

3.3.1 Experimental Observations

As was stated earlier, the radar observations were made at 35 GHz and 94 GHz
for each of three surfaces with widely different roughnesses. Figure 3.9 displays the
angular variation of ¢°, for each of the three principal polarization configurations, for
the surface with the smallest value of ks (surface S1 with s = 0.66 mm, observed at
35 GHz) and the surface with the largest value of ks (surface S3 with s = 7.77 mm,
observed at 94 GHz). We note that the curves for the co-polarized scattering coef-

ficients, 02, and o, diverge as a function of § for the smooth surface represented
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by Fig. 3.9a, but they remain approximately equal for the very rough surface repre-
sented by Fig. 3.9b. This behavior is consistent with previous observations made at
centimeter wavelengths [33]. We also note that the difference in level between the
o? and o) curves is at least 18 dB for the smooth surface (actually 21 dB at 20°,
decreasing to 18 dB at 70°), whereas the difference never exceeds 13 dB for the very
rough surface. These observations clearly indicate that surface roughness exercises
a significant influence on both the co-polarized ratio p = o}, /02, and the cross-
polarized ratio ¢ = o},/02,. It should be noted that the continuous curves shown

in Fig. 3.9 are based on the semi-empirical expressions which will be introduced in

Section 3.4.

3.3.2 Comparison with Classical Surface Scattering Models

In this section, the data measured at 35 and 94 GHz for wet soil surfaces is
compared with the classical surface scattering models such as the small perturbation
(SPM), the physical optics (PO), and the geometric optics (GO) models. Derivations
and explicit expressions for o° along with regions of validity for these models can be
found in [62], [60]. It should be noted that none of the surfaces examined here fell
within the regions of validity of the small pérturbation model. Hence, no comparison
with this model was conducted.

Being first order scattering models, the PO model and the GO model cannot
predict the cross-polarized return in the backscattering direction. Hence, only the
co-polarized return is examined here. The surface roughness parameters of surfaces
S1 and S2 were found to be within the range of validity of the PO model at both
frequencies while the surface roughness parameters of surface 53 were found to be

within the range of validity of GO model at both frequencies. Furthermore, surface
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Figure 3.9: Comparison of the measured backscattering coefficients for wet soil
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tering model given in Section 3.4 for (a) the smoothest surface
at 35 GHz (ks = 0.48), and (b) the roughest surface at 94 GHz
(ks = 15.3).
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S2 at 94 GHz was found to be within the ranges of validity of both PO and GO models.
Comparison between the measured data with values calculated in accordance with
PO and GO models reveals poor agreement between the theoretical predictions and
the experimental observations, as shown in Fig. 3.10a for the smoothest surface at
35 GHz, whose roughness parameters fall in the validity range of the physical optics
model, and in Fig. 3.10b for the other two surfaces at 94 GHz, for which the geometric
optics model is supposed to be applicable. It should also be noted that the measured
o?, is higher than or equal to o7, in all measurements reported in this chapter, which
is contrary to the predictions of the PO model (see Fig. 3.10).

In summary, both GO and PO do not provide good agreement with measured
data at millimeter-wave frequencies. Also, they cannot be used for the cross-polarized
response. In addition, the PO model predicts that o9, < o7, contrary to the measured

data at both centimeter and millimeter-wave frequencies [33].

3.3.3 Comparison with Microwave Semi-Empirical Surface

Scattering Model

In this section, the data measured at 35 and 94 GHz for wet soil surfaces is
compared with the semi-empirical surface scattering model developed by Oh et al.
[33] at centimeter wavelengths. As mentioned earlier, the semi-empirical model was
based on data collected at L, C, and X frequency bands as a function of incidence angle
for four bare soil surfaces with different roughnesses. This data covered a wide range
of surface roughnesses (0.1 < ks < 6.0 and 2.6 < kl < 19.7) and soil moisture
content (0.09 < m, < 0.31). However, only a fraction of the data corresponding to
incidence angles of § = 30°,40°, and 50° was used in the development of this model.

While only two cases are chosen here for detailed comparisons with the L-C-X
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Figure 3.10: Comparison between (a) measured data for surface S1 and predic-
tions based on the physical optics (PO) model at 35 GHz for both
gaussian and exponential surface height autocorrelation functions,
and (b) measured data for surfaces S2 and S3 and predictions
based on the geometric optics (GO) model at 94 GHz.
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empirical model, the conclusions drawn from these comparisons apply to the other
measured cases. The first example is surface S1-wet measured at 35 GHz which
has its ks, kl, and m, within the ranges covered by the L-C-X empirical model.
For this surface, the L-C-X empirical model predicts well o2, and o7,, however, it
overestimates of,, as shown in Fig. 3.11a. The second example is surface S3-wet
measured at 94 GHz which has its ks and kl, outside the ranges covered by the L-C-
X empirical model. In this case, the model underestimates the measured data by at
least 4 dB for all polarizations, as observed in Fig. 3.11b.

In conclusion, the L-C-X empirical model is not adequate for millimeter-wave
frequencies since it does not predict consistently the backscattering response from
soil surfaces at these frequencies. This can be attributed to the fact that the model
is insensitive to roughnesses, beyond ks = 3.0, and that a wider range of incidence
angles was not used in constructing the model.

Faced with these inadequacies in both the classical surface scattering models (PO
and GO) and the L-C-X emirical model, an improved semi-empirical model is devel-

oped in the next section based on measured data at 35 and 94 GHz.

3.4 Semi-Empirical Surface Scattering Model at

Millimeter-Wave Frequencies

An examination of Table 3.1 shows that among the three surfaces, the surface
correlation length [ varies over a narrower range of 1.5:1 (between a minimum of
2 cm for S3 and a maximum of 3 cm for S2). The corresponding range on the k! scale
(where k = 27 /)), is approximately 4 : 1. In contrast, the rms height s varies over a

range of 12 : 1, and ks covers the range 32 : 1. A third surface roughness parameter
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of interest is the ratio m = s/l which is equal to or proportional to the rms slope of
the surface, with the proportionality constant being determined by the form of the
surface autocorrelation function. For the three surfaces, m varies from 0.025 for Sl
to 0.39 for S2. A detailed analysis was conducted to determine the sensitivities of
the backscattering coefficients o2, o7, and of, to s, [, ks, kl, and m. Plots of the
backscattering coefficients versus the five surface roughness descriptors revealed the
following: (a) strong but different dependences on s at 35 GHz and 94 GHz, (b) the
individual frequency plc : coincide with each other when the data is plotted against
ks, (c) random variatior> with [ and kl, and (d) the variation with m is driven by
the dependence on s. Considering that [ exhibits a relatively narrow range among
the three surfaces, it is not surprising that s was found to be the primary parameter

governing the dependence of the radar backscatter on surface roughness.

3.4.1 Co-Polarization Ratio

The dependences of the co-polarized and cross-polarized ratios p and ¢ on ks
are illustrated in Fig. 3.12. At 6 = 20°, p exhibits no discernible dependence on
ks, as expected, because 6 is close to normal incidence. At the higher angles of 45°
and 70°, p increases with increasing ks until ks reaches a value of 4, beyond which
p assumes the constant ratio of 1.0. The continuous curves shown in Fig. 3.12a are
based on the following expression:

s 1/(3T) 2
p= Thn _ [1 - (%> e:vp[-OAks]} (3.2)

T
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where @ is the incidence angle in radians and T, is the reflectivity for normal

incidence,

2

T, = l1 — Ve (3.3)

L+ /e

The form of (3.2), which was adapted from the experience gained previously from
the centimeter-wave study [33], includes a dependence on the dielectric constant e,.
The plots shown in Fig. 3.12a correspond to €, = 5.07 + 72.56, which is in the middle
of the range of the dielectric constants corresponding to the wet-soil surfaces observed
by the radar (see Table 3.2). Thus, part of the data scatter in Fig. 3.12a is attributed

to the non-uniformity of dielectric constants among the data points.

3.4.2 Cross-Polarization Ratio

The cross-polarization ratio g, which exhibits an inverse negative exponential de-

pendence on ks for all angles of incidence (Fig. 3.12b), is modeled by the expression:

S

q= G_’;“ =0.23 \/f‘: [1 - exp(—0.5sind ks)] (3.4)

UUU

To eliminate the dependence on the dielectric constant e,, the ratio ¢ shown in
Fig. 3.12b has been normalized by dividing it by I''/? for both the data points and

the expression given by (3.4).

3.4.3 o}, Response

So far we have characterized the ratios of ¢, and o}, with respect to o2, through

(3.2) and (3.4). Now, we turn our attention to the response of o, to 8, ks and e,.
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The proposed functional form is:

, _ cosf |
=95 [To(0) + Ta(0)] (3.5)

where p is given by (3.2), [',(0) and I's(8) are the Fresnel reflectivities at incidence

angle § for v and h polarizations, respectively, and the function ¢ is given by:
g =22 (1 —exp[—0.2ks]) (3.6)

The exponent of the cos8 term in (3.5) accounts for the change in the angular

dependency of o7, as a function of ks, and is given by:

1
z=35+— tan™'[10 (1.65 — ks))
(3.7)
For a very rough surface with ks very large, p~ 1, ¢ ~# 2.2,and z ~ 3, in

which case (3.5) reduces to:
o8 =22 cos® 9 [T,(8) +Tn(0)], for ks>>1 (3.8)

The inclusion of the sum [I',(6) 4+ ['x(6)] in the expression for ¢, simply insures
that for a very rough surface, o), = o}, , and yet the magnitudes of these two co-
polarized coefficients are somehow related to the angle-dependent reflectivity of the
surface.

To compare the proposed model with the experimental data (Fig. 3.13) we first
normalized the measured values of ¢, by dividing each by the sum of the reflectivities

corresponding to the dielectric values associated with the surface and incidence angle
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and then plotted the results as a function of ks. The same normalization procedure
was applied to (3.5) prior to plotting it in Fig. 3.13. In fact, the values of the
coefficients appearing in (3.6) and (3.7) were selected by matching the expression

given by (3.5) to the data.

3.4.4 Comparison of Model with Observations

The expressions given by (3.2)-(3.7) represent a semi-empirical model for charac-
terizing the surface-scattering component of millimeter-wave backscattering from a
random rough surface. The continuous curves shown in Fig. 3.9 are based on this
model as are the curves shown in Fig. 3.14 for surface S2 (with intermediate rough-
ness) and in Fig. 3.15 where the model is compared with an independent data set (not
used in constructing the surface model) reported by Yamasaki, et al. [73] at 60 GHz,

also for wet-soil surfaces.

3.5 Conclusions

The backscattering coeflicients of three soil surfaces were measured as a function
of incidence angle using two scatterometers operating at 35 GHz and 94 GHz. The
soil surfaces, with roughnesses ranging between ks = 0.48 and ks = 15.3, were
measured under wet and dry conditions. When compared to measurements, the
physical optics and geometric optics surface-scattering models, as well as the empirical
surface-scattering model given in [33], failed to consistently predict the measured
backscattering coeflicients.

Analysis of the measured radar data indicates that in general both surface and

volume scattering contributions are present at MMW frequencies. For wet soil condi-
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tions, surface scattering is the dominant contribution and it can be modeled using a
set of semi-empirical expressions. The semi-empirical model was found to be in good

agreement with an independent data set for wet soil surfaces measured at 60 GHz.



CHAPTER IV

MODELING OF VOLUME SCATTERING
FROM SOIL SURFACES AT

MILLIMETER-WAVE FREQUENCIES

4.1 Introduction

In Chapter III, wet-soil data, measured at 35 and 94 GHz, was used to develope a
- semi-empirical surface scattering model that relates the surface scattering component
of the total backscatter to the roughness parameter ks and the dielectric constant of
soil. None of the dry soil data was incorporated in the developement of the semi-
empirical model under the assumption that volume scattering might be significant at
millimeter-wave frequencies. This assurnpti‘on is based on the fact that at millimeter-
wave frequencies the dielectric inhomogenieties within the dry soil medium can be of
appreciable size compared to wavelength.

In this chapter, the surface and volume scattering contributions to the measured
backscattering response from dry soil surfaces are considered. The semi-empirical
surface scattering model, developed in the previous chapter, is used to compute the
surface scattering contribution from the dry soil surfaces while the radiative transfer

theory is used to compute the volume scattering contribution.

72
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In the next section, evidence on the presence of significant volume scattering from
dry soil surface at millimeter-wave frequencies is presented. In Section 4.3, the var-
ious available volume scattering models are discussed briefly. Then, a model based
on radiative transfer theory is proposed in Section 4.5 to compute the volume scat-
tering contribution from a thin dry soil layer with an undulating surface. Finally,
in Section 4.6, the sum of the surface scattering contributions, computed using the
semi-empirical model, and the volume scattering contribution, computed using the ra-
diative transfer based-model, is compared with the measured backscattering response

from the dry soil surfaces.

4.2 Evidence of Volume Scattering from Soils

Before we embark on a detailed examination of ¢, the volume backscattering
contribution to the total backscattering coefficient ¢°, it would be instructive to
examine the evidence we have in support of conducting such an examination in the
first place. After all, studies conducted at centimeter wavelengths have shown that
the behavior of the backscatter from random surfaces can be explained by surface
scattering alone, without the need to add a volume-scattering contribution. The need
to consider volume scattering at millimeter wavelengths can be illustrated through an
examination of the experimental data shown in Fig. 4.1 which include a set of plots of
o2, and o, for a dry soil surface and another set for the same surface immediately
after wetting the surface with a fine mist using a sprinkler system, thereby preserving
the roughness of the surface. According to surface scattering models, both theoretical
and empirical, increasing the soil moisture content causes the level of o to increase

at all angles of incidence for all polarization configurations as depicted in Fig. 4.1.
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This is certainly not the behavior observed in Fig. 4.1. For HH polarization, o}, of
the dry surface at 8 = 20° is slightly lower than that for the wet surface, but at 70°,
oy, for the dry soil surface is higher than that for the wet surface. A similar, but
even more pronounced, behavior is observed for HV polarization. The explanation

for these observations stems from the following properties:

1. Surface scattering increases with increasing moisture content (dielectric con-

stant), as stated earlier.

2. For surface scattering, o° varies with 6 as cos®6 to cos*f, depending on

surface roughness.

3. Volume scattering decreases with increasing moisture content, in part because
the air-soil transmission coefficient decreases with increasing moisture content
and in large part because the extinction in the soil medium increases rapidly

with moisture content.

4. The volume scattering coeflicients exhibit a very weak response as a function

of the incidence angle .

5. The dimensions of the air voids (see Fig. 3.7), which constitute the scattering
particles in the soil medium, are such that the scattering is in the Rayleigh
region, which exhibits a A~*-dependence. Consequently, volume scattering
is insignificantly small at centimeter wavelengths, but becomes important at

millimeter wavelengths when the soil surface is dry.
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(a) Expected angular behavior of the backscatter response from soil
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scattering contribution.
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4.3 Review of Volume Scattering Models

Two distinct approaches have been developed over the years to model volume
scattering from random media, namely, the wave approach (or analytic wave theory)
and the intensity approach (or radiative transfer theory). The wave approach starts
with Maxwell’s equations and in principle includes all multiple scattering, interfer-
ence, and diffraction effects [19]. However, the mathematical complexity associated
with solutions of the analytic wave theory prohibit its implementation unless certain
approximations are applied. One frequently used approximation is the Born approx-
imation [5], [22], [23], [55]. In this approximation, the permittivity at any point in
the random medium is modeled as the sum of two components, a constant (mean)
component and a fluctuating component. The scattered field is then expressed in
terms of a volume integral equation [8] with unknown distributed sources that are
proportional to both the total field inside the random medium and the fluctuating
component of the permittivity. The integral equation is solved iteratively. However,
the iterative solution is only valid when the variance of the fluctuating component of
the permittivity is much smaller than the mean permittivity. This condition cannot
be satisfied for éoil media, in general, because of the large difference between the
dielectic constant of air ¢, = 1 and the dielectric constant of solid material ¢,, = 4.7.

The radiative transfer theory on the other hand does not start with Maxwell’s
equations. It assumes rather that there is no correlation between fields scattered
from different particles within the medium and therefore it deals directly with the
transfer of energy through the random medium in which the addition of power rather
than the addition of fields hold. The development of the theory is heuristic and lacks
the mathematical rigor of the analytic wave theory but includes the diffraction and

interference effects [60]. However, it is easier to implement and has been used suc-
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cessfully in modeling volume scattering from vegetation and meteorological targets at
both centimeter and millimeter wavelengths [58],[59],[70], [26]. The radiative transfer
theory will be further discussed in the next section.

Recently, a new equation called the dense medium radiative transfer equation
(DMRT) was introduced [33]. The DMRT equation was derived from the wave theory
for electromagnetic wave propagation and scattering in dense media. In its deriva-
tion, the correlation between the fields internal to the scattering particles was taken
into account by computing the mean field and the effective propagation constant of a
dense random medium of discrete scatterers using the quasicrystalline approximation
with coherent potential (QCA-CP). By assuming that the scattering particles are
much smaller than a wavelength, the derivation simplifies and the DMRT equation
is obtained. The DMRT equation takes a form similar to the conventional radiative
transfer equation (CRT). Hence, all existing techniques that were developed in or-
~ der to solve the CRT equation can be readily applied to the solution of the DMRT
equation.

In this chapter, DMRT equation will not used in computing the volume scattering
contribution from dry soil surfaces at millimeter-wave frequencies. This decision is
based on two reasons: (1) the scattering particles in the dry soil medium can be of
appreciable size compared to wavelength, and (2) the range of validity of the QCA-CP
approximation is known yet. In fact, it will be shown experimentally in Chapter VII
that for dense random media with fractional volumes higher than 15%, the QCA-
CP approximation can underestimate the amount of scattering and extinction in a
dense random medium. In this chapter, the conventional radiative transfer theory,
discussed further in the next section, will be used to compute the volume scattering

contribution from dry soil surfaces at millimeter-wave frequencies.
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4.4 Vector Radiative Transfer Theory

Vector radiative transfer theory is concerned with the propagation and scattering
of the vector specific intensity I(7,3) within a medium of randomly located and ori-
ented discrete scatterers. The vector specific intensity is a function of both position 7
and direction of propagation 3. The Stokes vector representation usually is chosen for
representing I(7, §) in order to incorporate the polarization state of the propagation
wave. The propagation of the specific intensity is governed by the vector radiative

transfer equation

absorption coeflicient of the background medium. The phase and extinction matrices
describe the scattering and extinction properties of the random medium. The phase
matrix relates the intensity incident on a differential volume of the random medium
to the scattered intensity while the extinction matrix describes the attenuation of the
intensity due to absorption and scattering in the differential volume of scatterers. The
phase matrix is computed by averaging the ‘modiﬁed Stokes matrix of a single particle
over the size and orientation distributions of particles in the random medium. The
extinction matrix is computed similarly by averaging the scattering matrix of a single
particle in the forward scattering direction over the size and orientation distributions.
The first two terms on the right hand side of equation (4.1) represent the amount
of extinction incurred on the specific intensity by the scattering particles and the
background medium while the third term accounts for the increase in I(7, ) due to

scattering of specific intensities I(7,$’) incident on the differential volume from all
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other directions.

The Iterative method and the numerical method (the discrete ordinate-eigen anal-
ysis method) are two popular techniques for solving the above integro-differential
equation. In the iterative method, scattering is treated as a small perturbation. The
zeroth order solution is obtained by neglecting scattering, and is inserted back into
the integro-differential equations as a source term to derive the first order solution.
The above procedure is repeated iteratively to derive higher order solutions. The
order of iteration is proportional to the order of multiple scattering considered in
the solution. The iterative method is mathematically simple and when the albedo
is small, the iterative solution converges quickly. This is particularly usefull since
closed-form solutions are available for the first and second iterative solutions. For
general values of the albedo, the integro-differential equation is best solved numers-
cally using the discrete ordinate-eigen analysis method. The discrete ordinate-eigen
analysis method can be used to calculate the exact solution of the radiative transfer
equation for the specific intensity in the scattering medium such that all orders of
multiple scattering are included in the solution. In this method, Fourier series expan-
sion of the RT equation in the azimuthal directions is first applied to the RT equation
resulting in a set of RT equations with no azimuthal dependence. For each Fourier
component, the resulting integro-differential equation is solved using the method of
Gaussian quadrature. The integrals in the RT equations, which are functions of the
elevation angle 8, are approximated by an appropriate weighted sum resulting in a
set of first order equations with constant coefficients which are solved by enforcing
the boundary conditions and computing the eigenvalues and eignvectors. Once the
RT equation is solved for any scattered direction, the backscattering coeflicients are

easily computed. The details of this method can be found in [60], [21].
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4.5 Volume Scattering from an Undulating Soil

Surface

To compute the volume scattering contribution, we propose to use radiative trans-
fer (RT) theory. As was noted earlier, the moisture content of the wet soils was essen-
tially uniform with depth over the top four centimeters, but for the dry soils, the top
surface layer, which was on the order of 1-3 cm thick, was very dry and the soil layer
underneath it was generally fairly wet. Hence, we decided to model the soil medium
as a thin layer of thickness h overlying a wet-soil half space. The thin layer, which is
bounded by gently undulating random surfaces from above and below as depicted in
Fig. 4.2, contains air voids (scatterers) embedded in the soil background.

One approach for computing volume scattering from a layer of random medium
with irregular interfaces is to solve the integro-differential equation of radiative trans-
fer while simultaneously satisfying the boundary conditions imposed by the irregular
surfaces [62], [25]. However, in this approach the scatterers are required to be far
away from either interface [35]. This requirement cannot be satisfied in case of thin
layer of dry soil.

In this chapter, we propose an alternative approach where the total volume scat-
tering contributed by the layer is obtained by performing an incoherent addition of
the volume scattering contributions emerging from all points on the surface, realized
by weighing the contributions in accordance with the probability density function
of angles 6; and ¢, that define the unit vector n normal to the surface (see Fig 4.2).
This approach is similar to that reported in [62] for computing surface scattering from
tilted perturbed planes. The volume contribution emerging from any point on the

surface is obtained by solving the radiative transfer equation for a layer of random
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Figure 4.2: Proposed model for the dry soil medium.

medium with plane parallel interfaces. The proposed technique is based on two as-
sumptions. The first is that in a thin layer scattering is essentially a local process and
multiple scattering can occur only between neighboring voids. Hence, the backscat-
tered intensities emerging from different points on the surface are uncorrelated. The
second assumption is that the radius of curvature of the gently undulating air-soil
interface is large compared to wavelength so that the boundaries of the thin layer can

be approximated locally by plane parallel interfaces.

4.5.1 Volume Scattering from Plane Parallel Random Media

In this section, we consider the solution of the radiative transfer equation for a
plane parallel random medium containing spherical scatterers [25], [21], [60]. In this
solution we assume that, similar to dry soils, the scattering layer has a background
permittivity that is different from air. In this case the incident specific intensity un-
dergoes multiple reflections between the parallel interfaces and suffers from extinction

due to absorption and scattering as it propagates inside the scattering layer. To solve
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the RT equation, we start by separating the specific intensity into a reduced incident
intensity and a diffuse or incoherent intensity. The radiative transfer equation can
be then written in terms of the diffuse specific intensity with the reduced incident in-
tensity acting as a source term. The radiative transfer equation of the diffuse specific
intensity is solved numerically using the discrete ordinate-eigen analysis technique
described earlier. Details of the mathematical formulation can be found in the paper
by Wen et al. [68].

The scattered specific intensity I°, which is the solution for the radiative transfer
equation, is related to the incident specific intensity through the modified Mueller
matrix M [60]

1

I’ = Toor MI (4.2)

where A is the illuminated area and 6; is the angle subtended between the direction
of propagation of the scattered field and the unit vector normal to the surface of the
plane parallel medium. Although M which characterizes scattering from the random
medium is not explicitly known, it can be determined by computing I* for a linearly
independent set of incident polarizations such as vertical, horizontal, 45° linear, and
left hand circular polarizations. The incident specific intensities that correspond to

these polarizations are

. . ..
1 0 : !
1 0 1 1 1 % 1 %
L= ) Ih = ) I45 = y e = (4 3)
0 0 1 0
0 0 0 1

In general,the columns of the modified Mueller matrix, M;, can be computed from
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the scattered specific intensities (I}, I}, Ij;, and I, ) as follows:

1\=/Il = Acosh I}

M, = Acost I

1
M; = A cosh) (I;5—§[IZ+I;])
1

M, = A cosh) <17hc LT 1;]) (4.4)
In backscatter, the modified Mueller matrix for an azimuthally symmetric random

medium is given by

-

<lswl* > <lsh* >

<lshol® > <Isial* >

M = )

0 0

0 0
0 0
0 0

¢ o0 (4.5)
< Re(s,,sm) + [sh|* > = < Im(sy,sp) >
<Im(s,shh) > < Re(sy,shh) — Ishl” >

where s} (1,7 = v,h) are the backscattering amplitudes [44]. Although the backscat-
tering amplitudes cannot be computed using the radiative transfer equation, they are
introduced here for the mathematical convenience they provide. The elements of the
forth column of the modified Mueller matrix can be expressed in terms of the elements
of the three other columns: M3y = —My3 and Myy = M3z — 2M5,. In this case, only
the first three columns of the modified Mueller matrix need to be computed. Hence,

the radiative transfer equation is solved numerically for only I?, I3, and I5..
Y v Th 45



84

Solid material
(host)

Air voids
(inclusions)

Figure 4.3: A Scattering layer overlying a homogeneous half space dielectric
with planar interfaces.

The elements of covariance matrix W', which will be used in the next section, can

be expressed in terms of the elements of the modified Mueller matrix following few

simple algabraic manipulations. An explicit expression for the covariance matrix in

terms of the scattering amplitudes is

2
< st |* >
W' = 0

! I%
< SppSpy >

0
< |shol? >

0

g

! Ix
< SuvShh >
0

< |spal? >

(4.6)
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4.5.2 Incoherent Averaging of Scattered Power from an Un-

dulating Surface

The incoherent averaging process starts by computing first the local angle of in-
cidence 8, for every point on the surface using the relation cosf; = —/Ac,'.fz. Here, /%,-
defines the direction of propagation of the incident field in the global frame of ref-
erence (see Fig. 4.4) and 7 represents the unit vector normal to the random surface
and is given by

n = cos @y sinb; & + sin¢,; sinf;y + cosb; 2 (4.7)

with angles 8; and ¢; as defined in Fig. 4.4. In effect, 0; is a function of the angles
of incidence, §; and @;, and the angles, 6; and ¢, , defining the surface normal.

The technique described in the previous section is then used to compute the
covariance matrix W' for a plane parallel random medium for a particular local angle
of incidence §;. By performing simple coordinate tranformations on Vt”, another
matrix W is obtained for the same plane parallel random medium. However, W is
defined in this case in the global frame of reference. The average covariance matrix
W, of the thin undulating layer is computed by averaging W over all the points on
the surface, each weighed by the probability density function of the angles defining

the surface normal, namely,

/2 27 = = ==xt
W, = /0 [ 01,00 T W T ds (4.8)

where pg, 4, (01, 6;) is the joint probability density function of the angles (0;, ¢;) derived

in Appendix A. Futhermore, the average covariance matrix W, can be expressed in
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terms of the averaged scattering amplitudes as follows:

< |88, [2 > 0 < 82 shr >
W, = 0 < st P> 0 (4.9)
< 8882 > 0 < st >
L J

The volume-scattering coefficients o}; (1,7 = vorh) can be obtained directly from
(4.9) by multiplying the appropriate elements with 47 /A.

[t should be noted that:

1. The elements of matrix W’ need to be computed for only a finite set of local
angles of incidence 6;. By fitting these elements to polynomials using the stan-
dard Least Square error procedure [38], matrix W, can be easily computed for

all combinations of #; and ¢;.

2. When 6; > 90° (for a shadowed point on the surface), the covariance matrix w

"1s set to zero.

In the remaining part of this section, the details of the coordinate transformations
incorporated in the averaging process, are described. We start by defining a new
column vector §' = [s,,,, s}, Shs]* Where s}; (3,7 = v, h) are the scattering amplitudes
of the plane parallel random medium evaluated in the local frame of reference. In

backscatter, the covariance matrix can be expressed in terms of vector S’
W =< §'§" > (4.10)

Vector S’ can be transformed to the global frame of reference through the coordinate
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transformation matrix, T,

wni
Il

el
w

(4.11)

Here S = [5y4, 5hy, Sha)¢, and sij (1,7 = v,h) are the scattering amplitudes of the
same plane parallel random medium evaluated in the global frame of reference. The

coordinate transformation matrix is given by

(D5.0's)? 2 (65.0",)(D5.h's) (95.h'5)?2
T = | (5,0)(0shs) (605)(hobty) + (90.hs)(hods) (Baohts)(Bshty) | (412)
(hs.v's)? 2 (hy.h')(hy.0'y) (hy.h',)?

where (85, h) and (v',, A',) are the unit polarization vectors of the field propagating
along direction ks and are defined in the global and local frames of reference respec-
tively. Note that in backscatter fc,- = lAcs (0, =m—0; and ¢, =7+ ¢;). Unit vectors

Vs, hs, ks, V', and R/ are given by

bk, = —[cos ¢, sinf, & + sin, sinb, § + cosb; 2]
ALY
z X ksl
v, = h, x lAv, (4.13)
h, = RexR (4.14)
ks x n
6’3 = I}s X h',

After few simple algabraic manipulations, the covariance matrix W =<§5t>
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Figure 4.4: Backscattering alignment (BSA) convention.

of the plane parallel random medium in the global frame of reference can be related

to W' through the following relation

w=TwT" (4.15)

=il

4.6 Application of the Proposed Model to Mea-

sured Soil Surfaces

Solution of the radiative transfer equatiohs requires knowledge of the void’s shapes,
sizes, volume fraction and relative dielectric constant, in addition to the relative
dielectric constants of both the background solid soil material and the wet soil half
space. In this chapter, we have assumed that the air voids are spherical in shape
with a relative dielectric constant €, = 1.0+ j0.0. The void-size distribution function
shown in Fig. 3.7a was used in the solution of the RT equations for surfaces S1 and
S2, and that corresponding to S3 shown in Fig. 3.7b was used for the third surface.

The relative dielectric constant of the background solid soil material was taken as
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€ss = 4.7, based on the empirical formula €,, = (1.01 + 0.44 p,,)* — 0.062 reported
in [14], where pss = 2.65 g/cm® is the measured solid soil density (which agrees well
with pss of sandy soils [62], [14]). The effective dielectric for the wet soil half space
was assumed to be €; = 7.0 + j4.0 at 35 GHz and € = 5.0 + j2.5 at 94 GHz. The
voids volume fractions given in Table 3.2 were calculated on the basis of the measured
bulk densities and solid soil density, v, =1 — py/pss -

The results of this approach for computing the volume backscattering contribution
oV are summarized ir. .he next section. By way of examining the relative importance
of volume scattering, however, we calculated 0¥ at 94 GHz for an upper layer contain-
ing air voids of uniform diameter, d,. The results are shown in Fig. 4.5 , which shows
oV as a function of d, for a thickness A = 3 c¢m, and as a function of  for a void diam-
eter d, = 0.1 mm. The responses to h (Fig. 4.5b) indicate that the thin surface layer
“appears” semi-infinite in depth once its actual depth h exceeds about 3 cm. The
variations of ¢V with d, displayed in Fig. 4.5a, which include both the Rayleigh and
Mie regions, reaches saturation levels of about -4 dB for o}, and -7 dB for o},. The
saturation level for o?, is certainly comparable with or greater than the values mea-
sured for the wet soil surfaces at the same incidence angle and frequency, and for o},
the saturation level is higher than all the wet-soil values of o}, displayed in Figs. 3.9,
3.14, and 3.15. Thus, the volume scattering contribution may indeed be a significant,
or even the dominant, contribution depending on the void-size distribution. The vol-
ume scattering coefficients plotted in Fig. 4.5a approach the saturation stage when
d, exceeds 0.5 mm, which corresponds to kr, = kd, /2 = de\/e—,//\o ~ 0.86, where A,
is the free space wavelength (), = 3.2 mm at 94 GHz) and ¢, = 3.1 is the effective
dielectric constant of the dry soil background. The soils investigated in this study

had void size distributions extending between 0.02 mm and about 0.4 mm, with the
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Figure 4.5: Computed sensitivity of o” to (a) particle diameter (for layer think-
ness h = 3 cm), and (b) scattering layer thickness (for particle
diameter d, = 0.1 mm). The computations were conducted at
94 GHz for an incidence angle § = 20° and void volume fraction
v, = 0.36.
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bulk of the voids having diameters smaller than 0.2 mm (see Fig. 3.7a).

4.6.1 Results

For the dry soil surfaces, the total backscattering coefficients of; (1, j = v or h)
were computed according to (3.1) by adding incoherently the volume scattering con-

tribution ¢?;, computed using the RT technique, to the surface scattering contribution

17?

S

o, calculated according to the empirical model described in the preceding chapter
(equations (3.2)-(3.7)). Good overall agreement is observed between the computed
values of of; and the measured radar responses for all surfaces at both frequencies, as
can be seen in Figures 4.6 through 4.8. In all cases, the thickness of the top dry soil
surface layer was taken as 3-cm.

It must be pointed out that at 35 GHz, of; is dominated by surface scattering.
with minimal contribution provided by volume scattering (o; is typically larger than
ol; by 10 dB). However, at 94 GHz the volume scattering component is comparable
to fhe surface scattering component for the co-polarized scattering coefficients, as

can be seen in Fig. 4.9a, and for cross-polarization, o}, is dominated by the volume

contribution (Fig. 4.9b).

4.6.2 Soil Moisture Dependence

The cases considered in this chapter fall into two groups: (a) wet soils, which may
be defined as those with moisture contents exceeding 0.12 g/cm? in the top 1-cm layer,
and (b) dry soils, for which m, < 0.04 g/cm® in the top 1-cm layer (see Table 3.2).
For the wet-soil group, our analysis shows that the volume-scattering contribution
may be ignored and that the total backscatter is dominated by the surface-scattering

component. The volume-scattering contribution is very small because at millimeter
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Figure 4.6: Comparison between the measured backscattering coefficient and
the total backscattering coefficient o° predicted by the sum of
surface and volume scattering contributions for surface S1 at (a)

35 GHz and (b) 94 GHz.
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wavelengths the penetration depth is on the order of a few millimeters when m, >
0.1 g/cm?.

For the dry-soils group, the volume-scattering contribution was computed by as-
suming the top surface layer to be 3 cm in thickness and totally dry. Although the
measured values of m, were very small, they were not exactly zero over the top 3-cm
layer (Table 2). Nevertheless, they were assumed to be zero to simplify the calcu-
lation. A possible approach for modeling the dependence on moisture content is to
treat the soil as a perfectly dry top surface layer of thickness h, overlying a very wet
half-space, just as we have done in calculating the volume-scattering contributions
for the dry soils examined in this study, but to also relate h to the average dielectric
constant or moisture content of the upper 3-cm layer. Thus, A would vary from 3-cm

for m, = 0 down to zero thickness for m, = 0.15 g/cm?

. These figures apply to
94 GHz and are at best a rough estimate based on radiative-transfer model calcula-
tions. Had we applied this approach to the calculations performed in connection with
the dry soils, A would have been reduced from 3-cm down to about 2-cm, resulting
in a change of about 1-2 dB in ¢¥. Thus, verification of the applicability of such a

model will have to await until further experimental investigations are performed for

soils with moisture contents in the 0.04 to 0.15 g/cm?® range.

4.7 Conclusions

Analysis of the measured radar data indicates that in general both surface and
volume scattering contributions are present at MMW frequencies. For wet soil con-
ditions, surface scattering is the dominant contribution and it can be modeled using

a set of semi-empirical expressions. The volume contribution is important when the
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soil surface is dry, particularly at 94 GHz. Using radiative transfer theory, the volume
scattering contribution from a thin dry-soil layer was calculated by treating the soil
medium as comprised of air voids imbedded in a soil background. This approach,
which led to good agreement with the experimental observations, indicates that at
94 GHz, for example, the surface and volume scattering components are of compara-
ble magnitude for o2, and o}, but for the cross-polarized oy, volume scattering is

the dominant contribution.
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CHAPTER V

A NOVEL BISTATIC SCATTERING MATRIX
MEASUREMENT TECHNIQUE USING A

MONOSTATIC RADAR

As mentioned previously (in chapter I), existing theoretical models for random
media may be categorized into two groups: (1) continuous media perturbation ap-
proaches such as the Born approximation, and (2) discrete scatterer approaches such
as radiative transfer. In either of these two approaches, characterization of the prop-
agation constant of the mean-field in the random medium is of great importance.
The effective propagation constant, denoted here by K = K, + jK;, specifies how
the mean-field propagates in a scattering medium. Here, K, and K; are respectively
proportional to the phase velocity and the attenuation rate caused by absorption
and scattering in the medium. For dense random media, analytical models, such as
the effective field approximation (EFA) and the quasicrystalline approximation with
coherent potential (QCA-CP), are widely used to compute the effective propagation
constant. For example, the QCA-CP model which includes in its derivation the ef-

fects of multiple scattering between particles has been used in the developement of

the dense medium radiative transfer theory (DMRT) [53]. In turn, the DMRT has

98
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been used to model-the backscattering response from layered dense random media
68],(69]. The applicability of these models depends in part on the range of validity
of the QCA-CP model which has not been determined yet. Accurate measurements
of the effective propagation constant (K') can be used for establishing the range of
validity of the existing analytical models. Direct measurements can also be used in
the developement of empirical models for the effective propagation constant. The aim
of the second half of this thesis is to answer experimentally the following question:
What is the range of validity of the existing analytical models, such as EFA and
QCA-CP?

The standard approach to measure the effective propagation constant of dense
random media is the free space transmission measurement technique (FSTM) [27],
[17]. In this technique, a slab of the dense random medium is positioned between two
antennas and the transmission coefficient is measured coherently. Then by moving
the slab and measuring the transmission cqeﬂicient repeatedly, the mean transmission
coefficient is computed from which the effective propagation constant of the random
medium is calculated. The accuracy of the FSTM technique is limited primarily by
three practical difficulties: (a) difficulty in maintaining phase coherency between the
receiver and transmitter, (b) difficulty in generating many independent samples of the
random medium, and (c) difficulty in minimizing the effects of systematic errors since
K is computed from a single measured parameter, namely, the mean transmission
coefficients.

Motivated by the need for an experimental procedure for the measurement of
the effective propagation constant of dense random media, a new technique that
overcomes the difficulties associated with the FSTM technique is considered. The new

proposed technique will be refered to as: the coherent bistatic scattering measurement
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technique (CBSM). In the CBSM technique, the bistatic scattering from a cluster of
constituent particles of a random medium confined in a spherical volume will be
measured. The coherent and incoherent components of the scattered fields can be
separated using many independent measurements of the cluster for given incident
and bistatic directions. Independent radar measurements are obtained by rotating
the cluster of particles around its axis of symmetry, perpendicular to the direction
of propagation, and/or randomizing the particles within the confining volume. The
coherent scattered wave (mean field) is proportional to the effective dielectric constant
(or equivalently the effective propagation constant) of the medium and the incoherent
scattered power is proportional to the phase function of the random medium.

In the proposed CBSM technique, bistatic scattering measurements of a point
target (the cluster of constituent particles) is required. Traditionally, polarimetric
bistatic radar cross section (RCS) measurements of point targets have been conducted
using two disjoint dual-polarized antennas [10]. In this method, the transmitter and
the target are often kept fixed and the receiver is moved on the surface of a sphere,
having the target at its center, in order to measure the bistatic RCS at different
bistatic angles (see Fig. 5.1). The difficulties associated with the traditional bistatic
measurement technique can be categorized into three groups: (1) a complicated exper-
imental setup is required, in which the scattered wave from the supporting structure
must be minimized, (2) phase coherence between the transmitter and the receiver
must be maintained as the microwave cables move with the receiving antenna, and
(3) a complicated calibration procedure is needed to keep track of the orientation of
the antennas with respect to the target.

To circumvent the problems associated with the traditional bistatic measurement

technique, a new technique is proposed in which bistatic measurements are performed
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on a point target using a wideband, polarimetric, monostatic radar in conjunction
with a rotatable ground plane positioned behind the target. The new bistatic mea-
surement technique can be applied to a wide range of problems. For example, it can
be used as part of the CBSM technique to measure the effective propagation con-
stant of dense random media. It can also be used to measure the bistatic scattering
characteristics of individual scatterers of a tenuous random medium where the radia-
ti--e transfer theory has been widely used. These bistatic scattering characteristics

essential for estimating the extinction and phase function of the random media
directly. In addition, the new bistatic measurement technique can be used to verify
the proposed theoretical models for individual scatterers [49]-[43].

The coherent bistatic scattering measurement technique (CBSM) will be described
in detail in chapter VI. In addition, it will be shown that the effective propagation
constant of dense random media can be measured very accurately over a wide range of
volume fractions. In chapter VII, measurements of the effective propagation constant
of dense random media of different volume fractions, particle sizes, and permittivities
will be presented and compared with existing analytical models.

The following section will be devoted to describing the new approach for measur-
ing the bistatic scattering matrix of point targets. In this technique, a polarimetric
monostatic radar in conjunction with a ground plane are used for the bistatic mea-
surements and it is shown that the new technique circumvents the drawbacks of the
traditional measurement technique. In Section 5.2, a system distortion model and
an appropriate calibration procedure are developed for the proposed measurement
setup. In order to fully characterize the bistatic scattering matrix, that is, to re-
solve the cross-polarized components, radar measurements must be repeated after

loading the ground plane with an anisotropic layer. Two methods for designing the
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Figure 5.1: Experimental setup for the traditional bistatic scattering matrix
measurement technique.

anisotropic dielectric layer required for loading the ground plane are discussed in
Section 5.3. In Section 5.4, experimental data for canonical targets are presented to

verify the accuracy of the new bistatic scattering matrix measurement technique.

5.1 Bistatic Scattering Measurement Technique

In this technique, a wideband, polarimetric, monostatic radar in conjunction with
a rotatable perfectly conducting plane are used to measure the bistatic scattering ma-
trix of a target. The simplified bistatic RCS measurement setup is shown in Fig 5.2.
In this measurement configuration, the bistatic measurement can be performed in
one scattering plane at a time. To change the scattering plane, the orientation of
the target with respect to the radar system can be adjusted appropriately. In this
method, the role of the ground plane is to excite the image wave (see Fig. 5.3) whose

interactions with the target and its image produce the desired bistatic term. Primar-
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Figure 5.2: Experimental setup for the new bistatic scattering matrix measure-
ment technique.

ily, there are three major scattering components that contribute to the signal received
by the radar. However, their responses arrive at the antenna at different times. The
first component is due to the direct backscatter from the target which arrives at the
antenna with a delay time of 27;/c, where ¢ is the speed of light (see Fig. 5.3a).
The second component, which in turn is comprised of two sub-compoﬁents, is due
to the bistatic scattering from the target being illuminated by the image wave (the
long-dotted line in Fig. 5.3b) and its complementary which is the bistatic scatter-
ing from the image target illuminated by the image wave (the short-dotted line in
Fig. 5.3b). These two sub-components arrive at the antenna with a delay time of
(ry 4+ ry 4+ 73)/ c. The third component is due to the reflected backscattering of the
image wave from the target through the ground plane which arrives at the antenna
with a delay time of 2(r; 4+ r3)/c. There are many higher order scattering terms
which are the result of multiple scattering between the target and its image. The con-

tribution of these terms to the overall backscattered signal is negligible if the distance
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between the target and the ground plane, d;, is much larger than the wavelength
[37]. Experimentally, the effect of these terms can be reduced even further by placing
an absorber on the ground plane between the target and its image, as illustrated
in Fig. 5.3c. By choosing the distance between the target and the ground plane to
be larger than the radar resolution, all components of the measured backscattered
signal can be resolved and collected separately. For example, the magnitude of the
total backscattered response from a sphere, measured in an anechoic chamber using a
Network Analyzer-based monostatic radar, is plotted as a function of time and shown
in Fig. 5.4a. In order to eliminate the undesired backscatter from the edges of the
ground plane, the backscatter response of the ground plane alone (without the target)
was subtracted coherently from the backscatter response of the ground plane and the
target. The first peak in Fig. 5.4a corresponds to the direct backscatter component
(DB) while the second peak corresponds to the total bistatic component (BIS) (the
two complementary sub-components) and the third peak corresponds to the indirect
backscatter component (IB). Since the three components of the backscatter response
arrive at the antenna at different times, the BIS component can be isolated from the
others using the range gating capability of the Network Analyzer. The gated bistatic
response is shown in Fig. 5.4b.

The second component of the scattered signal contains the desired bistatic scat-
tering response of the target. By defining a set of orthogonal directions (9, h) n a
plane perpendicular to the direction of propagation, the bistatic scattered signal Ey,
can be related to the incident signal through the total measured bistatic scattering
matrix, i.e.

E, = S, Ei (5.1)

where k, is the free space propagation constant and Sy, is the total measured bistatic
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Figure 5.3: Scattering configuration in the presence of a ground plane, the new
experimental setup illustrating (a) top view of the measurement
setup, (b) the interactions of the image waves with the target and
its image, and (c) application of a radar absorber to minimize the
effect of multiple scattering between the target and its image.
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scattering matrix. The total bistatic scattering matrix is a function of the de-
sired scattering matrices of the two complementary sub-components, §(\IJ1, ¥,) and
§(\IJQ, W), and the reflectivity matrix of the ground plane (I=‘) as shown in Fig. 5.5.
[n the most general case, corresponding to an anisotropic surface, Tisa2x2ma
trix whose entries are the reflection coefficients of the ground plane. Since the two
sub-components (bistatic terms) arrive at the same time, they cannot be resolved

in the time domain and the target’s bistatic scattering matrices §(\111, ¥,) and

L

(U3, W;) cannot be uniquely determined. The reciprocity theorem mandates that

= = =T
Uy, Uy) = ST Uy, ¥y) and I' =T . Thus, the total measured bistatic scatterin
g

0]

matrix given by

(T 5(01, Wa)+ [T (01, ¥;)]7) (5:2)

is symmetric. This poses a difficulty in characterizing the desired bistatic scattering
matrix S in that there are only three independent equations for the four unknown
elements of the bistatic scattering matrix S. To resolve this ambiguity, an additional
measurement is needed in which the target’s orientation and position remain the
same while the reflective property of the ground plane is changed. This is achieved
by placing an anisotropic lossless layer over the perfectly conducting plane.

In summary, the measurement procedure involves three steps starting with posi-
tioning the point target in front of the ground plane at an appropriate distance. Then
the ground plane is rotated to the desired bistatic angle and the second component
of the backscattered signal is measured. Finally, the second step is repeated for the

same bistatic angles after attaching the anisotropic slab to the ground plane.
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Figure 5.4: A time domain response of a target in the presence of a ground
plane (a) the three major components of the measured signal, (b)
the gated bistatic component.
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5.2 Calibration Technique

Characterization of measurement accuracy and precision are the critical elements
of any meaningful measurement procedure. Imperfections in the radar system compo-
nents, such as antenna polarization contamination (coupling between the orthogonal
polarization ports of the antenna) and channel imbalances (variations in magnitude
and phase of the system transfer function for different ports of the receiver) can lead
to serious errors in the measured scattering matrix. The role of a calibration proce-
dure is then to remove the systematic errors from the measured target response. In
this section, the imperfections of the monostatic radar sifstem is modelled mathemat-
ically and a procedure for determining the system distortion parameters is outlined.
In this technique, a metallic sphere is used as the external calibration target and the

radar distortions are obtained using a mathematical model.

5.2.1 System Distortion Model

Depending on the distance between the target and the radar, the direction of the
transmitted and received rays with respect to the antenna’s boresight can be quite
different. The complementary bistatic terms propagate along directions defined by
angles 6 and 6, as shown in Fig. 5.3a. These rays experience different transfer
functions since the systematic errors vary over the mainlobe of the antenna. Thus, it
is important to: first, characterize the systematic errors of the radar antenna over its
mainlobe and construct a system distortion model; and second, remove these errors
from the measured bistatic response using an appropriate calibration procedure. The
proposed system distortion model is an extension of the model developed for single-

antenna polarimetric radars [40]. In this paper [40], it is shown that the measured
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Figure 5.5: The two complementary sub-components of the bistatic response.
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scattering matrix (M) of a point target in terms of the actual scattering matrix and

the radar distortions can be obtained from

where 0, is an angle representing the position of the target with respect to the antenna.
In (5.3), f{, ’i‘, (=3, and D are 2 x 2 matrices representing the radar distortions and

are given by

= R, 0 - T, 0
R-: s T:
0 Rh 0 Th
= l ¢ = dl 0
C= y D:
c 1 0 dg

| Here the parameters (T, T}) and (R,, R;) are the channel imbalances due to the
active components in the transmit and receive branches of the radar respectively,
c(f,) is the antenna cross-talk factor, and (d;(6,),d2(8,)) are the channel imbalances
of the antenna system. It should be noted that the channel imbalance parameters
are independent of the target angle §,. As mentioned before, the measured bistatic
scattering matrix is comprised of two complementary components that arrive at the
radar simultaneously and thus are inseparable in the time domain. These components
are designated by the solid and dotted lines in Fig. 5.3a. The system distortion model
described in (5.3) is modified to include the possible differences in the radar distortion

parameters for the transmit and receive rays. Thus, the distortion model for the
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second component of the measured radar response is given by:

e—ik(?‘l +77 +T3)

M= $ (pr, ) T (6, D(6)

o
,—/H
wl
=
5

[\~
N
@]l
—~
>
[ ]
Nl

+D(6,) C(6:) T S(v1,v2) C(6;) D(6,) } T (5.4)

The first term in the bracket corresponds to the bistatic scattering of the target
when illuminated by the image wave and the second term corresponds to the bistatic
scattering of the image target when illuminated by the image wave. It should be
noted that in the derivation of equation (5.4), the reciprocity theorem has been used
to express the bistatic scattering matrix of the target when illuminated by the image
wave §(z[)2, Y1) in terms of the scattering matrix of the target when illuminated by
the incident wave §(¢1,w2) (§(1,/12,z/)1) = §T(1j)1,1/)2)). Once the radar distortion
parameters are determined, the elements of the bistatic scattering matrix S can be
computed by inverting equation (5.4). These unknown terms can be determined
by measuring the polarimetric response of a metallic sphere in the backscattering
configuration over the entire mainlobe of the antenna (no ground plane). By applying
the single target calibration technique (STCT) [40], the cross-talk factors and channel
imbalances can be determined from the polarimetric sphere measurements (1\=/Is) and

are given by

8

(6) = +— (1 - vI—a), g = Mok Mo

\/a’- mfm mih
) 00 — . tkrs mzv/so
RUT dl( ) Ts € \——1+62(00)
_ ikrs miy/So
Rh Th d2(00) = Tsé€ \ 1 +62(90)
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In (5.5), the superscript s refers to the measured sphere response, s, is the theoretical
backscattering amplitude of the metallic sphere, and 6, can be either 6; or 6,. It
should be noted that the antenna’s distortion parameters (c, d, and d;) are time
invariant and therefore the elaborate backscatter measurement of the metallic sphere
over the entire mainlobe of the antenna must be performed only once. However,
elements of R and T which are influenced by the active elements of the radar must
be characterized often. This can be done by measuring a sphere positioned at the
boresight of the antenna noting that the elements of R and T are independent of
the target angle f,. Once the distortion parameters at boresight are determined,
the expressions given by (5.5) must be modified by the following factors in order to

update the distortion parameters over the entire mainlobe

(B, T, (0°) _WRT4e) R J [ET

TR A) T (VR T 40) \R T/ VR T,

where the primed parameters (R, R}, T., T;) correspond to the last sphere measure-
ment at boresight.

For the sake of completeness, expressions for ry, 3, r3, 81, 03, and ¥ in terms of
the physical setup parameters r, 3, d;, and ¢, as defined in Fig. 5.3a, are provided

below

r o= \/d?+r2—2dt r cosf,
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0, = sin™! [ é Sinﬁ} )

T
(ro+r3) = \/(233)2 +r2—4 27 cos(m— 0y~ )

o 2 )

1 = —fy+sin”! [ " _fr3) sin(m — 6, — ¢) }

Q — -1 ] . _ _

sin [ ) sin(m — 6, ¢)J

N T

27 cosf

U = 7—-(6,+6;)-29

where z = d; cos(¢—3). Refering to Fig. 5.3, r is the distance between the antenna
and the axis of rotation of the ground plane, ¢ denotes the rotation angle of the
ground plane, and 8 and d; specify the target’s position relative to the ground plane.
It is noted that the bistatic angle (¥) and the direction of propagation of the bistatic

response () can be computed in terms of the rotation angle of the ground plane (¢).

5.2.2 Calibration Procedure

Following simple algabraic manipulations, equation (5.4) can be cast into a matrix

equation of the following form

X =b (5.6)

]|

where b = [ myy, Man, Mon, Miy 1T, & = [ Suwy Shhy Suhy Sho 17, and A is a 4 x 4 matrix
whose elements are a function of the radar distortion parameters and the elements of
L. Having determined the elements of A from the external calibration, it seems, the
elements of the bistatic scattering matrix can be obtained by inverting (5.6). However,
the last two rows of (5.6) are linearly dependent and in effect only three linearly
independent equations are available. Therefore, one of the dependent equations in

(5.6) must be replaced by another independent equation acquired by repeating the
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experiment after loading the ground plane with an anisotropic dielectric layer. It
should be noted that the second bistatic measurement (with loaded ground plane) is
not necessary for targets that do not depolarize (S,; = Sk, = 0) such as spheres and
vertical and horizontal cylinders. In this case, the linear system of equations in (5.6)
reduces to two independent equations for the two unknowns (S,,, Sis). After some

algabraic manipulations, it can be shown that

¢ Fw= c(0h) c(02) znn
v [y (1 —c%(6:) c*(6;))
_ Zph— c(6h) c(02) 2o .
Shh Ty (L= (6:) 2(6,)) (5.7)
where
etk(ri+ra+rs) r (7‘2 +r3) :
T ORI a0 gy T T et Tl ell) S
e k(ri+r2+r3) (T‘ +7-3) .
Zpy = 5 Rh Th d2( 1) ( ) My = Fh Shh + Fv 0(01) 6(02) Sm, (.).8)

5.3 Design of an Anisotropic Surface

In order to acquire an additional independent measurement to resolve the ambi-
guity in the measurement of the cross-polarized components, use of an anisotropic
dielectric slab to modify the reflection matrix Tis required. Since the magnitude of
the second component of the received signal (the bistatic term) is proportional to the

reflection coeflicient, the magnitude of the reflection coefficient of the surface must
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Figure 5.6: Phases of the reflection coefficients for periodic corrugated dielectric
slab (a), and dielectric loaded periodic strips (b) as functions of the
incidence angle.
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be chosen as high as possible in order to retain the system sensitivity. Therefore,
an anisotropic surface with reflection coeflicients having magnitude of unity, similar
to those of the perfectly conducting plane, and phases that are very different from
those of the ground plane are of interest. Two types of surfaces are considered in this
paper to accomplish this task: (1) loading the ground plane by a periodic corrugated
dielectric slab, and (2) loading the ground plane by dielectric loaded periodic strips.
If lossless dielectric materials are used, the magnitude of the reflection coefficients

will be unity.

5.3.1 Periodic Corrugated Dielectric Slab

The proposed one-dimensional periodic surface is shown in Fig. 5.6a. It has
been demonstrated that a periodic corrugated dielectric layer can be simulated by
an anisotropic dielectric layer of equal thickness when the period is small compared
to the wavelength [41]. The tensor elements of the equivalent anisotropic layer are
given in terms of the permittivity (e), the period of surface corrugation (L), and the
width of the corrugation (d). In the low frequency regime, where L < 0.2), the tensor
elements are given by

€, = ez=1+(e—1)%
€

“ = =4 +dL (5.9)

The reflection coefficients of the stratified loaded ground plane can easily be com-
puted [41]. The higher order Bragg modes decay exponentially away from the surface
in the low frequency regime (L < 0.5)), thus the target must be placed far enough

from the surface to avoid coupling with the higher order Bragg modes. By appro-



Figure 5.7: Measured backscattered response from a sphere over the entire
mainlobe of the monstatic radar.
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priately choosing the permittivity of the dielectric, the width, period, and depth of
the corrugated layer, the desired phase-difference between the reflection coefficients
can be achieved. For example, the phases of the reflection coefficients as functions of
the incidence angle when € = 2.5, d = 0.1\, L = 0.2), ¢; = 0.1\, and ¢, = 0.1) at

9.5 GHz are shown in Fig. 5.6a.

5.3.2 Dielectric Loaded Periodic Strips

The surface with dielectric loaded periodic strips also behaves as an anisotropic
layer and is shown in Fig. 5.6b. In this structure, pérfectly conducting strips of
width w are periodically aligned over a dielectric substrate with permittivity e and
thickness d backed by a ground plane. The scattered plane waves can be computed

from

Es(av,y)z/w2 G'(z,2) - I(2) d’ (5.10)

—w/2
where J is the current distribution over a strip and G’ is the 2-D peribdic dyadic
Green’s function. The details of deriving G’ can be found in [42]. By enforcing the
boundary conditions on the surface of the strip, that is, §x (Ei + ET) = —yxE*  an
integral equation for the unknown current distribution can be obtained. The electric
field E refers to the incident plane wave and E" refers to the field reflected from
the stratified medium in the absence of the strips. The current can be computed by
solving the integral equation using the method of moments. Once the surface current

on the strip is determined, the scattered electric and magnetic fields, as well as the
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reflection coefficients for TE and TM polarizations can be computed from

ET + E?
' = : =, 'y =

H; + 7
E: '

Hz

z

(5.11)

where I'g and 'y are the reflection coefficients for TM and TE polarizations, respec-
tively. As before, when w < 0.5A only the zeroth order Bragg mode is propagating.
The phases of 'y and 'y of the dielectric loaded periodic strips are shown in Fig. 5.6b

at 9.5 GHz whend = w = 0.1)Xand ¢ = 2.5.

5.4 Experimental Verification

To demonstrate the accuracy of the new bistatic measurement technique, the mea-
sured bistatic responses of three canonical targets (two metallic spheres with different
diameters and a tilted metallic cylinder), are compared with their theoretical bistatic
responses. A Network Analyzer-based, polarimetric, monostatic radar was used in
these measurements [51]. The radar operates at 9.5 GHz with a 1.5 GHz bandwidth
which corresponds to a spatial resolution of about 10 cm. A perfectly conducting
circular disc with diameter 1.2 m was used as the ground plane. The ground plane
was positioned inside an anechoic chambe¥ at a distance r = 15 m away from the
radar system and the target was located at 3 = 45° and d; = 0.6 m with respect
to the ground plane as depicted in Figs. 5.2 and 5.3. Precise rotation of the ground
plane was facilitated using a computer-controlled stepper motor. To characterize the
system distortion parameters of the radar system, polarimetric measurements of a
metallic sphere (without a ground plane) were conducted over the entire main lobe of
the antenna system. The measured backscatter response of the sphere for the X-band

radar is shown in Fig. 5.7 in an azimuth-over-elevation coordinate system (7, §).
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Figure 5.8: The magnitude (a) and phase-difference (b) of the bistatic scatter-
ing matrix elements of the 8.1 cm metallic sphere.
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Two metallic spheres with diameters 4.45 cm and 8.1 cm were measured and com-
pared with their theoretical responses over a number of bistatic angles including the
backscatter direction in order to demonstrate the capability of the calibration tech-
nique in removing the systematic errors. As mentioned before, the spurious responses
of the finite ground plane were removed by subtracting the backscatter response of the
ground plane in the absence of the target from that of the combination of the target
and the ground plane. Figures 5.8 and 5.9 show the measured and computed bistatic
rad: ross sections (o, and o) and the co-polarized phase difference (¢pr-oy) of the
4.45 cm and 8.1 cm spheres respectively. The measured bistatic radar cross sections
and phase differences, for both spheres, were, respectively, within £0.5 dB and +5°
of the theoretical computations.

Spheres are nondepolarizing targets and in their measurments the anisotropic di-
electric layer was not used. Next, the bistatic scattering matrix of a tilted metallic
cylinder was measured to demonstrate the accuracy and feasibility of measuring the
cross-polarized components of the scattering matrix. The length and diameter of the
metallic cylinder were 15 cm and 1.5 cm respectively. The cylinder was positioned
in a plane perpendicular to the direction of propagation of the incident wave with a
tilt angle of 30° with respect to the vertical direction. A set of measurements were
conducted first with the perfectly conducting plane as the reflecting surface. Then,
the measurements were repeated after overlaying the dielectric loaded periodic strips
slab (DLPS) on the ground plane. The DLPS slab was oriented so that its strips
were aligned along the vertical direction. The phases of the reflection coefficients of
the DLPS slab were computed from the method of moments solution and used in the
calibration procedure. The method of moments phase calculation for the reflection

coefficients was verified experimentally by measuring the phase difference between the
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reflection coefficients of the vertical and horizontal polarizations at normal incidence.
The bistatic scattering matrix of the tilted cylinder was computed numerically using
the method of moments specialized for scatterers with axial symmetry (body of rev-
olution) [28]. As shown in Fig. 5.10, excellent agreement was obtained between the
theoretically computed and the measured bistatic cross sections (oyy, ohh, Ohy, and

o.) and the co-polarized phase difference (¢nr—vv) of the tilted cylinder.

5.5 Conclusions

A convenient technique for the bistatic scattering measurement of point targets
was developed. In this technique, a monostatic radar with fine spatial resolution in
conjunction with a rotatable ground plane were used to measure the bistatic scatter-
ing matrix. The new technique circumvents some limiting aspects of the traditional
measurement technique. For example, since the transmitter, receiver, and the tar-
get are stationary, retaining the phase-coherence is no longer a problem (no moving
cables) and a very accurate calibration can be performed. Also, construction of a
complicated bistatic measurement setup for supporting and positioning the transmit
and receive antennas with respect to the target is avoided. It was shown that for de-
polarizing targets, an independent radar measurement after loading the ground plane
with a dielectric slab is required for determining the cross-polarized components of
the bistatic scattering matrix. The accuracy of the new method was demonstrated
by comparing the measured bistatic scattering matrices of cylinders and spheres with

the theoretical ones over a wide range of scattering angles.
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CHAPTER VI

A NEW TECHNIQUE FOR MEASUREMENT
OF EF"ECTIVE PROPAGATION CONSTANT

OF RANDOM MEDIA

We have developed in the previous chapter a new technique for measuring accu-
rately the bistatic scattering matrix of a point target using a wide band, polarimetric,
monostatic radar in conjunction with a rotatable ground plane positioned behind the
point target.

In this chapter, our objective is to develop an accurate and convenient method to
measure the effective propagation constant of a random media, thereby establishing a
benchmark that can be used for characterization of the validity region of the existing
analytical models. Besides the benchmarking purpose, the measurement technique
may be used for the developement of empirical models for the effective propagation

constant of random media of interest.

6.1 Introduction

The literature concerning experimental characterization of the effective propaga-

tion constant of random media is rather scarce. In general the measurement technique
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can be categorized into low- and high-frequency approaches. In low frequencies when
the particle dimensions are much smaller than the wavelength, standard dielectric
measurement techniques can be used to measure K [20]-[31] . At high frequencies,
the standard approach is the free space transmission measurement technique (FSTM)
[27]-[17]. In this technique, a slab of the dense random medium is positioned between
two antennas and the transmission coefficient is measured coherently (see Fig. 6.1).
By moving the slab and measuring the transmission coefficient repeatedly, the mean
transmission coefficient is computed from which the effective propagation constant
of the random medium is calculated. Calculation of the effective propagation con-
stant from the measured mean transmission coefficient is rather straightforward for
random media with low fractional volume (f < 0.10) where diffuse boundaries for
the slab can be assumed. However, at higher fractional volumes, the slab boundaries
can no longer be assumed diffusive and multiple reflections of the mean-field between
the slab boundaries must to be included in the analysis. Although the measurement
of the effective propagation constant using the FSTM technique is simple in princi-
ple, the accuracy of the measurement technique is limited by a number of practical
difficulties. One difficulty pertains to maintaining the phase coherency between the
receiver and transmitter during the measurement. Since in this configuration the
slab of the random media is positioned in the far field region of both transmitter and
receiver, phase coherency must be maintained using a long microwave cable. Hence,
any cable movement during measurements could result in loss of phase coherency.
Furthermore, a large slab is required in order to minimize the undesirable scattering
effects from the edges of a finite slab. This leads to difficulties in handling targets
with high volume fractions (weight constraints), and in generating many independent

samples of the random medium. Another drawback of the FSTM method stems from
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Figure 6.1: Simplified experimental setup using the free space transmission
measurement system.

the fact that the effective propagation constant must be computed from a single mea-
sured parameter of the medium, namely, the mean transmission coefficient. Hence,
the accuracy of the measurement of K is severely limited by the systematic errors.
The accuracy in the evaluation of K using this method decreases for dense random
media with significant extinction rate.

In this chapter we present the new a,ppfoach for the measurement of the effective
propagation constant of dense random media which circumvents most of the afore-
mentioned difficulties of the standard FSTM approach. In the following section, the
new measurement technique is described and practical issues such as measurement
accuracy and sensitivity analysis are discussed. In Section 6.3, the validity of the mea-
surement technique is demonstrated by performing experiments for random media for

which the effective propagation constant is known.
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6.2 Coherent Bistatic Scattering Measurement Tech-
nique (CBSM)

In this section, a new measurement technique for characterizing the effective
propagation constant of a dense random medium is presented. First, a cluster of
constituent particles of the random medium is confined in a rotationally symmetric
geometry such as a sphere or cylinder. Then the co-polarized bistatic scattering am-
plitudes, S,, and Sy, of the cluster are measured over many bistatic scattering angles
(6) in a single scattering plane, as shown in Fig. 6.2a. At each bistatic angle, the
radar measurements are performed over many independent realizations of the random
medium, from which the coherent and incoherent components of the scattered am-
plitudes are computed. Independent bistatic measurements for a given bistatic angle
can be realized by simply rotating the cluster of the random medium about its axis
of symmetry. To evaluate the effective propagation constant of the dense random
medium, the measured mean bistatic scattering amplitudes are fitted to the bistatic
scattering pattern of a homogeneous dielectric material having the same éeometrical
boundary. Towards this end, a constrained search routine, such as the FSQP opti-
mization routine [74], can be used to minimize the difference between the measured
and theoretical responses. With the real and imaginary parts of K acting as free

parameters, the following error function is minimized
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where the superscripts m and ¢ refer to the measured and theoretical responses, re-
spectively, N refers to the total number of bistatic angles measured, and M refers to
the total number of frequency points measured. Quantities s and ¢ refer to the mag-
nitude and phase of the co-polarized mean bistatic scattering amplitudes respectively.
The CBSM technique offers a number of advantages over the FSTM technique in that
measurements need only be performed on a small volume of the random medium and
that more than one measured parameter is used to characterize K. Basically, the
scattering properties of a cluster of the random medium can be accurately character-
ized in an anechoic chamber environment. Basically it is rather convenient to position
and orient a relatively small target (the cluster of the random medium) and therefore
it becomes possible to measure many independent samples of the random media inde-
pendent of their volume fractions. Moreover, since in characterization of the effective
propagation constant, bistatic measurements at many bistatic angles are used the
effect of systematic errors on the overall measurement accuracy is minimized.

[t should be noted here that phase-coherent polarimetric bistatic scattering mea-
surement is a difficult task, since in moving the receiving antenna the phase coherence
and the polarization reference coordinate may be perturbed. To avoid these problems,
the co-polarized bistatic scattering amplitudes of the cluster of constituent particles
are measured using the bistatic measurement technique described in Chapter V.

In principle, a cluster of particles confined in any geometry of arbitrary boundary
can be used so long as the bistatic scattering response of an equivalent homogeneous
dielectric material having the same boundary can be evaluated. The effective dielec-
tric constant (e.;; = € + je’) or the effective index of refraction (nes; = n' + jn”)
can be equivalently used for a random media with the effective propagation constant

K = K' + jK" where the equivalent relation is given by: K = konss, K = ko\/Ecsy-
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Figure 6.2: The proposed measurement setup,(a) a bistatic radar measuring a
cluster of a random medium, and (b) a monostatic radar in conjunc-
tion with a rotatable ground plane measuring the bistatic response
of a cluster of a random medium.
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The measured mean bistatic scattering response of the cluster is a function of the
equivalent dielectric constant of the dense random medium and the shape and size
of the enclosing volume. In this thesis, a spherical boundary is used since an exact
solution (Mie solution) for the bistatic scattered fields of a homogeneous dielectric
sphere of arbitrary size can easily be computed [60]-[3]. In addition, the symmetry in
the spherical geometry eliminates errors due to target misalignment, and allows for
collecting independent samples simply by rotating the spherical enclosure.

In summary, the measurement procedure involves three steps starting with posi-
tioning a cluster of constituent particles of a random medium confined in a spher-
ical volume in front of the ground plane at an appropriate distance. Then, the
ground plane is rotated to the desired bistatic angle and the bistatic component of
the backscattered signal is gated and measured. Then, the coherent and incoherent
components of the scattered fields are separated using many independent measure-
ments of the cluster for given incident and bistatic directions. These independent
radar measurements are obtained by rotating the cluster of particles around its axis

of symmetry and/or randomizing the particles within the spherical enclosure.

6.2.1 Remarks on the Size of Spherical Enclosure

As it was mentioned before, measuring the scattering properties of the random
medium can be conducted much easier when a sample of the random medium is con-
fined into a relatively small spherical geometry. However, for accurate measurements
of K, the size of the enclosing sphere must be chosen so that the confined cluster of
parti s preserves the scattering statistics of the infinite random medium. There are
a number of conflicting criteria that need be considered in choosing the size of the en-

closure. For example, the cluster must include many particles of the random medium
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so that the effect of multiple scattering between particles is preserved. Furthermore,
the cluster must be larger than many field correlation distances in the random medium
so that the statistics of the scattered field is preserved. Based on numerical simu-
lations of bistatic scattering from 2-D random media, Sarabandi and Siqueira [48]
found that a cluster size as small as one wavelength is enough to obtain the correct
estimate of the effective propagation constant when particle sizes are on the order of
A/10. On the other hand, a cluster of many wavelengths in size would have a mean
bistatic response that would vary rapidly as a function of the bistatic scattering angle
(multiple nulls in the pattern). Hence, the measured bistatic response from a large
cluster is prone to errors in the rotation angle of the ground plane. Furthermore,
Sarabandi and Siqueira [48], found that in the backscattering direction, the standard
deviation of the magnitude of the scattered field increased with increasing the size of
the cluster. In this case, a large number of independent measurements of the cluster

1s needed for accurate estimation of the mean backscatter field.

6.2.2 Sensitivity Analysis

Scattering from a homogeneous dielectric sphere is a function of two parameters,
namely, the index of refraction (n = n’ + jﬁ" ) and the normalized radius r/),, where
r is the radius of the sphere and A, is the wavelength in free space. In what follows,
the sensitivity of the bistatic scattered field of a homogeneous sphere to these two
parameters is studied. This sensitivity analysis reveals the accuracy with which the
effective index of refraction of random media can be measured.

As mentioned, one of the influential parameters in the bistatic response of a di-
electric sphere is the radius normalized to wavelength. As an example, Fig. 6.3a

shows the bistatic responses of two spheres with /A, = 1 and r/), = 2, and an
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Figure 6.3: Computed bistatic scattering response of (a) two spheres with
r/A, = 1 and 7/X, = 2 as function of bistatic scattering angle,
and (b) a dielectric sphere as function of r/A,. n = 1.4 +70.0 was
used in these computations.
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index of refraction of'n = 1.4 4+ j0.0 (a typical value for dry snow). It is shown that
the overall scattering amplitudes and the number of nulls in the scattering pattern
increase with increasing r/X,. This sensitivity to normalized radius suggests that if
the bistatic scattering measurements were to be conducted for spheres with different
radii, a much larger set of independent data would be available for the inversion of
the index of refraction. Instead of varying the radius, the wavelength can be varied
as long as the index of refraction remains constant. This is usually the case when a
small bandwidth around the center frequency is used (Af/f, < 10%). Figure 6.3b
shows the sensitivity of the bistatic radar cross section of homogeneous spheres with
n = 1.4+ j0.0 as a function of /X, over a 15% bandwidth. This can be particularly
useful in cases where the size of the spherical enclosure is on the order of many wave-
lengths and the bistatic response can be measured accurately at a limited number
of bistatic angles close to forward scattering direction. In this investigation the fre-
quency response of the bistatic scattering cross section of clusters of random media
are measured and used in the inversion algorithm.

For most practical cases of interest, the imaginary part of K, which is proportional
to the extinction in the random media, is much smaller than the real part. Hence,
it is important to determine whether the measurement technique is accurate enough
to detect small variations in the imaginary part of the effective index of refraction of
the medium. In order to examine the sensitivity of the bistatic scattering radar cross
section of a homogeneous sphere (o;;(n’,n”, 8)) to variations in the imaginary part of
the index of refraction, let us define the normalized differential bistatic radar cross
section by

1 doi(n',n",0)
oi(n',n".6) on” ’

v:(0) =

1=v or h (6.2)
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The normalized differential bistatic radar cross section of two dielectric spheres with
n' = 14 and r/A, = 1.23 and r/\, = 1.3 are shown in Fig. 6.4a and 6.4b as a
function of n” respectively. Figures 6.4a and 6.4b indicate that the bistatic scattering
cross sections are sensitive to slight changes in n” especially when n” is small. It
is also shown that the sensitivity to n” depends on the normalized radius and the
bistatic scattering angle. Therefore, a combination of bistatic scattering response
in both frequency and scattering angle should drastically enhance the accuracy in

measurement of n”.

6.3 Verification of the New Technique

In this section, the validity and accuracy of the proposed method in measuring the
effective propagation constant of random media is examined by conducting numerical
simulations and experiments in an anechoic chamber. For all measurements reported
in this chapter, the same experimental setup described in section 5.4 was used.

To examine the accuracy in the measurement of the effective propagation constant
of random media using the proposed method, a random medium with low fractional
volume is considered. It is well known that the effective field approximation (EFA)
method can accurately predict the effective propagation constant of random media
in the limiting case of low volume fractions [27]. Since at low particle densities,
the effect of multiple scattering between particles on the overall scattered field is
negligible, a simple Monte Carlo simulation based on single scattering properties of
the particles confined within the finite volume can be performed to demonstrate the
feasibility of extracting the effective index of refraction from the mean bistatic pattern

of the cluster of particles. In this thesis, a random medium with fractional volume
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Figure 6.5: Mean bistatic scattering cross sections of the spherical cluster of
the test medium (1% volume fraction) derived from the numerical
simulation.

1% comprised of metallic spheres with diameter 6.35 mm was chosen as a test case.
The metallic spheres (scatterers) were confined within a 7.62 cm spherical boundary
(~ 2 at 9.5 GHz). In such spherical enclosure, on average, only sixteen spheres can
be enclosed for achieving 1% fractional volume. The positions of the scatterers inside
the spherical enclosure were determined using a random number generator with a
uniform distribution. The effective propagation constant of the test medium under

the effective field approximation can be computed from [27]:

]1/2

KEFA = k'2 + 4m Mo va(0i7¢i;0ia¢i) (63)

where k is the wavenumber in the background medium, n, is the number density of
particles in the medium, and Sy, (6:, ¢s; 0, #:) is the 90 polarized scattering amplitude
of a sphere in the forward scattering direction. The effective propagation constant of
the test medium under the effective field approximation is reported in Table 6.3.

First let us compare the results based on the Monte Carlo simulation with the EFA
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Figure 6.6: Comparison between the measured mean bistatic scattering radar
cross section of a styrofoam sphere (7.62 cm in diameter) and the
calculated bistatic scattering radar cross section of a homogeneous

sphere with €5, = 1.0397 + 70.0198.

results. The bistatic scattered field from a spherical cluster of the test medium was
computed from coherent addition of scattering from individual particles within the
cluster. Overall, the bistatic scattered fields from 1000 independent realizations of the
“spherical cluster of the test medium were computed in order to evaluate the desired
statistics of the bistatic response. Figure 6.5 shows the mean bistatic scattering
radar cross section of the spherical cluster derived from the coherent component of
the bistatic scattered fields. Existence of deep nulls in the bistatic pattern whose
locations are a function of the size of the spherical enclosure indicate the existence of
an equivalent index of refraction for the medium. Using equation (6.1), the effective
propagation constant of the test medium is calculated from the numerically generated
bistatic response and is reported in Table 6.3. It is shown that the result based on
the Monte Carlo simulation is in a very good agreement with EFA.
With the confidence on the feasibility of the procedure we proceeded with the
experimental verification. For this purpose, ten different spherical clusters of the test

medium were constructed where styrofoam spheres with diameter 7.62 cm were used
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as hosts for the metallic spheres. The positions of the metallic spheres inside the
styrofoam spheres were determined using the random number generator described
before. In backscatter, the response from a styrofoam sphere is expected to be un-
detectable at X-band and that is the reason for using styrofoam pedestals as target
supports. However, around the forward scattering direction, the bistatic response of
styrofoam objects is significant and perhaps comparable to that of a sparse random
medium. In fact the effective propagation constant of the test medium as predicted
by EFA is smaller than that of a typical styrofoam. Thus, the effect of styrofoam scat-
tering must be removed from the measured bistatic response of the spheres embedded
in the styrofoam sphere. The mean bistatic scattering response from a pure styro-
foam sphere identical to those used as hosts for the metallic spheres was measured
using the proposed CBSM technique and is shown in Fig. 6.6. The measured effective
propagation constant of styrofoam was found to be Ky, = (1.0197 + 5 0.0097) £,
which corresponds to €y, = 1.0397 + 7 0.0198. Then, bistatic measurements were
conducted on each of the ten spherical clusters (styrofoam + metallic spheres). Addi-
tional independent measurements were obtained by rotating each spherical cluster 10
times. Overall, 100 independent measurements were collected at each bistatic angle.
The measured average incoherent power of the bistatic scattered field is shown in
Fig. 6.7 and compared with those obtained from the numerical simulation. Then,
the bistatic scattered fields of the styrofoam sphere were subtracted coherently from
the mean bistatic scattered fields of the sphere embedded styrofoam sphere (sty-
rofoam + metallic spheres). The remainder represents the mean bistatic scattered
fields of the test medium (metallic spheres). These quantities were then used in equa-
tion (6.1) to evaluate the effective propagation constant Kpeqsr of the test medium.

The measured effective propagation constant of the test medium is reported in Ta-
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Kgra/k, || 1.0098 + ;0.0033
Knum [k, || 1.0099 + 70.0028
Keasr /Ko | 1.0099 + 70.003

Table 6.1: Summary of the effective propagation constant of the random
medium of 1% volume fraction derived from measurements, numer-
ical simulations, and the EFA approximation.

ble 6.3 and shows a very good agreement with the effective propagation constant
estimated by EFA. The bistatic scattered responses of the styrofoam sphere and the
sphere-embedded styrofoam sphere and the subtracted bistatic response along with
the best Mie solution fit are shown in Fig. 6.8 as function of the bistatic scattering

angle.

6.4 Conclusions

A new technique for measuring the effective propagation constant of dense random
media is presented. The proposed method is not restricted by the physical properties
of the random medium such as particle size, shape and density. In this technique, the
mean bistatic scattered fields of a cluster of random medium, confined in a known
geometrical boundary, are measured using a monostatic radar and a rotatable ground
plane. Then the measured mean bistatic scattered fields are fitted to the bistatic
scattered fields of a homogeneous lossy material with the same geometrical boundary.
The accuracy of the new technique in measuring the effective propagation constant of
a dense random medium was verified both experimentally and numerically in the low
volume fraction limiting case. The sensitivity analyses of the proposed measurement

technique show a strong dependence of the measured quantities on slight variations in
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Figure 6.7: Comparison between the measured and simulated average incoher-
ent bistatic radar cross section of the test medium.

the imaginary part of K. It is also shown that using this technique, the permittivity

of low dielectric materials such as styrofoam can be measured very accurately.
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CHAPTER VII

EXPERIMENTAL STUDY OF THE EFFECTIVE
PROPAGATION CONSTANT OF DENSE

RANDOM MEDIA

In the previous chapter, a new technique (CBSM) for the measurement of the
effective propagation constant (K') of dense random media was developed. In addition,
the validity of the new technique was demonstrated by performing experiments for
random media for which the effective propagation constant is known. The CBSM
technique is an accurate technique for measuring K of dense random media over a
wide range of volume fractions.

The only reported experimental investigation aimed at determining the region of
validity of exiting analytical models, such as EFA and QCA, was conducted by Mandt
et al. [27]. In this investigation, the FSTM method was used to measure K of dense
random media (f < 0.1) and the measured extinction coefficient was compared with
those predicted by EFA and QCA. At these volume fractions, the analytical models
were in good agreement with the measured extinctions. This is also confirmed by
the results which will be reported in this chapter. However, due to the limitations

inherent in the FSTM technique, it was difficult to measure the effective propagation

143
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constant of dense media with higher volume fractions.

In this chapter, an experimental study of the effective propagation constant of
dense random media aimed at establishing the region of validity of existing theoretical
models is performed using the CBSM technique. In the following section, a brief
introduction of the theoretical models to be used in this investigation is carried out.
In Section 7.2, measurements of dense random media of different volume fractions are

presented and compared with existing analytical models.

7.1 Theoretical Models For Computing K

There are a number of analytical models for the calculation of effective propa-
gation constant in random media. Among these, the most widely used models are:
the Polder-Van Santen mixing formula, the effective field approximation (EFA), the

quasicrystalline approximation (QCA), and the quasicrystalline approximation with

coherent potential (QCA-CP) .

7.1.1 Polder-Van Santen Mixing Formula

The Polder-Van Santen mixing formula is a low frequency approximation [62]
where the effect of scattering in the calculation of propagation loss is ignored. In the
case of a two-phase mixture consisting of spherical inclusions (¢;) imbedded in a host
medium (e, ), the following expression can be used to compute the effective dielectric

constant (e.rs) of a random medium

(ei — en)

€eff = €n+ 3 f ey (& T )
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where f is the fractional volume of the inclusions.

7.1.2 Effective Field Approximation

In the effective field approximation, the scattering particles of a random medium
are assumed to be independent in position. This assumption is validy for random
media with sparse concentration of scatterers (f < 0.01) that are uniformly dis-
tributed in space. In this case, single scattering is the primary scattering mechanism
influencing wave propagation in random media.

For a sparse concentration of spherical scatterers, the effective propagation con-
stant under the effective field approximation can be computed using the following
equation [6], [27].

1/2

Kgra = [k2 + 4116S,(6;, ¢5; 05, ¢i)] (7.2)

where k is the wavenumber in the background medium, n, is the number density of
particles in the medium, and Sy, (6;, ¢:; 0, ¢;) is the 09 polarized scattering amplitude

from a sphere in the forward scattering direction.

7.1.3 Quasicrystalline Approximation (QCA)

In a dense random medium, the particles are no longer independent in position. In
this case, multiple scattering between particles is significant. At the expense of much
mathematical complexity, the QCA can be used for the estimation of the effective
propagation constant of nontenuous random media by including the effect of multiple
scattering between particles [52]. However, it should be noted that in the implementa-
tion of QCA only the correlation between two particles is permitted. Hence, positions

of the first and third particles in, for example, the triple multiple scattering process
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are assumed to be independent. The pair distribution function of the constituent
particles is a statistical property of the random medium which characterizes the cor-
relation between positions of any two particles. Accurate characterization of the pair
distribution function for a random medium can be as difficult as the characterization
of the effective propagation constant itself. The Percus-Yevick pair distribution func-
tion [52], originally developed for fluids is commonly used in application of QCA for
most dense random media. A recent numerical investigation [50] has demonstrated
that the pair distribution function of particles packed under the influence of gravita-
tional forces could be substantially different from the Percus-Yevick pair distribution
function, thereby adding an additional dimension of complexity in determining e.f¢
via QCA.

For small scatterers (ka << 1), a closed form expression for K of a dense random
medium consisting of a collection of spherical particles of fixed size has been derived

using QCA and Percus-Yevick pair distribution function [52].

3fkty

ka)dy (1-— f)*
KéCA=k2+1_fy g )y( f)

2
LT ey

and

€s — €

€s +2¢€

y:

Here, €, and ¢ are the permittivities of the scatterers and the background medium

respectively, and, a, is the radius of the spherical particles.
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7.1.4 Quasicrystalline Approximation with Coherent Poten-
tial (QCA-CP)

Under QCA, scattering from a particle is assumed to be dependent on the dielectric
contrast between the particle and the background medium. As the concentration of
particles in the medium increase, the medium surrounding a particle is a mixture
of the background medium and other particles. A modified version of QCA which
takes this into account is the quasicrystalline approximation with coherent potential
(QCA-CP). In this approximation, the scattering from a particle depends on the
dielectric contrast between the particle and the effective dielectric constant of the
random medium which is not known a priori.

For small scatterers (ka << 1), a closed form expression for Kgca-cp of a dense
random medium consisting of a collection of spherical particles of a given particle size
distribution has been derived in [11] and [56]. The effective propagation constant K
under QCA-CP, with the Percus-Yevick as the pair distribution function, can be cast

into the following form

A 3K? EL:
Kicacp = K +="=)_ fi(Kz)
QCA-CP D(Kzr) e (
2K3 L
X 1 ‘|’2 2 [asyl Kzr) + y'(l{zr)
{ 3D(Kzr) i ( ; J

x adn;8m’Hy(w = 0)]} (7.4)

where K, represents the zeroth order solution which satisfies the following non-linear

equation

K} =k + ELEN }%fzyz(Kzr) (7.5)
D(K.,) =
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and

L
D(K.) = 1- Z fiyi(Kzr)

K2 — 2

(K — 7
y](]\zr) 3K22T + (ka _ kZ) (’6)

Here, k;, f;, aj, and n; are the wavenumber, fractional volume, radius, and number
density of the jth particle size respectively. Hj(w = 0) is related to the Fourier
transform of the pair distribution function of two particles of species j and [ separated
by a distance r. The details of computing Hjj(w = 0) for the Percus-Yevick pair

distribution functions can be found in [11].

7.2 Experimental Results and Comparison with

Analytical Models

In this section, the effects of various electrical and physical properties of dense
random media on its effective propagation constant are investigated experimentally.
In general, the effective propagation constant of a random medium is influenced by
the size, shape, orientation distribution, vélume fraction, particle arrangement, and
permittivity of the constituent particles. The measurements reported here were con-
ducted with the following objectives in mind: (a) examination of the dependence
of K on the physical and electrical parameters, (b) characterization of the scatter-
ing mechanisms in random media as a function of volume fraction of particles, and
(c) generation of a data base to be used as a benchmark for further comparisons with
existing theoretical models.

These measurments were conducted using the same experimental setup used in
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Chapter VI to validate the CBSM technique.

7.2.1 Random Media with Spherical Particles of Fixed Size

In this section, random media with spherical particles of fixed size and dielectric
constant are considered. As a result, only the effects of the volume fraction, particle
arrangement, and the dielectric constant of the constituent particles on the effective
propagation constant are studied. Teflon spheres of diameter 6.35 mm (a/X, = 0.1 at
9.5 GHz) and Soda-Lime glass spheres of diameter 6.0 mm (a/A, = 0.095 at 9.5 GHz)
were used to construct random media over a wide range of volume fractions (10% to
60%). Permittivity of the Teflon and glass particles were characterized experimentally
by measuring the bistatic scattering response of solid Teflon and glass spheres. For
example, the measured bistatic response of a 16 mm glass sphere and the best fit
based on the Mie solution are shown in Fig. 7.1. The dielectric constants of glass and
Teflon were found to be €gus5 = 6.93 + 7 0.10 and €y = 2.10 + 7 0.001 respectively.
The large contrast between permittivity of the constituent particles are chosen to
demonstrate the effect of multiple scattering on the effective propagation constant.
In evaluation of K of constructed dense random media, the co-polarized responses
(VV and HH) of 100 independent spheric#l clusters of the medium were measured
at six bistatic scattering angles (10°, 20°, 30°, 40°, 50°, and 180°) and 18 frequency
points within 0.5 GHz bandwidth centered around 9.5 GHz.

Different methods were used to construct random media with different volume
fractions. To construct the 10% volume fraction, a styrofoam sphere was used as a host
for the scattering par-icles. In this case, similar to the case of 1% volume fraction the
location of particles were determined using the random number generator described in

Chapter VI. For higher volume fractions, a hollow styrofoam shell with spherical inner
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Figure 7.2: The technique used for constructing random media with different
volume fractions. Appropriate numbers of free and spaced particles
are poured into the hollow styrofoam shell.

and outer surfaces was used to hold the random cluster of the constituent particles.
The inner and outer diameters of the styrofoam shell were 7.62 cm (r/A, = 1.21 at
9.5 GHz) and 10.16 cm respectively. In order to achieve the desired volume fraction
(> 10%), a mixture of particles embedded into styrofoam disks (spaced particles)
and free particles was poured into the styrofoam shell as shown in Fig. 7.2. The
styrofoam disks were 1.0 cm in diameter and 0.6 cm in thickness. The average number
of free (N;) and spaced particles (IV,) required to fill the styrofoam shell are listed
in Table 7.2.1 for the five different volume fractions used in this experiment. The
number of spaced particles was chosen such that the spherical shell would be fully
packed with the mixture of free and spaced particles.

Independent realizations of the dense random medium were produced by rotat-

ing the cluster of particles in all directions in increments of 20°. In general, the
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volume fraction || 20% | 30% | 40% | 50% | 60%
N 170 | 431 | 697 | 962 | 1240
N, 240 | 183 | 123 | 64 0

Table 7.1: Average number of free and spaced glass particles required to fill the
styrofoam shell (r=3.81 c¢m) for different volume fractions.

incoherent component of the bistatic scattered field for any realization must be mu-
tually uncorrelated with that of other realizations. To examine whether independent
measurements can be realized by simply rotating the cluster, the cross correlation be-
tween the incoherent components of the bistatic field as a function of rotation angle
(realization number) must be computed. As an example, the normalized correlation
function of the bistatic scattered incoherent power of the 40% packed glass particles,
measured at 6 = 20°, is plotted in Fig. 7.3a. Figure 7.3a clearly shows that rotating
the cluster of particles in the prescribed manner produces an independent realization
of the random medium. It is well known ‘;hat the statistics of the magnitude of the
scattered field from a statistically homogeneous random medium can be described
by the Rayleigh probability density function, provided that the medium includes a
sufficient large number of independent scattering centers [44]. Figure 7.3b shows the
histogram of the magnitude of the incoherent component of the bistatic scattered field
of the 40% packed glass particles. In this figure, a Rayleigh probability distribution
function (pdf) with the same mean as the histogram is also shown. The Rayleigh
pdf agrees well with the histogram of the measured scattered field which implies that
the measured samples of dense media were large enough to include many independent
scattering centers. The incoherent bistatic RCS of the cluster is the second moment of

the bistatic scattered field which represents the fluctuations around the mean bistatic
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scattered field and can be used to determine the uncertainty in the evaluation of the
mean-field.

Search routines for the minimization of the nonlinear error function given by (6.1)
may arrive at an incorrect value for A’, unless certain physical constraints on values
of K are imposed. In particular, it is required that ni;, = K'/k, > 1 and n{;; =
K"k, > 0 which set the lower limits of the search routine. An appropriate selection of
the upper limit for n{;; is the index of refraction of the constituent particles. Another
important issue is an appropriate choice of the initial guess for the search routine.
As will be shown later the Polder-Van Santen mixing formula provides an accurate
estimate of the real part of the effective index of refraction of the random medium
regardless of the volume fraction. Therefore, the Polder-Van Santen mixing formula
is used to provide the initial guess in the search routine. Using the constrained search
algorithm, the effective index of refraction of the aforementioned random media were
accurately characterized. Figures 7.4a and 7.4b demonstrate the magnitude and phase
of the bistatic scattered field of the random medium constructed from glass spheres
with 40% volume fraction and a homogeneous sphere with n.sy = 1.6457 + 7 0.0704
obtained from the search routine. A similar result is shown in Fig. 7.5 where the
bistatic RCS of the random medium constructed from Teflon spheres with 10% volume
fraction and the equivalent homogeneous sphere with n.sy = 1.04736 + 7 0.00155 as
function of frequency for five bistatic angles are shown. These figures demonstrate
the accuracy of the search routine in obtaining the effective index of refraction of the
random media used in these experiments.

The measured effective index of refraction (n.s; = K/k,) for the various dense
random media considered here, are summarized in Figs 7.6 and 7.7. In both figures,

the measured n.;s are compared with theoretical predictions based on EFA, QCA-CP
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§ = 20°, as a function of the realization number, and (b) Histogram
of the magnitude of the measured incoherent bistatic scattered field
of the same random media.
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Figure 7.4: The measured mean bistatic radar cross section and the co-
polarized phase difference of 40% packed glass particles are com-
pared with the theoretical responses of a homogeneous sphere com-
puted at 9.5 GHz with n.sy = 1.6457 + 70.0704 derived from the
inversion algorithm.
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under the Percus-Yevick pair distribution function (QCA-CP-PY), and Polder-Van
Santen mixing formula as functions of the volume fraction. It is observed that for
both dielectric materials, the mixing formula can reasonably estimate the real part of
ness. None of the discussed models, (in particular QCA-CP-PY), were able to predict
correctly the imaginary part of n.ss for volume fractions above 10%. Comparing
Figs. 7.6b and 7.7b, it can be seen that the scattering losses in media constructed
from glass spheres is much higher than those of the media corstructed from Teflon
spheres. This is due to stronger scattered fields generated by - glass spheres with
higher permittivity contrast than the Teflon spheres.

As the volume fraction of a random medium increases, it is expected that the
internal fields of the scatterers within the random medium become correlated and
therefore the incoherent scattered field is reduced. Based on this argument, one may
deduce that the scattering loss predicted by the EFA is an upper limit, because EFA
assumes uncorrelated scattered fields which would maximize the incoherent scattered
power (i.e. maximizes scattering loss). However, as our experimental results indicate
(see Figs. 7.6b and 7.7b) this is not the case. At intermediate volume fractions
(15%-50%) the scattering loss in both glass and Teflon media is more than what is
predicted by the EFA. This phenomenon can be explained by examining the particle
arrangement at these intermediate volume fractions. In these cases, the probability
of finding two or more phase-correlated particles is rather high. These correlated
particles may be viewed as a larger particle whose scattered field is much higher than
the sum of the scattered fields from isolated particles which in turn produces higher

incoherent scattered power in the random media.
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ISandTypeH [ <a>]<a> /|

S1 0.65 | 0.20 0.0064
S2 0.69 | 0.42 0.0134
S3 0.61 | 0.59 0.0186

< a > = mean particle radius (mm).
Table 7.2: Summary of physical parameters of each sand type.

7.2.2 Random Media of Sand Particles of Different Sizes

In the previous section, the effective propagation constant of dense random media
with spherical particles of fixed size and dielectric constant were measured. In this
section, a preliminary investigation of the effects of particle size distribution on the
effective propagation constant is conducted. Three types of random media consist-
ing of sand particles of fixed dielectric constant (€5 = 3.78 + 70.0004) each with its
own particle size distribution, are measﬁred. The first random medium (S1) consists
of ellipsoidal particles (4/3 axial ratio) with sizes described by the particle size dis-
tribution shown in Fig. 7.8. On the other hand, the second random medium (52)
consists of spherical particles with sizes described by the particle size distribution
shown in Fig. 7.9. The third random medium (S3) consists of angular particles with
sizes described by the particle size distribution shown in Fig. 7.10. The experimental
procedure described before was used to méasure the effective index of refraction of
the three random media. The random cluster of sand particles was held in the same
hollow styrofoam shell with spherical inner and outer surfaces (see Fig. 7.2).

Full packing of the three random media was achieved at different volume fractions
due to differences in particles shapes and size distributions. The magnitudes of the
measured bistatic scattered fields of each random medium and the theoretically com-
puted bistatic scattered field of an equivalent homogeneous dielectric sphere with the

same effective index of refraction are shown in Fig. 7.8 through 7.10. The measured



159

effective index of refraction n.s; (K/k,) for the three dense random media along with
the theoretically predicted n.s; using EFA, QCA-CP under Percus-Yevick pair distri-
bution function, and Polder-Van Santen mixing formula are summarized in Table 7.3.
It is observed that for all three ramdom media, the mixing formula and QCA-CP can
reasonably estimate the real part of n.ss. Again, none of the discussed models and

in particular QCA-CP were able to predict correctly the imaginary part of n;.

Effective Index of Refraction
| Case | S1(f=065)]S2(f=0.69)]S3(f=0.61)]
P.V.S. Formula || (1.60, 6.5e-5) | (1.64, 7.0e-5) | (1.56, 6.0e-5)
EFA (1.39, 3.2e-5) | (1.41, 9.4e-5) | (1.37, 1.9e-4)
QCA-CP-PY | (1.62, 6.8e-5) | (1.65, T.4e-5) | (1.58, 7.5e-5)
Measured (1.65, 9.3e-3) | (1.67, 1.2e-3) | (1.59, 9.8¢-3)

Table 7.3: Summary of measured and theoretically predicted effective index of
refraction of the three random media of sand particles.

7.3 Conclusions

Measurements of the effective propagation constants of different dense random
media comprised of homogeneous spherical particles with different packing densities
are reported and compared with existing analytical models. It is shown that none of
the existing analytical models are able to predict the extinction accurately at volume
fractions beyond 10%. It is also shown that Polder-Van Santen mixing formula can

be used to predict the real part of K with reasonable accuracy.
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Figure 7.6: The effective index of refraction (a) real part, and (b) imaginary
part of random media constructed from Teflon particles as function
of volume fraction. The measured effective index of refraction is

compared with those computed using EFA, QCA-PY, and Polder-
Van Santen mixing formula.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

This thesis comprises six major contributions:

1. Development of a new and accurate calibration technique for coherent-on-receive

polarimetric radars.

9. Polarimetric measurements of the backscattering response from bare soil sur-
faces at millimeter-wave frequencies. These measurements provided evidence of
significant volume scattering contribution to the total response from dry soil

surfaces.

3. Introduction of a two component hybrid model for predicting the backscatter
response from soils at millimeter waves. The first component is a semi-empirical
model to predict surface scattering and the second component is a radiative

transfer based-model to predict the volume scattering contribution.

4. Development of a novel bistatic measurement technique for measuring the bistatic
scattering matrix of point targets using a monostatic polarimetric radar and a

ground plane.

165
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5. Development of an accurate technique for measuring the effective propagation
constant of random media that is not restricted by the physical properties of

the random media.

6. Data base construction of measured effective propagation constants of dense
random media of different volume fractions and dielectric properties. The data

base can be used to examine the validity region of existing theoretical models.

In Chapter 2, a new technique for calibrating a millimeter-wave coherent-on-
receive polarimetric radar system was introduced. A coherent-on-receive polarimetric
radar is capable of measuring the Mueller matrix of p‘()int or distributed targets di-
rectly by transmitting at least four independent polarizations and measuring the
vertical and horizontal components of the backscatter signal simultaneously. The cal-
ibration technique requires the use of two calibration targets, a metallic sphere and
any depolarizing target (for which knowledge of its scattering matrix is not required)
to determine the system distortion parameters. In comparison, other technique re-
quires the use of a sphere and a wire grid (limited by polarization purity of the wide
grid). The validity of the new calibration technique was examined by measuring the
scattering matrices of spheres and cylindersl as test targets using a coherent-on-receive
radar operating at 34.5 GHz. Excellent agreement between the theoretical and the
measured scattering matrices for the test targets were obtained.

In Chapter 3, the millimeter-wave backscatter response of bare-soil was examined
by conducting experimental measurements at 35 and 94 GHz using a truck-mounted
polarimetric scatterometer. The experimental measurements were conducted for three
soil surfaces with different roughnesses under both dry and wet conditions. In this
chapter, only wet soil surfaces were examined. Because theoretical surface scattering

models were found incapable of predicting the measured backscatter, a semi-empirical
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surface scattering model was developed that relates the surface scattering component
of the total backscatter to the roughness parameter and the dielectric constant of
the soil surface. The proposed model was in good agreement with experimental
observations of wet soils at 60 GHz done by Yamasaki et al. [73].

In Chapter 4, the surface and volume scattering contributions to the measured
backscattering response from dry soil surfaces were considered. Evidence on the
presence of significant volume scattering from a dry soil surface at millimeter-wave
frequencies was presented. A model based on radiative transfer theory was introduced
to compute the volume scattering contribution from a thin dry soil layer with an un-
dulating surface. This approach, which led to good agreement with the experimental
observations, indicates that at 94 GHz the surface and volume scattering components
are of comparable magnitude for 02, and o}, but for the cross-polarized o, volume
scattering is the dominant contribution.

In Chapter 5, a novel technique for the bistatic scattering measurement of point
targets was developed. In this technique, a monostatic radar with fine spatial resolu-
tion in conjunction with a rotatable ground plane were used to measure the bistatic
scattering matrix. The new technique circumvents the difficulties associated with the
traditional measurement technique. It was shown that for depolarizing targets, an
independent radar measurement after loading the ground plane with a dielectric slab
is required for determining the cross-polarized components of the bistatic scattering
matrix. The accuracy of the new method was demonstrated by comparing the mea-
sured bistatic scattering matrices of cylinders and spheres with the theoretical ones
over a wide range of scattering angles.

In Chapter 6, a new technique for measuring the effective propagation constant of

dense random media was introduced. The proposed method is not restricted by the
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physical properties of the random medium such as particles size, shape and density.
In this technique, the mean bistatic scattered fields of a cluster of random medium,
confined in a known geometrical boundary, are measured using a monostatic radar
and a rotatable ground plane. Then the measured mean bistatic scattered fields are
fitted to the bistatic scattered fields of a homogeneous lossy material with the same
geometrical boundary. The accuracy of the new technique in measuring the effective
propagation constant of a dense random medium was verified both experimentally
and numerically in the low volume fraction limiting case. It was also shown that
using this technique, the permittivity of low dielectric materials such as styrofoam
can be measured very accurately.

In Chapter 7, an experimental study of the effective propagation constant of dense
random media aimed at establishing the region of validity of existing theoretical
models was performed using the measurement technique developed in Chapter 6.
Measurements of the effective propagation constants of different dense random media
comprised of homogeneous spherical particles with different packing densities were
compared with existing analytical models. It was shown that none of the existing
analytical models, including the QCA-CP model that was developed specifically for
dense media, were able to predict the extinction accurately at volume fractions beyond
10%. It was also shown that Polder-Van Santen mixing formula can be used to predict

the real part of the effective propagation constant with reasonable accuracy.

8.2 Recommendations for Future Work

The semi-empirical surface scattering model that is developed in this thesis is

based on a limited number of different soil surfaces. Since, the backscattering response
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from soil is a function of the surface height statistics and dielectric properties of the
soil medium, it would be recommended to conduct additional measurements over a
wide range of surface roughnesses, soil types, and wetnesses. In particular, further
measurements are needed for surfaces with short correlation lengths which were not
covered in the present model.

Effects of soil moisture, in the transition region between wet and dry soil conditions
(0 < my < 10%), on the relative contribution of both volume and surface scattering
to the backscattering response at millimeter-wave frequencies is another problem of
interest. We believe that this problem can be best solved by conducting a set of
indoor measurements in a controlled laboratory enviroment where soil moisture can
be controlled easily. In fact, with an indoor experimental setup, surface scattering
contribution can be easily minimized by “smoothing” the top soil layer so that only
volume scattering from within the soil layer is studied. Issues like the effects of
particle size distribution, layer depth, volume density, and soil moisture content can
all be probed closely for different types of soil.

The effective propagation constant was measured for dense random media consist-
ing of particles with size parameters ka < 1. We propose extending the experimental
study to dense random media consisting of particles with size parameters between 1
and 10. This can be particularly useful at millimeter-wave frequencies where snow
and soil particles are of appreciable size compared to wavelength. For these size pa-
rameters we expect significant scattering loss due to multiple scattering between the
particles.

We have established through our measurements of the effective propagation con-
stant of dense random media that existing theoretical models do not consistently

predict the amount of scattering loss in the medium. We have at this point three
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options to pursue: (a) develop new theoretical models that include higher orders
of multiple scattering, (b) develop an empirical model that can predict the effec-
tive propagation constant of dense random media based on extensive measurements
spanning the parameter space, and (c) develop computer programs that can simu-
late numerically the expected bistatic scattered fields from a cluster of particles of a
dense medium, from which the effective propagation constant can be computed using
a technique similar to the measurement technique introduced in Chapter 6.

The new measurement techniques described in Chapters 5 and 6 provide us with
powerful tools to measure not only the effective propagation constant of dense ran-
dom medium but also the incoherent bistatic scattered fields which are proportional
to the phase function. Recall that the extinction coefficient and phase function are
fundamental quantities in the radiative transfer equation which basically determine
the propagation and scattering behavior of a wave in a random medium. We have
shown experimentally that the existing theoretical models have failed in predicting
accurately the extinction in dense random media with fractional volumes beyond 10%.
We believe that the best approach to modeling scattering from dense random media

'is to develop a hybrid experimental/theoretical model. In the hybrid model, the ex-
perimentally determined extinction and ph@se function are used in the mathematical
machinary of the radiative transfer model. The concept of the hybrid model is a very
powerful one since it comprises the strengths of each approach while minimizing their

respective weaknesses.
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APPENDIX

DERIVATION OF THE JOINT PROBABILITY

DENSITY FUNCTION P, 4,(6:, ¢:)

For most natural surfaces, the surface height z(z,y) is a stationary Gaussian
random process with zero mean and variance s%, and an autocorrelation function
p. It can be shown that the surface slopes Z, and Z, along = and y respectively
are normal and independent random processes with their joint probability density

function given by

1
PZ;,Zy(ZIaZy) = 27rm2 e—(Zgz:+Z§)/2m2 (Al)

where the variance is given by m? = s?p”(0). In the case of a Gaussian surface

auto-correlation function, the rms slope is m = v/2 s/l , where [ is the correlation
length.

To derive the joint probability density function of the angles 6, and ¢, it is
essential to first relate these angles to the surface slopes Z, and Z,. This can be

accomplished by recognizing that the unit vector 7 representing the surface normal
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can be expressed in terms of the surface slopes as follows
n=(-2:t—-2,5y+ 2)D, (A.2)

with D, =1/,/1 4 Z2 + Z2. The surface slopes can be related to angles 6; and ¢; by

equation (4.7) to (A.2).

cos¢y sinby, = -7, D,
sing; siny = —-2,D,
cosf; = D,

and after simple algabraic manipulations, we obtain

cos ¢ sin 0,
Ly = ——ti—
cos b;

sin ¢; sin 6;

7, = (A.3)

cos 0,

It is straight forward to show that the joint probability density function for the angles

(0, ¢1) takes the following form

1 tanf
Py, 4.(0:,0¢) = ki

2mm? cos? 6,

ezp(— tan® §,/2m?) (A.4)

In addition, the marginal probability density function of 6; is obtained by integrating

over ¢y

1 tané
Po(0) = — —55

m?2 cos? 6,

exp(— tan® 0,/2m?) (A.5)
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and is plotted in Fig. A.1 for different values of m.
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