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1 Introduction

The need to terminate the computational domain used in various numerical methods such
as finite elements (FEM) has lead to the development of a number of absorbing boundary
conditions (ABCs) as well as various material absorbers [1-4]. Most of this work was done in
the context of a planar geometry and it is not immediately apparent how well the performance
observed for planar boundaries translates to more general curvilinear ones. Indeed, while it
has been shown that it is possible to obtain a perfectly reflectionless interface in the planar
case by using a particular anisotropic material [4], it remains to be seen if this is also true
for a curvilinear boundary. We therefore examine herein the performance of ABCs as well
as material absorbers applied to a circular cylindrical (from now on referred to simply as
cylindrical) boundary. The absorption of cylindrical wave functions is first examined at
the interface of the various truncation schemes, and expressions for the modal reflection
coefficients are obtained. The results are then used to solve for the scattered field due to a
perfect electrical conducting (pec) cylinder surrounded by a given absorbing termination.

2 Absorption of Cylindrical Wave Functions

Consider the surface p = p; where p, ¢, z are cylindrical polar coordinates, with the surface
illuminated by a field from within. The geometry is illustrated in Figure 1. The most general
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Figure 1: Geometry used to study absorption of cylindrical wave functions

such field can be written as

Z am H kop e=imé (1)

m=—0oo

originating from sources or a scattering body in p < p;, and we seek a termination at p = p;
that will completely absorb the field. The terminations considered are ABCs ranging from
first to fourth order, various material interfaces, as well as metal-backed versions of these
materials.

2.1 Absorbing Boundary Conditions

The simplest approach to mathematically terminate a computational domain is to impose
an ABC at p = p;. From the corresponding impedance boundary conditions derived using
Rytov’s [5] method, or, alternatively, from the asymptotic expansion of the Hankel function
for large argument (see [1], for example), the following ABCs are found:

LU =0 (2)
where the first order (I = 1) operator is
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A poorer version of this valid for large kop is
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The higher second order ABC has
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and to a lower order (annihilation wise) we have
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We note that (3),(4),(5) and (6) correspond respectively to zeroth, first, second and third

order Rytov approximations. For the fourth order ABC we have
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The extent to which these boundary conditions annihilate the field (1) has been exam-
ined by Senior et al [6]. It is found that for small m with kyp > 1 all of the conditions
are reasonably effective, with the amount of suppression increasing with the order of the
condition. As m approaches kop, however, the effectiveness decreases, and for m > kop there
is almost no suppression. This is consistent with the fact that the ABCs can be derived
from the asymptotic expansion of H{?(kop) for fixed m and large kop > m. Fortunately, for
most fields U the dominant contribution to the infinite series (1) is provided by the terms
with |m| < kop, and for [m| > kop the terms are relatively small. As evident from a Watson
transformation applied to the series, and in the context of the planar case, increasing m
corresponds to increasing the angle of incidence ¢ on the interface, with m ~ kop equivalent
to grazing incidence. Alternatively, one may observe that H{?(z) behaves as a traveling
wave for m < z and as an evanescent wave for mm > z. Such an interpretation supports
the fact that the ABCs absorb traveling waves well, but perform more poorly in the case of
evanescent waves, in agreement with results obtained for planar interfaces.

For the incident field

Ut = Hr(n?)(lcop)e_jmq5 (8)
the reflected field is .
U™ = R(m)H. (kop)e™™?, (9)

and in the case of the ABC given in (2), R(m) = Rj(m) with

Li{HP (kop)e=im®}
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Ri(m) = — (10)

For fixed m and large kop > m it can be shown that

Ri(m) = O{(kop) ™}, Ra(m) = O{(kop)™*}, Ra(m) = O{(kop)™°}, (11)

and in contrast to the planar case, none of the R;(0) is precisely zero. In Figure 2 the reflection
coefficients are plotted vs m for I = 1,2,4 and kop = 10 + kog)o/2, and the similarity to the
planar counterparts is evident. It must also be pointed out that the reflection coefficients
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Figure 2: Modal reflection coefficient for ABCs at z; = 10 + 7 (——) 1% order ABCs,
(- =) 2°d order ABCs and (--) 4 order ABCs. The poorer versions are also given.

for the higher order ABCs actually overshoot unity for m ~ 16. This effect is reminiscent
of Gibbs’ phenomenon and is accentuated with diminishing z;. The overshoot disappears
as 1 Increases as we tend towards the planar case, and |R(m)| becomes increasingly similar
(albeit on a different scale) to the planar reflection coefficient |R(¢)|.

2.2 Material Interfaces

We examine next the implementation of truncation schemes by using various material inter-
faces. Although an interface alone does not constitute a practical termination scheme, the
effectiveness of a metal-backed layer depends on our ability to eliminate (or at least minimize)
the interface reflection, and we therefore consider the interface problem first. To this end, it
is assumed that the region p > p; is occupied by a certain material extending out to infinity.
As it will ultimately be necessary to terminate the medium at (say) p = p, with, for example,
a pec, the media examined will all be lossy. The material types studied are homogeneous
1sotropic and anisotropic materials, as well as inhomogeneous anisotropic ones.

2.2.1 Homogeneous Isotropic Medium

Consider the case when the outer region p > p; is occupied by a homogeneous isotropic
dielectric with ¢, = y,. For the incident field (8), the reflection coefficient at the interface
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and & = kop1. From the asymptotic expansions of the Hankel functions for fixed m and large
T >m,
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which is small if z > 1 or if ¢, ~ 1. Note that if we let le;] — oo, then I' — —; and
the behavior of a lower first order ABC is recovered. This also holds for a planar interface
with a homogeneous isotropic medium. Figure 3 gives a plot of |[R(m)]| for various values
of ¢,. Given the previously made observations, it is not surprising to see that the behavior
is slightly poorer than the first order ABC given in (3). As is the case for the ABCs, good
absorption is observed when m < z, with total reflection occurring for the evanescent modes
when m > z.

2.2.2 Homogeneous Anisotropic Medium

For a planar interface, the uniaxial medium proposed by Sacks et al [4] produces a perfect
match for all angles of incidence, and represents a substantial improvement over an isotropic
medium. We now seek the analog for cylindrical coordinates and assume

& =T =app+bdd+cs3 (16)

where a, b, ¢ are constants. If the field in the medium is

H. = f(z)e™™ (17)
where z = kop and the ¢ dependence is chosen to match (8), then
_ 1% 0F jms
E¢ = b ame (18)
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The appropriate solution of this is
f(z) = HP(2be) (20)
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Figure 3: Modal reflection coefficient for homogeneous isotropic interface at z; = 10 + 7
(—)e=1-j1,(——)e=1-j2,and (--) &, = 1 - j3.

with ,
bf Ox le(})(x\/E) ‘

where p = p; and v = m,/b/a. To minimize R(m) for large z, choose 1/a = ¢ = b as in the
case of a planar surface. Then

12 (xh)
=0 (22)
with b complex to produce attenuation, and for large z > m we have
_ .] 1 —2j(x—mn/2—7/4) -1 2
Rim) =—L (1 - Z) e (1+0™). (23)

Compared with the isotropic material, some of the higher order terms in the braces are
eliminated, but overall the performance is no better. Nevertheless, as seen in Figure 4, the
homogeneous anisotropic material provides some improvement over the isotropic one up to
m =~ 13, where the reflection coefficient behaves quite peculiarly. This erratic behavior is
apparently attributable to phase reversals of the Hankel function of the second kind with
complex order and argument For a given complex order v, it can be shown that as |z|
increases the function H(?(z) behaves as an incoming wave for small |z], sw1tch1ng to the

typical outgoing wave when Re(v) ~ Re(z). For fixed z and varying m, H (b.L‘) is initially
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Figure 4: Modal reflection coefficient for a homogeneous anisotropic medium at z; = 10 + 7
(—)b=1-j,(——)b=1-j2,and (--)b=1-33

outgomg for low values of m but the sharp overshoots above unity indicate values of m
where H (bx) is incoming instead of outgoing. It will be shown in Section 3 that good
results can be obtained nevertheless, at least when considering scattering from a pec cylinder.
Comparing |R(m)| for the homogeneous isotropic and anisotropic materials as m — 0 reveals
that they behave almost identically. This parallels the case of normal incidence for the planar
interface since m = 0 is the order of the mode which is normally incident on the cylindrical
boundary. The relatively poor performance of the layer (compared to the planar case) is
disappointing, since a perfectly matched interface is not achieved. In an attempt to improve
the absorption, we next consider an inhomogeneous anisotropic material interface.

2.2.3 Inhomogeneous Anisotropic Medium

We now allow the quantities a,b and ¢ in (16) to be functions of z = kop. Consider the field
(17) with

() = Hop, (boy) (24)
where by is a constant and y = y(z). Since f(z) must satisfy
10 (ydf A .
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we have
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in agreement with (19) if
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For large |boy| > m
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and therefore ,
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we recover the reflection coefficient (23). Alternatively, if

(2) = 2 (1 + ﬂ) (37)
X
with
1 1
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giving
_ 1 1 —2j(z—mn/2-7/4) -1
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and as judged by the order in z, the performance is now that of the first order ABC (3).
More accurately still, if

(03] (0]
=z|(l+—+—= 41
o) =o(1+2+2) ()
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and the performance is now that of the poorer second order ABC (6).

Unfortunately, it is not possible to continue further in this manner. To reproduce the
best second order ABC (5), and thereby come close to a perfectly matched interface, would
require

aq (67) (6%}
=1+ 242423
(0= (14 3+ 54 5 g

YA 1/
ag—l—ﬁj{élm (1—bg>—2+bg(1+bo)}’ (46)

and this is unacceptable since it implies a medium whose properties depend on m. However,
it does show that the profile of the inhomogeneous medium can be specified to absorb to a
higher degree a particular mode by fixing m.

with
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Figure 5: Modal reflection coefficient for a inhomogeneous anisotropic medium at z; = 10 + 7
(—)b=1-j,(——)b=1-j2,and (---)b=1-j3.

Thus, it appears that the nearest counterpart in cylindrical coordinates to a planar
perfectly matched layer is the inhomogeneous anisotropic medium (16) with @, b and ¢ given

by (28) and (29) and
bbbl

where x = kop; and b is an arbitrary complex quantity. As indicated by the reflection coef-
ficient (44), the match is significantly superior to that provided by a homogeneous medium
for any finite x, but as z — co

c(z),b(z) — by, a(z)— 1/by

as in the planar case. The reflection coefficient |R(m)|, using (31) and (47), is plotted
as function of m for xy = 10 4 koAo/2 and a sequence of by in Figure 5. The increased
absorption for all modes having m < 13 is quite pronounced. Note that the oscillatory
behavior of |R(m)]| is still observed and is explained in the same manner as in the previous
section.

2.3 Absorbing Material Layers

Keeping in mind that our objective is to efficiently terminate a given computational domain,
we now examine the performance of metal-backed layered versions of the materials presented
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above. The geometry is basically as shown in Figure 1, except that we now have a pec located
at @ = x3 = kops = ko(p1 + 7). The result is a metal-backed layer of absorbing material of
thickness 7 located at z;. Naturally, the behavior as by varies differs from the case of the
infinite medium. For example, letting by — 1 leads to |R(m)| — 1 as the layer becomes more
transparent. An actual FEM implementation of such a geometry requires a finite value of
bo, and we select here values which are typical of those used in the planar case with similar
thicknesses. That is, for a thickness of 7 = 0.15)¢, we select an imaginary component in the
range of 2 to 3.

2.3.1 Homogeneous Isotropic Layer

It is a straightforward task to show that the reflection coefficient for a metal-backed layer of
homogeneous isotropic material with €, = y, = bg is

NmHT(,f) T1) — MmHT(nl) T
Rim) =~ 01) = Ml (1), (48)
NmHm (SEl)—MmHm (.’L‘l)
where
M, = H®(boxy)+THDY (boay), (49)
Nn = H'(boxy) + THY (boay), (50)
and oy
H®'(b
_7(7;),(—0:”2)' (51)
Hp, (bo:l?z)

We observe that as 9 — oo then I' — 0 and the solution for the infinite medium is
recovered. As for the infinite medium we also recover the behavior of the lower first order
ABC as |b] — oo. Figure 6 illustrates |R(m)| for various by when z; = 10 + kgAg/2 and
Ty = 21+ ko0.15Ag. The distinction between the infinite medium and the layer progressively
disappears as either 7 or by increases, in which case both layered and infinite versions of the
medium tend to behave as the first order ABC given in (3).

2.3.2 Homogeneous Anisotropic Layer

The analogous solution for a homogeneous anisotropic layer as presented in Section 2.2.2
may be written in the form (48) with

My, = HE) (boz1) + THS), (boy), (52)
! !
Ny = H) (bowr) + THS), (boay), (53)

and

_HZE(?) (bo.’Eg)

m

I'= K }
Hy . (bo2)
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Figure 6: Modal reflection coefficient for a homogeneous isotropic layer at z; = 10 + 7 with
7=015 : (—) bo=1—-7,(——)bo=1-3j2,and (---) bo = 1 — 53.

Figure 7 shows |R(m)| for various by. Apart from the previously encountered overshoots
in the 13 < m < 18 range, the behavior is seen to be somewhere between a first and a
second order ABC. We note that as for the material interface of the previous section, the
anisotropic layer behaves similarly to the isotropic one for lower orders m but provides
improved absorption as the order increases. This is particularly true for the higher values of
losses used.

2.3.3 Inhomogeneous Anisotropic Layer

In the case where the anisotropic layer is inhomogeneous with a profile as discussed in Section
2.2.3, the reflection coeflicient is (48) with

My = Hip) (boy(2:)) + TH{), (boy (1), (55)
iy / 1
No = 20 [ ) 4 DL b (a)] (5)
1
and 0
HY (b
= _ !Z(;T)nl( 0’7(1'2)) (57)
HY), (boy(22)

The material profile y(z) is given in (47). Figure 8 shows the behavior of | R(m)] as a function
of m. As for the material interfaces, an inhomogeneous anisotropic layer provides the best
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Figure 7: Modal reflection coefficient for a homogeneous anisotropic layer at p; with 7 = 0.15\:
(—)bo=1-7,(——)bp=1-732,and (---) b = 1 — 73.

performance overall, especially so when a higher loss is used. Consistent with the previous
results, the sharp fluctuations can still be observed.

3 Application: Scattering from a pec cylinder

To better illustrate the performance of the various mesh termination schemes, we now apply
them to the problem of scattering from a pec cylinder. The geometry is basically that of
Figure 1, save that the arbitrary central body is now specified as a pec circular cylinder of
radius ¢ = o < ; on which impinges an H polarized plane wave incident in the positive
¢ direction. The cylinder is surrounded by an ABC or a material absorber located at z; =
zo ++ d. The scattered field may be written as

o0

He= Y [anH® (kop) + b HY (op)] e (58)

m=—00

in the range py < p < py [7,6]. The coefficients Z)m take into account reflections from the
imperfect absorber. If the absorber is ideal then b,, vanishes and dm = Gy, recovering the
exact solution given by

am = =) . (59)
H ()
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Figure 8: Modal reflection coefficient for a inhomogeneous anisotropic layer at p; with 7 = 0.15):
(—**) bo = 1—j, (-—) b0:1—j2, and () bgz 1—j3

The various terminations are easily applied and it can be shown that

1
Am = U o (60)
14 R(m )Hﬁ%—;
and i
by, = R(m)ay,. (61)

We confine our attention to a cylinder of radius zo = 10 with an absorbing termination
located at a distance of d = Ag/2 such that z; = z¢ 4+ 7. Typical results for |am| are shown
in Figure 9 which compares the exact solution with the ones obtained using the ABCs. We
note that the smallest errors are obtained for lower values of m and that the highest error
occurs at m =~ 10. Such a presentation is of limited value and we focus instead on the
behavior of |b,,| as shown in Figures 10 and 11. This is more useful for comparison purposes
as |y, | ideally goes to zero. Figure 10 compares the performance of the various ABCs with
the material interfaces given in Section 2.2. As previously noted, the homogeneous isotropic
material follows the poorer first order ABC performance quite well. It is also seen that the
homogeneous anisotropic material is between a first and a second order ABC, its performance
improving with m relative to the 1°* order ABCs. Lastly, as expected, the inhomogeneous
anisotropic medium provides the best performance among the material interfaces, being
almost as good as a fourth order ABC. Figure 11 presents the same results for layers of
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Figure 9: |@n,| with 2o = 10 and d = Ao/2: (——) Exact, (— —) 1%* order ABC,
(- - -) 2 order ABC, and (- --) 4" order ABC.

various thickness, and similar conclusions can be reached. We note that the inhomogeneous
anisotropic layer with by =1 — j3 and 7 = 0.18), is comparable to a second order ABC.
The effect of these errors is illustrated in Figures 12 and 13, which show the magnitude
of the scattered field on the surface of the cylinder for various terminations. From Figure
12, which shows the performance of the ABCs, we observe that the relatively large errors
associated with the first order condition lead to spurious oscillations similar to those for an
enhanced creeping wave. With the second order condition the agreement is much better, and
better still for the fourth order. Figure 13 provides a similar picture for a selection of metal-
backed layers. It is interesting to note the similarity between the field for the homogeneous
isotropic layer and the poorer first order ABC. Note also the relatively good performance of
the inhomogeneous anisotropic layer. One way to quantify the accuracy is to compute the
percent RMS value ¢ of the magnitude of the relative error in the surface scattered field, viz.

U:pproa:(po ) ék)

S

1 —
exaci(poa ¢k)

2y 1/2
} (percent) (62)

1 M
5:100{MZ

k=1

where M is the number of angles at which the error is computed, U?_, , is the exact scattered

field and U7 ., is the scattered field computed using a given termination. For the data that
follow, the errors were computed at one degree increments in @, and to appreciate the
significance of ¢, Tables 1 and 2 give the errors computed using the ABCs and the various

materials absorbers, respectively.
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Figure 10: |b,| for interfaces with 2o = 10 and d = Ao/2 and by = 1 — j3: (——) ABCs,
(- - +) homogeneous isotropic, (— - —) homogeneous anisotropic, and (— —) inhomogeneous
anisotropic.
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Figure 11: |b,,| for layers with zo = 10, d = \/2 and by = 1—53: (——) ABCs, (-- -) homoge-
neous isotropic, (— - —) homogeneous anisotropic, and (— —) inhomogeneous anisotropic.
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Figure 12: |H}(zo)| using ABCs when zo = 10 and d = 0.5 (—) exact,
(— - —) 1** order ABC (poorer), (— —) 2" order ABC, and (---) 4™ order ABC.
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Figure 13: |H}(zo)| using layers when zo = 10, d = Xo/2, 7 = 0.18) and by = 1 — j3:

(——) exact, (—
(---) inhomogeneous anisotropic.
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ABC RMS Error
1% order (poorer) 31.80
1% order 31.21
229 order (poorer) 5.81
24 order 4.55
4' order (poorer) 2.26
4% order 1.30

Table 1: Percent RMS error of surface field for ABCs

Type ‘bozl—j|bo:1—j2|bozl—j3
Homogeneous Isotropic
Infinite 35.12 35.80 34.69
7= 0.15)¢ 52.60 37.92 35.05
7 =0.18X¢ 48.99 37.41 34.88
Homogeneous Anisotropic
Infinite 6.60 8.56 9.24
7 =10.15X 74.90 21.64 12.19
7 =0.18X 54.21 15.76 10.47
[nhomogeneous Anisotropic
Infinite 1.52 2.02 2.21
7 =0.15X 68.55 14.90 5.21
7=0.18X 47.94 9.00 3.48

Table 2: Percent RMS error of surface field for material absorbers

Theses errors are presented graphically in Figures 14 to 16 which compare the perfor-
mance of the terminations in the context of the scattering problem considered. We see,
for example, that a second order ABC is bested by an inhomogeneous anisotropic layer of
thickness 7 = 0.18\¢ and material parameter by = 1 — 53.
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Figure 14: Error é for ABCs and homogeneous isotropic material with by =1 — 33, o = 10
and d = 0.5g: (——) ABCs, () layer with 7 = 0.15)g, (— - —) layer with 7 = 0.18),,

and (— —) infinite medium.
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Figure 15: Error é for ABCs and homogeneous anisotropic material with by = 1 -3, 2o = 10
and d = 0.5X0: (——) ABGs, (---) layer with 7 = 0.15Ag, (— - —) layer with 7 = 0.18),,

and (— —) infinite medium.
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Figure 16: Error 6 for ABCs and inhomogeneous anisotropic material with by = 1 — 773,
zo = 10 and d = 0.5Ag: (——) ABCs, (---) layer with 7 = 0.15)g, (— - —) layer with

7 = 0.18)\g, and (— —) infinite medium.
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A Numerical Evaluation of Hankel Functions

The numerical evaluation of special functions is often a daunting task and the Hankel func-
tions H(V(z) and H?(z) prove to be no exception, especially when complex quantities are
involved. In the case where both the order v and the argument z are real, a number of com-
mercially available packages such as Matlab are well suited to evaluate these functions. There
are also numerous function libraries, most of them written in FORTRAN 77, which provide
routines for similar purposes. The number of adequate packages is, however, narrowed if the
argument is complex. One of the better libraries is the AMOS function library. It provides
a wide range of routines for Bessel related functions valid for real order and complex argu-
ments. The package is easily obtained through Netlib and the interested reader is referred
to [8] for additional details. We note here that simply computing the Hankel function from
the Bessel and the Neumann functions using, for example,

H®(z) = J,(2) — jN,(2) (63)
is often numerically inaccurate for some combinations of z and v and specialized routines to
compute Hankel functions such as those provided by the AMOS library become necessary.

When the Hankel functions have complex order and argument, there are no widely avail-
able routines, and we must instead resort to using the commercial package Mathematica.
Once again, as (63) may be numerically inaccurate for some combinations of v and z, and
since Mathematica does not provide specific definitions for the Hankel functions, we must
instead rely on Bessel functions of the third kind. The formulation used is thus

HY(z) = g—e’jg”KV(jz), (64)
JjT

2) 2] izog (s

H(z) = ?6]2 K,(—j2). (65)

The Wronskians were computed in order to verify the results. An interesting discussion about
the evaluation of Hankel function with complex order and argument is given by Paknys [9]
and his results were successfully duplicated.
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