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ABSTRACT

ELECTROMAGNETIC MODELING OF HIGH-SPEED HIGH-FREQUENCY

INTERCONNECTS

by

Jong-Gwan Yook

Chair: Linda P. B. Katehi

This dissertation develops in detail an approach to a three-dimensional full-wave elec-
tromagnetic field simulator, namely the finite element method (FEM), and applies
it to various high-speed high-frequency interconnects, ranging from a simple via hole
to an entire K/Ka-band MMIC phase shifter package. This approach has several
essential features: the utilization of tetrahedron-based edge basis functions render-
ing spurious-free solutions, a non-uniform structured mesh generator giving flexible
modeling capabilities, and implementation of artificial absorbing layers helping to
simulate open boundary problems. In addition, the FEM is fully parallelized on a
distributed memory machine (the IBM SP2). Two different parallelization strategies
are implemented, among which the task parallelization strategy provides linearly scal-
able performance improvement due to the minimal communication overhead among

the processors.



With all the above features. the parallelized FEM has been successfully applied
to the characterization of planar/non-planar high frequency interconnects. hermetic
transitions, and Kk /Ka-band MMIC packages. In particular, the undesirable internal
package resonances and energy leakages in the MMIC package are identified, and
furthermore, a few mechanisms for the suppression of the above phenomena are sug-
gested, and these are supported by rigorous numerical data. The lumped equivalent
circuits for the vertical via holes are utilized in the system level EM modeling to
provide appropriate inductances and capacitances. In this dissertation, characteriza-
tion of various high-frequency interconnects has been stressed as well as parametric
study.

Special attention is devoted to development of the system level electromagnetic
modeling for high-speed digital circuits and packages. This system level modeling
is achieved by combining the FEM and the well known circuit simulator, HSPICE.
It is based on the so-called tiling processor, which generates equivalent circuits for
PCBs and ICs, and then the circuit simulator is employed for time or frequency
domain characterizations. The hybrid approach implemented in this study renders
effective simulations in frequency as well as time domain for a given geometry. The
detailed derivation and applications of the system level electromagnetic modeling
tool are described. Its validity and accuracy are proved by modeling the INTEL P6
board and package containing eight layers of signal, power, and ground planes and

hundreds of signal traces.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Background

In the recent advancement of satellite, mobile and personal communication sys-
tems, military and commercial radar systems, remote sensing technologies, and nu-
merous other areas, high-speed high-frequency MMICs (monolithic microwave inte-
grated circuits) play an essential role in terms of small volume, low weight, low power
consumption, and low cost. In spite of these advantages of using MMICs, their de-
sign and optimization are not an easy task due to their complexity and sophisticated
functionalities, especially as the operating frequency increases up to the X-band. In
many cases, both the microwave and millimeter-wave subsystem with MMICs chips
and the overall system are very complex and interrelated, and the functions of the
circuits and interconnects are very sensitive to their mechanical and electrical en-
vironment. Depending on the system, there exist many different interconnection
structures, ranging from simple through lines to whole packages, which need to be
characterized and fully understood. Furthermore. the advent of high-speed comput-
ers and their subsidiary systems require high-speed operations reaching Gigabits per
second switching times and data transfer, and the resulting electromagnetic interfer-

ence and spurious radiation arising from the circuit discontinuities, in many cases,



cause serious malfunction of the system if not carefully designed.

For these reasons, the successful development of efficient design and analysis tools
has been an essential step toward advances in these technologies. For low frequency
lumped electric circuits and solid state devices, there are numerous circuit simula-
tors providing accurate time domain characterization of digital and analog circuits.
Similarly, design and optimization software is also available for canonical planar cir-
cuits in the microwave frequency region. Existing electric circuit simulators and
microwave circuit design tools, however, have their own limitations, including lack
of modeling capability for electromagnetic interactions between closely or sometimes
remotely placed circuit components. In the case of microwave and millimeter-wave
circuit design and characterization tools, in particular, when there are material inho-
mogeneities and three-dimensional structural discontinuities, the limitations of those
tools become apparent.

Recently, to overcome the shortcomings of the available simulation tools a number
of full-wave analysis methods have been developed based on the integral represen-
tation of Maxwell’s equations [1] or on partial differential operators 2, 3, 4]. The
method of moment (MoM) and mode matching techniques are examples of the for-
mer approach, while the finite element method (FEM) and the finite difference time
domain (FDTD) method are most frequently encountered as examples of the latter
approach.

The aforementioned full-wave techniques are considered to provide complete so-
lutions to complicated structures by solving Maxwell’s equations rigorously under
proper boundary conditions. The MoM, in general, provides accurate and efficient
solutions, and, thus, is recommended for use whenever applicable. In practical appli-

cations, however, the MoM is mainly employed for planar two-dimensional and fairly



simple three-dimensional circuit characterizations due to the difficulties in obtaining
relevant Green's functions for non-canonical geometries.

In contrast to the MoM, the partial differential equation (PDE) techniques, such
as the FEM and FDTD methods, do not require the knowledge of Green's functions
for a given problem, thus providing flexible modeling capability regardless of two
and three-dimensional discontinuities. In principle, the FEM and FDTD methods
are similar to the MoM in terms of using basis functions on discretization space and
performing weighting operations. In the FDTD method [5, 6], however, the pulse
functions are used in both the basis and weighting function spaces, and as a result
the FDTD method requires discretization of the whole three-dimensional space with
a dense sampling rate (at least 15 samples/),) due to its simple basis and weighting
functions. On the other hand, FEM employs similar discretization and weighting
operations to find weak solutions of Maxwell’s equations, except for the fact that
any arbitrary functions of higher order can be used as basis and weighting functions
[2, 3, 7]. With higher order basis and weighting functions, the same accuracy can
be achieved with less discretization, because of their modeling efficiency for highly
varying electromagnetic fields.

Another important feature of the FEM is the usage of non-uniform discretizations
for adaptive modeling of rapidly changing local electromagnetic field distributions,
thus allowing optimum mesh or sub-domain sizes. The meshing flexibility of the FEM
also contributes to reduced overall problem size and faster solution time, and poses
clear advantages over the regular FDTD method. In addition, recent developments
in high-speed parallel computing facilities including shared and distributed memory
machines have an impact on practical application and real time computation of

numerical techniques.



In view of the above discussion, the frequency domain finite element method is
developed and parallelized in this study for the characterization of arbitrary-shaped
three-dimensional high-speed, high-frequency interconnects. In the following, the

objectives of the study and the overview of this thesis will be described in detail.

1.2 Objectives

The goal of the present dissertation has been to develop and apply an accurate and
fast modeling method for the characterization of high-speed, high-frequency circuits
and interconnects, and to explore the three-dimensional finite element method using
two fundamental features, tetrahedral sub-domain elements and their corresponding
edge-based vector basis functions. While the conventional node-based finite element
method has been plagued by spurious modes and requires special treatment to obtain
physically correct solutions [8]-[12], the edge-based finite element method provides
spurious-free solutions by enforcing correct boundary conditions at the material in-
terface and sharp metal discontinuities [13]-[19], making the approach attractive.
As a result, the edge-based finite element solution scheme has been developed to
provide reliable solutions for very complicated structures without using any further
post-processing or sorting of the solution.

Furthermore, to overcome the difficulties in applying time-consuming full-wave
techniques to the real-time characterization of a given circuit or interconnect, the de-
velopment of efficient parallelization strategies is desirable. Therefore, the frequency
domain FEM has been parallelized on distributed memory parallel computers, such
as the IBM SP2, using the message passing paradigm [20]. The linear scalability of
the FEM code is rooted in the frequency independent nature of the method, which

requires minimal inter-processor communication overhead. The parallelized FEM



can provide near-real-time characterization of a given circuit and in turn opens the
door to the use of the full-wave techniques for circuit design, as well as tools for
optimization.

This developed tool has been applied for the characterization of various high-
speed high-frequency interconnects and the theoretical results have been compared
with measurements or other theoretical techniques whenever possible for validation.
Accurate characterizations of the aforementioned individual interconnects are of crit-
ical importance for successful design of more complicated circuits. Furthermore, to
tackle open boundary problems often encountered in real situations, design equations
for isotropic absorbing layers have also been sought, and their validity and effects
have been fully tested under several different circumstances.

The characterization of high-speed digital circuits and packages in the frequency
as well as the time domain is an important but difficult task, especially with full-wave
techniques, due to their heavy computational burdens. To overcome this limitation,
a hybrid approach has been explored in this study which combines the frequency
domain full-wave FEM and time domain circuit simulator, HSPICE [21]-[25]. In this
approach, various digital ICs and packages are discretized into a number of smaller
pieces, called tiles, and for each tile an equivalent circuit is derived using FEM and a
simpler microwave network theory. After all the equivalent circuit extraction proce-
dures have been completed, time domain circuit simulations are performed to model
the whole structure, and develop noise maps and time domain potential fluctuations
plots. The information obtained from the system level modeling is essential for di-
agnosis of simultaneous switching noise (SSN) and for effective suppression of the

noise arising from the high-speed digital circuits.



1.3 Overview

This thesis is focused on the development of a rigorous theoretical technique,
namely the FEM, for the characterization of three-dimensional high-speed high-
frequency interconnects and its applications to various geometries. Each geometry
has its own unique characteristics and complexities which have prevented them from
being fully characterized with conventional approach.

In Chapter 2, the theoretical framework of the three-dimensional finite element
method is briefly summarized. Unlike the conventional approach to FEM theory, the
Hilbert space representation of the method is adopted starting from the weak form
of the wave equations. Since appropriate boundary conditions should be specified
to obtain a unique solution of the wave equations, the most fundamental boundary
and interface conditions often encountered in the practical problems are described.
Furthermore, in view of the importance of using the edge basis functions, as de-
scribed in the previous section, for obtaining spurious-free solutions, the rationale
of using the Whitney edge basis functions is fully discussed. In addition, excita-
tion mechanisms in the FEM system and customized tetrahedral mesh generation
schemes are presented. For the simulation of unbounded problems which are in many
cases unavoidable, isotropic lossy materials are utilized to simulate the open bound-
ary conditions. The last part of this chapter contains the theoretical background of
the idea of incorporating passive lumped elements into the FEM framework. Even
though an extensive study of this method is not presented in this dissertation, a
preliminary study shows its effectiveness and accuracy.

In Chapter 3, several different eigenvalue problems are tackled to validate the

developed FEM and to assess its accuracy. For a rectangular cavity having lossy



dielectric material, the linear system of equations incorporating an excitation mech-
anism is solved, and the resonant frequency and the quality factor are computed.
From the above information, the real and imaginary parts of the dielectric material
can be extracted easily. After the FEM is validated, it is also parallelized on a dis-
tributed memory parallel computer (the IBM SP2) and two different parallelization
strategies are examined. With the “task parallelization” strategy, in particular, al-
most linearly scalable performance improvement has been obtained, which is quite
remarkable. Furthermore, the design concept of the artificial absorbers proposed
in Chapter 2 is examined through several different circuit configurations supporting
quasi-TEM as well as non-TEM waves.

Starting from Chapter 4, applications of the developed FEM to various practical
high-speed, high-frequency interconnects are presented. In Chapter 4, eight different
types of basic building blocks of the MMICs are characterized [26, 27, 28] and in
some cases the equivalent circuits are obtained [29, 30]. In particular, the equiva-
lent circuits for via hole geometries are used in Chapter 7 to provide appropriate
equivalent circuits for the power and ground pin tiles.

In Chapter 5, the performance of intra- and inter-chip hermetic transition struc-
tures are fully characterized to provide design guidelines to MMIC designers [31, 32].
Specifically, the microstrip-through-CPW configuration is employed for an intra-chip
transition, while hermetic bead structure is utilized for inter-chip transition. The ef-
fect of various grounding via holes, cavity size, and the shape of the hermetic beads
are carefully examined.

In Chapter 6, the K/Ka-band (18 to 40 GHz) MMIC package fabricated for a
phase shifter is characterized and the effects of the structural symmetry/asymmetry,

bonding wires, gaps, side walls formed by 12 via holes, and the DC bias lines are



also studied [33, 34]. Furthermore, the spurious package resonances are identified
and several techniques for suppressing them are suggested with rigorous numerical
data. To the best of the author’s knowledge this is the first comprehensive study of
RF energy leakage and internal resonances in a practical millimeter-wave package.

In Chapter 7, the detailed procedure for the system level electromagnetic model-
ing of high-speed digital ICs and packages is presented. In the tiling procedure, three
types of primitive tiles are identified and their equivalent circuits are devised, includ-
ing power/ground plane tile, power/signal/ground plane tile, and power/ground pin
tile. Upon building the equivalent circuit library, several different printed circuit
boards and source configurations are studied along with an Intel test circuit for val-
idation of the proposed approach. The simulation and measurement results show
very good agreement. Considering that there are 8 layers in the PCB and hundreds
of vertical pins and traces, the remarkably good comparison between the measure-
ment and the simulation proves the accuracy and effectiveness of the proposed hybrid
approach.

Finally, in Chapter 8, a brief summary of the achievements and original contribu-
tions of the present research are presented. Also, concluding remarks and directions

for future studies are provided for later study.



CHAPTER I1

THEORETICAL METHODOLOGY: 3D VECTOR FINITE
ELEMENT METHOD

2.1 Introduction

The finite element method (FEM) has been extensively applied to scattering,
radiation and propagation problems [35]-[40]. Recently, it has found application to
circuit problems as well and has led to successful treatment of microwave and mil-
limeter wave circuits with complex geometrical shapes and inhomogeneous material
combinations [33]-[30]. In this chapter, the basic principles and general procedures of
the three-dimensional (3D) vector finite element method are presented starting from
Maxwell’s equations and subsequent vector wave equations. The 3D vector FEM is
based on the discretization of the weak form of the wave equation in frequency do-
main, and provides accurate full wave solutions to the most general electromagnetic
problems.

In this study, even though both electric and magnetic field formulations are given
for the sake of completeness, only the electric field formulation is implemented for
several practical reasons, such as ease of application of boundary conditions and
reduction of overall problem size. The current formulation presented is valid for ge-
ometries having isotropic dielectric materials whether lossy, lossless or a combination

and perfect conductors. However, it can be easily extended to incorporate anisotropic
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materials and lossy conducting surfaces. The FEM developed in the study is capable
of handling closed as well as open boundary problems. In the following sections, the
essential formulation of the finite element method and its discretization procedure

will be discussed in detail.
2.2 Vector Wave Equation
Consider an arbitrary shaped three dimensional geometry which contains mate-

rial inhomogeneities and geometrical discontinuities, as shown in Figure 2.1. The

electromagnetic fields in the domain § are characterized by Maxwell’s equations

0B
VxE = ——-M; 2.1
: o1 (21)
oD
\Y = —+J; 2
x H 5 +J (2.2)
V-D = p. (2.3)
V-B = pn (2.4)
and the appropriate constitutive relations

D = ¢E (2.5)

B = uH (2.6)

where E and H are electric and magnetic field intensity in [Volt/m| and [Amp/m)],
respectively and similarly, D and B represent electric and magnetic flux density in

[Coul/m?| and [Weber/m?], and the sources and material parameters are defined as:

J; : impressed electric current in [Amp/m?|
M; : impressed magnetic current in [Volt/m?]
pe : electric charge density in [Coul/m?]

pm : magnetic charge density in [Weber/m?|



11

P T
- -~

PEC, PMC or/and ABC

Figure 2.1: Geometry of three dimensional volume which has current sources J; and/or M;
with possible material inhomogeneities and geometrical discontinuities. The
boundary of the volume V is closed by some combination of PEC, PMC, and

ABC.

€ = €€ : permittivity in [F/m]

L = loltr : permeability in [H/m]

Without loss of generality, it is assumed that fields have time harmonic variations
(e*') and the impressed sources are not present in the computational domain. Then
the source-free vector wave equations can be derived from Maxwell’s equations :

-1
g (V x E) ¢ E
V x ™ I (2.7)
e}V x H) w-H

where k, (= w\/l1,€,) is the wave number in the medium. Later sections will address

the fact that the circuits can be excited by using the surface integral term which is

equivalent to the impressed sources.
For a numerical solution of the electromagnetic fields in a given domain, the wave

equations, which are second order partial differential equations, need to be solved

with appropriate boundary conditions for a unique solution. However, since finding



12

a strong solution of the wave equations is not always possible, weak solutions will be
sought in this study with appropriate weighting and testing operations.

Among the two equivalent formulations, E- and H-field formulation, the E-field
formulation will be presented and tackled. As mentioned before, the E-field formula-
tion has clear advantages over the H-field formulation when there are many perfect
electrically conducting (PEC) surfaces or bodies. Moreover, with the E-field for-
mulation, the implementation of the boundary condition for a perfect magnetically
conducting surface, which is the natural boundary condition, is also straightforward

and will be discussed in the next section.

2.3 Weak Form of Wave Equation and Its Discretization

As a first step towards finding the finite element solution, a given solution space {2
is subdivided into number of smaller sub-domains (2., and in each (2. the electric field
is expressed as a linear combination of basis functions P = {P;, Py, ..., P, }T C H,,

a Hilbert space, ! as follows;

m
E = ) 2P (2.8)
1=1
where x = {z1,23,...,&»} C C™, m-vectors of complex coefficients, is the unknown

coefficient vector to be determined. Note that due to the nature of approximation
of the discretization procedure, the original problem is modified to become a new

problem which has a different solution space [43]. After substituting Eq. (2.8) into

"Let (H,(-,-)) be an inner-product space. If the associated normed linear space (H, || - ||) is complete,
then (H, (-,-)) is called a Hilbert space. The inner product (-,-) on a linear space H satisfies

(a) (v,v)>0 VoeH
() (v,v)=0&v=0.
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Eq. (2.7), we obtain discretized wave equation:

Y 2V x 7'V x P — ke, Py) = 0. (2.9)

1=1
The next step 1s the discretization of the range of the differential operator, £ =
Vx(p7'Vx) — kZe,, and defining the weighting functions Q = {Q1,Qz,...,Q.}7 C

H,, a Hilbert space. Now, the weighting operation on the discretized wave equation

is performed as

2:(Q;, (V x 'V x P; — k2, P;)) =0 for j=1,...,n (2.10)

=1

where the inner product (A, B) is defined as follows:

(A.B) = /// A-B dv.

Now, with aid of some of vector identities? and the divergence theorem3, Eq. (2.10)

can be written as

m

Y el {47V x P,V x Q) - k(e Pi, Q)
+in% f-[u ) (Vx Py) xQj)ds =0 for j=1,...,n. (2.11)

where the last term can be modified to accommodate an equivalent surface current

as

— Jwio fgﬂ (n x H) - Q;ds. (2.12)

In view of the continuity of the magnetic field across any material interface bearing no
surface current, it is recognized that the contribution from the last term of Eq. (2.11)

for interior €. is zero except the cases when there are surface current sources.

‘B.VxA=V.-(AxB)+A.VxB
3 —
JoV-AdQ=§, A-dS
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The linear system of equation (2.11) can be represented in a matrix form for each

subregion {), as follows;
(AT [x] = [b] (2.13)
where

[A] = [U] =k [V7]
U; = (u'VxP,V xQ;)
Vi; = <6TPi7QJ'>

i € [x3,...,25]

b e [bi,...,b;]:—jwuoy{ (f x H) - Q,ds
09

and 1 < ¢ <m, 1< 7 <n The column vector [b¢] in the right hand side of

Eq. (2.13) can be used as a forcing function to impress an arbitrary surface current.

2.4 Basis and Weighting Functions

Given the limitation of the node-based FEM, such as incorrect modeling of bound-
ary conditions, and solutions contaminated by unwanted spurious modes, we applied
in this study the edge-based vector basis functions W§ with tetrahedral sub-domain
elements [13]-[19], which are known as Whitney 1-form,* as both basis and weighting
functions (P; = W and Q; = W¢) leading to Galerkin’s method.’

In terms of global coordinate systems the edge basis function W¥ is defined as

follows (refer to Fig. 2.2) for y =1,...,6,

f,+g; xr, refl,
wi={ (2.14)

0, ré Q.

“See section 2.7.2.
®Galerkin’s method is known to provide second-order accuracy [44].



1)
Y4
} E1 E3
E2
\ ~
_ (4)
2)f 3 =
E4 E6
o /T
(3)
Kt
¥

Figure 2.2: Tetrahedral element and associated nodes and edges definitions. The circled
numbers 1 to 4 represent four node labels and E1 to E6 six edges associated
with those nodes. r;; and r;; are node vectors associated with the 7t edge and
r is an arbitrary vector which lies in the tetrahedron.
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where

b;

fi = go mr-m X To-ie
bibr_;
g = J6ere7_j
er—; = (ra_jj —ra-)/b;
broj = |r@-j2 = Ta-jn |

and e; is the unit vector for the j** edge and b; is the length of the edge. The r(;_;);
and r(7_), are the vectors from the origin to the two nodes consisting of the (7— 7)™
edge. Alternatively, the definition of the edge basis function with respect to local

coordinates has a quite different form. For an edge p = {1, ;},
W, = AV = A VA (2.15)

where \,(r) (n = ¢ or j node) is the barycentric weight of r in its tetrahedron with
respect to vertex n and forms a continuous piecewise-linear function.® The behavior
of the basis function W7 can be visualized as shown in Fig. 2.3, that is, the fields
turn around the axis k—!{ (“central axis”) remaining normal to planes containing the
central axis. Also, the field has a magnitude proportional to the distance to the axis.

Note that VA; and V; are orthogonal to facets {i,k,[} and {j, k,(}, respectively.

_ volume{r,; k,1}

®For example, A, is defined in a tetrahedron {i,j,k,{} in Fig. 2.3 as \i = vaume [ R and can be
evaluated as

A = 1 if z coincides with the i*® node
"7 1 0 if z coincides with the j*"(j # 1) nodes.

For an arbitrary point r = (z,y, z) € Q, the relationship between the global and local coordinate systems
can be found as

T I z2 T3 T4 /\l
vyl _ | v oy ys oy Az
z | |z oz oz oz A3
1 1 1 1 1 As

where (zi, i, z;) denotes the global coordinates of the 4 vertices of a tetrahedron.
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Figure 2.3: Behavior of edge element W, for edge p = {¢,7}.

This basis function has several other important properties as follows:

V- W’ = (2.16)
V x W; = 2gp = QV/\l X V/\] (2.17)
W, e Ir on the p** edge™ 8pg (2.18)

where 4,, is the Kronecker delta function. The basis functions satisfy “the divergence-
free condition” since the E field obtained from a linear combination of the basis
functions exactly satisfy V-E = 0. More importantly, the edge basis function enforces
the tangential continuity of the E fields across the material interfaces and allows
discontinuity in the normal component across the interface, which render correct
modeling of the physical boundary conditions. In addition, the modeling capability
of the edge basis functions for the null-space of the curl operator contribute to the
fact that the solutions are not contaminated with spurious modes [43]-[47], a serious
drawback of the node based FEM. Equation (2.17) is interpreted as meaning that

the curl of the basis function is a constant vector and provides a convenient tool for
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calculation of the H field from a given E field as

9 6

However, the H field computed above has a constant value in each tetrahedral ele-
ment and thus provides limited accuracy in modeling the magnetic fields. The third
property, Eq. (2.18), implies that W7 has no tangential components along any of the
edges except p* one. Therefore, coefficient z; can be considered as a projection of
the electric field onto the i** edge. This property can be easily verified by considering
the facts that A\; = 0 on the edges {j,k}, {J,{}, and {[,k} and A; = 0 on the edges
{1,k}, {i,1}, and {[,k}, and the fact that W} has no tangential component on the

facets {j, k,{} and {1, k,[}.

2.5 Assembly of Matrix Equation and Its Solution Methods

From the sub-domain matrix equation, [A¢]T[x¢] = [b?], the global matrix equa-
tion is constructed by assembling the contributions from all the tetrahedrons. In
practice, a unique global edge numbering system, global-to-local indexing, is intro-
duced to every edge and the augmenting procedure is performed based upon this
edge numbering system. In other words, for every tetrahedron a 6 x 6 element ma-
trix is created according to the local numbering system and a lookup table, I(e,1),
for global edge numbering system. The lookup table relates the local edge number,
7, on a particular element, e, to its position in the global data structure. To assem-
ble the global matrix equation, each row and column in [A€] is added to the global
matrix [A] by referring to the lookup table, and a similar procedure is applied to
[x¢] and [bf] to form [x] and [b], respectively. As a result, the final matrix equation

is assembled as:

[A]" [x] = [b] (2.20)
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where
M
[A] = [J{U]- kv
x = Jx
Ul

e=1

[b]

The M denotes the total number of tetrahedrons in the domain €, which is, in
general, different from the total number of edges, say L. The set operation Ui\il
represents assembly operations based upon the global edge numbering system for all
M tetrahedrons. Therefore, the matrices [A], [x], and [b] become L x L, L x 1, and
L x 1 matrices, respectively. With the tetrahedral edge basis functions, Eq. (2.14)
or (2.15), the matrix elements for [U¢] and [V*] are evaluated as (see Appendix A

for details):

U: = (u,‘lv X W,‘,V X W]> (221)

%)

Ve = (Wi, W,). (2.22)

(%)

It is crucial to be aware of the properties of the final FEM matrix [A]. For
lossy or lossless materials and even for uniaxial anisotropic materials, the " and
7% edges in a tetrahedron have identical contributions to [A¢] and eventually to
[A] rendering the matrix [A] complex symmetric, but not Hermitian. Also, it is
observed that the set of eigenvalues of the source-free equation’ contains multiple
zero eigenvalues corresponding to the solution of the DC gradient electromagnetic
fields. As a result, the matrix [A] becomes positive semi-definite system. Another
very important and fundamental property of the matrix [A] is its sparsity, which is

a natural consequence of the compact supported expansion and weighting functions.

"The eigenvalues are the solution to the generalized eigenvalue problem: [U][x] = A[V](x]
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The degree of the sparsity varies case by case, but for structured mesh it can be
predicted, as will be presented in later section.

In this work, the conjugate (CG) and bi-conjugate gradient (BiCG) method [48]-
[57] for real symmetric or Hermitian matrices and the conjugate orthogonal conjugate
gradient (COCG) method [58] for complex symmetric matrix have been implemented
with diagonal preconditioning to speed up the convergence rate and to improve the
solution accuracy (refer to Appendix B for detail). In general, the CG type linear
equation solver requires O( N?) floating point operations in each iteration for the full
N x N matrix [A]. As a result, if it takes n iterations to solve a full matrix equation,
[A][x] = [b], the required operation count is O(nN?), which could be O(N?) for
large n comparable to N. In this case, the CG type solver loses its attractiveness
and feasibility for solving huge matrix equations. Fortunately, the matrix equation
generated by the FEM is very sparse and its sparsity ® reaches higher than 99% in
the usual practical problems. This sparsity gives a real attraction to the CG type
solver, since the required operation counts become O(nmN) < O(nN?), where m is
the average number of non-zero entries in a sparse matrix °. As described in detail
in section 2.9, m becomes at most 20 for structured mesh and N is several orders of
magnitude greater than m.

In particular, the BICG and COCG methods are computationally efficient for pos-
itive semi-definite matrices since these methods require only 1 matrix-vector multipli-
cation in each iteration, compared to 2 in the CG case. Even though the CG method

guarantees its monotonic convergence for non-singular matrix regardless of whether

8The definition of the sparsity is given:

2

. N° - M .
sparsity i= — 2 x 100 [%], for N x N matrix
where M, is the total number of non-zero matrix entries.
°The definition of the average number of non-zero entries in a matrix is given as m := M,/N
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the matrix is positive definite or not, in this study, the BiCG and COCG methods
with diagonal pre-conditioning are applied in view of their performance which is su-
perior to the CG method. These methods reveal faster convergence (fewer iterations)

and require a reduced computational burden in almost all cases.

2.6 Treatment of Boundary and Symmetry Conditions

2.6.1 Boundary Conditions

To obtain a unique solution of the wave equation in a given space (£2), appropriate
boundary conditions are required on the surface (0€2) enclosing the volume 2. There
are two important boundary conditions encountered in the electromagnetics appli-
cations, namely perfect electric conducting (PEC) and perfect magnetic conducting
(PMC) boundaries. On the PEC (PMC) surface, the tangential electric (magnetic)

field should be zero. The mathematical form of these conditions can be written as:

AixE = 0 (PEC) (2.23)

AxH = 0 (PMC) (2.24)

where 0 is the unit normal vector pointing outward from the surface (refer to
Fig. 2.4). The implementation of the PEC or PMC boundary conditions with the
edge basis functions in the context of the FEM can be done in a straightforward
manner. For example, in the E field formulation, the PMC surface becomes the
natural boundary having zero normal electric field component on the surface, and is
implemented naturally due to the divergence-free property of the basis function, as
explained in section 2.3. However, the PEC condition can be enforced by setting to
zero the coefficients of the edges z; comprising the PEC surface, because the tangen-
tial field on a triangular surface of a tetrahedron is generated only by the three edge

vectors which make up the triangle. It should be noted that when there are PEC
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Figure 2.4: PEC or PMC surface ' with outward unit normal vector f.

surfaces, the total number of unknowns is reduced accordingly since the unknown
coefficients for the edges on the surfaces are removed, producing a reduced system
of equations.

Another important outer boundary condition is the radiation boundary condition

(RBC) describing the field behavior at infinity, as written below:
}%im RV xF + jk,t xF]=0, F={EorH} (RBC) (2.25)

where T is the radial unit vector and R = \/m is the distance from the
origin to the observation point. The RBC demands that the electric and magnetic
fields decrease as 1/R in 3-dimensional space when R — oo.

At the interface between two different materials, more general boundary condi-
tions are required since the fields on both sides have non-zero values. When there
are surface currents (J,) and charges (p,) at the interface, the tangential electric
field should be continuous and the normal electric flux density is allowed to be dis-
continuous due to p,. Similarly, at an interface bearing a surface current source the
normal magnetic flux density is continuous and the tangential magnetic field should

be discontinuous with the amount of J,. The boundary conditions are summarized
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(medium 1) -

\ E ,H / |
20 material/ \

(medium 2) interface |

Figure 2.5: Material interface S with unit normal vector n.

as follows:

fx (B —Ey) = 0 (2.26)
f-(Bi—By) = 0 (2.27)
ix (H -Hy) = J, (2.28)
fi-(Dy—Dy) = p, (2.29)

where the n is a unit normal vector pointing from medium 2 to 1 as defined in
Fig. 2.5.
The surface charge density, p,, and the surface current density, J;, are related to

each other through the continuity equation:

_ 0ps

V. do= 22

(2.30)

where the V- denotes the surface divergence operator. It is worth mentioning that
the equations (2.26) and (2.27) are equivalent and similarly the equation (2.28) and
(2.29) are equivalent to each other. If one of the media is a perfect electric or
perfect magnetic conductor, the electric and magnetic fields are zero inside and thus

equations (2.23) and (2.24) are derived from equations (2.26)-(2.29). Note that no
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Symmetry Plane
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Symmetry Plane

Figure 2.6: An example of a circuit configuration (microstrip line) bearing a symmetri-
cal plane at the center and its electric and magnetic field distributions. As
presented on the right, the original problem can be replaced with half of the
structure, with PMC symmetry condition on one side.

surface current or charges can exist on the surface of perfect conducting bodies.

2.6.2 Symmetry Conditions

In general, many microwave and millimeter-wave circuits and interconnects con-
tain geometrical and electrical symmetries, which, if handled properly, can confer
computational advantages and simplicity. In this study, two types of symmetry
boundary conditions (refer to Fig. 2.6 and Fig. 2.7) are exploited based on the elec-
tric and magnetic fields distributions.

As illustrated in Fig. 2.6, when there are only tangential electric and normal mag-
netic fields components on an arbitrary plane or surface, the plane can be modeled as

a PMC surface. By applying the PMC boundary condition, the original problem is
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Symmetry Plane
[
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N/
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|
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I

Symmetry Plane

Figure 2.7: An example of a circuit configuration (double strip line) containing symmetry
at the center and its electric and magnetic field distributions. The original
problem can be replaced with the half of the structure with PEC symmetry
condition at the center as shown on the right.

replaced with the reduced one as shown on the right hand side of the figure without
changing the original field distributions and thus the solution of the original electro-
magnetic problem can be obtained by solving the half structure. Needless to say, it
is much easier and more efficient to handle the reduced equivalent problem than the
original one. Analogously, as shown in Fig. 2.7, a fictitious surface bearing only a
tangential magnetic and normal electric field components can be interchanged with
the PEC boundary, resulting in a reduced equivalent problem. Even though Fig. 2.6
and 2.7 illustrate the symmetries in the microstrip and double strip lines, similar
symmetries can be found in the coplanar waveguide (CPW) and in the slot-line with
their dominant mode distributions.

In many case, the symmetry planes are generated due to specific source con-
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Figure 2.8: Reduced equivalent circuits for symmetric 2-port network depending on ex-
citation configurations: (a) original network, (b) reduced equivalent network
for even mode excitation, and (c) reduced equivalent network for odd mode
excitation.
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figurations. For example, a symmetric 2-port network with even and odd mode
excitations !° can be transformed into either of two simplified equivalent networks,
depending on source arrangements, as shown in Fig. 2.8. In this case, to character-
ize the original network, only half of the problem can be solved with PEC or PMC
condition according to a given source configuration.

Obviously, with the CG type linear equation solver the reduced equivalent prob-
lem requires much less computational costs, since the BICG and COCG routines used
in this study demand O(nmN') floating point operations for an N x N matrix !! and
O(fsz) for N x N matrix, where # < n for N < N. For example, if an N x N
matrix takes n = N iterations for convergence and an N x N (N = N/2) matrix
needs 7 = N/2 iterations, then O(RmN) = O(nmN)/4. Hence, the half-reduced
equivalent problem takes only 1/4 of the computational cost of the initial problem.
For structures having two symmetry planes, when the symmetry is fully accounted,
the required operation counts for the equivalent problem are reduced to 1/16 of the
operation counts for the original problem. As mentioned in the previous section, the
PEC and PMC boundary conditions are implemented without any further theoreti-
cal and practical complications. On the contrary, those will provide great advantages
on reducing the problem size to a half, a quarter, or even to a 1/8 of the original
problem. When the number of FLoating point OPerations (FLOPs) is considered,
as summarized in Table 2.1, it becomes clear what is the real advantage gained due
to the reduction in problem size. This is one of the most important aspects of the
symmetry boundary conditions and the reason why the symmetry of a given problem

should be fully exploited whenever possible.

10Gee appendix C.
11Gee section 2.5.
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[ Symmetry Planes ] Problem Size ] FLOP Count ]

0 mN O(mN?)

1 mN /2 O(mN?)/4
2 mN /4 O(mN?)/16
3 mN/8 O(mN?)/64
k mN/(2¥) | O(mN?)/(2%)

Table 2.1: Summary of FLoating point OPeration (FLOP) counts for reduced equivalent
problems. In the table, the number of iterations for convergence are assumed
to be the maximum which is the matrix size.

2.7 The Question of Spurious Solutions: A Rationale for Using the Edge
Basis Function

2.7.1 The Origin of Spurious Solutions

The occurrence of physically incorrect spurious solutions in the various numerical
techniques, such as the FEM, the method of moment (MoM), etc, has been noted, and
many attempts have been made to explain and cure spurious modes [40], [43]-[17],
[45], [46], [59]-[71]*%. Tt has been found that these spurious solutions satisfy the finite
element equations, but not the physical boundary conditions, and occur regardless
what combination of vector components are involved. Thus, the spurious modes and
the physically correct solutions may be discriminated by applying the exact boundary
conditions on the inter-element and inter-material interfaces. On the interface of
two different materials or on the boundaries of interior sub-domain elements, the
tangential electric (fi x E) and magnetic (n x H) fields should be continuous if there
are no current sources, while the normal components n - E and 1 - H are allowed
to be discontinuous across the material interfaces. It has also been observed that
the spurious solutions exhibit non-zero divergence fields even without containing
any sources. Hence, the spurious solutions can be distinguished a posteriori by

monitoring the divergence of the computed solutions or the behavior of eigenvectors.

2From the abundance of literature dealing with the spurious modes phenomenon, one can imagine how
difficult and how important this task is.
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This observation has led to the speculation that the enforcement of the divergence-
free condition through the penalty function method would cure the occurrence of
the non-physical solutions [8]-[12]. However, it has been proved [43, 46, 72] that the
enforcement of the divergence-free condition cannot insure spurious-free solutions.
Furthermore, even though this penalty function approach has gained partial success
by removing or relocating the spurious solutions from the spectral region of interests,
it is considered to be “sweeping dust under the rug” [16].

Recently, a rigorous theoretical analysis has been presented [43] on the cause of
the spurious modes in numerical electromagnetic field eigenvalue problems. In view
of the vastness of the spurious modes phenomenon across many different numerical
methods, a source of the phenomenon has been identified as a misconception of the
discretization of a parameter dependent indefinite or semi-definite linear operator.
When such an operator family is applied to an n-dimensional subspace of its domain,
the family image in general may contain a subspace of dimension higher than n.
As a result the discretization of the parameter independent set of expansion and
weighting functions of equal cardinality has the potential to fail. This reasoning
is not incompatible with the conjecture in [73] which describes the root cause of
the spurious solutions as the improper approximation of the null-space of the curl

operator.

2.7.2 Why the Whitney Edge Element?

Based upon the above observations, the Whitney edge element [13]-[18], [74] is
employed in this study for the implementation of a robust finite element method
known a priori to produce spurious-free solutions. As is already discussed in section

2.4, the edge basis function has many desirable properties, including its divergence-
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free condition

V-We=0 = V-E=V-() ;W) =0

P

i=1
and accurate modeling of boundary conditions for tangential as well as normal electric
field components. Furthermore, the discrete algebraic-geometric-differential [75]-[77]
structure of the Whitney element closely matches the continuous one, providing a

good approximation method. The Whitney complex can be represented as

div
—

wo I o 2w w3 (ascending sequence) (2.31)

G e VS i T I T (descending sequence)  (2.32)

where WP is the finite dimensional subspace generated by taking linear combinations,
with complex coeflicients, of p-Whitneys. The adjoint operators grad,, curl,, and
div, coincide with —div, curl, and —grad, respectively, on its complement domain
and the Whitney elements of order p = 0,1, 2,3 correspond to node, edge, facet, and
volume elements, respectively. Considering the inherent mathematical symmetry of

structure in electromagnetics

» Y E B B & (2.33)
curt :
Q0 2 H = D &Y, (2.34)

where ® and () denote electric and magnetic scalar potentials, respectively, the re-
markable similarity of the Whitney complex to Maxwell’s equations leads to its
excellent modeling capability for electromagnetic fields. Further, the conformity of

the Whitney complex

W° C domain(grad) (2.35)
W' C domain(curl) (2.36)

W? C domain(div) (2.37)
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reinforces the similarity between them and gives some of the basic properties of the

Whitney elements:

e Function W (node element) is continuous across facets
o The tangential component of W' (edge element) is continuous across facets

e The normal component of W? (facet element) is continuous across facets.

In this study, the Whitney 1-form, W?, the so-called edge element, is employed to
model the electric field distributions in each sub-domain. As mentioned above, W
shares many basic properties with the electric field, E, and thus renders spurious-free

solutions.
2.7.3 Eigenvalue Analysis with Edge Element
From the source-free vector wave equation (2.7), the system of linear equations

(2.20) obtained after applying Galerkin’s procedure is reduced to the generalized

eigenvalue problem. The generalized eigenvalue problem can be stated as:

(U] - AV)lx] = 0 2.39)
where
M M
U =Ju, [vi=Jvi

and the matrix entries of [U¢] and [V¢] are defined as in equations (2.21) and (2.22).
The eigenvalue X is the square of a propagation constant, k, = VA, and has real
non-negative values for a lossless isotropic medium. A set of eigenvalue and eigenvec-
tor, {\,x}, represents the electromagnetic field distribution at a specific frequency,
fo = (¢/2m)ko. The spurious eigenvalues are identified by examining the correspond-
ing eigenvectors. In general, the eigenvectors of the spurious modes exhibit non-

physical field distributions, such as node-to-node variations, or have significantly
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higher divergence values:

// | V-E|*dv>0.
Q

With the edge element, it has been found that no spurious modes are interspersed
among the physical solutions. However, the computed set of eigenvalues of the
generalized eigenvalue equation (2.38) contains multiple zero eigenvalues (A = 0)
which correspond to the DC gradient electric fields, ®. Note that any gradient
fields satisfy the vector wave equation with V x (V®) = 0. These zero eigenvalues
can be interpreted as a separate class of spurious modes since their existence does
not interfere with finding physical solutions, except when the discrete numerical
scheme does not approximate them properly. This inaccurate approximation has
been considered as a possible source of the non-physical spurious modes [66, 73].
The number of zero eigenvalues, N,.,,, can be accurately predicted for structured
tetrahedral mesh, in which the domain is divided into bricks and then each brick is

subdivided into 5 tetrahedrons, as follows:

(N —2)(N, —2)(N, —2), for E-field formulation
Noero = ! (2.39)

N,N,N, — 1, for H-field formulation

where N, N, and N, are the number of nodes in z, y, and z directions, respectively.
For the E-field formulation, the N,.,, is coincident with the number of interior nodes
in a simply connected domain surrounded with the PEC boundary conditions. For
the H-field formulation, the number of zero eigenvalues is identical to the number of
edge-tree branches in the domain with PEC outer surface, which will be the natural
boundary condition. The number of edge-tree branches can be computed from the
difference between the total number of edges and the number of independent algebraic

equations [78]. Tables 2.2 and 2.3 show examples of the number of zero eigenvalues
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(Nzy Ny, N.) | Total # of | # of surface | Matrix Size | # of interior || N.cro
edges edges M nodes
(3,3,3) 90 72 18 1 1
(4,4,4) 259 162 90 8 8
(5,5,5) 540 288 252 27 27
(6,6,6) 990 450 540 64 64
(7,7,7) 1638 648 990 125 125

(Nzy, Ny, N.) | Total # of | # of surface | Matrix Size | Total # of || N,.,q
edges edges M nodes

(2,2,2) 18 0 18 8 7

(3,3,3) 90 0 90 27 26
(4,4,4) 252 0 252 64 63
(5,5,5) 540 0 540 125 124
(6,6,6) 990 0 990 216 215
(7,7,7) 1638 0 1638 343 342

Table 2.3: Number of zero eigenvalues for simply connected cavity with H-field formula-
tion.

and other relevant quantities for the E- and H-field formulations in various mesh
configurations. As shown in the tables, the E-field formulation requires a lower
computational cost, i.e., a smaller matrix size M, than that of the H-field, due to

the PEC boundary condition, as described in section 2.6.1.

2.8 Excitation Mechanism

In the application of the FEM for the characterization of high frequency and
high-speed interconnects, many different types of excitation mechanisms could be
employed. Since the extracted circuit parameters should be independent of the exci-
tations, one can choose a convenient excitation method suited to specific applications.
For faster convergence, two dimensional (2D) field distributions on each face of the
port can be used: however, this approach requires another 2D electromagnetic field

simulator. In this study, ideal impulse current sources are employed and imposed on
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the corresponding edges of the tetrahedrons. Even though the ideal current sources
generate impulses at the sources, the electromagnetic fields quickly conform to the
appropriate field distribution according to the boundary conditions, even in the close
vicinity of the sources.

In the finite element formulation, the ideal current source could be implemented
either in conjunction with the inhomogeneous wave equation, or using the appropriate
boundary conditions with the homogeneous wave equation (see Eq. (2.7)). Consider

the right-hand side of the weak form of the homogeneous wave equation (2.13):

b = —jkoZo ¢ WE- (A x H)dS. (2.40)
a0

In the kernel of the integral, the n x H can be interpreted as a current source J
and the dot product between J and W¢ can be considered as a line current J; on
the edge of the surface triangle 0f).. As a result, the excitation vector [b¢] with an

appropriate scaling factor is given as

W¢-JdS =4; for asource at j™* edge. (2.41)
Qe

When there are several sources, as in the case of a multi-port network, the excitation
vector [b¢] has non-zero elements and the positions of those non-zeros correspond to

the global indices of the excitation edges, as shown below:
b =0 0---0 b 0---0 b 0---0] (2.42)

where the b, (1 < p < N,p = {i,j}) are an appropriate non-zero pair of numbers
for various sets of excitation mechanisms such as the even, odd, or sum excitation
discussed in Appendix C. In Figure 2.9, two different configurations of the current
source excitations used in this study are illustrated. Asshown in the figure, horizontal

or vertical excitations produce identical results.



Figure 2.9: Two types of ideal excitation configurations: (a) horizontal current source on
the transmission line plane. (b) vertical current source.

2.9 Customized Generation of Tetrahedral Mesh

The first step of the finite element analysis is a discretization of the domain of
interest into appropriate sub-domain elements. In this study, for the discretization of
a given three-dimensional space ) into a number of tetrahedral sub-domain elements
., a simple and efficient structural mesh generation algorithm is developed. In
particular, to accommodate and model effectively the large contrast in geometrical
details commonly found in high-speed high-frequency interconnects, both uniform
and non-uniform meshing schemes are implemented. In non-uniform mesh, variable
size rectangular bricks are created first and then each brick is subdivided into five
tetrahedrons in two different ways as shown in Figure 2.10 (see Table 2.4 for label-
ing system). Note that those two different ways of subdividing a brick are mirror
images of each other. For continuity of the edges across the brick faces, all of the
neighboring bricks sharing a face with each other are assigned to have different types
of dispositions.

One advantage of using the structural mesh is its regularity, which allows accu-
rate prediction of the total number of edges (i.e., the total number of unknowns)
and tetrahedrons, the edge connectivities, and the resulting memory requirement for

a given problem. For an edge which is parallel to the Cartesian axis, there are 4
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Figure 2.10: Two types of rectangular bricks which containing five tetrahedral elements:
(a) Type I, (b) Type II

[ Tetrahedronj Type I | Type 11 J
{1,2,4,6} | {1, 2, 3, 5}
{1,5,6,7} | {2, 3, 4, 8}
{igk 1} | {1,3,4,7) | 13,5,7,8)
{4,6,7,8} | {2,5, 6,8}
{1,4,6,7} | {2, 3,5, 8}

Table 2.4: Two types of tetrahedral labeling systems.
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tetrahedrons surrounding the edge and 13 edges are associated with that. However.
for a typical diagonal edge, 6 tetrahedrons are connected to that edge and therefore
19 edges are associated with that. As a result, the total number of non-zero entries
in a row or column of an arbitrary FEM matrix is pre-determined to be 13 or 19
with the structural meshing scheme. Further, the average edge connectivity would
be determined to be 15 from the fact that there are 12 edges parallel to the Cartesian
axis and 6 edges diagonal in a rectangular brick . The pre-determined edge connec-
tivity allows efficient memory management and planning and building effective data
structures for the best possible use of computing facilities, since the total number of
edges in () determines the overall problem size to be solved.

The relationship between the number of tetrahedrons, nodes, and edges for a
simply connected region, whether the structural meshing scheme is used or not, can

be estimated as follows [79)
Nedge = Ntet + Nnode + Nsu'rf -3 (243)

where Niet, Nedge, Npode and Ny, s are the total number of tetrahedrons, edges,
nodes, and surface nodes, respectively. This formula is very useful for the prediction
of a problem size in either case, whether structured or unstructured mesh is used.
However, for an unstructured mesh, it is not always possible to predict accurately
the number of tetrahedrons, nodes and surface nodes, and even further, the edge
connectivity varies over a large range.

Roughly, the total number of edges can be estimated as six times the total number
of nodes and as a result the estimated number of total non-zero entries in a FEM
matrix is 90 times of the total number of nodes. The average matrix density also

can be estimated from the average number of non-zero entries in a row (or column)

1% Average edge connectivity = (12 edges x 13 + 6 edges x 19)/18 edges = 15
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Total # of nodes : Ny ,qe N.N,N.
Total # of tetrahedrons : Ny SNy —1)(Ny —1)(N. - 1)
Total # of surface nodes : 2(N:Ny+ N,N. + N.N,)
Nsurf _4(NI+Ny+Nz)+8
Total # of edges : Negge 6N NyN. - 3(NNy+ NyN. + N.N,)
(# of unknowns) +5(N;+ Ny +N.)+2
# of non-zero entries 13 or 19
in a row or column
Average # of non-zero 15
entries in a row or column
Total # of non-zero 90NN N, -75(N N, + NyN, + N,N,)
entries in FEM matrix : M, —75(Nz;+ Ny + N.)+ 30
Average matrix density 2.5/(NyN,N.)

Table 2.5: Estimations of some of the important quantities in the structural tetrahedral
mesh. It is assumed that the domain is simply connected and there are no
interior PEC surfaces which will reduce the total edge counts. N, N, and N,
are the number of nodes in x, y and z direction, respectively.

and the size of the square matrix. Since the average edge connectivity has been
determined to be 15 for any arbitrary problem, the overall problem size is directly
proportional to the total edge count. Therefore, the sparsity of the FEM matrix can

be estimated as given below

15
sparsity = (1 — ) x 100 [%] (2.44)
edge
2.5
~ ———— x 100 ) 2.4!
T <100 1 (2.45)

Note that the sparsity of the FEM matrix is approaching 100 % as the size of the
problem, N.44, is becoming larger. These relations are summarized in Table 2.5.

It has been found numerically that the iterative linear equation solvers mentioned
in section 2.5 converge much faster with the uniform mesh than the non-uniform
scheme, implying that the uniform mesh leads to a better matrix condition number.
However, even though uniform mesh has the definite advantage of fast solution time
for a fixed number of unknowns, it is not always advantageous to use the uniform

mesh when there are large variations in detailed geometries as found in usual high-
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speed high-frequency interconnects. In general, the uniform mesh generates a much
larger matrix system than the non-uniform case when there are very small details in
a structure and eventually causes a longer solution time. With these observations,
the non-uniform structural meshing scheme is developed in this study to provide
effective mesh data for circuits with large variations in detailed dimensions. Even
in the non-uniform meshing scheme, the quality of each sub-domain element is also
very important, since one badly distorted tetrahedral element could leads to a poor

matrix condition number.

2.10 Treatment of Open Boundary Problems

Accurate modeling of high-speed high-frequency interconnects often requires treat-
ment of closed as well as open boundary problems. However, due to the fact that one
of the fundamental ideas based on partial differential equation (PDE) techniques is
the restriction of the computational domain to a finite region, the open domain prob-
lem requires special techniques for appropriate approximation of the outer bound-
aries, as shown in Figure 2.11. In general, the difficulties in the treatment of open
domain problems with appropriate outer termination boundaries have become a hin-
drance in the efficient PDE solution of practical problems. In the context of the
finite element method, the open domain problems can be simulated in several dif-
ferent ways, such as the FEM-boundary integral (FEM-BI) type method [80]-[87],
the application of higher-order absorbing boundary conditions (ABCs) [38, 39], [88]-
[117] or the use of the perfectly matched layer (PML) [118]-[131]. The FEM-BI type
method is considered more rigorous than the other methods since it applies exact
boundary conditions through Green’s function. However, the FEM-BI type method

produces a fully populated matrix subsystem, which causes difficulties in storing and
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solving large systems of equations.

Compared to the global boundary condition of the FEM-BI method, the ABC
and PML type approaches produce local boundary conditions. The locality of the
boundary conditions contributes to the generation of a sparse matrix system and of-
fers great advantages in storing and solving the matrix system. In higher order ABCs,
accurate prediction of the local curvature of the wave front is crucial to the overall
accuracy as well as convergence of numerical methods. Unfortunately, however, the
curvature of the wave front is, in general, unknown and therefore the accuracy of
ABCs is limited by its poor approximation of the tangential electromagnetic fields
at the outer surface. Also, ABCs reveal difficulties in the termination of the inhomo-
geneous boundary value problems since they were developed for homogeneous open
spaces with plane wave incidence. Moreover, these ABCs do not provide optimum
design procedures for a given error tolerance except by increasing the separation dis-
tance between the object and the boundary surface, which will eventually intensify
the computational burden and require the use of higher order boundary conditions.
As a results, the ABC type approaches lead to inferior numerical performance such
as slow convergence and spurious reflections at the outer boundary.

With these observations, the design of absorbing material with the perfectly
matched layer (PML) concept becomes an alternate way of terminating outer bound-
aries and thus simulating infinite space. The PML technique is based on two essen-
tial ideas, namely impedance matching at the interface and damping of the waves
in the material for least amount of reflections coming from the finite thickness of
the material. These types of absorbing layers, in general, produce a symmetric FEM
matrix and provide flexible design parameters in order to satisfy a given error bound.

Moreover, the PML type absorber can be placed within fractions of a wavelength
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Figure 2.11: Treatment of open boundary problem: (a) Original open boundary problem,
(b) Equivalent closed/finite boundary problem.
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without sacrificing accuracy. Among the known artificial absorbers, Berenger's PML
has demonstrated excellent performance for 2D and 3D problems in the context of
a finite difference time domain technique. However, Berenger’s PML equations are
non-Maxwellian and suffer from instabilities when applied to layered inhomogeneous
problems. Furthermore, the implementation of the absorber in the context of FEM
is not straightforward [131].

Another similar type of PML has been presented recently, introducing uniaxial
anisotropic materials to implement a non-reflecting interface for an arbitrary angle
of incidence. Such an interface condition with a material having broadband charac-
teristics, satisfies Maxwell’s equations and has been implemented using anisotropic
material. For example, the characteristics of the anisotropic absorbing material fac-

ing z = constant plane are diagonal tensors:

p 0 0

" = 1o p 0 |6 (2.46)
00 1/p
p 0 0

W™ =10 p o |# (2.47)
(0.0 1/p

where p = a — jf and the values of o and  have to be carefully chosen for best
numerical performance. In theory, the above PML material yields a reflectionless
interface for an arbitrary angle of incidence, polarization, and frequency. However,
the performance of the PML concept in the FEM context reveals several practical
difficulties, including the difficulty of choosing appropriate o and g for various struc-
tures, slow convergence in the iterative matrix solver, and direction dependency of

the material.
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In contrast to the above anisotropic absorber, an isotropic artificial absorber has
also been devised to simulate a free space buffer layer. This type of material is not
independent of the angle of incidence. However, its loss mechanism is clearly under-
stood and thus provides a well defined design procedure for optimum performance.
Also, it can be designed to be a PML absorber for well defined field distributions as
inside a waveguide. Furthermore, the absorber can be easily incorporated into an
existing FEM code and renders much faster convergence compared to the anisotropic
one. In view of the advantages of using the isotropic absorber, in the following sub-
sections, design procedures are presented the absorber, for MMIC and waveguide

applications.

2.10.1 Isotropic Absorbers for MMIC Applications

Transmission line structures, as commonly encountered in usual MIC/MMIC ap-
plications such as microstrip, CPW and slot line, support quasi-TEM or hybrid type
modes, as opposed to the TEM nature of plane waves excited in free space. More-
over, when there are circuit discontinuities, evanescent or higher order modes are
excited which leak power into the substrate. As a result, design of an appropriate
layer capable of absorbing all of these waves, including the dominant mode, is a
rather challenging task.

In our application of the absorber to MMICs, we find three different situations.
The first is encountered when the absorber is used as a termination boundary in
transmission lines to simulate a matched load, the second occurs when we need to
simulate free space, and the third corresponds to the termination of a substrate. For

the design of effective absorbing layers for the above three cases, matching the wave
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impedances at the absorber interface will result in a non-reflecting surface:
Zr = ZAA

where Z, and Z44 are the wave impedances in the dielectric and the artificial ab-
sorber, respectively.

Since the wave impedance for a TEM wave is identical to the intrinsic impedance
of the medium in which it propagates, matching the intrinsic impedances across the
material-absorber interface is equivalent to matching the wave impedances. Similarly,
in a homogeneous waveguide terminated with an artificial absorber, TE and TM
mode wave impedances in both media are identical, if the intrinsic impedances are the
same. Therefore for effective absorption and minimal reflection of the surface waves
and higher order evanescent modes created by a circuit discontinuity, the intrinsic
impedances at the absorber interface need to be matched. In addition, to avoid
any secondary reflections at the end of the absorbing layer, the material parameters
need to be optimized to maximize the attenuation of the waves transmitted into
the absorber. This leads to complex values for the electric permittivity (€an =
€44 — j€44) and magnetic permeability (paa = piy, — jpys) of the absorber with
large imaginary parts.

Based on the above observations, the design procedure of the artificial absorbing

layer interfacing a dielectric layer with ¢, and p, can be summarized as follows:

1. Choose the operating frequency (f, = ¢/),) and an arbitrary thickness of the

absorber (4t).
2. Compute relative intrinsic impedance of the dielectric layer (7, = 1/p,/ €).

3. Choose Re(e44) = €, and Im(ea4) such that Im(eqq) > —‘f—ﬂ(’;—j);—rln(a), where
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a is the maximum magnitude of the reflected wave which can be tolerated at

the interface.
4. Choose pas = n?e44 (impedance matching condition).

It is noted that even though the absorbing layer is designed under the assumption
of normal incidence, the design procedure can be modified for the elimination of a

wave incident from a certain angle.

2.10.2 Isotropic Absorbers for Waveguide Applications

In homogeneous waveguides where mode patterns are well defined, an isotropic
absorber can be optimized to simulate an infinite waveguide. Since for each propagat-
ing mode at a certain frequency one can define an equivalent incident angle using ray
optics, optimization of the absorber parameters to that particular angle of incidence
can minimize the reflections at the interface. The thickness of the absorbing layer
is chosen to provide enough attenuation of the waves in the absorbing material and
to minimize the computational domain. The following steps summarize the design
procedure for the isotropic absorber for a given mode (TE,,, or TM,,,) and a specific
guided frequency (f,). The a and b (a > b) are the waveguide dimensions and €, and

. are the relative permittivity and permeability, respectively, in the waveguide.

1. Choose an arbitrary thickness of the absorber (6t).

2. Compute relative intrinsic impedance of the waveguide material (1, = \/. /€, ).

Usually, A;/10 is enough for 4t.

3. Let Re(ean) = Re(e,) and Im(ea4) such that Im(eqq) > —%(%})%ln(a), where

a 1s the maximum magnitude of the reflected wave which can be tolerated at
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the interface. 1

4. Calculate pa4 using the following equations, derived from the interface match-

ing conditions for TE and TM wave incidence with angle 6;

e for TE,,, ({m,n | 0 <m,n < oo and m =n # 0}) modes,

€AAlr CAA[T |,
= _SAdbe — (4, tan 6;)? 9.48
par = et [ — ) (248)

o for TM, ({m,n | 1 <m,n < oco}) modes,

HAA = —'ur—[ef sin? 6; + €% 4 cos® 6] (2.49)
€r€AA

where 6; = cos™ (/1 — (f./f)?), f. = N /(Z)%+ (%)% and ¢, is the speed

of light in vacuum.

[t is noted that even though the absorbing layer is designed for a specific mode at
a given frequency, and that as a result it has narrow bandwidth characteristics, its
performance under single mode operation can be maximized by adaptively changing
the absorber parameters at each frequency. As a result, the application of the ab-
sorber to the frequency domain FEM can be easily optimized. For the evanescent
modes below the cutoff frequency, the performance of the absorber in the context of
the FEM cannot be easily evaluated. However, in practice, any instability effect has
been observed in the evanescent mode region with the absorber. It should also be
pointed out that the performance of the isotropic absorber near the cutoff frequency

is degraded, as happens with other types of PML.

2.11 Passive Lumped Elements

In high-frequency high-speed circuits, the passive and active lumped elements

constitute indispensable ingredients along with distributed circuits, while the sizes

Even though one can choose a much larger value of Im(e44) than the criterion, it is not always advisable
since it will require much higher discretization to model the highly varying fields inside the absorber.
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of the lumped elements are negligible compared to that of the distributed network.
In spite of their small size, in many cases, the lumped elements strongly interact
with the surrounding environment, including the distributed circuits. As a result, it
1s very important to have a three-dimensional full-wave electromagnetic field charac-
terization of the circuits having both distributed and lumped elements, and several
investigations have recently been reported with time domain PDE techniques [132]-
[143]. The incorporation of the lumped elements into the finite element method,
however, has not been well understood, nor its effectiveness and possibilities as-
sessed despite its importance. In this study, the passive lumped elements, such as
resistors, inductors, and capacitors, are modeled in three-dimensional finite element
techniques in two different manners.

The effect of the lumped elements can be implemented starting from the inho-

mogeneous wave equation:
V x u ' (V x E) — k2¢,E = —jud,. (2.50)

Similar to the method given in section 2.3, Galerkin’s procedure is applied to Eq. (2.50)

on Hilbert space and the weak form is found as: for j = 1,...,n

9

<u;lv x E,V x QJ> = —jkOZO<Qj,Ji> + 1ko 2y %;(H X QJ) -ndS (2.51)

where the weighting functions, Q = {Qy,Qz,...,Q.}7 C Ha, are defined on a
Hilbert space and eventually the electric field, E, will be also expanded on a Hilbert
space, Ha, with the same weighting function. Now, the lumped elements could be
implemented through the two different methods discussed below, using the right hand
side terms of Eq. (2.51). In the following two subsections, the detailed mathematical
formulations will be discussed for the so-called volume current approach and surface

impedance approach.
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2.11.1 Volume Current Method

In this method, the first term in the right hand side of the Eq. (2.51) is utilized

to incorporate lumped impedance elements:

I, = —jkoZ0(Q;,J;) for j=1,...,n. (2.52)

where Z; is the free space intrinsic impedance.
In the above equation, the volume

current density can be represented in

©

terms of electric field and conductivity

as:

J;=oE (2.53)

N
_— -
L]

—

where 0 = [/(Zs) and Zj, s, and [

(

represent, as shown in Figure 2.12, load

impedance in ohms ({2), cross-sectional
Figure 2.12: Impedance load.
area, and length of the load, respec-

tively. After Eq. (2.53) is combined into Eq. (2.52), we obtain
!
Iy = —jkoZo—5—(Q;,E) for j=1,...,n. (2.54)
ZLS

Now, the electric field is expanded in Hilbert space based on tetrahedral elements as

6

E = Zl’,’Qi (255)

1=1
and as a result we have
6

l
T = —jkoZo— Y 2:(Q;,Q; i=1,...,n. .
: jOZOZLSZx(QJQ) for j=1,....n (2.56)
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If the impedance load is located on the i** edge in a tetrahedron, the inner product
between the basis and weighting functions becomes constant: (Q;, Q;) = AVd;;,
where AV is the volume of the load given as AV = sl. Therefore, in most practical
situations, Eq. (2.56) is simplified to

12

= —1koZo—=1;.
11 Jro OZLx'

This term only contributes to the diagonal terms, A;;, in the FEM matrix [A] in
Eq. (2.20).

2.11.2 Surface Impedance Method

The incorporation of the passive lumped elements into the finite element method

can be also implemented using the surface integral term, the second term of the

Eq. (2.51),
T, = —jkoZy fs(H X Q;)-ndS for j=1,...,n. (2.58)
and the resistive sheet condition [144]
Ax(hxE)=-R ax(H'-H") (2.59)

where H* and H™ are magnetic fields defined on the surface st and s~, respectively,
as shown in Fig. 2.13. For a thin dielectric layer of thickness ¢, the equivalent
resistive sheet having surface resistivity R (£2/0) can be derived from the equivalent
polarization current [145, 146]:

Zy

For a thin dielectric layer, Z; can be split into two terms for the upper and lower

surfaces:

Ty=—jkeZo | Q;-(AxHY) dS+ | Q- (hxH") dS (2.61)
St S
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Figure 2.13: Resistive sheet and equivalent thin dielectric layer.

and on the assumption that kot < 1, it is further reduced to
Ig = —]koZo Qj . [fl X (I’I+ - H—)] ds. (262)
S+
Now, Eq. (2.59) is substituted into the above, yielding
1. "
I, = —]kOZO/ E(n X Q;)-(h xE) dS (2.63)
s
and its discretized form on Hilbert space with the edge basis function is found as:
I, = —]koZOin/ —l-(n X Q;) (M xQ;) dS forj=1,..n. (2.64)
: p R 7 yeeey

This term is evaluated numerically for a given surface and its resistivity.
To a first order, this equation can be used to simulate the presence of a thin
dielectric layer by choosing an equivalent resistive sheet having resistivity R. Al-

ternatively, a resistive sheet may be equivalently replaced by a thin dielectric layer



having thickness ¢ and a relative permittivity of

Zo
kotR

&=1-7 (2.65)

Note that with the latter approach, for resistive lumped elements, a small volume
of dielectric material is allocated to have the equivalent dielectric constant. This
approach can be also expanded to capacitive and reactive elements by substituting
the Zy, for load impedance for the resistivity R in Eq. (2.65). In this study, both

approaches are implemented, and the performance and accuracy are compared.



CHAPTER III

VALIDATION AND PARALLELIZATION

3.1 Introduction

Presented in this chapter is validation of the edge-based finite element method by
means of the generalized eigenvalue problems for lossless cavities. The motivation
behind of using the eigenvalue problem to validate the FEM is the fact that the
excitation and the eigenvalue problems share the identical matrices, and the exact
solutions can be found for certain eigenvalue problems. As a result, by examining
the accuracy of the eigenvalues for various problems, the developed edge-based FEM
code can be validated. Furthermore, the validated FEM code is parallelized on the
distributed memory parallel computer (the IBM SP2) using the message passing
paradigm (MPL). Two types of parallelization schemes are examined in this study
and the performance of each scheme is investigated in depth. Having done the val-
idation and parallelization of the FEM, a design guideline for artificial absorbing
materials is introduced for waveguide and MMIC applications, and its effectiveness
is verified with several examples. The use of absorbing materials is crucial for simu-

lation of open boundary problems as proved whole throughout the thesis.
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3.2 Eigenvalue Problems

Seeking the solutions of eigenvalue problem using source-free Maxwell’s equations
allows basic understanding of the electromagnetic characteristics of a given geometry.
In particular, the eigenvalues and the corresponding eigenvectors provide complete
signature of the fundamental electromagnetic properties of the structure. Any field
distributions in a cavity or guiding structure can be represented as a linear combina-
tion of eigenvectors. Strictly speaking, any closed non-radiating geometries support
discrete eigenvalues and eigenvectors, in contrast to continuous counterparts of the
open or radiating problems. For example, the eigenvalues and the eigenvectors of a
lossless cavity, whether it is homogeneous or not, represent resonant frequencies and
their mode distributions. On the other hand, the eigenvalues of lossy cavity become
complex numbers and thus correspond to complex modes having attenuating as well
as non-attenuating components.

When there are no excitation mechanisms in domain 2, the generalized eigenvalue

equation can be derived from Eq. (2.20) as:

[Ul[x] = A[V][x] (3.1)
where
M M
U] = JIU7] and [V]=][V9]

and the matrix entries of the submatrices [U¢] and [V¢] are determined as given in

Eq. (2.21) and Eq. (2.22):

U: = (,u,'IV X W,-,V X W]>

v

Ve = <6TW,', W]>

)
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Here, the eigenvalue A is given as k7 which is a square of the propagation constant.
Note that for lossless isotropic material the matrix [U] is symmetric, and [V] is
symmetric and positive definite since the basis functions W, are independent. Using
the fact that any positive definite matrix can be decomposed into two triangular

matrices, [V] can be written as
[V]=[c]ic] (32)

where [C] is the triangular matrix. Now, the original eigenvalue equation is trans-

formed into
[U)[%] = A% (3.3)

where [U] = [C]7![U][C]"T and [%] = [C]7[x]. Therefore, for lossless isotropic
medium, all the eigenvalues A become real numbers, since the matrix [U] is sym-
metric. The solution of the generalized eigenvalue equation could be found using the
iterative method, such as Lanczos method, to take advantage of the sparsity of the
FEM matrix. In this study, however, all of the eigenvalues including zeros are found
using the standard factorization method. !

Herein, the eigenvalues are calculated for several different types of homogeneous
as well as inhomogeneous cavities, and the numerical results are compared with the
analytic solution, if available, to validate the developed edge-based finite element
method. When analytic solution is not obtainable for inhomogeneous problem, the
excitation problem, having exactly the same configuration except the source, is solved
to compare the resonant frequency. In many practical applications, the solution of
the excitation problem can be found more accurately and efficiently than that of

the eigenvalue problem with aid of efficient linear equation solver. Furthermore,

'There are standard EISPACK routines, such as RSG and QZHES, for generalized eigenvalue problems.
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to characterize unknown dielectric material having complex dielectric constant, the
excitation problems are solved and compared with the eigenvalues to extract real
and imaginary parts of the permittivity.

3.2.1 Lossless Cavities

a) Empty Rectangular Cavity
g

As a first step toward validating the developed edge-based FEM code, the gen-
eralized eigenvalue problem is solved for rectangular cavity shown in Fig. 3.1. The

resonant frequency, "™, of each mode in the cavity can be also obtained as

mnp _ 1 M2 E? H_?
o = e (P + ()

where {m,n,p | m > 0,n > 0,p > 0,m = n # 0} for TE* and {m,n,p | m >
1,n > 1,p > 0} for TM* mode. As is summarized in Table 3.1 and Table 3.2, the
FEM-computed eigenvalues are accurate within +1.0 % error bound for all the cases
listed in the tables. Note that the degenerated modes having the same resonant
frequency are also predicted very accurately in both cases. Furthermore, it is also
observed that the total number of zero eigenvalues is equal to the number of internal
FEM nodes as discussed in Section 2.7.3, and more importantly, no spurious modes
are detected in the eigenvalue spectrum.

With the remarkable accuracy obtained by the edge-based FEM for the empty
cavities, eigenvalues for inhomogeneous cavities having dielectric material are com-

puted in the below.
(b) Partially-Filled Cavity
Having been proved the accuracy of the edge-based FEM for the simplest cavity

structures, the accuracy of the FEM is tested for more complicated geometries. In

this study, the eigenvalues of the partially-filled cavity, as shown in Fig. 3.2, with
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Figure 3.1: Rectangular cavity having PEC walls and dimensions a, b, and ¢ in x-, y-, and
z-direction, respectively.

fo [GHZ]
mode (m,n,p) | Analytic | FEM | error [%]

(1,1,0) 21.2133 | 21.2090 0.02
(1,0,1) 21.2133 | 21.2090 0.02
(0,1,1) 21.2133 | 21.2090 0.02
(1,1,1) 25.9808 | 26.1173 |  —0.53
(2,1,0) 33.5409 | 33.3714 0.51
(0,2,) 33.5409 | 33.3714 0.51
(1,0,2) 33.5409 | 33.3714 0.51
(1,1,2) 36.7424 | 36.7696 |  —0.07
(2,1,1) 36.7424 | 36.7696 |  —0.07
(1,2,1) 36.7424 | 36.7696 |  —0.07
(2,2,0) 42.4266 | 42.2972 0.30
(2,0,2) 42.4266 | 42.2972 0.30
(0,2,2) 42.4266 | 42.2972 0.30

Table 3.1: First few eigenvalues of an empty rectangular cavity having ¢ = b = ¢ = 10 mm.

fo [GHZ]
mode (m,n,p) | Analytic | FEM | error [%]
1L,1,0) 6.2500 | 6.2543 | —0.07
(10,1) | 8.3852 | 8.3766 0.10
(2,1,0) 9.0141 | 9.0040 0.1
(0,1,1) 9.0141 | 9.0336 | —0.21
(1,1,1) 9.7627 | 9.7799 |  —0.18
(2,0,1) 10.6064 | 10.5696 0.35
(1,2,0) 10.6799 | 10.7353 —0.52
(2,1,1) 11.7261 | 11.7313 -0.04

Table 3.2: First few eigenvalues of an empty rectangular cavity having a = 40, b = 30, and
¢ =20 mm.
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Figure 3.2: Partially-filled rectangular cavity having dielectric material with ¢, and thick-
/
ness c¢’.

two different dielectric material are computed and the results are compared with the
analytic data.

As tabulated in Table 3.3 and Table 3.4, the first few of the FEM-computed
eigenvalues for ¢, = 2.5 and 12.9 are listed and revealed excellent agreement with the
analytic data. It is observed that the error for the higher dielectric constant material
shows slightly higher than that of the smaller one mainly due to the numerical
discretization error. Similar to the previous empty cavity examples, there are no

spurious modes in the whole frequency spectrum.

(c) Loaded Rectangular Cavity

As a last example of the lossless eigenvalue problem, dielectric cube having di-
mension a’, b', and ¢’ with dielectric constant e, is placed at the center of the cavity
bottom plane as shown in Fig. 3.3. In this section, to quantify the effect of the
size of the dielectric cube and its dielectric constant on the resonant frequency of

the dominant mode, the dielectric constant ¢, is varied from 1 to 50, and the filling
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fo [GHz]

mode (m,n,p) | Analytic | FEM | error [%)]
LSMi 5.6736 5.6469 0.47
LSFEi0 7.8617 7.8578 0.05
LSMo1; 7.9493 7.8826 0.84
LS Eq1y 8.4350 8.4087 0.31
LSMiy 8.8660 8.8654 0.01
LSEi 9.1125 | 9.1031 | 0.10
LSMyy; | 9.2044 | 9.1104 | 1.02
LS Esq 9.8677 9.8513 0.17
LS5M3py 10.3579 | 10.2504 1.04
LS M3y 10.4876 | 10.3985 0.85

Table 3.3: First few eigenvalues of a partially-filled rectangular cavity having a = 40, b =
30, c =20, ¢’ =5 mm, and ¢, = 2.5.

fo [GHz]

mode (m,n,p) | Analytic | FEM | error [%]
LSMin 3.9809 | 3.9302 1.27
LS My, 4.5625 | 4.5074 1.20
LSEy0 4.6704 | 4.6360 0.74
LSMyy 4.8837 | 4.8416 0.86
LSEo 4.8977 | 4.8418 1.14
LSEm 5.1405 | 5.1169 0.46
LS Ms4 5.2048 | 5.1684 0.70
LS Ma9y 5.2462 | 5.1988 0.90
LSEy0 5.4039 | 5.3750 0.53

Table 3.4: First few eigenvalues of a partially-filled rectangular cavity having a = 40, b =
30, ¢ =20, ¢’ = 5 mm, and ¢, = 12.9.
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Figure 3.3: Rectangular cavity having dielectric cube at the center of the cavity bottom
having dielectric constant ¢, and a’, &', and ¢’ in x-, y-, and z-dimension,
respectively.

factor r has been varied from 0.1 to 0.25, where r is defined as:

r=(d/a) = (t'/b) = (/o). (34)

In addition, the frequency shift due to the dielectric material is defined as:

~

57 =1 _% | %100 [%] (3.5)

where fq is the resonant frequency of the dominant mode for the empty cavity, while
fo is the shifted resonant frequency of the dielectric loaded cavity. For instance,
¢, =1 or r = 0 corresponds to empty cavity, while r = 1.0 to fully filled cavity.
With the above definitions, the resonant frequencies of the dielectric loaded cavi-
ties are computed and summarized in Fig. 3.4. As shown in the figure, the variation
of §f as a function of ¢, is clearly revealed for several different size of the material.
As can be observed, as the permittivity e, or filling factor r increases, the resonant
frequency of the loaded cavity f, becomes lower and in turn § f increases.

Therefore, for a given dielectric configuration, it is straightforward to predict

the resonant frequency of the loaded cavity. In fact, for any unknown dielectric
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Figure 3.4: Variation of the resonant frequency of the dominant mode for various size and
¢, of the dielectric material.

material, it is possible to accurately determine the dielectric constant of the material
by comparing the resonant frequencies of the empty and loaded cavities, and looking
up the curves in Fig. 3.4. When the material has complex permittivity, the real
part can be extracted by measuring the shift of the resonant frequency, while the
imaginary part can be deduced from the quality factor of the loaded cavity as will
be discussed in the next section. It should be pointed out that the accuracy of the
resonant frequencies of the dielectric loaded cavity has been found within 2 % by

comparing the data obtained from the excitation problem.
3.2.2 Lossy Cavities
When a lossy dielectric material having complex permittivity €, is placed inside

of a cavity, the eigenvalues become complex numbers and the quality factor of the

cavity becomes finite as illustrate in Fig. 3.5, in contrast to infinity for lossless case.
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Figure 3.5: Typical resonance curve of a lossy cavity. The quality factor @ is defined based
on the center frequency, fo, and two adjacent frequency points, f; and fs.

In general, the quality factor (Q-factor) of a lossy cavity is defined as:

_ S

Q=3 (3.6)

where the frequency fy is the center frequency. As illustrated in Fig. 3.5, the band-
width BW is defined as BW = f, — fi, where f; and f, are the frequency points
correspond to 1/v/2 of the maximum.

In this study, various lossy dielectric materials having different level of loss are
modeled using the excitation problem and the intensity of the electric fields are
measured to determine the resonant frequency and ()-factor. As can be observed in
Table 3.5, the resonant frequencies of the lossy dielectric loaded cavities are mainly
determined by the real part of the permittivity, while the imaginary part contributes
to finite Q-factors. Note that the @-factor is linearly proportional to the loss tangent,

tan §, of the material.
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| r ] €& | tané [ fo [GHz] | BW [MHZ]| Q |
0.1 | 6.0+ ;0.1 0.0167 6.2140 1.09 5700
0.25 | 2.25+ 30.0 0.0 6.0717 0.0 00
0.25 | 2.254 70.001 | 0.00044 6.0717 0.222 27350
0.25 | 2.25430.01 | 0.0044 6.0717 2.24 2710
0.25 | 2.254 30.1 0.044 6.0717 22.3 272
0.25 | 6.0+ 0.0 0.0 5.8044 0.0 00
0.25 | 6.0+ 0.01 0.00167 5.8044 0.93 6241
0.25 | 6.0+ 30.1 0.0167 5.8044 9.29 624.8
0.25 | 12.9+ 0.0 0.0 5.6032 0.0 00
0.25 | 12.9 4 70.001 | 0.000078 | 5.6032 0.038 147454
0.25 | 12.94 70.01 | 0.00078 5.6032 0.38 14745
0.25 | 12.94 0.1 0.0078 5.6032 3.9 1455

Table 3.5: Resonant frequencies and Q-factors for lossy dielectric loaded cavities having
various amount of losses.

3.2.3 Summary

In this section, the validity and accuracy of the edge-based finite element method
is proved using the generalized eigenvalue problems. In particular, the eigenvalues
of the empty as well as dielectric loaded cavities are accurately predicted, and more
importantly, no spurious modes are observed. In addition, it is found that the number
of zero eigenvalues are equal to the number of internal tetrahedral nodes. For inverse
problem of predicting the dielectric properties of a material, variety of dielectric
configurations are examined. Finally, it is demonstrated that when there are lossy
dielectric material in a cavity, the real and imaginary parts of the permittivity can

be extracted from the resonance curves.

3.3 Parallelization

3.3.1 Motivations

The three dimensional edge-based vector FEM is well established and applied
for the characterization of many 2D and 3D circuits and interconnects which contain

complicated dielectric and metallic configurations [33, 34, 28]. It is proved to be very
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accurate, computationally inexpensive and highly parallelizable [20]. In this section,
two different types of parallelization schemes, parallelization of the linear equation
solver and task parallelization, based on distributed memory machine (IBM SP2)
are presented for the 3D-FEM code and the performance of each scheme is closely
examined. For the implementation of efficient parallel FEM code, message passing
paradigm using MPL (Message Passing Library) has been utilized.

In the following section, the parallelization schemes for BiCG routine and the
task parallelization are presented and the performances of two approaches are ex-
amined. The first strategy, the parallelization of the BiCG routine, is based upon
the observation that more than 90% of the execution time of the FEM code is taken
by the routine. As a result, development of an efficient linear equation solver can
reduce overall computation time. On the other hand, the second approach, the
task parallelization scheme, is evolved from the fact that the FEM is a frequency
domain technique. When the frequency domain technique is used to characterize
any high frequency interconnects, many repetitive calculations at each different fre-
quency point are required, which is time consuming. However, the FEM system
of equations for different frequency points are independent each other and can be
solved simultaneously as presented in the next section. It has been found that the
task parallelization strategy can provide an almost linearly scalable FEM code on a
distributed memory parallel computer and it renders fast and efficient computation

of the circuit parameters.

3.3.2 Parallelization Strategies

(a) Parallelization of the Linear Equation Solver : [A][x] = [b]

In most of the practical problems, the generation of the matrix [A] requires much

less computational effort compare to solving the linear or eigenvalue equation. As
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Figure 3.6: Parallelization of the linear equation solver, BiICG method, in the FEM scheme.

a result, efficient and fast method of solving the equation can speedup the whole
solution process. In this study, many efforts are devoted to implement parallelized
BiCG method as illustrated in Fig. 3.6. As is well known, the BiCG method with
diagonal preconditioning requires one matrix-vector multiplication in every iteration.
The matrix [A] is computed once in the beginning of the solution process and used
repeatedly during the iterations, while the unknown coefficient vector [x] has to be
renewed in every iteration. Furthermore, to maximize the usage of the storage space
and to minimize the number of floating point operations in the iterative solver, such
as the BICG, only non-zero matrix entries and its integer coordinates are stored.

For parallelization of the matrix-vector multiplication, the matrix [A] computed
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by the master node is partitioned into smaller matrices [A;] such that
[A]= UL, [A] (3.7)

where N is the number of nodes (CPUs), and each partitioned matrix [A,] is dis-
tributed to all the other slave nodes in the beginning of the BiCG procedure. Since
for a given frequency the matrix [A] is fixed during the BiCG iteration process, it
can be broadcasted once and for all. This is the step 1 in Fig. 3.7 . On the other
hand, the vector [x] which will be multiplied to the matrix [A] has to be distributed
in the every iteration (step 2). As indicated in Fig. 3.7 each node performs partial
matrix-vector multiplication simultaneously (step 3) and the results are collected to
produce the final result (step 4).

The following shows an example of broadcasting the matrix [A] using the message

passing paradigm (MPL):
CALL MP_BCAST(A,MsgLngth,Source,AllGroup)

In a typical distributed memory machine, every node is connected each other using
fast internal network, called switch in IBM SP2, and the internal network has its
capacity (bandwidth) and resulting communication overhead. In our SP2 system,
the bandwidth of the switch is 35 Mbyte/sec and the communication overhead due
to the latency is 40 usec. Communication buffer size is also limited. As a result,
when the size of the matrix or message exceeds a certain limit, the performance
of the switch degraded remarkably. To overcome the communication overhead and
acquire maximum speed, the size of the matrix should be sufficiently big. In the
following example, multiple Send and Block Receive method is used to overcome

the bandwidth limitation:

IF (TaskID.EQ.0) THEN < master node
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Figure 3.7: Parallelization of the matrix-vector multiplication. Step 1: broadcast the par-
titioned FEM matrix [A;]. Step 2: broadcast the vector [x] in every iteration.
Step 3: perform partial matrix-vector multiplication [A;][x] on each machine,
where [A] = U [A]] for i = 1,...,N. N is the number of slave nodes. Step 4:
gather the results to form [b].
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DO I = 1,NumOfTask-1
Destination = I
Ntype = I
CALL MP_SEND(A,MsgLngth,Destination,Ntype,MessageID)
ENDDO
ELSEIF(TaskID.NE.0) THEN ¢« slave nodes
Source= 0
CALL MP_BRECV(A,MsgLngth,Source,TaskID,MessageID)

ENDIF

Note that to ensure the synchronism between the source (master node) and desti-
nation (slave nodes), the block receive subroutine (MP_BRECV) has been used. After
the [A] has been broadcasted, the vector [x] is also broadcasted in a similar way
in every iteration. Now, each small portion of the matrix-vector multiplication is
carried out in each node simultaneously and the final results are gathered to form
the resulting vector [b]. In the following an example of the parallel pseudo-Fortran

code for matrix-vector multiplication is shown:

N = INT(MatrixSize/NumberOfTask)

Nstart = TaskID*N + 1

Nstop = Nstart + N - 1

DO I = Nstart,Nstop ¢« matrix-vector multiplication at each node
VI = A

ENDDO

CALL MP_GATHER(VI,b,BlockLength,Destination,AllGroup)

In the above example, the sparsity of the matrix [A] can be fully utilized by using the
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Figure 3.8: Speedup curves of the parallel matrix-vector multiplication for two different
problem sizes. M indicates the number of unknowns.

indirect index scheme with possible adverse effect such as inefficient memory /cache
access.

Fig. 3.8 illustrates the performance of the FEM code with the parallelized linear
equation solver for two different problem sizes M. As can be observed in the figure,
the larger problem size has better performance improvement compare to the smaller
one. This is mainly due to the communication overhead and task size, that is,
the advantage of the “divide-and-conquer” strategy is offset by the communication

latency for M=38190 case.

(b) Parallelization of the Tasks

The previous approach has gained marginal performance improvement due to

the limited bandwidth and communication latency. To overcome these difficulties,
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task/frequency parallelization strategy is explored in this section. This strategy is
based upon the property of the frequency domain method such that the system of
linear equations of each frequency point is independent each other. As a result,
for a given problem the set of linear equations for different frequency points can
be constructed and solved independently and simultaneously to obtain the complete
spectrum of the scattering parameters over the broad range of frequency.

In this scheme the computational tasks which correspond to different frequency
points are distributed among the different nodes, and the solutions are found simul-
taneously. Indeed, as shown in Fig. 3.9, each slave node is assigned to have different
set of problem corresponding to different frequency and the element matrix gener-
ation, matrix assembly and the solution process of the matrix equation using the
BiCG are performed concurrently on each node. This type of parallelization scheme
is often called “embarrassingly parallelized” version of the FEM code, since it only
requires minimum parallelization skill, but can provide perfect and almost linearly
scalable parallelization performance as illustrated in Fig. 3.10.

It is worth mentioning that this approach is equivalent to using many separate
computers in a fast network without requiring any communication between them.
This would not be considered as a real parallelization in a strict sense, but it can
be beneficial to the users of the parallel computers and provides a truly scalable
parallelization strategy.

Following shows an example of the pseudo-Fortran code for the task parallelization

scheme:

DO I = 1, NFRQ, NUMTSK
IFREQ = TASKID + I

IF(IFREQ.GT.NFRQ) STOP



bl Shadieniaienibarbie s T{_'_ ________________ '1__"_|
B P i R
fl\ /f? | Element Matrix Computation i f'f
b e T Fo
T L A Con
R | Matrix Assembly : Ax=b | b
| 5 ! B Fommmmmmmm o Lo
: : : [-—————=——-=—- L A A : : :
H E ; Linear Equation Solver : BiCG ! E ! E
[ T L T-————m—————-- 4 b
o I S e
| i |
| SParameters | v
LA, S .14 _________________ Y___¥

(Geometry Definition)

'

Pre-processing : Mesh Generation

X

Pl
-7 S~o
// \\
~

o fafn

-

Figure 3.9: The concept of the task parallelization.

- Frequency Sweep >~ Parallelization

— e e e — — ——— — —— ——— ——



40.0

i s

35.0

30.0

25.0 |

20.0

Time [hour]

15.0 F
10.0

50 F

Number of Processors
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(Serial FEM code for each frequency point)

ENDDO
3.3.3 Discussion

To find more effective parallelization strategy for the frequency domain finite el-
ement method, two different approaches are studied and the performance of those
approaches are measured in terms of total amount of time required to solve a given
problem. With the first approach, the parallelization of the matrix-vector multi-
plication, two different problems having size M equals 38109 and 76709 are solved.

As shown in Fig. 3.8, simply increasing the number of CPUs does not guarantee
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reduced execution time, especially for the smaller problem size. On the other hand.
increasing the number of nodes for the larger problem size renders slight performance
improvement with diminishing return after a certain point. The number of nodes for
maximum speedup depends on the problem size as clearly shown in this study. Note
that using more slave nodes over the optimum number causes degraded performance
due to the heavy communication overhead and limited buffer size, and thus offsets
the advantage of using multiple nodes. Hence, the optimum number of CPUs for
a given problem size depends on the capacity of the communication network, CPU
speed, the performance of the switch (bandwidth), and the buffer size.

Having the marginal perofomance improvement with the first approach, the fre-
quency parallelization strategy is devised and its performance is fully examined. As
discussed in the previous section, this approach is proved to give truly linearly scal-
able parallel FEM code due to the negligible amount of communication between the
processors. Its simplicity and minimum required parallelization effort are the main
advantages of this approach, and even more importantly, this strategy allows scalable

parallel code and can be applied to many other applications.

3.4 Performance of the Artificial Absorbers

In this section, the performance of an artificial absorber presented in section 2.10
is examined in the context of the finite element method for characterization of mi-
crowave and millimeter-wave circuits having inhomogeneous dielectric configurations.
As an artificial absorber, a medium with designed complex permittivity and perme-
ability is used to introduce a controllable amount of loss. Such an absorber can
be effectively placed near circuit discontinuities to absorb the excited dominant and

higher order modes as well as surface waves propagating in the substrate. In order to
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minimize the unwanted reflections at the dielectric-absorber interface, the absorber
is designed to provide impedance matching at the interface allowing the waves to be
effectively transmitted through the interface and subsequently attenuated while they
propagate into the absorber. To validate the concept of impedance matching between
an inhomogeneous dielectric half space and an artificial absorbing layer in various sit-
uations, six different circuit configurations are examined including microstrip, CPW
and waveguide structures. It has been found that a judicious choice of the artificial

absorber makes it possible to reduce reflections less than —40 dB.

3.4.1 Microstrip Thru Line

A 50 © microstrip line is designed on 635 pm thick substrate and the computa-
tional domain is terminated with PEC surfaces as shown in Fig. 3.11. The microstrip
line is terminated with two absorber layers to simulate infinite transmission line.
The position of the mesh termination surfaces is chosen to prevent the excitation of
a waveguide mode in the frequency range of interest (low frequency region) and the
side walls are placed 4H; apart from the microstrip edge. As a result, the microstrip
line has only dominant quasi-TEM mode below 22 GHz. Above 22 GHz, however,
the overall structure starts to support the dominant as well as higher order waveg-
uide modes depend on operating frequency in addition to the microstrip mode. The
absorbers are designed to have two parts. The upper portion of the absorber is cho-
sen to have €; = 3 = 1.0+ 53.0 so that it is matched to the air side. The imaginary
part of the absorber is chosen to introduce enough losses for the wave propagating in
the absorber. For the lower layer of the absorber, the material constants are chosen
as € = 3.4+ 710.0 and po = 1.0+ 52.9412 so that its intrinsic impedance is matched

to the substrate impedance (7, = 1,/1/€; = 7r).
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Figure 3.11: Computed return loss for the microstrip line terminated with artificial ab-
sorbers. Geometrical and material factors : L = 6.38 mm, W = 1.3 mm,
D = 50 mm, H, = 0.635 mm, H, = 3.365 mm, ¢, = 34, u, = 1.0,
€1 = 1.0+ 3.0, u; = 1.0+ 3.0, €2 = 3.4 4+ 710.0, and po = 1.0 + 72.9412

As observed in Fig. 3.11, the reflection from the absorbing layer is smaller than
—40 dB up to 22 GHz. Considering the electrical thickness of the absorbing layer
(D =0.27), at 10 GHz) and the hybrid nature of the excited fields, the performance
of the absorber is excellent in very broad frequency range. The gradual increase in the
|S11] is mainly due to insufficient discretization of the FEM mesh at high frequency
end of the spectrum. The dependency of the reflections on the discretization is

examined further in later sections.

3.4.2 Microstrip Junction Terminated with Absorber

To measure the performance of the absorbing layer in the close vicinity of circuit

discontinuities, the absorber is placed at three different positions from the microstrip
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impedance junction as shown in Fig. 3.12. The thickness of the absorber T is fixed to
be 0.16A, (A, at 10 GHz) and the return loss is computed while varying the distance
D from 0.08), to 0.32),. As presented in Fig. 3.12, the computed |S;;| data for
three different absorber positions agree very well with the data derived by the finite
difference time domain method within 1.0 dB in the whole frequency region. It is
quite remarkable to obtain the above accuracy with isotropic absorbing layer having
only 0.16), thickness and placed at a distance less than 0.1, from the discontinuity.
It is worth mentioning that for a given circuit if only |S;;| data is needed to be
computed, all the other ports can be terminated by placing appropriate absorbers
and measure the reflection coefficient at the designated port, resulting in significant

reduction of required computational cost.

3.4.3 CPW Series Stub

In this section, the performance of the isotropic absorber is examined under non-
TEM type field distribution. In particular, a CPW series stub as shown in Fig. 3.13
is designed and absorbers are placed at four different places to evaluate the perfor-
mance of the absorber. Since CPW supports non-TEM mode and its discontinuity
generates evanescent and surface waves, placing the absorber in the close vicinity
of the discontinuity can indicate the performance of the absorber under non-ideal
condition.

To simulate an infinitely long CPW thru line, absorbing layers are designed and
placed at the end of the line as a matched load. The thickness of the absorber is
fixed to 0.24X, (A, at 20 GHz). The return loss is calculated for the CPW series
stub as a function of the position of the absorber (D = 0.093),, 0.213),, 0.334),,

and 0.574);. As shown in Fig. 3.13, the calculated reflection coefficients converge
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Figure 3.12: Computed return loss for the microstrip junction terminated with artificial
absorbers. Absorbers are placed at the side and top walls also in addition
to the termination end. Geometrical factors : W; = 1.3mm, Wy = 0.6mm,
and T' = 3.0mm. The thickness and the dielectric constant of the substrate
are H = 0.635mm and ¢, = 3.4. The absorbers at the end are chosen as :
€1 = 1.0+ 15.0 and p; = 1.0+ 515.0 for the air side and €3 = 3.4 + 715.0 and
g2 = 1.0 + 74.412 for the dielectric side.
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Figure 3.13: Computed return loss for the CPW series stub terminated with artificial
absorbers (closed structure) at 4 different positions. Geometrical factors:
G = 0.225mm, S = 0.45mm, L = 1.35mm, W = 0.225mm, and 7' = 2.0mm.
The thickness and the dielectric constant of the substrate are H = 0.635mm
and ¢, = 9.9. The absorbers at the end are chosen as : ¢; = 1.0 + 515.0 and
w1 = 1.0+ 715.0 for the air side and € = 9.9 4+ 720.0 and py = 1.0 + 52.02 for
the dielectric side.

rapidly as the distance between the CPW series stub and the absorber increases.
Compare to 0.1, of the previous microstrip case, the absorbers have to be placed
slightly further (0.2),) in CPW case due to the non-TEM type field distribution. It
should be noted that a proper position of an absorber to simulate an infinite line
or non-reflecting surface is dependent on the field distribution as can be seen in the

case of the microstrip junction and CPW series stub.

3.4.4 CPW Series Stub: Open Structure

For the simulation of an open structure, the absorbing layers are placed on top

and side walls of the circuit in addition to the termination end as shown in Fig. 3.14.
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Figure 3.14: Computed return loss for the CPW series stub terminated with artificial ab-
sorbers (open structure). Geometrical factors: G = 0.225mm, S = 0.45mm,
L =1.35mm, W = 0.225mm, D = 1.775mm and T = 2.0mm. The thickness
and the dielectric constant of the substrate are H = 0.635mm and ¢, = 9.9.
The absorbers at the end are chosen as : ¢; = 1.0+;15.0 and p; = 1.0+ j15.0
for the air side and €; = 9.9 4+ 520.0 and py = 1.0 + 52.02 for the dielectric
side.
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In this example, the absorbing layer having thickness T (= 2.0 mm = 0.32), at

o = 20 GHz) is placed in the distance D (= 1.775 mm = 0.28),) from the dis-
continuity. The distance D is chosen to minimize the computational domain while
maintaining the required accuracy (refer to Fig. 3.13). The computed results reveal
excellent agreement with the data obtained from the space domain integral equation
technique [147]. Even though the thickness of the absorber is 2.0 mm in this case, it
can be reduced further by increasing the amount of loss in the material. Increasing
the mesh density also contributes to the improvement of the accuracy due to the

smaller numerical errors.

3.4.5 Waveguide Absorber

To verify the concept and the performance of the isotropic waveguide absorber,
the design equations of the absorber presented in section 2.10 is implemented. The
designed isotropic material is placed in a waveguide as shown in Fig. 3.15 and the
dominant TE;o mode is excited. In contrast to the absorber used in the previous
sections, the permittivity and permeability of the waveguide absorber are a function
of frequency and excited mode in the waveguide.

The amount of reflections from the absorbing layer is measured using the standing
wave patterns in the waveguide similar to the microstrip and CPW cases. As shown
in the figure, the reflection coeflicient in the whole frequency range is below —30
to —40 dB except in the immediate vicinity of the 3.15 GHz which is the cutoff
frequency of the dominant TEyo mode. The gradual increase of |Sy;]| in the higher
frequency region is mainly owing to the insufficient discretization. Since the amount
of reflections at the absorber interface is zero, one can further reduce the numerical

reflections at the interface by increasing the mesh density and by adopting smooth
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transition of mesh in the computational domain especially at the material interface.
In our simulations the mesh sizes in z-, y-, and z-direction (dz, dy, and Jz) are varied
in the absorber region as indicated in the figure. As can be observed, the amount
of reflected waves at the absorber interface is decreasing as the mesh size in each
direction decreases, in particular, in x-direction (dz).

As another example, to investigate the performance of designed waveguide ab-
sorber in close vicinity of discontinuities in a waveguide, a 3-dimensional obstacle
is placed inside of a waveguide as illustrated in Fig 3.16. As shown in the figure,
the width (d;), length (d;), and height (d3) of the conducting cube are 9.0 mm, 9.0
mm, and 6.0 mm, respectively, and it is placed at the center of the waveguide. The
waveguide has been operated in the dominant mode region (f£* = 6.56 GHz and
fIE2 = 13.12 GHz) and the absorber is placed at the end of the waveguide at 11.0
mm (= 0.168 A, at 8 GHz) away from the cube. The computed result using the
FEM is compared with the measurement in [148] and reveals very good agreement.
Note that the thickness of the absorber is chosen to be 5.0 mm (= 0.076), at 8
GHz) and éz, dy, and éz in the absorber layer are 0.5 mm, 1.386 mm, and 1.04 mm,

respectively.

3.4.6 Summary

In this section, the application of the artificial absorber to microwave and
millimeter-wave structures have been investigated. The design concept of the ar-
tificial absorber through the matching of the intrinsic impedances has been found
simple and effective. Due to the loss mechanism of the absorber, the artificial ab-
sorbing layer can suppress higher order modes as well as the dominant mode in the

guided wave structures. Furthermore, incorporation of the concept of the absorber
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Figure 3.15: Computed reflection coefficient of the artificial absorber in a waveguide de-
signed for absorption of the dominant TE,¢ mode as a function of mesh size
(6z, éy, and é2) in the absorber region. Geometrical and material parameters
of the waveguide: ¢ = 47.6 mm, b = 22.0 mm, ¢,; = 1.0, and g,y = 1.0. The
thickness of the absorber, 6t, is 0.041\, (5.0 mm) at 4.0 GHz. fIFw0  fTFx
and fTEo1 are the cutoff frequency of each mode.
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Figure 3.16: Computed transmission coefficient for a conducting cube of dimensions d; =
dy = 9.0 mm and d3 = 6.0 mm. The width and height of the waveguide:
a = 22.86 mm and b = 10.16 mm. The thickness of the absorber at the end
of the waveguide is fixed to 5.0 mm which is 0.06), at 8.0 GHz.
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into the existing FEM code is straightforward and does not require additional effort.
The use of the isotropic absorber does not impose any degradation of the matrix
condition number in contrast to the usual ABC’s. Application of the absorbing layer
also renders the possibility of alleviating the computational burden by reducing the

computational domain.

3.5 Conclusions

This chapter has presented the validation of edge-based finite element method
using the generalized eigenvalue problems for lossless cavity. The eigenvalues for
homogeneous and inhomogeneous cavities are found accurately within 1% error, and
more importantly no spurious solutions are observed. After the validation, the FEM
code is parallelized on the distributed memory machine, the IBM SP2, and two
different types of parallelization strategies are examined. In particular, the task
parallelization scheme is found to give linearly scalable performance improvement.
Finally, a design procedure of the isotropic artificial absorbing layer is presented and
its performance in various MMIC and waveguide applications are thoroughly inves-
tigated. The absorbing material is crucial for open boundary problems frequently

encountered in many MIC/MMICs and waveguide applications.



CHAPTER 1V

PLANAR/NON-PLANAR HIGH FREQUENCY
INTERCONNECTS

4.1 Introduction

As has been pointed out by Montgomery [149] in 1989, Microwave Integrated Cir-
cuit (MIC) and Monolithic Microwave Integrated Circuit (MMIC) packages remain
a performance and cost challenge in many applications. In the past, the microwave
industry has treated the packaging of circuits as a necessary and rather obvious
step to be taken after the completion of the circuit design cycle. Such an approach
was heavily concerned with the thermal and mechanical properties of the package,
but ignored important electrical effects which could dominate circuit performance.
As a result, package interference made design cycles very costly and many times
unsuccessful.

It has been only recently that current R&D in industry and government laborato-
ries has initiated an effort to address the critical problems of packaging in a way which
links electrical performance with thermal and mechanical properties [150]. MIC and
MMIC packages that are capable of good performance at frequencies as high as 60
GHz need to have small volume, low weight, microstrip or coplanar line compatibility,
and most important, they should exhibit negligible electrical interference including

low insertion and return losses.

84
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For these packages to acquire some of the characteristics described above, special
provisions need to be made during circuit design and layout stages. Specifically, in or-
der to achieve lower weight /volume and reduce cost, designs lead to block and layered
configurations where each layer performs a separate function. This design approach
results in high density circuits where a large number of interconnects are printed on
electrically small surface areas and communicate through the substrate in a direct
through-via fashion or electromagnetically through appropriately etched apertures.
In a circuit environment of this complexity, parasitic effects such as radiation and
cross talk are intensified, thus making the interconnection problem very critical [151].
In order to reduce these effects with circuit layout compensations, accurate modeling
tools are needed which can provide the exact correlation between circuit parasitics
and geometrical characteristics. The establishment of a multi-layered multi-task
monolithic circuit technology presumes a computer-aided design capability far more
powerful and versatile than any presently commercially available. Furthermore, it
requires a combination of tools varying from static to dynamic and from time to
frequency domains, and the needs for a dynamically reconfigurable computational
environment becomes more and more important as advancing technologies lead to
increasingly complex geometries.

As a response, this study presents frequency domain characterizations of a few
of the most commonly found planar/non-planar interconnect elements in a multi-
layered circuit environment. Vertical transitions through apertures have been char-
acterized in the past [151]-[156] and have been found to provide an efficient broadband
bandpass RF connection. However, these transitions, due to their bandpass charac-
ter, cut any low frequency or DC component which may need to propagate vertically

to other layers, along with the RF signal as happens in detectors and mixers. In
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such cases, direct interconnections through via holes are introduced along with their
parasitic effects which, if not well understood, can degrade electrical performance to
unacceptable levels.

One example of such a simple but yet vital interconnection is a via used for
ground potential equalization in monolithic circuits where more than one ground
planes is utilized. In many configurations, grounded CPW lines are unintentionally
created and thus lead to the excitation of parallel plate waveguide modes which,
strong as they are, couple various parts of the circuit and introduce high levels of
parasitic radiation [157]. One technique to suppress these modes is the use of vias
which connect the ground planes printed on opposite sides of the substrate layer.
In practical implementations, more than one via is needed, perhaps as many as
five to ten per guided wavelength, leading to long structures of inductive elements
periodically placed around the circuitry. While this configuration nearly equalizes
the ground potentials, it can also excite Floquet waveguide modes that tend to
propagate along the via structure and couple to the rest of the circuitry strongly and
destructively. Such waves can turn a well designed band pass filter into an element
with unrecognizable characteristics.

Many recent efforts have emphasized the analytical and numerical evaluation
of via inductance and capacitance using a variety of quasi-static and full wave tech-
niques [131], [158]-[169]. In many cases, an equivalent circuit for the via is constructed
through a scattering parameter evaluation, while in other cases, the inductance is
computed from the total magnetic energy stored around the via or from the use of an
excess inductance. While all of these techniques provide reasonable solutions, they
disagree in the predicted values by as much as 10 to 30%. Unavoidably, this brings

up the issue of which definition is more valid and, for that manner, more effective in
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providing representative values.

Herein, vertical transitions of via-type are analyzed in the frequency domain
and the performance under sinusoidal excitation is studied to provide a complete
understanding of their electrical characteristics at low as well as high frequencies.
In this study, the problems of printed circuit board via holes are analyzed through
both the scattering parameters and the flux/current methods, and the results are
compared in an effort to establish the relationship between the two techniques and
evaluate their contributions [21]. In addition, several different types of planar/non-
planar transition geometries including microstrip-to-CPW, CPW-to-slot, and CPW-
to-waveguide are fully characterized. The modeling of these structures is performed

with the edge-based 3-D finite element method and compared with the time domain

FDTD data.

4.2 Microstrip Short Circuit

Fig. 4.1 shows a microstrip line printed on a 250 ym GaAs substrate. This
line is short-circuited through a via hole which is etched in the substrate and then
metallized to provide a DC connection to the ground. For the sake of simplicity
the geometry of the via is considered cylindrical and not pyramidal as it is in high
frequency monolithic applications. Fig. 4.2 shows the electrical characteristics of the
microstrip short circuit vs. frequency evaluated by the FEM and demonstrate very
good agreement with the FDTD data. The slight discrepancy between the values
can be attributed to numerical errors associated with both techniques. As shown in
Fig. 4.2, the via provides good ground to the line up to 5 GHz and fails gradually at
frequencies above that.

Using the derived fields in the frequency domain, an equivalent inductance for



Figure 4.1: Geometry of a microstrip short circuit via hole at the center of the line. The
dashed lines represent PEC walls to terminate FEM meshes. W; = 85um,
Wy = 600pum, W3 = 1785pum, Hy = 250um, Hy = 600um, ¢, = 12.9, and
€2 = 1. The dotted lines around the geometry represent the outer boundaries
for FEM mesh termination.
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Figure 4.2: Scattering parameters for the via.

the via can be derived using two different approaches. One approach is based on the
flux/current definition of inductance and is applied, herein, to the fields derived by
the FEM. The other approach is based on the derivation of an appropriate equivalent
circuit by fitting the derived scattering parameters in the frequency range of interest
[168, 170]. For the geometries under study, a cascade of T-equivalent circuits, having
two series capacitors and a shunt inductor, is used to model the discontinuity. It is
found that the values of the capacitors are negligible (~ 1074 F), thus reducing the
equivalent circuit to a shunt inductor. This equivalent circuit approach is applied to
scattering parameters derived by the FDTD method. The inductances derived by
these two approaches are shown in Fig. 4.3 and exhibit very good agreement.

Let us now view the structure of Fig. 4.1 as two microstrip lines connected to the
same ground via. It can be observed from Fig. 4.2 that |Sy;| of the microstrip short

circuit increases with frequency, thus leading to unwanted coupling between the two
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Figure 4.3: Inductance of the microstrip short circuit with via hole. The inductance is
calculated using two different methods. In FEM, the flux density around the
via is used (f = 10 GHz). In FDTD, however, the via inductance is extracted
by fitting the derived S-parameters to a T-equivalent circuit.

microstrip line sections. In particular, the magnitude of the coupling coeflicient Sy
increases from —30 dB at 1.0 GHz to —4 dB at 30 GHz. The failure of the via
to provide a good DC connection at higher frequencies is intensified by increasing
the via height, as shown by the variation of the equivalent inductance and of the
scattering parameters vs. via height (see Figs. 4.3 and 4.4).

The frequency dependence of the via characteristics shows up also in the distri-
bution of the electric fields and the associated current flow, as illustrated in Fig. 4.5.
At lower operating frequencies, where the via presents an almost perfect ground, the
current flows from the microstrip line to ground through the wall of the via facing
the feeding line. Under these frequency conditions, an almost zero current flow is

observed toward the other connecting line, providing very high isolation between the
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Figure 4.4: Scattering parameters of the microstrip short circuit for two different substrate
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Figure 4.6: Geometry of a 1-port microstrip ground pad. This is a board level via. Wy =
2.30 mm, W; = 1.15 mm, Wy = 2.88 mm, W3 = 10.0 mm, H; = 1.0 mm, H,
= 2.0 mm, ¢; = 3.4, ¢ = 1. The dotted lines around the geometry represent
the outer boundaries for FEM mesh termination.

two lines. As the operating frequency increases, current flows to ground from the two
side walls of the via, with considerable current flowing towards the other microstrip

line, resulting in substantial coupling between the two lines.

4.3 Microstrip Ground Pad

In many high frequency applications, ground connections on substrate surfaces
opposite to the ground plane are commonly called for and need to be carefully char-
acterized. These DC/RF ground connections can be realized with the use of ground

pads, as shown in Fig. 4.6. In general, the characteristics of the vertical via hole
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Figure 4.7: The via inductance calculated from the flux/current definition at 10 GHz as a
function of via height.

and the ground pad can be represented by an appropriate lumped element. In this
study, the vertical via hole is modeled by an inductive element in view of its role
as a vertical current path from the microstrip line to the lower ground plane. The
inductance of the via hole has been computed in a wide frequency range and, without
loss of generality, the inductance is computed at 10 GHz as a function of via hole
height (see Fig. 4.7) using the well known flux/current relation applied to magnetic
field distributions.

One important issue associated with the high frequency characterization of dis-
tributed components, such as the ground pad, is the use of an appropriate reference
plane in the evaluation of the scattering parameters. The choice of this reference

plane greatly affects the derivation of a meaningful equivalent circuit. As shown in
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Figure 4.8: Phase of the $; of the microstrip ground pad computed using the FEM at
several different reference planes (D, = +0.41, 0.0, —0.44, —1.44, —2.88, and
-3.24 mm from the top to the bottom of the graphs). D, is 0.0 mm at the
geometrical center of the via. H; = 1.0 mm.

Fig. 4.8, the phase of the scattering parameter Sy; always varies with frequency, irre-
spective of the position of the reference plane, in a way that makes it very hard to find
an equivalent inductance which is both frequency and reference plane independent.
One might need to consider a more complex circuit arrangement to successfully fit
the derived parameters over a wide frequency range. As a result, the use of the scat-
tering parameters for the derivation of a simple equivalent circuit becomes much less
successful, as compared to the previous approach which is based on the flux/current
definition.

The variation of the inductance, which is computed based on the flux/current
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Figure 4.9: The via inductance of the microstrip ground pad calculated from the
flux/current definition for three different via heights (H; = 0.5, 1.0, 1.5 mm)
as a function of frequency.

definition, vs. frequency for various via heights is shown in Fig. 4.9. As seen from
these results, for substrate thicknesses which are approximately less than one fifteenth
of the guided wavelength, the inductance is independent of frequency, indicating that
the quasi-static predictions could be very accurate. The advantage of using partial
differential equation techniques, such as the finite element method, is found in their
ability to compute fields and power/energy distributions around the circuit and its
discontinuities. The visualization provided by the FEM technique can enhance the
qualitative understanding of the electrical performance of the components under
study. For example, Fig. 4.10 reveals the electromagnetic energy distribution under

the microstrip line at a plane 0.9 mm above the ground. As seen from the these
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Figure 4.10: Magnitude of the total electric field distribution at (a) f = 10 GHz, (b) f
= 15 GHz, and (c) f = 20 GHz under the microstrip line at z = 0.9 mm
plane. The edge singularity and the standing wave patterns of the electric
field distribution are clearly revealed.
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Figure 4.11: Magnitude of the magnetic energy distribution on the ground plane at f =
10 GHz. The via inductance is mainly determined by the magnetic energy
surrounding the via.

figures, at 10 to 15 GHz region, most of the energy is concentrated on the front wall of
the via with little fields distributing in the area around it. However, as the operating
frequency increases up to 20 GHz, the electromagnetic energy starts to spread into
the sides and back of the vertical via holes. In the same figure, the standing wave
patterns and edge singularity of the electric fields on the microstrip line connected
to the pad are clearly revealed. From the magnetic field distribution around the
vertical via hole, the frequency dependent via inductance has been calculated. As
shown in Fig. 4.11, the magnetic energy is concentrated at the front side of the via

hole, along the shortest current path from the line to the ground plane.

4.4 CPW-to-Microstrip Through-Via Transition

4.4.1 Without Via Hole

In high frequency applications, for better use of real estate, both surfaces of the

substrate incorporate printed circuit components which may contribute to similar
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Figure 4.12: Geometry of the transition from CPW to microstrip on different layers without
via hole. W, = 50pm , W, = 75pum , W, = 75um , W, = 200um , W =
1000pm , H; = 100pm , Hy = H3 = 400um , and €, = 12.9.
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Figure 4.13: Scattering parameters for the transition from CPW-to-microstrip on different
layers without via hole connection.

electric functions or tasks. When this approach is incorporated into circuit design,
the two substrate surfaces host complementary geometries to reduce cross-talk and
to increase the degree of circuit integration.

In this section, as an effort to use both sides of a substrate, a coplanar waveguide-
to-microstrip configuration is investigated. As shown in Fig. 4.12, the CPW line is
printed on top of a substrate and the microstrip line is fabricated on the other side
of the substrate surface. With this arrangement, the ground of the CPW can serve
as the ground of the microstrip, while the CPW apertures and microstrip run in
parallel and are separated by some distance to reduce parasitic cross-talk.

Given the geometrical details, the CPW transmission line has characteristic
impedance 43 Q , while the microstrip line reveals 50 Q. These lines are fabri-

cated on different sides of a 100 um thick GaAs substrate. As shown in Fig. 4.13,
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the computed cross-talk (|Sy;|) between the lines is near —15 dB at 20 GHz and
decreases further as frequency decreases. In other words, more than 95% of the in-
put power is reflected back to the input port in the low frequency region, revealing
relatively good isolation between the ports. However, as the operating frequency in-
creases up to 100 GHz, this cross-talk increases monotonically up to approximately
—4 dB. The increased cross-talk could be ascribed to several facts: high frequency
radiation effects from the open end of the CPW and microstrip, or the higher order

and substrate modes generated between the two transmission lines.

4.4.2 With Via Hole

The CPW-to-microstrip transition structure studied in the previous section can
be modified to have much less insertion loss by placing a via hole between the two
transmission lines, as shown in Fig. 4.14. When those two lines are interconnected
through the metallized via hole between the end of the microstrip line and the center
conductor of the CPW, a wide band direct DC/RF connection is obtained. As a
result, the transition structure can operate in an ideal fashion, at least in the low
frequency region.

The computed S-parameters of the transition are shown in Fig. 4.15. The return
loss remains under —20 dB for frequencies as high as 40 GHz. The FEM calculated
values agree very well with that of the ideal transmission line. Note that the theoret-
ical value of the reflection coeflicient of an ideal transmission line is given as —22.5
dB for 43 Q-to-50  impedance step. As the operating frequency increases up to 100
GHz, the performance of the transition starts to degraded, giving a return loss of
about —9 dB. Even though the transition shows degraded performance in the high

frequency region, the overall characteristics closely follow that of the ideal transmis-
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Figure 4.14: Transition from CPW to microstrip on different layers through via hole. W, =
50pum, W, = 75um, W, = T5pm, W, = 200pm, W = 1000um H; = 100um,
Hy = H3 = 400pm , and ¢, = 12.9. The vertical via is an empty rectangular
cavity with PEC walls.
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Figure 4.15: Scattering parameters of the CPW-to-microstrip transition with vertical via
hole connection.

sion lines in the low frequency region. This type of transition structure can be used
in multi-layer MIC or MMIC interconnects, the hermetic sealing of a package, and

antenna feeding networks.

4.5 Channelized CPW-to-Microstrip Transition

In this section, another type of CPW-to-microstrip transition geometry, which is
planar instead of the non-planar configuration in the previous section, is carefully de-
signed and characterized for broadband applications. The planar CPW-to-microstrip
transition has found many important applications in the area of hermetic packaging,
high frequency probing, etc. Fig. 4.16 shows the transition from a channelized CPW
[171] to a microstrip line and in the transition, both CPW and microstrip lines are
printed on the same substrate surface, as opposed to the previous CPW-to-microstrip

transition.
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Figure 4.16: Geometry of a channelized CPW to microstrip transition. W, = 50um, W, =
75pm, W = 1000pm, Hq = 400um, H, = 500um and ¢, = 12.9.
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Figure 4.17:  Scattering parameters for the channelized CPW-to-microstrip transition.

The scattering parameters of such a transition geometry printed on GaAs sub-
strate of thickness 400 pm are shown in Fig. 4.17. The insertion and return losses
remain almost constant in the frequency range up to the 40 GHz region. The agree-
ment between the FEM and FDTD results is very good, and further the results of
both techniques agree very well with those obtained using the space domain integral
equation method (SDIE) [172]. Also, compared to the value —12.7 dB computed
from the ideal transmission line step discontinuity, 50-to-80 €, the computed data
give very close results regardless of its non-TEM propagating modes.

Similar behavior has been found for the case of 100 um GaAs substrate, except
that in this case the return loss decreases to about —20 dB. Note that the return
loss of the ideal transmission line having a 43-t0-49.5 Q) discontinuity is —22.5 dB.
The reason for this good performance irrespective of the substrate thickness is that

the field distribution around the center conductor of the chanellized CPW becomes
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Figure 4.18: Magnitude of transverse component of the electric field at 2 = 390um plane.
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very similar to that of the microstrip (i.e., most of the fields are confined under
the center strip). Fig. 4.18 shows the magnitude of the tangential (to the surface)
component of the electric field at a plane just underneath the dielectric-air interface
at 20 GHz. The standing wave patterns along the CPW and microstrip lines can be

clearly observed.

4.6  Asymmetric 2-port Via with Plated-Through-Hole

In a multi-layer circuit environment, the vertical interconnections between various
signal lines in different layers are frequently encountered and need to be modeled for
a thorough understanding of low as well as high frequency effects. As a matter of
fact, the modeling procedure is focused on the stage of finding an appropriate lumped
equivalent circuit, due to its usefulness and simplicity, despite its limited accuracy.
In general, the vertical interconnections are fabricated using a plated-through-hole
(PTH) in the ground planes located between the signal layers. Even though it is
possible to have more than one ground plane and signal layer, in this section, we
considered a simplified geometry which has two signal layers and one ground plane
between them, and the two signal lines are connected through a vertical via hole.

Fig. 4.19 has the schematic view of an asymmetric 2-port via hole with a PTH
in the middle of the substrate. The PTH is filled with air, while the two substrates
have the same relative dielectric constant (¢, = 4.5) and thickness (H; = H, =
0.2 mm). To examine the effect of PTH size on the transition performance, three
different PTH opening sizes have been examined while the other geometrical factors
remained unchanged.

At first glance, it is expected that as the size of the opening D increases, the

capacitance between the vertical via and the ground plane becomes smaller and the
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Figure 4.19: Geometry of asymmetric two port via hole passing through a plated-through-
hole (PTH) in the middle of the substrate. H; = H; = 0.2 mm, W; = 0.4
mm, Wy = 0.8 mm, €1 = €2 = 4.5, D = 0.2, 0.4, 0.7 mm (3 cases).
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Figure 4.20: Comparison of the S-parameters for 3 different PTH sizes.

resulting reflection coefficient would be reduced. However, as shown in Fig. 4.20,
the reflection coefficient increases as the distance between the via hole and the open-
ing in the ground plane increases, which means there is more reflection with larger
opening size. Considering the fact that increasing D implies less and less interaction
between the via hole and the ground plane, the above results seem to be contradic-
tory. However, as seen in Fig. 4.19 the microstrip lines are connected to the vertical
via through its pads, and there are impedance mismatches between the microstrip
lines on the substrate and lines crossing the air gap between the via pads and the
microstrip lines. While the characteristic impedance of the microstrip lines is 48 ),
that of the line across the gap has a much higher value. As a result, as the length
of the high impedance line section becomes longer, the effect of the discontinuities
becomes intensified. Therefore, it is inappropriate to use the above configuration to

examine the effect of the PTH opening size. It is recommended, instead, that for the
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Figure 4.21: Via inductances of two different via height: H; = H, = 0.1 and 0.15mm
and D = 0.4 mm. Inductances are evaluated from the magnetic flux density
surrounding the via.

characterization of the effect of the PTH sizes, the air region between the via and
PTH has to be filled with the same dielectric material to minimize the transmission
line discontinuities.

The equivalent via hole inductances having two different heights (H; = H, = 1.0
and 1.5 mm) are computed from the magnetic flux density, as shown in Fig. 4.21.
It is observed that the equivalent inductance of the via hole inside of the PTH has
a slight variation as operating frequency increases and shows deviation from linear
dependence on the via hole height. Fig. 4.22 shows a simple equivalent circuit (so
called, type 1) of the asymmetric 2-port via hole geometry. While the inductance
values (L,i,) of the via hole are extracted from the flux model, the shunt capaci-
tance is found by matching the scattering parameters, both magnitude and phase,

as computed from the FEM with the equivalent circuit.
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Figure 4.22: Type I equivalent circuit used for the asymmetric 2-port via hole geometry.
Note that if the PTH opening becomes smaller, C increases and finally be-
comes a short circuit.

Fig. 4.23 shows an example of the matching procedure. As shown in the figure,
the magnitude and phase data reveal some degree of discrepancies due to the over-
simplified equivalent circuit. For the transition with D = 0.2 mm and H, = H, =
0.1 mm, the inductance and capacitance values of the type I equivalent circuit are
determined as L,;, = 25 pH and C = 0.28 pF for the best agreement between the
FEM and the equivalent circuit data.

It is interesting to observe that increasing the distance D causes a smaller ca-
pacitance value and finally renders zero capacitance, leading to an open circuit as
D becomes infinity. This observation is consistent with the physical structure, since
infinite D implies no ground plane. Similarly, decreasing D causes a larger capaci-
tance and eventually makes the shunt capacitance a short circuit, which is what is

happening in reality.
4.7 Double Via Hole
In many microwave and millimeter-wave circuits, more than one via hole is used

in close proximity to provide certain functionality, such as ground path, shielding, or

vertical transition. However, these via holes can cause undesirable effects due to their
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Figure 4.23: Matching the S parameters using the type I equivalent circuit (Circle : FEM
data, Line : Equivalent circuit). Hy = H, = 0.1 mm and D = 0.2 mm. L,
= 25 pH, C = 0.28 pF with type I equivalent circuit.
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Figure 4.24: Geometry of double via hole. H = 1.6 mm, W; = 1.4 mm, W, = 1.0 mm (85
Q), W3 = 0.2 mm, Wy = 1.0 mm, Ws = 1.4 mm, €, = 4.5,D = 0.2, 0.4, 0.6,
0.8 mm (4 cases)

mutual interactions, that is, electromagnetic coupling, depending on the operating
frequency and geometrical factors. As a result, these closely spaced via holes have to
be modeled and used carefully to provide the desired properties and prevent spurious
phenomena. For successful design of high performance high frequency circuits, it is
imperative to accurately predict the mutual coupling of multiple via holes. In view of
this, in this section, the effect of the electromagnetic coupling between two identical
ground via holes are studied and an appropriate equivalent circuit is developed to
depict the coupling effects.

As shown in the schematic view of the structure in Fig. 4.24, two via holes are
placed face to face each other with separation distance D. To model the coupling

from one via hole to the other, the separation distance is changed from 0.2 to 0.8 mm
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Figure 4.25: Comparison of the S-parameters for 4 different separation distances.

and the corresponding scattering parameters are computed as presented in Fig. 4.25.
As can be observed in the figure, the cross talk, |Sy;|, between two via holes gradually
increases as the operating frequency increases and becomes stronger as the distance
becomes smaller. The electromagnetic field distributions around the transition are
shown in Fig. 4.26 revealing the standing wave patterns on the microstrip lines and
its edge singularity. Also, as shown in the figure, more electromagnetic energy is
coupled from one line to other as operating frequency increases.

Derivation of an appropriate equivalent circuit representing the coupling effects
between the via holes could provide a useful tool for design and optimization of high
performance MIC and MMIC circuits, in addition to intuitive understanding of the
electromagnetic phenomena. As a response, in this study, the type II equivalent
circuit shown in Fig. 4.27 is derived for the geometry. Note that as the separation

distance D becomes very large, the mutual inductance L;, and capacitance Ci,
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(b)

Figure 4.26: Magnitude of the total electric field distribution at (a) f =4 GHz and (b) f =
10 GHz under the microstrip line at z = 1.5 mm plane. The edge singularity
and the standing wave patterns of the electric field distribution are clearly
revealed.
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Figure 4.27: Type II equivalent circuit used for the double via hole geometry. The L1 and
C12 represent the mutual coupling between the via holes. Note that if the
separation distance D increases, the L becomes smaller and finally becomes
ideal short circuit.

become negligible, and finally become two separate circuits having L,;, connected to
the ground plane directly. It is also interesting to observe that there are resonances in
the high frequency region due to the shunt impedance elements and these frequencies
are tabulated in Table 4.1.

Fig. 4.28 shows an example of the S-parameter matching procedure, and in Ta-
ble 4.1 the equivalent circuit parameters are listed for the four different separation
distances. For all the cases, the via inductance L,;, is forced to have the same value,
while the mutual inductance L,; and capacitance C;, are searched to find the best fit
of the FEM data. As shown in the table, the capacitance values remain constant in
all the cases, but the mutual inductance L, changes as a function of separation dis-
tances. As the distance D increases, Ly, decreases from 120 to 80 pH for D = 0.2 and
0.8 mm, respectively. The constant coupling capacitances and changing inductance
reflect the fact that the coupling is mainly coming from the vertical current flow on
the via holes and their resulting magnetic fields. The derived equivalent circuit can

be used to model and predict the electromagnetic coupling among the multiple via
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Figure 4.28: Matching the S parameters with the type II equivalent circuit. L,;,, = 380

80 pH, and C12 = 0.1 pF. H = 1.6 mm, W; = 1.4 mm, W, = 1.0

pH, Ly,

=45,D = 0.8 mm.

1.0 mm, W5 = 1.4 mm, €

Equivalent circuit.

mm, W3 = 0.2 mm, Wy =

Circle

: FEM data, Line :
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[ D [mm] Lyia [pH] [ Ll2 [pH] Cl? [pF} [ fres [Gﬂm
0.2 380 120 0.1 45.94
0.4 380 105 0.1 49.12
0.6 380 90 0.1 53.05
0.8 380 80 0.1 96.27

Table 4.1: The equivalent circuit parameters of the double via hole structure and corre-
sponding resonance frequency. The via inductance L,;, is extracted from the
flux model, while the shunt terms, L1, and Cy, are determined to match the
FEM data with the equivalent circuit.

holes often encountered in the MIC and MMICs.

4.8 CPW-to-Slotline Transitions

With the advance of the slot antenna and its array technology, leading to a high
efficiency and narrow beam antenna system [173], the effective feeding network of
the antenna plays a critical role for its performance [174]-[179]. In this study, two
different types of slot antenna feeding networks, planar and non-planar, are modeled
using the finite element method. The first transition is designed for direct coupling
of RF power from the CPW to the slotline, and printed on the same side of the
substrate, which is easy to fabricate. In contrast, the second structure is devised for
electromagnetic coupling from the grounded CPW to the slotline on the opposite
side of the wafer without using bonding wires, and is thus more reliable for harsh

environments.

4.8.1 Planar Transition

The schematic diagram of a planar CPW-to-slotline transition with an air bridge
is illustrated in Fig. 4.29. The characteristic impedances of the CPW and slotline
are 60 and 70 ©, respectively. The input CPW line is terminated in an open circuit

and an air bridge is used to connect the open end of the CPW center conductor
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Figure 4.29: Geometry of the CPW-to-slotline planar transition with air bridge: L = 4.751
mm, S; = 0.114 mm, S; = 0.129 mm, W; = 0.305 mm, W, = 0.254 mm,
W3 =0.178 mm, H = 0.635 mm, and ¢, = 10.5.
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Figure 4.30: Scattering parameters for the coplanar waveguide-to-slotline transition with
air bridge.

to the opposite edge of the slotline. The air bridge plays a role of equalizing the
potential between the two conducting surfaces and suppressing any spurious modes.
The thickness H of the substrate is 0.635 mm with ¢, = 10.5, and the other side of the
substrate is not metallized. The circular bend at the end of the slotline is intended
to provide a smooth transition and the length L, is designed to be ~ Ay(sotiine) /4 at
the center frequency, 7 GHz. As a result, the electric field has a minimum at the end
of the slotline (short circuit) and a maximum at the transition region.

In the modeling procedure, the circular bend of the slotline section is approxi-
mated to a rectangular geometry having the same length, and the curved air bridges
are also replaced with infinitely thin piecewise linear PEC wires. Note that the FEM
modeling is performed under a shielding environment. The performance of the tran-

sition is shown in Fig. 4.30. It exhibits very narrow band characteristics due to the
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rectangular approximation and also shows periodicity of frequency response.

4.8.2 Non-Planar Transition

A non-planar CPW-to-slotline transition, illustrated in Fig. 4.31, is studied in
this section. The characteristic impedance of each transmission line section is 70, 80,
and 70 () for the CPW, microstrip (elongated CPW center conductor) and slotline,
respectively. To provide a good short circuit effect, the open end of the CPW ground
planes has been extended by length W, which is Agmicrostrip)/4. In addition, to
suppress the parallel plate waveguide mode between the two conducting surfaces, the
CPW ground planes are trimmed to finite. The overlapping lengths of the elongated
CPW center conductor and the underlying slotline are designed to be Ag(microstrip)/4
and Ag(si0r) /4, respectively, at the center frequency, 6 GHz. Since the normal electric
field has a maximum value at the open end of the microstrip line, the magnetic
field has its maximum at Ag(microstrip)/4 from the open end, thus providing maximum
coupling from the microstrip to the slotline.

For numerical modeling, the curved section of the slotline is approximated to a
rectangular geometry for simplicity and the whole structure is placed inside of closed
PEC surfaces (i.e., a shielding environment). On the other hand, the measurement
was performed under an open environment. As shown in Fig. 4.32, the modeled
and measured data reveal a reasonable correspondence, including the prediction of
the two resonances in the frequency region of interest, even though the modeled
geometry has narrow bandwidth and inferior performance due to the rectangular ap-
proximation. From the above observation, it becomes clear that to accurately predict
the performance of the transition structures having circular geometries, the curved

structures need to be modeled exactly. Compare to rectangular shaped geometries,
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Figure 4.31: Geometry of the CPW-to-slotline non-planar transition: L; = 2.54 mm, L, =
2.54 mm, L3 = 5.0 mm, Ly = 6.229 mm, W; = 2.54 mm, W, = 0.152 mm,
W3 = 0.318 mm, Wy = 2.54 mm, W5 = 0.178 mm, H = 0.635 mm, and
e = 10.5.
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