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ABSTRACT

Electromagnetic Scattering from Jet Engine Inlets Using
Analytical and Fast Integral Equation Methods

by
Hristos Thomas Anastassiu

Chair: John L. Volakis

Analytical and numerical techniques are employed for the evaluation of the Radar
Cross-Section (RCS) of jet engine inlets. Initially, the Mode Matching technique is
used for the extraction of reference data associated with canonical engine-like struc-
tures. Of most importance in this work is the utilization of the inherent cylindrical
periodicity of the geometry to reduce the CPU time and memory requirements of
rigorous integral equation methods for the characterization of jet engines. Finally,
the Adaptive Integral Method (AIM) is applied to the RCS calculations of large, non-
canonical geometries. The low computational complexity and storage requirements
of AIM, combined with the exploitation of the structure periodicity, are especially
attractive properties that allow the RCS analysis of very complex and electrically

large jet engine inlets for the first time.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Previous Research

One of the most challenging problems in modern computational electromagnetics
is the scattering characterization of aircraft configurations. Our interest in such an
analysis is due to the fact that reliable target identification, a very important task
in both military and civilian applications, is based on accurate Radar Cross-Section
(RCS) calculations. Among the various contributors to the RCS, measurements have
shown that the jet engine inlets have very significant impact to the overall signature
of the airplane structrure. As a result, over the years numerous studies have been
initiated for the analysis of jet engine inlets and their components.

Numerous studies have been published on the analysis of propagation through
ducts of rectangular and cylindrical cross-sections. Among them, Johnson and Moffat
[1] presented a rigorous Wiener-Hopf analysis for the circular straight duct termi-
nated by a short, and Ching-Chao Huang [2, 3] considered a GTD/modal analysis
of circular ducts terminated by a simple blade configuration. The case of coated cir-
cular waveguides was investigated in [4] while the relative significance of the modes
within the cavity was studied in [5]. In the case of large size, arbitrary cross-section

ducts, high frequency (asymptotics) methods have been introduced. Among them,



the Shooting and Bouncing Ray (SBR) method [6] has been succesfully employed to
track the ray fields within the duct. The SBR decomposes the aperture fields into
a set of parallel rays which are then tracked into the duct in accordance with Geo-
metrical Optics (GO) laws. An important advantage of the SBR is its simplicity and
ease of interfacing with solid modeling packages [7]. However, although the SBR is
attractive for general-purpose calculations, it lacks accuracy because it neglects rim
diffraction and fails at caustics. Some of the disadvantages of the SBR method can
be overcome by subdividing the aperture into smaller subapertures, and this is the
basic concept of the Generalized Ray Expansion (GRE) method [8, 9]. Unlike the
SBR, the rays are not necessarily parallel to each other, and consequently the GRE
is capable of tracing non-planar wavefronts. Finally, Lu and Bansal [10] proposed a
Boundary Relaxation Method (BRM) to numerically evaluate the model reflection
coefficients at the duct termination.

Although the above ray methods have been quite successful in modeling the field
propagation through large cross section ducts, they are not suited for characterizing
ray reflections from complex jet engine terminations which have irregular boundaries
and edges. With this in mind, our motivation in our research is to present methods
for the characterization of irregular engine-like terminations placed at the back end

of the duct.

1.2 Methods of Analysis

The jet engine problem is considered extremely difficult and challenging, mainly
due to two reasons: large size and geometrical complexity. A typical jet engine
inlet has a diameter of about 50 wavelengths in the X band, thus ruling out the

use of any brute-force standard numerical techniques, which are typically suited for



3 — 5\ structures on non-distributed platforms. On the other hand, high frequency
techniques may accurately model the field propagation within the hollow duct, but
fail to characterize the termination region which includes the electrically small details
of the engine blades. Modal methods can treat some canonical blade configurations,
but cannot be applied to realistic engines with more complex termination geometries.
So far no single method has been adopted for the characterization of the entire engine,
therefore hybridization of several techniques is absolutely essential for a complete
analysis.

One of the most serious drawbacks encountered during our investigation of the
problem was lack of reference data. All previous analytical or numerical results were
assoclated with either overly simplistic or too small geometries. Specifically, no data
had ever been published regarding the presence of engine blades inside the cylindrical
inlet. Since complex computer codes based on the Finite Element Method (FEM)
were the original main focus of our research [11, 12], our need for code validation
urged us to actually develop reference results on our own.

The first objective of the thesis is to develop a rigorous method applicable to
scattering from engine-like canonical structures. The purpose of this effort was to
develop an understanding of the scattering mechanisms within the inlet (coupling
patterns among modes, dependence of fields on blade geometry, e.t.c.), as well as to
calculate RCS results of some canonical configurations that can be used as reference
data. Since rigor and best possible accuracy was our goal, modal techniques was
our choice. Specifically, the Mode Matching (MM) method [13, 14] was applied to
three different cavity terminations (cylindrical hub, array of straight blades, array
of curved blades). The results were found to be in excellent agreement with the

pertinent measurements, and therefore the developed MM code has since been an



indispensable tool for the validation of other, more versatile numerical techniques.
Our calculated RCS patterns for inlets terminated with engine-like structures were
published for the very first time in the literature [15, 16].

Due to its limitations, the MM method can only be applied to canonical geome-
tries, where analytical expansions of the fields in terms of modes are possible for
some critical sections of the termination. On the contrary, the geometry of realis-
tic engines is irregular, and not amenable to modal representations. Furthermore,
even among various canonical geometries, the MM technique must be reformulated
for each particular case. Also, memory and CPU time considerations for modern
computer facilities restrict its performance to inlets smaller than 20 wavelengths in
diameter. To address the limitations of the MM code, a Finite Element (FEM) code
was developed [11, 12], but because of its volumetric nature, this approach also has
exorbitant memory requirements. Finally, standard integral equation methods, such
as the Moment Method (MoM), is completely out of question, for the same reasons.
Our need for versatile numerical techniques with low computational complexity urged
us to investigate a few of the so-called “fast integral equation methods”. Specifically,
the Adaptive Integral Method (AIM) [17, 18] is given particular attention, due to its
very low computational requirements for flat surfaces, such as jet engine blades.

The application of AIM to the problem of scattering from jet engine inlets was ex-
tensively studied leading to very successful simulations of the jet engine. Originally,
a free space AIM analysis was developed and validated, and the method was subse-
quently applied to field calculations inside the engine. Several fundamental modifi-
cations of the method were necessary before the technique could be used within a
circular waveguide geometry. It is shown that very significant reduction of compu-

tational requirements can be achieved over the expensive Moment Method (MoM)



without accuracy compromise. Crucially important to this work is the exploitation
of the jet engine cylindrical periodicity to reduce the computational domain down
to a single periodic sector (“slice”) of the structure. The versatility and inherently
low computational complexity of AIM, combined with the “slicing scheme” enables

us to analyze electrically large, realistic engines for the first time.

1.3 Format of the Thesis

Chapter II presents the application of the Mode Matching Technique to a number
of canonical engine-like structures. Three different types of termination are consid-
ered, and in the case of curved blades a novel analysis based on generalized modes
is performed. Several comparisons with measurements are shown, and the excellent
agreement establishes the method as a reliable source of reference data.

The basics of the Adaptive Integral Method (AIM) are discussed in Chapter III.
The method is presented in a mathematically rigorous way, along with considerations
regarding its application to relatively flat surfaces. Numerical results and compar-
isons with the MoM show the impressive accuracy of the method. Parallelization
schemes are also developed and the significant advantages of AIM over the MoM
in terms of storage requirements and computational complexity are clearly demon-
strated.

In Chapter IV the circular periodicity of the jet engine geometry is exploited
to reduce the effective size of the engine by a factor equal to the number of blades.
Analytical results are derived for both perfectly conducting and dielectric materials.
The immediate consequence of this analysis is a very significant reduction in memory
and CPU time requirements of any integral equation method applied to the jet engine

geometry.



In Chapter V AIM is directly applied to field calculations inside the cylindrical
duct. The basic AIM concepts are substantially modified and a cylindrical AIM grid
is introduced in conjunction with the “slicing scheme” for further storage and CPU
time savings. Various resulting RCS patterns are shown, proving the validity and
computational efficiency of the method.

Several appendices describe pertinent mathematical details not given in the main

text.



CHAPTER II

THE MODE MATCHING TECHNIQUE

2.1 Background of the Method

The Mode Matching (MM) method [13, 14] is an analytical technique applicable
to the modeling of electromagnetic propagation through waveguide junctions. The
fundamental requirement of the method is that the geometries of the waveguide
sections be separable. In the associated coordinate systems the Helmoltz equation
can therefore be solved analytically and the fields can be expressed as superpositions
of modes (eigenfunctions). The unknown coeflicients of the field expansions are
determined by invoking the appropriate boundary conditions at the interface between
the waveguide regions, i.e. continuity of the tangential components of both the
electric and magnetic fields. Application of the latter conditions, in conjunction with
the orthogonality properties of the eigenfunctions leads to an infinite linear system of
equations, the solution of which yields the undetermined coeflicients. A closed form
solution is possible in a few simple cases [13], but in general, approximate, numerical
solvers must be used, after careful truncation of the system.

The method has been successfully applied to several microwave waveguide prob-
lems [19, 20, 21, 22, 23, 24], but usually the analyzed structures have been fairly

small, supporting only few propagating modes. In this chapter we apply the method

-~



to jet engine inlets, where a much larger number of propagating modes exists, re-

quiring much more intense and challenging calculations.

2.2 Cylindrical Hub Termination

2.2.1 Mode Matching Formulation

In this section we apply the MM technique to the geometry of Fig. 2.1. We
assume that a plane wave is incident on the open end of the cylindrical duct and
we are interested in evaluating the scattered field as a function of the incidence
angle. In accordance with the MM technique, the fields in regions 1 and 2 are
first expressed as a weighted sum of waveguide modes propagating either along the
positive or negative z direction. Of course, the coefficients of the expansion are then
determined by enforcing tangential field continuity across the interface separating
regions 1 and 2. Before the application of the method it is necessary to evaluate the
coupling of the incident plane wave with the forward propagating modes of region 1.

The geometries of regions 1 and 2 are separable, and therefore Helmholtz’s equa-
tion can be solved analytically to yield the appropriate mode representations in each
region [25]. These representations are given explicitly in Appendix A. As in Ap-
pendix A, the transverse fields of each mode are denoted by €, h; », where e stands
for the electric field, and likewise h stands for the magnetic field. The subscript i
may be either 1 or 2, corresponding to regions 1 and 2 respectively, and n is the
characteristic integer of the mode. In region 1 the modes can be TM or TE, whereas
in region 2 they are TM, TE or TEM.

Using the mode functions given in Appendix A, the transverse components of
the incident field are represented as a superposition of modes propagating along the

—z direction, viz.



Figure 2.1: Cylindrical inlet terminated by a cylindrical hub

El' = Y anerexp {jfnz} (2.1)
n=1

Hf = Zanhlynexp{jﬁlynz} (2.2)
n=1

where the a, coefficients can be found in terms of the incident plane wave as (2, 3]:

nrelkr

Jwp

an =

Einc(0) - Epogn (1) (2.3)

where r is the spherical far zone distance from the center of the open end of the
cavity, Ei. (0) denotes the incident plane wave at the center of the open end before
1t couples into the cylinder and E,.q, (r) is the radiated field of the nt* outgoing
mode of unit power impinging at the inlet mouth from the interior of the waveguide

(see Appendix A). Eq. ( 2.3) can be proven via the reciprocity theorem [26], by using
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a delta current test source at a far field location r. The transverse fields reflected at

the interface take similar forms, namely

E{ = Y beersexp{—jpinz) (2:4)
n=1

HtlT = —anhl,nexp{—jﬁl,nz} (25)
n=1

where b, are unknown coefficients to be determined. The transverse fields in region

2 can be expressed as

=
[
NgE

cme2,m exp {jﬂlmz} +

3
u‘

_+_
WK

dme2,m €xXp {_jﬁlmz} (26)

3
)

thZ,m exp {jﬂ?,mz} -

G
I
K

3
)

1
gk

dmhymexp{—7082.m2} (2.7)

3
I

The latter are sums of +z and —z propagating modes, where the coefficients Cmy o, by
must be determined by enforcing continuity of the tangential fields at the interface
(2 = 0) and the required boundary condition at the back of the guide (z = —1y).

Mathematically, field continuity at z = 0 implies

Eiilz=0 + E11T|z=0 = Eg 2=0 (28)
H{|.=0 + HY|.=0 = H}|.— (2.9)

Vp € [a,b],V¢ € [0,27]

and
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EY|.c0 +E|.=0 =0 (2.10)

Vp € [0,a],Y¢ € [0, 27]

To facilitate the analysis, we introduce the vectors

{a} = [ay,...,anp) (2.11)
{b} = [by,....ba )" (2.12)
{c} = [eryoreng) (2.13)
{d} = [dy,....da]" (2.14)

where M; is the number of modes in the " region. Evidently, for an exact modal
representation, an infinite number of modes has to be used, i.e. for both regions
M, — oo.

Substituting ( 2.1), ( 2.4) and ( 2.6) into ( 2.8) and ( 2.10), taking the dot product
of the resulting equations with e; ,, and then integrating over the cross-section of

the interface yields

[U]({a} + {b}) = [P]" ({c} + {d}) (2.15)

where the superscript T denotes the transpose of the matrix. The elements of the

square matrices [P] and [U] are given by

b pr2r
Prn = / /0 esm - €1npdpdd (2.16)

b r2r
(Smn/ / €1,m el,dePd¢ (217)
0 Jo

s
S
I
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in which 4,,, is the Kronecker delta. Next, on substituting ( 2.2), ( 2.5) and ( 2.7)
into ( 2.9), upon taking the dot product of ( 2.9) with h,,, and integrating over

the portion of the interface which excludes the perfectly conducting disk defined by

p < a yields
[R]({a} — {b}) = [V]({c} - {d}) (2.18)
where
b p2r
Ry = / / ha - hy . pdpdd (2.19)
a JO
b pr2r
Von = 6 / / ha - ho mpdpdd (2.20)
a JO
Finally, upon enforcing the boundary condition at the back end (z = —I,) we obtain
the system
[D]_l {d} = [Send] [D] {C} (221)
where
Drn, = Opnexp {—7082.ml2} (2.22)

and [S.,q4] denotes the scattering matrix at the back end of the termination.

It can be shown that

[PI[U]" = [V]"'[R] = (1] (2.23)
provided the modes in both regions are normalized to unity power according to

( A.10) of Appendix A. Using this identity, it follows from ( 2.15), ( 2.18), ( 2.21)

and ( 2.23) that
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{b} = (W] + )" (W] - [T)) {a} = [S] {a} (2:24)

where

-1

(W) = (L) ([T + [D] [Send) [D] )([[] - D] [Send) [D] ) [L]  (225)

and [I] is the unit matrix. The matrix

[S] = ([W]+ @)™ (W] - 1) (2:26)

is the generalized scattering matrix of the termination and is independent of the
excitation. It is worth mentioning that the elements of [L] for this geometry can be
evaluated in closed form (see Appendix A for the relevant analytical expressions).

It is evident from ( 2.24) that the infinite modal scattering matrix must be trun-
cated for a numerical evaluation of the vector {b} and extreme care is necessary to
achieve an appropriately convergent result. Mittra and Lee [13] and Shih [14] discuss
these difficulties, and point out that reliable convergence can be achieved by choos-
ing an appropriate ratio M;/M; of the number of modes used in the two regions.
This ratio depends on the geometry, and it can be shown [27] that once the relative
convergence problem is resolved by appropriately choosing the ratio M;/M,, good
conditioning of the system is guaranteed.

Once {b} is determined, the far zone radiated fields from the open end are ob-
tained by integrating the modal fields over the aperture (Kirchhoff approximation)
and the appropriate expressions are given in Appendix A. Summing over all the
modes, using the b, coefficients as weights, yields the total scattered field of the

structure.
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2.2.2 Numerical Results

Figure 2.2 shows some numerical results for the geometry shown in Fig. 2.1.
In generating the calculated data, 420 modes were used to represent the fields in
each region, i.e. the order of the cylindrical functions ranged from n = 0 to n = 14
and 7 modes for each n were taken into account (i.e. we used 15-7 = 105 TM
modes, plus 105 TE modes, multiplied by 2 for even and odd angular behavior.
For region 2, the TEM mode substituted one of the less important evanescent TM
modes). Clearly, the MM calculations are in good agreement with data based on
the Hybrid Modal Technique [28], where the termination is modeled by the method
of moments. It is worth noting that the MM results converge rather slowly, and a
smaller number of modes may not yield correct values for the RCS. On the other
hand, the inclusion of more modes requires the inversion of larger matrices which
may be possibly associated with worse matrix condition numbers.

Figure 2.3 depicts the amplitudes of the elements of the generalized scattering
matrix [S] corresponding to the above geometry. It is evident that coupling exists
only among modes of the same order (of the cylindrical function), and this can be
proven analytically. Also, TM and TE modes do not couple to TM and TE modes
(respectively) of different angular variation, e.g. a TM mode of cos né variation does
not couple to a TM of sinn¢ variation. However, intercoupling among TM and TE
modes does occur only for modes having different angular variation (i.e. one of them
having a cosn¢ and the other a sinng variation). Moreover, the coupling between
any two given modes is invariant if the angular variations of both modes are switched.
Finally, all modes couple significantly only to their closest neighbors, resulting to al-
most banded scattering matrices. Large off-diagonal elements (whenever they occur)

correspond to evanescent modes.
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Figure 2.2: RCS (dB/A?) pattern calculated by the Mode Matching Technique (solid
line) and the Hybrid Modal Technique (dashed line) for the geometry
shown in Fig. 2.1. The specific dimensions for this calculation are:
a=1.5)\b0=3)\1 =16.595),l, = A a) ¢ polarization, b) 0 polarization.
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Modes 1-10: TMo,1 to TMo,10 (even)
Modes 11- 20: TM1,1 to TM,10 (even) 60~ 0
Modes 21- 30: TM2,1 to TMz,10 (even)

Modes 31- 40: TEo,1 to TEo,10 (odd)

Modes 41- 50: TE1,1 to TE1,10 (odd)
Modes 51- 60: TE21 to TE2,10 (odd)

Figure 2.3: Amplitudes of the elements of the generalized scattering matrix calcu-
lated by Mode Matching for a hub termination with @ = 0.503\,b6 =
1.66A,[; = 16.595A, [ = 0.335\
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2.3 Periodic Array of Grooves Termination

2.3.1 Mode Matching Formulation

In this section we apply the Mode Matching (MM) technique to the more com-
plicated geometry of a hollow cylinder terminated by a cylindrical array of grooves
as shown in Fig. 2.4. Evidently, the modes in region 1 are identical to those of
the previous geometry. To provide a modal representation of the fields in region 2,
we will assume that the array consists of J grooves, that are essentially cylindrical
(pie-shell) sectors of angular extent @,. In each of the pie-shell sectors the wave
equation can be solved analytically, leading to the modal solution given in Appendix
A. The modes in Appendix A refer to the k" groove whose rightmost edge makes

an angle
b =1+ (K —1)— (2.27)

with the x-axis. Note that no TEM mode exists within the grooves, since there is no
seperation among the conducting surfaces of each groove.

The fields in each region can be again represented by ( 2.1)- ( 2.7), with the
understanding that e, , and h,, are different. To find the coefficients Cms dpmy by We
proceed with the enforcement of the continuity conditions of the tangential fields at

the interface (z = 0), viz.

ti
El

=0 + El|.z0 = Eb.— (2.28)
Hil.zo + H{|.zo = H}|. (2.29)

Vp € [a,0],Y9 € [px, b + bu], V5 € {1,..., J}

and to these we must add
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Figure 2.4: Cylindrical inlet terminated by an array of straight blades.
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Eii|z:0 +E"|,.=0 elsewhere (2.30)

i.e. on the metallic portion of the interface. Following the same mode matching
procedure used for the previous geometry, ( 2.28)-( 2.30) can be used to determine
the scattering matrix of the structure. As before, upon applying the MM technique
at the interface we obtain a system of equations for the mode coefficients. Then, on
eliminating the coefficients of the modes in region 2 (groove region) we deduce that

(12.26) is again valid except that the matrix [W] must be replaced by

-1

J
(W)= 32 (La]” (1) + (D) Sena] [D] ) ([ = [D][Scna] [D]) (L] (231)

in which [I] is the unit matrix and [Sj ¢nq] is the modal scattering matrix of the back

end of each groove. The elements of the [L] and [D] matrices are given by

ann
Limn = — .32
b réxtodw
Pomn = / / €sm - €1 npdpdd (2.33)
b ;r
U, = / / e1n - €1 npdpdd (2.34)
0 JO
Din = dmnexp{—jBamla} (2.35)

Clearly, the expressions derived for the scattering matrix of the periodic groove
termination are quite similar to the corresponding ones for the cylindrical hub. How-
ever, apart from the sum in ( 2.31) over the total number of grooves, there are a few
additional important differences. The order of the cylindrical functions in region 2
is, in general, non-integer and, of course, the ¢-integration is performed only over the

angular extent of the groove. Consequently, in general, all modes between regions 1
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and 2 couple to each other, leading to a fully populated matrix [L,]. In the case of
the stub termination, orthogonality among the trigonometric functions resulted in
coupling only among those modes of the same order (i.e. same order of the Bessel
functions), leading to banded matrices. Nevertheless, the scattering matrix [S] must
be banded [12], and this indeed occurs after carrying out the matrix operations speci-
fied in ( 2.26),( 2.31). Finally, we note that as opposed to the single hub termination,

the elements of the [L,] matrix must be evaluated by numerical integration.

2.3.2 Numerical Results

When our method was first developed (Fall 1993), no reference data existed for
this geometry, and to validate the computer code we computed and compared the
transverse electric fields at both sides of the interface separating regions 1 and 2. Fig.
2.5 depicts the p (a) and ¢ component (b) of the total electric field at both sides
of the interface. The dimensions for this calculation are: b = 3.5\, a = 2.5),[; =
Ay = X4 blades, ¢, = 45°,¢; = 0°. The waveguide field is plotted at p = 3, as
a function of ¢, for an incidence angle of §; = 0° and ¢ polarization (a) and for an
incidence angle of §; = 30° and 6 polarization (b). It is apparent that the transverse
fields are continuous across the interface between regions 1 and 2, implying that the
boundary conditions ( 2.28) and ( 2.29) are satisfied. Moreover, the total tangential
field on the metallic surface of the blades is 20 or so dB below the field values
elsewhere. The transverse field values on the top surface of the hub were also found
to be very low, implying that the boundary condition ( 2.30) is also satisfied fairly
well. Consequently, since all boundary conditions are satisfied, we were convinced
that any RCS results that we had obtained so far must have been accurate within

the limits of the Kirchhoff approximation employed at the aperture of the cylinder’s
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open end.

A year later, actual measurements were collected for a cylindrical cavity ter-
minated with an array of straight blades [29], finally enabling us to compare our
calculations with the measured data. The model shown in Fig. 2.4 was constructed
and measured. Following the notation used in the figure, the specifications of the fab-
ricated structure were b = 15 cm, a = 7.5 cm, l; = 20 cm (length of hollow section),
l = 10 cm (length of termination), ¢, = 40°, ¢; = 2.5°, and the inlet was backed
by a perfectly conducting plate. We investigated the backscatter in the ¢ = 0 plane.
The solid and dotted lines shown in the following figures correspond to calculated
and measured data, respectively. To give more details about the computations using
the MM method, we define the following parameters:

o Ny 5: number of orders of cylindrical functions used in the hollow section (sub-
script 1) and the termination section (subscript 2).

oM, 5: number of modes per order used in the hollow section (subscript 1) and
the termination section (subscript 2)

In generating the calculated curves shown in Figs. 2.6, 2.7, the above parameters
were selected as follows:

6 GHz: Ny =21, M; =10, N, =6, M, = 8.

8 GHz: Ny =25, M, =10, N, =17, M, = 8.

10 GHz: N, =30, M; =12, N, =7, M, = 12.

12 GHz: N, =33, M; =13, N, =10, M, = 8.

In spite of the model’s and code’s complexity, as well as the high sensitivity of
the patterns on the geometrical parameters, the agreement between measured and
calculated data is, in general, very good. Most disrepancies are likely due to diffrac-

tion from the exterior back section of the cylinder (not included in the calculated
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Figure 2.5: Tangential fields at both sides of the interface for the geometry corre-

sponding to Fig. 2.4. The fields are plotted at p = 3\. a) p component,

0; = 0°, ¢ polarization b) ¢ component, 8; = 30°, § polarization.
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data) or the Kirchhoff approximation of the field radiated through the aperture. The
reliability of the Kirchhoff approximation increases with the aperture size, resulting
in better agreement at higher frequencies. Finally, some inaccuracies stem from
truncation of the infinite modal expansions.

It should be pointed out that the memory and CPU time required by the MM
method increase drastically with the diameter of the structure. Inlets wider than
20X in diameter require the storage and inversion of several full matrices, larger than

1500 x 1500, and therefore must be analyzed on a multiprocessor computing facility.

2.4 Periodic Array of Curved Blades Termination

2.4.1 Mode Matching Formulation

None of the previously considered geometries represents a realistic jet inlet ter-
mination. With the goal of characterizing the scattering of more realistic jet inlet
terminations, in this section we present a mode matching solution for an inlet ter-
mination consisting of a special class of curved blades (see Fig. 2.8) Basically, each
blade is allowed to be curved with the restriction that its base still remains perpen-
dicular to the hub at any point of intersection (see Fig. 2.8, front view). However,
the angle formed by the rightmost edge of the boundary of the blade and the x-axis

is allowed to vary with z. Specifically the blade or groove boundary is now allowed

to make an angle

60(2) = 6(0) + (s = )27 4 F(2) (2:30)

with the z axis, where F' is an arbitrary function of the longitudinal coordinate z

and is measured in radians. Of course, at the face of the fan (z = 0), the condition
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Figure 2.6: Data for an inlet terminated by an array of straight blades (6 and 8
GHz).
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Figure 2.8: Cylindrical inlet terminated by an array of curved blades.

F(0) =0 (2.37)

should be satisfied, so that ( 2.36) is self-consistent. Note that ( 2.36) is valid provided
all blades have the same z-dependence, resulting in grooves of constant width for any
z; that is each pair of blades is assumed to form an identical guiding region, as is
typically the case with realistic engine compressor configurations.

To analytically characterize the fields within each groove formed by a pair of these
curved blades, we note its similarities with the straight groove. We observe that for
any given z the cross-section of the curved blade pair is identical to that of a straight

blade pair, the only difference being the rotation about the z axis. Consequently, the
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modes expressed in Appendix A still satisfy the appropriate boundary conditions,

provided ¢, is a function of z satisfying ( 2.36). It is therefore reasonable to assume

that the transverse fields within the £ groove (i.e. the waveguide region between the

(k—1)" and the k" blades) can be expressed as a superposition of the aforementioned

modes, viz.

Ei = ZV,;,,'(Z)en,i(P@;Z)
=1

H. = Y Li(2)hei(p, ¢;2)
=1

In the latter expressions, the modes are normalized in such a way that

// )e”’i'eﬂ’id25 = 4
K(z

/ / hy;-hed’S = 6,
(2

(2.38)

(2.39)

(2.40)

(2.41)

where Sy, () is the cross-section of the k'* groove at 2. It can be shown [30] that the

coefficients V; ;(2), I,i(z) satisfy the following infinite system of differential equations:

ISW
S

where

Ty (2) Tia(2) ... —jbi2h 0

Ty (Z) 1o (Z) 0 ~1B22,

—% 0 —Tl],(Z) —T21 (Z)
0 22 . —Tyu(z) —Tn(2)
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// 8e“ d*S (2.43)

B; is the propagation constant and Z; is the impedance of the i** mode. Given F(z),
analytical evaluation of e" is feasible. Also, in ( 2.43) the integration over ¢ can
be performed in closed form, but the integration over p must be done numerically.
It is possible to solve ( 2.42) analytically, provided the geometry obeys certain
restrictions. First we note that the cross-section of all grooves remains invariant in
shape along the axis, and thus the propagation constants and the mode impedances
do not depend on the longitudinal coordinate z. Therefore, ( 2.42) can be rewritten

more compactly as

7, 1Ux(2)} = M (2)]{Ux (2)} (2.44)

where

' V,Q,l (Z) \
V2 (2)
(U.(2)) = (2.45
Zilq (2)
Zyl 2 (2)
Pl F'(z D
M= | D0 P (2.46)

[D] = diag[-j51, —j,...] (2.47)
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iz e %eni g (2.48)

and the prime on F(z) denotes differentation with respect to z. From the explicit
expressions of e, ; in Appendix A, we conclude that P;; does not depend on z. Most
importantly, the elements of [M] carry a dependence on z only through the presence
of F'(z). That is if F'(z) = const., [M] becomes independent of z and this can be
exploited to obtain a closed form solution of {U, (z)}. Specifically, it follows that if

F'(z) is linear in z, the explicit solution for {U (2)} is

{Ux(2)} = exp (2 [M]) {U, (0)} (2.49)

where {U, (0)} is the value of {U,(z)} at z = 0. Although this is an explicit

expression, the numerical evaluation of the matrix exponential is not necessarily an

easy task. To evaluate it, the standard approach is to rewrite it as [31]

Ml — K] diag [ezh,emw--,ed"] [K]_l (2.50)

where ); denote the eigenvalues of [M] and [K] is the matrix of the corresponding
eigenvectors [31]. The latter expression is valid provided the eigenvalues are distinct,
which is expected to hold in this situation, unless degenerate generalized modes exist.
In theory, the matrix [M] is infinite, but for practical purposes it must be truncated,
taking into account only the traveling and most significant evanescent modes. It
1s important to note that, as shown in Appendix A, if A is an eigenvalue of [M],
then —A is also an eigenvalue of [M]. This is an expected property since each guiding
region supports identical pairs of modes propagating along the +z and —z directions.

By making use of this property, ( 2.49) can be rewritten as
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V. (2) _ [Ku) [Kig] || ¥ 0 [Ku] [Kis]
Jx(2) [Ka1] [Kao] 0 e M || Ky Ky
where

[A] = diag ), ..., A

Re(Ai) > Oor
Re(/\,-) = 0, [m(/\l) _>_ 0
and

Jn,i = Z»c,i[n,i

(2.52)

(2.53)

(2.54)

(2.55)

We remark that ( 2.51) is a much more simplified expression and its form is crucial

in making reliable numerical calculations. In the following analysis it turns out that

only e7[Al [ > 0 appears in the calculations. Therefore, since the real parts of the

elements of [A] are chosen to be nonnegative, no numerical instabilities occur.

Using ( 2.51) and following the analysis in Appendix A, the scattering matrix of

the array of curved grooves at its interface is derived to be

[S]= ([W]+ (1)~ (W] - [1)

where

(W] =" [LJ" [F.][G] 7" [L]

and [I] is the unit matrix. Also

(2.56)

(2.57)
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[F.] = [Kul+ K] [Ra] (2.58)

(Gi] = [Kau + Kz [R4] (2.59)

R.] = e B2 [K )] [Syena] [Kia] e A2 (2.60)

S..cna] is the scattering matrix at the back end (z = —I3) of the k** groove, I is the
, g

length of the compressor and [L,| is identical to the [L,] matrix defined in section

2.3.

2.4.2 Numerical Results

Since there were no reference solutions when the method was developed, for
validation purposes we initially relied on the examination of the boundary conditions
satisfied by the transverse electric fields. Fig. 2.9 depicts the p component (a) and
the ¢ component (b) of the total electric field at both sides of the interface. The
dimensions for this calculation are: b = 3.5\, a = 2.5),l; = A\, [; = A, 4 blades, ¢, =
45° ¢ = 0° F'(z) = 30°/A. The field is plotted at p = 3), as a function of @,
for an incidence angle of §; = 0° (a) and §; = 30° (b). The plots correspond to ¢
polarization. As in the case of the straight blades, the incident field is also plotted for
reference purposes. It is evident that the fields on each side of the interface are almost
equal and the tangential fields on all metallic surfaces are very low. Consequently,
the boundary conditions are satisfied, implying that pertinent RCS plots are correct
within the limits of the Kirchhoff approximation employed at the aperture. Indeed,
our RCS results proved to be in very good agreement with actual measurements [29)].
Unfortunately, the terms of the contract do not allow us to publish the comparisons.

It must be pointed out that in the case of curved blades, as opposed to simpler

geometries, a rigorous convergence check is a very hard task, because the condition
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number of the involved matrices and the individual eigenvalues tends to deteriorate

severely as the number of modes increases.
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CHAPTER III

THE ADAPTIVE INTEGRAL METHOD (AIM)

3.1 Introduction

In Chapter II we applied the Mode Matching (MM) method to the problem of
electromagnetic scattering from jet engine inlets with three different terminations.
The method is rigorous, accurate and powerful, since it yields excellent results for
even fairly large structures (we showed data for inlets up to 12) in diameter). Nev-
ertheless, the method faces serious limitations. Its most significant disadvantage is
that it can handle only canonical geometries, where modes (eigenfunctions) can be
defined. In reality, the termination of a jet engine is geometrically very complex, and
consequently the Helmoltz equation cannot be solved analytically in that region.
Moreover, even for canonical terminations, analysis of a realistic problem, which
is about 50\ wide in diameter, yields extremely large, full linear systems, almost
intractable by modern computing facilities.

In addition to the MM analysis, we also investigated other efficient numerical
algorithms applicable to the same problem. A Finite Element Method (FEM) code
was written and validated for a number of engine-like geometries [11]. The FEM
method proved very versatile since it can handle arbitrary terminations. However,

it also suffered from storage and CPU time restrictions that may become severe for

34
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inlet diameters larger that 2.

Our need for flexible, numerical methods, applicable to very large, irregular ge-
ometries led us to the investigation of fast integral equation techniques. Among
these, the Adaptive Integral Method (AIM) [17, 18] was given special attention due
to its promising properties. The main idea of the method is to replace the full
Moment Method (MoM) impedance matrix with a sum of special format matrices
aimed at reducing the MoM computational complexity and memory requirements.
This improvement can be achieved by approximating the interactions among far zone
elementary currents using delta current sources located at the nodes of a rectangular
grid. It can be shown that the original impedance matrix reduces to a sum of two
terms: the first is a sparse matrix and the second is a sum of products of sparse and
Toeplitz matrices.

In this chapter the mathematical development of AIM is presented. Results are

also given using a computer code based on this formulation.

3.2 Mathematical background

Consider an arbitrary, perfectly conducting (PEC) surface ¥ illuminated by some

incident field E'. The scattered field E® is given by

E’ = —jwA — V¢ (3.1)

where A is the magnetic potential defined as

exp {—jkR}

A(r)= ﬁ RACE

&8’ (3.2)

and the scalar potential ¢ is given by
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(1) = ﬁ /2 0 (¥') @{_RL’“R}-JZS' (3.3)

In these equations R = |r — 1’|, J, and p, denote the surface current and charge

densities, respectively. The continuity equation

Vs Js = —jwp, (3.4)

provides the relation between the two densities.
For a numerical solution of the pertinent integral equation we discretize the sur-
face into small triangular patches and expand the unknown current J, using a suitable

set of basis functions f,(r). We let

Js(r) ~ Z L.f,(r) (3.5)

where I, are unknown coefficients (elementary currents). A popular choice for f,(r)

are the Rao-Wilton-Glisson (RWG) basis functions defined by

+5mpt ifreTF
f(r) = § —tp- ifreT; (3.6)
0 otherwise

where [, is the length of the n* edge and AZ is the area of triangle T* (see Fig.
3.1). It is crucial to point out that f,(r) is tangential to the n* patch and vanishes

outside it.

On our way to construct an integral equation for the solution of the elementary

currents, we enforce the boundary condition

(E'+E)-t=0 on ¥ (3.7)
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Figure 3.1: The Rao-Wilton-Glisson (RWG) basis functions
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where t is any tangential vector on the surface, or, approximately, tangential to the

triangular patches. Finally, to test the integral equation per Galerkin we write, using

(3.1) and ( 3.7)

/Ei-fmd25=/ij-fmd25+/ Vé-fnd?S  m=1,.,N (38
b b b

or, by invoking an appropriate vector identity

LB fads = [ oA fadS = [0V fad?S  m=1..N  (39)

which is equivalent, after use of the expansion ( 3.5), to the matrix equation

[Z{L} = {V} (3.10)

The elements of the impedance matrix [Z] are given by

B Jnll[ exp{-=JkR} 4 4 ocnw
T = L g ek prd s -

Az AXR
emenexp {—JkR} . » ]
- —2ng /T; g SES (3.11)
where
+1 ifreTs
€m = (3.12)
-1 ifreT,
and
+1 ifr e TH
€n = (3.13)

| ifr'eT;
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whereas n = y/u/e and

_ i ¢ on
v, _LE £,d%5 (3.14)

Since the impedance matrix in ( 3.10) is fully populated, serious memory limi-
tations arise when the geometry is electrically large. Also, the required numerical
integration to evaluate the [Z] matrix entries and its direct inversion are both ex-
tremely time consuming tasks. These difficulties can be overcome by utilizing the
AIM technique.

A basic AIM concept is to partition all pairs of matrix entries into “far field” and
“near field” ones. A far field threshold ry, is set according to the desired accuracy.
If the centers of two interacting current elements m** and nt” lie at a distance larger
than ry,,, they are considered to be in the far field region of each other, (see Fig.
3.2), and their interaction can be modeled in an alternative way.

To describe the far field interactions we envision the entire scatterer being sub-
merged into a rectangular grid (Fig. 3.3). We introduce an auxiliary set of basis
functions, namely %, , represented by clusters of delta current sources located at the

nodes of the grid, namely

M3
V(1) = L 8(& = 2na)8Y = Yma)( = 2mg) Az %+ ALy +ALE  (315)
q:

where M is equal to the expansion order, and r,,, are points on the grid surrounding
the m* edge. In Figs. 3.3, 3.4 the relative position of the n* RWG patch in a
M = 2 order grid is depicted.

The A coefficients are determined to ensure that the two sets of basis functions %,

and f,, are equivalent. However, since v, are defined in the whole volume, whereas
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Figure 3.2: Definition of the far field region: f, lies in the near zone, whereas f, in
the far zone of f,,,.
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each f,, is nonzero only on the m** patch, formal equivalence can be achieved only

after a slight modification of the RWG basis function definition. Specifically, let

f,.(r) =1£,6(2%) (3.16)

where §(2%) is a 1D delta function and 2 is the local coordinate along the normal
to the + or - triangles which comprise the RWG diehedral m** patch (see Fig. 3.5).
This is an important step to ensure the mathematical rigor of AIM, and was omitted
from the original presentation given by E. Bleszynski et al. [17, 18]. The two sets
¥, and f,. can become equivalent, by imposing equality of their moments up to

order M — oo with respect to the midpoint r, of the m** edge. These moments are

defined by

Moo= [ [ [ al0)la = 20)(y = 9a)7(z - ) dodydz =

M3
= Y (g = 20)" (Wng = o) (2mg = 2)" [AR K+ ALY +ALE] (317)
g=1

M} g, = /_oo /_oo /_oo fr(r) (2 — 22)% (y — ya)2 (2 — 2) P dadydz (3.18)

Apart from f,, itself, the surface divergence of f,, must be similarly approximated.

We define

MS

Prm(r) = D2 8(2 = 2mg)3(Y = Ymg)8(= = 2mg) AR (3.19)

g=1

The pertinent moments are

Do = [ [ [ wh0)@ =2 (y - ) (z = za)dadyd= =
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Vertex 2+
Vertex 3+

Vertex 1+

Vertex 1-

Figure 3.5: The local coordinate systems on triangles T'*
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M3

= (wmq - :ca)lh (qu - ya)q2(zmq - Za)qu:lq (320)
=1

=Y

—— /_OQ /_Oo /_oo Vs fn(r)(x — 2)" (y — ¥2)? (2 — 24)® dadydz (3.21)

By equating M7~ to M;’quqs and D7 = to qum we obtain four M3 x M3
systems that yield the A coeflicients as a solution. A considerable portion of our
effort was focused on the efficient calculation of the moments in ( 3.18) and ( 3.21).
A very efficient, closed form scheme was developed, the mathematical details of which
are described in Appendix B.

Since the problem is now formulated in the whole volume, and not on surface ¥,

integral equation ( 3.8) must be modified. At any point in the space an equation of

the form

E(r) + E*(r) = h(r) (3.22)

is valid, where h(r) is an unknown function with the following property:

h(r)-t=0 on ¥ (3.23)

t being any tangential vector on ¥. After the surface discretization, ( 3.23) holds

approximately for the assembly of the triangular patches. Furthermore, ( 3.22) yields

/;/ [Ei(r) + Es(r)] . f‘m(r)d3v — /Vh(r) . fm(r)dsv

/V h(r) - £ (£)8(2me ) (r)dP = 0 (3.24)

The equality to zero is due to ( 3.23), the definition of the delta function and the
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fact that f,, is tangential to the m* diehedral. Therefore, due to ( 3.24) the testing

scheme reads

/ E - f,d% = / jwA - Ead®o + / Vo fd (3.25)
14 14 v

together with ( 3.5). For M — oo the sets ¢, and f, are equivalent, hence the
testing in ( 3.25) may be performed by either of them. For practical applications,
though, M is finite and only interactions among elements that lie in the far field of
each other can be modeled through the set ¢,,. However, since the whole geometry is
submerged in the grid, it is inefficient to separate near field and far field interactions
a priori. It is preferable to calculate all possible interactions using the auxiliary basis
functions and afterwards replace the near field interactions by their exact values.
In Appendix B it is shown that the approximate impedance matrix for the whole

geometry calculated via the auxiliary basis functions is given by

255 = SILOGILO) (3.26)

=1

where [L(*)] are sparse matrices, containing scaled versions of the equivalence coef-
ficients A in ( 3.15), ( 3.19) and [G] is a matrix with Toeplitz properties. Since
the [L()] matrices map the original RWG mesh onto the rectangular grid, we will
refer to them as “mapping matrices”, whereas [G] will be referred to as the “Green’s
function matrix”. Explicit expressions for the elements of these matrices are given
in Appendix B. Obviously, [Z]%!3) can be split into two parts, corresponding to the

near and far field interactions, namely

[Z)55r = (215, + (205 (3.27)
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Furthermore, the exact impedance matrix in (3.10) is likewise split as

(2] = [Z)™ + (2} (3.28)

Since for the far field interactions [Z])/*" ~ [Z]/%, it follows that the impedance

matrix in (3.10) can be approximated by

(2] 2 (2] ~ [Z] 35y + [Z]373 = 18] +Z[L [GIILOTF (3.29)
where [S] is a sparse matrix corresponding to the difference between the exact and
the AIM-modeled near field interactions.

Of most importance in the formulation of the impedance matrix is that [G] is
Toeplitz and thus the FFT algorithm can be used to significantly accelerate the
calculation of matrix-vector products required for iterative solution of the linear

system. Details on the utilization of the Toeplitz property are given in Appendix B.

3.3 Application to Relatively Flat Surfaces

Computational cost estimates show that the memory requirements and complex-
ity of the algorithm depend both on the original number of unknowns N, and the
total number of grid points N,. For large N, our double precision implementation

has a memory requirement of

Mem = (368 + 32M°%)N + 314N, + 16 N,.q, bytes (3.30)

and the number of complex multiplications per iteration, assuming a symmetric

Biconjugate Gradient (BiCG) algorithm and using a radix-2 FFT is

Nute 2 8M°N + 540N, + 120N, logy Ny + Nycqr (3.31)
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where N,q is the number of non-zero entries in [S], and depends on the geometry
of the scatterer. For rectangular surfaces it has been shown [18] that N, is asymp-
totically proportional to N*2. However, N, is in general highly dependent on the
geometry. To observe this, let us consider a scatterer of rectangular form whose sides

are denoted as a,b, c. If the grid step is chosen as A, then

N, ~ — (3.32)

Assume that the surface of the scatterer is discretized by equilateral triangles of
edge length [. The area of each triangle is therefore St = v/312/4 and the number of
triangles over the whole surface is

8V3

Nr ~ W(ab + be + ca) (3.33)

Since the number N of RWG elements is approximately N ~ 3Nz /2 it follows that

abc 1\’ :
N, ~ 7 (E) N (3.34)
[4\/5 (ab + be + ca)}

A similar estimate is possible for N, . Assuming a locally smooth surface, the
circular disk around a particular RWG element lying within the near field of the
element has area equal to 77,. Assuming triangles with edge length / the number

of RWG elements in the disk is equal to

Tthr 2
Newe ~ 2V/3n (T) (3.35)

and therefore

1 Tthr 2
Nucar = 5NawoN = V3r ( : ) N (3.36)
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The factor 1/2 is due to the symmetry of the matrix. It is pointed out that these
estimates are rough and not very accurate for general geometries. They only serve as
a qualitative measure for comparisons between AIM and other relevant techniques.

The above analysis, though approximate, shows that AIM applicable to surface
has O(N®/?) memory requirements, and O(N*2log, N*/?) complexity. Therefore, for
a large number of unknowns N it always performs more favorably than the MoM
(with an iterative solver), which is a O(N?) method.

To demonstrate the dependence of NV, on the relative dimensions of the rectangu-
lar scatterer, let ¢ = ya = b, where 7 is defined as the “flatness” parameter of the
rectangle (see Fig. 3.6). As shown in Fig. 3.6 for small v the rectangle is relatively
flat and becomes more like a plate as v — 0. The constant in front of N%/2 in ( 3.34)
becomes smaller as v decreases and thus it is important to examine the performance
of AIM for flat geometries. Performance comparisons between AIM and iterative
MoM for various flatness parameters, h = [ and ry,, = 10/ are given in Figs. 3.7
and 3.8. For both MoM and AIM the BiCG solver was assumed and it is clear that
AIM is much more efficient than the MoM for large N. As expected from ( 3.34) its
efficiency increases with the flatness of the scatterer, and for the chosen parameters
AIM is preferrable to MoM in terms of memory and complexity for about N > 1500.
As N becomes larger the improvement of AIM over MoM cannot be overemphasized.
Moreover, for relatively flat surfaces, the AIM grid is also flat, permitting the use of
much faster, nearly two-dimensional FFT’s, resulting in a dramatic reduction of the

computational cost.
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Figure 3.6: Scatterer shape for various values of the flatness parameter 1.
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Memory requirements for M=3

Memory (Mbytes)

1200. g [y prrrrrrr | AAAAAAAAL prrrrTrr prrrrrre preere M AAAAAAAAL) ALY prrrrrr .
i ——— MoM F
1000. E Rl
--------- AIM with y=1 o
. ]
’/ ///’ -]
S N [— AIM with y=0.1 Ll
: with y=0. e
[ .
800. R -]
. P
------ AIM with y=0.01 A 1
L ]
L’ // > -
. . ]
R ]
C ’////, ‘ ]
600 F /’// e =
. F /// 'S B
R
L /;’11 ‘
Rt
L Rt
= s g
E P ]
z -
400. F 7 ]
L D ]
.z
2%
u%
¥
4
C i
200. f g
0, B | T T | T | I | T | | T | T | T

N x 1000

Figure 3.7: Memory required for standard MoM and AIM (surface problems with
expansion order M =3, grid step h = [ and r4,, = 101).
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CPU time per 100 iterations (C90 at 275 Mtlops)
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Figure 3.8: CPU time for standard MoM and AIM (surface problems with expansion
order M = 3, grid step h = [ and ry,, = 10!).
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3.4 Numerical Results and Parallelization Issues

Based on the analytical results described in this chapter, an AIM-based code was
developed and validated. An already existing 3D MoM code [32] was modified so
that the far field interactions among the current elements were modeled according
to AIM principles. The scatterer was a flat PEC plate with dimensions 4\ by 0.25\
(see Fig. 3.9), corresponding to an original 317 by 317 MoM system. The grid
spacing was h = 0.05A, and the total number of grid points was 4500. The edge
length of each elementary triangle was [ = 0.1 and the expansion order was M = 3.
Numerical results for the Radar Cross Section (RCS) were obtained and compared
to standard MoM data, showing excellent agreement (see Figs. 3.10 and 3.11). The
near field threshold r,, was set equal to A, but it could be decreased down to 0.3\
without significant deterioration of the RCS pattern.

To further test the code for more complex geometries, we investigated a simplified
airplane-like structure (see Fig. 3.12). The RCS results are given in Figs. 3.13
and 3.14, and again they are in excellent agreement with the reference MoM. The
original system was 690 by 690, the grid spacing was h = 0.05), the expansion order
was M = 3 and the near field threshold ry;, was set equal to 0.8).

Profiling the AIM code showed that a very large portion (up to 75%) of the total
CPU time was consumed by the FFT. Although the AIM system solution is faster
than the MoM, the major bottleneck of the AIM algorithm is filling [S] in ( 3.29), a
process which may also utilize the FFT. These observations were not unexpected and
point to a need for parallelization. For general geometries the algorithm has been
parallelized via domain decomposition [18], but this approach is fairly complicated

and difficult to implement. In our case, due to the geometrical characteristics of
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Figure 3.9: A 4) by 0.25) flat blade illuminated by a plane wave.

the scatterer (i.e. nearly flat), the FFT grid is almost two-dimensional, and also
no excessive free space is wasted by the rectangular grid enclosing the scatterer.
Therefore, speed-up via parallelization can be easily achieved, by simply parallelizing
the FFT subroutines employed at each iteration step of the solver.

Our parallelization steps for the FFT are [45]:

e The array with dimensions n,, ny, n, is distributed into planes, equally divided
among all available processors of total number p.

¢ One-dimensional FFT’s are performed along each of the two dimensions x and
y, and this is done n,/p times for each node concurrently, since each node contains
n./p planes.

e The array is transposed, while still residing on all processors.

¢ One-dimensional FFT’s are then performed concurrently on all nodes along the

third dimension.
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4 by 0.25) plate (¢ Pol.)
20. e — :

RCS (dB/A%)

Figure 3.10: Backscatter for the 4\ by 0.25) flat blade of Fig. 3.9 (¢ polarization,
¢ = 0 cut). The blade lies on the xy plane with the long dimension
along the x axis. The origin lies at the center of the blade. Grid step

h = 0.05A.
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RCS (dB/A?)
T T

P A

90.

Figure 3.11: Backscatter for the 4X by 0.25) flat blade of Fig. 3.9 (# polarization,
¢ = 0 cut). The blade lies on the xy plane with the long dimension
along the x axis. The origin lies at the center of the blade. Grid step

h = 0.05\.



Y

o At this point the transpose of the Fourier transform is available, hence an
additional transposition is required to complete the FFT routine.

Communication time consumption for a transposition across several processors is
significant, and therefore in an optimized code only one absolutely necessary trans-
position may be performed. If the FFT output and input data must be in the same
format, though, the data must be redistributed after the FFT calculation, resulting
in a total of two transpositions.

The parallelized version of the code was initially tested on the IBM SP2 for the
airplane geometry of Fig. 3.12 amd the speed-up results are shown in Table 3.1; the
outcome is evidently very favorable, since the overall computation time decreases
dramatically with the number of processors. Moreover, to demonstrate the AIM
efficiency for relatively flat structures, the parallelized version was also tested for the
jagged plate geometry of Fig. 3.16. The dimensions of the plate were 3\ x 3\ x 0.2,
and therefore the FFT grid was quite flat. We chose a rectangular grid spacing
of 0.05X for all directions, and the moment expansion order as M = 3, whereas
the original number of unknowns was N = 3108. The monostatic RCS for this
configuration is plotted at a ¢ = 0° cut, for 0 < 6 < 90° with a 2° step, and both
polarizations (Figs. 3.17, 3.18). Two sets of AIM results are shown, one where the
near field threshold is ry4, = 0.8), and one for ry,, = 0.3X\. From ( 3.30), ( 3.31)
and ( 3.36) both memory and complexity increase with r;, and thus a smaller 74,
is desirable provided the accuracy of the solution is maintained. As seen from Figs.
3.17, 3.18 the smaller threshold of 0.3X leads to sufficiently accurate results and can
be used to evaluate the performance of the AIM code. Tables 3.2 and 3.3 sum
up the CPU time and storage comparisons between AIM and the MoM, when the

Jagged plate is assumed to have zero thickness. In terms of memory the AIM savings
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are dramatic, especially for small thresholds 7. In terms of CPU time, for the zero
thickness plate each matrix vector product of the serial AIM algorithm is comparable
to the MoM, but significant speed-up is gained for a larger number of processors. For
small, but non-zero plate thickness, though, the advantages of AIM over the MoM
become much more impressive. For a similar jagged plate with non-zero thickness,
the number of RWG unknowns is approximately doubled, resulting in quadruple
memory and CPU time requirements for the MoM. On the other hand, since the
number of the AIM grid points N, remains the same, the AIM CPU time, which is
dominated by Ny, is virtually unaffected, and even the serial AIM code becomes four
times faster than the MoM. Furthermore, the AIM storage requirements are only
slightly increased (see Table 3.4 for the thicker plate), whereas those of the MoM

would not allow its application on conventional platforms.
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| # Processors | Total time (h) [ Serial section (h) | Parallel section (h) |

1 (serial) 10.3 10.3 (100%) 0.0 (0%)
i 77 12 (7%) 16.5 (93%)
5 10.0 1.2 (12%) 3.8 (85%)
I 6.0 12 (20%) 18 (30%)
g 3 1.3 (30%) 3.0 (69%)
16 3.5 1.3 (37%) 2.2 (63%)

Table 3.1: Speedup due to FFT parallelization for the scatterer of Fig. 3.12

<«— 032%h —»/

1.16)

Figure 3.12: A simplified aircraft structure.
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Phi Polarization (6=90° cut)

.13: Backscatter of the structure in Fig. 3.12 (¢ polarization, § = 90° cut).
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Theta Polarization (6=90° cut)
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Figure 3.14: Backscatter of the structure in Fig. 3.12 (6 polarization, 6 = 90° cut).
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Figure 3.15: Profile on a CONVEX Exemplar for the scatterer analyzed in the pre-
vious figures.
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3L

Figure 3.16: The jagged plate geometry.
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| # Processors | Total time (h) | Mat.-vec. prod. time (s) | FFT / total time |

1 (serial MoM) 22.3 5.42 0%
1 (serial AIM) 29.2 5.36 70%
2 30.4 5.64 69%
4 18.7 3.12 55%
8 13.8 2.04 45%
16 11.2 1.48 29%

Table 3.2: CPU time comparisons for the scatterer of Fig. 3.16 with zero thickness.

[ Method | Memory (Mbytes) |
MoM 71.3
AIM (ren = 0.8)) 28.94
AIM (rp, = 0.3X) 17.19

Table 3.3: Memory comparisons for the scatterer of Fig. 3.16 with zero thickness.

l Method | Memory (Mbytes) |
MoM 309.2
AIM (re, = 0.84) 74.41
AIM (ropy = 0.31) 5741

Table 3.4: Memory comparisons for the scatterer of Fig. 3.16 with non-zero thick-
ness.
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Figure 3.17: Monostatic RCS for the jagged plate geometry (¢ polarization).
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Figure 3.18: Monostatic RCS for the jagged plate geometry (# polarization).
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Jagged plate (Theta Polarization)




CHAPTER IV

EXPLOITATION OF THE CYLINDRICAL
PERIODICITY OF THE JET ENGINE
GEOMETRY

4.1 Introduction

It has already been discussed that for an efficient solution of the realistic jet en-
gine problem, decomposition of the computational domain into a numerical and a
high frequency region is the most appropriate approach. As shown in Fig. 4.1, the
region surrounding the complex engine termination is modeled numerically, whereas
ray or modal methods are used to propagate the field through the duct. In this man-
ner, significant amount of memory is saved by not discretizing the duct region. One
way to couple the two computational regions is through the modal scattering matrix.
However, even with this decomposition, a direct application of numerical methods
such as the FDTD [33] and FEM [11] leads to intractable problems when dealing with
realistic jet engine sizes spanning 50 wavelengths in diameter. In Chapter III a novel
numerical technique, the Adaptive Integral Method (AIM) was described and shown
to be particularly suitable for the analysis of complex blade terminations. However,
direct application of AIM to the entire scatterer would not be efficient either. Multi-

spectral characterization requiring radar cross-section (RCS) computation at many
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frequencies place additional CPU time problems.

To reduce the CPU time and storage requirements down to manageable levels,
the inherent blade periodicity of the jet engine was exploited to show that the com-
putational domain can be reduced down to a single blade or engine “slice”. This
discrete body of revolution (DBOR) approach reduces the number of unknowns and
storage requirements by a factor equal to the number of blades. However, it has so
far been implemented only in the context of differential equation methods [12]. In
this chapter we apply the DBOR concept in the context of integral equation methods
for modeling the complex jet engine configurations. By considering mode by mode
excitation [11, 12] it is shown that the analysis over the entire engine can be reduced
down to a surface integral equation over a single blade. It is further demonstrated
that the resulting modal scattering matrix is sparse, leading to additional storage
and CPU time reductions.

Further computational reductions can be achieved by incorporating fast integral
equation algorithms such as AIM, as discussed in Chapter III. We have seen that
the latter redistributes the currents on the blade onto a canonical grid such that the
scattered field due to the fictitious sources on the nodes of the grid remain the same
as that of the original sources up to a certain order. Combining blade periodicity
and the AIM concept results in drastic complexity reductions.

The DBOR procedure (which takes advantage of blade periodicity) leads to a
compact integral equation whose domain is confined over the single engine blade. Ini-
tially we consider perfectly conducting scatterers, but the last section of the chapter
gives an extension of the method to periodic angular sectors containing non-metallic
materials. Appendix C provides certain mathematical details ommited from the

main text, regarding the dyadic Green’s function for cylindrical waveguides and the
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Figure 4.1: Illustration of the computational decomposition.
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Figure 4.2: Simplified model of a jet engine.

explicit expressions of the elements of the pertinent MoM impedance matrix.

4.2 Preliminary Setup for Perfectly Conducting Scatterers

Consider the perfectly conducting (PEC) scatterer residing inside a cylindrical
metallic waveguide and occupying the volume V', as shown in Fig. 4.2. This structure
is used to terminate a cylindrical waveguide and consists of N, sectors or “slices”.
The slices are identical and rotated around the z axis with respect to each other by

integer multiples of the angular period

Py = — (4.1)

where ¢; is the angular opening of each slice (see Fig. 4.3). We will refer to this

termination as a “Discrete Body of Revolution” (DBOR) since the geometry can be
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Figure 4.3: Symmetry in a DBOR body.

generated by revolving the basic slice, occupying the volume V4 a discrete multiple
of azimuth angles ¢;. Because of this inherent periodicity, the vector r of a point in

the m!" periodic slice occupying the volume V,,, can be written as

r=R" ‘T ro € W (4.2)

where the superscript m, denotes the power of the dyadic R. The latter is the

rotation dyadic, defined in cartesian coordinates by the matrix
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cos ¢, —sing, 0
[R]=| sing, cos¢, 0 (4.3)

0 0 1

It can be readily shown that

R’ =R (4.4)

R"(¢) = R(m,s,) (4.5)

which are important properties to be exploited later in the analysis.
For the problem of scattering, an incident field E* is assumed to impinge upon the
periodic structure, where E* is a sum of cylindrical waveguide modes. This excitation

induces the surface current J giving rise to the scattered field [34]

E(r) = —jkZ /2 G(r,r') - J(r')d*S" (4.6)

where k = w\/ie, Z = \/u/e, T is the outer surface of the scatterer and G is the
dyadic Green’s function for the Helmholtz equation inside a cylinder (electric type
of the first kind) stated in Appendix C. An integral equation for J can be derived

by invoking the boundary condition satisfied on ¥, namely

(E°+E)-t=0 (4.7)

where t is the tangential vector on ¥, demanding that the tangential electric field
vanish on the surface of the periodic scatterer.
A numerical solution for J can be obtained by casting ( 4.7) into a discrete system

of equations. To do so, we first approximate the surface current J by the expansion
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I = Y L) (43)
g
where f, (r') are the chosen basis functions and I, are coefficients to be determined.

A standard set of linear basis functions are those given by Rao et.al. [35] defined as

,

+%§qu; ifreT)
fi(r) =\ —3=p; ifrel; (4.9)
0 otherwise

where Aqi denote the area of the two triangles forming the dihedral patch, as illus-
trated in Fig. 3.1. The basis functions represent the current flowing through the ¢'*
edge from one triangle to the other, where pqi is measured from the vertices opposite

to the ¢'* edge. A useful property of the basis functions is

—~ Mg

f(R"-r)=R" -f,(r) (4.10)
and this is a consequence of linearity. By introducing ( 4.8) into ( 4.7) upon Galerkin’s

testing we obtain the linear system

[A{T} = {V} (4.11)

where
Vo= [E(r) g r)ds (4.12)
are the elements of the excitation vector {V} and {I} is the column of unknown

current coefficients I,. As usual, [A] is the impedance matrix whose entries are given

by

Ay, = jkZ /E /E £(r) - G(r,r') - £, (r)d?Sd2 S’ (4.13)
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Note that ( 4.11) involves the currents over the whole scatterer, covering the entire
angular domain 0 < ¢ < 27. Thus, for large diameter terminations, the size of the
impedance matrix quickly becomes unmanageable. In the next section it will be
shown that the scattering from the slices can be isolated from each other, yielding

an equivalent system much smaller than ( 4.11).

4.3 Decoupling of the Linear System of Equations

To exploit the periodicity of the geometry, we proceed to establish a relationship
between the currents among the identical slices. Assuming that each periodic slice is
identically discretized into Q patches, the current expansion ( 4.8) can be rewritten

as
Ng—
-2

This is an expression of the total current in terms of local currents on the individual

1

Q
Z 1)), r, € Vo (4.14)
=1

slices with index m;. To facilitate further manipulation we define the current column

vector {J}(™) of the m!* slice by

T
{(3yome) = 1) 1, 16 (4.15)

Using these notations, ( 4.4), ( 4.5) and ( 4.10) can be used to more explicitly rewrite

the system ( 4.11) as
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[A](OO){J}(O) n [A](Ol){J}(l) o+ [A](O,Ns—l){J}(Ns—l) — {b}(O)

[A](lo){J}(0)+[A](ll){J}(l)+.”+[A](1,NS—1){J}(NS—1) - {b}(l)

e N U LB (Y LN (S1)

where

Alme) = k7 /)E /E £,(r) R G

= m

R™ . r')-R™ - f,(r')d*Sd*S" (4.17)

Mg
- T,

=i

are the entries of the submatrices [A]("s™¢) representing the interactions between the

m'* and the n' slice currents. Also, {b}(*) is the excitation column vector of the

n" slice, defined by

Ng Ng Ng T
{b}(ns) = [‘/1( ‘),Vz( )7"'7VCS ) (4.18)

where

Y = /Z E (R -r)-R" £, (r)dS (4.19)
In the latter equation, Y is the outer surface of the slice within the volume V5.
Clearly, the index m; indicates the slice where the source point is located, whereas
ns is the index representing the slice containing the observation point. Both indices
run from 0 to Ny — 1.

To take advantage of the blade periodicity we proceed to establish a relationship

among submatrices [A]™™). The principal part of the entries of [A]"™™s) (see

Appendix C) can be written as
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(

‘M, TEAM_ o (¢ FOLE) - £,(r')d2Sd2S" +

nm

CTE/EO/UO

cT™ / [E 0 (v £ BTN (1 FOTM) - £, (1) d2Sd2S"} (4.20)

from which we readily deduce that A nsms) depends only on the difference m;—n,, and
not on the individual values of m; and n,. This is expected, since physical intuition
dictates that any interaction between two given slices should depend on their relative,

and not absolute location. Hence, we introduce the superscript x; = m, — n, to re-

write the system ( 4.16) as

[AJO{I}O) 4 [AJO{I}D 4 .. [A]ND(TYND = (b} O)

[AIEHIYO 4+ (AT 4 [AJVHTD < (b))

[A]JENADLIYO 4 [A]O (YN = [} (VemD) (4.21)

The lone superscript of the impedance submatrices now indicates the relative location

of the interacting slices. Since the waveguide fields are identical modulo 27, it follows

that

[A](—ns) — [A](Ns—m) (4.22)

This “modulo N,” property will prove extremely important because of its essential
role in decoupling the subsystems comprising the overall system ( 4.21).
To proceed further, we assume that the incident field is a single cylindrical waveg-

uide mode of order n;, as described in Appendix C. To permit decoupling of the
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subsystems comprising ( 4.21), it is important that the angular dependence be in the
form of an exponential, and not trigonometric, i.e. the fields must be proportional to
exp{jni#}. The excitation column vectors on the ™ and (x + 1) slices are hence

related via

{b}(”l) = ej""“bs{b}(”) = {b}(‘) = ej"""d’s{b}(o) k=0,...,N,—1
(4.23)
We will refer to the block rows of ( 4.21) by the superscript of the right hand side,

i.e. we will use the terms “0% block row”, “1° block row”, ..., “(N, —1)*" block row”.

Multiplying now the % block row of ( 4.21) by e™#*"%s for all k = 1, ..., N, — 1, and

subtracting the 0" block row from all others yields the equivalent system

[AJO{I}O) 4 [A]D{I}O 44 [AJVD (TN = (1))

[A]©) ({F}Memines — (3}0)) 4
+ [A)D ({3}@eminee — (3} 4
+ A ({0 {J}‘Nﬂ)—{ﬂ}

[A](O ({J}N =1)g=i(Ns=1)nis {J} )
+ A ({3yOeriemtint () 4y

[A]NeD) ({J}(Ng—2)e—j(Ns—l)ni¢s _ {J}(Ns—l)) = {0} (4.24)

where we have made use of ( 4.22). Apart from the top one, we can satisfy all block

rows of ( 4.24) by setting
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(1) _  Gnits (100)
{J} e {J}

{J}(2) — ej?n,‘d)s {J}(O)

{J}WemD) = Ei(Ne=D)mide (1(0) (4.25)

and thus the top block row of ( 4.24) can be written as

[[A]<0> +[A]Weme 44 [A](Ns-1>ej<Ns-1)nf¢-=] {3} = {p}© (4.26)

Since ( 4.21) and ( 4.24) have the same solution, on the basis of uniqueness ( 4.25)
1s the only possible choice.

A more compact expression for ( 4.26) can be obtained by using the properties of
the Dyadic Green’s function. First we define the left hand side of ( 4.26) as a single

matrix [K]

(K] = [[A] + [A]emo 4 4 [A] NI Nemmee] (427)

Next, by using ( 4.20) and the geometric sum

N, fn=n+vN, , vel
(n,n;) Z @ (mimmade (4.28)

Ks=0 0 else

it follows that the principal part of the matrix entries K, reduces to
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Ky =jkZ Y. S An. (n,ni)-

m=1n=-o0

{C32 [ 000 Mun(rs 2625 M (73 815) - £, 2SS+

o™ /L /E £,(r) - Nou (15 87N, (s F67Y) - () 2SS} (4.29)

The implication of this result is that for a given order of the incident mode, only
a limited set of scattered modes is excited. Namely, only the scattered modes with
orders n that satisfy n = n; + vN; , v € Z are reflected back, and this is in
agreement with the result given by the FEM analysis of a similar problem [12]. For
a body of revolution (BOR), N; = co and in this case ( 4.28) implies that n = n;
only, which is consistent with classical BOR theory [36].

The most important consequence of this analysis is that, for a given incident
mode, it suffices to solve the integral equation over only one slice, using a modified
version of the dyadic Green’s function. Indeed, if we define this modified Green’s

function by the periodicity dyadic

2 2 An(n) O Nun (280 )N (2 780 (4.30)

the entries of [K] are given in compact form as

K,, = jkZ /z 0 /E £,(r) - T, (r, 1) - £, (t') S 25" (4.31)

The currents on the reference slice ¥y are simply the solutions to the system
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[KI{3}* = {b}® (4.32)

and those on the other slices are obtained from ( 4.25).

The importance of ( 4.32) cannot be exaggerated. Since the problem essentially
reduces to modeling only one slice of the scatterer, the number of equations or
unknowns is reduced by a factor of N,. For a typical N, = 40, this implies a
CPU time and memory reduction each by a factor of 1600. For large scatterers
with large periodicity numbers N, such as jet engines, the problem can thus be
scaled to a tractable size. Moreover, the limited coupling among the scattered modes
results in sparse modal scattering matrices which are much easier to store and handle.
Also, calculations involving the Green’s function in ( 4.30) can be performed more
efficiently, since a number of terms corresponding to significant modes of low order
are now absent.

Finally, it is important to observe that the above formulation does not demand
any restriction on the shape of the periodic slice. Therefore the shape of the exterior
surface of the slices is irrelevant to the integral equation method and the technique

is applicable to arbitrary DBOR’s such as realistic jet engines.

4.4 Extension to Dielectric Scatterers

[t is straightforward to extend the above analysis to a DBOR which consists of
non-metallic sections. To construct the integral equation we begin by introducing

the scattered field expression

E*(r) = —jup /V G(r,r') - J, ()’ (4.33)
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where J, now represents the equivalent volume current density replacing the dielectric

region with permittivity e4(r), given by

J,(r') = jwlea(r') —  E(r) (4.34)

The current density is again expanded into volume basis functions 1, via

J,(r') =) L, (x) (4.35)

A choice for 9, is [37]

P, (r) = ) Ppe(r)i (4.36)

k=1

where G, = 1,2,3 denotes unit vectors spanning R*® and

1 ifre AV,
Pu(r) = (4.37)

0 otherwise

Using the volume equivalence principle it can be shown that the integral equation

for the current can be written as [37]

Ei(r) = jwp /V G (r,1') - 3, (¢')d (4.38)

where

’ S(r—r)az  6(r—r)l

e (') Wi [ea(r) —

Cgranm (r; & gn}f)M—nm (r'; :Fﬁ;{n]f)

Crm N (15 £8,0 0 )N (¢ F B0 (4.39)
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in which I is the unit dyadic and M,,,,(r), N, (r) are defined in Appendix C.

On the basis of a DBOR scatterer,

(R 1) =¢4(r) Vm, € Z (4.40)

and by invoking a similar procedure as in the case of metallic scatterers, we can

express the entries of the impedance submatrix [A]™™¢) as

| 1 o
A = _c%am“‘"" /Vo ea(r) ¥, () [#, (1) i d*v -
— l __1__ . 3, . S —~ —jn(ms—
Y 4’“ ) Yy o tion 2 3 e
(CTE [ [ ,(6) Mo (5 2675 Mo (5 575) - () 4
O [ 01 N5 TN o I 1)

(4.41)

where d,,, is the Kronecker delta. Also, the entries of the excitation column vector

are given by (cf. ( 4.19))

V;,("S) = /Vo E' (R ) -r) ‘R -9, (r)d (4.42)
Apart from slight modification, the expressions for the impedance matrix and the

excitation vector are nearly identical to those for the perfectly conducting DBOR.

For reference, the periodicity dyadic in ( 4.30) for the dielectric DBOR is
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g S(r — ')z S(r—r')I
' (r,r)=- - —
w0 = () Pl -4

m=1n

AN& n nz CTEMnm( /Bgrf)M—nm(  F TE)

nm

AN (nyni) CEM N (15 £8IMN _ (f; T8IMY (4.43)



CHAPTER V

APPLICATION OF AIM TO THE JET ENGINE
PROBLEM

5.1 Introduction

In Chapter III we described the Adaptive Integral Method (AIM) and its appli-
cation to scattering from arbitrary, perfectly conducting objects in free space. It was
shown that the technique is particularly suited for electrically large structures since
its memory and CPU time requirements are much lower than the Moment Method
(MoM) as the problem size increases. Also, it was shown that the storage require-
ments and complexity are reduced further for relatively flat surfaces, since the FFT
in such cases is virtually two-dimensional.

In Chapter IV we also showed how the cylindrical periodicity of the jet en-
gine can be exploited to reduce the computational domain of an integral equation
method, such as AIM, down to a single periodic sector of the structure. We devel-
oped a “slicing scheme” which dramatically reduced memory requirements and the
computational complexity of any integral equation method.

The main objective of our analysis is to combine the concepts in Chapters III and
IV in applying AIM to the jet engine inlet structure. We have already demonstrated

that the most appropriate way to analyze this problem is to decompose the engine

84
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into two computational domains: the hollow duct, where a modal or high frequency
method is applicable, and the termination structure. For the latter, a numerical
technique is necessary due to its complex geometrical features. The fields in the
two computational domains are matched at the interface through a modal scattering
matrix.

In this chapter we apply AIM to the field computation inside the termination of
a jet engine inlet. Since the target lies in the interior of a cylindrical waveguide, and
not in free space, several AIM concepts must be modified accordingly. The cylindrical
periodicity of the geometry (see Chapter IV) will also be exploited. Finally, several

numerical results will be presented, to demonstrate the validity of our method.

5.2 The Cylindrical Waveguide Green’s Function

In Chapter IV we used the properties of the cylindrical waveguide modes and
the pertinent dyadic Green’s function to show that an integral equation modeling
of the cylindrically periodic termination reduces to the analysis of only one periodic
“slice”. Although the analysis is theoretically sound, the dyadic Green’s function for
this geometry is difficult to treat computationally.

The most serious difficulty of the dyadic Green’s function [34] is that the double
modal series (see Appendix C) converges very slowly if the source and observation
points lie close to each other, and it actually diverges if they coincide. A similar
situation occurs for the free space Green’s function, which has a pole at r = r'. In
the case of free space it is easy to show that the singularity is integrable. A standard
technique which circumvents numerical problems is the extraction of the singularity
from the original kernel, and its separate analytical integration. In the case of the

waveguide Green’s function, though, it is not clear as to how the singularity can be
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extracted. For the cylindrical waveguide the analysis is especially cumbersome due to
the presence of Bessel functions, their derivatives, their zeroes and the zeroes of their
derivatives, the latter two not being given analytically. This particular difficulty can
be avoided by transforming the summation over the zeroes to an infinite integral [38].
It can then be shown that the integral diverges again if r = r’. A temporary remedy
to this situation is to subtract the asymptotic expression of the integrand, and then
add it back after integrating it analytically. The integration can be carried out by
using the Poisson’s formula and other relevant lemmas. Unfortunately it turns out
that, even so, the second series (over the orders of the Bessel functions) diverges.

A second drawback of the standard expression of the dyadic Green’s function, is
the odd behavior of the delta function term along the 22 direction (see Appendix C)
for surface problems. If the scatterer is perfectly conducting, the Green’s function
is integrated over the surface, and not the volume of the target. However, the delta
function is three-dimensional, meaning that its one-dimensional component along the
normal to the surface is not integrated, and hence the result of the surface integration
is equal to infinity on the scatterer. Apparently, this infinity can be cancelled by the
modal double sum which also diverges in this case. However, the mathematical
details of this cancellation are not known.

Since use of the dyadic Green’s function for the cylindrical waveguide leads to
serious difficulties, the most efficient way to perform numerical calculations in the
termination region is to instead use the free space Green’s function, subject to sev-
eral modifications of the initial geometry. Indeed, although the excitation is still a
cylindrical waveguide mode, the free space Green’s function does not account for the
boundary conditions on the waveguide walls. Thus auxiliary electric currents are also

placed on the walls, computed by enforcing the vanishing tangential field boundary
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condition on these walls. This is essentially equivalent to considering the wall as
part of the scatterer. Of course, meshing the whole wall surface is not efficient, since
this results in an unnecessary increase of the number of unknowns. Domain decom-
position is a much more attractive approach (see Fig. 5.1). The termination and a
small portion of the walls beyond the hand-off plane is discretized for analysis via the
integral equation method. The incident plane wave is coupled to waveguide modes
in the hollow duct, as in Chapter II. The modal field at the hand-off plane (see Fig.
5.1) is the actual excitation of the termination analysis. After numerical solution the
scattered field is calculated at the hand-off plane and the modal coefficients are ex-
tracted by projecting the fields at the hand-off plane onto the waveguide modes [11].
The rest of the procedure is identical to the one described in Chapter II. Although
use of the free space Green’s function inside the cylinder is not expected to yield
exact results, it has been shown [39] that the numerical errors are not significant,
especially for large inlet diameters.

Use of the free space Green’s function implies that the results of Chapter IV
have to be modified accordingly. Specifically, although ( 4.26) is still valid, the sum
cannot be given in closed form, meaning that submatrices [A]*) must be calculated
explicitly. This procedure is evidently time consuming, but is still N, faster than the
regular MoM (without invoking the slicing scheme), whereas memory is still reduced
by a factor of N2. The results of Chapter IV concerning the coupling patterns of
the modes are still taken into account, retaining the sparsity of the modal scattering

matrix.



88

S—

Modal or Ray region Engine

-

Fields to Ray/Modes
Integration Surface

(Hand-off Surface)

Numerical or
Rigorous Modeling

Figure 5.1: Decomposition of the computational domain.
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5.3 Application of the Slicing Scheme to AIM

Although the application of the slicing scheme greatly enhances the efficiency of
MoM, the benefits for AIM are not that impressive without substantial modifications
of the method for its application to this structure. The main reason is that the
Toeplitz property of [G] in ( 3.26) can only be retained by extending the rectangular
grid over the whole scatterer, and not over a single slice. This can be seen by
examining ( 4.26). Suppose we need to calculate the second term, i.e. the interaction
between slices 0 and 1. Let slice 0 be embedded into the local rectangular grid, as
shown in Fig. 5.2. Also, let the mapping from the original basis functions on slice
0 to the uniform grid be performed via matrices [AZ], [AY], [AZ],[Ad] as explained
in Chapter III. To construct a local grid for slice 1 we cannot simply rotate the
respective grid of slice 0 without destroying the Toeplitz property of [G]. The only
possible solution is to extend the local grid of slice 0 so that it also encapsulates slice
1. By doing so, the mapping matrices [AZ],[AY], [AZ], [AY] for slice 1 are, in general,
different from those of slice 0. Therefore, the interaction between slices 0 and 1, i.e.

the second term in ( 4.26), according to ( 3.26) is equal to

em%: Z[L [Gou[L (5.1)

where [Gg,] is the Green’s function matrix defined on the grid covering both slices 0
and 1. Similarly, the interaction between slices 0 and 2, i.e. the third term in ( 4.26)

1s equal to

el 2nids Z N[Goal[LY] (5.2)
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e.t.c. To efficiently compute the sum in ( 4.26), it is necessary that the domains of
all matrices [Gq;] be extended over a grid which encapsulates all slices. Of course,
the domains of the mapping matrices [L] must also be extended with the additional

entries set to zero. If [G] is the extended matrix, the sum in ( 4.26) is readily given

by
4 ,
S LOGILY)T (5.3)
1=1
where
(L) = [[L§) + (L% + 4 [LY) )] (54)

Although the formulation is compact, the result is not favorable from a compu-
tational point of view. The reduction in memory by employing the slicing scheme is
still important, since there is no need to separately store the mapping matrices for
any but two slices (slice 0 and a collective “slice” corresponding to ( 5.4)). However,
since the extended matrices are defined on the global grid, which encapsulates the
entire geometry, the FFT dimensions are quite large and result in serious deceleration
of the algorithm.

To avoid using a global grid and large dimensions for the FFT, the only possible
solution 1s to construct a grid that still retains the Toeplitz property for the Green’s
function matrix [G]. Such a grid is not rectangular, but cylindrical, as depicted in
Fig. 5.3.

The numbering of a grid point at location r, can be characterized by three inte-
gers, namely py, pa, ps. If h,, hy, h, are the grid steps along the three directions p, ¢, z,
the cylindrical coordinates of the grid point at r, are (p1h,, p2hg, psh.). Similarly,

the cylindrical coordinates of the grid point at r, are (g1h,, g2hy,gsh.). It follows
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Figure 5.2: Local rectangular grid for the basic slice.

Figure 5.3: Cylindrical grid (front view).
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that the distance |r, — r,| between the points is

I, — vy = \/p3h2 + g2h2 — 2pigih2 cos [(ps — @2) ho] + (ps — @s)* B2 (5.5)

and the entries of the Green’s function matrix [G] are equal to

ikl —
qu:exp{ J Irz rq’}

5.6
dm|r, — 1y (5-6)
3
As in Appendix B, a tensor can be defined by
3
G’le,gjgas = Gipg (5.7)

associated with the aforementioned [G] matrix. From this definition it is evident that
the elements of the tensor are actually functions of the differences p, — ¢9, p3 — ¢s,
but not of py — q1, as opposed to the rectangular grid case. It follows that tensor

products of the form

ém P2,P3 1341,42,43 (5.8)

q1,92,93

can be written as

P
ZZZ GQ11P2—92,P3—'Q3 UE (59)

91 92 g3

This is a two-dimensional discrete convolution followed by a regular matrix-vector
product, rather than a three-dimensional convolution as was the case with rectangu-
lar grids.

Since the Green’s tensor is not Toeplitz along the p direction, the FFT can only be

used along the ¢ and z directions, meaning that matrix-vector product calculations
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are slower than in the case of the rectangular grid. This drawback of the cylindrical
grid is balanced by the smaller size of the FFT dimensions, since the computational
domain is reduced down to a single slice.

To illustrate the mathematical details associated with the cylindrical grid, we
focus again on equation ( 4.26). The auxiliary AIM basis functions defined in slice 0

are (cf. ( 3.15), ( 3.19))

YR(r) = ZM—L‘ )8y~ yS)8(z = =)

[A“” O + AL 5O + Az 5] (5.10)

$iO(p) = Zda:—r 5y — yon)8(z = 25 An, (5.11)

As before, superscript (0) refers to the local cartesian coordinates associated with
slice 0 (see Fig. 5.4). According to Appendix B the AIM approximation to the first

term in ( 4.26) is

A% = o {[ATGIVIA7T + (A[GI VA% + (A GIATT} +

1
- Ad G (0) AdT
A0 (5.12)
where
exp {—jkr(o)}
i) = T (5.13)
and

PO =\ /p2h? + 2h2 — 2pigih cos [(pz — qa) ho + (ps — gs)* b2 (5.14)
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(see above discussion on the definitions of the various parameters). It is pointed out
that p, g span the local cylindrical grid over slice 0 only. Similarly, the AIM auxiliary

basis functions located in the k; slice are

$50e) = Sle oty -t - 53
[A’” K09 4 A §0) 4 A7 )] (5.15)
Ppl(r) = Z o(x 8y — iz = =5)A, (5.16)
The A coeflicients are the same as in slice 0, since the moments of the rotated basis

function calculated in the rotated cartesian coordinate system are invariant. Using

the transformation formulae

%) = cos(kyhs )% + sin(r0,)3C (5.17)
FE) = —sin(k,0s)%® + cos(ks s )3 (5.18)
25 = 30 (5.19)

for the x; term in ( 4.26) we obtain

(A1) = {[AT][G]*)[A%)T cos(k, ) — [A][G]™)[AY]7 sin(k,d,)
[AY)[G)*I[A®] sin(x,6,) + [AY][G] " [AY)T cos(rod,) +

[A%][G] (A7)} + j—w;md] (G [AYT (5.20)

where

exp{—jkrz(,';s)} (521)
471'7",(,';3)

G(NS) —

pPq
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and

ré’;s) - \/pfhz +qth? — 2prqih2 cos [(p2 — @) hy — Ksbs] + (p3 — ga)* B2 (5.22)

Again, it is crucial to point out that p, ¢ span the grid of slice 0 only, although the
ks slice is being considered. The effect of the rotation is taken into account by the
term —k,¢, in the cosine argument of ( 5.22).

To rewrite ( 4.27) in compact form, we define the following matrices:

N.-1 ‘
T5)= Y (G cos(, ) (523)

Ke=0
Ns—1 '

T2]= 3 [Gem = sin(r,4,) (5.24)
Ks=0
Ns-1 ‘

[T)]= 3 [G])edninses (5.25)
Ke=0

By using ( 5.23)-( 5.25) we obtain the AIM approximation to the matrix [K] in

(4.27) as

Klame = jup {[A7)[T2 J[A) — [A%][T3 [AYT +
+ [AY)[TS JIAT]T + [AY][Te )[AY)T +

LAY JAY" (5.26)

AT+
The matrix products in ( 5.26) are calculated via a two-dimensional FFT, as opposed
to the three-dimensional FFT of the free space AIM.

An important issue concerning the nature of the cylindrical grid is its orientation

in space. No points of the grid may lie on the cartesian axes x and v, because in that

case, in accordance with the properties of Vandermonde matrices [18], the systems



Slice 1

Figure 5.4: Rotated cartesian coordinate systems.

for obtaining the mapping A coefficients through moment equality become singular.
Therefore, care must be taken so that the cylindrical grid is slightly misaligned with
respect to the cartesian coordinate system (see Fig. 5.3). For the same reason the
origin should be excluded from the grid. The efficiency and generality of the grid is
not affected by this choice.

Having developed all necessary tools, the method of analysis can be summarized
a follows: Given an engine inlet and a plane wave illuminating its open end, we
calculate the coefficients of the incoming cylindrical waveguide modes that couple to
the plane wave, as described in Chapter II. Using one incident mode at a time as

an excitation at the hand-off plane (see Fig. 5.1), the scattering in the termination
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region is modeled via AIM. A cylindrical grid is used, in conjunction with the slicing
scheme described in Chapter IV. The scattered field is calculated at the hand-
off plane, where the coefficients of the outgoing modes are extracted via numerical
integration. Finally, the outgoing modes propagate along the hollow duct and radiate

in free space through the aperture (see Chapter II) yielding the RCS of the structure.

5.4 Numerical Results

To check the validity of the formulation, a MoM code was initially written for
RCS computations of the jet engine inlets. The free space, instead of the cylindrical
waveguide Green’s function was used for reasons explained earlier in this chapter,
and the cylindrical periodicity of the geometry was taken into account, as shown
in Chapter IV. The code was initially tested for a cylindrical hub without blades.
The dimensions of the geometry were (using the same notation as in Chapter II)
b=2)\a= A1l =3X [, =0.5). Only one quarter of the geometry was modeled (see
Fig. 5.5) and the number of unknowns was N = 1866. A total of 176 modes was
used (11 Bessel function orders times 4 modes per order, times 4 for all combinations
of TM and TE modes) and the scattered field was calculated at a hand-off plane
located at a distance of 0.1\ from the hub top. The rim contribution was not taken
into account. The RCS results are plotted and compared with Mode Matching data
in Figs. 5.6 and 5.7 showing very good agreement. Any disrepancies are due to the
series truncation of the Mode Matching solution or the use of the free space Green’s
function rather than that of the cylindrical duct.

The formulation was also tested for a similar geometry with four straight blades,
placed perpendicular to the inlet axis. Again, only a quarter of the geometry was

modeled, by invoking the periodicity of the structure (see Fig. 5.8). The dimensions
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of the inlet and the hub were the same as in the previous case, and the number
of unknowns was N = 1777. The blade was 45° wide and was centered around
the x-axis. RCS results for this configuration are plotted and compared with Mode
Matching data in Figs. 5.9 and 5.10 showing again very good agreement.

Finally, an AIM code for the inlet problem was developed, based on the afore-
mentioned MoM code and the mathematical analysis described in this chapter. To
prove the validity of the AIM analysis within the cylindrical inlet, the RCS pattern of
a limited set of modes was investigated for a shorted waveguide having 2\ diameter
and an overall length equal to A. Only half the cross section was modeled in this case
by invoking the slicing scheme combined with AIM. The maximum distance among
grid points was 0.05), the expansion order was M = 3 and the near field threshold
was set equal to ry, = 0.7). For testing purposes, only propagating modes of or-
der 0 were used in the waveguide, and the relevant RCS results are plotted in F igs.
5.11 and 5.12. The rim contribution was not taken into account. The comparison
with MoM results is excellent, demonstrating the validity of the cylindrical AIM
algorithm.

Memory savings of the AIM compared to the MoM are very significant and anal-
ogous to the free space case. However, the true merits of the AIM with respect to
speed become evident only for a very large number of unknowns, and especially after
code parallelization. This is even more important for inlet problems, because the
pertinent impedance matrix is usually ill-conditioned, and a large number of itera-
tions is necessary before convergence is achieved. It is therefore absolutely imperative
that an optimized, parallel FFT be used. Considering our experience with the free
space case, 1t is speculated that this parallelization/optimization scheme will per-

mit the present formulation to handle jet engine problems with size and geometrical
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complexity not amenable to any other known method, numerical or analytical.
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A quarter of a hub geometry.

Figure 5.5
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Theta Polarization
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Figure 5.10: Backscatter for the blade geometry of Fig. 5.8 (8 polarization, ¢ = 0
cut).
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Figure 5.11: Backscatter of zero order propagating modes in a shorted inlet of 2\
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Figure 5.12: Backscatter of zero order propagating modes in a shorted inlet of 2A
diameter (6 polarization, ¢ = 0 cut).



CHAPTER VI

SUMMARY, CONCLUSIONS AND
SUGGESTIONS FOR FUTURE WORK

6.1 Summary and Conclusions

We investigated the problem of electromagnetic scattering from jet engine inlets,
and proposed various analytical and numerical methods for an efficient calculation
of their Radar Cross-Section (RCS).

In Chapter II the Mode Matching Technique, a semi-analytical method, was ap-
plied to characterize a cylindrical waveguide terminated by a number of non-trivial
engine-like configurations. The motivation of this study was to generate reference
data for validating more general numerical techniques. Three different termination
geometries were considered, including a termination consisting of an array of curved
grooves. The latter has a close resemblance to the jet engine face whereas the stub
and straight groove terminations served to validate the mode-matching implemen-
tation for this application. Scattering results were presented for each configuration
and a serious effort was devoted toward their validation either by comparing them
to other reference solutions (when available) or by examining the satisfaction of the
boundary conditions at the interface of the termination. Comparisons with actual

measured data were performed, demonstrating excellent agreement.
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Since analytical techniques, such as the Mode Matching method, are applicable
only to canonical geometries, we investigated the use of more versatile, numerical
methods, capable of modeling arbitrary structures. In Chapter III the Adaptive
Integral Method (AIM), an integral equation technique especially developed for large
scale problems, was described. The relevant mathematical background was given in
a rigorous manner, novel analytical calculations were performed and an efficient
computer code was written for the free space case. Based on these simulations it was
shown that memory requirements and computational complexity of AIM is much
smaller than the Moment Method (MoM), especially for relatively flat surfaces, as in
the case with engine blades, whereas accuracy is retained at a desired level. Several
numerical results were validated for relatively flat and corrugated plates and were
found to be in excellent agreement with MoM. Also, parallelization of the FFT
algorithm demonstrated the impressive computational efficiency of the method in
multi-processor environments.

To further reduce the complexity of AIM for jet engine modeling, we exploited the
inherent symmetry of the blade structure. In Chapter IV it was shown that substan-
tial computational efficiency can be achieved by taking advantage of the blade peri-
odic properties in much the same way done for Bodies of Revolution (BOR’s). The
Jet engine geometry was characterized as a “Discrete Body of Revolution” (DBOR).
Specifically, the following simplifications were achieved: (a) the modal scattering
matrix was very sparse and its non-zero entries could be predicted a priori, leading
to large storage savings; (b) the computational domain was reduced down to a single
periodic sector of the scatterer (e.g. a single blade for the jet engine). This was done
regardless of the geometry of the periodic sector or slice and as can be realized the

computational savings are dramatic. Specifically, the number of unknowns is reduced
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by a factor equal to the number of slices N, with the corresponding computational
savings being equal to N2. The above CPU time simplifications for a DBOR parallel
those already known for regular BOR’s and therefore the presented analysis can be
considered as a generalization of the latter. Similar simplifications can be carried out
for PDE simulations, but the one presented here for the integral equation formulation
is more attractive for metallic DBOR structures, since the computational domain is
restricted to the scatterer’s surface and no cumbersome phase boundary conditions
are needed to take advantage of the periodicity. Instead, for integral equations, the
only modification is the introduction of the periodic Green’s function.

In Chapter V we applied AIM inside the jet engine inlet geometry. We showed
that the “slicing scheme” developed in Chapter IV can be efficiently combined with
AIM only if fundamental modifications of the pertinent grid are carried out. Specif-
ically, it was shown that the Toeplitz property, the cornerstone of AIM efficiency,
can be retained only if a cylindrical, rather than a rectangular grid is utilized. Fast
Fourier Transform (FFT) can be used only along two dimensions, as opposed to
the free space case where three-dimensional FFT is employed, but the important
advantage is that only a single sector (“slice”) of the engine needs to be modeled,
requiring much smaller FF'T dimensions. Several numerical results were presented

and compared with reference solutions, showing the validity of the method.

6.2 Suggestions for Future Work

Although the methods presented in this thesis were shown to be quite accurate,
further improvements must be carried out before they yield RCS results for realistic
engines of diameters up to 50 wavelengths. As far as the Mode Matching method is

concerned, very little futher improvement seems possible, since non-canonical geome-
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tries are not amenable to analytical solutions. On the other hand, AIM is probably
the method of choice, provided a speed-up of the algorithm is attained. Paralleliza-
tion of the code is absolutely essential, since sequential multi-dimensional FFT’s are
extremely time consuming. Two different options can be considered: parallelization
of the FFT only, or domain decomposition of the geometry and parallelization of the
entire code. FFT parallelization has already been tested for the free space case, and
the results were very satisfactory, but the second option should also be investigated,
especially for arbitrary, not necessarily flat surfaces. As soon as parallelization and
optimization of the code are complete, it is believed that AIM will be capable of

performing RCS calculations for realistically large jet engine inlets.
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APPENDIX A

MATHEMATICAL DETAILS OF THE MODE
MATCHING TECHNIQUE

A.1 Explicit expressions of the modes in the cavity

The transverse fields corresponding to each mode are given by: (the longitudinal
dependence has been suppressed; e stands for the electric and h stands for the

magnetic field)

Region 1.

™ B v v (T sinng
el,np = N WE 7 J (7 P) uP+

1,np 1,npYn \ T1,np cos ng

+ an (%T,ﬁf;p){ _C(S)lsnnié }u¢] (A.1)
| YA O

-t i) { o b (A2
5, = 5[ 2 (ma) e, Fu

SIN 7« \
+ Nt (%T,fpp){ b }u¢] (A.3)

cos N
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, Bl | 15 [ sinng
W% = NI (1) u, +

1,np 1,np npYn Cos n¢
n TE cosng ]
+ ;Jn <7l,npp> { —sin ne }u¢ (A4)
where the y{ ). 4" are found from
Ja(Vingb) = 0 (A.5)
Ja(mb) = 0 (A.6)

The normalization factors are arbitrary. They are usually defined by [5]

NTM = e [%J; (4E10) 4200 oY T B (A7)
NTE = [%J (+7£5) \/ﬂkZﬁ{fpen{(yffpb)2—n2}] ) (AS)
¢, = {f Z;g (A9)
and on the basis of this normalization
%//5 €1y X Ny 25 = 1 (A.10)
Region 2 (Cylindrical Hub Termination).
€imy = Yoy Y (13mg@) Jro (13000) = T (+EM0) Y (3520)] -
Se S g I

+ = Yo (3320) I (vi3he) = I (sih) Y (+300)] -

Ngﬁﬁiirﬁ { _C:fnmrfqb }ud, (A.11)
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hg%q = % [Ym (721:%[(;‘1) I (’YQT,TAn/[qP) = Jm (72]:%,“) Y (’7;%;/’)] '

™ | cosmo
NZ,mq up -

—sinmao
N Yo (Vims0) Tt (Yimgp) = I (13 m0) Yo (v2m0) |-
S B
i = Vo (1Ea) In (5r) = I () Yo (7))

N%ﬁ‘lq{ coamo }up +

—sinmao

+ AE Ve (VE,a) Jr (Ep) = T (VE ) Y (Vimer) | -

inme
] s
hIE, = 21 Vi (MEa) Jn (Ep) = Jn (Vima) Y (vimap)] -

TE :
NTE g_z_m_q sin me o+
2ma oy | cosme [ F

R ACREACH BN CHREAC I

TE
gz 15, [ cosmo
2,mq o Uy
Wi sinmo
1
TEM _ NTEM
e, = N,""~-u,
WIEM  _ NTEM__l_u
2 - 2 Z é
p
QT’ ,A,fq, 7% flq are found from

Ym(V;%qa)Jm(V;M ) — Jm(W;%qa)Ym(’Y:{M b) =0

mq mq
Y (Yarmg@ o (1 5 gb) = T (V3 g @)Y (12 gb) = 0

2,mq) " T 2,;mq>

defined by [40]

(A.12)

(A.13)

(A.14)
(A.15)

(A.16)

(A.17)

(A.18)

The normalization factors NIM NTE “NTEM are again arbitrary, but are usually
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1 J2(3Ma) 17
NIM = 2 (3 mi A.19
O Y ST A
1 J; (%?E a) ’ m \’
NIE = —\/r(3—¢n i L 1_( )
= et i) (s
7y
m
S Py g } A.20
[ (ﬁaJ} (A2
NITEM = ! (A.21)
27 1n (b/a)
2 n=0
= ‘)
€n = {1 n 40 (A.22)

Region 2, ' groove (groove array termination).

et = M Y, (M a) I (Vi) — J, (WM a) Yy (M 0)]
,BTM
N P Gt (5 ), +
we

2,mq

+ 20 (E2) 2 () — 4 () Y. (E20)]

NTMB;%qcos[uw éx)|u A.23
' e = ¢x)luy (A.23)

2,mq

h;ﬁ/{mq = % [Y;’ (75,%1(1) ‘]“ <7§%qp) - ']” (727:7%1(1) Y:’ (721:7]7\1411‘))] '

. NQTWA:Iq cos [V (¢ — ¢x)]u, —

— o [Yo (i) I, (vamtp) = I (virha) Y, (vE240)]

Ny sin{v (6 — é4)]uy (A.24)

€ hmg = % V! (2E,0) 1 (1 E.p) = T, (13 E,a) Y, (11E,0)] -

NI sinfu (6 - )] u, +
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+ 72szq [Y (72 mq® ) ']/ (7§T€qp) o Jl[’ (727:5‘160 Y:’, (’)gjpr)] .

Ny c0s [ (6 — 6:)] ug (A.25)
W% = AE [V (3Ea) T (uEe) - T (MEa) Y, (MEp)]
o

~ [Y'( WEa)J (MEp) - T, (M) Y, (MEp)]
NIE Baima sin [v (¢ — ¢x)] U, (A.26)
Wi

2,mq

where the 47 ) 47 are found from

J (FYQTTI;qu )Y (72 mqb) J, (’}/2 mqb)Y;/l(ﬂyg:ftqa) = 0 (A28)
and
v = % m=0,1,2,.. (A.29)

23 =) [J2 (viM i
NIM = ﬂ;;%qg / (¢ ‘ )[ﬂ g’i mqb; 1} (A.30)
. _ T (23— €n) J, ’Yzmq) ( v )2
B {Jé (vé‘fﬁqb)} ll Tamab
_ [1 _ (%a) } } 2 (A.31)

2 m=
en = {I m (A.32)

¢w 1s the angular extent of each groove.
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A.2 Closed Form Expressions for the Coefficients of the Mode
Matching System of Equations (Cylindrical Hub Termi-
nation)

The integrals defined in eq. ( 2.16), ( 2.17), ( 2.19), ( 2.20) can be evaluated in
closed form through use of properties of Bessel functions. Particularly useful in the
evaluation is eq. (11.3.29), p. 484 of [41]. In the text we used only one index to

characterize the modes, and also we dropped the specifications TM, TE, TEM, for

clarity purposes. Here we define the integrals in a more detailed manner. We set

b p2rm

Prgnp = /Q/O €2,mq * €1,nppdpdd (A.33)
b p2w

Upy = /0 /0 €1y - €1mppdpds (A.34)

b r2rw \

qu,np = /a o h?,mq'hl,nppddeb (A35)
b p2rm

Voy = / [ Baing - hamappdo (A.36)

In order to write the latter integrals in closed form, it is convenient to define the

following functions:

QM (z:a) = 2= 1) [y (az) Jnoy (2) = Jyey (az) Jy (7)) +
+ Q(ng 0 [@nt2 (@) Jntr (2) = Jugr (@2) Juga (2)],
it om0 (A.37)
O (3:0) = afa_xl (s (a2) Ji () — Jy (a2) J (2)]

if n=0 (A.38)
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00 (2;0) = 2(a(2m_1) [an (@z) Yoy (2) = Jnoy (0z) Vi ()] +
b s (02) Yo ()~ s (08) Vo 0],
it n#0 (A.39)
0 (5i0) = 22 fady(ae) ¥ (2) - s (o) Vs 0]
if n=0 (A.40)

Then it can be shown that:

e Region 1: T'M,, modes, region 2: T'M,,, modes

NTM./VTM ﬁl ;NP ﬁ2 ~2,mq 5

qu,np = 1,np*'2,nq WE  we
™
Tin T
{Y 72 nq [ ( g%b’ T’\/II)) _Q(nll) (7§%G’T—]\/I[)>} -
8 72 ng
Tin Tin
() [ﬂ& ? (%Tf:zb, TA;) QU (735:5 , M)] }aw
Y2 ng 72 ng
e Region 1: T'M,, modes, region 2: TF,,, modes
Py = NTUNTE 5 Pinp, Jo (114 )——2 A42
magnp — ‘'l np 2nq WeE 1 n ’Ylmpa ﬂ-’)/ZTEq ( . )
e Region 1: T'M,, modes, region 2: TEM mode
ﬂlo
Poony = —NTM NTEM 2502w ]y (vata) (A.43)

e Region 1: T'E,, modes, region 2: T M,,, modes

qu,np =0 (A44)
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* Region 1: T'E,, modes, region 2: T'E,,, modes

Prgnp = N2 NPE 760

1,np 2nq

e i
{Y/ (2E0) [ (Vg"gqb V?TEP) _qu )(ﬁq ’;TE’”)] _

ng 2,nq
", Mo
n T N
— J; (’)/gija) le 2) ( g‘fqb p) — QSQ) (72151(1; T—Ep)} } (A45)
’72 g 72777,(2

¢ Region 1: TE,, modes, region 2: T EM mode

Prgnp =10 (A.46)

Finally, on the basis of ( A.10) for all cases,

Unp = 270, (AAT)

In the latter expressions, d,, is the Kronecker delta and Z,, is the characteristic
impedance of the np mode. It is interesting to observe that only modes of the same
order (i.e. order of the Bessel function) couple to each other, Also, TE modes in
the first region couple only to TE mode of the second region, in agreement with the
results in [42].

Similar closed form formulas hold for ( A.35) and ( A.36), but the explict expres-

sions are not important, due to property ( 2.23).
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A.3 Compact Expressions for the Coefficients of the Mode
Matching System of Equations (Groove Array Termi-
nation)

As opposed to the cylindrical hub termination, the coefficients of the matrices
involved in the mode-matching system of equations cannot be evaluated in closed
form. The ¢ integration can be performed analytically, but the p integration has to

be carried out numerically.

Again, we define the pertinent coefficients as

b rédxtouw
Pﬁqu,np = /a / €2 x,mq e1,nppdpd¢ (A48)

Uy

b 2w
/0 /0 e1np - €1mppdpddh (A.49)

To express the coefficients in a compact form, it is convenient to define the fol-

lowing quantities and functions (k,m,n € No,v = mn/¢,):

I,(il,)lm = /¢¢K+¢w cos ngcos [V (¢ — ¢y )] dp =

_ @sinc (n.‘zid)w) cos (n + V(Z)w + nf,/%) +

2 2
+ %sinc (n ; V¢w> cos (7@2;1/% + mf%) (A.50)

~
S
1

xtdw
K,nm / sin nd) COS [I/ (¢ — an)] dgf) —

= ¢—“’sinc (n‘?igbw) sin <n + V(bw + ngZ)K) -

2 . 2
bw . [n—vV . [(n—v ;
+ — sinc (T¢>w> sin ( 5 b + nq§ﬂ> (A.51)

~
@
Il

brtduw
Kynm / cosngsin[v (¢ — ¢,)] dp =

K
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= ———sinc(n—i—u > (n_l-yqbw—l-nd)n)
o)

. n—v
- —SlIlC

o /:mswSinnqssin[v(cb—-m)]dqb:

(" 2+ nm) (A.52)

= ~Spine (o ()

+ Psine (U220, ) cos (52 gu 4o (A.53)
MU (ermiia) = [ (al) g (6) e (A54)
M (@asa) = [ (a8) ¥ () ¢t (A.55)
A (o) = [ (a€) o (6) (4.56)
M (aa) = [ 0O (O g (A.57)
=00 (@nano) = [ (e) L (§)de (A58)
=0 @rma) = [ (a6 Y. (6)de (A59)
W o) = [, (0€) ) (6)de (A.60)
W nana) = [ (a6 Y] () de (A1)

The coefficients defined in eq. ( A.48)-( A.49) can be written as:

e Region 1: T'M,, modes, region 2: T'M,,, modes

_ TM A TM /61 P ﬁ? ~2,mq
Pn,mq,np - NlnpN2mq we WE ’
K,n 7 O 7 n
{Y '72mq { " } - Mu) (72mq ’72mqb’ ;J\;) +
2mq 72mq
¢) o
™ R0 1,
+ Y (72 mg ){ _;(23;1 A (7, mqa 72 mqbv Tzr\}p -
K,nm Y2 ,mgq
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I\ Yo oo ",
™ K,nm 1,n 1,n
J,, (72,mqa) { I(Y) T]\/;) M}z}f) 72 mqa Y2 mqb 7 P -

K,nm 72 ,mq 2 mq
™ If(ilnm 2) ™ ’}Il np .
- b (’yqua) _je m/Anm Y2,mq% V2 mqb T (A.62)
K,nm 5 mq

® Region 1: TM,, modes, region 2: TE,,, modes

TM \fTE /61 n
P'{quJLp = Nl TLpN2 mq w€p '
{Y’ (,YTE a){ Y. } Vi Mnp —(1 )(7 AIE . M, np) L
Y 2ma II(QJ)LM 7;171;:111 nm 2mq T Ama 72 ,mq
[r(ilg.m ’YIn
+ Yul (727:51qa){ _11(2) nlp%lnlz) 72 ,mq a,”y 2mqb 72 p -
K,nm ymq
9, e
— J (1m0 { T T | Vg Vo T | —
i) i gt (ohhao ik
I:(clf)zm ’yln 3
- J (viﬁqa){ it }R‘P%) (72 g Vamgb =7 e i (A.63)
K,nm ,mq
e Region 1: T'E,,, modes, region 2: T M,,, modes
Pﬂ,mq,np =0 (A64)

¢ Region 1: T'E,, modes, region 2: TE,,, modd®

TE zxTE
Pn,mqmp = N N, :

~
S
—//
-2
Ny
3=
o)
Q
~—
—
e
:V:L‘l
3
H—/

Tn Tin
l P wninl) (72mq 772mqb 71 p)+

K,nm 72 ,mq 2,mq
1 (.TE -9, (11) N Tmp
+ Y;J (72,mqa) ](4’ nVAnm ’72 mqa Y2 mqb 7 -
K,nm 2mq
(O o
S 7T7Ena { K,am laniyl?? 7 E 4,5 mb 1”1’ _
( Zma ) Ir(:r)zm /2 ,mq 2 q 2ma 72 ,mq
1 (JTE ~1Y 12) TE ;. 11,
- J (72,mqa){ I(f‘"m }nuA ('yz mg @ Va.mq03 ’YQTEP) } (A.65)
K,nm mgq
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Of course, on the basis of ( A.10) for all cases,

Unp = 270, (A.66)

Like in section A.2, 0,y is the Kronecker delta and Z,, is the characteristic impedance
of the np mode. Again, TE modes in the first region couple only to TE mode of the

second region, in agreement with the results in [42].

A.4 The Eigenvalue Symmetry Property of the G.T.E. Ma-
trix
The following property holds for matrix [M] of eq. ( 2.46):
If ) is an eigenvalue of [M], —) is also an eigenvalue of [M].
The proof is based on the three following Lemmata:
Lemma 1: For any matrix [A], det [A] = det [AT}
(Proof well-known)

Lemma 2: Let [A;] be n X n complex matrices. Then

_| [An] —[A4]

[An] [Ay] .
' - ‘ ~[An]  [Az) (A67)

[Az] [Ag]

Proof: Let [I] be the n x n unit matrix. Evidently

5 ][ ][ ][ ] e

Given that

’ = +1 (A.69)
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and that the determinant of a product of matrices is equal to the product of their
determinants, the proof of the lemma is obvious.

Lemma 3: Let [A], [B], [C] be n X n complex matrices. Then

,[A} C] _l [B] [C]| (A.70)

[C] B] | |I[C] [A]

Proof: Similar to Lemma 2. Note that

[C] [A] 0 oL B[ @M [0

and consequently ( A.70) holds since

lm1mﬂy:pm[n}pﬂ ww[mlﬂw (A1)

(0] [ |_.
‘[1] o |= £ (A.72)

and since the determinant of a product of matrices is equal to the product of their
determinants.

Using the above three Lemmata, we can develop the proof of the eigenvalue
symmetry property as follows:

Proof of the Eigenvalue Symmetry Property:

Let

M] = [ m _[[I;]]T } (A.73)

where [D] is a diagonal matrix. If A is an eigenvalue of [M], then by definition

' [A] = A[] [D]

D] —MF—Am.ZO (A-T4)
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Further, by using Lemma 1, and since [D] is diagonal, we have

[A]" - A1) [D] _
RN O L )
or, equivalently
A"+ -D] |_
T i | A0
Next, from Lemma 2, ( A.76) yields
A"+ D |_
I ST - AT
and finally Lemma 3 gives
[A] + A[T] [D] _
\ D] _ [A]T A } =0 (A.78)

This result shows that —A is an eigenvalue of [M], Q.E.D.

A.5 Application of the Mode Matching Technique to the
Generalized Modes within the Compressor
In this section we apply the Mode Matching Technique to the geometry of Fig.
2.8 in order to evaluate the scattering matrix of the curved blades array.
In Region 1 the transverse fields are given as a superposition of cylindrical waveg-

uide modes:

Eﬁ = Z [apel,p exp {]ﬂlypz} + bpelypeXp{“jﬂl,pZ}] (A.79)
p=1
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Hﬁ = Z [aph; , exp {16102} + bohy , exp {~301,2}] (A.80)

p=1

where a,,b, are the coefficients of the incident and the reflected fields due to the
termination. Similarly, according to ( 2.39) the transverse fields in the ™ groove of

region 2 are expressed as superpositions of the generalized modes:

o¢]

By = D Vail2)ereilp, ¢32) (A.81)
=1
Hy = ) Lii(2)hani(p, 6;2) (A.82)

1=1

From ( 2.51) we deduce that in the " groove

{V.} = Kule®™ {c.} + [Kig]e ¥ {d,} (A.83)

{3} = [Ku]e™ {e,} + Ky {d, } (A.84)

where {c.}, {d.} are vectors of arbitrary constants.

To evaluate {b} = {by,b,,...}" in terms of {a} = {ay, as,...}" we must impose
the continuity of the tangential fields at the interface. Furthermore, the tangential
electric fields must vanish on any PEC surfaces.

Let us locate the origin of the coordinate system at the interface between the two

regions. Enforcing continuity of the tangential electric field at the interface yields

Eil:=0 = Ef|.—o (A.85)

H;

im0 = HY|.0o (A.86)

Vp € [a,b],Y9 € [¢ (0), ¢« (0) + &), V& € {1,..., J}
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On combining ( A.85) with ( A.79) and ( A.81), taking the dot product with the

modes e; , and integrating over the whole interface, we obtain the system

J
[U]({a} + {b}) = 2_: [M.] ((Ku] {es} + [Kiz] {d,}) (A.87)
where
M, = / b / f"””” esy - €1,pdpdd (A.88)
Uni = 6 /Ob /Oz"el,m-el,npdpdgb (A.89)

and d,,, is the Kronecker delta.
In a similar way, on combining ( A.86) with ( A.80) and ( A.82), taking the
dot product with the modes h; ., and integrating over the portion of the interface

common to both regions, we obtain the system

Q<] ({2} = {b}) = [V ((Kau]{ex} + K2 {d.}) Ve =1,....J (A.90)

where

b réxtouw
Qrap = /a/ hy g - by ppdpdd (A.91)

an

b p2m
S / / hom - ho npdpdd (A.92)
a JO

and 9,,, is the Kronecker delta.
If [Sx.end] is the scattering matrix of the termination corresponding to the &'

groove, then, by definition,
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[KIZ] el2[A] {dﬁ} = [Sn,end] [Kll] e_12[A] {cn} (A93)

where [ is the length of the second region. Expression ( A.93) provides a relation
between {c,} and {d.}. To find {b,} we must solve systems ( A.87), ( A.90)
and ( A.93). Obviously, {b,} will be a function of {a,}, and to avoid repeating
the solution for every excitation, it is customary to instead compute the scattering

matrix [S] defined by

{b} = [S]{a.} (A.94)

To help define the scattering matrix, we introduce some auxiliary definitions:

R.] = e ™2 K] [Skpma] [Ki] e AV (A.95)
[F.] = [Ku]+[Kio][R.] (A.96)
[Gi] = [Ku]+ [Ka][R,] (A.97)
L] = [V Q] (A.98)

Then, from ( A.87), ( A.90), ( A.93) and ( A.94) it follows that

[S]= (W] + @)™ (W] - [0) (A.99)

where

(W] =3 [LJ" [F.][Go] 7" [L] (A.100)

x
11
—
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and [I] is the unit matrix.

A.6 The Exponential Matrix Solution of the Generalized
Telegraphist’s Equations.

In this section we give an explicit form of the matrix exponential appearing in
(2.49) when the blades are straight. It is shown that the well-known solution of the
conventional Telegraphist’s Equations is recovered.

In the case of straight blades, F'(z) = 0. Hence

_| [0] [D]
[M] = [ D] [0 ] (A.101)
One observes that
2_[D [0] ] _ p
where
_ | D] [o]
Q] = [ 0] [D]] (A.103)
Thus

1

i M) + ...

expM) = 1+ [M] + 5 [M[" +
- {[1]+%[M]2+211—![M]4+..}+{,{M]+%[M}3+%[M]5+...}
= (W Glar+ @+ f {4 Q8 + 5 QF +..}

= cosh [Q] + [M]sinh [Q] [Q]_l
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cosh [D] sinh [D]
sinh [D] cosh [D]

(A.104)

The latter equation, in conjunction with ( 2.45) and ( 2.49) yields

L N
ZOIn,i = Cn,ie_jﬁiz - dn,’iejﬁiz
where
1 v
i = 5 [Vii (0) + Zol: (0)]
1 ,
dﬁ,i = 5 [Vﬂ,i (0) — Z()],w' (0)]

(A.105)

(A.106)

(A.107)

(A.108)

This is the well-known solution of the conventional Telegraphist’s Equations.

A.7 Explicit Radiation Coefficients for Circular Inlets

In the near zone, there is no simple closed form expression for the radiated field

due to a single outgoing waveguide mode. However, it is possible to derive closed

form expressions for far zone observations. From [5], the far zone field due to each

mode is given by

_ cos ng sin ng

Eraa = [Ea { —sinng } us + Ey { cos ng
Ey = FEg + FEp,
Ey = Eg+ Egy
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where Egy,, Eyr are associated with the contribution from the Kirchhoff integral

and Ey,, E4, correspond to the contribution from the equivalent fringe rim current

(Ufimtsef type). Explicit expressions of Egx, Egp, Egy, Eyy are as follows:

T'M,, modes:

Eg

TE,, modes:

= jENTM,TMp.

np'h np

sin §

(cos pIM p — €08 9)

= 0 (A.113)
cos (6/2) — cos (1/)1 np/Q)

cos { M — cos f

J; (YT Mb) J, (kbsin ) (A.112)

= jnNTM jr ( TMb)

1np“n 1np

zbfnp(ote

2
[n*B1 ap sin 2 kb

——J, (kbsin0) +

0
+ kyf npbsm J) (kbsin 0)] (A.114)

cos (0/2) — cos (1&{%/2)

cos piM p — cost
™
{ﬂl np S 2 —2J! (kbsin §) +

f cot 0 _ Jn (kbsin 9) }
Lk TMb 1 _Yn
+ kN st m [Jn(kbsmﬂ) e } (A.115)

— nNTM Jl ( )

lnp

— nkZNTE

lnp

1—+—cos0cosg/)1 ey ( TE |

2sin 8 Mynp

) Ju (kbsin0) (A.116)
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Ey = j"kZNTEAIEG.

np’)’l np

sinypf £ p
(cos IE — cos 0)
( B b) cos (8/2) — cos (zpl np/Q)

lnp

Jn ('y] npb> J! (kbsin ) (A.117)

Ep, = j"ZNIEnJ,

1,np

cos ] E — cos

{ﬂTE sin — J" (kbsin @) —

1,np

2/1 cot 0 ) }
TE P All
1npbsin 5 T Jn (kbsin §) ( 8)

cos (0/2) — cos (1] np/z)

cospT B p — cos

—k’y

Eoi = jZNIEJ, (11Eb)

1,np
0 TE bsin VL —"2.J! (kbsin 0
M .npbsin 5 (kbsin @) —

fcotf | , , J (kbsin8) }
— ﬁl np sin EW [Jn (kbsm 0) — WJ (Allg)

where, by definition

5’IM TFE
Yra Pz L (A.120)
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APPENDIX B

MATHEMATICAL DETAILS OF THE
ADAPTIVE INTEGRAL METHOD (AIM)

B.1 The AIM Impedance Matrix

In this section explicit expressions for the elements of the AIM impedance matrix
are given, and we also explain how the Toeplitz property can be utilized, so that fast
calculations of matrix-vector products can be performed.

In the text it was proven that the integral equation is written as

/ E-f.d% = / jwA - £ —/ oV, - Fud (B.1)
v 14 v
By using ( 3.2) and by substituting the basis functions by the auxiliary set 1, for

the far field interactions, the vector potential integral in ( B.1) is equal to

4 N M3 M3
= gup 3 I 303 (AL AL + AL AL+ A2 A ) G(Eap, Tng) (B.2)

=1 p=1g=1

where r,,, and r,, are the locations of the grid nodes and
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exp {—Jjk[rnp — Tl } (B.3)

AT |rpy — Ty

G(Tp, Timg) =

We need to express ( B.2) in matrix form. To do so, we extend the summation over
p and ¢ to the whole grid that encapsulates the geometry, thus eliminating indices
m and n from the arguments of the Green’s function. Furthermore, matrices [A”],
[AY], [A?] are defined in such a way that their elements A,,, are zero unless ¢ is one
of the M? grid nodes around the m element (see fig. 3.4). If N, is the total number

of grid nodes, we obtain

N Ng N

Tao= dep Y LYY (AL AL, 4 ALAY, + AZAZ ) Glr,T,)
1

n= p=14g=1

= JjwnE'H{I} (B.4)
where
=[5, ... InT (B.5)
and
[E] = [A*][G][A]" + [AY[G][AY" + [A7][G][A7])" (B.6)
where

G &Xp {—jlﬂ@

Pq
47,

(B.7)

with
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Tpq = [Tp = Ty (B.8)

Similarly, the scalar potential integral in ( B.1) is equal to

1

2 = B (1 (B.9)
where
[E] = [A[G][AY)" (B.10)

The [L] matrices in ( 3.26) are defined by

L) = \/jwoulA®] (B.11)
IL®)] = \/jwulAY] (B.12)
L] = fjwn(A?] (B.13)

LW = \/]%;[Ad] (B.14)

Matrix [G] has the Toeplitz property, provided the element numbering is based

on six indices, instead of two. Indeed, suppose that h is the grid step and that

r, = h(pX+p2y +psz) (B.15)

r, = h(gX+q@y+ i) (B.16)

where p;, ¢; are integers. Then a ( g ) tensor can be defined by
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(;P1/P2:P3 — Gy (B.17)

91,92,93

for the aforementioned [G] matrix. It is obvious from the definition that the elements
of this tensor are actually functions of the differences p; — ¢1, p2 — ¢2, p3 — g3, which

means that tensor products of the form

éplvP%PS,ﬁ(Ihq%% (B18)

91,92,93

can be written as

ZZZ ém—ql,pz—qmpa—qzﬁ%q%qs (B.19)

91 92 93

which is evidently a three-dimensional discrete convolution. By defining the periodic
extension of the three-dimensional sequence G and after suitable zero padding, all
matrix-vector products involving the [G] matrix can be efficiently calculated via
three-dimensional FFT subroutines. An FFT-based computer routine for the rapid

calculation of the tensor products in ( B.18) has been developed, validated and

included in the AIM code.

B.2 The Moments of the Basis Functions

In this section it will be demonstrated how the moments defined in ( 3.18) can
be efficiently calculated by closed form expressions, thus avoiding time-consuming
numerical integrations.

Assume that the global coordinate system is denoted by (z,y, z), while an addi-
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tional local coodinate system (z%, y*, 2%) is defined for each one of the triangles T'*
that make up a tetrahedral patch (see Fig. 3.5). The origins of the local coordi-
nate systems are located at the free vertices of the triangles and their z* axes are
perpendicular to the surface of the triangles.

Given the definitions of the moments in ( 3.18) and the basis functions in ( 3.6)

and ( 3.16), it is clear that the calculation reduces to integrations of the form

~ 1 0 o) 00 . . .
M‘IICI2Q3 = —+/ [ / (I‘ - ril-)(S(Z+)(:L' - -Ta)q (y - ya)q (Z - Za)q d;ltdydz +

(B.20)

and due to the properties of the delta function it is obvious that the initial volume
integral is decoupled into two separate surface integrals over 7+ and 7. Let us con-
centrate on any one of them, dropping the superscripts +. From now on we will use
primes to denote the local coordinate system on any triangle. To calculate any of the
integrals in ( B.20) we need to express all quantities in the local coordinate system.

Let [C] be the directional cosines matrix that transforms (z', 4/, ') to (z,y, z). Then

r-r; = (@—2)X+(y—-yp)y+(z—2)2=
A

T — I T
=x¥y.2 - {yv-un p=[%y,2-[C]-{ ¥y (B.21)
z— 2 z

Next, we transform the arbitrary triangle 7' into a right isosceles Ty, by use of the

transformation (see Fig. B.1)
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(X'3,’s)

Figure B.1: Transformation to a right isosceles triangle

\/
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i N B A )¢
{y’}_[yé yé] {77} (22

The new orthogonalization coordinates €, i simplify the integrations over the triangle,

since 1t can be shown that

P Y RN __ rlgt
[ [ emdein= [ [ erdsdn = P (B.23)

where p,q are nonnegative integers, while

det (a('rl’zl)) =24 (B.24)

where A is the area of he triangle.
Using the fact that on the triangle surface 2/ = 2] = 2}, =z, = 2} =y} =0,

( B.22) can be written as

0

£ } (B.25)
n

(B

r—r; = [(z2—21)6+ (a3 — 1)) X+
+ (2 =)+ (ys—y)nly +

+ [(z2 = z21)€+ (23 — z1)n) 2 (B.26)

Similarly we obtain
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= r—ry+r—r,=
= (ené+zan+21) X+
+ (yal+ysin+ )y +

+ (221l + 2310 + 214) Z

(B.27)

where we have defined z,s = 2, — @5, Yrs = Yr — Ys, 275 = 2, — 2, to simplify the

notation. To calculate the moments, it is sufficient to evaluate the integral

) Q
9O = [ [ (e +28n) TT (e + nlin + uip) ded
0 q

=0

(B.28)

where () is the sum of the moment indices. For example, to calculate the z component

ofMglowesetQ:2+l+0:3and

0
A

0
Ngo)

1
/Jgo)

2
Ngo)

3
Ngo)

The integral J(@) can be evaluated recursively in the following way:

For () = 0 we have

T21, Aﬁﬁ) = T3

0 0)
Oa,ut()l) = O»Ngo) =1
3321,/1(()11) = 1731:#(()})) = T1a

1721#821) = 3731’11320) = T1a

(3) _ (3) _
Y21, Hot = Y31, Hoo = Y1a

Mo + A5
6

JO —

(B.29)

(B.30)
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The integrand of J(@ is the polynomial

Q+1Q+1
=Y S APy (B.31)
1=0 j=0
and the integral is (see ( B.23))
Q+1Q+1
=) 2N (B.32)

i=0 j=0 Z+]+2)

The integrand of J(@*1) is the polynomial

PLOH) = p@ (@0 4 @D, | (0+1) Z Z,\Q“ i (B.33)

=0 5=0

where

AP = A @ 4 MDD uH L ADuE i > 0,5 > 0 (B.34)

and

AP = 0ifi<0orj<0 (B.35)

v
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APPENDIX C

MATHEMATICAL DETAILS OF THE
PERIODICITY EXPLOITATION

C.1 The Cylindrical Waveguide Dyadic Green’s Function

Following [34] we define two sets of cylindrical vector wavefunctions, namely

M, (15 815) = VX [-]|n|(V’Zfﬂ)ej%e-iﬁ%zi} (C.1)
1 ‘ .
Nun(riB01) = 7V %V x [l p)e o023 (C.2)

The functions M,,,,, correspond to TE modes and the functions N,,,, are associated

with TM modes. If the waveguide radius is a, then yZMTE and BTMTE are defined

nm

by

e A N (C.5)
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Carrying out the vector operations, M,,, and N, can be written explicitly as

Jn "
M (€3 Bam) = 7J|n|(vffp)e] Peibunp

nm

= Tam I (mp)e" e (C.6)
N, (r; 3 M) _ ”’{’%’85’9’4%( ST p)ejn¢e—jﬂ,?,’r‘fzb+
+ nﬂ’;’” Tl p)E" e 2 4
2
+ (7,?) il )77 00m (C.7)

The dyadic Green’s function of the electric type satisfying Dirichlet boundary con-

ditions (first kind) is given by

G(r,r) = — (e )2 +
Cram M (15 28,7 )Mo (v F07,)

CTMNnm( -+ TN (s F8TM) (C.8)

nm nm

where the upper sign is used for z > 2’ and the lower sign for z < 2’. The constants

are given by

(8]

cTE - —]{ T

nm

(Ea)" -] REEwaTE ) (€9

on = —jfor (1)’ [y rtta)] s} (c.10)

Notice that exponential, and not trigonometric dependence on ¢ is used.
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C.2 Elements of the Impedance Matrix for PEC Scatterers

In the text we showed that the impedance matrix entries for PEC terminations

are given by

-~ m

ALZsms) — jk‘Z AO /2:‘0 fp(I‘) . ﬁ. ns é(ﬁn . I',R s I") . l::{ms ) fq(r/)d25d2sl (Cll)

where R is the rotation dyadic. To eliminate the rotation dyadics we can use the

properties of G as defined in Appendix L. First, we express M,,,(r) as

M, (r) = zj MY (r)é;(r) (C.12)

where {&,, €, &3} = {P, o, Z} It then follows that

=1
= " M,.(r)-R (C.13)
Similarly
Nun(R™ 1) = &™%N,,.(r) - R ™ (C.14)

Next, we define the principal part Agsms) of ( C.11) as the integral over the modes
only (not including the delta function term in ( C.8)). By invoking ( C.13) and

( C.14), expression ( C.11) yields
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Al = jkZ Zl p et
{05 [ [ 80 Mo (s BT (5 F000) £, () S ES' +
Lo

e / [ 8(0) - N (15 280N (65 560 - £ S S} (C.15)

C.3 Scattered Field from PEC DBOR’s

It is possible to express the scattered field from a perfectly conducting DBOR
in a very compact form involving the currents of the reference slice ¥,. Given an
incident mode of order n;, the scattered field is generally given by ( 4.6). Using the
properties of the Dyadic Green’s function and the expansion ( 4.14) together with
( 4.25), after some algebra similar to Appendix 1I we deduce that for a point r away

from the scatterer, such that z > 2’ for any source point r’,

B(r) = k23 Y [BTE, Mo(r; 875) + BIY, Now(r; 672 (C.16)

m=1 n=—o00

where

Q
B'E = Ay.(n,m) CTEZI(O) / M_ (s = BTE) - £, (¢ 28" (C.17)

nm,n; q,n;

BIM = Ay, (n,ny) CTMZIM / N o (s —TM) - £,(')d2S" (C.18)

Evidently, ( C.16) yields the scattered field in terms of TE and TM modes, whereas

the coefficients of the expansion (i.e. the elements of the modal scattering matrix)

9 on slice

bt

are conveniently given by ( C.17) and ( C.18) in terms of the currents /{
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Yo only. A similar expression holds for dielectric scatterers. We emphasize again

that due to the term Ay, (n,n;) only a limited set of scattered modes are returned.
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