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CHAPTER 1

INTRODUCTION

1.1 Objectives and Background

The main theme in this dissertation is to address and recommend techniques
for alleviating the memory requirement and execution time associated with imple-
mentations of popular frequency domain numerical techniques for electromagnetic
scattering and radiation. The excessive computational demands associated with sev-
eral of these techniques have precluded the simulation of large structures and limited
their use as design tools. Of particular interest in computational electromagnetics is
the reduction of computational complexity associated with integral equation solution
techniques such as the moment method [1]. Incorporation of the radiation condition
in the form of the Green’s function ensures that integral equation formulations are
rigorous. However, the price to be paid is the associated full interaction matrix with a
storage requirement of O(N?) and a solution time which may be as high as O(N?) for
direct matrix factorization, N being the number of discretization unknowns. Integral
equations have also proved to be quite accurate for terminating the finite element
computational domain [2] but tend to dominate the overall computational complex-
ity, since the finite element method has a low (O(N)) computational requirement.

Consequently, any reduction in computational complexity would lead to CPU and



memory improvements to the hybrid Finite Element - Boundary Integral (FE-BI)
methods with their partly full-partly sparse systems.

The techniques which can be used to alleviate limitations in integral equation
methods can be classified into three categories. The first encompasses techniques
yielding approximate sparse matrices for direct solution, by using specially designed
basis and testing functions. A sparse matrix can be generated if the field due to a
single basis function is restricted to within a certain region over the surface. Such
basis functions could take the form of multi-resolution basis such as wavelets [3], [4].
In [3] the electromagnetic coupling through a double-slot aperture in a planar con-
ducting screen is considered by using a wavelets basis in a moment method integral
equation solution. The same technique is employed in [4] to model planar dielectric
waveguide structures. The above applications yielded highly sparse matrices but are
difficult to apply to arbitrary three dimensional problems due to their complexity and
uncertainty in the degree of sparsity. Also, certain wavelets like those by Daubechies
[5] destroy the original problem symmetry. Special basis functions referred to as
“standing wave” basis functions were successfully used in [6] to achieve a low oper-
ation count in integral equation solutions. These basis functions are bi-directional,
defined over the surface of the scatterer, and radiate collimated beams in the out-
ward and inward directions relative to the surface. To further reduce interactions
within the body, uni-directional basis functions i.e. ones that radiate primarily out-
ward have also been proposed [7]. However, these techniques require a smooth and
mostly canonical surface and so far they have not been applied to arbitrary three
dimensional bodies. Another technique which relies on clumping testing functions
to reduce the number of interactions [8] suffers from the same limitation.

The second category, closely related to the first, is based on isolating the dominant



elements of the interaction matrix. This is done by either filtering out off-diagonal
matrix elements [9], [10] or by defining a set of linearly independent functions over
the problem geometry to account for non-self cell terms [11]. In [9] and [10] an
iterative refinement procedure is also recommended to improve the initial solution
which guarantees convergence under certain conditions. These techniques can be
easily implemented for two-dimensional and three-dimensional scatterers but are
most accurate for relatively smooth bodies. A common feature of the first two
categories is that storage and operation count are still C N2 albeit C' is much smaller
than that for traditional implementations.

The third category of techniques concentrates on speeding up the iterative so-
lution (matrix-vector product) of the moment method linear system. The k-space
(CGFFT) technique [12],[13],[14],[15] utilizes Fast Fourier Transforms (FFT) to com-
pute the convolutional kernel arising from a regular grid. The Toeplitz system matrix
results in storage of O(NN) and use of the FFT results in O(N log N) CPU require-
ments, making it the method of choice for regular grids. Techniques which circum-
vent this limitation are the Fast Multipole Method (FMM) and the Adaptive Integral
Method (AIM) which are amenable to iterative solutions only. A common feature
of both AIM and FMM is that they break the interaction matrix into “near” and
“far” zone sections based on the distance between testing and source locations. The
near zone matrix terms are treated with the exact moment method, thus ensuring
full accuracy of the self and near field interactions. Since the iterative solver requires
only matrix-vector product computations, this precludes an explicit calculation and
storage of the far zone interaction matrix entries resulting in substantial memory
savings. Both AIM and FMM are robust, implying that they can be applied to any

problem which can be solved with the moment method without any concern for the



geometrical shape of the scatterer.

The FMM is an efficient computational procedure for calculating all interactions
in some “N-body” problem (i.e. a system where each of the N particles interacts
with all others). So far the FMM has been applied to a diverse set of applications
ranging from the calculation of gravitational interactions between stellar bodies to
interactions between biological molecules in systems such as blood hemoglobin. The
N-body gravitational problem was solved using the FMM in [16] and such simulations
provide a better understanding of the process by which galaxies are formed. The
FMM has enabled the simulation of systems with more than 17 million particles
[17]. In molecular biology, an adaptation of the fast multipole method referred to
as the cell multipole method [18] was used to model power-law forces in molecular
systems. The reader is referred to [19] for an excellent overview of the FMM for
static fields. An investigation of these applications suggests that the FMM could
be used to calculate radiating fields by replacing the particles with electromagnetic
current sources. However, due to the oscillatory nature of dynamic fields, the FMM
implementation used for gravitational and molecular computations does not expedite
matrix-vector multiplies for dynamic fields. This is because the number of multipoles
needed to accurately represent a field depends on the size of the source distribution in
wavelengths. The larger the source distribution, the more the number of multipoles
needed to approximate the field with sufficient accuracy, independent of the distance
between the source and observation points.

The first applications of the FMM to dynamic fields are described in [20],[21].
While the algorithm described in [21] is of O(N'%) complexity, further reduction in
operation count can be achieved either by nesting [22] or by recognizing the direc-

tional characteristics of interactions between groups of radiators [23]. Guidelines for



the practical implementation of the FMM to electromagnetic scattering problems are
given in [24]. Application of the FMM to reduce the operation count of the boundary
integral in Finite Element - Boundary Integral (FE-BI) solutions is described in [25)
and [26]. A comparison of the various FMM algorithms which could be hybridized
with the FEM are given in [27] and [28].

AIM [29] is a variation of k-space techniques and transforms the moment method
grid to a regular cartesian grid on which matrix-vector products are performed using
the FFT and O(N'®) or less computational complexity. Such transformations result
in certain interesting characteristics for this algorithm which distinguish it from the
FMM.

In this dissertation we have focussed our efforts on the second and third category
of techniques. Our goals include comparative evaluation of various fast algorithms
for electromagnetic simulations, their implementation in hybrid FE-BI systems, error
analysis and examination of CPU and memory. An assessment of the effectiveness of

these algorithms for electromagnetic simulations is provided at the end of this work.

1.2 Dissertation Overview

Chapter 2 of the dissertation presents a review of the integral equation formula-
tions required in the subsequent chapters. We present an algorithm for generating
sparse matrices from the original fully populated interaction matrix. This algorithm
is based on filtering the dominant elements of the interaction matrix. A feature of
the algorithm is its iterative refinement scheme which guarantees convergence to the
exact solution provided certain criteria are satisfied. Although yielding high degrees
of sparsity, this technique is still O(N?) and yields more accurate results for relatively

smooth scatterers. This indicated the need for a more robust technique capable of



handling arbitrary geometries.

In Chapter 3 we introduce the FMM and its variants. For the first time an
error analysis of the method when applied to electromagnetic scattering problems is
performed. Based on given error criteria, we set guidelines for choosing the various
parameters affecting the speed and solution accuracy. Such an error analysis aids in
the selection of the various parameters of the method in order to achieve a desired
compromise between solution speed, memory and accuracy.

Chapter 4 describes some applications of the FMM and its variants. We present
the application of a version of the FMM to compute the scattering from a three
dimensional aircraft nose radome-shaped geometry. The purpose of this application
is to characterize the interactions between a nose radome and the antenna located
at the base of the radome. Traditional moment method implementations [30] do not
permit analysis of realistic size radomes owing to the overwhelming computational
requirements. With the application of the FMM we are able to simulate realistic di-
electric radome geometries. This chapter also describes the application of the FMM
and its variants to a hybrid FE-BI solution for a groove in a ground plane. The
latter method is well known for its geometrical adaptability and material general-
ity without compromising accuracy. By using FMM to treat the BI submatrix the
method can be used for large scale simulations as well. Each version of the FMM
introduces a different approximation to the implementation of the boundary integral.
On the basis of comparisons among execution times for given error criteria, we are
able to recommend an algorithm which is the best compromise between accuracy and
execution time. Since all three algorithm versions are executed on the same comput-
ing platform, a realistic interpretation of the relative computational requirements are

given for the first time. This is of paramount importance since most of the algorithms



belonging to the FMM family have a stated computational requirement of O(N'?)
or O(N'?3), where N is the number of unknowns. This computational requirement is
asymptotic, but for smaller N, the constant multiplying the operation count assurnes
significant importance. Actual execution of the codes on the same platform gives
information on the relative magnitude of the constants. We also examine the effect
of the FMM on the hybrid system conditioning and convergence.

Chapter 5 discusses the suitability of AIM to model planar scatterers with in-
tricate geometrical details. It will be shown that AIM is extremely accurate while
saving a significant amount of memory, especially for bodies requiring high tessel-
lation rates as is the case with antennas which include small geometrical details.
AIM achieves its speed up by translating the original problem grid to a new overlaid
regular grid (AIM grid). We show that this regular grid can be much coarser than
the original discretization (up to a factor of 5 for far field calculations) and this pro-
vides for significant speed-ups. Since the grid is uniform, the fast fourier transform
can be used to compute the matrix vector products resulting in considerable CPU
reduction. AIM is particularly attractive for modeling planar three-dimensional scat-
terers even on workstation platforms, reducing the need for elaborate parallelization
and domain decomposition procedures which are necessary for highly curved scatter-
ers. The capability of AIM to model small and intricate perturbations on otherwise
smooth bodies and to predict near fields accurately, even for bodies which are not
electrically large, makes it attractive for many scattering and radiation computa-
tions. Chapter 5 also describes the application of AIM to a hybrid FE-BI solution
for cavity backed slot antennas. Owing to their intricate construction, antennas are
not easily modeled by existing algorithms unless they are simple in shape. In contrast

to scattering computations, where uniform sampling can be employed everywhere, an



antenna geometry may necessitate use of a high discretization rate. We demonstrate
this technique for the analysis of cavity-backed slot and patch antennas.

Chapter 6 recommends a suitable fast algorithm based on the desired application.
It also details the contributions of this dissertation and suggests future areas of
investigation.

Appendix 1 describes the solution by the moment method of a new, reduced-
unknown integral equation for scattering by an inhomogeneous dielectric/magnetic
structure. The new integral equation involves only the electric field (3 scalar com-
ponents) as the unknown quantity whereas traditional formulations employed both
electric and magnetic fields for a total of 6 scalar components per cell [31]. The dis-
cretization of this integral equation is accomplished using rectangular brick elements.
Edge-based linear shape functions are used for the expansion of the field inside the
dielectric and a modified Galerkin’s technique is employed for testing the integral
equation. Results demonstrating the validity of the integral equation are presented.
Although the integral equation results in reduced unknowns, the computational bur-
den of O(N?) storage and O(N?) execution time makes it an ideal candidate for a
fast integral algorithm implementation.

While the focus of the previous chapters is on electrically large problems, Ap-
pendix 2 describes a simple, accelerated, quasi-analytical solution for an integral
equation when the problem is electrically small. Based on the lines of [32]-[33], it
precludes construction of the moment method system interaction matrix. We illus-
trate this technique with the analysis of two-dimensional scattering from a narrow
groove in an impedance plane. The groove is represented by an impedance surface
and hence the problem reduces to that of scattering from an impedance strip in an

otherwise uniform impedance plane. On the basis of this model, appropriate inte-



gral equations are constructed using a form of the impedance plane Green’s functions
involving rapidly convergent integrals. The integral equations are solved by introduc-
ing a single-basis representation of the equivalent current on the narrow impedance
insert. Both transverse electric and transverse magnetic polarizations are treated.
The resulting solution is validated by comparison with results from the standard
boundary integral method and a high-frequency solution. It is found that the pre-
sented solution for narrow impedance inserts can be used in conjunction with the

high-frequency solution for the characterization of impedance inserts of any given

width.



CHAPTER II

Two and three dimensional boundary integral and hybrid
formulations

In this chapter we will review a few typical integral equation and hybrid formula-
tions for numerical solutions. These solutions will be candidates for speed-up by fast
algorithms in subsequent chapters. At the end of the chapter, we suggest a technique
to directly generate a sparse matrix from a fully populated moment method matrix.
We examine its application to two and three dimensional bodies and conclude by

advocating the necessity for fast algorithms based on iterative solvers.

2.1 Solution of the TM integral equation for modeling two dimensional
metallic bodies
Consider a two-dimensional metallic cylinder with an arbitrary contour C as
depicted in Figure 2.1. For plane wave incidence (E' = ze/ko(zcostotysingo)) - the
integral equation for E-polarization (TM incidence) is constructed by enforcing the
boundary condition E+ E? = 0, where E? denotes the z component of the scattered
field. We obtain [34]

koZo 2 = _
1 /C‘]Z(p)HO (koip—p

)dl/ — ejko(ICOS¢0+ySin¢0)’p€C (21)

where § = z& + y§ and p’ = 2'2 + ¢} describe the testing and source points on the

contour C'. J, indicates the surface electric current and the kernel represents the two-

10
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n-
/[\ (n+1)th
n | segment
(Xn+1’ y“"'l)

Figure 2.1: Discretization of the cylinder surface in the moment method analysis
dimensional Green’s function. We discretize the contour into N segments and denote
the points joining the discretized segments by (z,,y,) with n = 0,1,2,..., N — 1.

The parametric representation for the points on the (n + 1)*" segment is

r=2z,+lcosb, y=y,+Isinb, (2.2)
with
6, = tan! (%) (2.3)

and [ is the distance measured along the n'® segment starting from the point (2, y,).

The current is expanded using standard subdomain pulse basis functions as

N-1 Aln
= ¥ J.Pa, (z - ) (2.4)
n=0 2

where Al, indicates the segment length. Using (2.4) in (2.1) and by point matching

at (zn, + AI’” 08 O, Y + N'" sin ,,,) we obtain the linear equations

ko Zo ¥

ZJ koR. )l m=0,1,...,N —1 (2.5)
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with
Al,, 2
R . = [ (mm + — cos 0, —x, — ' cos Hn)
237
Al . .
+ (ym + T sinf,, — Yn — !'sin Hn) ] (26)
and
Vm — ejko[(zm+A—;mcos0m)cos¢o+(ym+A—;msin9m)sin¢0] (27)

For m = n the logarithmic singularity of the kernel requires analytical integration.

Thus, employing the small argument expansion for the Hankel function yields

Alm Alm
B (ko Ry )il = [ 0 HY (ko)

Al,, [1 - ]?2 (ln (k‘”fl’”) - 1)] (2.8)

0

X

(2.5) is written in matrix form as

[Z1{7} ={V} (2.9)

where
, koZo | ALHY (koRpn) m#n
ol AL [i- 2 (in(B22l) _1)] m=n
(2.10)
and
L . ?
Ryn = (xm -z, + —A— cos @, — & cos ﬂn)
2 2
Al, | Al, . %2
+ ym—yn+—2—sm0m——2—sm0n (2.11)

The solution of (2.9) by direct methods involves the inversion/factorization fully

populated matrix N-rank matrix which could result in an execution time of O(N3).
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Solution by iterative methods would require a matrix-vector product involving N2
multiplications (operations) for each iteration. For large N, the computational bur-
den can be overwhelming and this issue with techniques to circumvent it are ad-

dressed in this dissertation.

2.2 Finite Element - Boundary Integral solution for a two dimensional
groove in a ground plane

In the previous section, we discussed the solution of an integral equation for
modeling two dimension metallic scatterers. In this section, we review the integral
equation termination of a finite element computational domain referred to as the FE-
BI method. This hybrid method combines the rigor of the integral equation mesh
termination with the adaptability of the FEM. We shall consider its application to
scattering from a material-filled groove of width w and depth din a ground plane

(geometry is depicted in Figure 2.2. The relative permittivity and permeability of the

A
y

Region I (ErH5)

Ground plane

'

x>y

w Region IT

Figure 2.2: Geometry of the groove in a ground plane

material filling the groove will be denoted by €, and ., respectively. The upper half-
space (y > 0) is denoted as region I, and the cross section of the groove (0>y>—d)
is denoted as region II. To take advantage of the FEM’s geometrical adaptability and

low O(N) storage requirement, it is necessary to decouple regions 1 and 2. This can
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be accomplished by extending the ground plane over the aperture. The aperture’s
scattering is then modeled by introducing equivalent magnetic currents M and —M

above and below the original location of the aperture as illustrated in Fig 2.3. In this

.M
e

M1 Region I

ground plane
(a)
< <<
-M
S(er, 1) Region 11 1 $

(b)
Figure 2.3: Equivalent problem for (a) Region I, and (b) Region II

manner the continuity of the tangential electric field is satisfied a priori. It is still
necessary to ensure tangential magnetic field continuity and when this is done we
generate an integral equation for the unknown equivalent magnetic currents. That

1s, we must enforce the equality
H{(M,J*, M')|y=0 = H/ (=M} ,=0 (2.12)

where H and H{! are the tangential magnetic fields in regions 1 and 2, respectively
and J', M! are impressed sources. In our case, H can be expressed as an integral of
M using the ground plane Green’s function whereas H'! is formulated via the finite

element method. To begin with, the variational equation is employed in region II
0F =0 (2.13)

with

1

€r

(VxHY(V x BT — k2, HT . HY | dzdy

i/
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~ koY /F M, - Hde (2.14)

where §) denotes the cross-sectional area of region II and T is the line segment spec-
ifying the aperture. The introduction of (2.13) eliminates a need to find the Green’s
function associated with the internal structure of the groove and hence permits the
modeling of grooves of arbitrary cross sectional geometry and material filling. The
boundary condition (2.12) in conjunction with (2.13) and (2.14) imply a system of
equations for the solution of the magnetic current M.

The next section describes the formulation and discretization of the boundary

integral for TE incidence and its eventual combination with the FEM system.
2.2.1 Formulation and discretization for TE incidence
The groove is illuminated by the H-polarized plane wave
H' = sefto(esindoty cosdo) (2.15)
where ko = 27 /X is the free space wavenumber and ¢ is the angle of incidence
measured from the normal direction. Since the impressed magnetic field H' has only

a z-component, the scattered magnetic field will also be z-directed, and consequently

the equivalent magnetic current M may be written as
M = iM,(z) (2.16)
From Fig. 2.3(a), the magnetic field in region I due to M, is given by

Hl(r) = H"™(z,y)+ H'*(z,y)

koYo

p /F M. (&) H® (ko|r — 32'|)da’ (2.17)

The functional of (2.14) reduces to

I\ 2 I\ 2
- Y] e
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— koY /F M,H"dz (2.18)

(2.17) and (2.18) need to be discretized to facilitate the coupling of fields and en-
forcement of boundary conditions. For discretization, the cross sectional area {2 is
subdivided into M small triangular or rectangular elements. Also, the line segment
[' is broken into L segments. With a linear filed distribution, within each element,

the field within the eth element having n nodes is expanded as
=Y Ni(z,y)¢f = {N}T{¢°} = {¢}"{N°} (2.19)
i=1

where Nf(z,y) are the shape functions and ¢° represent the nodal fields. Using

(2.19) in (2.18) and employing a pulse basis expansion for the magnetic current M
M L

F=Y {6} Ko} -5 (¢ +¢%) bu0° (2.20)
e=1 s=1

where {¢°} represents the nodal magnetic fields within the e* element, ¢*! and ¢*2

denote the magnetic fields at the ends of the st* segment and %* = ko Yy M, denotes

the magnetic current on the s** segment. The matrix [K¢] is given by

- SN

- oﬂr{NE}{NC}T}dxd?J (2.21)

| IS— |

Minimization of (2.20) with respect to nodal fields yields

[K1{¢} + [B{¢} =0 (2.22)

where {¢} is a column vector representing the magnetic field at the N nodes within
region II and on I' while {¢} = koYo{M.} is a column vector with L elements
corresponding to the number of segments on I'. The sparse matrices [K] and [B] are

assembled by
M

(K] = IK Z[BS (2.23)

e=1
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where the elements of [B?] are given by
s J
B = —553 (2.24)

Discretization of (2.17) by employing Galerkin’s procedure yields a second set of

linear equations

[Cl{¢r} = {6} - [P}{¥) (2.25)

where {¢r} is a column vector representing the nodal magnetic fields on I'. The

sparse matrix [C] is assembled from
L
[€]=>.1C7 (2.26)
s=1
where [C*] is a row vector whose elements are given by
C° = -S4 (2.27)
The excitation column vector {¢™} is given by
¢ = —2H™(2,,0)6,, m=1,2,..., 1L (2.28)

where z; denotes the mid-point of the s segment on I'. Also [P] is a dense matrix

of order L with elements given by

Py = —% 1-— 2—]log(0.1638k063) & s=t (2.29)
T
R ) ‘
Py = —§H0 (kolzs — 4])650; s #t (2.30)

The final system is obtained by enforcing (2.12) on (2.22) and (2.25) to obtain

K] [B]| [ {e} | _| O (2.31)

(B [P] ] { {#} {Ginc}
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[t should be noted that the term 6, (segment length) is retained in (2.27),(2.28),(2.29)
and (refeq:ch2Pst) in order to conveniently couple (2.22) and (2.25). The subsystems
[K] and [B] are sparse but [P] is fully populated and the product [P]{¢} proves to
be the computational bottleneck for large hybrid systems especially when the size
of the boundary integral is large. This can be remedied by the application of fast

algorithms for integral equations which will be discussed in the subsequent chapters.

2.3 Solution of the Electric Field Integral Equation for three dimensional
scatterers with resistive boundary conditions

For this application, the thin dielectric layer is modeled using the resistive bound-
ary condition [35]

i x (E' 4+ E*) = oRJ (2.32)

where R is the resistivity, J is the surface current, and Et is the incident field which

is a plane wave of unit amplitude given by
Ei — (é cosa + q%sin a) ejko(zsiné’,' cos ¢;+ysinf; sin ¢;) (233)

where ko is the free space wavenumber, « is the polarization angle and (6;, ¢;) indicate
the direction of incidence. The scattered field E* can be determined from J according
to

E’=—jwA -V¢ (2.34)
where the magnetic vector potential A is given by

e

Al =1 / /S 3 () :’R ds’ (2.35)

with S being the surface of the body. The scalar potential ¢ is given by

1 —7koR
o) = — //S (') & — s, (2.36)
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where R is the distance between observation and source points, viz.

R=lr—r|= (o) +(y—y) +(z - ) (2:37)
The continuity equation is used to relate the surface charge density and the current
V- J=—juwo (2.38)

Enforcing (2.32) on S yields the electric field integral equation for J

Ei,, = (jwA+V@)u.+1.RI r € § (2.39)

To model the current, the scatterer is discretized into triangular patches. The current
is then expanded in terms of vector basis functions [36] which are especially suited for
triangular domains. Each basis function is associated with an interior (nonboundary)
edge, and is nonzero only on the two triangles sharing that edge. Figure 2.4 shows
the n™ interior edge shared by triangles T;f and T of area A} and A respectively.

A point in the triangle pair can be designated by either the global position vector r,

th
n edge

/

T+ (0]

Figure 2.4: Local coordinates for the n** edge

or local position vectors p,* = r — rf. The basis function f,(r) for the nt edge is
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defined as )
AT pt, r an TF
fu(r) =< 3i5pn, roin Ty (2.40)
0, otherwise
The current J on S is approximated by
N
J2 > LE.(r) (2.41)
n=1

where N is the number of interior edges and the unknown coefficients I,, represents
the current density flowing across the n* edge of the mesh shared by the T+ and T~

triangles. To solve for the basis coefficients, Galerkin’s technique is applied to (2.39)

giving

//SEi'fmdS=jw//SA.fmdS—//S¢Vs-fmdS+no/SRJ-fmdsz1,...,N.

(2.42)
Using (2.40) in (2.42) yields the N x N system of linear equations, V = ZI where
I, is the N** basis coefficient, Z,, is the impedance matrix whose elements are

computed from

Z nol l _]kORd 1 1Q
mn = /w/l"i//T"iAiAipm pn( ) R 5'dS
€m€n € IRl

- 22 //Ti //Ti A A d5'ds

T _//Ti AE A:}: pm(r) - pix(x) dS} (2.43)

where ¢, and ¢, are the positive current reference signs for edges m and n, defined

as
+1 rin T}

€m = (2.44)
-1 rwm T,
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and
+1 ¢ in TF
€n = (2.45)
-1 ' T,
The elements of the interaction matrix can be computed directly from (2.43). How-
ever, a more convenient way of evaluating these elements is to consider a pair of faces
and compute all nine interactions between edges contained by this pair. This enables
the loops for assembly of the matrix elements to be over faces, instead of edges, thus

speeding up the assembly process. For an observation face p paired with a source

face ¢, the quantity Z2? is computed for all mn edge pairs as

g~ Tolmlnen€ // / < Jsras
mnoT4APAT 1, JJT, Pnlr) - pi(x R

-, //Tq s

bR / ot (r dS} (2.46)

The positive current reference signs, €,, and ¢,, are now assigned according to

+1, if T7 is T
e = (2.47)
1, if TP is T

and
+1, of T is T}
€l = (2.48)
=1, of T9 s T

The integrals in (2.46) are evaluated for near and self cells by the techniques detailed
in [37]. It should be noted that in (2.46) T, = Tf + T and T, = T} + T, thus
computation of ZF! involves summation over four triangles. The elements of the

excitation vector are given by

ln pi(r) . »
J— —_ . 3
Vin = 2 Jrs ”i (6 cos a + ¢sina)

ejlco(xsin 0; cos ¢;+y sin 6; sin ¢;) ds. (249)
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The N x N linear system can be solved either by direct methods such as matrix
factorization (which would mean an execution time of O(N?)) or iterative methods

involving an operation count of O(N?)/iteration.

2.4 FE-BI formulation for scattering and radiation by three dimensional
cavity-backed antennas

In this section, we review a finite element - boundary integral formulation for
analyzing three dimensional cavity-backed antennas. The finite element discretiza-
tion is in the form of triangular prisms. Such prisms are the element of choice for
modeling planar antennas with fine detail (as small as 50" or 100** of a wavelength)
as they require only surface discretization information. In contrast to tetrahedral
elements [38], this eliminates the need to generate volume meshes which could be
tedious and also removes the possibility of ill-conditioned systems due to degraded
mesh quality. In general, for modeling planar configurations the prism element also
requires lesser number of unknowns than tetrahedral elements. However, very small
details and consequently dense meshes can still lead to boundary integrals with ex-
tremely large computational requirement (as described in Section 2.2.1). A technique
which reduces the computational requirement considerably is examined in Chapter
V. In this section, we present the key elements of a three dimensional finite element -
boundary integral formulation with emphasis on the boundary integral computation.
For details on the prism element the reader is referred to [39].

Consider a cavity-backed antenna recessed in a ground plane as depicted in Figure
2.5. To solve for the E-field inside and on the aperture of the cavity, it is necessary

to extremize a functional, which for radiation and scattering problems may be gen-
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Annular Slot

Ground plane

Feed S £

Figure 2.5: Geometry of a cavity-backed annular slot antenna in a ground plane

eralized as

F(E) = %//L{(VXE)-ET*-(V><E)~k§E-é-E}dV
+ ///VSE-(jkOZOJva,f;l-M")dv

v jkeZe //5 o B (Hxi)ds (2.50)
0+5y

where €, and ji, denote the relative tensor permittivity and permeability of the cavity
filling, So represents the non-metallic portions of the aperture and S; denotes the
junction opening to the feeding structures. The volume V, refers to the volume
occupied by the impressed sources J; and M;. Also, H denotes the magnetic field
on Sp or Sy and 7 is the outer normal to these surfaces.

For a unique solution of E we require knowledge of H over Sy and S; . In the
case of Sy, H is determined by the feed excitation while that over the non-metallic

portions of the aperture is determined by the boundary integral equation
H = H% 1 2jk,Y, / / G(r,r')- (5 x E(r')) dS' (2.51)
So

where G is the electric dyadic Green’s function of the first kind such that # x G = 0
is satisfied on the metallic platform. For the cavity recessed in a ground plane, G

becomes the half space dyadic Green’s function

G- (i Ltyw)e™
— _ 2.5
( + k3 ) 4iTR (2:52)
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with R = |r — 1’| and I is the unit dyad. For this problem, H9% is equal to the
sum of the incident and reflected fields for scattering computations and zero for
antenna analysis. To discretize (2.50) the volume region is subdivided using prismatic
elements. The field in each prism is approximated using a linear edge-based expansion

as

Z ESVE = [VII{E*} (2.53)

where [V], = [{Vo},{V,},{Vz}] and {E°} = {E, E5,...,EE}T. On the aperture,
since the top and bottom faces of the prism are triangles, we have a corresponding

representation for the aperture fields as
3
E*(r) = Y BiSi(r) = [S)7{E") (2.54)
=1
where [S]s =[Sz, Syl
To generate a linear system for the solution of £, (2.53) and (2.54) are substituted

into (2.50). Subsequent minimization of the functional yields

aFV Ny Ns Ny N;
{aEe} =Y [ANE Y+ ) [BUE T + ) (K} + ) {L} =0 (2.55)
e=1 s=1 e=1 =1
where N, and N, indicate the number of volume and surface elements, respectively.

The matrix elements are given by

Ay = ///Ve{(v X Vi) it (VX V)= k2Vi-& - V;}dV (2.56)

/ / / [ikoZod 4V x 7V x M| dV (2.57)

//5/5/ 2k5S] (r')Go(r,r')dSdS’
* 2//53 //si[v x 83(r)):[V" Sj(r,)]zGo(l‘, r')dSdS’ (2.58)
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L2 = 25koZo / /S S (H' x 2)dS (2.59)

The boundary integral equation in (2.58) is discretized using basis functions de-

fined on the top face of the prism as

l;
2A¢

Si=——2x(r—r) (2.60)

similar to the function defined in (2.40). Substitution of (2.60) into (2.58) gives
the discretized boundary integral which is treated using the procedure outlined in

Section 2.3.

2.5 An approach to generate a sparse matrix directly from the fully
populated system

We suggest a technique for generating sparse matrices directly from a fully pop-
ulated moment method system [40]. The approach is based on the observation that
the interaction between elements lying electrically far away from each other is small
and if they are sufficiently far away from the self element, they can be zeroed out as
a first approximation. Thus, the full matrix reduces to one that is sparse. Of course,
the number of elements to be zeroed out depends on the accuracy of the desired
results. This technique should work even better for large scale scattering problems
since the percentage of sparsity increases as a function of the physical size of the
body.

We have examined the idea both for two dimensional (2D) as well as three dimen-
sional (3D) geometries. However, the magnitude of the 2D Green’s function tapers
off as 1/,/r, whereas the 3D Green’s function tapers off as 1/r. Consequently the far
field contributions are relatively more important for two dimensional problems and

in this case the inclusion of the physical optics currents as a first approximation was



26

found useful. An important component of the technique is the capability to improve
upon the approximation in an iterative manner without using additional storage re-
sources. One or two iterations beyond the first yields a good approximation of the

correct result provided certain sparsity criteria are satisfied.

2.5.1 Method

Consider the linear system

[Z1{7} = {V} (2.61)

where {J} represents the unknown current vector of length N, [Z] is the N x N
impedance matrix and {V'} is the excitation vector. We are interested in generating
a sparse matrix approximation of the original matrix [Z] for the purpose of speeding
up and reducing the memory requirements for solving (2.61). We would like to write

the impedance matrix [Z] as

2] = [Z){F} +[2){1 - F} (2.62)
(29] (27

where F' is a filter function with a finite flat-top and either a gradual (typically
gaussian) or abrupt taper. Employing an abrupt taper is equivalent to applying a

tolerancing criterion. Specifically, an element in the ith row of the impedance matrix

is discarded if
1Z(2,7)| < {min(|Z(3,7)|,V3) + T.F | Z(3,7)|} (2.63)

where Z(i,7) is an element belonging to the ith row and jth column of the impedance
matrix and T.F. is a threshold factor. As a first iteration, an approximate solution

of {J} is obtained by solving the sparse system

(Z°{JW} = {v) (2.64)
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where [Z] is the sparse matrix obtained from [Z] after applying the thresholding
criterion (2.63). The iterative refinement technique, performs subsequent iterations
in accordance with

2™} = {V} = (2740 (2.65)
where [ZF] = [Z] = [Z5] and {J(™} denotes the current estimate after the mth

iteration. The convergence of this iteration process can be investigated by noting

that for m = 2, (2.65) can be rewritten as
(7@} = (2577 (1N - [29)[2°)7) (V) (2.66)
Then, after a subsequent iteration
(IO} = (2577 (1N - [ZR25]7 + (271 2°)7)?) {V) (2.67)
and at the mth iteration

{7tMy = [Zsl‘l{[ll—[ZR][ZS]‘I+([ZR][ZS]’1)2—([ZR][ZS]‘1)3

+... ([ZR][ZS]“I)’"}{V} (2.68)

This geometric series will converge if every eigenvalue of [ZF][Z5]~! has a magnitude

less than one [41]. The result of this convergence after an infinite number of iterations

would be

(7 = (257 (I + (27 25)) (v} (2.69)
which can be written using the definition of the residual matrix as
7y = (297 (I + (12) - 129) [125) (V) (2.70)
which further reduces to
e = (257 ([2)(257) v (271)

- 2V} (2.72)
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hence it follows that {J(*)} is the exact result from the original moment method

problem.

2.5.2 Considerations for 2D and 3D implementations

The governing integral equations for computing two dimensional scattering from
metallic bodies are the well-known magnetic field integral equation (MFIE) and
electric field integral equation (EFIE). Expansion of the current using pulse basis
functions and point matching, was employed in the moment method solution of
these integral equations as discussed in section 2.1. Application of this technique to
strips is considered in accordance with (2.64) and (2.65).

The second class of scatterers considered were two-dimensional. Owing to the
operation of the derivatives on the Green’s function, the discretization of the integral
equation for H-polarization (TE incidence) results in a more diagonally dominant
matrix than that for E-polarization (TM incidence). A single row of the impedance
matrix for the cylinder whose cross-section is depicted in Figure 2.6(a) is shown in
Figure 2.6(b),(c) and (d). This row, being representative of the matrix character
encountered in pulse-basis point-matching solutions of 2D scattering problems, hints
that any attempt to make full matrices sparse should address both polarizations
separately. Owing to the strongly diagonal nature of the H-pol impedance matrix,
the H-pol currents can be found by directly applying a tolerancing criterion. For the
E-polarization, the physical optics currents were employed as an initial estimate and
the iterative refinement technique was then used to improve on this estimate.

The governing integral equation for solving 3D scattering problems is given in
[36] and was discussed in section 2.3. The approach combines the advantages of tri-

angular patch modeling and the EFIE formulation resulting in a simple and efficient
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algorithm. The electric current is discretized in the form of special basis functions
associated with each nonboundary edge of the triangulation. Galerkin’s method is
then used as the testing procedure to obtain the final system of linear equations. A
sparse matrix is again generated by applying a magnitude tolerancing criterion to
the matrix elements. It is important to note that this criterion is not suitable for
generating the sparse matrix because it does not require any special rearrangement
of the matrix elements before its application. That is, there is no requirement for

the matrix to be diagonally dominant for a successful application of the method.

2.5.3 Results

Figure 2.7 shows the E-pol currents on a 18\ metallic strip after application of
the following filters on the impedance matrix - (a) rectangular filter with flat half-
width = 40 (b) Gaussian tapered filter with flat half-width = 10, o = 0.005 . At
normal incidence, employing a gaussian-tapered filter with a decay parameter (a)
of 0.005 yields very accurate currents at the first iteration, and considerably more
accurate than that obtained by the application of a rectangular filter with the same
non-zero width. Even at oblique incidence, solution of the sparse system obtained
by employing the Gaussian filter gives very accurate results. H-polarization currents
on a 12A strip are shown in Figure 2.8. It is seen that the iteration process converges
to yield almost the exact MoM currents by the fifth iteration while the bistatic RCS
for normal incidence is accurate after the third iteration. The normal incidence
bistatic RCS patterns for 2D rectangular cylinders with circular end-caps computed
with different degrees of matrix sparsity are shown in Figure 2.9. Three different
cylinder lengths (15, 30\ and 45)) were considered. The results for the 15\ long

cylinder were obtained by setting T.F = 0.0035 and this gave a 23% full matrix;
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setting the T.F to 0.005 generates a 19% full matrix. This computation indicates
that the maximum error in RCS prediction was less than 3dB with the 19% full
matrix and the error was at angles close to grazing. Maximum error for the 23%
full matrix was less (2dB or so) at angles close to grazing. We note that the degree
of sparsity can be increased for physically large bodies and this is illustrated in
Figures 2.9(b) and 2.9(c) where the cylinder length was increased to 30\ and 45,
respectively. With the threshold factor set to 0.005, the sparse matrix is 11% full
for the 30\ body and 7% full for the 45\ body. Even with these high sparsities, the
predicted RCS is again computed very accurately everywhere except near grazing
where a maximum error of 3dB is observed.

We next consider the RCS analysis of circular cylinders. The H-polarization
analysis of this geometry resulted in the same experiences as in the previous case.
However, while computing E-polarization scattering, use of the PO currents as an
initial estimate was found useful (the same estimate was used for H-polarization
but it did not lead to appreciable improvement in the convergence of the iteration
process). That is, for E-polarization we set J (1) equal to the physical optics current
and then proceed with the computation of J() as described in (2.65). It should be
noted, however, that the contribution of [Z®]{J®"} can be obtained much faster by
direct evaluation of the radiation integral using larger elements and without a need
to store the [Z%] matrix. Figure 2.10 shows the subsequent PO and iteration currents
for an 8\ diameter circular cylinder, plotted as a function of the segment number
on the cylinder. It is seen that the second iteration predicts currents which are near
identical to the exact. In the case of E-polarization, it is again seen that the second
iteration is almost coincident with the exact solution. This appreciable improvement

is attributed to that the residual matrix [Z%] contains entries which are larger than



31

those in the corresponding H-polarization matrix.

A typical 3D test body is a PEC cylinder and the iteratively refined backscatter
pattern of a metallic cylinder of radius 0.5X and height 1.5 is shown in Figure 2.11.
The matrix is 36% full and we observe that the iteration procedure converges to
the reference solution. Calculations for other scatterers are shown in Figures 2.12
and 2.13. Azimuth and elevation backscatter cuts for a 3\ long metallic almond are
shown in Figure 2.12 and depict very good agreement with 34% full matrices. The
solution starts to degrade at near grazing incidence, an expected phenomenon, since
the traveling wave information is lost when the small magnitude matrix elements are
zeroed out for achieving sparsity. A 7.5\ long missile of radius 0.68), with two fins,
was also analyzed and a 23% full matrix yields a reasonably accurate solution within
the first two iterations as shown in Figure 2.13. These results are quite promising and
demonstrate that lower matrix sparsities can be achieved when considering larger 3D
structures.

In order to estimate the computational requirement of this technique, execution
time and error comparison was made with a variation of the fast multipole method
(FMM) known as the fast far field approximation (FAFFA) [42]. The test body was
a 50X metallic strip excited at an incident angle of 60 degrees from grazing, as shown
in Figure 2.14. For the FAFFA the 750 unknowns (N) were grouped into 27 groups
(v/N) and a near group radius of 2\ was employed. For our technique we employed
a gaussian-tapered filter with a decay parameter (a) of 0.005 and a flat half-width
of 10. Solution times on a HP 9000/750 using a conjugate- gradient solver were
about 140 sec for the unreduced matrix, 25.56 sec for the FAFFA and 21.42 sec for
our technique. The average error for the FAFFA was 0.53 dB while our technique

yielded an error of 0.64 dB when compared to the MoM solution using the unreduced
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matrix.

2.5.4 Summary

A simple technique for reducing the memory and computational requirements of
the moment method was introduced. The solution can be improved by successive
iterations which account for the far-zone interactions of the moment matrix elements.
This iterative refinement algorithm is an attractive feature and was shown, using
simple matrix concepts, that the iterative procedure converges to the exact value in
the limit, under certain conditions. However, this algorithm works best for relatively
smooth bodies and at angles of incidence close to normal on large surfaces. The
interactions discarded at the first iteration tend to be crucial for complex bodies,
resulting in divergence of (2.68). For such bodies, the levels of sparsity achieved
is very small. This lead to the investigation of more robust techniques capable of

treating complex arbitrary geometries, such as techniques based on iterative solvers.
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CHAPTER III

The Fast Multipole Method and guidelines for using the
method to calculate the RCS of large objects

The Fast Multipole Method (FMM) can be described succinctly as a recipe to
reduce the number of multiplications and consequently accelerate the computation of
matrix-vector products of an iterative solution. It also saves a significant amount of
memory since only the near zone matrix entries are stored explicitly. In this chapter,
we describe the methodology of the FMM and its variants. Each version of the
FMM is associated with inherent approximations and a goal of this chapter is the
comprehension of these approaches. At the end of this chapter, we discuss the choice
of solution parameters for these algorithms based on an error study. Chapter IV

discusses applications of these techniques to electromagnetic scattering simulations.

3.1 The Fast Multipole Method

As stated above, the FMM is a fast method for calculating the matrix-vector
products resulting from a discretization of an integral equation. For the system
(2.1) the pertinent matrix vector product is obtained from the discretization of the
integral equation and is given in (2.9). We examine three versions of the FMM

to accelerate the matrix-vector product computation. Specifically, the exact FMM

[20][21], a windowed FMM (23] and an approximate FMM [42] are examined.

40
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The scattered field in (2.1) is given by

koZ , _
E=—= O/J D (kolp — 7) np €C (3.1)

In the next few subsections we examine the evaluation of the integral (3.1) us-
ing the various forms of the FMM. By using consistent notation and appropriate
explanation of the procedures, this exposition provides the first comparative look
at the characteristics of the FMM techniques. Consequently, one is able to make
conclusions on their CPU performance and accuracy compromises.

In accordance with the FMM (see Figure 3.2), the N unknowns introduced for
the discretization of (3.1) are subdivided into groups with each group assigned M
unknowns. Thus, a total of L ~ % groups are constructed. The key step in all FMM
procedures is to rewrite the integral (3.1) as a product of terms each being a function
of p (observation point) or p’ (integration point) but not both. In this manner, the
evaluation of the integral is carried out by considering the group to group interactions
separately from the inter-group interactions. Beyond the math, this breakdown of
interactions/operations can be viewed in the context of the manager-worker model.
Basically, we can view each group as managed by the center element with the workers
comprising the elements of the group. Communication/interaction among the groups
takes place through the managers which in turn interact with the group elements.
However, this type of model is based on certain simplifications/decompositions of the
original boundary integral. The decompositions reduce the direct interdependence
of each group member with the other elements belonging to different groups and
this is at the heart of the CPU speed-up afforded by FMM. However there are
inherent approximations as part of the group decomposition process which must be
understood in order to assess the accuracy of each FMM algorithm. Below we discuss

the decomposition procedure employed in three of the fast multipole methods.
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3.1.1 Exact FMM

To achieve the decomposition of (3.1) into a product of functions in p and 7', we

first invoke the addition theorem to rewrite the Hankel function as
Q/2

H? (kolpw + 71— pl) 3 JuCkoloy =7l H (kopur) =400 oy > (i~}

G (3.2)

where p; denotes the distance between the centers of the [ and I’ groups as illustrated

in Figure 3.1 and 3.2. Also, ¢;v and ¢, are the angles between the vectors 7y and

py — 71 and the x-axis respectively. The source and observation points p, and 77

have their origin at the center of the " and [ groups, respectively, while p’ and 5 are

measured from the origin. Typically, the semi-empirical formula

Q/2 = koD + 51n(koD + 7) (3.3)
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is used to truncate the sum (3.2), where D is the diameter of the circle enclosing the

groups In general, )/2 = M, assures convergence (It will be shown that @ is the

number of directions in which the radiation of the group is sampled. With M being

the number of basis elements in the group, @ = 2M satisfies the Nyquist criterion

for faithful replication of the source group radiation). Next we introduce the Fourier

integral of the Bessel function
— 1 T T o s
Jn(kolply — p1l) = 5;[2 R =P =in(6=¢ 0 47/2) g

and in conjunction with (3.2) we can now rewrite (3.1) as

_ koZ()
8T

Ex(p) = === | Vel9)Tu(@)e ¥ 7dg

where k& = ko( cos ¢ + §j sin ¢) is measured from the x-axis. In this,

W(9) = [ L@

is identified as the far-field pattern of the source group and

Q/2
Tw(¢)= Y, HP(kopw)e "=twtr/D
n=-Q/2

(3.4)
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is referred to as the translation operator providing the group-to-group (I to I) inter-
actions. From (3.5)-(3.7), we observe that we have accomplished the decomposition
of the integral (3.1) into terms which separate out the dependence on p and 7'.
The final evaluation of E? proceeds by discretizing the integral over ¢ to yield the

expression
koZo

s

Q —
Ei(p) = NG S T ) Vir(@g)e ™ (3.8)
g=1

which is the radiated fields from some location in the source group !’ to a point
within the receiving group . Note that A¢ = 27/(Q) indicates the angular spacing
between the propagation vectors of plane waves emanating from a group. Thus
¢y = AP, ¢ =1...(Q), whereas k, = ko(% cos ¢, + §sin¢,). As mentioned earlier,
the number of plane wave directions is set equal to twice the number of elements in
the group (Q = 2M), thus, satisfying the Nyquist sampling theorem with respect to
the integration over ¢. Given the above steps, the exact FMM procedure for carrying

out the matrix vector product can be summarized as follows:

1. Compute pattern of the source group (aggregation). Mathematically, this corre-
sponds to evaluating Vi/(¢,) given in (3.6). The evaluation of Vi/(¢,) for a single
source group and at a single direction requires M operations, corresponding to
the number of elements in the group (the integration over the line segment is
performed as a summation). Consequently for L groups and ) directions for

each group, the operation count is QM L.

2. The next step is to employ the translation operator to evaluate the pattern of
a source group at the center of the test group. Mathematically, this operation
amounts to computing the coefficient Ai(¢,) = Vir(¢q)Tu(¢,). The evaluation

of Aj(¢,) involves an operation count of ) L?, where again L denotes the number
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of groups and () is the number of directions.

3. Finally, at the receiving group, the fields are redistributed (disaggregation).
Mathematically, this amounts to computing the expression ES(p) as given in
(3.8). Evaluating the sum at a single point requires Q operations. Thus for L

groups, each containing M unknowns, the operation count is QL M.

From the above we conclude that the total operation count of the above three
steps is C1QML + C,QL?. Also, the near field (by this we mean that groups in
the near vicinity of each other are treated using the standard method of moments
procedure) operation count is of O(NM). On choosing, Q ~ M, sufficient to achieve
convergence, the operation count of the three steps reduces to CyMN + C’gNﬁz. On
setting M ~ /N, implying L = v/N (an optimal choice) the final operation count is
N3 and this should be compared to the usual N? operation count of the direct CG
or LU solvers. The reduction of the operation count from O(N?) down to O(N'%) is
indeed dramatic. An appreciation of the CPU reduction can be acquired by setting,
for example, N = 2000 which is a relatively small number of elements. However,

further improvements can still be achieved by nesting groups leading to the multi-

level FMM [22].

3.1.2 Windowed FMM

In the exact FMM, the translation operation between groups assumed isotropic
radiation. However, it is suggestive that the groups would interact strongly along
the line joining them and less so in other directions. Indeed, it was shown in [23] that
the translation operator could be contemplated as composed of a geometrical optics
(GO) term (along the line joining the source and test group) and two diffraction

terms associated with the shadow boundaries of the GO term. To illustrate the



46

validity of this concept, we plot in Figure 3.3 the translation operator for different
group separation distances along a segment of length 50A. For this example, the
number of unknowns on the segment was 750, resulting in 27 groups. As seen, the
“lit” region of the translation operator narrows as the group separation distance
is increased, eventually displaying the predictable sinc function behavior for large
group separation distances. The tapering off of the translation operator from a
value oscillating around 2 down to zero for larger ¢ — ¢y values is characteristic
of the geometrical optics plus diffraction terms in the context of traditional high
frequency methods. We may also comment that this high frequency model enables
the identification of a lit region even for groups which are not widely separated (for
example, see Figure 3.3 for the translation operator between groups 1 and 3.

The key characteristic of the windowed FMM is the exploitation of the diminished
value of Ty:(¢) for large ¢— @y Basically, in the windowed FMM, the computation of
Tu(¢) for these angles is avoided altogether. This can be accomplished by multiplying

Tiv(¢) with the filter (windowing) function

1 (I6g — | < Bs)

e~ola=twl=B:7 (|6, — | > B,)

VVII'(Q%) =

where

e (@1
Bs = sin (ngpu/) (3.10)

and o is a taper factor to be specified. Note also that 3, was selected to provide a

larger bandpass window when pys is smaller as dictated from high frequency analysis.
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The discretized plane wave expansion can now be written as

ES = koZo

7 g

Q —
A¢Z w/”'(stq)TN'(qsq)VE’(‘éq)e_jk(rW (3.11)
g=1

By taking into account only the non-zero sector of Wy(¢), the operation count of
the translation process is now reduced to C3L? ~ ﬁ—i with the corresponding total
operation count given by C; M N +C4A]\,;—22. Grouping the unknowns into N'/? elements
per group, results in a total operation count of O(N*/3). This should be compared
with the O(N3?2) operation count of the exact FMM.

The computation of the boundary integral matrix vector product by employing
the windowed FMM is depicted pictorially in Figure 3.4 illustrating that the filter

function has the effect of eliminating plane wave interactions at directions away from

the line joining the interacting groups.

3.00 T T T T T
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Figure 3.3: The Translation operator for different groups on the boundary of a 50\ long
segment; 750 BI unknowns; 27 groups
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3.1.3 Fast Far Field Algorithm

This is an approximate version of the FMM since the algorithm is based on
introducing the large argument approximation of the Hankel function. That is, the
approximation

2j e~ikori

21 | ) o -ikorinF ~3kobin T |
Hy (ko [p = /) ~ €70t [ Sotin (3.12)

)~e

is used. As shown in Figure 3.5, py; is the distance between the center of the test
group [ and the center of the source group '; p,r is the distance between the nth
source element and its group center and pj, is the distance between the mth test
element and its group center.

The introduction of the large argument expansion necessitates that the FMM
procedure be used only for groups which are very well separated. However, (3.12)
allows for the immediate decoupling of the test-source element interactions, thus,

enabling the computation of the matrix-vector product for far-field groups with a
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Figure 3.5: Computation of the boundary integral matrix vector product using the FAFFA

reduced operation count. This is illustrated below by going through the three steps

of the FMM

1. The aggregation of source elements in a single source group now involves M op-
erations, corresponding to the number of elements in the source group. Specif-
ically,

M
Vig =Y Jjedhorintnr (3.13)

i=1

and since the above aggregation needs to be done for all source groups, the op-
eration count becomes O($-M) ~ O(N), where & represents the total number
of groups. Also this operation, being dependent only on the test group rather
than the test element, needs to be repeated for all Q = % test groups leading
to a total operation count of O(%) for aggregation. It should be noted that
use of the large argument expansion, rather than the addition theorem for the
Hankel function, results in the aggregation sum being a function of the test
group also (V) unlike the exact FMM where the aggregation sum is a function
of source group only (V/(¢)). Thus, the technique by which the Exact FMM

and the FAFFA reduce the operation count differ in the fact that while in the
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exact FMM the aggregation sum is characterized by a source group (/') and a
direction (@) which is not interwined with the test group direction, the aggre-

gation sum in the FAFFA is characterized by the source group (/') and the test
group (I).

2. The main advantage of FAFFA is due to the faster computation of the transla-
tion operator. We have

Ay =TiVin (3.14)
where in the FAFFA the translation operator simplifies to

2j 6-jk0pm
m Vkopii

This should be compared to the sum (3.7) for the exact FMM. Clearly, (3.15)

Ty = (3.15)

needs to be done only at the group level and involves O(—Aj\%) operations for all
possible test and source group combinations, making it the least computation-

ally intensive step.

3. The disaggregation or redistribution process is again the operation

koZO N/M . o
- S Apeikorvipin (3.16)

I'=1

EZ(p) =

Since this operation involves only the source group instead of the source element,
it needs to be done for each source group, implying O(%) operations to generate
a single row of the matrix-vector product. To generate M rows, corresponding
to a test group, the operation count would be O(N). With —]]‘% test groups, the

operation count is O(%;—)
Consolidating the above three steps for the FAFFA algorithm we have

N2
Op.count ~ Ci{NM + Cgﬁ (3.17)
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where the first term refers to the operations associated with the near field terms. As
before, M = /N and the total operation count is O(N'%). While, the operation
count for this algorithm could be further reduced down to O(N'-*3) by performing
the process of “interpolation” and “anterpolation” as described in [42] for very large
objects, we found that the accuracy deteriorated for the considered applications.

Hence only the O(N'-®) version was used.

3.1.4 Logic Flow

The operation counts described in the previous section for the various algorithms
are illustrated with the help of flow diagrams and sections of code from the computa-
tion of the matrix vector products for the far groups. Figures 3.6 and 3.9 depict the
flow diagram and code for computing the matrix vector product in the exact FMM.
It is seen in Figure 3.9 that each of the aggregation, translation and disaggregation

operations consists of a single multiplication which is described below

o The aggregation operation consists of the product of an entry of the trial vector
represented as (Dum(J) in Figure 3.9) with an aggregation factor, represented in
Figure 3.9 for the J™ element and K** direction as SrcGe(J,K). This is given
by SrcGec(J,K) = AJejk"(jc"s‘b"'*'gSi“‘b"')'m where A; is the length of the J*
discretization element, ¢ is the K'* radiation direction and p/;, is the direc-
tion vector of the J™ element, measured from the center of the group(JGr) it
belongs to. The result of the aggregation operation yields a term characterized

by only the source group and radiation direction (represented in Figure 3.9 as

V(JGr,K)).

o The translation operation involves the multiplication of the aggregation sum,

V(JGr,K), with a translation factor, represented in Figure 3.9 for the IGrh test
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group, JGr'* source group and K* radiation direction by Trans(IGr,JGr,K).
K

This is given by Trans (IGr, JGr,K) = 2/32 e_jn(¢1(_¢IGerGr+g)HT(L2)(koT]GT,JGr)

where ¢ is the Kth radiation directig;,_f[/; Jer and @rgr jer are the distance

and angle between the IGrt" and JGr** groups. The result of the transla-

tion operation yields a term dependent only on the test group and radiation

direction (represented in Figure 3.9 as GrGr (IGr,K)).

o The disaggregation operation involves the multiplication of the translation sum,
GrGr(IGr,K), with a disaggregation factor, represented in Figure 3.9 for the
I'" test element and the K** radiation direction by TestGc(I,K). This is given
by TestGc(I,K) = e dho(Ecoséx+isindx)iGr where prg, is the direction vector of
the 1" element measured from the center of the group(IGr) it belongs to. The
result of the disaggregation operation yields a term dependent only on the test

element alone and is the contribution to the I** entry of the product vector.

The windowed FMM differs from the exact FMM in the translation phase and
this is illustrated in Figures 3.7 and 3.10. These figures illustrate that the windowed
FMM achieves its reduced operation count by eliminating some of the directions in
which plane wave interaction takes place. The innermost loop in the translation
phase has an operation count which is a constant (15-25 in our simulations, 20 in
[23]) and is a significant reduction from the corresponding operation count in the
exact FMM.

The technique by which the FAFFA achieves its speed-up is depicted in Figures
3.8 and 3.11. It is seen that the FAFFA “recycles” the plane wave spectra of the
source group. For a given test group, the aggregation and translation operation are

performed only once for each source group, necessitating that only the disaggregation
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operation needs to be performed for each individual element of the test group. Similar
to the exact FMM, the aggregation, translation and disaggregation process consist
of a single multiplication. However the factors used in the three processes and the

method by which the reduced operation count is achieved are different.

e The aggregation operation again consists of the product of an entry of the
trial vector with an aggregation factor, represented in Figure 3.11 for the J th
element and IGrt" test group as SrcGe(IGr,J). This is given by SrcGe(IGr, J)
= Aje~dkobicricrPsi6r where Ay is the length of the J discretization element,
piGricr is the unit vector along the line joining the source and test groups
while 7 ;¢, is the vector along the line joining the source element with its
group center. Thus, an aggregation sum is formed for each combination of

source and test groups.

o The translation operation involves the multiplication of the aggregation sum
with a translation factor, represented in Figure 3.11 for the IGr'* test group
and JGrt" source group by Trans(IGr,JGr) and given by Trans(IGr,JGr) =
e—3k0PIGTIGr

—k—\/p:. Again, the translation operation needs to be done for each pair of
0PJGr,IGr

test and source groups.

o The disaggregation operation involves the multiplication of the translation sum,
GrGr(JGr), with a disaggregation factor, represented in Figure 3.11 for the I*"
test element and the JGri* source group by TestGc(I,JGr). This is given
by TestGe(I,JGr) = e dFobscricrPicnl where pyq, ; is the vector along the
line joining the test element with its group center. It should be noted that
to compute the interactions between a pair of groups, the aggregation and

translation need to be done only once and thus the crux of the FAFFA is
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indicated with highlighted sections of code in Figure 3.11.

Aggregation Translation Disaggregation
Set source group Set test group Set test group
counter =1 (Start with counter = 1 (Start with counter = 1 (Start with
the first source group) the first test group) the first test group)
= = =
Set direction counter Set source group Set direction counter
=1 (Start with the first counter =1 (Start with =1 (Start with the first
radiation direction) the first source group) radiation direction)
j————— D -
Set element counter = 1 Set direction counter Set eleme.nt counter = 1
(Start with the first =1 (Start with the (Start with the first
basis element in the first radiation direction) basis element in the
source group) radiation direction test group)
Perform aggregation Perform translation Perform disaggregation
operation for a single operation for a single operation for a single
element of the source N | |pair of source and test N || N _||element of the test
group for a single M| M ‘ﬁ groups and for a single M —M_ ﬁ group for a single M| M
direction 0 direction direction
Operation count=1) Ops| [ Operation count =1) Ops| |Ops| [ Operation count =1)
Y ) y
Increment element Increment direction Increment element
counter by one counter by one counter by one
Is element Is direction Is element
counter > counter > counter >
number of radiation number of elements

directions
(M) ?

in the group
M)?

Yes Yes
Increment direction Increment source group Increment direction
counter by one |counter by one counter by one

Is direction

counter > number
of radiation

directions (M)?

Is direction
counter > number
of radiation
directions (M)?

s source group
Counter > total number
of groups

:

Yes
Increment source group Increment test group Increment test group
ounter by one counter by one counter by one

Is source group
counter >total number

o (3

Yes Yes
End aggregation. End translation. End disaggregation.
Go to translation. Go to disaggregation. Matrix-vector product done,

Is test group
counter >total number —
of groups (N ) 9

M)’

Is test group
counter >total number
of groups (E)-,

Ik

No

Aggregation op. count Translation op. count Disaggregation op. count
il ]
0 () - o () 59 = () o 01 () =

Figure 3.6: Sequence of operations to be performed in the Exact FMM

g ==
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3.2 Guidelines for using the method to calculate the RCS of large objects

Although, we demonstrated in the previous section that the fast multipole method
has O(N'?®) or even lower computational complexity, there are several parameters
which play a role in the CPU requirements and accuracy of the solution. More
specifically, the grouping scheme, the sampling rate and the group size, all have an
effect on the performance of the FMM. In this section we examine the role of these
parameters on the accuracy and computational efficiency of the FMM on the basis
of some error-criterion. Specifically, we considered the scattering by two dimensional
metallic structures using a solution of the EFIE and the MFIE with pulse basis and
point matching as illustrated in section 2.1 [43]. In our study, the Fast Far Field
Algorithm (FAFFA) also referred to as the approximate FMM was used for carrying
out the matrix-vector products. Referring to Figure 3.12, the following parameters

were examined with respect to the accuracy and efficiency of the FAFFA:
e the near-group radius,d i,
e the sampling rate
e group size, and
e memory requirements

Our benchmark for accuracy was the RMS error given by

M

1
ERRORpys = J 3 Y " [RCSrer(i) — RCSpp(i))® (3.18)
1=1

where RC Sgpr denotes the reference radar cross sections as computed by the stan-

dard moment method approach without grouping, RCSgr is the RCS calculated

using FAFFA and M being the number of points at which the RCS is computed.
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We note that this error formula is among several that have been considered, but has
been found to represent a reasonable measure of the accuracy. It has been employed
by Schuh and Woo [44] for a study on the accuracy of RCS computations by various
codes. In the following we will show error curves as a function of the aforementioned
parameters for two cylinders. One is a PEC isosceles triangle having a base 2.5\ in
length and a height of 17.95X. The other is a rectangular PEC cylinder 25\ x 4\
in size. These geometries (see Figure 3.13) are analyzed at grazing (0 degrees) inci-
dence since this excitation is most stressing for RCS calculations, particularly so for
the triangular cylinder. In fact, the two geometries were selected to have different

characteristics in the backscatter region.

3.2.1 RMS Error as a function of near-group separation distance and sam-
pling rate

First we look at the RMS error of the bistatic RCS pattern as a function of the
near-group radius, dpn. Such error curves are shown in Figures 3.14 and 3.15 for
the isosceles and rectangular cylinders, respectively. These figures depicts several
curves, each corresponding to a different sampling rate (A/10, /15, A/20, /30 or
A/40 as designated in the figure). Surprisingly, the error curves for each geometry
give rise to the same conclusion. Basically, Figures 3.14 and 3.15 demonstrate that
the sampling rate has a profound effect on the accuracy of the solution and the value
of the error is strongly dependent on the near-group radius. For example, if d,,;,, is
set to 1.7), a tessellation rate of 10 segments per wavelength yields an RMS error
of 4.79 dB whereas a tessellation rate of 30 segments per wavelength leads to an
RMS error down to 1.19 dB. As expected, a higher sampling rate leads to smaller
errors. However, these errors are different and much larger than those resulting from

a standard moment method implementation. Specifically, a tessellation rate of 10
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segments per wavelength yields an RMS error of 0.1615 dB when employing the
standard unreduced moment method solution but increases to 4.79 dB when FAFFA
is employed with d,,;, = 1.7A. As depicted in Figures 3.14 and 3.15, the values of
dmin plays an equally important role in achieving a given RMS error. For example,
when the segment length is A/10, the error is over 4 dB when d,,;, = 2\ but the
error decreases to less than 2 dB when d;, reaches 3\ for the triangular cylinder
and 5X for the rectangular cylinder. This trend is, of course, logical since for larger
values of d,,;, the FAFFA implementation resembles more and more the unreduced
moment method.

Having found such a strong dependence of the RMS error on the tessellation rate
and the near-group distance, to proceed further with our study, it is essential to look
at what may be an acceptable RMS error. This error value can then be used to
determine acceptable relationships between sampling rates and d,,;, on the basis of
a certain RMS error. We therefore refer to Figure 3.16 which shows the bistatic RCS
pattern of the isosceles triangle as computed using FAFFA for different sampling
rates. The shown (exact) pattern has a dynamic range of 30 dB and we observe that
an RMS error over 4 dB is associated with large and unacceptable RCS deviations
(over 10 dB) from the reference RCS values. However, when the RMS error is about
1 dB or so, it is clear that the FAFFA results have only small deviations from the
exact curve which is actually tracked very well by the FAFFA results even in low RCS
regions. Consequently, we may select the RMS error value of 1 dB as the threshold
level in determining whether a given choice of FAFFA parameters lead to acceptable

accuracy or not.
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3.2.2 CPU requirements

Returning now to Figures 3.14 and 3.15, we observe that an RMS error of 1 dB or
less is obtained for the triangular cylinder if d,,;, > 4\ when the sampling rate is 10
segments per wavelength, but dn;, must be at least 7\ for the rectangular cylinder
with the same sampling rate. Unfortunately, these values for d;, are much larger
than 1A which is the value often suggested by other users of the fast multipole method
and its variations. It is of course important to keep the near-group radius as small
as possible for CPU and memory reduction. However, the sampling rate must be
increased to 30 segments per wavelength (for the isosceles triangle) if we are to reduce
dmin to 2X, but clearly the increased sampling is counter to the benefits from a smaller
near-group distance. Thus in Figures 3.17 and 3.18, we show curves of the CPU time
as a function of the near-group distance for different sampling rates. Figure 3.17
refers to the triangular cylinder whereas Figure 3.18 corresponds to the rectangular
cylinder, and both show a similar dependence on d,,;, and the sampling rate. For
both cylinders the CPU time increases almost linearly with d,.;, and is, of course,
higher for denser tessellations. These curves can be used in conjunction with those
in Figures 3.14 and 3.15 to obtain the CPU time to determine d,,;, for a given RMS
error and sampling rate. Alternatively, Figures 3.14 and 3.15 can be consolidated
with the data in Figures 3.17 and 3.18 to obtain a new set of curves which explicitly
give the CPU time as a function of a desired/given RMS error for the selected
sampling rate. These CPU curves as a function of a specified RMS error are shown
in Figures 3.19 and 3.20, corresponding to the triangular and rectangular cylinders,
respectively. The trends in each of these Figures are identical, demonstrating that
the dependence between CPU time, sampling, near group-distance and RMS error

are likely the same regardless of geometry considerations.
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Basically, Figures 3.19 and 3.20 show that the CPU time increases quadratically
with sampling rate. Clearly, a lower sampling rate is more attractive in terms of
CPU time since it leads to smaller systems and therefore faster convergence rate.
That is, it is better to use a larger d;, with lower sampling rates rather than
a higher sampling rate with a lower near-group window radius. For example, to
achieve an RMS error of 1 dB for the triangular cylinder, the CPU time is about 10
sec when using a tessellation rate of 10 segments per wavelength and from Figure
3.14 the corresponding dpin is 3.75A. However, to achieve the same error using a
tessellation rate of 30 segments per wavelength, the corresponding CPU time is more
than five times higher but the required near-group window radius is less than 2.5
wavelengths. It may seem that the higher number of degrees of freedom associated
with higher segmentation rates leads to unequivocally higher memory requirements
as well. However, this is not always the case with the FAFFA implementation because
the value of dpin, plays a major role on the bandwidth of the dense section of the
matrix. For example, in the case of the rectangular cylinder, sampling at A/10
would imply 580 unknowns while sampling at /30 would imply 1740 unknowns.
To achieve a RMS error of 3.75 dB, it would require a near group window of 3.5\
for sampling at A\/10 and a window of 1) for sampling at A/30. Execution time
considerations are of the order of 20 seconds for the first case and 75 seconds for
the latter case. An examination of the grouping of the unknowns would reveal
that the memory requirement for the latter case is smaller. Sampling at A/30 and
employing a near group radius of 1A would mean a storage requirement of ~ 42
elements per row. Sampling at /10 and employing a near group radius of 3.5)
would mean a storage requirement of ~ 72 elements per row, which is higher than

the previous case. Consequently, although Figures 3.19 and 3.20 suggest that a lower
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sampling rate has the least CPU requirements in satisfying a given error criterion,
the memory requirements will be higher when compared to those associated with a
higher sampling error and the same error criterion. Memory considerations will of
course be an issue for very large simulations and the choice of using a high sampling
or not will depend on the available computing resources.

The geometries and incidence angles selected in Figure 3.13 are among the most
stressing for RUS calculations and result in relatively large error for small near-group
window radius. For a smooth body such as the 50\ diameter circular cylinder shown
in Figure 3.21, the RMS error is small even with a small near-group window radius.
However, the relations between near-group window radius, sampling rate, memory
and execution time expounded in the previous section continue to hold for such
smooth bodies also. It should be noted that while the FAFFA employs the far-zone
Green’s function which results in larger error, corresponding results for the exact
FMM shown in Figure 3.22 and 3.23 show much greater accuracy. It is seen that
the exact FMM is capable of replicating even the surface currents on the triangular

cylinder for nose-on incidence with remarkable accuracy. (Figure 3.2.2).

3.3 Summary

In this section we examined the CPU requirements of the FAFFA as a function of
the different parameters affecting its performance, including the near-group window
radius, sampling rate and error. We presented curves which show the required sam-
pling rates, near-group window radius and CPU time as a function of a given error

criterion. Based on these curves, one concludes that

o The error is strongly dependent on d,,;, and the sampling rate. This error

dependence on the sampling is particularly inherent to the FAFFA solution
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method and should not be confused with similar errors associated with the
unreduced moment method implementations. With higher sampling, the spa-
tial extent of each group is reduced and thus the process of aggregation and

disaggregation of group elements into group centers induces less error.

In lieu of CPU time efficiency, it is best to employ lower sampling and larger

near-group window radius.

Stringent memory requirements behooves the adoption of high sampling and

small near group radius but at the expense of high execution time.
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Set test group counter =1
(Start with the first test

group)

v
Yy

Set source group counter = 1
(Start with the first source
group)

P
v

Set direction counter = 1
(Start with the first
radiation direction)

15-25
Ops

S =2

Perform translation operatiod

for a single pair of source

and test groups and for a

single direction ( Operation
count=1)

—_’i

Increment direction counter
by one

s direction counter
> number of radiation
directions (M)?

No

Increment source group
counter by one

S source group counte 1
> total number of

groups (l\ﬂd) ?

Yes

Increment test group counter
by one

Is test group counter
> total number of

?
groups (.11\%) ?

Yes U
End translation. N\(N) - (ﬁ
@o to disaggregatioD (M) (M) M:)

Figure 3.7: Sequence of operations to be performed in the translation process of the win-
dowed FMM




63

y
Set test group counter = 1 Set !TeistGrNew =1
(Start with the firsttest [ >| (Toindicate that this
group) is a new test group)

Y

Set test element counter =1
(Start with the first basis
element in the test group)

T

Set source group counter = 1
(Start with the first source
group)

Is

ITestGrNew = 1?
(Is this a new

Set source element counter = 1 (Start " "
with the first basis element in the Perform disaggregation
source group) for a single test element
= & source group
Y L]
Perform aggregation for a single Increment source group
source eleme?lt gz p:g:tlif)in froup counter by one
! M
Increment source element counter 0
by one Is source group No
counter > total numbei

?

of groups(l%)

Yes

No Set ITestGrNew =0
(Indicates that the test group is handled
for aggregation and translation and
therefore only disaggregation needs
to be computed for each test element)
[]

[lncrement test element counter by one

Is source element
counter > total number
of elements in the
group (M) ?

Perform translation for a single
source group & test group pair

(1 operation)
Is test element
Total op. count counter > total
number of elements in

M+1) (%) (l\ﬂ/l' + (%I) (M)(%I) the group (M) ?

2 N2 2
= (N 1* (2 * ()
l U }
Aggregation Translation Disaggregation

[ Increment test group counter by one|

Yes

test group counter >
total number of groups,

Matrix-vector product
done

Figure 3.8: Sequence of operations to be performed in the FAFFA
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NGr - Number of groups; IQAngles - Number of radiation directions

DPhi - Angular spacing between radiation directions

NEIGr(NGr) - Array containing number of elements in each group

GetGlobal - function which gets the global element # given a group

number and local element number

DMin - Minimum distance beyond which two group are treated as far
groups

Distance - Function which returns the distance between groups

Dum - Vector multiplying the matrix - in the CG algorithm
will be the search and residual vectors

AX - Amray which is the matrix-vector product

SrcGe, Trans & TestGce - aggregation, translation & disaggregation factors
respectively described in the text

O 000000000000

IQAngles = 2*NGr
DPhi = 2*Pi/IQAngles

h: Aggregation - Operation count O(NM) I
do JGr=1,NGr
do K = 1,IQAngles
do JEI =1,NEIGr(JGr)
J = GetGlobal(JGr,JEI)
if (S.eq.’*’) then
N V(JGr,K) = VJGr,K) + Dum(J)*conjg(SrcGe(J,K))
—{ MM else
V({JGr,K) = VJGr,K) + Dum(J)*SrcGe(J,K)
endif
enddo
enddo
enddo

Ig Translation - Operation count O(N*2/M) |
do IGr = 1,NGr
do JGr = 1,NGr
if (Distance(IGr,JGr).gt.DMin) then
do K = 1,IQAngles
if (S.eq.’*") then
GrGr(IGr,K) = GrGr(IGr,K) + conjg(Trans(IGr,JGr,K))*V(JGr,K)
M else
GrGr(IGr,K) = GrGr(IGr,K) + Trans(IGr,JGr,K) * V(JGr,K)
endif
enddo
endif
L enddo
enddo

z|=z
=z |z

|c Disaggregation - Operation count O(NM) l
do IGr=T1,NGr
r do K = 1,IQAngles
do IEl = 1,NEIGr(IGr)
I = GetGlobal(IGr,IEl)
if (S.eq.’*’) then
M AX(I) = AX(I) + GrGr(IGr,K)*conjg(TestGe(I,K))
else
AX(I) = AX(I) + GrGr(IGr,K)*TestGe(1,K)
endif
enddo
b enddo
enddo

Figure 3.9: Code indicating the computation of the matrix-vector product in the Exact
FMM
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¢ The symbols in this section of code represent the
c same quantities as in the code for the exact FMM

¢ Translation - Operation count O(N*2/MA2)

do IGr = 1 NGr

do JGr = 1,NGr

if (Distance(IGr,JGr).gt.DMin) then
do K = 1,IQAngles

if (S.eq.’*’) then
if (abs(Trans(IGr,JGr,K)).eq.0) then I

continue
else

GrGr(IGr,K) = GrGr(IGr,K) + conjg(Trans(IGr,JGr,K)) * V(JGr,K)
_ndif

NN
M| M

if (abs(Trans(IGr,JGr,K)).eq.0) then |
continue
else

GrGr(IGr,K) = GrGr(IGr,K) + Trans(IGr,JGr,K) * V(JGr,K)
iendif

endif
enddo
endif
enddo
enddo
Figure'3.10: Code indicating the computation of the matrix-vector product in the transla-
tion phase of the windowed FMM
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The symbols in this section of code represent the
same quantities as in the code for the exact FMM
ITestGrNew is a counter which is set to 1 if a test group
is "new". This means that since the aggregation and
translation operations involve only the test group
rather than the test element, they need to be done
only once (for the first element in the test group).
For the rest of the elements in the test group only
the disaggregation operation needs to be done (corresponds
to ITestGrNew = 0).

do IGr = 1,NGr
ITestGrNew = 1
do IEl = 1,NEIGr(IGr)
I = GetGlobal(IGr,IEl)
do JGr = 1,NGr
if (Distance(IGr,JGr).gt.Dmin) then
lif (ITestGrNew.eq.1) then |
VvV =(0.,0.)
do JEI = 1,NEIGr(JGr)
J = GetGlobal(JGr,JEI)
M if (S.eq.”*’) then
V = Dum(J)*conjg(SrcGe(IGr,J)) + V
else
V = Dum(J)*SrcGe(IGr,J) + V
endif
enddo
if (S.eq.”*’) then
GrGr(JGr) = conjg(Trans(I1Gr,JGr))*V
else
GrGr(JGr) = Trans(IGr,JGr)*V
endif
Endif |
if (S.eq.’*’) then
AX(D) = AX(I) + GrGr(JGr)*conjg(TestGe(I,JGr))
else
AX(I) = AX(I) + GrGr(JGr)*TestGe(I,JGr)
endif
endif
enddo
ITestGrNew =0
enddo
enddo

=|=z

z |z
=z |z

Figure 3.11: Code indicating the computation of the matrix-vector product in the FAFFA



67

.7 \\ﬁ‘l ~

o A} Sl N
J Group
K

Figure 3.12: The process of grouping unknowns - two groups are in the near field of each
other if the distance between their centers py; is less than d,,;,
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Figure 3.13: (a) An isosceles triangular metallic cylinder - 17.95\ high with a 2.5\ base
(b) A rectangular metallic cylinder - 25\ x 4\
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CHAPTER IV

Applications of the Fast Multipole Method

In this chapter, we present two applications of the FMM. First, to model node
radome geometries of realistic electrical sizes, we employ a version of the FMM to
accelerate and reduce memory requirements of the EFIE formulation presented in
Section 2.3. Next, we discuss the savings in solution time and memory when the

FMM is used to compute the boundary integral matrix-vector products in a hybrid

FE-BI solution.

4.1 Computation of nose radome scattering by employing the fast mul-
tipole method to calculate the RCS of large objects

Nose radomes serve as enclosures for antennas and are generally pointed to re-
duce aerodynamic drag. The performance of a radome is generally described by
parameters [45] which include the far-field radiation pattern, power transmittance,
boresight error and boresight error slope. Approximate methods for treating the
propagation of the plane wave through a radome include high frequency techniques
which typically consider the radome to be locally plane and omit guided waves as well
as interactions between the radome sections. Also, treatments of the higher order
interactions between the radome and the antenna have so far been of little attention.

Clearly, a more accurate approach is to employ an exact analysis method such as

74
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the moment method technique [30] which is capable of including all first and higher
order phenomena. However, due to the traditional O(N?) storage and O(N?) CPU
requirements the method of moments approach can only be used for small radome
structures. Recently though techniques have been introduced which can reduce the
CPU requirements down to O(N'?®) or less for large scale simulations. The fast
multipole method (FMM) introduced in section III is one of these techniques and
accomplishes the CPU reduction by lumping the far zone moment method elements
into groups. The groups are subsequently interacted (rather than the elements) to
achieve the purported CPU reduction. In the FMM implementation, the near-zone
and self-cell elements are evaluated unaltered and thus the accuracy of the original

method of moments formulation is retained.

4.1.1 Formulation

To make use of the FMM to speed-up the solution it is necessary to employ
iterative methods. In this case it has been shown that the FMM can reduce the
operation count down to O(N'®)/iteration, a substantial reduction. A detailed study
of the parameters affecting the accuracy and solution time of this method is given
in section 3.2 [24]. To employ the approximate version of the FMM, the unknowns
are divided into groups with M unknowns in each group and thus the number of
groups will then be 2%. For large source to observation distances, the kernel in (2.46)
is approximated by using the large argument expansion as

e—jkOR R e_jkorl/l o)
~ e—JkoTz'z'l'li ______e‘JkOrl’l"'jl’ (4.1)
Ty

where 7y is the distance between the center of the test group [ and the center of the
source group !'; r;ps is the distance between the jth source element and its group center

and ry; is the distance between the sth test element and its group center (see figure
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4.1). It is important to note that for large source to observation distances integration

Figure 4.1: The process of grouping unknowns - two groups are in the near field of each
other if the distance between their centers ry; is less than d,,;,

over the triangular domains is accomplished by mid-point integration; thus the source
and observation co-ordinates in (2.46) are replaced by the centroid of the triangular
domain of integration. Also, while the magnitude terms represented by the basis
functions are more easily approximated because of their non-oscillatory nature, the
phase term in the kernel needs to be accurately computed. The decoupling of test-
source element interactions in the kernel as in (4.1) enables the computation of the
matrix-vector product for far-field groups with a reduced operation count as detailed
in the following sequence, where we have considered only the oscillatory term in the

kernel.

1. For each test group, the aggregation of source elements in a single source group
involves M operations, corresponding to the number of elements in the source

group. The aggregation operation corresponds to

M
blll = Z ]je—‘,koT[,rr]ll (42)

i=1



7

2. Since the above aggregation operation needs to be done for all source groups
the operation count becomes O(;M) ~ O(N), where & represents the total
number of groups. Also this operation, being dependent only on the test group

rather than the test element, needs to be repeated for % test groups leading to

a total operation count of O(Nﬁ2) for aggregation.

3. The next step would be a translation operation corresponding to

e~Ikorin

_bl'l (43)

an =
T

Since this needs to be done only at the group level, it involves O( ]I‘—V}Q) operations
for all possible test and source group combinations and is the least computa-

tionally intensive step.

4. The final step in the sequence would be the process of disaggregation corre-

sponding to the operation

N/M o

I = Z cppeIorin T (4.4)

I'=1
Conceptually, this process is the converse of aggregation. Since this operation
involves only the source group instead of the source element it needs to be done
for each source group thus implying an O( %) operation to generate a single
row of the matrix-vector product. To generate M rows corresponding to a test

group the operation count would be O(N). With % test groups, the operation

count would be of O(Nﬁ2)

5. The near field operation count being of O(NM) and the far field being O(Nﬁ?)

gives a total operation count of

N2
Op.count ~ CyNM + Cgﬁ (4.5)
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Typically, we can set the elements in each group, M = V'N and as a result the

total operation count is O(N'%).

4.1.2 Results

The formulation was first validated for resistive plates. The validating code em-
ployed was based on the resistive boundary condition and representation of the fields
employing the Stratton-Chu integral equation [46]. Figure 4.2(b) shows the backscat-
ter RCS of a 1.16) x 0.85\ plate in the ¢ = 0° plane for the ¢¢ polarization. Results
for a metal plate and a resistive plate with normalized resistivity of 2.12 — 70.2 are
shown and comparison between the two sets of data is very good. Figure 4.2(c) shows
the corresponding plots for the 88 polarization.

To validate the typical nose radome geometry, available scattering data for the
Von Karman radome were used for reference. Although, this is a BOR structure, it
should be remarked that our formulation was not specialized to this class of geome-

tries. The generating curve for this radome (see figure 4.3) is given by [47]

r= 5—3_—7; {cos_1 (1 - 25) -3 sin [2 cos™? (1 - QIZ)] }% (4.6)

with

r=1/z? 4 y? (4.7)

and D is the diameter of the radome base whereas L is the length of the radome.
The thickness of the dielectric shell was A = 0.05m and the dielectric constant was
¢, = 4.0. The resistive sheet condition (R = WT{T)'E) gives an equivalent resistivity
of -j1.061. Discretization of this geometry at twelve points/wavelength, results in
187 nodes, 362 triangular facets and 549 edges (unknowns) as shown in figure 4.3(b).
The bistatic RCS with nose-on incidence is shown in figure 4.3(c) and (d). Also

shown in these figures is the comparison with a surface integral formulation [30]. As
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seen there is very good agreement between the two codes even though the RCS levels
are very low at angles away from forward scattering.

The incorporation of the fast algorithm alleviates the limitation on the size of the
bodies analyzed as can be inferred from the results shown in figure 4.4. In this figure
a metallic nose radome 10\ long with a circular base of diameter of 1) is analyzed.
Again, a body of revolution was the geometry of choice because of the availability
of validation data from CICERO [48]. Discretization of this radome results in 3120
nodes and 6204 triangular facets. Comparison of the backscatter RCS from the two
codes (see figure 4.4) reveals very good agreement for the #6 polarization while the
¢¢ polarization shows some deviation particularly at the low RCS levels. The near
group radius employed in the FMM solution was 2\ and the number of unknowns
was 9324. Solution times were 12 seconds/iteration for the FMM radome code while
the conjugate gradient solver employing the full, unreduced system would need an
estimated 60 seconds/iteration. Estimates from scaling smaller problems indicate
that LU decomposition would need a solution time of about five and a half hours
while requiring an unrealistic 0.67 GB of memory for storage of the full matrix.

Animportant advantage of integral equation analysis for the nose radome problem
is that it avoids modeling the free space between the radome and nose antenna (see
figures 4.5 - 4.8) thus reducing the computational cost. Results which include the
interactions between the nose-antenna and the radome are given in figures 4.5 - 4.8.
Unlike the Von Karman radome which was generated by an algebraic equation, the
radome in figures 4.5 - 4.8 was generated from user specified elliptical or circular cross
sections, which were then interpolated with cubic splines to generate the cross section
at any intermediate point along the axis. Figure 4.7 depicts the o4y backscatter cross-

section of the dielectric nose radome alone and in the presence of a circular plate at
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the base of the radome (nose antenna). The antenna is inclined with respect to the
plane perpendicular to the radome axis. The effect of the antenna on the RCS is
pronounced at incidence angles close to specular directions of the antenna plate and
this was to be expected. This is particularly seen in figure 4.7 for the backscatter RCS
patterns perpendicular to the plane with respect to which the antenna is inclined.
Specifically the large peak observed in figure 4.7 at ¢ = 150° when the antenna is
inclined at 60° with respect to the x-z plane is due to the large specular return at

that angle of incidence.

4.1.3 Summary

A version of the fast multipole method was employed to compute the electro-
magnetic scattering from electrically large nose radome structures. The application
of this technique while preserving to a great extent the accuracy of the moment
method, significantly alleviates the limitations on the size of the bodies analyzed.
In this work we analyzed nose radome shaped structures which were composed of
metal or thin dielectric shells and in the case of the latter the resistive boundary
condition was employed. The hybridization of a technique such as the finite element
method will enable the treatment of a wider class of materials and could thus handle
radomes with frequency selective surfaces. An application of such a hybrid technique

is discussed in the next section.
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4.2 Application of fast algorithms to hybrid FE-BI solutions

The Finite Element-Boundary Integral (FE-BI) method reviewed in Chapter 11
has been quite popular and extensively applied to many scattering and radiation
problems. The method [49] combines the geometrical adaptability and material gen-
erality of the FEM with the rigorous boundary integral (BI) for truncating the mesh.
Nevertheless, although “exact”, the FE-BI leads to a partly full and partly sparse
system which is computationally intensive for large boundary integrals. When the
boundary is rectangular or circular, the FFT can be used to reduce the memory
and CPU requirements down to N log N [49][50]. However, in general, the boundary
integral is not convolutional and in that case the CPU requirements will be O(N?),
where N, denotes the unknowns on the boundary. The application of the fast multi-
pole method enables the computation of the boundary matrix-vector product using
O(N}®) operations per iteration [51]. Two-level schemes can also be employed to
reduce the operation count down to O(N}*?) [52].

In this section, we apply the three different versions of the Fast Multipole Method
(FMM), introduced in section 3.1, to reduce the storage and computational require-
ments of the boundary integral when the latter is used to terminate the finite element
mesh. By virtue of its low operation count, the application of the FMM results in
substantial speed-up of the boundary integral portion of the code independent of the
boundary shape. Each version of the FMM is associated with inherent approxima-
tions and a goal of this chapter is the evaluation of these approaches in terms of CPU

requirements and accuracy.
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4.2.1 Problem Definition

As an application of the proposed study we consider the scattering by a cavity-
backed aperture shown in Figure 2.2. The FE-BI formulation for this problem was

already outlined in section 2.2 and results in the system

[Are] [Ad] {¢} _ 0 (4.8)

(471 18] | | {¥} {inc}

whose typical form is given in Figure 4.10. For H,-incidence, the vector {¢} rep-
resents the magnetic field at the nodes within the groove and on the boundary
whereas {1} is proportional to the magnetic current (or tangential electric field) on
the boundary cells. By virtue of the finite element method, the matrices [Af;] and
[A;] are sparse and thus the corresponding matrix-vector products are implemented
using O(N) operations. However [B] is a full sub-matrix and thus O(V?) operations
are needed to perform the product [B]{¢} with N, denoting the number of nodes
on the cavity aperture. Consequently, in an iterative solution, this matrix-vector
product becomes the computational bottleneck. To reduce the operation count we
can employ the FMM procedure for implementing the products [B]{¢}. We employ
the three different versions of the FMM discussed in Chapter III to accelerate the

boundary integral matrix-vector product computation.

4.2.2 Results

A computer code based on the three FMM formulations and utilizing the conju-
gate gradient solver was implemented and executed on a HP 9000/750 workstation
with a peak flop rate of 23.7 MFLOPS. The geometry analyzed was a rectangular
groove of depth 0.35X with a material filling of ¢, = 4 and p,=1. It was illumi-

nated by a plane wave at normal incidence and BI subsystems of different sizes were
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d],
FEM domain

Figure 4.9: Geometry of the groove recessed in a ground plane

achieved by considering three different groove widths: 25X, 35 and 50). Although
the boundary integral unknowns were about a seventh of the total unknown count,
the number of boundary integral multiplications was more than 90% of the total
number of multiplications for performing the entire matrix-vector product. This is
because the bandwidth of the FEM subsystem was only about five, while that of the
fully populated BI subsystem was equal to the number of BI unknowns. Thus, the
overall computational requirement is dominated by the BI, hence necessitating use of
fast integral algorithms like FMM to alleviate it. Table 4.1 compares the execution
time and RMS error [24] of the standard FE-BI to the FE-FMMFE=*¢t, FE-FAFFA
and the FE-Windowed FMM (FE-WFMM). The data reveal that the FE-FMME=act
offers almost a 50% savings in execution time with almost no compromise in accu-
racy. While the FE-FAFFA is the fastest of the three algorithms, the RMS error was

substantially higher (>1 dB). If the maximum tolerable RMS error ! is set at 1 dB

'To our experience, a 1 dB RMS error criterion for patterns with large dynamic range as encountered
in these simulations gives a calculated pattern that is in excellent agreement with the exact. Typically, a 3
dB error criterion can lead to large deviations between calculated and exact data.



91

0 ”i:%.b T, o ",
i Y
20 & , K
-%hlh .‘z:": 1:"':,
", R ",
D1, %”""«% ",
3 4, O,
\\\_ l%’ak BI System
80 i 1‘."-:.1’ %%‘q% i
.
",
100} ™,
1”“"‘.
1200—30—40 60 8o 100 120
column

Figure 4.10: Typical form of the FE-BI system matrix arising from the scattering/radiation
problem of a groove in a ground plane.

[24], the FE-WFMM is the most attractive option since it meets the error criterion
and is only slightly slower than the FE-FAFFA. The BI memory requirement for
the FE-WFMM is higher than that for the FE-FMMPZ®e¢ but lower than that for
the FE-FAFFA. This stems from the fact that the FE-FMME*%¢ provides the best
representation for the matrix elements which lie electrically far apart, thus enabling
the use of a lower threshold distance and consequently a less populated near zone
interaction matrix. The solution CPU time for the FE-WFMM competes favorably
with a hybrid algorithm obtained by hybridizing the Finite Element Method with
the Adaptive Integral Method [29] (FE-AIM) as seen from the data in Table 4.2
for reference purposes. Table 4.2 also shows execution times for the Finite Element

- Artificial Absorber (FE-AA) [53] technique. The latter uses a fictitious artificial
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absorber to terminate the Finite Element Mesh and leads to a completely sparse sys-
tem. Consequently the CPU time per iteration is smaller than either the FE-BI or its
variants. However, due to the larger system condition, a greater number of iterations

was necessary to achieve convergence (For the linear system Az = b, convergence is

defined as 1l

< 1074, where r is the residual vector). Thus, the total time required

for convergence is greater than the standard FE-BI itself. The advantages of a fast
integral mesh truncation over the standard FE-BI and an absorber termination are
summarized in Table 4.3. Of interest is the comparison of the residual error as a
function of the number of iterations in the CG solver. Such a comparison is shown in
Figure 4.11 and is seen that the curves for the FE-BI and the FE-FMMPZ®%¢ overlap
to graphical accuracy whereas the FE-WFMM shows a very small deviation from the
exact result. Thus, the hybridization of the FMM does not have any adverse effect

on the condition of the FE-BI system.

Solution CPU Time (Minutes,seconds)
Groove Total BI
Width | Unknowns | Unknowns | FE-BI (CG) | FE-FAFFA | FE-FMME#e*t | FE-WFMM
257 263 375 (9,33) (4,21) (6,20) (5,08)
35\ 3681 525 (17,33) (6,56) (11,32) (8,23)
50\ 5256 750 (47,21) (16,33) (28,20) (18,12)
RMS error (dB)
Groove | FE- FE- FE-
Width | FAFFA | FMME®e¢t | WFMM
25\ 1.12 0.0752 0.6218
35 1.2 0.1058 0.721
50 1.36 0.1123 0.843
Storage of BI (KB)
Groove FE- FE- FE- FE-
Width | BI (CG) | FAFFA | FMMZE2eet | WFMM
25 1072 277 166 185
35 2102 458 275 381
507 4291 784 470 613

Table 4.1: CPU Times, RMS error and Storage of the hybrid algorithms
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Figure 4.11: Convergence curves for the hybrid algorithms for the groove of width 25\

Solution CPU Time (Minutes,seconds)
Groove Width | FE-AA FE-AIM
25 (12.1) (4,48)
35\ (18,56) (9,27)
50\ (19,52) (25,20)

Table 4.2: CPU Times of FE-AA and FE-AIM algorithms

Truncation scheme BI Fast BI Absorber
Mesh termination Can be on Can be on Typically 0.3A
surface the body the body away
Storage O(N?) O(NT®) or O(N1-) O(N)
Time/iteration Highest Lower than BI Smallest
Total solution Typically less Smallest Highest

time than Absorber

Table 4.3: Comparison of mesh truncation schemes
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Algorithm Operation count for BI Operations (multiplications)
computation (as implemented) required for BI computation
for the 50X groove
FE-BI N} 562500
FE-FAFFA | (Nng +2)N;° + (1 = 2NnG)Ny — NN Ny 136890
FE-FMMZE=¢¢t (NnG +6)N,° — 2NnG Ny 180356
FE-WFMM (4 + Nyg + QWIN)NbIBS - ]\’]\r(;QWU\/NI?‘667 153780

Table 4.4: Exact BI operation count of the hybrid algorithms. N is the number of BI
unknowns. Npyg is the number of near groups (groups which are treated with

the exact moment method). Qw iy is the width of the window in the windowed
FMM.

Table 4.4 gives the exact Bl operation count rather than merely stating its order.
The knowledge of the constants associated with each exponent of N, enables us to
compare the requirements of two algorithms which might have the same order of
operation count. In Table 4.4, Ny¢ is the number of near groups (groups which are
treated with the exact moment method procedure owing to their electrical proximity)
which depends on the algorithm and the problem geometry. Ny¢ is smallest for the
FE-FMMFZ=2¢t and largest for the FE-FAFFA, due to the use of the far-zone Green’s
function in the latter. Table 4.4 also gives the number of multiplications in a single
BI matrix-vector product for the 50\ groove. For the FE-FMMZ®22¢ the number of
multiplications is reduced by a factor of three over the FE-BI. However, the actual
CPU time is reduced by a smaller factor due to computational overhead for the
various function calls.

The performance of the hybrid algorithms at a more stressing angle of incidence is
depicted in Figure 4.12. We observe that the RMS error follows the same trend as for
normal incidence illumination. For this example calculation the width of the groove
was 10X. However, even for this smaller size aperture the scalability of the speed-up
is maintained. The employed near group radius was 1\ and thus the matrix vector

products for groups separated by a distance less than a wavelength was computed
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using the exact method of moments procedure. Smaller near-group distances can be
employed to reduce the CPU time even further and near group distances down to

0.3) have been found to yield sufficiently accurate results.

30 T T T T

I — FE-BI DMin=1 A
20 -

@ FE - Exact FMM

10l * FE-Windowed FMM
v  FE - FAFFA
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Groove Width | FE-FAFFA | FE-Exact FMM | FE-WFMM
102 0.7627 0.1621 0.3291

(©

Figure 4.12: Scalability of the hybrid techniques to smaller problems (a) Problem geometry
(b) Bistatic patterns (c) Error table

4.2.3 Summary

We examined the computational performance of the finite element-boundary in-
tegral method using the fast multipole method for evaluating the BI matrix-vector
products. Three different versions of the fast multipole method were used and it was
shown that a considerable reduction in CPU time could be achieved with even further

reductions for larger problem sizes. The FE-WFMM provided the best compromise



in terms of speed and accuracy.
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CHAPTER V

Applications of the Adaptive Integral Method (AIM)

5.1 Scattering from Plates Containing Small Features Using the Adap-
tive Integral Method (AIM)

The Adaptive Integral Method is another algorithm which reduces the compu-
tationally complexity of moment method solutions. In the case of AIM, the CPU
reduction is achieved by mapping the original MM discretization onto a rectangu-
lar grid and exploiting the Toeplitz property of the Green’s function on this grid.
That is, the Fast Fourier Transform (FFT) is invoked to compute the matrix-vector
products in the iterative solver. For an arbitrary three dimensional body, a three
dimensional FFT is required and as can be understood, this calculation is very time
consuming. For planar scatterers the dimensionality of the FFT is reduced by one,
thereby significantly accelerating the solution. In this chapter, we examine the ben-
efits of AIM when the body is not electrically large, but is highly tessellated owing
to its intricate construction, thus leading to a large unknown count. We show that
significant savings in CPU and memory can be achieved by AIM and examine its

accuracy for near field and far field computations.
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5.1.1 AIM for Planar Scatterers

In this section, we describe the application of AIM to planar scatterers. Following

the discretization procedure outlined in Section 2.3, we begin with the linear system

[Z1{1} = {V} (5.1)

with [Z] being the elements interaction matrix, whereas {I} is the vector of the
unknown coefficients and {V'} is the excitation vector. The matrix [Z] is fully pop-
ulated, demanding O(N?) storage, and each [Z]{I} matrix-vector product requires
O(N?) multiplications.

Fast algorithms such as FMM and AIM are used to reduce the operation count
from N? down to N*, where @ < 1.5. Both algorithms work on approximating the
far zone interactions. In the case of AIM, the CPU reduction is achieved by first

splitting the matrix as

2] = (2] + 2] (5:2)

based on a threshold distance referred to as the near-zone radius. The matrix [Z7¢"]
contains the interactions between elements separated less than the threshold dis-
tance, whereas [Z/"| contains the remaining interactions. The elements of [Z7¢%"]
are evaluated with the exact MM while those of [Z/%"] and the product [Z/%"]{I} are
evaluated in an approximate manner as prescribed by the AIM procedure [29).
Application of AIM requires that the whole geometry be enclosed in a regular
rectangular grid. Basically, the fields of each interior edge is re-expressed using a
new expansion based on delta sources located at the nodes of the uniform AIM grid

as depicted in Figure 5.1. For the m*™ edge, this new expansion has the form

M2

g=1

=
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where r,,, are the position vectors of M? points on the square surrounding the
center of the edge and 6(z) is the usual Dirac delta function. The coefficients AZ¥ are
suitably chosen so that the new expansion is equivalent to the original representation
using triangular elements. A similar expansion is used for the divergence of the basis

functions
= Z 6(z — Tmg)O(y — me)Agnq (5-4)
To find a relation between the AZ¥ and I, coefficients, we equate moments of the

two expansions up to order M. Specifically, we set

MP  =F" (5.5)

91,92 41,92

where

Mz, = [ [ Fue el -v)rdedy for 0< g0 <M
M2

= Y (Tmg = 20)® (Ymg — Ya)2[AL,E + AL 3] with ¢=qi+ ¢, (5.6)

q=1
Q142 / / ‘T — Ta QI(y Ya )Q2d$dy (57)

Similarly, by equating moments of V- J; with the new expansion (5.4), we establish

a relation between A% and I,. That is, we set

D;ri 92 — H;rll,ql (5-8)
where
M2
qlqz / / zbd 2a)% (y — ya)?dzdy = Z(mmq — 20)" (Ymq _ya)qu;inq (5.9)
g=1
Hylo, = /oo/_wvs (2 = 2)™ (y — ya) 2 dady (5.10)

(5.5) and (5.8) give three M? x M? systems yielding the equivalence coefficients as

the solution. This process is depicted pictorially in Figure 5.1.
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Figure 5.1: The process of transformation from the original MM grid onto the AIM grid

Were we to use the equivalent expansions to represent the currents everywhere,

the resulting impedance matrix will be of the form

3
(Z]31 = Z;[A],-[G][A]f (5.11)

i=
In this, [A]; are the sparse matrices containing the coefficients of the expansion (5.3
) and (5.4) whereas [G] is the Toeplitz matrix whose elements are the free space
Green’s function evaluated at the grid points. It has been shown in [29] that [Z%74)
is not of sufficient accuracy for modeling the interactions between the nearby current
elements. To take advantage of the Toeplitz structure of [G] and sparsity of [A] we
can still use [Z{8] to represent the far element interactions. However, we will retain
the exact interaction matrix elements for the near element interactions. That is, we

rewrite [Z51)] as

21553 = 1213550 + [ 2L (5.12)
Comparing this to (5.2) and setting [Z]*" =~ [Z]{%}; we can rewrite the original [Z]

matrix as

[2) ~ ([21"*" - [2)375) + [ Z)31 (5.13)
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or
3

(2] ~[S] + X;[A]i[GHA]f (5.14)
where [S] = [Z]™* — [Z]%{4; is a sparse matrix corresponding to the difference
between the near field interactions computed by MM and AIM. The Toeplitz property
of the Green’s function, defined on the regular grid, enables use of the FFT to
accelerate the computation of the matrix-vector product. The sequence of operations
involved in the construction of the coefficient and Green’s function matrices are
indicated in Figure 5.2(a); those for the matrix-vector product execution are outlined
in Figure 5.2(b). In the computation of the matrix-vector product, the initial step
of transforming the currents from the original MM grid onto the uniform AIM grid
is comparable to the grouping operation of the FMM. While the FMM relies on
grouping to reduce the number of scattering centers, the sequence of operations
in AIM can be interpreted as a realignment of scattering centers onto a regular
grid. Although, this process does not reduce the number of scattering centers, the
regularity of their location enables use of the FFT for fast computation of matrix-

vector products.

5.1.2 Results

When examining the merits of a fast integral algorithm such as AIM, of im-
portance is the memory and CPU requirements, both contrasted to the delivered
accuracy. Although approximate analytical expressions have been derived in [29] for
some of these parameters, these refer to implementations involving cubical grids and
the three-dimensional FFT. Our goal in this chapter is to assess the accuracy of AIM
in treating small details within an aperture/surface and to provide the reader with
quantitative measures on the performance of AIM when implemented with the two

dimensional FFT. The near-zone radius or threshold distance has a dramatic impact
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Figure 5.2: (a) Matrix build operations and (b) Matrix vector product computation in AIM

on the CPU requirements since it controls the non-zero element population of the
system matrix. In the case of AIM, because of the inherent mapping to a uniform
grid, we are highly interested in examining its suitability to model small and fine

details embedded in much larger scale structures. The calculations for the plate con-
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figurations given next are intended to address this issue by examining the method’s
performance for a number of representative and practical situations. All of the in-
cluded results were generated using single precision arithmetic on an HP9000/C-110
workstation with a rated peak speed of 47 Mflops (the level 4 optimization option
was also used). In all cases, a third order (M=3) multipole expansion was used with
a grid spacing of 0.05).

Figures 5.3-5.7 depict the 0 and 3 polarization radar cross section patterns
(¢ = 0° cut) as calculated by AIM for the different threshold distances indicated on
the figures. The first circular plate has no holes and was used to validate the method.
From the pattern comparisons, it is clear that AIM recovers the exact result very
well. As given in Table 5.1 and 5.2, AIM achieves this with at least a factor of five
less memory than the traditional MM, even though the geometries are still rather
small to demonstrate the full impact of AIM. Also, Table 5.2 shows that a near zone
radius of 0.3) is sufficient to maintain good accuracy (below one dB in RMS error
[24]).

The advantage of AIM is more pronounced when gaps are inserted into the plate’s
surfaces and this is the primary reason that one may prefer AIM over other fast
integral methods for planar structures. As depicted in Figures 5.4 and 5.5, AIM
maintains its accuracy for the same threshold criterion even though the gaps/slots
have a dominant effect on the RCS pattern as shown in Figure 5.4. In the case of
narrow slots (or thin ridges in the plates) of width 0.03), the memory requirements
of the traditional MM increase quickly due to the higher element density. For the
geometry in Figure 5.6, AIM yields memory saving of 79% and the CPU time is
reduced by a factor of 12 while retaining the monostatic pattern accuracy to within

a tenth of a dB. This is achieved by using a uniform AIM grid density of 20 points
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per linear wavelength even though the cell density of the original plate mesh is
much greater due to the narrow slot. One may assume that this change in grid
density will affect the near zone field. However, our observations indicate that the
surface current is equally accurate. For the configuration in Figure 5.6 the average
current density error is 7.3% for a threshold distance of 0.2\ and 6% for a threshold
distance of 0.4A. The currents for the geometry in Figure 5.6 along the center
narrow strip are plotted and compared in Figure 5.8. These results demonstrate the
important feature that the near zone threshold criterion is not affected by the specific
geometrical details, leading to tremendous memory savings. Moreover, the accuracy
of the results provide a convincing argument that AIM can efficiently handle highly
irregular and resonant (i.e. antenna) geometries as well as smooth scatterers. At
the same time, the convergence rate of the AIM system is unaffected indicating that
the system condition is unchanged. This is of critical importance for fast iterative
solutions, since an increase in the iteration count would annul the faster computation
of the matrix-vector product.

Figure 5.7 shows the monostatic RCS pattern for a grating structure which acts
as a “polarization filter”. The thin ridges in the grating cause a strong specular
return for the qﬁqﬁ polarization (almost 10 dB above the return in the absence of the
gratings) as is evident from the results in Figure 5.7(d). Of importance is that the
MM triangular mesh in Figure 5.7 required a cell size of 0.02) per linear dimension
because of the narrow grating. However, the overlaid rectangular AIM grid could
be selected to have a much coarser discretization. More specifically, we chose grid
spacings of 0.05\ and 0.1 for the AIM grid and, thus, computational requirements of
AIM were much lower. For the 0.1 grid spacing the solution time was reduced from

2.75 minutes down to only 12 secs at the expense of some accuracy (fraction of a dB).
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To further increase in accuracy, we employed a 0.05\ grid spacing and as shown in
Figure 5.7(b) the AIM curve is now indistinguishable from the reference MM result
(within 0.1 dB). From Tables 5.1 and 5.2, the AIM computational and memory
requirements are 8 times and 9 times less, respectively, without loss of accuracy.
This is a significant observation and we have found that both the convergence rate
and condition of the AIM system remains essentially unchanged from the original
moment method system. The original discretization for the geometry in Figure 5.7
and the equivalent AIM grids are pictorially depicted in Figure 5.9. It should be
noted that even though the size of the discretization is very small, retaining the self-
cell term alone in the moment method system introduces huge error (Figure 5.10),

thus emphasizing the importance of non-self terms.

5.1.3 Summary

The performance of AIM is much improved when applied to scattering from flat
complex scatterers and scatterers with high discretization rates. Thus, the reduction
of solution time is considerably more for the geometries depicted in Figure 5.11(a)
and 5.12(a) than for the geometries in Figure 5.11(b) and 5.12(b). A memory re-
duction of 5 to 10 times over traditional MM was observed without compromise in
accuracy when using a threshold radius of 0.2X. This CPU reduction is achieved
without resorting to parallelization or optimization techniques (as is known AIM is
particularly amenable to such improvements). More importantly, the AIM algorithm
is capable of modeling very small details in large bodies with a high degree of accu-
racy, while simultaneously saving considerable memory. This is of importance when
modeling broadband antennas (spirals or log-periodics) and gratings which are both
large in overall size but can contain features as small as A/100 in size. Application

of AIM for analysis of cavity-backed antennas is described in the next section.
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Discretization

Geometry | Facets | Edges | Unknowns | MM memory (MB) | MM solution time
86 pol (8 = 0° inc.)

Figure 5.3 | 586 908 850 5.51 32 secs

Figure 5.4 | 554 890 772 4.54 29 secs

Figure 5.5 | 1130 | 1806 1584 19.14 4 mins 50 secs

Figure 5.6 | 1036 | 1667 1441 15.84 4 mins

Figure 5.7 | 1038 | 1957 1157 10.21 2 mins 45 secs

Table 5.1: Solution CPU time and memory requirement of the moment method

AIM Data
Geometry | Threshold | Non-Zeros | Memory Solution time RMS Error(dB)
(A) in Near Z | (MB) 86 pol (6 = 0° inc.) 66 pol | ¢¢ pol
0.3 59928 0.68 23 secs 0.1718 | 0.0755
Figure 5.3 0.4 100182 1.14 25 secs 0.1490 | 0.0693
0.7 257390 2.94 28 secs 0.0728 | 0.0490
Figure 5.4 0.4 79030 0.9 21 secs 0.0728 | 0.0583
0.6 157994 1.8 27 secs 0.0721 | 0.0520
Figure 5.5 0.7 283774 3.24 3 mins 32 secs 0.8017 | 0.5185
Figure 5.6 0.2 296250 3.39 20 secs 0.1063 | 0.0949
0.4 649556 7.43 31 secs 0.0548 | 0.0632
Figure 5.7 0.2 120220 1.37 18 secs 0.0469 | 0.0469

Table 5.2: Solution CPU time, memory requirement and RMS error of AIM (all entries in
this table were computed with an AIM grid spacing of 0.05))

5.2 Computation of radiation and scattering from planar cavity-backed
antennas with the Adaptive Integral Method (AIM)

Several cavity-backed antennas contain small features and details which may ne-

cessitate high discretization. This could take the form of very narrow slots which

may be a fiftieth or hundredth of a wavelength in width. Discretization of such ge-

ometries could lead to very large numerical systems even if the size of the antenna

is not electrically very large. To efficiently treat such systems, the properties of an

algorithm based on an iterative solver, should include the following
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e It is of paramount importance that the “threshold” distance (distance beyond

which interactions are treated as of the far zone variety) is as small as possible.

e It should be capable of characterizing small perturbations in an otherwise

smooth surface.
e [t should be capable of modeling near fields accurately.

o If the algorithm incorporates a process by which very small discretization details
can be “mapped” onto a different domain which is less dense than the original,
computation of the matrix vector product in this domain would simulate the

effect of a reduced number of unknowns.

Figures 5.7 and 5.8 depict two planar configurations analyed by the AIM from which
it can be gleaned that all the above criteria are met. Unlike FMM, which carries out
the matrix vector product on the original moment method discretization, the ability
of AIM to map the small details onto a sparse grid and still retain accuracy makes it
the method of choice to analyse such antennas. For efficient modeling of the cavity
we employ FEM with its low O(N) storage and execution time. Triangular prisms

are used for discretization of the cavity volume for the reasons described in Section

2.4.

5.2.1 Implementation

The FE-BI formulation for three dimensional cavity-backed antennas using pris-
matic elements is described in Section 2.4. Substitution of (2.60) in (2.58) gives a
discretized boundary integral of the form in (2.46). The near and far zone terms are
treated as outlined in 5.1.1. The FEM matrix and the near zone interactions of AIM

are stored in a sparse storage format, thus affecting significant savings in memory.
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5.2.2 Results

Figure 5.13 shows the radiation pattern for an annular slot computed in the
elevation plane, ¢ = 5°. The reference FE-BI solution [39] is contrasted with com-
putations of BI using AIM (indicated as FE-AIM). It is seen that for this example,
the threshold distance in AIM can be reduced to 0.25) without significant loss of
accuracy. This enables the reduction of matrix entries stored in the near field portion
by a factor of three resulting in a corresponding savings in memory as indicated in
the tabulation of the near-zone non-zero entries. Figure 5.14 shows the radiation
pattern for the same antenna in the ¢ = 90° elevation plane. The normal direction
in this plane, reveals the characteristic separation between co-polarization and cross-
polarization levels for the annular slot at observation angles close to normal in the
elevation plane. From this figure, it is gleaned that the threshold distance in AIM
can be reduced down to even 0.15A if an average error of a dB could be tolerated.
From the computation of near-zone matrix entries, such a threshold would result in
a factor of five saving in memory. Figure 5.15 shows a scattering cross-section for the
same slot but at a frequency of 0.73 GHz (at which the antenna is electrically even
smaller) instead of the previous 1 GHz. It should be noted that for a threshold of
0.4) (larger than the diameter of the BI contour) the near-zone and far-zone entries
for AIM cancel each other in accordance with (5.13), thus yielding a very small error
(0.00086 dB) in comparison to the FE-BI solution. A quantity of vital importance in
antenna computations is input impedance. Figure 5.16 depicts the input impedance
of a very narrow probe-fed annular slot, computed using FE-BI and FE-AIM. The
probe is placed at y = 0. It is seen that evaluation of the boundary integral with
AIM enables the reduction of the near-zone non-zeros by more than half. Computa-

tion of input impedance demands very high accuracy and the threshold distance was
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held constant at 10.5 cm (corresponding to 0.35A at 1 GHz and 0.49X at 1.4 GHz -
the corresponding diameter of the entire BI contour varying from 0.513X to 0.718)).
While, Figures 5.13-5.16 demonstrate the ability of AIM to translate very fine details
such as a narrow slot onto a coarser equivalent grid, Figure 5.17 and 5.18 indicate
the importance of a low threshold distance in modeling cavity-backed antenna ar-
rays. Figure 5.17 and 5.18 indicate that for an average error of less than a dB in
scattering and radiation patterns it is possible to reduce the number of non-zeros in
the near-zone part of the impedance matrix by a factor of six, resulting in substantial
saving in memory. This is a consequence of employing a threshold distance of 10 cm,
which is about a fifth of the cavity diameter. It is necessary to note that employing
such a threshold distance results in a majority of the interactions between different
slots being treated with the AIM procedure. This is of paramount importance in
modeling antenna arrays and spiral antennas. While Figures 5.13-5.17 compare spa-
tial domain FE-BI and FE-AIM solutions, Figure 5.19 compares the spatial domain
FE-AIM solution with a spectral-domain FE-BI solution presented in [54] for the

scattering by a cavity-backed patch antenna.

5.2.3 Summary

AIM, with its low threshold distance, and ability to translate to an equivalent
grid is capable of saving a significant amount of memory and solution time for bodies
which are finely discretized even though they may not be electrically large. Its
accuracy is preserved even while performing radiation computations thus making it

the method of choice for analyzing antennas with intricate details.
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Figure 5.11: (a) Flat and (b) Curved plate with equal side lengths and discretization rates,
resulting in equal number of unknowns. While the moment method yields
equal solution time for both geometries, AIM would accelerate the solution
for the geometry in (a) considerably more than that for the geometry in (b)
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Figure 5.12: (a) Geometry of a 1\ square plate gridded at A/40 and (b) 4\ square plate
gridded at A/10. While the moment method results in equal solution times
for both geometries since they have equal number of unknowns, AIM would
accelerate the solution for the geometry in (a) considerably more than that
for the geometry in (b) owing to the smaller FFT pad for the geometry in (a)
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CHAPTER VI

Conclusions

In this dissertation we developed and implemented fast, memory-saving algo-
rithms for integral equations. For each algorithm, comparisons of memory require-
ments and execution time were made with “exact” techniques. A large portion of
the dissertation was devoted to a discussion on fast integral algorithms employing
iterative solvers - FMM and AIM and their performance in conjunction with FEM.
It is necessary to elucidate the differences between them in order to make a decision
on their suitability for scattering or radiation problems. Cognizance of similarities
and differences between the two algorithms also suggests future areas of research.

We also list accomplishments made during the course of the dissertation work.

6.1 Comparison between FMM and AIM methodologies

e FMM and AIM are employed in conjunction with iterative solvers only. This
follows from the fact that iterative solvers require only the product of the system

matrix and a trial vector rather than the explicit system matrix itself.

e The fundamental principle behind the two algorithms is the same. Both algo-
rithms work on the basis that interactions between far away source and test

elements can be treated using approximations. To preserve accuracy, the inter-
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actions between elements electrically close to each other continue to be treated
exactly, requiring careful evaluation of numerical singularities when the source
and testing points collocate. It is necessary to note that discarding interac-
tions between elements which are electrically far apart will lead to large and

significant errors.

Only the near zone interactions are generated explicitly by both the techniques.
These interactions are stored in a sparse storage format, thus effecting signifi-
cant savings in memory. Storage required for calculation of terms used in the
matrix-vector product for elements which are electrically far apart is negligible
in comparison to the O(N?) storage required by the moment method. This is
an aspect of cructal importance since most commercial solvers for large-scale

applications [55],[56] do not save memory.

FMM uses a series expansion for the Green’s function to uncouple source and
test points and enable grouping of unknowns. It does not affect the basis func-
tions in any way. Grouping of unknowns effectively reduces scattering centers
on the body. AIM, however, makes use of a new delta basis and forces equality
of moments between the original and new basis. The new delta basis simulate
the effect of the original basis and source and test points are not decoupled. A
succinct way of restating the above is that FMM reduces the operation count
(multiplications in the matrix-vector product of the iterative solution) by ef-
fectively reducing the scattering centers on the body. AIM does not reduce the
scattering centers but regularizes the scattering centers by translating them to
the regular grid enabling the use of the FFT, thus reducing the operation count.

The regular AIM grid can be less dense than the original moment method grid,
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thus reducing the CPU time and memory even further. An analogy t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>