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“ Let the land produce vegetation: seed bearing plants and trees on the
land that bear fruit with seed in it, according to their various kinds.”

Genesis 1:11




ABSTRACT

A FRACTAL-BASED COHERENT SCATTERING AND PROPAGATION

MODEL FOR FOREST CANOPIES

by

Yi-Cheng Lin

Chair: Kamal Sarabandi

Dependency of tree structures on SAR backscatter and modeling of radar interfer-
ometry on forestry are two important topics in the field of microwave remote sensing.
However, traditional scattering models for forest canopies based on radiative transfer
theory do not preserve the coherent effect caused by the relative position of scatterers
within a tree structure and cannot provide the phase information of the backscat-
tered fields. To address these deficiencies, a fractal-based coherent scattering and
propagation model is developed in this dissertation.

The model comprises three components: 1) generation of realistic tree struc-
tures, 2) modeling the interaction of the electromagnetic wave with vegetation com-
ponents, and 3) Monte Carlo simulation. Generation of realistic tree architectures
is implemented by a fractal-based stochastic Lindenmayer system. The electromag-
netic problem is formulated by considering the generated tree structure as a cluster of

scatterers composed of dielectric cylinders and disks with specified size, position, and



orientation. Using the single scattering approximation, the total scattered field is
obtained from the coherent addition of the individual scattering from each scatterer
illuminated by a mean field. Foldy’s approximation is invoked to model the coherent
wave propagation within the forest canopy where the mean field at a given point
accounts for the accumulated attenuation and phase change caused by vegetation
components. Finally, the desired statistics of the scattered field are acquired using a
Monte Carlo simulation over a large number of realizations. Combined with the re-
cently developed Ak-radar equivalence algorithm, the model can numerically predict
the scattering phase center height of forest canopies, the very quantity measured by
an interferometric SAR (INSAR).

The accuracy of the model is verified using SIR-C (SAR) and TOPSAR (IN-
SAR) measurements over test stands of coniferous and deciduous types near Raco,
Michigan. A sensitivity analysis is performed to characterize the response of the
forest canopy with controlled physical parameters to a multi-parameter (frequency,
polarization, and incidence angle) SAR/INSAR. To improve the model utility and
efficiency, a procedure for developing simplified empirical formulation for scattering
from complex forest structures is presented. Finally, an inverse scattering model
based on genetic algorithms is developed for retrieval of forest parameters that may

take multi-parameter SAR/INSAR data as its input.
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CHAPTER I

INTRODUCTION

1.1 Background

1.1.1 Forestry and Remote Sensing

Forests, constituting about 90% of the standing biomass in the biosphere, play a
crucial role in the Earth’s systems including the hydrologic cycle, the carbon dioxide
circulation, and the energy balance [1,2]. Since carbon dioxide absorbs radiant heat
(infra-red energy) retained in the atmosphere, forest ecosystems may indirectly affect
global climate change. Furthermore, forests are valuable natural resources to human
beings and provide a habitat for a wide variety of species. However, forests worldwide
are being destroyed or reduced by logging, fires, floods, and pollution. It is a global
vision that the preservation of these important resources is of interest and requires
more endeavors in terms of comprehensive investigation, timely monitoring, and
effective management. To achieve these goals, the first task is to develop a remote-
sensing technology that can probe the forest canopies continuously and globally and
provide accurate, reliable, and complete information about the physical parameters.

Our knowledge of the vegetation biomass in the biosphere is quite limited due
to the difficulty in obtaining sufficiently high quality observations that are repre-

sentative of a region or a ecosystem type. Measurements on the ground are very



time-consuming, labor-intensive, and often constrained by lack of access. Satellite
remote sensing, however, provides a means to collect the geophysical information
of the Earth’s surface repeatedly on a regional or global scale. Intense research
efforts have been conducted mainly with optical and microwave remote sensing in-
struments [3,4].

The disadvantages of optical sensors are that cloud-free conditions and sunlight
illumination are required. It turns out that optical sensors are restricted to day-time
use only and may be ineffectual in the tropics where clouds and rain often occur
all year. In addition, optical remotely sensed data cannot work for most terrestrial
biomass densities, because there is a saturation effect at very low levels of biomass.

Microwave remote sensing systems can perform measurements independent of
both weather conditions and the time of day. There are two measuring schemes for
microwave remote sensing technology: active and passive [5,6]. Radiometers, known
as passive sensors, measure the brightness temperature through the thermal radia-
tion from the observed scenes. Imaging radars, on the other hand, actively assess
the backscattering properties of the distributed target by transmitting radiowave
radiation from an antenna and receiving the returned signal from the target. The
disadvantage of this real-aperture radar system is its poor resolution which is pro-
portional to the measuring distance and the antenna directivity. This deficiency can

be solved by using the synthetic aperture technique discussed next.
1.1.2 SAR/INSAR Technologies
Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the

motion of the aircraft or spacecraft carrying the radar to synthesize an antenna

aperture much longer than the physical size of the antenna to yield high-resolution



imaging capability [4,6,7]. This microwave imaging radar is known as an active
illumination system, in contrast to passive imaging systems which require the Sun’s
illumination (like an optical camera) or thermal radiation (like a radiometer). The
illumination configuration of SAR systems is usually side-looking where the antenna
boresight is perpendicular to the vehicle’s direction of flight. The returned signal
(echo) originated from the transmitting antenna, mounted on an aircraft or space-
craft, reflects from the objects within the illuminated area (scene), and is received
at the same antenna, which is then measured, recorded, and processed to construct
the image. This active feature together with the high penetration through clouds
and rain enable SAR systems to perform all-weather and round-the-clock geophysical
measurements of the Earth over wide surface areas.

Since the launch of the Seasat spacecraft in 1978, the technology of obtaining
global-scale SAR imagery of the Earth’s land and ocean surfaces has been estab-
lished and refined. Following Seasat, Space Shuttle Imaging Radars (SIR-A in 1981,
SIR-B in 1984, and SIR-C/X-SAR in 1994) and operational satellites such as the
European ERS-1 in 1991 and ERS-2 in 1995, the Japanese JERS-1 in 1992, and the
Canadian RADARSAT in 1995 have collected multi-parameter (frequency, polariza-
tion, and incidence angle) SAR data. The gathered data show that this technology
offers significant and unique features needed to the advancement of scientific re-
search in understanding of environmental change and the impact of various human
activities on that. The scientific community has also collected sufficient evidence
suggesting that SAR may prove to be extremely valuable in operational applications
particularly in monitoring of agriculture/forestry, mapping, resource management,

and environmental observations in support of warnings and predictions.

Interferometric SAR (INSAR) [8,9] is an evolutionary steep from SAR technol-



ogy, which can provide topographic information via backscatter phase comparison
of successive SAR images obtained from repeat-pass or two-antenna SAR systems.
Even though typical imaging radars display only the magnitude of the backscatter,
an important attribute of SAR is its coherent imaging capability which allows si-
multaneous measurement of the radar echo during data acquisition and subsequent
processing. INSAR exploits this coherence capability to infer differential range and
range change from two or more SAR images of the same scene. In practice, INSAR
can generate large-scale high-resolution topographic maps with a horizontal resolu-
tion of 30 m and height accuracies of several meters [10]. Over longer time scales of
several years or more, high-resolution topographic data can also be used for change
detection with accuracy near the millimeter level by comparing elevations of the
same scenes at different times. These unprecedented features have made INSAR a
valuable technique that has broad applications including 3-D topographic mapping,
estimation of vegetation height and ocean wind speed, and studies of catastrophic

topographic change due to volcanic eruption, landslides, and major floods.

1.1.3 SAR/INSAR in Forest Remote Sensing

SAR/INSAR applications in forest ecology include land-cover classification and
estimation of biophysical parameters. For classification applications, various ap-
proaches have been investigated, covering the hierarchical knowledge-based approach
[11], the dynamic neural network [12], and the interferometrically derived algo-
rithms [13]. For estimation of forest biomass, the multi-frequency (P-, L-, C-band)
multi-polarization (hh,vv,vh) JPL AIRSAR system was employed to examine the
dynamic range of the SAR backscatter from stands of different ages [14]. The results

showed that the P-band SAR is more sensitive for forest parameter retrieval because



at low frequencies saturation level of backscatter to forest biomass occurs at high
biomass levels. In the studies of SAR dependence on forest parameters, the multi-
parameter SIR-C/X-SAR data were employed, for the first time, to show that forest
structures must be taken into account prior to developing retrieval algorithms [15].
In recent years some experimental and theoretical studies have been carried out to
demonstrate the potential of INSARs in retrieving forest parameters. For example
in [16] and [17] experimental data using ERS-1 SAR repeat-pass are employed to
show the applications of SAR interferometry for classification of forest types and

retrieval of tree heights.

1.1.4 Existing Scattering Models for Forest Canopies

Interpretation of SAR images is not as straightforward as for optical images
because of the complex interaction of the electromagnetic wave with the scatterers.
Hence, parallel to the experimental studies, development of theoretical scattering
models for vegetation is required in order to interpret the collected SAR data. A
tree structure can be used to describe the classification of these models. First, all
the scattering models may be divided into two types: phenomenological and physical
models. The phenomenological models are based on an intuitive understanding of
the relative importance of the individual backscattering components. In this type
of scattering model, the total backscattered intensity is calculated by adding up the
significant components believed to be important [18,19]. On the other hand, the
physical models are based on the physical interaction of an electromagnetic wave
with the forest. This type of model may again be divided into two categories by
considering the forest as a continuous medium or a medium with uniform discrete

scatterers. For continuous medium modeling, the canopy is treated as a continuous



medium with a fluctuating permittivity function [20]. For a discrete model, the
canopy is treated as a collection of randomly distributed scatterers with prescribed
size and orientation distribution functions for various tree components. In this type
of scattering model, the first step is to obtain the general bistatic scattering matrices
for various tree components such as trunks, branches, and leaves [21-24].

The solutions of the discrete models may be divided into the distorted Born ap-
proximation (DBA) [25,26] and radiative transfer (RT) theory [27-29]. DBA, based
on wave theory, starts with Maxwell equations, takes into account the extinction
properties of the medium, and calculates the average backscattering coefficients. In
general, DBA is complicated and approximations are required for the numerical cal-
culation. On the other hand, RT starts with the radiative transfer equations that
govern the transport of radar wave energy through the scattering medium. Its de-
velopment is quite heuristic, and lacks mathematical rigor. RT theory is the most
widely used approach in the radar remote sensing community today.

There are three major deficiencies in the incoherent discrete models. First, the
incoherent models cannot provide the absolute phase of the backscattered fields,
therefore they are inappropriate for INSAR applications. Secondly, the assumption
of modeling a forest canopy as a two-layer medium containing uniform distributed
scatterers is oversimplified. Actually, the tree structures in the real world have
apparently inhomogeneous size distributions in the vertical direction because of the
natural branch tapering. Thirdly, the coherent effect caused by the interferences
among the relative position of the scatterers and the multipath scattering components
is not taken into account. This effect may be an important factor in investigating
tree canopies in low-frequency radar remote sensing.

Modeling vegetation using coherent approaches has attained significant promi-



nence over the past five years. For short vegetation, the effect of the soybean plant
structure on radar backscatter using a two-scale branching model was first examined
in [30]. Similarly, a coherent model for cultural grass canopies, where the dimensions
of the vegetation components such as grass blades and stems are comparable to the
medium height dimension, was also developed in [31]. In these models the plant
structure is considered from a statistical point of view and therefore only the second
moments of the scattered fields are provided, that is, the absolute phase information
is lost.

Further investigations have explored the coherent scattering from a 3-D tree struc-
ture. In [32] the radar backscatter was simulated for various deciduous tree types
using fractal theory [33] for the tree structure. In a more recent paper [34] Linden-
mayer Systems (L-systems) [35], useful tools for implementation of fractal patterns
or structures, were employed to develop simple 3-D tree structures of the order of
few wavelengths to examine the importance of coherent and multiple scattering. The
tree structures in [34] might be unrealistic, since the emphasis was focused on the
comparison of various scattering models performed on the same tree structures. In
other words, the tree structures can be arbitrarily virtual. A straightforward ap-
proach in constructing the tree structure was carried out in [36] where an accurate
description of particle positions was characterized for a red pine tree using surveying
tools. In addition to the time-consuming and labor-intensive work, this approach
excluded the statistical properties of the stand because the average backscattering
coefficient was obtained by rotating the same surveyed tree. In this model the tree
structure is divided into cylinders whose backscattered fields are added coherently
via the distorted Born approximation.

Theoretical models have also been developed to establish relationships between



both the interferogram phase and the correlation coeflicient and the physical param-
eters of the vegetation and the underlying soil surface [37,38]. Although these models
give qualitative explanations for the measured data and provide a basic understand-
ing of the problem, they are not accurate enough for most practical applications
because of the oversimplified assumptions in the description of vegetation structure.
For example the shape, size, number density, and orientation distributions of vege-
tation in forest stands are nonuniform along the vertical direction. The nonuniform
distributions of the physical parameters of the vegetation structures give rise to
inhomogeneous scattering and extinction which significantly affects the correlation

coefficient and the location of the vegetation scattering phase center [39].

1.2 Goals

The purpose of this dissertation is to establish a robust scattering model for forest
canopies that resolves the aforementioned deficiencies of current models and simulates
the polarimetric and interferometric radar backscattering from forest canopies. More

specifically, the goals to be achieved in this study include:

1. High fidelity of tree structures. Realistic tree architectures are systematically
generated, including both coniferous and deciduous trees. The dependence of

tree structures on radar backscatter is investigated.

2. Fully coherent approach. The coherent interference due to the relative posi-
tion of the tree structures and multipath scattering components are considered.
Backscattered fields with magnitudes and phases are predicted, and their statis-

tics are analyzed.

3. Utility for multi-parameter SAR/INSAR systems. The model is capable of



simulating polarimetric and interferometric radar responses under various fre-

quencies, polarizations, incidence angles, and baselines.

4. Validation with measurements. The model must be verified using SAR/INSAR

measured data with reliable ground truth data.

1.3 Dissertation Overview

The above goals have been achieved in this dissertation and the developed ap-
proaches and results are depicted in the following chapters. In chapter 2, fractal
theory and Lindenmayer systems are employed to generate tree structures, including
both coniferous and deciduous types, which are extensively used as the simulated
targets in this study. Botanical modeling and 3-D visualization are incorporated to
develop realistic tree structures.

Electromagnetic modeling of trees and their constituents are addressed in chapter
3 and 4. Once a fractal tree is generated, it is considered as a cluster of scatterers
representing the tree components (trunk, branch, and leaves). In chapter 3, the
bistatic scattering from individual tree components is investigated. Because of its
important role in the total backscatter, scattering from the tree trunk is especially
addressed taking into account the effect due to the stratified, corrugated, and tilted
features. In chapter 4, a coherent scattering and propagation model for the entire
forest canopy is constructed. The backscattered field is obtained from the coherent
addition of the individual scattering from each scatterer illuminated by a mean field.
Foldy’s approximation is invoked to model the coherent wave propagation within the
forest canopy where the mean field at a given point accounts for the accumulated
attenuation and phase change caused by vegetation particles. A sensitivity analysis

is conducted to characterize the dependency on the tree structures, moisture content,
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and the ground tilt angle. The validation of the model is made by comparing the
simulation results with SIR-C data.

In chapter 5, the model is applied to the numerical simulation of INSAR response
for characterizing the scattering phase center statistics. A Ak radar equivalence algo-
rithm is introduced first to simulate the INSAR response. The concept of scattering
phase center is discussed, and its relation with the multipath scattering components
is demonstrated. Again, a sensitivity analysis and verification, using TOPSAR data,
are also included.

In chapter 6, the empirical model and inverse algorithms are derived. The empir-
ical model is constructed based on the simulation results of the Monte Carlo coherent
model conducted on a certain stand. The inverse model is implemented for retrieval
of forest parameters through genetic algorithms.

Lastly, the contributions and recommendation for the future work are described

in chapter 7.



CHAPTER II

FRACTAL MODEL FOR GENERATION OF
TREE STRUCTURES

Tree structures are complex and random in nature. A mathematical description
of these structures seems to require a large number of independent parameters. How-
ever, it has been shown that geometrical features of most botanical structures can be
described by only a few parameters using fractal theory [33]. In this study, the fractal
concept is employed in the development of the tree generation model which creates
realistic tree structures according to the desired forest stand and characterizes the
components of the generated trees with specified size, location, and orientation. The
geometric data of the generated tree structure are then used in the later electromag-
netic modeling of this study. The emphasis is put on the practical aspects of the
computerized simulation as well as the fidelity of the tree structure which is a crucial

factor when applied to remote sensing applications.

2.1 Fractal Theory and Lindenmayer Systems

The mathematical concept of fractals was originated by Mandelbrot [33] in the
early seventies. Currently fractal theory is the most popular mathematical model

used for relating natural structures to abstract geometries. Mandelbrot defined a

11



12

fractal as a set where Hausdorff-Besicovitch dimension strictly exceeded the topo-
logical dimension. In other words, the notion of fractal is defined only in the limit.
However, in order to apply the fractal concept to practical problems, a finite curve is
usually considered as an approximation of an infinite fractal so long as the significant
properties of both are closely related. A distinctive feature of a finite fractal is the
self-similarity which is kept through the derivation process.

To implement fractal theory, Lindenmayer systems (L-systems) have been well-
known tools for the construction of fractal patterns or structures where the self-
stmilarity is preserved through a so-called rewriting process [35]. L-systems were
originally proposed by A. Lindenmayer [40], who applied it to the development of
lower forms of plant life, such as red algae. L-systems, also called developmental
systems, have since been applied in many fields, including formal language theory
and biomathematics. The features of L-systems include the structural grammar
rules and recursive processes which are very suitable to be implemented by modern
computers. In this study, the notation and concept of L-systems are extensively
utilized.

In L-systems, a tree structure G is specified by three components: (1) a set of edge
labels V/, (2) an initiator w, called aziom, with labels from V, and (3) a set of tree
growth productions P. In compact notation this tree growing process is symbolized
by G =< V,w, P >. Given a tree structure G, a tree T, is directly derived from a
tree Ty (T = T3) if T is obtained from T; by simultaneously replacing each edge in
T by its successor according to the production set P. A tree T is generated by G
in a derivation of length n if there exists a sequence of trees Ty, T, ..., T, such that
To = w,and Ty = Ty = ... > T, = T. These notations and processing rules are

illustrated in the following example.
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7
e

n=1 | n=2 n=3 =4

Figure 2.1: An example of the growing process of a fractal tree.

Figure 2.1 shows an example of a simple two-dimensional fractal tree of length 4,
where the self-similarity can be easily observed through each successive process. In

this example, the grammars of growing process are given by

G =G(V,w, P)
w =X
pl : X - FF{-X}F{+ + X}F{+X}{-X}

p2: F - FF
where the meanings of labels and operators are described as follows

X  aseed, no drawing

F move one step forward, drawing a line at current angle
+  increment the current angle (turn to the right)

- decrement the current angle (turn to the left)

{  save the current position and angle on the stack
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}  restore the current position and angle from the stack

2.2 Modeling of Tree Structures

In order to simulate realistic tree structures, fundamental botanical properties
must be incorporated into the tree generation model. Tree structures in nature grow
randomly, but they follow some specific rules according to their various kinds. For
example, most deciduous trees have forking branches while coniferous trees have an
apparent central trunk growing all the way up to the tip. In this section, several
botanical features that have been considered in the development of the tree genera-
tion model in this study are described, including three-dimensional (3-D) branching,

branch tapering, tree type development, and leaf attachment.

3-D Branching At a node where an originating branch splits into two or more sub-
sequent branches, the branching angle for a subsequent branch is defined by the
angle between the originating and subsequent branches. For 3-D branching, the
branching angle is specified by two parameters: the tilt angle § and the rotation
angle ¢, as shown in Figure 2.2. Note that in Figure 2.1 only the tilt angle
6 is assigned to the branching angle, therefore the generated tree structure is
two-dimensional. In developing algorithms for generating tree structures, the
parameters of branching angle are usually the decisive factors to determine the
resultant tree structure, which may affect the radar backscatter significantly,
as will be shown later in this dissertation. The branching angles are depen-
dent on the tree species and the environment to some extent, therefore the
in-situ measurements or observation are sometimes required, especially in the

applications of microwave remote sensing, to generate faithful tree structures.

Branch Tapering The cross section and the length of subsequent branches decrease
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Figure 2.2: 3-D branching and branch tapering at a splitting node.

as the branching processes progress. When a branch splits, as shown in Figure
2.2, a common practice for determining the relationship between the radius of
the originating branch (r,) and the radius of the subsequent branches (r, and
r¢) is the application of the conservation law of the cross sectional area. Take

an example for a branch splitting into two branches, it can be mathematically

described by:

r: = r§+rf. (2.1)

a

The relationship between the radius of the new branches (i.e. r, and r.) is
specific to the tree type, and should be prescribed according to the in-situ mea-

surements. Similarly, the lengths of the originating and subsequent branches
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(I, and [y, respectively) can be related by a tapering factor g, expressed by

b = l/g. (2.2)

Again, g is a user-defined parameter which may have different values depending
on the current position in a tree structure. This parameter may affect the tree

height and crown coverage.

Tree Type Development Based on the architectural characteristics, tree struc-
tures can be categorized into three primary classes: columnar, decurrent, and
excurrent, which may be represented by coconut, maple, and pine trees respec-
tively [41]. In the majority of deciduous trees, the lateral branches grow as fast
as, or faster than, the terminal shoot, giving rise to the deliquescent growth
habit where the central stem eventually disappears from repeated forking to
form a large spreading crown. This branching pattern is termed decurrent.
On the other hand, most coniferous species belong to the excurrent class. In
the branching pattern of excurrent trees, the main stem outgrows the lateral
branches giving rise to cone-shaped crowns and a clearly defined bole. In this
study, a library of typical tree structures is constructed that can easily be
fine-tuned to simulate the desired tree stands. Figures 2.3 and 2.4 show, re-
spectively, the fractal trees of deciduous and coniferous types. In L-systems,
the developing concept for generating deciduous trees is quite different from
that for coniferous trees. For example, only 4 rewriting processes are used to
generate the deciduous tree shown in Figure 2.3, while 12 rewriting processes

are required to perform the coniferous tree shown in Figure 2.4.

Leaf Attachment Efficient algorithms for leaf attachment may greatly reduce the

modeling tasks. Once the fractal tree is created, the numerical data specifying
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Figure 2.3: A fractal tree structure of deciduous type.

the location, size, and orientation of each tree component (trunk, branch or
leaf) are stored. The number of leaves for a coniferous (or prosperous decidu-
ous) tree are so large, that positioning the needles on branches and specifying

their location and orientation would require significant computation time and
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Figure 2.4: A fractal tree structure of coniferous type.

storage memory. To solve this problem, a concept of cluster leaflets is used.
For example, a close examination of red pine trees revealed that the position
of needles on branches follows precise mathematical patterns. Leaf buds of red

pine are equally spaced on three concentric spirals drawn on a branch. Regu-
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Concentric Spirals

Stem Cluster

Figure 2.5: Leaf attachment schemes for the red pine: the end cluster, the stem
cluster, and the leaflet on the leaf bud along three concentric spirals.

larly, one spiral period contains 7 leaf-buds of which each grows a two-needle
leaflet, as shown in Figure 2.5. Also shown in this figure are the end cluster
which is found at the tip of each branch and the stem cluster which is composed
of a thin stem/branch and surrounding needles. It can be observed that the
needle density and orientation of an end cluster are quite different from those
of a stem cluster. Nevertheless, the end clusters at individual branches are very
much identical, and can be treated as a single scatterer whose orientation is
defined by that of the connecting branch. Figure 2.6 shows a fractal-generated
red pine with attached needles, which consists of 792 branch segments, 391 end

clusters, and 747 stem clusters. The tree generation algorithms developed in
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Figure 2.6: A red pine with attached needles.

this study allow the user to specify the number of leaves/needles per stem as

well as a local orientation angle distribution for the attached leaves.
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2.3 Computer Implementation

The computer work in the development of the tree structure consists of three
main components: the encoding, decoding, and visualization. In L-systems, the
encoding is accomplished by iterating the labels with prescribed productions and
length. A long label string, like DNA in biology, is obtained at the end of the
processes, holding embedded information about the tree structure. Then this long
label string is decoded (or translated) into a tree structure through a so called turtle
graph interpreter [35]. Numerical calculation is performed in this stage to quantify
the geometries of the entire tree structure. A fast Fortran code has been developed for
this end which allows for user-defined parameters. Some special features of the tree
structure must be treated carefully using user-defined parameters. For example, to
model the upward property observed at the end of each branch of red pine, as shown
in Figure 2.6, the branch angle with the position dependence must be incorporated
into the branch angle parameter.

It is important to visualize the structures of trees during the development process.
Once the fractal tree is created, the tree data file usually contains a large number of
tree components and it is difficult to examine the accuracy by manual inspection of
the numerical data. Visual inspection of the tree image is a better way at this point.
In addition, real-time visualization of the tree structure during the developing stage
can also assist the user in learning the sensitivity of the fractal parameters to the
tree structure.

In this study, a visualization program is developed using the PostScript language
where real-time display and printout can be easily performed without any extra

software. This program is capable of projecting a 3-D fractal tree structure into a
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2-D image with the functions of arbitrary scaling and perspective view. The red pine
shown in Figure 2.6 is viewed at 20° measured from the horizontal plane. Moreover,
Figure 2.7 shows top- and side-view images of a coniferous tree of which broad leaves

(modeled as circular disks) are attached to the tree skeleton shown in Figure 2.3.

2.4 Application to Remote Sensing of Vegetation

Not only qualitative but quantitative fidelity of the tree structure is required when
the application of remote sensing is concerned. Although there are many computer
graphics available for generating tree-like structures, most are not appropriate for the
purpose of remote sensing modeling. At microwave frequencies, the radar return and
its statistics strongly depend on tree structures, which necessitates the application of
a realistic model for generating accurate tree structures, rather than just ‘tree-like’
structures. Therefore, the final and most important step in the fractal model is to
incorporate the information about the tree structure and its statistics obtained from
the in-situ ground truth measurements. Figures 2.8 and 2.9 compare the photographs
of the actual forest stands with the simulated trees produced by the fractal model
developed in this study. These simulated structures are generated according to the
in-situ measurements collected from two test stands denoted by Stand 22 (red pine)
and Stand 31 (red maple) near Raco, Michigan.

The parameters for L-systems for generating the maple tree in Figure 2.9 is given
below. Note that some user-defined symbols other than those used by L-systems [35]
are rendered to account for the sophisticated features of the tree structures. For
example, the branch tapering symbols (),[], and {} are used to denote small, medium,

and large branch tapering respectively.
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e Fractal Coding Parameters:

Length (number of iteration) n: 4

Axiom /initiator w:
FFF!(+A){!FF(+A){IFF(++A){IF(+B)!(++B){F!(+A)!(++A) [F[++B]![++BJ![+B]] } } }}
Production p:

Ar = fi(+AVM(+A){!(++A) {H[+A]]+B]} }}
Production py:

B: — f(+A)[I(-++B)[[++BJ!+B][-B]]
Production ps:

F: - FF

Production py:

f: - ff

where F and f are respectively vertical and horizontal forward steps.

o Geometrical parameters include tree diameter at breast height (DBH), branch-
ing angle (6,) and rotation angle (¢), trunk tilt angle (6,), leaf orientation angle
(6;), number of leaflet (Njeqiet), leaf radius (a;), leaf thickness (¢;), stem radius (a,),

and stem length (/).

mean(DBH), std(DBH), mean(F), std(F), mean(f), std(f)  (cm)
14. 3. 9. 1. 7.5 1.
mean(fy),  std(6;), mean(dy)std(dy) (deg)

2. 5. 1375 10.

mean(0;),  std(d,), mean(8),std(d;) (deg)

0. 3. 5. 10.

Nleaflet, aj, tla as, lsa (Cm)
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5 4.0 0.02 0.1 8.
where mean(-) and std(-) refers to the statistical mean and the standard deviation of

the parameters respectively.

e Display postscript parameters:
Xstart, Ystart, Zstart, Oyien, Puicw, Scale

300 300 80 9 0 25
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Figure 2.7: The top and side views of a deciduous tree with attached leaves.
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(a) Stand 22 (b) Fractal Pine

Figure 2.8: The photograph of a red pine stand (Stand 22), and the simulated tree
structure using the fractal model.



27

(a) Stand 31 (b) Fractal Maple

Figure 2.9: The photograph of a red maple stand (Stand 31), and the simulated tree
structure using the fractal model.



CHAPTER III

ELECTROMAGNETIC SCATTERING MODEL
FOR A TREE TRUNK ABOVE A TILTED
GROUND PLANE

3.1 Introduction

Once a tree is generated, it is treated as a cluster of scatterers composed of
cylinders (trunks and branches) and disks (leaves), each with specified size, position,
and orientation. It is very complicated to simulate the radar backscatter from this
highly chaotic random media. The entire problem, however, can be decomposed into
two sub-problems — the scattering from individual tree components and the total
backscattering from the whole forest canopies taking into account the propagation
extinction. Of all the tree components, the tree trunk is the largest and therefore
most important. In this chapter the general bistatic scattering from a tree trunk is
investigated. The total backscatter of the tree canopy will be discussed in the next
chapter.

In the conventional scattering models for forest canopies, a tree trunk is simply
modeled by a vertical, homogeneous, finite-length dielectric cylinder. The scatter-
ing solutions for a finite-length cylinder, reported in the literature, are either based

on the eigen-function expansion solution for an infinite cylinder [42-44], or low fre-

28
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quency approximation where all dimensions of the cylinder are small compared to
the wavelength [23,45]. When the cylinder radius is large compared to the wave-
length the eigen-function solution becomes, numerically, inefficient due to the poor
rate of convergence of the series involved in the solution. This is the case in the mi-
crowave region where the radius of tree trunks in a forest stand can be significantly
larger than the wavelength. An inefficient solution for the calculation of scattering
properties of a canopy’s constituent particles makes the canopy model numerically
intractable because the scattering solution for individual particles must be evaluated
many times to account for the particle variability in size and orientation. Moreover,
in modeling a tree trunk as a dielectric cylinder, the stratified property and the bark-
layer roughness have been overlooked. In the real world, the dielectric profile of a tree
trunk cross section is inhomogeneous with multiple concentric rings. Furthermore,
for many trees the bark layer is rough and can be represented by longitudinal grooves
on the surface of a dielectric cylinder. The effect of the bark layer on the radar cross
section (RCS) of a tree trunk was demonstrated recently by representing the bark
layer with a corrugated dielectric layer [46]. Using a hybrid scattering model based
on the method of moments and physical optics it was shown that the RCS of a tree
trunk is significantly reduced when the effect of the bark layer is taken into account.
However this model is not numerically efficient enough to be used in conjunction
with the scattering model for a forest canopy.

In this study, a realistic and efficient scattering model for a tree trunk above a
ground plane is developed. The coordinate systems are first defined in both local
and global terms. The local coordinate system is for the calculation of the scattering
matrix of the individual tree components, while the global coordinate system is

for the whole environment configuration including the slope of the ground plane, the
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position and orientation of the individual tree components, and the radar perspective.
In the scattering model for a tree trunk, the effect of the radial inhomogeneity as well
as the rough bark layer are taken into account. For finite-length cylinders having radii
comparable to the wavelength, the eigen-function expansion in conjunction with the
field equivalence principle is used. At high frequencies where the radius of curvature
is large compared to the wavelength, the physical optics (PO) approximation is
employed, based on the fact that the dielectric constants of tree trunks are highly
lossy. The bark layer is represented by a periodic corrugated layer and equivalently
replaced by an anisotropic layer as suggested in [47). The ground plane is considered
to be a half-space dielectric medium having a smooth surface. Both the cylinder
and the ground plane are allowed to have arbitrary orientation described by the
global coordinates. The direction and polarization of the incident wave are also
arbitrary. At the end of this chapter, thorough numerical simulations are conducted
to demonstrate the region of validity of the PO approximation, the effects of a bark

layer and the ground tilt angle on the backscattering RCS.

3.2 Global Coordinate System and Notations

In this study, the problem of scattering from an object above a ground plane in
the most general configuration is considered. A global coordinate system (X,Y,Z)

is constructed to describe the two-parameter directional unit vector @, given by
i(0,4) = Xsinfcos¢+ Y sinfsind+ Z cosd. (3.1)

This unit vector can represent the incidence direction lAc,-((‘)i,gb,‘), the scattering di-
rection Es(03,¢s), the orientation of the object Z.(6.,¢.), or the unit normal vector
g(8y, ¢y) of the ground plane, as shown in Figure 3.1. In this coordinate system ,

the horizontal and vertical polarization of the incident and the scattered waves are
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Figure 3.1: Global coordinate system and notations.

defined by

hy = ZxkyJ|Z x k) (3.2)

5, = h,xk, (3.3)

where subscript p can be ¢ or s representing the incident and scattered waves respec-
tively. In this study, the forward scattering alignment convention [45] is assumed.
The components of the scattered field ES and the incident field E' in the global

coordinate system can be related to each other by the scattering matrix S, defined
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by
eikor .
= r S-E, (3.4)
or in the matrix form
Es eikor SU’U Svh E:)
= ) (3.5)
r .
E; She  Shh E}

Since a tree is modeled as a class of discrete scatterers above a ground plane, the
most fundamental problem is the calculation of the coherent scattered field from a
single object above the ground plane. First, we model the ground plane by a half-
space dielectric medium having a smooth interface and an arbitrary tilt angle in the
global coordinate system. In this case the effect of the ground plane on scattering can
simply be taken into account by including the mirror image contributions. Neglecting
the multiple scattering between the scatterer and its mirror image, the total bistatic
scattering matrix S, as shown in Figure 3.2, consists of four main terms : 1) the direct
scattering Sy, 2) the ground-target scattering S;;, 3) the target-ground scattering
Sy¢, and 4) the ground-target-ground scattering S,,. Coherent addition of these

first order scattering terms gives rise to the total scattering matrix S,

S =S, + S+ Sy + Sy, (3.6)
where
S, = Sk, k), (3.7)
Syt = €7D (ks g, kys) - S°(kys, ki), (3.8)
Sy = €M8%(ky, kyi) - D(kyi, g, ki), (3.9)
Sgtg = € FID(ky iy kg ) - S°(kgs, kgi) - Tk, g, ki), (3.10)
and

ki = ki—2n,(f, - k), (3.11)
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Figure 3.2: The first-order scattering components for scattering from an object above
a ground plane.

’;‘gs = I;s - Qﬁg(ﬁg : 'I;s), (3]2)
7 = —2koh(7y - /ACZ'), (3.13)
7, = 2koh(h, - k). (3.14)

In the above expressions, h is the height measured from the geometric center of the
target to its projection on the ground plane surface. Here, the optical lengths 7; and
7s account for the extra path lengths of the image excitation and the image scattered
waves respectively. S"(ics, fc,) is the scattering matrix of the isolated target in free
space, and is called the intrinsic scattering matrix. I‘(lAcT, Mg, k,) is the reflection ma-
trix of the ground plane accounting for the reflection and polarization transformation

. In order to provide a physical insight for the four main terms, subscripts ¢ and
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g , representing the target and the ground plane respectively, indicate the sequence
of scattering from right to left. The unit vectors (ki ks, lAcg,-, and kj,) indicating the
propagating directions are also expressed in the arguments of S° and " in the same
manner.

In the following sections, a general polarimetric reflection matrix I' for a tilted
ground plane with arbitrary slope is first obtained, and then the bistatic expressions

for the scattering matrix S° of a stratified finite cylinder in free space based on the

eigen-function expansion and the PO approximation are derived.

3.3 Polarimetric Reflection from A Tilted Ground Plane

In most scattering models for forest stands, the effect of the surface topography
is ignored. In a recent paper [48], the importance of the ground tilt angle in the
radar backscatter was emphasized through the SAR measured data. However, it
lacks a rigorous and general formulation to account for the effect of an arbitrarily
tilted ground plane in a polarimetric radar system. In this section an expression for
the reflection matrix of a tilted ground plane is derived.

Consider a tilted ground plane with a unit normal n,(6,, ¢,) that is illuminated
by a plane wave propagating in the direction fci(ﬂi, #;). The direction of the reflected

wave is determined by
ky = ki —20,(R, - k), (3.15)

which is normal to the polarization of the reflected field E™ having E? and E} as
its vertical and horizontal components in the global coordinate system. Defining the

reflection coefficient matrix I by

E" = D(k,hy k) E (3.16)
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the objective is to express the elements of I' in terms of the Fresnel reflection coeffi-
cients of the ground plane. In the local coordinate system of the ground plane, the

vertical and horizontal polarizations of a wave are defined by

/

P

=~
I

fig X iy |Prg X k| (3.17)

o, = h xk, (3.18)

p

where the subscript p can be 7 or r. By representing both the incident and reflected

field vectors in the local coordinate system (’[);,, iz;,, k,) and noting that
E,Z/ Pvl 0 E:}/
= (3.19)
b 0 Tw E;,
the elements of the reflection coefficient matrix can be obtained from
Ty = (pr- 0w (B; - d) + (pr - h)Dwo(hi - i) (3.20)

where p and ¢ can be v or h, and T, and Ty are, respectively, the vertical and
horizontal Fresnel reflection coefficients of the ground plane. The inner products in

the above expression in terms of the global coordinate parameters are given by

A pog tg-Z—(k;-Z) (g k;)
Oi-t. = h.-h. — 9 2 )\Ng Ry
7 7 g x k5|12 % ks |

R A A R - iL

o ho= —hoed = e
SR 10T k]

where j can be i or r.

As will be shown in the later numerical simulation, a tilted ground plane has
two significant effects on the backscatter: (1) the ground-trunk component in the
backscattering direction may decrease drastically off the peak of strong specular
backscattering due to the slightly tilted angle, and (2) a significant cross-polarized
component can be generated by a slanted ground plane and/or a cylinder object

which is not oriented in the principal plane.
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3.4 Semi-Exact Solution for Electromagnetic Scattering from
A Finite Stratified Dielectric Cylinder

Scattered fields of an infinite stratified cylinder can be obtained by the standard
eigen-function expansion method [42]. However, for finite-length cylinders, no exact
solution exists. In the microwave region where the length of a tree trunk is much
larger than the wavelength and the dielectric constant has a significant imaginary
part, the effect of the longitudinal traveling waves on a finite cylinder can be ignored.
Therefore, the internal fields of a finite cylinder may be approximated by those of an
infinite cylinder having the same radial characteristics. In [22], the bistatic scattering
from a finite stratified cylinder is addressed by invoking the field equivalence princi-
ple. However, the formulae given in [22] are quite brief and symbolic. In this section,
a detailed alternative expression ending up with an explicit form of the scattering
matrix is given in terms of the global parameters.

Consider an infinite stratified cylinder with M layers oriented along Z axis. The
radius of the m-th layer is denoted by p,, and its dielectric constant by ¢, , as shown
in Figure 3.3. At an oblique incidence, the z-component of the incident fields can be

expanded as [45]

Blpo) = Y cohlbapsnAIE(6,2), 321)
Z,H(p,,2) = f: haJu(kopsin B)Fu(¢, 2), (3.22)
where
e. = E'- 2, (3.23)
h, = ZoH'-3, (3.24)

=
S

P
I

(_Z')neinqSez'kozcosﬁ. (325)
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Figure 3.3: Geometry and composition of a finite stratified cylinder (top-view and
side-view).

Here, F}, is the mode function associated with the z-dependent phase, and J, is the
Bessel function of the first kind. Since the cylinder is infinite, the z-dependent phase

in £}, is kept in the scattered fields, which can be written as

Edp,¢,2) = Y AuH{"(kopsinB)F.(6,z), (3.26)
Z,Hi(p,$,2) = Y ByH"(kopsinB)Fy(,2), (3.27)

where H{" is the Hankel function of the first kind accounting for the outgoing wave

( e™™* is assumed and suppressed). The coefficients A, and B, are functions of the
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polarization of the incident wave and can be expressed by

A, = Ct,+Cth,, (3.28)

B, = Ch4Chh,. (3.29)

Note that the cross-polarized coefficients C¢ and C* are included and it can be shown
that C¢ = —C" if the cylinder is homogeneous [42]. Expressing the ¢-component of
the internal fields, Ey and Hy, in terms of E, and H, and matching these tangential
fields along each layer interface [44], a closed-form solution of the coefficients can be

obtained from

1 a108 — Q7
c: = -(——-1), 3.30
n 2((130[8_0[4017 ) (3.30)
= 1 aras — ooy
cf = (=——= 3.31
" 2(a3a3 — a4a7)’ (3:31)
~ 1 asag — aga
B 508 — Q7
_ 1 o7 3.32
Ca 2(a3a8 — a4a7)’ (3:32)
1 —
oh = (BT ), (3.33)

2 Q308 — 047

where

ar = dyy+dia, o = diz+dy,
as = dy +dy, a1 = dy+day,
as = d3 +ds2, @ = diz+ da,

ar = dy+dy, oz = dig+dy,
and d;; is the element of matrix Dyy4 which can be calculated from

D =L(p1) ™" Lh(pr) -+ LY (par) ™ - LY (). (3.34)

Here, the matrix L) accounts for the distribution of the internal fields of the n-th

mode confined within the m-th layer (p,4+1 < p < pn), and is given by
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L7(p) =
- Hi (ko) H (K7 p) 0 0
’ 0 H (k') B (k)
sl 1O (kpo) SesplHO(kyo) b (o) R HY ()
| O S e Rt AT

where

k' = kov/em — cos? 3, (3.35)

and €,, is the dielectric constant of the m-th layer, as shown in Figure 3.3. By invoking
the field equivalence principle, the scattered field outside the cylinder region can be
attributed to fictitious electric and magnetic currents which are related to the total
fields over the surface of the cylinder [21]. To find the scattered fields for a cylinder
of finite length b, we can assume the currents on a finite cylinder are the same as
those of the infinite cylinder. After some mathematic manipulation similar to [21],

the scattering amplitude of the finite stratified cylinder is given by

s ;;”nlgm‘l/v (P + PhoJk, x by x 2 4 (Quh + Qre)b x 2], (3.36)
where

Po= Y e Lot - S a0 (37

2 1 (2obae) ~ 2 0 2 ) (338

Z"“{;‘(’)Sﬁ(1 ‘”Lyz%@’;s;)cw (yo)H,(Ll)(xo)}, (3.39)

o = 3 et Lt - 5 wiw) (3.40)

n=-—0oo
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+C3 [ an) ) — S22 a3 ) 3.1)

_in ;(())S/B(l - Zo zlgﬂi;S;)CeJ ( )H )(:30)}, (3.42)

pe = i (_ )n ind {Ce l ( O)Jn(yo) _ SIZﬁHr(ll)(xo)J;(yg):I (343)
17 COS T sin ks z 1

nwo % - OyOBB cos,a)" w(y )[Jn(xo)+C§Hg>(xo)]}, (3.44)

Qn = ; (~1) €™ {Ch lH (o) Jn(yo) — %H (z0)J" (yg)] (3.45)
1N COS Zgsin lAcs-é i

- nxo ﬁ(l R Bﬂm ﬁ)Jn(yo) [Ja(z0) + CEH >(:c0)]}, (3.46)

with

Vo= %(iw — k) - 3, (3.47)

o = kopysinf, (3.48)

Yo = kopB, (3.49)

B = \/1—(k-3), (3.50)

= o (B0). 31

Note that the above expression of scattering amplitude S is in the global coordinates.

By definition, the elements of the scattering matrix are calculated from

Spg = Ps-S(4i), (3.52)
where p and ¢ can be v or k. Note that

e; = 0;-%2, h, = h;-2, for v-pol incidence;
e;: = hi-2, h, = —0;-%, for h-pol incidence;

and

b+ (ks x by x 3) = —b,- 3, (3.53)



ho-(ky x ky x3) = —hy- 3, (3.34)
by (ks x2) = —hy- 3, (3.55)
hy- (ks x3) = 6,3 (3.36)

Therefore, the intrinsic scattering matrix in the global coordinate can be expressed
in the matrix form:

0 koplbsinV Vs 2 hs'z Pe Pe 2 Z'hi

281n/8 v ilsé _63'2 Qh Qh

N>
?‘
|
N>
S)

3.5 Physical Optics Approximation

The semi-exact solution described in the previous section becomes inefficient at
high frequencies where the radius of the cylinder is large compared to the wavelength
and fails when the cross section of the cylinder is not circular. These deficiencies can
be removed at high frequencies by employing the PO approximation. This approxi-
mation is valid when the radius of curvature of the cylinder is large compared to the
wavelength and the permittivity of the cylinder has a relatively large imaginary part
so that the effect of the glory rays and the creeping waves can be ignored. As before,
the cylinder is replaced by fictitious electric and magnetic currents; however, the
currents in this case are approximated by those of the local tangential plane which
are proportional to the sum of the incident and reflected fields.

To simplify the integration of the currents over the lit surface, the stationary
phase (SP) approximation may be used. This approximation is valid so long as the

stationary point falls over the lit region. For convenience, a local coordinate (#, i, )

is established at the SP point. The local tangential directions are defined by

>
Il
>
X
e
—
3>
X
>

(3.58)
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[ = axt (3.59)

where 7t is a unit vector normal to the cylinder surface at the SP point. For the gen-
eral case of an anisotropic medium (the bark layer may exhibit anisotropic proper-
ties) a dyadic reflection coefficient R is introduced to relate the polarization coupling

between the incident and reflected waves, i.e.
E; = R-E.. (3.60)

Combining the incident and reflected fields, the total fields E(= E* + E) and H(=

H' + H') on the surface of the cylinder can be obtained from

El 1 + va th Ell
- (3.61)
Et th 1+ th E;
and
H 1= Ruy  Ru H}
_ . (3.62)
Ht th 1- va H;

Applying the stationary phase approximation, it can be shown that the Hertz vector

potentials are given by

B Z'Zoeikor '
I, = ol (3.63)
ZK) ez’kor
m, = — : :
— (3.64)

where J and M are the fictitious currents evaluated from the total fields E and H

at the SP point (¢' = ¢), and

tko b2 /2 ikoaB 1—@) iko(ki—ks)-z'z' W]
Q = E,/b/ / / e hoaB cos(¢=0) giko(ki—ke)'2" g 41 g (3.65)
-b/2 J—-7/2

- gt {o[ B a) v e [\BEG -
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with

B = {llh—k)-a+ (b~ k) 91)

1 -1 (lAcs—lAv,-)-
¢ = tan ((ks—k,)

and F(-) is the Fresnel Integral. This approximation is valid provided kgaB >> 1
and ¢ is away from the shadow boundary.
Using a similar procedure as in the previous section, the scattering matrix ele-

ments are found to be

Sl())v = Q[(i 6S)Z0Jlu + (f i}s)ZOJtv + (Z * Bs)Mlu + (£ . ils)Mtv] (366&)
S% = QIU-95)ZoJin + (E - 05) Zodun + (I hy) My + (£ - hy) M) (3.66b)
SO = QU hs)Zodi + (- ho) Zodry — (I- 8)Myy — (F- 8) M) (3.66¢)

SO = QU hs)Zodin + (F - he)Zodun — (I - 8) My — (£ - 55)My]  (3.66d)

where J,, and M, are the currents along the p direction induced by a § polarized
incident wave (p can be ¢ or [ and g can be v or h ). The inner products of the vectors
in the above expressions can easily be calculated in terms of the global coordinates.
The above results fail in the case of forward scattering for which B = 0. However,

in directions close to the forward direction, an alternative approximation for the

scattered field is possible [21], given by

—2ab » - _sinV sin W etkor

s _ L
B = /\O(ktw)v %% r

E, (3.67)
where W = koa(ics . g}') and V is given in (3.47).

3.6 Modeling of a Corrugated Bark Layer

For some tree species, the bark layer is corrugated with grooves along the longi-

tudinal direction. In this study, the bark is simply modeled as a periodic corrugated
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™Il

(b)

Figure 3.4: A corrugated layer (a) and its equivalent anisotropic layer (b).

layer with period L and width d as shown in Figure 3.4. It is shown in [47] that ,when
L < Xo/2 (single Bragg mode), the corrugated layer can be equivalently replaced by
an anisotropic layer (see Figure 3.4) with the same thickness whose permittivity

tensor is given by

€11 0 0
e= 10 e 0 | (3.68)
0 0 €33

The entries of the tensor in terms of the permittivity, period, and width of the
corrugated layer , when L < 0.2)¢, are approximated by

€t = cr(l—d/TL)+d/L (3.69)




45
€9 = €33 = 1 + (CT - l)d/L (370)

Assuming that the radius of the cylinder is much larger than the wavelength,
the permittivity of the bark layer can be represented by €(¢, z',n) where €55 = €11
and €,, = €, = €99.

To employ the PO approximation, a coordinate transformation from the local
(¢,2',n) to (t,{,n) at the SP point is needed. The resultant permittivity tensor in

coordinate (t,[,n) is

€, 8in° &, + €45 C0S° B, (€4p — €52)sinQ, cOsp, 0

€ = (€6 — €22)SIN P, COS B, €5, COS® P, + €45 sin?¢, 0 (3.71)
0 0 €nn
where
-2
¢. = COS_I(————i—j—) (3.72)
1 —(n-k;)?

The reflected field from a stratified anisotropic dielectric half space is computed using

the method described in [49).

3.7 Simulation Results

In this section a number of numerical examples for the scattering from a finite
cylinder above a ground plane are presented. In all the considered examples the

normalized RCS, defined by

_ 47",51711]2
T = Thoab?

(3.73)

is displayed for a two-layer cylinder with height b, exterior radius a; and interior

radius a;. The permittivity of the exterior and interior layers are chosen to be
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€, = 4+ 11 and € = 10 + 25 respectively. The cylinder is positioned on a tilted
ground with permittivity e, = 10 + 15.

First, the validity region of the PO approximation in the backscatter direction is
examined. Figure 3.5 compares 0, and o, using the PO and semi-exact solutions. It
is found that the PO solution agrees well with the semi-exact solution when kqa > 10.
For small values of kya the resonance behavior of the backscatter is shown by the
semi-exact solution.

Figures 3.6, 3.7, and 3.8 show the monostatic and bistatic polarimetric scattering
patterns which are simulated for a two-layer cylinder with and without corrugation.
The thickness of the corrugated layer and its filling factor are respectively chosen to
be t = 0.1Xg and d/L = 0.7 (see Figure 3.4). Figure 3.6 shows the backscattering
pattern as a function of incidence angle. At small angles of incidence, the PO approx-
imation differs slightly from the semi-exact solution because the radial component
of the propagation constant (k, = kosin#) is small in this region and the condition
k,a > 10 is not satisfied. The vv-polarized backscattering RCS has two minima cor-
responding to the two Brewster angles, one occurring on the surface of the cylinder
(6 ~ 25°) and the other occurring on the ground plane (6 ~ 75°). The ripples on
the curves are due to the coherent interference between the components S and Sgyg,
of which the oscillation amplitudes become significant at incidence angles close to
90° (grazing angles) where the normal incidence of the cylinder occurs. Moreover,
the oscillation rate of the ripples is proportional to the hight of the cylinder. Figure
3.6 also shows the effect of the bark layer on the backscattering RCS. Depending
on the incidence angle, the RCS of the cylinder may be reduced as high as 10 dB.
The reduction in the RCS is a function of the cylinder length and the corrugation

parameters. Basically the corrugated layer behaves as an impedance transformer
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Figure 3.5: Comparison of the PO approximation with the semi-exact solution. The
ratio of the inferior radius a; and the exterior radius a;(= a) is kept
constant (az/a; = 0.9). Other parameters are : b = 20\, 6; = 4+1l,¢6; =
€, = 10 +15,0; = 120°, ¢; = 180°,6, = 60°, ¢, = 0°,6, = 0. = 0°.
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Figure 3.6: The normalized backscattering RCS as a function of the incidence angle
0 = m — 0; for a two-layer cylinder with and without the corrugation.
Other parameters are : b = 20A,a; = 2Xg,a; = 1.8, = 0.1)g,d/L =
0.7,¢; = 180°, ¢, = 0°,0, = 0. = 0°.

between the air and the vegetation material.

Figure 3.7 shows the bistatic scattering pattern as a function of elevation angle
when 6; = 120°,¢; = 180° and the observation point is moving in the X Z-plane.
Figure 3.8 shows the bistatic scattering pattern as a function of azimuth angle (¢,)
with 6; = 120°,¢; = 180°, and 6, = 60°. The discontinuities found on the PO
solution near the forward directions are because the scattering formula in (3.67) is

used instead of that in (3.66).
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Figure 3.7: The normalized bistatic o, (a) and o (b) as a function of the scattering
elevation angle 0, in X-Z plane (6, > 0 when ¢, = 0°%6, < 0 when
¢s = 180°). The backscattered and the specular directions are shown
at §; = 60° and , = —60° respectively. Other parameters are : §; =
1200,¢i = 1800,09 = 0c = Oo,b = 10)\0,&1 = 2/\0,(1,2 = 18/\0
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Figure 3.8: The normalized bistatic o, (a) and o (b) as a function of the scattering
azimuth angle ¢,. The backscattered and forward-scattered directions
are shown at ¢, = 0° and ¢, = 180° respectively. Other parameters are
:0; = 120°,¢; = 180°,6, = 60°,0, = 6, = 0°,b = 20Xg, a1 = 4)g,ap =
3.6A0.
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Figures 3.9, 3.10, and 3.11 show the effects of the tilted ground plane on the
backscattering RCS. All the parameters in Figure 3.9 are the same as those given
in Figure 3.6 except for the tilt angle of the ground at 8, = 20° and ¢, = 90°.
Comparing Figure 3.6 with Figure 3.9, it can be seen that a significant cross-polarized
backscattered signal is generated due to the slope of the ground plane. Figure 3.10
shows the variation of backscattering RCS as a function of the ground azimuth angle
¢, where 6; = 135°, ¢; = 180° and 6, = 20°. One can observe that the peak of the
backscattering RCS occurs at ¢, = 70°. Figure 3.11 shows the backscattering RCS
as a function of the ground elevation angle 8, where 8; = 135°, ¢; = 180° and ¢, = 0°
and 180°. The regions in the positive and the negative 6, represent the ascending and
descending sides of a mountain respectively. In this case no cross-polarized signal is
generated because the cylinder is in the principal plane (X-Z plane). Note that two
maxima take place at 8, = 0° and 0, = —22.5°. The first maximum corresponds to
the dihedral-like ground -trunk interaction. The second maximum corresponds to a
reflection from the ground plane which illuminates the cylinder at normal incidence.
The backscatter from the cylinder bounces off the ground plane and returns toward
the radar (see Figure 3.12). This strong backscatter component can be observed

where k;, ng and Z, are in the same plane and satisfy the condition:

0; = 20, + g (3.74)

3.8 Conclusions

An efficient and realistic electromagnetic scattering model for a tree trunk above
a ground plane is presented in this chapter. The trunk is modeled as a finite-length

stratified dielectric cylinder with a corrugated bark layer arbitrarily positioned and
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oriented above a ground plane. The ground is considered to be a smooth homoge-
neous dielectric with an arbitrary slope. An asymptotic solution based on the PO
approximation for high frequencies is derived. This solution provides a fast algorithm
with excellent accuracy when the radii of tree trunks are large compared to the wave-
length. The effect of the bark layer is also taken into account by simply replacing
the bark layer with an anisotropic layer. It is shown that the corrugated layer acts as
an impedance transformer which may significantly decrease the backscattering RCS.
The RCS reduction depends on the corrugation parameters. It is also shown that for
a tilted ground plane a significant cross-polarized backscattered signal is generated

while the co-polarized backscattered signal is reduced.
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Figure 3.9: The normalized backscattering RCS as a function of the incidence angle
7 —0; for a two-layer cylinder above a tilted ground plane. Other param-
eters are : 0, = 20°, ¢, = 90°,0. = 0°,¢; = 180°,¢, = 0°,0, = 7 — 0;,b =
20)\0, a) = QAO, a9 = 18)\0
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Figure 3.10: The normalized backscattering RCS as a function of the ground azimuth
angle ¢,. Other parameters are : 0, = 20°,0. = 0°,6; = 135°,¢; =
1800,95 = 450, Qbs = 00, b= 20/\0,&1 = 2/\0,&2 = 18/\0
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Figure 3.11: The normalized backscattering RCS as a function of the ground eleva-
tion angle 6, (6, > 0 when ¢, = 0°6, < 0 when ¢, = 180°). Other
parameters are : 0; = 135°,¢; = 180°,0, = 45°, ¢, = 0°,b = 10Xg, a1 =
2)\0,(12 = 18/\0
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Figure 3.12: The geometry of the scattering configurations for a cylinder over a tilted
ground where a strong backscatter can be observed.



CHAPTER IV

COHERENT SCATTERING AND
PROPAGATION MODEL FOR CONIFEROUS
AND DECIDUOUS CANOPIES

4.1 Introduction

Among the existing scattering models for forest canopies [18,19,26-29], radiative
transfer (RT) theory [50] is the most widely used theory for characterization of
radar response to a forest canopy. When the medium consists of sparse scatterers
that are small and far separated compared to the field correlation length within
the random medium, RT theory can accurately predict the second moments of the
radar backscatter statistics. RT theory is an incoherent approach based on the energy
conservation and therefore cannot provide the phase information of the backscattered
field. However, the phase quantity is of importance required for investigating the
response of a forest to an interferometric SAR. The other shortcoming of RT theory
is its inability to account for the coherent effects caused by the relative position of
the discrete scatterers within a tree structure as well as the multi-path scattering
components. Recent investigations on radar backscatter from forest canopies have
shown that both backscatter and attenuation are significantly influenced by tree

architectures [51]. Therefore, it is crucial to develop a coherent scattering model

99
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that simulates the phase statistics of the backscattered field and takes into account
the coherent effect due to the tree structures.

In this study, an accurate and comprehensive coherent scattering model for forest
canopies is developed, which can preserve the coherent interference among the tree
structure but also provide information about the absolute phase of the backscat-
tered field from forest canopies. The proposed model is composed of three major
components: (1) accurate generation of tree structures based on only a few fractal
parameters, (2) evaluation of scattered fields from a single tree structure, and (3)
Monte Carlo simulation of the entire canopies taking into account the coherent wave
propagation and extinction. In the tree structure modeling, stochastic L-systems [35]
based on fractal theory are employed to construct a realistic tree structure according
to a user-defined input parameter set, as described in Chapter II. As will be shown in
this chapter, the spatial and angular distribution of branches strongly influences the
behavior of radar backscatter, indicating that the tree structure should be taken into
account in modeling the radar backscatter and estimating vegetation biomass from
the forest canopy. In the scattering model, individual tree components located above
a tilted ground plane are illuminated by the mean field, and the scattered fields are
computed and then added coherently. The branches and tree trunks are modeled
by stratified dielectric cylinders, as described in Chapter II1, and leaves are modeled
by dielectric disks and needles of arbitrary cross sections. The mean field at a given
point within a tree structure, which accounts for the accumulated phase change and
attenuation due to the scattering and absorption losses of vegetation particles, is
calculated using Foldy’s approximation [50]. Finally, a Monte Carlo simulation is
performed on a large number of fractal generated trees to characterize the statistics

of the backscattered fields. The developed coherent model is able to account for
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the effect of an inhomogeneous scattering and extinction profile of a forest canopy.
The accuracy of the model is compared with the measured backscattering coefficient
acquired by SIR-C SAR over a forest test stand near Raco, Michigan.

In what follows, the first order coherent scattering approximation for calculating
the backscatter from a tree structure is described first. Next the coherent wave
propagation and extinction within the tree canopies of both coniferous and deciduous
types are discussed. Then the model results based on the Monte Carlo simulation are
examined against L- and C-band backscatter measurements over a well characterized
forest stand. At last, a sensitivity study is carried out to demonstrate the dependency
of individual forest parameters on the multi-parameter (frequency, polarization, and

incidence angle) radar response.

4.2 Electromagnetic Scattering from A Tree Structure

In this study, the first order coherent scattering approximation is employed to
calculate the polarimetric scattered field of a tree structure. Once a tree is created,
it is treated as a cluster of scatterers composed of cylinders (trunks and branches)
and disks (leaves) with specified position, orientation, and geometric shape and size.
It is assumed that the entire tree is illuminated by a plane wave, whose direction of

propagation is denoted by a unit vector k; and is given by
Ei(r) = Ei etk (4.1)

The scattered field in the far zone is to be calculated for individual trees, as shown in
Figure 4.1. Since the uncertainty in the relative position of trees with respect to each
other is usually of the order of many wavelengths, the total scattered power from
a forest canopy can simply be determined by the incoherent addition of scattered

power from individual trees.
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Figure 4.1: Scattering from a cluster of scatterers above a tilted ground plane.

To the first order of approximation, the scattering from a tree is approximated by
the superposition of the scattered field from each scatterer within the tree structure.
Hence, neglecting the effect of multiple scattering among the scatterers, the total

scattered field from a single tree can be evaluated from

N

) €S, -Ei, (4.2)

n=1

eikr

E’ =

r

where N is the total number of the scatterers within a tree structure, S, is the
scattering matrix of the n-th scatterer above a dielectric ground plane and ¢, is a
phase compensation term accounting for the shift of the phase reference from the
local coordinate system of the n-th scatterer to the global coordinate phase reference,
which is assumed at the joint of the tree and the ground plane, as shown in Figure

4.1. Denoting the position of the n-th scatterer in the global coordinate system by
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Figure 4.2: Four scattering components from an object above a tilted ground plane.

S
>

'n, ¢n is given by

bn = (k; — ky) - n, (4.3)

where k, is the unit vector representing the propagation direction of the scattered
field.

In order to compute the local scattering matrix S,, let us consider a single scat-
terer above a ground plane. Neglecting the multiple scattering between the scatterer
and its mirror image, each scatterer mainly contributes four scattering components,
denoted by: (1) direct scattering denoted by S!, (2) ground-scatterer scattering
denoted by S¥, (3) scatterer-ground scattering denoted by S9, and (4) ground-

scatterer-ground scattering denoted by S99 as shown in Figure 4.2. The scattering

matrix S, can be written in terms of its components as

S. =S, + 85 + 87 + 857, (4.4)



64

where
St = 89k, ki), (4.5)
S% = e R(ky kyo) - SO(kys, ki), (4.6)
S9 = ™80 (ky kyi) - Rikyi, ki), (4.7)
89 = IRk, kyy) - SO (kys, kgi) - Rikyi, ki), (4.8)
and
ky = ki—2ny(Ry - ki), (4.9)
kys = ky—20y(Ry - k), (4.10)
7 o= —2ko(rn - )Ry - ki), (4.11)
7o = 2ko(ry - Ay)(Ry - k). (4.12)

In the above expressions, SY is the bistatic scattering matrix of the n-th scatterer
in free space. The direction of incidence and scattering are denoted by unit vectors
in the arguments of S2. In the above expressions, #, is the unit vector normal
to the tilted ground plane. The phase terms 7; and 7, account for the extra path
lengths of the image excitation and the image scattered waves respectively. R is
the reflection matrix of the ground plane whose elements are derived in terms of the
Fresnel reflection coefficients and the polarization transformation due to the ground
tilt angle. The explicit expressions of the reflection matrix of a tilted ground plane
(R) with an arbitrary slope and the expressions for the bistatic scattering matrices
(S2) of large scatterers like trunks and primary branches are given in Chapter III,
where the semi-exact solution as well as the physical optics approximation are derived
for the calculation of scattering from a stratified dielectric cylinder above a tilted

ground plane. The formulae for the scattering matrices of small scatterers like needles
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and broad leaves are constructed based on the expressions given in [23,24].

4.3 Coherent Wave Propagation within Tree Canopies

The analysis in the previous section is not quite complete since in the calculation
of scattering from the n-th scatterer the other scatterers are assumed to be trans-
parent. The second or higher-order analysis, which takes into account the multiple
scattering among the tree structures, is fairly complicated and is beyond the scope
of this study. However, the effect of attenuation and phase change of the coherent
wave propagating in the random media can be readily modeled by calculating the
mean field within the random medium.

Consider a coherent radar wave propagating in a statistically uniform random
medium. Based on Foldy’s approximation [50], the variation of the mean field E

with respect to the distance s along the direction kis generally governed by

dE |
where
kO + Mvv AMvh
K= : (4.14)
My, ko + M
and
9 .
M,, = % < 80 (k) > . (4.15)
0

Here k, is the wave number of the free space; ng is the volume density of the scatterer;
and < qu(fc, k) > is the ensemble average of the forward scattering matrix, (p and
q can be v or h). Using the standard eigen-analysis, the above differential equation

(4.13) can easily be solved and the solution is given by

E(s) = €T (s, k) - E, (4.16)
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where E° is the field at s = 0 and T is the transmissivity matrix accounting for
the extinction due to scattering and absorption. In most natural tree structures,
azimuthal symmetry can be assumed where M,, = My, = 0 and the transmissivity

matrix is reduced to

T= . (4.17)
0 eiMhhs

Note that the transmissivity matrix in (4.16) excludes the phase terms due to free
space path lengths, and merely accounts for the perturbation in propagation caused
by the vegetation.

To include the effect of wave extinction in the scattering model, consider a sit-
uation when the entire tree structure is embedded in an effective medium with an
effective propagation constant given by (4.15). Under the aforementioned approx-
imations the expressions for the components of the n-th scattering matrix in the

backscatter direction should be modified as

S, = T, -S0(—kik)- T}, (4.18)
§% = &™T . R-T-S°(—k,, k) T, (4.19)
S = T .80~k k) T -R- T, (4.20)
S99 = 2Tt R.T.-S°(—k,, k) - T, -R- T, (4.21)
with
ko= ki—20,(hy - k), (4.22)
To = 2ko(rn - 7y)(Ry - k), (4.23)

where T¢ ,T7, and T* are the transmissivity matrices, respectively, for the direct,

reflected, and total traveling path as shown in Figure 4.3. In the above equations

A

the reciprocal property of wave propagation is employed, i.e., T(s,fc) = T(s,—k),
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Figure 4.3: Extinction of a coherent wave in random media.

which results in the expected reciprocal scattering relation, S8* = (S'8)~*. Here the
superscript (-)~* denotes the operation of matrix transposition followed by negation of
the cross-polarized elements in order to be consistent with the the forward scattering
alignment convention [45].

Due to lack of knowledge, the aforementioned existing scattering models assumed
the distribution of vegetation particle size and type to be uniform. However, in the
real world, this distributions of vegetation particle type and size is non-uniform along
the vertical extent of most forest stands. Based on the fractal model developed in this
study where the exact description of particle distributions is readily available, propa-
gation and scattering of the mean field within the forest medium can be characterized
quite accurately. To calculate the transmissivity matrices T¢, T, and T, different

propagation models are developed for deciduous and coniferous forest canopies.
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4.3.1 Deciduous Canopies

For deciduous forest stands it can be assumed that the canopy is continuous
and homogeneous in horizontal direction but inhomogeneous in vertical direction.
To account for the vertical inhomogeneity, consider an M-layered random media
representing the tree canopy which is illuminated by a plane wave, as shown in Figure
4.3. Each layer, with thickness d,,(m = 1,2, ..., M), is assumed to be parallel to the
ground plane, and its boundaries are diffuse such that no reflection or refraction
can take place. In the backscatter case, only the incident directions +k; and the
reflected directions +k, are of interest. Therefore for each layer (say the m-th layer),

the layered transmissivity matrix is computed by

. MU mLm 0
T (L) = . , (4.24)
0 eZMh’h,mLm

A

where L,, = d,,/(n, - k) is the slant thickness, and

Nm

21D o
T2 <SS hiv ki) >, (4.25)

Mi,r —
™ kodpy,

is the averaged effective propagation constant of the m-th layer. In the above ex-
pression D; is the tree density and N, is the number of particles of a single tree in
the m-th layer. Here < - > is implemented by a sufficient number of independent
realizations of fractal trees through the Monte Carlo simulation. Suppose the n-th
scatterer is within the m-th layer, the final expressions for the transmissivity matrices

can be written as

=
I

T (L1)Ty(La)... T4, (Lar), (4.26)
T, = Tp(Lma) s (Lonsr) Tig(Lnr), (4.27)

T, = To(Lp) Ty (Lot Ti( L), (4.28)
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where L! _and L"

o rn are the slant distances from the n-th scatter to the top and

bottom of the m-th layer boundary along the k; and k, directions respectively, as

shown in Figure 4.3. These distances are given by

Lh, = (tn-fy— Hno)/(Rg - k) (4.30)
where
Hn=) d (4.31)
k=1

represents the height of the upper interface of the m-th layer.

Figure 4.4 shows the calculated extinction profile of the simulated maple stand
(Stand 31) where the entire tree canopies are divided into 11 uneven layers and the
extinction coeflicient is defined as the imaginary part of the effective propagation
constant M;;q for each layer. It is noted that the wave attenuation at C-band is much
greater than L-band, and the extinction coefficient for vertical polarization is slightly
greater than that for horizontal polarization at both frequencies. This extinction
coeflicient profile is shaped according to the tree architecture and composition, which
plays an important role in radar backscatter parameters including the position of the
scattering phase center [37]. In this example, the entire tree canopy is divided into
eleven layers, and the extinction coefficient is calculated as described in the previous
section. It should be pointed out that the number of layers can be determined
by imposing a step discontinuity threshold. Basically the algorithm starts with a
moderate number of layers, calculates the extinction coefficient for each layer, and
examines the step discontinuity. If the discontinuity between any two layers is larger

than the prescribed threshold, these layers are divided into finer layers.
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Figure 4.4: The extinction profile calculated for Stand 31.
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4.3.2 Coniferous Canopies

For coniferous canopies, the mean field within the canopy depends on both the
vertical and the horizontal location of observation point. In general the canopy can
be divided into three main regions: (I) conical crown, (II) continuous layer of over-
lapped branches, and (III) trunk layer, as shown in Figure 4.5(a). The trunk and the
overlapped branches layers are treated as homogeneous layers similar to the decid-
uous type. However, the conical crown layer is discontinuous. Based on numerical
simulation it was found that within the conical region the effective propagation con-
stant is almost constant. This is due to the fact that at the top region there are
more needles and thinner/shorter branches while at the lower region there are less
needles and thicker/longer branches. Therefore, the transmissivity is merely deter-
mined by the path length traveled by the mean field within the conical region. This

path lengths can be obtained easily from the intersection of the propagation line,

T — Ty Y—1Yn 2 — Z2n
= = 4-’
ks k, k) (4.32)

and the cone surface,

V(z =22+ (y — )2 = (2 — 2) tan(e/2), 2 < 2 < 24, (4.33)

where (25, Yn, 2,) is the position of the n-th scatterer, (z¢,ys, 2:) is the position of
the cone tip, and o is the cone angle, as shown in Figure 4.5(a). Note that for
incidence angle § > «/2 the adjacent trees may shadow each other. To calculate
the path length across the neighboring trees, the coordinated cone tip (1, yi, 2¢) of
the neighboring tree should be used in (4.33). The positions of the neighboring
trees are chosen randomly according to the tree density. Figure 4.5(b) shows the

position-dependent transmissivity of the incident wave at three different locations
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Figure 4.5: The position dependence of the transmissivity for coniferous trees and
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shown in Figure 4.5(a) as a function of incidence angle. The path lengths for the

other scattering components can be obtained using a similar ray-tracing approach.

4.4 Monte Carlo Simulation

In our model the radar backscatter is expressed in terms of the scattering matrix.
However, for distributed targets, the radar backscattering coefficients and phase
difference statistics are usually the quantities of interest. These quantities can be
derived from the second moments of the backscattered field components [52]. The
statistics of the scattered field are approximated from a Monte Carlo simulation
where a large number of tree structures are generated using stochastic L-systems and
then the scattering matrix of all generated trees are computed. Computation of the
scattering matrices is accomplished in the following manner. First the canopy height
is discretized into M layers and the extinction coefficients of individual layers and the
integrated transmissivity matrices are computed as outlined previously. Then these
quantities are used in (4.18)-(4.21) for calculating the scattering matrix of individual
trees.

The computation involved in the calculation of the scattering matrices of indi-
vidual leaves for many trees is too extensive to be carried out even with the fastest
available computers. To solve this problem, the 47 solid angle covering the entire
vector space representing the orientation direction of a leaf is discretized into a fi-
nite number, and a look-up table for scattering matrices of a leaf oriented along all
the discrete directions is generated for the three principal directions: backscatter-
ing (Sg(—fci,fci) and Sg(—fcr,fcr)), forward scattering (S?L(ic,-,fc,-) and S?L(lzrr,icr)), and
bistatic scattering (SO(—k,, k;) and SO (—£, k,)). The number of discrete orientation

directions is determined from the ratio of a typical leaf dimension to the wavelength
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(a/X). According to this scheme the number of the discrete points should increase
with increasing a/\. A similar scheme may be used for branches: however, we found
that this may unnecessarily increase the CPU time due to a large variability in
diameter and length of the branches.

In order to calculate the desired backscatter statistics, the differential covari-
ance matrix of the backscattered field must be evaluated. As described earlier, the
backscattered fields of adjacent trees in a forest are uncorrelated at microwave fre-
quencies and above. Therefore the backscattered power from individual trees can be
added and the covariance matrix elements are proportional to the tree density D,

and are given by

WO, = D; < 8,57 >, (4.34)

pgst —

where p,q,s,t € {v,h}. According to this definition for the differential covariance

matrix, the backscattering coefficient can be obtained from

00 = 4nW? (4.35)

Papy°

4.5 Model Validation

In this section, the accuracy and validity of the developed model is examined
using a set of measured data acquired by the Shuttle Imaging Radar-C/X-Band
Synthetic Aperture Radar (SIR-C/X-SAR). The collected ground truth and the radar
parameters, such as frequency and incidence angle, are used as model input. In
this section we also present some examples to demonstrate the sensitivity of radar

backscatter to some important forest parameters.
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4.5.1 SIR-C/X-SAR

The SIR-C/X-SAR radar system [53] was flown aboard the shuttle Endeavor
in the spring (SRL-1) and fall (SRL-2) of 1994. This mission was the first of its
kind where a beam-steerable, multi-frequency, and multi-polarization space-borne
synthetic aperture radar was deployed. The SIR-C/X-SAR system operated at L-
(1.25 GHz), C- (5.3 GHz), and X-band (9.6 GHz). The L- and C-band SARs were
configured to collect polarimetric data whereas the X-band SAR was a single channel
radar and collected the backscatter data at vv polarization. The look angle of the
system was varied from 15° to 60°. In this study, the polarimetric SIR-C data (L-
and C-band) during the SRL-2 is compared with the results predicted by the model

developed in this study.

4.5.2 Ground Truth

Raco Supersite, located in the eastern part of Michigan’s Upper Peninsula, was
designated by NASA as a calibration and ecological Supersite for the external cal-
ibration of SIR-C and has been a test site for our radar remote sensing activities
since 1991 [54,55]. Great efforts have been devoted towards characterizing ground
inventories, and the site has been imaged by ERS-1, JERS-1, SIR-C/X-SAR, and
JPL AIRSAR. The main research objective at this site has been relating the mea-
sured SAR backscatter data to the forest ecological/biophysical parameters, which
are essential input parameters for the ecological models used for the study of land
and atmosphere processes.

The Raco Supersite contains most boreal forest species and many of the temperate
species. The SIR-C/X-SAR overflight occurred in the fall, a time of some seasonal

change where trees begin to dry and the deciduous leaves begin to undergo their
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Tree Density : 1700/Hectare
Tree Height : 16.8 m
Trunk Diameter (DBH) : 14 cm

Leaf Density : 382 #/m3
Leaf Area : 50 cm?/#
Leaf Thickness : 0.2 mm

Leaf Moisture (m,) : 0.51

Wood Moisture (m,) : 0.60

Soil Moisture (m,) : 0.18

Table 4.1: Ground Truth of Stand 31

fall color change. During the SIR-C overflight (October 1994), the leaves were still
predominantly green. Color change happened towards the end of the mission.

In this study, a deciduous forest stand, denoted in the existing reports as Stand
31 [54], is selected as a test stand. This stand consists of a large number of red
maple as well as a few sugar maple, uniformly covering an area about 300 m by 300
m on flat terrain. The ground truth of this stand has been collected since 1991, and
a summary of its pertinent parameters is reported in Table 4.1. The vegetation and
soil dielectric constants during the SIR-C overflights are reported in Table 4.2, and
are derived from the measured moisture values using the empirical models described

in [56,57].
4.5.3 Simulation Results

The first step in obtaining the model prediction is to generate fractal trees faithful
to the real tree structure of the desired forest stand. There are two phases for

determining the input parameters for the tree generating code. The first phase is
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L-band C-band

Leaf | 17.9 + 6.0 | 14.7 + 4.7
Wood | 32.1 4+ ¢10.0 | 27.7 + 8.4
Soil 9.7+ i1.6 | 9.4+ :1.5

Table 4.2: Dielectric properties of Stand 31

to characterize the coarse parameters such as the branching nature of the trees, the
growth factors, and the finite fractal order. In the second phase, some of the fine input
parameters, such as the branch tilt angle and its distribution, are slightly tuned in
order to minimize the difference between the simulated and measured backscattering

coefficients o°

. In general accomplishing the second phase is much more difficult
than the first phase because there is no apparent rule for adjusting the parameters.
To establish a set of rules of thumb for fine-tuning the parameters of tree structures,
we performed a sensitivity analysis. The gradient of the desired radar backscatter
parameters with respect to the desired tree structure parameters was determined
and used for determining the fine tuning procedure. In this procedure, we allowed
the fine tree parameters to be adjusted to within 10% of the measured ground truth
parameter to account for the uncertainty in the ground truth measurements. The
model (including tree generation and coherent scattering) is assumed to be verified
if the simulation results can simultaneously match with the polarimetric SIR-C data
for both frequencies and different incidence angles.

In performing Monte Carlo simulations, one should be careful of the convergence

properties of the simulation. In all simulation results reported in this study, conver-
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Figure 4.6: Convergence behavior of the Monte Carlo simulation for Stand 31 at
L-band(a) and C-band (b) at incidence angle §; = 30°.

gence was achieved to within £0.5 dB of the estimated mean values for less than
100 tree realizations. Figure 4.6 shows, respectively, the convergence behavior of the
backscattering coefficients at L- and C-band for forest Stand 31.

Figure 4.7 shows the comparison between the model prediction and the measured
backscattering coefficients for three consecutive SIR-C overflights as a function of
incidence angle at L- and C-band respectively. It is shown that an excellent agree-
ment is achieved for all incidence angles and polarizations except for the C-band
cross-polarized backscattering coefficient. The lack of accuracy for this polarization
can be attributed to the effect of multiple scattering between branches or branches

and leaves in the canopy crown. It shows that the measured C-band data is consis-
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tently higher than the simulated results by 1.3 dB which can be attributed to the
overestimation of radiometric calibration constants. The computation time for each
incidence angle point is about 35 minutes at L-band and 65 minutes at C-band on a
Sun Sparc-20 workstation.

As mentioned previously, the total backscatter is comprised of different scatter-
ing components. Simulation results show that in all cases except for L-band hh
polarization the backscattering coefficients are dominated by the direct backscatter
component (o). The hh-polarized backscattering coefficient o9, at L-band, depend-
ing on the incidence angle, is mostly dominated by the direct backscatter or the
ground bounce term (oy;). The double ground bounce component (09,,) 1s negligi-
ble for all cases because of the low transmissivity for this canopy (see Figure 4.11
for LAI=12). Figure 4.8 shows the scattering components of ¢9, as a function of
incidence angle. The analysis for characterizing the contribution of each scattering
component is essential in determining the position of the scattering phase center of
the forest.

It is also important to examine the effect of the inhomogeneity of the extinction
profile (see Figure 4.4). Figure 4.9 compares the co-polarized backscattering coeffi-
cients of Stand 31 where the forest is both modeled by a 2-layer medium and by an
11-layer medium. In the 2-layer model the tree canopy is composed of a trunk layer
extending from 0-5 m and a crown layer which extends from 5-17 m. It can be ob-
served that the 2-layer model overestimates the backscatter at lower incidence angles
and underestimates at higher incidence angles. The discrepancy in this example is
as high as 2.5 dB, and can be even higher for stands with higher leaf density. It is
also found that the discrepancy increases with increasing frequency. For example,

the discrepancy at L-band is less than 0.3 dB. It should be mentioned that the CPU
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time for calculation of the backscattering coefficient for a 2-layer and an 11-layer
forest is almost the same, because the mean field profile of the canopy is calculated
before the Monte Carlo simulation is carried out.

The statistical behavior of the backscatter can also be obtained from the present
model. Through the Monte Carlo simulations the desired histograms can be con-
structed by recording the backscatter results for each realization. Figure 4.10 shows
the estimated probability density function (pdf) of backscattering coefficients in dB
at incidence angle 43.6°. The pdf can provide additional information about the
distributed target if the backscatter statistics are non-Gaussian. For instance, al-
though the mean values of o}, and o9, at L-band are nearly identical, their pdfs are
somewhat different.

The transmissivity is another quantity used to characterize a stand. Based on
the extinction profile of the forest canopies, the transmissivity can be computed by
integrating the attenuation of each layer. In Figure 4.11, the one-way transmissivity
(from top to bottom) is calculated as a function of leaf area index (LAI), defined as
the total leaf area (single side) per unit area of forest. It is shown that the horizontally
polarized wave can more easily penetrate the canopies than the vertically polarized
wave. This phenomenon results from the fact that the tree trunk and branches are
oriented mostly along the vertical direction.

To demonstrate the effect of tree structures on the radar backscatter two ex-
amples are considered. In the first example denoted as Case 1, we changed the
branching angle Af from 22° + 5° (used in Stand 31) to 15° + 3° while keeping the
other parameters the same. Figure 4.12 compares the orientation distribution of the
branches for Stand 31 and Case 1. The pdfs of branch orientation are obtained by

counting the number of branches in small increments of orientation angle for all the
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(a) Ay = 22° £ 5° (Stand 31); (b)Af, = 15° £ 3° (Case 1).

branch segments of a fractal tree, which included about 7500 branch segments in
more than 20 classes of diameters and lengths. These two tree structures are shown
in Figure 4.13 (a) and (b). In the second example, referred to as Case 2, we changed
the tree height and trunk diameter while keeping the dry biomass unchanged (14.4
kg/m?). A tree structure of Case 2 having height 8.6 m and trunk diameter 17cm
is shown in Figure 4.13(c). The backscattering coefficients calculated for these tree
structures are given in Table 4.3. Simulation results indicate a significant variability
in the backscattering coefficients among the three simulated forest stands of different

geometrical structures having identical biomass.
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(a) (b) (c)

Figure 4.13: Tree structures generated for (a) Stand 31, (b) Case 1, and (c) Case 2.

Tree L-band C-band

Structures | o2, (dB) | 02, (dB) | o7, (dB) | 02, (dB) | 02, (dB) | o7, (dB)
Stand 31 -8.8 -14.6 -8.2 -9.3 -16.4 -10.1
Case 1 -8.4 -16.1 -7.1 -1.9 -16.2 -8.7
Case 2 -13.2 -19.6 -9.1 -11.4 -21.6 -10.3

Table 4.3: Effect of tree structures on backscattering coefficients, simulated at 6; =
43.6°.
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The effect of the ground tilt angle on the radar backscatter from the forest canopy
is also investigated in this study. Using the same parameters of Stand 31 except for
changing the ground tilt angle 6, from 0° to 10°, the backscattering coefficients are
computed as a function of the azimuthal look angle ¢; for incidence angle 6; at 25.4°.
As expected, simulation results show that the radar backscatter is not sensitive to
the ground plane at C-band since most of the backscattered field emanates from
the crown layer. However, at L-band the radar backscatters, especially oy, and 02y,
show sensitivity to the ground tilt angle (see Figure 4.14(a)). Near the azimuthal look
angle ¢; = 70°, there are noticeable increases in o9, and ¢?, which can be attributed
to a ground-trunk interaction. For a cylinder oriented along the 2, direction standing
on a tilted ground plane with a unit normal 7, the ground-trunk scattered ray is
parallel to the incident ray when the following relationship is satisfied:

A

ki - 20 = (ki - g)(Ry - 52). (4.36)

Assuming Z, is along the vertical direction Z, the above equation can be readily
reduced to an explicit expression given by

2sin? 4,

Cos Py = ———————.
¢ tan 0; sin 26,

(4.37)

Using this expression a maximum backscatter is expected at ¢; = 68° when 0, = 10°
and ; = 25.4°. For this particular look angle a significant cross-polarized backscatter
is generated. Figure 4.14(c) shows the backscattering cross section of a cylinder with
radius @ = 7.2cm, length b = 7.2m, and dielectric constant ¢ = 32.1 + i10.0 on a
tilted ground plane with 6, = 10° and ¢, = 9.7 + 71.6 illuminated by a plane wave
with incidence angle 6; = 25.4°, as shown in Figure 4.14(b).

It is well known that the backscatter from forest canopies as a function of fre-

quency is governed by various scattering mechanisms. For instance, at lower fre-



89

~ 0 T T T T

5

= (@)

s b -
2

&

I}

=]

O 10} 7
=

= Jo§

[} 7T~

= vh - Tl

3 15 ¢+ EJ"/E\\E”/E} NN
w

-

3

m 220 1 1 1 1

20 40 60 80 100 120
Azimuthal Look Angle, o, (Degrees)

(b)

_.‘_----____
\
\ .
\J

Y
~ \\C
\\\ X
20 | | T -
g (c) hh_
Z 10 ‘ ]
=
2
0
4  of
8 RS
L‘-)' '10 B “l :‘,/l
< - [
-g 3 \\ ‘I n’/
a N
-20 S
20 40

Azimuthal Look Angle, ¢, (Degrees)

Figure 4.14: The effect of the ground tilt angle on radar backscatter: (a) backscatter-
ing coefficients for Stand 31 over a tilted ground with 8, = 10° simulated
at L-band with incidence angle 8; = 25.4°, (b) a vertical cylinder on a

tilted dielectric plane and the associated coordinates, (c) RCS simula-
tion for (b).



90

S R s e e e e e ————
[ o} VV real structure (seven-layer) |
I @ HH real structure (seven-layer) |
0-_ o VV random dist. (two-layer) }
a HH random dist. (two-layer)
S 5r
o
o)
-10 F
_15'1..1....1....1....|....1....|...‘1....|....|....4

00 1.0 20 3.0 40 50 60 7.0 80 9.0 10.0

Frequency (GHz) L/C/X - Band

Figure 4.15: Comparison of the polarimetric backscattering coefficients at different
frequency bands (L, C, and X).

quencies the dominant backscatter term is the trunk-ground bounce, while at high
frequencies the backscatter is mainly influenced by the direct scattering term from
the crown layer. The difference between the backscatter from a forest stand using
a multilayer model and a two-layer model is examined. In the two-layer model the
forest is divided into a trunk layer (0-8 m) and a crown layer (8-17 m), and extinction
parameters are averaged over the whole layer. Figure 4.15 shows the results of this

study where the backscattering coefficients are computed at different frequencies,

L-band (1.25 GHz), C-band (5.3 GHz), and X-band (9,6 GHz). It is shown that at

high frequencies the discrepancy between the two models increases.
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4.6 Conclusions

A coherent scattering model for forest canopies based on a Monte Carlo simulation
of fractal generated trees is developed in this study. A coherent model offers three
major advantages over the existing incoherent scattering models: (1) the model
preserves the effect of the architectural structure of the trees which manifests itself
in the extinction and scattering profiles; (2) the model provides complete statistics of
the scattered field instead of just its second moments; and (3) the model is capable of
simulating the scattering from forest stands on tilted ground planes. In general the
coherent scattering model is composed of two main components: (1) a tree structure
generating model which is developed based on stochastic L-systems, and (2) a first-
order scattering model which can handle radially stratified cylinders and dielectric
disks and needles of arbitrary cross section.

The validity and accuracy of the model was demonstrated by comparing the re-
sults based on the model simulation with the backscattering coefficients measured
by polarimetric L- and C-band SIR-C at three different incidence angles. A very
good agreement between the measured quantities and the model predictions is ob-
tained with the exception of o, for C-band. This disagreement may result from
the existence of multiple scattering in the crown layer. A sensitivity study was also
carried out to demonstrate the effects of tilted ground planes and tree structures on

the radar backscattering coefficients.



CHAPTER V

SIMULATION OF INTERFEROMETRIC SAR
RESPONSE FOR CHARACTERIZING THE
SCATTERING PHASE CENTER STATISTICS
OF FOREST CANOPIES

5.1 Introduction

As mentioned previously, one of the features of the present model is its ability to
predict the absolute phase of the radar backscatter from forest canopies. This feature
makes possible the numerical simulation of the interferometric synthetic aperture
radar (INSAR) over a forest canopy. In this chapter, the present coherent scattering
model is applied to simulate INSAR response to forest canopies in terms of the
scattering phase center height and the correlation coefficient.

Recent advancements in the field of radar interferometry have opened a new door
to the radar remote sensing of vegetation. In addition to the backscattering coeffi-
cient, radar interferometers measure the scene of interest with two additional quan-
tities, namely the correlation coefficient and interferogram phase [58]. To interpret
these quantities and to characterize their dependency on the physical parameters of
the target, a thorough understanding of the coherent interaction of electromagnetic

waves with vegetation particles is required.

92



93

The premise of this investigation with regard to retrieving vegetation parameters
from INSAR data stems from the fact that the location of the scattering phase center
of a target is a strong function of the target structure. For example the scattering
phase centers of non-vegetated terrain are located at or slightly below the surface
depending upon the wavelength and the dielectric properties of the surface media,
whereas for vegetated terrain, these scattering phase centers lie at or above the
surface depending upon the wavelength of the SAR and the vegetation attributes. It
also must be recognized that the vegetation cover adds noise in other interferometric
SAR applications where the geological field mapping or surface change monitoring,
instead of vegetation itself, is the primary interest. In these cases it is also important
to characterize the effect of vegetation on the topographic information obtained from
the interferometric SAR and to develop correcting schemes for those vegetated areas.

In recent years some experimental and theoretical studies have been carried out
to demonstrate the potential application of INSARs in retrieving forest parameters.
For example in [16] and [17] experimental data using ERS-1 SAR repeat-pass are
employed to show the applications of SAR interferometry for classification of forest
types and retrieval of tree heights. Also theoretical models have been developed to
establish relationships between the interferogram phase and correlation coefficient to
the physical parameters of vegetation and the underlying soil surface [37,38].

Although these models give qualitative explanation for the measured data and
provide a basic understanding of the problem, due to the oversimplified assumptions
in the description of vegetation structure, they are not accurate enough for most
practical applications. For example the shape, size, number density, and orientation
distributions of vegetation in forest stands are nonuniform along the vertical direc-

tion. The nonuniform distributions of physical parameters of vegetation particles
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give rise to inhomogeneous scattering and extinction which significantly affects the
correlation coefficient and the location of the vegetation scattering phase center.

On the other hand, there are a number of electromagnetic scattering models avail-
able for vegetation canopies [27-29], but most are of little use with regard to INSAR
applications due to their inability to predict the absolute phase of the scattered field.
The absolute phase of the scattered field is the fundamental quantity from which the
interferogram images are constructed.

In this chapter, the present model is for the first time applied to the INSAR
simulation on forestry. This investigation will demonstrate the capability of the
present model in predicting the scattering phase center statistics, provide a physical
explanation for the effect of scattering mechanism on the location of the scattering
phase center, and discuss the optimum design of INSAR system configuration for
remote sensing on vegetation parameters. In the next section, the proposed model
for INSAR applications is described. The fractal-based coherent scattering model is
briefly reviewed, and a Ak-radar equivalence algorithm is employed for the extraction
of the scattering phase center. Also in this chapter, the effect of scattering mechanism
on the location of the scattering phase center is discussed. The validation of the
proposed model is verified by comparing the simulation results with those measured
by JPL TOPSAR [59]. Finally a sensitivity study is conducted to demonstrate the
variations of the scattering phase center of a forest stand in terms of target parameters
such as tree density, soil moisture, tree type, and ground tilt angle, as well as INSAR

parameters such as polarization, frequency and incidence angle.
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5.2 Model Description

In this section an overview is given of the approaches which are employed to
extract statistics of the scattering phase center of forest canopies. Three tasks must
be undertaken for the calculation of the correlation coefficient and the location of
the scattering phase center. These include: 1) accurate simulation of tree structures,
2) development of the scattering model, and 3) development of an algorithm for
evaluation of the location of the scattering phase center. The first two have been
described in detail in the previous chapters. In this chapter, the emphasis is on the
algorithm for evaluation of the location of the scattering phase center.

As mentioned earlier, the overall objective of this investigation is to study the
relationship between the coherent phase and correlation coefficient of an INSAR
interferogram and the physical parameters of a forest stand. An INSAR system
measures the backscatter of a scene at two slightly different look angles, and the
phase difference between the two backscattered fields is used to derive the elevation
information. In a recent study [37] it has been established that similar information
can be obtained by measuring the backscatter of the scene at two slightly different
frequencies, provided that the look angle is known. For an INSAR system with
known baseline distance (B) and angle a operating at frequency f,, the frequency

shift (Af) of an equivalent Ak-radar is given by

Af = Msin(Oz —0) (5.1)

mr

where 0 is the looking angle, m = 1,2 for repeat-pass, and two-antenna INSAR con-
figurations respectively, and r is the distance between the antenna and the scatterer.
This equivalence relationship is particularly useful for numerical simulations and con-

trolled experiments using stepped-frequency scatterometer systems. In Monte Carlo
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simulations, once the tree structure and the scattering configuration are determined,
the backscatter signals are calculated twice at two slightly different frequencies. The
backscatter at f; = fo and fo = fo + Af are represented by E; and E, respectively,

which are computed from

N
E, = ZeQikoki‘r"Sn(ko)‘Ei, (5.2)
n=1

N
E, = ) ellotalkimg (k1 Ak)-EL (5.3)
n=1

It is also shown that the height of the equivalent scatterer above the x-y plane of the

global coordinate system can be determined from

-Ad

= 2Akcos §’ (54)

where Ak = 27Af/c, and A® = Z(E;E,) represents the phase difference between
Ey and E,. Note that the equivalent frequency shift for most practical INSAR
configurations is only a small fraction of the center frequency (Af/f, < 0.1%) and
therefore the far field amplitudes of individual isolated scatterers (S°) do not change
when the frequency is changed from fo to fo + Af, that is, S9(ko) ~ S(ke + Ak).
This approximation speeds up the Monte Carlo simulation without compromising
the overall accuracy of scattering phase center height estimation.

For a random medium like a forest stand, the scattering phase center height (z.)
is a random variable whose statistics are of interest. Usually the mean value and the
second moment of this random variable are sought. Based on a rigorous statistical
analysis [37] it is shown that the statistics of A® can be obtained from the frequency

correlation function of the target by computing

V<IE 2 >< B2 >
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where « is the correlation coefficient, and ( is the coherent phase difference. In (5.5)
< - > denotes the ensemble averaging which is evaluated approximately using a
sufficiently large number of realizations through the Monte Carlo simulation. When
the backscatter statistics are Gaussian, @ and ( provide a complete description of
the statistics of A®. The apparent height of the scattering phase center of a forest

stand is proportional to ( and can be obtained from

—¢

%= SAhcosd’ (5:6)

Note that ( is not the statistical mean of A®, but rather the phase value at which
the probability density function of A® assumes its maximum. In fact, using the
mean value may result in a significant error for calculating the apparent height z,.
To demonstrate this, two cases may be considered where in one case ( = 0 and in
the other case ( = 180°. In both cases the mean value of A® is zero, whereas the
apparent heights calculated from (5.6) are obviously different.

5.3 Verification of Identity Between Ak-radar and INSAR
System

To test the above Ak-radar algorithms we use a simple configuration, an object
above a ground plane, to examine if the scattering phase center derived from a Ak-
radar is identical to that from an INSAR system. However, it is extremely difficult
to analytically determine the scattering phase center of this even simple configura-
tion where the multipath scattering components take place due to the ground plane.
Here we use an alternative approach in which the comparison between INSAR and
Ak-radar is conducted on the basis of each scattering mechanism, whose scatter-
ing phase center is distinct according to the path length. In addition, we present

a numerical example to demonstrate how the scattering mechanisms influence the
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Figure 5.1: Multipath scattering mechanisms of an object (at C with projection at
O and image at C;) above a ground plane observed by an interferometer
with two antennas at A; and As,.

scattering phase center.

5.3.1 INSAR Case

Consider an object at C above a ground plane measured by an interferometric
system with two antennas at A; and A, as shown in Figure 5.1. Radar waves are
transmitted from antenna A;, scattered and reflected by the object at C and the
ground plane respectively, and received by both antennas at A; and A,. Based
on the first order scattering approximation that the object is hit only once during
the traveling path, the scattered field is comprised of three scattering mechanisms

known as (1) direct backscatter S*, (2) ground-bounce backscatter $%, and (3) double
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ground-bounce backscatter 594, that is,
S = Slei®t 4 G9beiteb 4 G919 cideat (5.7)

where ¢, ¢4, and ¢y, are the associated phases accounting for the different path
lengths. As follows are the description of individual scattering mechanisms and the

derivation of the correspondent scattering phase centers.

1. S*: In this direct backscattering component, the incident field is scattered by
the object and immediately returned to the receivers. As shown in Figure 5.1,
the traveling path of the scattered field received at antenna A;/A; is denoted

as Ay — C — A;/A,, and the scattered fields received are written as

S] — Steiko(QAlc), (58)

52 — Steiko(/h C-I-AzC)' (59)
The inner product of these two signals is readily given by
S8y = |§!2etho(420-41C) (5.10)

The phase term, A® = ko(A;C — A;C), representing the phase difference
between the two antennas, is then processed along with the slant range to
derive the 3D digital elevation model. This phase difference implies that the

scattering phase center of the direct backscattering component is at C.

2. 5% : In this ground-bounce scattering component, a reciprocal pair of traveling
paths take place simultaneously denoted as A; — D; — C — A, /As and
Ay — C — (D1 — Ay)/(D; — A;), representing the ground-target and target-

ground path respectively. The scattered fields received at the two antennas are
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written as

S] — 2Sgbeik0(AlC+CDl+AlD1), (5‘11)

SZ — Sgb(e’iko(Alc+CD2+A2D2) _l_eiko(AlD]-}-CDl-l-AgC)). (5.12)

Noting C'Dy/, = C;D;,, the inner product of these two signals can be reduced

to

5;52 — 2’Sgb|2(eik0(AQC—Alc) + eiko(AzC.‘—Alc,')). (513)

(5.14)
Hence, the phase term

AD = ko(AC + A;C5) — (A0 + A C))]/2, (5.15)

~ kol(4:0) — (4,0)] (5.16)

where O is the projection of the object on the ground plane. Here we use a
reasonable approximation, A;/;C + 4, /2Ci ~ 24,50 since the two antennas
are in the far zone. This resultant phase term of the above equation indicates
that the scattering phase center of this ground-bounce scattering component

is located at O.

. §9% : In this double ground-bounce scattering component, the incident field is
first reflected by the ground plane, then scattered from the object, and again
reflected by the ground plane towards the two antennas. The traveling path
of the scattered field received at antenna 1/2 is denoted as A; — D; — C —

(Dy = Ay)/(Dy — A;). The scattered fields are written as

Sl — Sgtgeiko2(A1D1'+CD1), (517)

S, = G919 oiko (A1 D1+CD1+C D3+ A2 Dy) (5.18)
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Figure 5.2: An object above a ground plane illuminated by a Ak-radar.

Again, with the identity C'Dy;, = C; D, /2, the inner product of these two fields

can be reduced to

38y = |59 eiho(A20i= M0 (5.19)

The phase term of the above expression indicates that the scattering phase

center of the double ground-bounce scattering component is located at C.
5.3.2 Ak-Radar Case

Consider an object above a ground plane with height £ illuminated by a plane
wave in the direction of k;, as shown in Figure 5.2. The total backscattered field can

be expressed as
tkor

Es = (St + Sgb + Sgtg)e—%kghcosH (520)

r

with multipath scattering components:

St = So(—ki, k) (5.21)
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S%* = [R- So(—ks, ki) + So(—ki, k,) - R]e¥*ohcost (5.22)
§9% = [R- So(~ks,k,) - Retkoheost (5.23)
where Sy is the bistatic scattering amplitude of the object in free space, and R
is the reflection coefficient of the ground plane. In general Sy and R are in the
form of matrices for the polarimetric analysis, and they are assumed invariant while

the frequency is slightly changed (e.g. Ak/ky = 10~* for JPL TOPSAR). Now we

examine the scattering phase center for each component:
1. S*: In this case the scattering amplitude from (5.2) is
Ey = So(—h;, k;)e2ikohcosé (5.24)

Using the frequency decorrelation process, the phase difference is obtained as
A® = phase(E} Ey) = —2Akh cos §. Therefore, from (5.4) the scattering phase

center is obtained as z, = h.
2. §%: In this case the scattering amplitude from (5.2) is
Ey = R So(=ky, ki) + So(=ki, k) - R (5.25)

The phase difference is A® = 0 since there is no path-length dependent phase
term associated. Therefore the scattering phase center in this case is on the

ground, z, = 0.
3. 599 In this case the scattering amplitude from (5.2) is written as
Ey = [R- So(—ky, k,) - R]e¥hohcost (5.26)

The phase difference can be obtained as A® = 2Akh cos 6. Therefore, from

(5.4) the scattering phase center is obtained as z, = —h, the image of the

object.
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Based on the above analysis, Ak-radar and INSAR are shown to preserve the same
scattering phase center for each scattering component of the multipath mechanisms.
Since the total backscattered field is the coherent addition of these components,

it can be inferred that the equivalent scattering phase center of the whole system

derived from Ak-radar and INSAR is identical.

5.4 Scattering Mechanisms vs. Scattering Phase Centers

In order to develop some intuition about the scattering phase center and to ex-
amine the validity of the above equivalence algorithms, let us consider a simple case
where a single scatterer target above a ground plane is considered. Through this
illustrative case the relationship between the location of the scattering phase center
and the scattering mechanisms can be demonstrated.

Consider a dielectric cylinder of radius a = 5cm, length b = 3m, and dielectric
constant € = 22 + 110, which is located at height h = 6m above a ground plane
having a complex permittivity e, = 9.7 +71.6. Suppose the target is illuminated by
a plane wave whose direction of propagation is determined by the incident angles
0; = 30°, ¢; = 180°, as shown in Figure 5.3. As mentioned previously, the backscat-
tered field is mainly composed of four scattering components with different path
lengths. In general it is quite difficult to characterize the location of the scattering
phase center of a scatterer analytically when multi-path scattering mechanisms are
involved. However, in cases where a single scattering mechanism is dominant it is
found that the location of the scattering center is strongly dependent upon the path
length of the dominant scattering component.

Here we illustrate this fact through an experimental study where the orientation

of the cylinder is properly arranged in four configurations, as shown in (a)-(d) of
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Figure 5.3: Four configurations for a cylinder above a ground plane with orientation
angles: (a) 0. = 60°,¢, = 180°, (b) 8. = 0°,¢, = 0°, (c) 6. = 60°, ¢, =
0° (d) 6. = 45°,¢, = 150°, and their principal scattering mechanisms
respectively. The center of the scatterer is denoted by (e) and equivalent
scattering phase center by (O).
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Configuration (a) (b) (c) (d)
Polarization vv | hh VU hh v hh v hh
ze[h 1.00 | 0.99 | 0.01 |-0.01 |-1.06 | -0.96 | 0.49 | 0.43
|5/ S| 0.99 1097 | 0.02| 0.01| 0.05| 0.05| 0.62 | 0.42
|59 /8] 0.0310.02| 099 | 1.01 | 0.13| 0.08 | 0.62 | 0.59
|59t /S| 0.00 | 0.00 | 0.01 | 0.00 | 1.10 | 1.03 | 0.00 | 0.00
RCS (dBsm) | 8.06 | 5.19 | -0.46 | 6.16 | -6.05 | -5.23 | -17.2 | -15.1

Table 5.1: The normalized height of the scattering phase center, the normalized scat-
tering components, and the radar cross section for four different scattering
configurations as shown in Figure 5.3.

Figure 5.3, such that the total backscatter is dominated by (a) S?, (b) S%, (c) S99,
and (d)S* 4 S respectively. Note that S is the combination of the reciprocal
pair S and S%. The simulation results at f, =1.25 GHz are shown in Table 5.1,
which includes the scattering phase center height normalized to the physical height
ze/h, the ratio of the amplitude of individual scattering components to the total
backscattered field |S()/S|, and the overall radar cross section (RCS) of the target
for each orientation configuration and for both polarizations.

It is obvious from the results reported in Table 5.1 that in scattering configuration
(a) where the backscatter is dominated by the direct component (St/S = 0.99)
the location of the scattering phase center appears at the physical location of the
scatterer above the ground (z./h ~ 1). Similarly in scattering configurations (b) and
(c) where the backscatter is dominated, respectively, by the single ground bounce
component and the double ground bounce component, the locations of the scattering

phase center appear on the ground surface and at the mirror image point as shown in
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Figure 5.3. In scattering configuration (d), the direct and the single ground bounce
components of the backscatter are comparable in magnitude and as shown in Table
5.1 the location of the scattering phase center in this case appears at a point between
the physical location of the scatterer and the ground surface. When the number of
scatterers is large the location of the scattering phase center is a convoluted function
of physical locations of the constituent scatterers and the relative magnitudes and
phases of the scattering components. Note that |2./h| and |S()/S| in Table 5.1 may
exceed 1 since the total backscattered field S is the superposition of four scattering

components which are not necessarily in phase.

5.5 Model Validation for INSAR Applications

In this section full simulations of forest stands are carried out. As a first step,
the model predictions are compared with the JPL. TOPSAR measurements over a
selected pine stand, denoted as Stand 22. Then a sensitivity study is conducted
to characterize the variations of the scattering phase center height and correlation
coefficient as a function of both forest and INSAR parameters.

Stand 22 is a statistically uniform red pine forest located within Raco Airport,
Raco, Michigan. This scene was selected for this study because the stand is over a
large flat terrain which reduces the errors in the measured tree height due to possible
surface topographic effects. In addition, the nearby runway provides a reference
target at the ground level. Ground truth data for this stand have been collected since
1991 [54] and careful in-situ measurements were conducted by the authors during the
overflights of TOPSAR in late April, 1995. The relevant physical parameters of this
stand are summarized in Table 5.2. The vegetation and soil dielectric constants are

derived from the measured moisture contents using the empirical models described
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Stand 22

Figure 5.4: A portion of a TOPSAR C-band image (02 ), indicating Stand 22 (red
pine) at an airport near Raco, Michigan (April 1995).

in [56,57].

The JPL TOPSAR is an airborne two-antenna interferometer, operating at C-
band (5.3 GHz) with vv polarization configuration [59]. During this experiment,
Stand 22 was imaged twice at two different incidence angles 39° and 53°. Figure 5.4
shows a portion of the 39° radar image which includes the test stand. Each side of
the dark triangle in this image is a runway of about 2 miles long. The measured
height of the stand is obtained from the elevation difference between the stand and
the nearby runway.

Using the ground truth reported in Table 5.2, the backscattering coeflicient and
the location of the scattering phase center as a function of the incidence angle were

simulated at 5.3 GHz. As shown in Figures 5.5 and 5.6, excellent agreement be-
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Tree Density : 11424 /Hectare
Tree Height : 8.9m

Trunk Diameter (DBH) : 14.6 ecm
Needle Length : 10 em

Needle Diameter : 1.2 mm

Needle Moisture (m,) :  0.62
Wood Moisture (m,) : 0.42
Soil Moisture (m,,) : 0.18

Table 5.2: Ground truth data of Stand 22 (red pine) collected on April 26, 1995.

tween the model predictions and TOPSAR measurements is achieved. The simulated
height of the scattering phase center of the same forest for an hh-polarized INSAR
having the same antenna configuration and operating at the same frequency is also
shown in Figure 5.5. It is shown that the estimated height at the hh-polarization
configuration is lower than that obtained from the wvv-polarization configuration.
This result is usually true for most forest stands since the ground-trunk backscatter
for hh-polarization is higher than that for vv-polarization because hh-polarized wave
has higher transparency within the canopy and stronger reflection from the dielectric
plane. Also noting that the location of the scattering phase center for a ground-trunk
backscatter component is at the air-ground interface, the location of the scattering
phase center of trees for hh-polarization is lower than that for vv-polarization.

The comparison between the simulated ¢, and the measured ¢°, acquired by
TOPSAR as a function of the incidence angle is shown in Figure 5.6. Also shown in
this figure is the contribution of each scattering component (the direct backscatter

o' and the ground-bounce backscatter o9*) to the overall backscattering coefficient.
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Figure 5.5: The estimated height of scattering phase center of Stand 22 (red pine),
compared with the data extracted from two TOPSAR images (6 = 39°
and 53°) of the same stand.
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It was found that the contribution of the double ground-bounce component o9*¢ was
relatively small and for most practical cases can be ignored. In this case, at low inci-
dence angles (8; < 30°) the ground-bounce backscatter is the dominant component,
whereas at higher incidence angles the direct backscatter becomes the dominant fac-
tor. This trend is the cause of the increasing behavior of the scattering phase center
height as a function of the incidence angle found in Figure 5.5. It is worth mentioning
that the contribution of pine needles to the overall backscattering coefficient is found
to be negligible compared to the contribution from the branches and tree trunks.
However, inclusion of the needles in the scattering simulation is necessary because

of their significant effect on the extinction.

5.6 Sensitivity Study

With some confidence in the scattering model and the algorithm for evaluation
of the scattering phase center height, further simulation can be performed to char-
acterize the dependence of the scattering phase center height of a forest stand on
the system parameters such as frequency, polarization, and incidence angle, and the
forest parameters such as tree density, soil moisture, and tree types. In addition,
we demonstrate the capability of the present model as a tool for determining an
optimum system configuration for retrieving physical parameters of forest canopies.
Figure 5.7 shows the estimated height of Stand 22 for two principal polarizations at
C-band (5.3 GHz) and L-band (1.25 GHz) as a function of the ground soil moisture,
simulated at 6; = 45°. As the soil moisture increases, the ground plane reflection will
also increase, which in turn causes the ground bounce scattering component to in-
crease. As a result of this phenomenon, the scattering phase center height decreases

with soil moisture as shown in Figure 5.7. This effect is more pronounced for L-band
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vvu-polarization than other INSAR configurations, suggesting a practical method for
monitoring the soil moisture using the apparent height of the forest stand. This
high sensitivity at L,, is achieved because of the existence of competitive scatter-
ing components. Basically, at low soil moisture the direct backscatter component
is comparable with the ground bounce component and the scattering phase center
lies amidst the canopy. As the soil moisture increases, the ground bounce scattering
component becomes more dominant, which results in lowering the apparent height of
the stand. On the other hand, the least sensitive configuration is Ly since the dom-
inant scattering component, independent of the soil moisture, is the ground bounce
component.

Figure 5.8 shows the effect of the tree density on the estimated height of a red
pine stand having a similar structure as that of Stand 22 at 6; = 45°. As the
tree density increases, the extinction within the canopy increases, which reduces the
ground-bounce component. Increasing the tree density would also increase the direct
backscatter component. As a result of these two processes, the apparent height of
the canopy increases with increasing tree density as demonstrated in Figure 5.8. As
before, the apparent height for Ly, configuration does not show any sensitivity to the
tree density indicating that the ground bounce component remains dominant over
the entire simulation range of 700-1200 trees/Hectare. This lack of sensitivity to the
apparent height of coniferous stands for L, suggests that this configuration is most
suitable for mapping the surface height of coniferous forest stands.

Now let us examine the response of INSAR when mapping deciduous forest
stands. For this study a red maple stand, denoted by Stand 31, 1s selected whose
structure and scatterers are different from the previous example. A fractal gener-

ated red maple tree and a picture of the stand are shown in Figure 2.9. This stand
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was selected as a test stand to validate the previously developed coherent scattering
model [60], using the SIR-C data. The average tree height and tree number density
were measured to be 16.8m and 1700 trees/Hectare respectively. Table 4.1 provides
the detailed ground truth data from Stand 31. The simulations for estimating the
scattering phase center height are performed fully-polarimetrically at L-band and C-
band. Figure 5.9 shows the variation of the apparent height of Stand 31 as a function
of the incidence angles for co- and cross-polarized L- and C-band INSAR configura-
tions. Simulation results at C-band show that except at very low angles of incidence,
the scattering phase center is near the top of the canopy. In this case the backscat-
ter in all three polarizations is dominated by the direct backscatter components of
particles near the canopy top. The same is true for L,, and L,, configurations;
however, since penetration depth at L-band is higher than C-band, the location of
the scattering phase center appears about 1-3 m below the apparent height at C-
band. The scattering phase center height for Ly, configuration, on the other hand,
is a strong function of the incidence angle where it appears near the ground sur-
face at low incidence angles and increases to a saturation point near grazing angles.
Close examination of this figure indicates that a pair of C,, and Ly, INSAR data
at low incidence angles can be used to estimate the tree height of deciduous forest
stands with closed canopies. A C-band foliated canopy behaves as a semi-infinite
medium and as shown in [37] the knowledge of extinction would reveal the distance
between the location of the scattering phase center and the canopy top (Ad) using
Ad = cosf/(2k). If an average extinction coefficient (k) of 0.2N,/m is used in the
above equation, a distance Ad = 1.77m is obtained at § = 45°. However, a simple
relation for evaluating the apparent height for L, does not exist yet.

Figure 5.10 shows the effect of the ground tilt angle on the estimated scattering
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phase center height. This simulation is obtained by setting a ground tilt angle
0, = 10° for a forest stand similar to Stand 31 (red maple) and calculating the
estimated scattering phase center height as a function of the azimuthal incidence
angle ¢; at 0; = 25.4°. As already discussed in Figure 4.14, there is a strong ground-
trunk backscatter around ¢; = 70°, particularly for Ly, and L,. Consistently, this
accounts for the dip in the apparent height simulations for Ly, and L, configurations
at ¢; = 70°, as shown in Figure 5.10, noting that the scattering phase center of the
ground-target scattering component is on the ground plane.

So far only the behavior of the mean value of the scattering phase center height
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has been investigated; however, the model has the ability to provide an approxi-
mate probability distribution function of the scattering phase center height. The
histograms of the scattering phase center height can be constructed by recording the
simulated results for each scattering simulation. Figure 5.11 shows the simulated
probability density function (PDF) of the scattering phase center height of Stand 22
at § = 45° for the three principal polarizations and for both L- and C-band. At L-
band the scattering phase center height has a narrow distribution for hh-polarization,
indicating that a relatively small number of independent samples are sufficient for
estimating the apparent height. At C-band the scattering phase center height of the
cross-polarized backscatter exhibits a narrower PDF.

As mentioned earlier, the correlation coeflicient («) is an independent parameter
provided by INSARs which, in principle, may be used for inversion and classification
processes. The measured correlation coefficient is a function of INSAR parameters
such as look angle, baseline distance and angle, radar range to target and target
parameters. To examine the behavior of « as a function of target parameters, the
Ak-radar equivalence relationship given by (5.5) is used where the dependence on
INSAR parameters are lumped into one parameter, namely, the frequency shift.
Figures 5.12 and 5.13 respectively show the calculated correlation coefficients () as
a function of the normalized frequency shift (Af/fy) (corresponding to the baseline
distance in an INSAR), simulated for Stand 22 (red pine) and Stand 31 (red maple)
at 0; = 45°. As shown in [37] the correlation coefficient is inversely proportional to
the width of the PDF, that is, a high value of a indicates a narrow distribution. A
comparison between the histograms shown in Figure 5.11 and the values of a shown
in Figure 5.12 demonstrates this relationship. It is interesting to note that simulated

a for Stand 31 at Ly, is significantly smaller than the correlation coefficients at other
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Figure 5.12: The correlation coefficient as a function of the frequency shift, simulated
from Stand 22 (red pine).

polarizations (see Figure 5.13). This behavior is a result of the fact that the direct
backscatter and ground-bounce backscatter components are comparable.

It is shown that for the same baseline to distance ratio (B/r) which corresponds
to a constant Af/fo, a at C-band is smaller than o at L-band independent of po-
larization. It should be mentioned here that for most practical situations Af/fy is
of the order of 107* or smaller which renders a value for a near unity (@ > 0.99).
That is, for practical INSAR configurations, the effect of forest parameters on the

correlation coefficient appears on the third digit after the decimal point. This puts a
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serious limitation on the applicability of « for inversion and classification algorithms,
since accurate measurement of o with three significant digits is not practical even
with two antenna INSARs. For repeat-pass interferometry, the a values reported for
forest stands are below 0.7 which is caused mainly by the temporal decorrelation of
the target. Therefore, it does not seem logical to use a as a parameter for classifying
forest types. The TOPSAR measured as for Stand 22 at incidence angles 39° and 53°
are, respectively, 0.935 and 0.943 which are below the calculated values of 0.998 and

0.999. This discrepancy can be attributed to processing errors and thermal noise.

5.7 Conclusions

In this chapter, a scattering model capable of predicting the response of interfer-
ometric SARs when mapping forest stands is described. The model is constructed by
combining a first-order scattering model applied to fractal generated tree structures
and a recently developed equivalence relation between an INSAR and a Ak-radar.
Using this model, for the first time accurate statistics of the scattering phase cen-
ter height and the correlation coefficient of forest stands are calculated numerically.
The validity and accuracy of the model are demonstrated by comparing the mea-
sured backscattering coefficient and the scattering phase center height of a test stand
with those calculated by the model. Then an extensive sensitivity analysis is carried
out to characterize the dependence of the scattering phase center height on forest
physical parameters, such as soil moisture, tree density, and tree types, and INSAR
parameters such as frequency, polarization, and incidence angle. The ability of the
model to predict the PDF of the scattering phase center height and the correlation
coefficient is also demonstrated. It is shown that for practical INSAR configurations,

the correlation coefficient of forest stands is near unity, much larger than what can
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be measured by existing INSAR systems.



CHAPTER VI

RETRIEVAL OF FOREST PARAMETERS
USING A FRACTAL-BASED COHERENT
SCATTERING MODEL AND GENETIC
ALGORITHMS

6.1 Introduction

Retrieval of gross biophysical parameters of forest stands, such as basal area, tree
height, and leaf area index (LAI), is of great importance in many environmental
research programs. Radar remote sensing at lower microwave frequencies has been
proposed as a sensitive instrument for such applications [14,15]. In support of pro-
grams pertaining to radar remote sensing of vegetation, many advanced polarimetric
(SIR-C, AIRSAR) [53] and interferometric (TOPSAR) [59] radar instruments have
been developed.

The study of the inversion problems in geophysical science and engineering has
been of great importance from the onset of the remote sensing science [61,62]. For
example, in microwave remote sensing of vegetation the inverse problem is defined
as the application of the measured quantities such as the polarimetric backscattering
coefficients (from a SAR) [45] and/or the scattering phase center heights (from an

interferometric SAR) [37,38] in an algorithm in order to retrieve forest parameters
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such as tree type, tree density and height, and moisture content of vegetation and
soil.

Over the past two decades significant effort has been devoted towards the de-
velopment of scattering models for vegetation canopies [21,26-29,60] as well as in-
version models to retrieve forest parameters from the measured data [63-65]. So
far the emphasis of the scattering model development has been on the construction
of simplified models with as few input parameters as possible so that the inversion
problem becomes tractable. In this process the importance of structural features of
the canopy (particle arrangement), coherence effects, and multiple scattering were
ignored. Even with these simplifications, the inversion process is rather complex.
In [63,65] neural network approaches are suggested for the inversion process where
extensive computer simulations or experimental results are used to train a neural
network in a reverse order (the model outputs are fed as the input to the program).
This method is computationally extensive and its success depends on the fidelity and
the extent of the training data. In [64] a gradient-based search routine is applied
to a nested linearized model. This model is computationally efficient; however, its
applicability is limited to models with small dimensionality and its success depends
on the fidelity of the forward model.

This chapter describes the application of a high fidelity scattering model in an
inversion process based on a stochastic global search method. Basically, the afore-
mentioned coherent scattering model that preserves the structural features of tree
canopies using fractal models is employed to generate simplified empirical models (for
different tree species) that can predict the polarimetric and interferometric radar re-
sponse of a forest stand efficiently and accurately. The premise for the successful

development of such empirical models stems from the fact that the model outputs
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are averaged quantities, such as backscattering coefficients or the mean height of the
scattering phase center, and therefore are very gentle functions of model inputs.

As demonstrated in the previous chapters, the fractal-based coherent scattering
model (FCSM) offers two advantages over the traditional scattering models, namely,
FCSM is more versatile and accurate. Basically, FCSM is capable of simulating the
fully polarimetric (including the phase statistics) and polarimetric-interferometric
(scattering phase centers and correlation coeflicients for any polarization configura-
tion [39]) radar responses of coniferous and deciduous forest stands. High accuracy is
achieved by FCSM through incorporating the coherent effects among the individual
scatterers and scattering components and by accounting for the accurate position of
scatterers which is manifested in inhomogeneous scattering and extinction profiles.
However, this versatility and accuracy has been achieved at the expense of the model
complexity which demands extensive computational power. For example, the num-
ber of input parameters needed to accurately characterize the tree structures and
the environment may easily exceed 30 (it should be noted that once a tree type is
chosen much fewer free parameters are needed to model the natural variabilities).
On the other hand, to obtain a solution with a reasonable accuracy in the Monte
Carlo simulation, a sufficiently large number (> 100) of realizations are required.
The required computational time for each simulation limits the model’s utility in
inverse processes which may demand the calculation of the forward problem many
times.

To circumvent the aforementioned problem, development of empirical models
based on FCSM is proposed. Construction of an empirical model can be achieved
using a standard procedure such as curve-fitting and regression method. Unlike phys-

ical models, empirical models are simple mathematical expressions formed from a set
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of data acquired from measurements or a physical model prediction. Once empir-
ical formulae are obtained, they are easy to use and require minimal computation
time. However, it should be noted that an empirical model is usually valid only for
a specific case within a certain range of the parameter space over which the model
1s constructed.

For the development of the empirical model used in this study, first a sensitivity
analysis is conducted in order to determine the significant parameters, the number
of which determines the dimensionality of the input vector space. A red pine stand
is chosen in this study and six parameters are selected as the input parameters.
Each selected parameter is allowed to have about 30% variation with respect to a
centroid. Using the Monte Carlo simulation results obtained from FCSM a database
i1s constructed by varying the individual parameters over a prescribed range of the
input vector space around the centroid. The parameters at the centroid are obtained
from the ground truth data of a red pine test stand (Stand 22) in Raco, Michigan.

For the inversion process, first a least-square estimator is used and is shown to
work properly when the number of measured channels is equal to or larger than
the dimension of the input vector space. But since this may not be the case in
general situations, a genetic algorithm (GA) [66] is developed and employed as a
search routine for the nonlinear optimization problem. GAs are known to be very
successful when the dimension of the input vector space is large and/or when the

objective function is nonlinear.
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6.2 Empirical Model Development

In general, the output of the Monte Carlo coherent scattering model can be

expressed as

M :‘C(fvpaa;daaHtaDtaabamsamw), (61)

where £ is a complex operator relating the input and output of the model and the
output M is a vector which may contain the backscattering coefficient (a2, 0%, 0?,),
scattering matrix phase difference statistics, the scattering phase center height Z, or
the interferogram correlation coefficient. The input parameters are divided into two
categories: 1) radar system parameters, and 2) target parameters. Radar parameters
include the radar frequency f, the polarization configuration p, and the incidence
angle 6. The number of target parameters can be very large, consisting of the tree
structural parameters and the dielectric properties of the constituent components.
However, the number of these parameters is reduced drastically once a tree type is
chosen. In this case only a few structural parameters are sufficient to allow for natural
variabilities observed for that type of tree. The rest of the structural parameters are
embedded in the fractal code of the tree. In this study we demonstrate development
of an empirical model for a red pine tree where only six free parameters are sufficient
to describe the stand. These include the trunk diameter d,, tree height H;, tree
density D;, branching angle 6, soil moisture m, and wood moisture m,,. It should
be noted that these parameters themselves are statistical in the coherent model with
prescribed distribution functions and here we are referring to their mean value.
Multi-frequency polarimetric SAR systems operate at discrete frequencies, usu-
ally at P-, L-, C-, and X-band, and the polarization configuration p are vv, vh, and

hh. In this study, we demonstrate a model with three fundamental backscattering
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coefficients and the associated mean scattering phase center height as the model out-
put and fix the frequency at C-band (5.3 GHz). The empirical model is developed
to operate over the angular range 25°- 70°. Therefore the output and input vectors

M and x are defined as:

B h B T
Zv d,
Zh H,
Zhh D,
L= , and x =

0
Oy 0b

0
Ouh ms

0

As mentioned earlier since no resonance behavior is expected, the output vector M
is a gentle function of the input vector x and the incidence angle § which may be
related to each other via a simple empirical relationship

o~

M = £(6;x), (6.2)

where £ is the simple empirical operator and M is the output of the empirical model.
It is expected that M be as close to M as possible.

In general, the output parameters are non-linear functions of the incidence angle
and other input parameters. In order to establish these relationships the coherent
model must be run by varying the incidence angles and other input parameters.
Through an extensive sensitivity study it was found that over a finite domain of the
input vector space a logarithmic relationship between the backscattering coefficient
(linear in dB scale) and a linear relation between the scattering phase center height
and the input parameters exist. The dependence on the incidence angle was found

to be nonlinear.
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Parameter Range Variation
Trunk Diameter 10.9 ~ 14.9(cm) 31 %
Tree Height 8.0 ~ 9.9(m) 21 %
Tree Density | 807 ~ 1027 (trees/Hectare) | 24 %
Branching Angle 13.8 ~ 15.8 (deg) 14 %
Soil Moisture 0.36 ~ 0.56 (g/g) 43 %
Wood Moisture 0.28 ~ 0.48 (g/g) 52 %

Table 6.1: The ranges of the selected ground truth parameters and the corresponding
percentage variations to the centroid.

The first step in the construction of the empirical model is to choose the domain
of the input vector space. In this investigation we chose the structural parameters
of a young red pine stand, a test forest stand in Raco Michigan (Stand 22), and the
seasonal average of soil and vegetation moisture as the centroid of the input domain.
These parameters and their range of variation used in the model development are
shown in Table 6.1. The Monte Carlo simulation was then carried out for specific
incidence angles by varying the six free parameters within the prescribed ranges.
The average scattering phase center heights (Z,) for each polarization configuration
and backscattering coefficients (6 in dB) are shown in Figures 6.1 and 6.2 as a
function of each parameter respectively. ~ These figures clearly demonstrate the
linear relationship previously described. Hence the output vector can be readily
approximated by the Taylor series expansion of the exact model to the first order,
and is given by

~

£(x) = L(%o) + A - (x — xo) (6.3)

where X denotes the input vector at the centroid and A is the matrix of partial
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Figure 6.1: The sensitivity analysis of the C-band polarimetric scattering phase cen-
ter height as a function of the physical parameters: (a) trunk diameter,
(b) tree height, (c) tree density, (d) branching angle, (e) soil moisture,
and (f) wood moisture, simulated at incidence angle 6 = 25°.
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derivatives whose 1j-th element is given by

oL,
aij - a_%|X=X()' (64)

a;; simply represents the derivative of the i-th output channel £; with respect to the
J-th input parameter z;, evaluated at the centroid xq.

In this matrix, each element was evaluated by calculating the slope of a fitting
line over 5 sample points based on a least square method. In Figures 6.1 and 6.2 the
symbols (*) are the simulation results and the lines are the best linear estimation. It
should be pointed out that each point in each figure represents an ensemble average
of 200 realizations of the Monte Carlo simulation. This indicates that the initial task
of generating a matrix of coefficients is very tedious and time-consuming. However,
once the empirical model is obtained, it can provide a highly accurate solution to an
arbitrary input in almost real-time. This property of the empirical model is especially
important in the inversion processes.

Results in Figures 6.1 and 6.2 are for a fixed incidence angle § = 25°. However

9

the simulations at other incidence angles show that the general form of (6.3) is valid
for all incidence angles with the exception that E(xo) and A are functions of the
incidence angle, i.e.,

~

£(0;%) = L2(6) + A() - (x — xo). (6.5)

It is found that £°(f) and A(6) are non-linear, but gentle, functions of the incidence
angle 0 over the range of interest (25° to 70°). In order to obtain the functional
form of £ and A on 4, the aforementioned Monte Carlo simulation was repeated
at several different incidence angles, and the corresponding values £° and A were

evaluated. Polynomial functions are used to capture the angular variations of £° and
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A. Tt was found that £° and A can be accurately expressed by

and

EO(G) = E() + £10 + 5202 + £303,

A(0) = Ao+ A0+ Ay0° + A30° + AL0*,

where £; and A; are 6 x 1 and 6 x 6 matrices whose values are given by

[L'o Ly L, £3}=

and

Ay, =

1.5294
—-0.6424
7.1314
—13.5348
—-1.0359

—4.7396

—0.2244
0.2687
0.1875

—1.8434

—1.0341

—2.3518

—3.1051
3.6061
3.6264

—12.2843
—50.1483

3.5502

49.0879
—0.5762
10.3344
—45.9425
22.6264

—224.1260

—0.3062

0.2642

—0.0659

—0.3188

0.2713

2.1623

10.8663
0.7727
—7.0854
16.2122
5.2748

—6.9444

—0.0020

0.0029

0.0094

—0.0079
—0.0431

—0.0005

5.2289
—2.4209
—3.6540

2.2269

6.6677

—4.8994

—0.0001

0.0000

0.0000

0.0000

0.0003

0.0000

—59.6487
—7.0918
—2.5728

—108.8944

—73.7306

114.7993
.



Ay

A;

—0.1943
0.0581
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Figure 6.3 compares the results of the empirical model given by (6.5) with those
of the Monte Carlo simulation at the centroid (x = X¢). It should be noted that the
choice of the output parameters are arbitrary and depends on the available set of
input data. For example, an empirical model for a two-frequency system with three
backscattering coefficients could be developed using the same procedure.

Equation (6.5) represents the overall empirical model whose accuracy can be eval-
uated through a comparison with the Monte Carlo simulations. For this comparison
a large number Monte Carlo simulations with independent input vectors were car-
ried out. Figures 6.4, 6.5, and 6.6 show the comparison between the results of the
empirical model and those of the Monte Carlo coherent model using 200 independent
input data sets randomly selected within the aforementioned domain of the empir-
ical model. The figures show excellent agreement between the empirical model and
the Monte Carlo coherent model, noting that the convergence criteria for the Monte
Carlo model is £0.5 dB. Having confidence on a fast and accurate empirical model,

the inversion processes can be attempted which is the subject of the next section.

6.3 Inversion Algorithms

~

Consider a physical system whose input-output relation is expressed by M = £(x)
where in general M and x are multi-dimensional vectors of arbitrary length. The
inverse problem is mathematically defined as x = L1 (M) subject to certain physical
constraints. Although the inverse problem may be well-defined mathematically, in
practice the inverse solution may not exist for two reasons: 1) mathematical con-
struction of the model may not be exact, and 2) the measured vector M may not
be exact because of measurement errors. Hence, instead of casting the problem in

terms of an inverse problem, the problem of finding x is usually cast in terms of a
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Figure 6.3: The angular dependence of the polarimetric backscatter in terms of: (a)
the scattering phase center height Z, and (b) the backscattering coeffi-
cient 0°. The simulation results are fitted with polynomials of degree
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constraint minimization problem.
Suppose there exists a set of measurements M, the problem is defined as charac-

terization of x so that the objective function (or error function), defined by
€(x) = [I£(x) - M]|%. (6.8)

is minimized over a pre-defined domain for x. Here, || - || denotes the norm of the
argument. As mentioned earlier there are a number of inversion processes available
in the literature; however, in this study by constructing a simple empirical model a
traditional least-square minimization approach and a stochastic global minimization

method are examined.

6.3.1 Least-Square Approach

As it was shown in Section 2, the scattering problem can be cast in terms of a
linear system of equations of the form E(u) = Au where A is an m x n matrix and
u is an n-dimensional vector in D, D C R". For a given m-dimensional vector C~4,
(6.8) can be expanded as

g = Z(Z Ai;U; — @')2. (69)

A solution that minimizes £ must satisfy

— = ) =1,2,... .
o 0, 7=12,..,n (6.10)

and is referred to as the least-square solution. It is shown that the solution of (6.10)

(um) can be obtained from the solution of the following matrix equation [67]:
(A*A) -up = A*- G, (6.11)

Here, A" is the transpose of A. It is also demonstrated that the solution uy, =
(A*A)1A*G exists if rank(A) = n. This requirement states that the number of

independent equations should exceed the number of unknowns.
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To apply (6.11) to our empirical model using (6.3), it is noted that
L(x)= L= A-(x—x), (6.12)

thus we use the substitution u = x — xo and G = M — £°. Here £° and A are

evaluated from (6.6) and the solution is given by
Xm = Xo + (A*A)"TA*(M — £°). (6.13)

The least-square solution may not be suitable for the inverse problem at hand
for two reasons. First, the number of output channels m is usually less than that of
unknown parameters n. In this case, rank(A) < n, and A*A is not invertible. Even
when the number of channels is larger than the unknowns, the solution provided by
(6.13) may not be accurate. This happens when A*A is ill-conditioned. Basically,

some elements of (A*A)™! become very large which amplify the errors in M [68].

6.3.2 Genetic Algorithms

In recent years, applications of genetic algorithms to a variety of optimization
problems in electromagnetics have been successfully demonstrated [69,70]. The fun-
damental concept of genetic algorithms (GAs) is based on the concept of natural
selection in the evolutionary process which is accomplished by genetic recombination
and mutation. The algorithms are based on a number of ad hoc steps including:
1) discretization of the parameter space, 2) development of an arbitrary encoding
algorithm to establish a one-to-one relationship between each code and the discrete
points of the parameter space, 3) random generation of a trial set known as the initial
population, 4) selection of high performance parameters according to the objective
function known as natural selection, 5) mating and mutation, 6) recursion of steps 4

and 5 until a convergence is reached. Figure 6.7 shows the flow chart of GAs. Note
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Figure 6.7: A flow chart of a genetic algorithm.

that the population size is provided by the user and an initial population of the given
size is generated randomly.

GAs, as the revolutionary-type search routines, are different from the traditional
gradient-based methods and have the following features: 1) GAs work with a coding
of the parameters, not the parameters themselves. 2) GAs search for a population of
points, not a single point. 3) GAs use information based on the objective function,
not derivatives or other auxiliary knowledge. 4) GAs use probabilistic transition
rules, not deterministic rules.

In this study, since we have as many as six input ground truth parameters and
six output channels, it is expected that the objective function is complex and highly

non-linear containing many local minima. In this case, the traditional gradient-
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based optimization methods usually converge to a local minimum and fail to locate
the inverted data. One interesting feature of GAs is that the method would provide
a list of optimal solutions instead of a solution. This is important in a sense that
a solution that best meets the physical constraints (not included in the objective
function) may be selected from the list of optimal solutions.

For this problem, each of the input parameters was discretized and encoded into
a 4-bit binary code, creating a discrete input vector space with 22* members. A
population of 240 members was used for each generation and the objective function
was defined by

Ex)=lw- | M=L"—A-(x—x0)| | (6.14)

where w is a user-defined weighting function assigned to individual output channels.
To examine the performance of this GA-based inversion algorithm, many arbitrary
points within the domain of the input vector space were selected and then the Monte
Carlo simulation was used to evaluate the polarimetric backscattering coefficients
and the scattering phase center heights at 5.3 GHz. The output of FCSM for these
simulations were used as a synthetic measured data set M for the inversion algorithm.
Figures 6.8(a)-6.8(f) show the performance of the inversion algorithm through com-
parisons of the input parameters x and the inverted parameters x’. Also shown in

each of the figures is the calculated average error 7, defined by

N /
- xs =z

Tk o
NAz

where N is the number of points (N=10 in this case), and Az is the range of validity
of the parameter according to the empirical model. It should be noted here that the
quantization error for 4-bit quantization (+3%) is also included in the results. To

examine the importance of the quantization error and the stochastic nature of the
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solution in the inversion process, the inversion process was applied to another set
of synthetic measurement data generated by the empirical model. Figures 6.9(a)-
6.9(f) show the comparison between the actual input x and the inverted solution x'.
It is noticed that the error in Figures 6.9(a)-6.9(f) are slightly smaller than those
obtained from Figures 6.8(a)-6.8(f). This indicates that the quantization error and
the stochastic nature of the solution are considerable factors on the overall error.
Increasing the quantization level to 5 bits increases the members of the input vector
space by factor of 26. This slows down the inversion process since the population in
each generation must also be increased. However, this does not improve the overall
accuracy drastically as the errors inherent in the empirical model and those caused
by the stochastic nature of the GA solution are independent of quantization error.
At last, the developed inversion algorithm is tested using the real measured data
acquired by the JPL TOPSAR over a test stand of red pine forest in Raco, Michigan.
Although only four data points (C-band vv-polarized backscattering coefficients and
scattering phase center heights at incidence angles § = 39° and 53°) are available,
the inversion algorithm can be easily modified via the objective function of the GA.

In this case, the objective function is given by

E(x) = &1(x) + E(x), (6.16)

where
g(x) = |lw- [M’l _L0— A, (x—xg)] 12, (6.17)
&(x) = [w: My~ £2- Ay (x~ xo)] II*. (6.18)

Here the subscript 1 and 2 denotes, respectively, the case for the incidence angle

§ = 39° and 53°. Note that the weighting function and the measured vectors in this
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Measured Z2(0 = 39°) = 3.6m o2,(8 =39°)=-10.26 dB
Channels M Z¥(0 =53°) =6.1m o? (6 = 53°)=-13.07 dB
Parameters | d,(ecm) | Hi(m) | Di(#/Hectare) | 6, | m; Moy
Input x 12.9 9.00 907 14.8° | 0.46 0.38
Inverted x’ 124 9.37 945 13.9° | 0.44 0.37

Table 6.2: The inversion results using the interferometric TOPSAR data as the mea-
sured channels M. Here x is the actual ground truth data and x’ is the
output of the inversion process.

case are written as

w=1100100] (6.19)

_ E t

Mi = | Z(0=39°) 0 0 o%(0=239°) 0 0] , (6.20)
L
r t

M: = | 270 =53) 0 0 0%(0=53°) 0 o} : (6.21)
L

The simulation results are shown in Table 6.2 where a very good agreement is

achieved.

6.4 Conclusions

In this study, a simplified empirical model was developed using a high fidelity
Monte Carlo coherent scattering model to be incorporated in an efficient inversion
algorithm. The empirical model was specifically developed for a red pine forest
stand which provides simple expressions for the polarimetric backscattering coeffi-
cients and scattering phase center heights at C-band as a function of the incidence
angle. The accuracy of the empirical model was examined by comparing its output
with that of the Monte Carlo fractal-based coherent scattering model. The empirical

model in conjunction with a stochastic search algorithm (genetic algorithm) were
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used to construct an inversion algorithm. The accuracy of the inversion algorithm
was demonstrated by first using synthetic measured data generated from the empiri-
cal model and the Monte Carlo FCSM. It was shown that the inversion algorithm can
accurately estimate the input parameters where synthetic data were used. Next we
applied the inversion algorithm to an actual data set, obtained from TOPSAR, com-
posed of vu-polarized backscattering coeflicient and scattering phase center height at
C-band and at two incidence angles. Excellent agreement was obtained between the
ground truth data and the output of the inversion algorithm. Using the combination
of a simplified empirical model and a GA-based inversion process, the investigation

of this study provides a potential application to forest monitoring.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary of Achievements

The main theme of this dissertation is the development of a realistic and compre-
hensive electromagnetic scattering model for characterizing radar response to forest
canopies. Currently, the most widely used scattering model for forest canopies is
based on radiative transfer (RT) theory which treats the vegetation as a random
medium composed of uniformly distributed scatters. However, the natural forest
canopy has an apparent inhomogeneous architecture in both vertical and horizon-
tal directions. In addition, RT is an incoherent approach that restricts its appli-
cation to radar interferometry. These two deficiencies have been addressed in this
study through the development of a fractal-based coherent scattering model for forest
canopies.

Based on fractal theory, realistic 3-D tree structures have been first generated
as the simulated targets for the simulation of radar backscatter. Using L-systems,
the useful tools for constructing fractal patterns, versatile generating algorithms
have been developed in this study covering coniferous and deciduous trees with fine
botanical features (like needle-leaflet clusters) incorporated. Two real forest stands

(red pine and red maple) near Raco, Michigan have been simulated and high fidelity

148
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has been achieved. Robust computer codes have been developed to generate and
visualize the desired tree structures.

A comprehensive electromagnetic scattering model has been constructed in a
most general configuration. The ground plane was modeled as a half-space dielectric
medium with an arbitrary tilt angle. The tree trunk was modeled as a stratified lossy
dielectric cylinder with corrugated bark layer on the surface, from which the bistatic
scattering has been investigated by deriving the theoretical semi-exact solution and
PO approximation. The broad leaf and needle leaf were modeled as homogeneous
dielectric thin disks and cylinders respectively, where the generalized Rayleigh-Gan’s
approximations were used to characterize their scattering properties.

To model the backscattering from a forest canopy, the fractal-generated tree
structure was considered as a cluster of scatterers composed of dielectric cylinders
and disks. Using the single scattering approximation, the total scattered field was
obtained from the coherent addition of the individual scattering from each scatterer
illuminated by a mean field. Foldy’s approximation has been invoked to model
the coherent wave propagation within the forest canopy where the mean field at
a given point accounts for the accumulated attenuation and phase change caused
by vegetation components. Finally, the desired statistics of the scattered field were
acquired using a Monte Carlo simulation over a large number of realizations.

Combined with the recently developed Ak-radar equivalence algorithm, the de-
veloped model, for the first time, can simulate the correlation coefficient and the
scattering phase center height of a forest canopy, the very quantity measured by an
interferometric SAR (INSAR). The accuracy of the model has been verified using
SIR-C (SAR) and TOPSAR (INSAR) measurements over test stands of coniferous

and deciduous types near Raco, Michigan.
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A thorough sensitivity analysis has been performed to characterize the response
of the forest canopy with controlled physical parameters (geometry, density, and
composition) to a multi-parameter (frequency, polarization, incidence angle, and
baseline) SAR/INSAR. To improve the model utility and efficiency, a procedure
for developing simplified empirical formulation for scattering from complex forest
structures was presented in this study. Finally, an inverse scattering model based
on genetic algorithms has been developed for retrieval of forest parameters that may

take multi-parameter SAR/INSAR data as its input.

7.2 Recommendations for Future Work

Several possible directions could be taken as future research:

Database Construction Since most of the efforts of this study were put into the
exploration of a new model, only two forest stands were investigated. In the
future, to expand the application of the present model, more fractal generating
algorithms for other tree species or stand should be developed. Associated with
the ground truth inventory, a updated database is required to have accurate

model input for the scattering model.

Model Improvements Surface roughness and multiple scattering are two impor-
tant factors to be taken into account in the future improvement work. For
short tree canopies, the direct backscattering for the rough surface may not be
neglected. To accurately model the cross-polarized backscatter, the multiple

scattering among the scatterers may play a crucial role.

Application to Forest Management In this study, a procedure for developing

an empirical model and inverse algorithms was proposed and some preliminary
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results have achieved. However, only six parameters were selected with a lim-
ited range of validity centering the calibrated ground truth. In the future work,
more parameters and wider range of validity should be added and expanded
respectively to meet the real needs for the application in forest monitoring or

management.
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