THEORETICAL MODELING OF
MMIC’S USING WAVELETS,
PARALLEL COMPUTING AND A
HYBRID MOM/FEM TECHNIQUE

by
Jui-Ching Cheng

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
1998

Doctoral Committee:

Professor Linda P. B. Katehi, Chairperson
Associate Professor Hal G. Marshall

Associate Professor Kamal Sarabandi
Professor John Volakis

RL-959 = RL-959



ABSTRACT

THEORETICAL MODELING OF MMIC’S USING WAVELETS, PARALLEL
COMPUTING AND A HYBRID MOM/FEM TECHNIQUE

by

Jui-Ching Cheng

Chairperson: Professor Linda P. B. Katehi

This dissertation explores three subjects which contribute to increasing the ef-
ficiency, in terms of speed and storage, of numerical methods for electromagnetic
problems.

The hybrid MoM/FEM technique is first applied to the design of a microstripline-
fed slot-coupled cavity-backed patch antenna, a coaxial line-fed cavity-backed patch
antenna, a wide bandwidth microstripline vertical cavity coupler, and a high-Q cavity
resonator. The latter was fabricated and tested to verify the theoretical results.

The second is a wavelet based method of moments. Instead of ordinary ba-
sis functions, a class of bases called wavelets are used in the formulation of MoM.
These wavelets are locally oscillatory and have zero average. Hence, when inte-
grated with other smooth functions, the resulting value will be very small. When

used in MoM implementations, the resulting impedance matrix will have many small



off-diagonal terms which can be set to zero without adversely effecting the solution.
Using sparse storage techniques, substantial memory is saved by using wavelet bases.
These wavelet bases were applied to the analysis of patch antenna arrays, leading to
large memory savings.

Parallel computers were applied to speed up the computation process. The idea
of parallelization is to divide a single task to many independent jobs. The com-
munication between the jobs must be minimal to avoid the overhead incurred by
the slower (compared to the speed of CPU) communication link. The matrix filling
process and the fast wavelet transform (FWT) were two processes suitable for paral-
lelization. These processes were implemented in the C++ language using a portable

and standard Message Passing Interface.
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CHAPTER 1

Introduction

1.1 Motivation and Background

Advances in semiconductor technology have enabled the manufacturing of highly
integrated MMIC’s (Monolithic Microwave Integration Circuits) which can reduce
the cost, size and weight or improve the performance of high frequency communica-
tion systems. However, in the process of integrating more and more circuit elements
in the same package, interference between components becomes a major factor influ-
encing circuit performance. This necessitates full-wave modeling of the structure to
accurately predict the behavior of the circuit.

Full-wave modeling uses integral or differential equations derived from Maxwell s
equations. These equations are solved by the finite linear space approximation. In
this process, the unknown sources or fields in the Maxwell’s equations are discretized
by a finite set of basis functions. One way of finding the expansion coefficients of
these basis functions is by performing a suitable inner product on the integral or
differential equations with the same or different set of functions. This operation
results in a matrix equation of which the rank is proportional to the number of
unknowns. The equation can be solved by direct inverse of the matrices or interactive

linear system solvers. Examples of these techniques include the Method of Moments



(MoM) and the Finite Element Methods (FEM). Another way of solving Maxwell’s
equations is substituting the differential operator with a difference operator, which
converts the continuous differential equations to a set of linear equations governing
the relationship between the discrete points in the problem domain. By solving this
set of equations, the value at these discrete points can be computed. One example of
this technique is the Finite Difference Time Domain (FDTD) Methods which recently
attracts large interest.

The method of moments uses the integral form of Maxwell’s equations. The
unknown equivalent sources or polarization currents are discretized, resulting in a
smaller linear system with better computational efficiency. However, in most cases,
knowledge of the Green’s functions, either in simple functional form or series expan-
sion form, are required. This limits the use of MoM to simple structures in which
Green’s functions are available. The integral equation needs enormous amount of
analytical effort to derive and implement. Different formulation are needed when
the structure changes. This makes the MoM unsuitable for solving general electro-
magnetic problems.

Finite element methods solve Maxwell’s equations by discretizing the electro-
magnetic field directly. This results in a much larger linear system that requires
more computation time and storage space than does MoM. However, finite element
methods have great flexibility in modeling complex structures. Since the differen-
tial form of Maxwell’s equations is used directly, the formulation is independent of
the structure, making FEM a good general electromagnetic problem solver. How-
ever, because the fields must be discretized in the whole problem domain, it is not
suitable to be used in unbound region like antenna problems. Recent advances in

absorbing boundary conditions (ABCs) [18], perfect matching layers [6] (PMLs) [34],



isotropic absorbers and boundary element methods (BEM) [6] have addressed this
limitation by enclosing the problem domain with an artificial boundary. The first
three methods use approximate boundary conditions which requires careful choice of
the boundary material’s constituent parameters in order to get correct results. The
last method enforces rigorous boundary conditions by using the Green’s function on
the boundary. However, the resulting matrix is partly sparse and partly full, which
causes difficulties in storing and solving the linear system.

FDTD, like FEM, solves Maxwell’s equations directly. Hence, it shares most of
the benefits and limitations of FEM. One key difference between these two methods
is that the solution space of FDTD is in the time domain. To derive the frequency
domain solution, Discrete Fourier Transform (DFT) must be performed on the time
domain solution. Although a range of frequency response curves can be produced in
one simulation, additional error may be introduced by the DFT process.

From the above discussion, we know that MoM is superior to the FEM and FDTD
techniques in computational efficiency. However, it lacks the flexibility of the FEM
and FDTD in modeling complex structure commonly found in MMIC’s. The large
size of MMIC’s makes FEM and FDTD computationally ineflicient using today’s
computer technology, especially when the MMIC integrates antenna elements. Thus,
a new full-wave technique which can address the limitation of MoM in flexibility but
retain its computational efficiency is necessary to simulate a MMIC faithfully in a

reasonable amount of time.

1.2 Objectives

The goal of this dissertation is to develop a full-wave technique which is both

computationally efficient and flexible in modeling complex structures such that it can



facilitate the design of MMIC’s. To reach this goal, three approaches are developed
in this dissertation.

The first is a hybrid technique which is based on MoM and FEM. In this tech-
nique, the formulation of MoM is retained to achieve computational efficiency in
regions where Green'’s functions are available. The FEM is only used in the formula-
tion of complex structures to limit its computational cost. The separation of the two
formulation makes the choice of basis functions in MoM independent of FEM. This
enables us to use the knowledge of the electromagnetic field to choose suitable basis
functions such that the unknowns in MoM formulation can be reduced. The sparsity
and symmetry of the FEM matrix is also retained due to the separate formulation.
Since the difference between this hybrid technique and the MoM is only the replace-
ment of the Green’s functions with the solution of FEM, this technique can apply
established MoM procedures to many classes of problems that can be formulated but
are very difficult to solve numerically only by the MoM. The FEM can also be easily
replaced with other field solution techniques.

The second is a wavelet-based MoM. In this method, wavelets are used as the basis
functions in the MoM formulation. The resulting impedance matrix is thresholded
to reduce storage size. Due to the use of wavelets, huge saving in storage size can be
achieved with only small penalty in accuracy.

The third is parallel computing. Two different parallelization schemes are imple-
mented to speed up the process of matrix-fill and fast wavelet transform (FWT).

The above approaches will be tested in practical examples to show the aforemen-

tioned merits.



1.3 Overview

In this thesis, a hybrid full-wave technique that combines MoM and FEM is
developed. This technique features the use of FEM in solving the electromagnetic
field in geometrically complex regions and MoM to solve Maxwell’s equations in
regions where the Green’s functions are available. Wavelet-based bases are also
used in the formulation of MoM, which can reduce storage requirement. To further
improve computation speed, parallel computation models are developed for matrix-
fill process, FWT.

In Chapter 2, rigorous analysis of the hybrid technique is presented. The for-
mulation primarily follows the derivation of MoM technique except in regions where
Green’s functions are substituted by the equivalent solution of FEM. The problem
domain is separated to two parts. One consists of regions in which the Green’s func-
tions are available. Another part consists of complex structures in which the Green’s
function is not known. By using equivalent principle, equivalent sources are added
on the boundary between the two parts. Galerkin’s MoM is used in the formulation
of the first part, and FEM is used in the second part. By matching the boundary
conditions, the solution of FEM can be incorporated to the MoM formulation. Thus,
the problem is solved.

In Chapter 3, cavity-backed patch antennas are analyzed using the hybrid tech-
nique. Two feeding schemes are used: one is a slot-coupled microstripline feed and the
other a coaxial line feed. Spectral Domain Green’s functions of a conductor backed
dielectric slab were used in the MoM formulation. In the FEM formulation, we used
vector-based tetrahedral elements which have the benefit of producing spurious-free

solutions. The input impedance and field distribution of the patch antennas were



computed. Good agreement with the simulated result of FDTD was achieved.

In Chapter 4, the hybrid technique is applied to microstripline-fed cavities and
couplers. A micromachined resonator which is compatible with planar circuits was
designed and fabricated according to simulated data. The measured performance of
the resonator showed the potential of achieving a Q as high as a conventional metallic
resonator. A design of a very wide band-pass microstripline vertical transition is also
shown.

In Chapter 5, a Wavelet-based Method of Moments is introduced. The multireso-
lution analysis is briefly discussed. In this dissertation, we concentrate on the use of
two dimensional wavelet bases on patch antenna problems. Theses two-dimensional
bases constructed by combining Haar and linear B-spline wavelets are suitable for
discretizing the current on patch antennas. Due to the finite support and zero av-
erage property of the wavelet bases, the resulting impedance matrix of the patch
antenna can be thresholded to reduce memory size. This wavelet based MoM is ap-
plied to patch antenna arrays. Effect of thresholding on the antenna characteristics
are investigated. Simulations of 3 x 3 and 6 X 6 patch antenna arrays are performed
to show the reduced memory requirements attained by thresholding the impedance
matrix.

Chapter 6 deals with the utilization of parallel computing to reduce computation
time. Two parallelization schemes are developed for matrix-fill process and FWT
using portable Message Passing Interface. Due to the non-uniform computation time
of the matrix-fill process, a dynamic job allocation scheme is applied to optimize the
use of CPUs. In this scheme, one node is reserved as a controller to assign jobs
to available free nodes and gather completed results. For FWT, the computation

time of each job is fixed and smaller comparing to matrix-fill process such that the



communication time between the nodes is not negligible. A static job allocation
scheme is applied to reduce the communication overhead.
Finally in Chapter 7, summary of the achievements in this dissertation and future

research direction are given.



CHAPTER II

Hybrid MoM/FEM Techniques

2.1 Introduction

In this article, we present a hybrid technique, proposed by Yuan et al. [10],
that combines the advantages of the MoM and the FEM (MoM/FEM), and has
been successful in solving various 2-D and 3-D scattering problems [10]-[16]. This
technique uses FEM to formulate the electromagnetic field in geometrically complex
regions and uses the integral equation technique to solve Maxwell’s equations in
regions where the Green’s function is known and where FEM fails to accurately
satisfy the pertinent radiation conditions.

This technique first divides the problem domain into two regions: one in which
the Green’s functions are available and one in which the Green’s functions are not
available. These regions will be analyzed by MoM and FEM respectively. Through
the boundary conditions between the two regions, the formulations of MoM and FEM
are combined to give the final solution.

In the following sections, the hybrid technique is applied to a cavity scattering
problem. Detailed formulations are supplied to give the reader insight into this

technique.



Aperture

PEC cavity

PEC obstacle

Fi 2.1: . . . .
gure A general scattering problem which consists of a cavity, an obstacle and

a current source.

2.2 Method of Moments Formulation

Fig. 2.1 shows a cavity scattering problem which consists of a cavity with an
aperture S, on its walls, an obstacle with surface S;, an impressed current J* and
the electric and magnetic fields E¢, H* produced by the impressed current. Assume
that the cavity and the obstacle consist of perfect electric conductors (PEC) and the
source is an electric current. The following development of formulation can also be
applied to the cases with multiple cavities, obstacles and apertures.

By using the equivalence principle [19], the original problem is changed to an
equivalent one as shown in Fig 2.2. The aperture on the cavity is replaced by a
PEC with equivalent magnetic current M®. The obstacle is replaced by a fictitious

equivalent electric surface current J°. M*® and J® must satisfy the conditions,

M®=-h xE (2.1)
J=nxH, (2.2)

where 7 is the outward normal vector on the surfaces and E and H are the unknown
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Figure 2.2: The equivalent problem of Fig. 2.1.

total fields on S, and S, respectively. In this manner, the volume of interest is
separated into two parts. One is the unbounded region outside the cavity including
the sources J, M® and J*; the other is the region inside the cavity with source - M®
flowing on the surface initially occupied by the aperture. The total fields can be

represented as

Ey = E\(J)+ Ey(J%) + Ey(M®) (2.3)
I_fl = Hl(j’)-*-f_{l(jb)-{-Hl(M”‘) (2 4)
outside the cavity, and
E; = Ey(-M") (2.5)
Hy, = Hy(-M*") (2.6)

inside the cavity, where subscript 1 denotes the region outside the cavity and sub-
script 2 denotes the region inside the cavity. If the forms of £ and H' are readily
available, the two terms £ (J*) and H;(J%) in (2.3) and (2.4) can also be represented

by E' and H'| resulting in slightly different expressions.
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Since the Green’s function of the exterior region is available, E, and H; in (2.3)
and (2.4) can be derived from integral equations. Note that the Green’s function
includes the effect of the completely closed PEC cavity. By matching the boundary

conditions on S, and Sy, two equations linking the two regions are derived:

ﬁXE[l:ﬁXI_{Q on Sa (27)

nxE =0 on Sp. (2.8)

Let M? and J® be expanded by basis functions M? and J° as follows:

Na
M = ) miMg (2.9)
N,

P o=

|
\g|
s
3

(2.10)

where N,, Nj are the numbers of the basis functions and m?, j° are the unknown co-
efficients. By substituting equations (2.3)-(2.6) and (2.9)-(2.10) into (2.7) and (2.8),
and applying Galerkin’s moment method, the following coupled matrix equations are

obtained:

—V] =27+ [T°][M] = 0 (2.11)

]+ [CO1°] = [Y] (M) = [Ye][Me]. (2.12)

where [J®] and [M®] are column vectors with the n-th element equal to j° and m2,

respectively. Using the notation

(4, B)s = // A-BdS, (2.13)
S
the matrix and vector elements in (2.11) and (2.12) are defined by:

Y = (=M, Hy(M))s,

N, x N, matrix (2.14)

y:nn = (_M;:UH2(M§))S Na X Na matrix (215)

a
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2 = (=J,Ei(J%)s, Nyx N, matrix (2.16)
8 = (J2, By (M?))s, Ny x N, matrix (2.17)
¢ = (M, Hy(J))s, N, x Ny matrix (2.18)
¢ = (M, Hy(J))s, N, x1  column vector (2.19)
vl = (=J2,Ei(JY)s,  Nyx1 column vector. (2.20)

Note that from reciprocity, the elements of [T%] and [C?] are related by ¢, = —t2 .
Solving equations (2.11) and (2.12), we have
] = (12T - [ve] - [ve) ™ (Ie9i2 vl - ) (221)
[77] = [2°]7 ((T7][Me] = [V7]). (2.22)
Equation (2.21) and (2.22) indicate that the unknown column vectors [M®] and [J?]
can be calculated if all the matrix elements in (2.14)-(2.20) are known.
Since in the most general case the Green’s function inside the cavity is not avail-

able, matrix [Y*] is still not known at this point. In the next subsection, we will

show how to calculate [Y¢] by using FEM.

2.3 FEM Formulation

Consider the time harmonic Maxwell equations,

VxE = —jwB-M (2.23)
VxH = jwD+J (2.24)
V-D = p
V-B = pm

with the constituent relations
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where

E . electric field intensity

H : magnetic field intensity
D : electric flux intensity

B : magnetic flux intensity

J : impressed electric current

M : impressed magnetic current
pe : electric charge density
pm : magnetic charge density

€ : permittivity

g . permeability

w : angular frequency

Note that e/t time dependency is assumed.
After substituting (2.24) and the two constituent relations to (2.23), the magnetic

field H; in the cavity of previous section satisfies

1
JWeE,

V x (-

V x Hy) = jwu.Hy + M°, (2.25)

where p. is the permeability of the medium inside the cavity and ¢, the permittivity.
Let ¢ denote an arbitrary vector test function. The inner product of ¢ with both

sides of equation (2.25) in the whole volume of the cavity gives

///[V N (_j(jecv x H)]- ¢dv — [[/(jwﬂc-g2 ) dv = //M“ - b ds (2.26)
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From vector identity V- (A Xx B) = B-V x A= A-V x B, the integrand in the first

term of (2.26) becomes

L Vxm)xs  (227)

JweE, Jwe,
Substitute (2.27) to (2.26) and apply Stokes Theorem to the second term of (2.27),

we have

//‘/(_ 1 V><H2)-V><q_bdv——[//(jwycf{?.q_g)dv=/Ma.q;ds7 (2.28)

Jwe.
Note that the second term of (2.27) vanishes after the volume integration because

—-LV x H = E = 0 on the boundary.

Jwe
Expand the magnetic source M*® as in (2.9) and expand H, into Ny basis func-

tions:
Hy =) ¢i;i (2.29)
1=1
where ¢;; are the unknown coefficients. By applying Galerkin’s method to (2.28) for

each M 7, we get the following matrix equation:
[A][@] = [B], (2.30)

where

a,-j=///(— 1 V x¢i-Vxéi)dv—

Jwee
///(jwucql- - ;) dv Ny x Ny matrix, (2.31)
bij = //M; - gi ds Ny x N, matrix, (2.32)
Q,'j = (ﬁ,’j N¢ X Na matrix. (233)

Due to the large size of [A] commonly seen in 3-D problems, the direct inversion
of [A] is not always possible. Instead, iteration methods like the bi-conjugate gra-

dient method [6], which is also applied in this dissertation, have to be used. A 3D
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edge-based tetrahedral vector element is used through this dissertation. A detailed

definition of this element is included in appendix A.

2.4 Combining the solutions of MoM and FEM

After solving [®] from (2.30), we may find [Y] by substituting (2.29) into (2.15)

as follows:

Ymn = (~M“ H(M}))s,

= Z¢m 2, 6i)s. (2.34)

If we define the matrix elements of [Y?] as
Yon = (=M, 60)s., (2.35)
equations (2.34) - (2.35) result into the following matrix equation:
Y] = [Y?][@]. (2.36)

By comparing (2.32) and (2.35), we find that [Y?] is related to [B] by [Y*¢] = —[B].
Now that all the matrices in (2.14)-(2.20) have been derived, the unknown [M?]
and [J%] can be calculated from (2.21) and (2.22).
In the following two chapters, physical structures will be analyzed by the formu-

lation introduced in this chapter.



CHAPTER III

Cavity-backed Patch Antennas

3.1 Introduction

One serious limitation of patch antennas is its narrow bandwidth. One way to
circumvent this limitation is to increase the thickness of the substrate. However,
thick substrates cause the propagation of surface waves which reduces the radiation
efficiency and increases the coupling between the array elements. To avoid these
undesired effects, a metallic cavity is used to enclose the patch antenna in order
to suppress the surface waves. A cavity-enclosed aperture-coupled circular-patch an-
tenna operating at Ka band was built in [1]. It showed a 2:1 input VSWR bandwidth
of 12%. Another example is a cavity-backed aperture-coupled rectangular-patch an-
tenna built in [2] with a 19% bandwidth from 8.5 to 10.3 GHz. In addition to sub-
strate mode elimination, the metallic cavity can also serve as a heat sink to improve
heat dissipation. Examples of cavity-backed patch antennas with different feeding
structures are given in Fig. 3.1 and Fig. 3.2

Two techniques are found in the theoretical analysis of these structures. One
is the MoM; the other is the finite element/boundary integral method (FE/BIM).
The MoM has been used in the analysis of cavity-backed circular-patch antennas by

Aberle and Zavosh [3, 4], and in the analysis of cavity-backed rectangular patch-

16
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Fi 3.1: . . N
gure The structure of a slot-coupled cavity-backed microstrip line-fed patch

antenna.

antennas by Lee et al. [5]. Although the MoM is computationally efficient in solving
spatially unbounded problems, it can only be applied to a few cavity configurations
in which the Green’s function is known. On the other hand, FE/BIM [6]-[9] can be
applied to various cavity configurations, but due to the coupling between the FEM
formulation and integral equations, the resulting matrix is always partially sparse
and non-symmetrical. This increases the computational cost in terms of storage and
computer time.

In the following sections, we will use the hybrid technique described in Chapter II

to analyze the cavity-backed patch antennas shown in Fig. 3.1 and Fig. 3.2. The
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Figure 3.2: The structure of a coaxial line-fed cavity-backed patch antenna.

reflection coefficient and the equivalent input impedance are shown and compared to
the results obtained using the FDTD technique. The convergence of the numerical
results is discussed. Computation time and memory requirements of a given structure

are also included.

3.2 Spectral Domain Green’s Functions

The evaluation of the impedance matrix of patch antenna problems involves the
integration of the Green’s functions of a conductor-backed dielectric slab with the
testing and weighting functions. In Cartesian coordinates, assume that the dielectric
slab is parallel to x-y plane and occupy the space between z = 0 to z = d. Also

assume that the conductor is located on x-y plane. The interaction of two y-directed
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surface electric currents, say J; and J; for example, located at z = d plane takes the

following form:

=/// Ji(z,y) Ji(e',y') GE,(z,y,d; 2y, d) dz dy dz’ dy’, (3.1)

where G} is the Green’s function of a conductor-backed dielectric slab with thickness
d. The superscript of the Green’s function denotes the orientations of the field and
the source. The subscript denotes the types of the field and source. In spectral

domain, the Green’s function is represented as
G (2,y,d; 7',y d) = / G, - ehele==) iblo—) gk, (3.2)

The exact form of the spectral Green’s functions used in this dissertation are listed

in Appendix B. Substituting (3.2) to (3.1), we have
= // / Ji(z,y) Ji(<',y') / Gy, - et b V) ik, dk, du dy da' dy'. (3.3)

The above equation involves a sixfold integration which is difficult to evaluate nu-
merically. Instead, if the testing and weighting currents are transformed to spectral
domain, the spatial integration in (3.3) can be removed and reduced to a twofold

integration in spectral domain. That is,

/ T2 ko, k) Ty, k) G, (ks k) d, dE,, (3.4)
where

J: (ks k) / T (2, y)e"i k== th) 4o gy, (3.5)

and the “*” is the conjugate operator. To further facilitate numerical integration,
the double infinite integration in (3.4) is converted to polar coordinate and becomes

one finite and one infinite integrations as follows

C\w

/ Ji- G . Bdg db. (3.6)
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Due to the symmetry of the structure in  and y directions, the spectral domain
Green’s functions are either even or odd to k; or k,. If J; and J; are real and

separable in z and y, J; and jj can be represented as

ji(km ky) = iz(kx)jzy(ky),

Jihey ky) = J5 (ko). T} (ky),
and have the following properties:

%(jf,y*(kz,y)jfm(kz,y)) is even to k.,

S (ko) I (kay)) s odd to kg,

where % and & mean the real part and imaginary part of its arguments respectively.
Applying these even and odd relationship to (3.6), the integration range can be

further reduced to the first quadrant. That is,

7|'/2w

=4 [ [T o (o) - Gy s, (37)

0 0

where
o R if ?}’Eyj is even to k;,, (39)
S if G is odd to kg y.

The evaluation of (3.7) still poses a challenge due to the surface wave poles in
the Green’s function. When the integration path of (3.7) passes these surface wave
poles, the integrand becomes infinite, causing the numerical integration to diverge.
A pole extraction technique is used to circumvent this problem [25]. Assume that

Bo is one of the surface wave pole. Let I denote the integrand of (3.7). I can be

reformulated as

where g(f,) = 0. (3.9)
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To remove the singularity at (o, I is subtracted by a function which approximates

the behavior of I near 3. Let this function be I°. We choose

Is — f(ﬁﬂ, 0) 2ﬁ02
g'(Bo) B*— o

To show that I°® indeed approximates I near B, we take the limit of I at f, as follows

Y
2l = B e ()
- f(ﬂoao) 180

6-5s ¢'(Bo) B— Po
f(Bo8) 2B

= A g0 (- Bt o)
= lim I°.
B—0o
Reformulating (3.7), we have
/2 ( oo 00
z; = 4 (I-I°)dB + I’dﬂ} df (3.10)
[{fa-ras]
/2 /2 ' f(ﬂo 0)
= 40/0/(1—1)dﬂd0+40/—]7rﬂo-md0. (3.11)

Note that the second term of (3.10) is integrated analytically with respect to 4. (3.11)
is numerically integrated by 16-point Adaptive Gaussian Quadrature. The infinity
range is truncated at 150k as in [24, 27] where ko is the free space propagation

constant.

3.3 FEM Mesh Generation

There are a few software packages, for instance, [-DEAS, which can discretize
an arbitrary 3-dimensional structure by tetrahedrons. However, the process involves
interactively inputing the geometry of the structure, setting a cue for mesh gener-

ation, and outputting data which needs to be translated for further processing in
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Figure 3.3:

A hexahedron with parallel and rectangular top and bottom planes can
always be decomposed to distorted bricks as show in Fig. 3.4.

Fi 4:
igure 3 A distorted brick. Note that only the vertical edges are distorted. The

top and bottom planes are still parallel and rectangular.

FEM codes. These processes are always time-consuming, cumbersome and requiring
huge amount of computational resources. Every time the parameters of the structure
are changed, the interactive process has to go over again, making it difficult for a
researcher to perform a comprehensive study on a given structure.

Writing a general tetrahedral mesh generator is not an easy task. However, if only
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hexahedral structures, which are common in planar circuits, are considered, mesh
generation becomes very simple. In this dissertation, a tetrahedral mesh generator
for a hexahedron is implemented using distorted non-uniform bricks. As shown in
Fig. 3.3, a hexahedron can be subdivided to bricks. The only limitation here is that
the top and bottom planes of the hexahedron have to be parallel and rectangular.
Each brick can be further divided to 5 tetrahedrons as shown in Fig. 3.4. There are
only two spatially unique ways of decomposing a brick to 5 tetrahedrons. Each of
them is only a 90 degree rotation to the other. Note that, these two ways have to
be used alternately such that the common edges of the tetrahedrons between two

adjacent bricks remain the same. The input file format is as follows

m To Ty 0 Ty zdy zdy -+ zd,
m+1  terms m  terms
o Y Y1 o Yn ydv ydy --- yd,
n+l  terms n  terms
k 20 21 ' Zgk Zd1 Zd2 s de
k+1  terms k  terms
m' xy xy - oz, xdy zdy, - zd,
m'+1  terms m'  terms
! /! /! ! U 4 !
Yo Yot Yo ydy ydy oo yd,
n'+1  terms n'  terms
where
m:  number of divisions in & direction on the bottom plane,
z;:  mnode position in z direction on the bottom plane,
zd;:  number of bricks between node ;_; and z; on the bottom plane
n:  number of divisions in y direction on the bottom plane,

yi:  node position in y direction on the bottom plane,
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yd; :  number of bricks between node y;_; and y; on the bottom plane
k:  number of divisions in z direction,
zi:  node position in z direction,

zd; :  number of bricks between node z;_; and z;.

Similar definition applies to m/, n’, 2/, zd}, y} and yd! except that they are on the top
plane of the hexahedron. Let the total number of nodes along z, y and z-direction

be N;, N, and N, respectively. We have

N, = g:lxd,-+1 - :ij;md:-+1,
N, = iijlyd,-+1 = ;z'lydgﬂ,
N, = ié zd; + 1
Let nijx = (air, bjk, cx) be the node coordinate of node (3,7, k), where 0 < ; < N,

0<j7<N,,and 0 <k <N,. (air, bjk,cx) can be found as follows

a;N, — Qo
aix = @i+ (cx — o) ——,

N, — Co

b, = bio
J J ( CNZ — ¢

Note that a;n,, ai, b;n,, bjo, and ¢ can be found directly from the input file. After
knowing the coordinate of each node, the tetrahedral elements and the edge bases
are easily produced from each bricks as shown in Fig. 3.4.

Different from electric field formulation, the edges on the surface of PEC are not
removed. If there is a planar PEC in the structure, edges have to be created on both
sides. As shown in Fig. 3.5, Element 1 and Element 2 are on different sides of the
PEC. Element 1 consists of edges 1 - 6, and Element 2 consists of edges 10 - 12.

Although the position of edges 4 - 6 and edges 10 - 12 are the same, they are treated

as different unknowns.
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/Element 1(el, €2, €3, e4, €5, e6)

el: nl-n2
PEC e2: nl-n3
e3:nl-n4
e4: n2-n3
e5: n3-n4
€6: n4-n2

Element 2(e7, €8, €9, e10, el1, e12)

e7: n5-n2
e8: n5-n3
€9: n5-n4
nl0: n2-n3
nll: n3=n4
nl2: n4-n2

Figure 3.5: Edges on a PEC plane have to be created on both sides. In this figure,

Element 1 consists of el, €2, ..., e6, and Element 2 consists of €7, €8,
-+, el2. Note that the position of e4 to e6 and €10 to el2 are the same.

The capability of assigning different node positions on the top and bottom planes
gives the flexibility in defining geometry. For example, in the cavity in Fig. 3.1, the

sizes of the patch and the slot can be changed independently to each other.

3.4 Slot-Coupled Microstripline-fed Patch Antennas

Patch antennas are known to be lightweight, conformable, economical to fab-
ricate, and easily integrated with microwave circuits. At low frequencies, patch
antennas are effectively fed by direct contact of the patch with a coaxial line or a
microstrip line. Fig. 3.2 shows an example of coaxial line-fed patch antennas with
the center conductor of the coaxial line terminating on the patch. At millimeter-

wave frequencies, however, the size of the patch and the size of the coaxial line or



26

microstrip line become comparable, which affects the electrical performance of the
patch antenna. The connection of the coaxial line to the patch also becomes difficult
due to the drilling and soldering procedure required. In 1985, Pozar [20] proposed
an aperture-coupled microstrip line-fed patch antenna in which the feedline does not
directly contact the patch. This structure consists of two substrateé separated by a
ground plane. The patch and the feedline are situated on two different substrates,
and coupling is achieved through an aperture on the ground plane. This structure is
suitable for millimeter wave monolithic arrays since the ground plane provides good
isolation between the patch and the feeding structure, preventing interference from
the active devices. It also makes it possible to choose different substrates in order to
optimize the performance of the patch antenna and the feedline separately. Fig. 3.1
shows a microstrip line-fed, cavity-backed patch antenna based on this aperture-
coupling technique.

Now we will model the patch antenna structures described above using the hybrid
technique presented in Chapter II. Results will be validated through comparison to
FDTD data'. The dimensions of the cavity and the patch are kept the same for
both structures. Design examples in which the patch antenna is matched to the
feedline are given to show the capability of this technique as a practical design tool.
Calculation of the reflection coefficient, input impedance and field inside the cavity
are also shown. This technique is also capable of calculating other important design
data such as antenna patterns, scattering patterns, backlobes, ... etc., though these

are not shown here.



27

Patch

Air

Conductor

Microstrip line k______________q4
Stub length Ls

1
Cavity !
|

! Patch
1
Lap E
'.
1

Microstrip line --q--f---- s F-1--
'.
X " Ls

Y
/ \
1
1

Slot

Figure 3.6: The side and top views of the patch antenna shown in Fig. 3.1.
3.4.1 Formulation

Fig. 3.6 shows the side and top views of a microstrip line-fed, cavity-backed
patch antenna. The structure consists of a square patch, a rectangular cavity, and a
microstrip feedline. The patch is fed by a microstrip line through a slot opened on
the bottom wall of the cavity. Comparing to the general problem in Chapter II, the
microstrip line can be considered as the obstacle b, and the exterior region includes

the dielectric layers and half spaces above and beneath the cavity. The aperture

1All FDTD data presented in this dissertation were contributed by Nihad I. Dib.
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S, includes the opening around the patch and the slot on the bottom of the cavity.
Since the feeding structure is the same as that of [21], we use the same technique to
model the currents on the microstrip line as in [21]. The origin is set at the center
of the slot. The J; described in Chapter II is modeled as an incident semi-infinite

traveling wave mode with unit amplitude as follow:

ji(m,y) = Jc(x,y)g "j']s(zvy)g,

where
= Locosk(y—1L,), —U<e<¥s <y<IL,—
Jc(l',y) - Wf COs e(y 8)) 2 ST S 2 9 (yoo+ ) Y e’
J_,(.’E,y) = WLfSinke(y_Ls)’ E;LS:BSEQLa _yoogySLs’

and, Wy is the width of the microstripline, k. is the phase constant of the propagation
mode on the microstripline, L is the length of the feedline section from the center
of the slot to the open end, and y is an infinite number. In numerical integration,
the semi-infinite traveling wave mode must be truncated at a finite length to avoid
singularity. We found that 3 wavelengths are sufficient. That is, Ls + Yoo = 3- 2 /ke.
Note that the range of J. is shifted by a quarter wavelength to avoid a nonzero
current at the open end of the microstripline. The J; in Chapter II is modeled as a
reflected semi-infinite traveling wave mode with amplitude I' plus several piecewise
sinusoidal (PWS) modes near the end of the microstrip line to account for the effect

of the disturbance caused by the open end and the slot. That is,

E LIz, 9)§ + T(Ju(z,y) + 5 Ju(z, )3,
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Figure 3.7: The basis functions used on the microstripline.

where
J(z,y) = W%—“'%,h;bk:%’aﬂ, << B g R <y <y + 1,
B = (Ls —y0)/(No +1),
yn : center of the PWS modes,
Ny, : number of the PWS modes.
as shown in Fig. 3.7.
Since the gap between the patch and the cavity is small, we assume that the
electric fields only exist perpendicular to the edge of the patch. Similarly, we assume
the width of the slot is small, such that only the y component of the electric field

exist in the slot. Thus, the M® in Chapter II can be represented as

M* = MP(z,y)+ M™(z,y)§ + M*(2,y)8,
MP M™ : magnetic currents in the gap between the patch and the cavity,

M?® : magnetic currents in the slot.

As shown in Fig. 3.8, each of M?*, M?¥, and M* are decomposed to PWS modes

as on the feedline, except for the corner of the patch where asymmetric PWS modes
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Fi 3
igure 3.8 This figure shows how the basis functions used in MoM match the tetra-

hedral elements used in FEM. To simplify, not all of the PWS modes are
shown.

are used. The boundaries of the tetrahedral elements are set to match that of each
basis function used in MoM. In the dielectric layers and free space, spectral domain
Green’s functions are used, and the evaluation of the pertinent matrix elements in
(2.14)-(2.18) follows the same procedure as in Section 3.2.

The reference plane of the the normalized input impedance is set below the center

of the slot as in [21] and can be calculated by

1 — [gmitheLs

Zip = .
"™ 1 4 TemizheLs

(3.12)

3.4.2 Numerical Results

An antenna that is matched to the feedline is designed with parameters as follows:
patch size 27.78 mm X 27.78 mm, cavity size 32.52 mm x 32.52 mm X 3 mm,
dielectric constant inside the cavity 1.0, thickness of the dielectric cover 0.508 mm

and dielectric constant 2.2, slot length 13.34 mm, slot width 1 mm, microstrip line
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Figure 3.9: . . . . o .
gure Comparison of the reflection coefficient of a microstrip line-fed cavity-

backed patch antenna calculated by the method presented in this dis-
sertation and the FDTD method. The FDTD data were contributed by
Nihad I. Dib[40].
width 1.528 mm, stub length 6.5 mm, substrate thickness 0.51 mm, and dielectric
constant 2.33. The reflection coefficient of this structure is shown in Fig. 3.9 and
compared to the results calculated by the FDTD method. The figure shows that the
resonant frequency calculated by MoM/FEM is near 3.99 GHz with a 2:1 VSWR
bandwidth about 5%, while the resonant frequency calculated by the FDTD method
is 4.01 GHz. This corresponds to a difference of 0.5%. Also the minimum reflection
coefficient is near zero for the method of this paper, and 0.025 for FDTD method.
Overall, the two curves match very well. The input impedance calculated by both
techniques is shown in Fig. 3.10.
The effect of the slot length on the reflection coefficient is shown in Fig. 3.11

on a Smith chart. It can be seen that the impedance locus forms approximately a

circle and indicates that the coupling factor and the resonant resistance increase as
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Fi 3.10: . . oo .
gtire The normalized input impedance of a microstrip line-fed cavity-backed

patch antenna. The parameters are the same as in Fig. 3.9. The FDTD
data were contributed by Nihad I. Dib[40].

the slot length increases. This is consistent with the results from slot-coupled patch
antennas [21].

The electric field intensity inside the cavity is shown in Fig. 3.12. Plots (A) and
(B) show the field intensities on cross sections along lines aa and bb in the inset of
Fig. 3.12, respectively. Plot (C) shows the field intensity at the top of the cavity.
The black and white lines mark the boundaries of the patch and the slot. This figure
is also drawn according to the scale of the physical dimensions. As shown on these
plots, the field concentrates at the two patch edges parallel to the slot, because the

slot is y-directional.

3.4.3 Numerical Considerations

In this section, the convergence of the data of the microstrip line-fed patch an-

tenna is investigated. Fig. 3.13 and Fig. 3.14 shows the convergence in terms of the
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cavity-backed patch antennas with different slot lengths. Other param-
eters are the same as in Fig. 3.9.

number of unknowns on one side of the patch and on the slot. The results indicates
that 5 basis functions on one side of the patch and 3 basis functions on the slot are
sufficient. Fig. 3.15 shows the results obtained by the hybrid technique for different
discretization schemes in the cavity. In the legend of the figure, the first number in
the parentheses denotes the total number of basis functions around the patch and the
second denotes the total number of edges in the cavity. The curve in this figure is the
same as that shown in Fig. 3.9, serving as a reference. Data Set 2 shows the result of

increasing the basis functions from 20 (5 on each edge) to 28 (7 on each edge). Data
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Total E-field
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Total E-field intensity in the cavity of Fig. 3.1 at resonant frequency
(3.995 GHz). The parameters are the same as Fig. 3.9. (A) and (B)
are the cross section views along lines aa and bb shown in the inset,
respectively. (C) is the view just beneath the patch. The black and
white lines indicate the boundaries of the patch and slot. This figure is
drawn according to the scale of the physical dimensions.
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The convergence check of the same case as Fig. 3.9 using the hybrid
technique. Ns denotes the number of basis functions on the slot.
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The convergence check of the same case as Fig. 3.9 using the hybrid
technique. The first number in the parentheses denotes the number
of basis functions around the patch and the second denotes the total
number of edges in the cavity.
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Set 3 shows the result of doubling the number of discretizations in z direction of the
cavity and Data Set 4 corresponds to doubling the number of discretization in the
cavity in both z and y directions (refer to Fig. 3.12 for the definition of directions).
Other basis functions used are: 3 on the slot and 14 on the microstrip line. The
number of nodes for each data set is also shown in Table 3.1. From the figure, it can
be seen that the convergence of the numerical result is quite good except near the
resonant frequency. The total CPU time for one data point in the curve is 3.3 hours
on a 50 MHz Sun Sparc 20 workstation with 32 MByte main memory of which 26%
is used. It is worth mentioning that 73% of the CPU time is used for filling MoM
matrices and 26% is used in solving the FEM matrix by the bi-conjugate algorithm.
Note that the CPU time spent on MoM is larger than that spent on FEM in this
case. However, the latter is very sensitive to the uniformity of the mesh in the cavity,
and for more complex cavities such as the coaxial line-fed one, the CPU time spent
on FEM will be much higher. For the same case, the CPU time used by FDTD is 7.5
hours on a CRAY YMP8/864 supercomputer. The number of FDTD cells is 188 x
166 x 288 along z, y and z directions, respectively, with Az = 0.25 mm, Ay = 0.25
mm and Az = 0.125 mm. The total number of time steps is 8000. The factor influ-
encing convergence most is the distance between the top absorber and the dielectric
cover. We found that a distance of 30 mm is necessary to get a convergent result. It
seems that FDTD uses more CPU time, but we have to point out that FDTD gets
the entire frequency range in one computation, while the hybrid technique must be

repeated for each frequency point.



38

Dielectric

Conductor

Rectangular
cavity
Fictitious surface S

Coaxial line

Coaxial line

Figure 3.16: The side and top views of the patch antenna shown in Fig. 3.2.
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Table 3.1: Number of nodes of each data set of Fig. 3.15 in each direction.

Data Set | x | v | z
1 2525 |4
2 29 129 |4
3 25125 |7
4 49 149 4

3.5 Coaxial Line-fed Patch Antennas

3.5.1 Formulation

Fig. 3.16 shows the side and top views of a coaxial line-fed, cavity-backed patch
antenna. The patch and the cavity are the same as in the previous section. In the
coaxial line, the cavity region is extended to a fictitious surface at which all higher
order coaxial line modes generated by the junction to the cavity have attenuated
to practically zero. Compared to the general problem in section Chapter II, this
structure does not have the obstacle b. The cavity region is extended to include the
section of the coaxial line above the fictitious surface. The aperture consists of two
parts; one is the opening around the patch, the other is the fictitious surface S at z =
2o in the coaxial line. The exterior region includes a semi-infinite section of coaxial
line, the dielectric layer and the upper half space. By choosing a suitable operational
frequency range, we can assume that only the fundamental mode propagates in the
coaxial line. In this manner, the field pattern of the fundamental mode is used
directly, instead of the Green’s function when evaluating the fields inside the semi-
infinite coaxial line. Due to the position of the fictitious surface, we can use the mode

pattern of the fundamental coaxial line mode as the only basis function. Comparing
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to Chapter II, we have

Ei — ¢p(p)e—jk(z—zo)ﬁ’

Hi d)d;gp) e—jk(z—zo)ﬁ’

M = MP(z,)i+ MP(z,)j + M*by(p)p,

1
¢ =
(p) p
k= wy/eu,
- JE
Ui c’

where p and € are the permittivity and permeability of the coaxial line, and M?*
and M*Y are the same as in the previous section. Let the reflection coefficient of the

fundamental mode at the fictitious surface to be I'. T is related to M?® as follows
14T =M. (3.13)

The reflection coefficient I at the junction between the coaxial line and the cavity
is related to I' as:

[V = Te¥k (3.14)

where k is the propagation constant of the dominant coaxial line mode and £ the
distance from the junction to surface S. The normalized equivalent input impedance

at the junction can be formulated as

14T

Zin = 1—_—1_‘7 (315)

Other formulations are the same as in the previous section. Since the cavity including
the coaxial line section is no longer a hexahedron, the software package I-DEAS is

used to generate the mesh.
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3.5.2 Numerical Results

An antenna with the same cavity and patch as in the previous section was de-
signed. The parameters of the coaxial line are: inner radius 1.037 mm, outer radius
3.620 mm, and dielectric constant 2.25. In order to obtain a good match, the feeding
point is shifted from the center of the patch by an amount of 5.7 mm. The reflec-
tion coefficient of this structure is shown in Fig. 3.17 with comparison to the results
calculated by the FDTD method. The figure shows that the resonant frequency
calculated by the MoM/FEM technique is near 4.19 GHz with a 2:1 VSWR band-
width about 5%, while the resonant frequency calculated by FDTD method is 4.22
GHz, which represents a difference of 0.72%. Also the minimum reflection coefficient
is near zero for MoM/FEM, and 0.078 for FDTD method. Overall, the two curves
match quite well excluding the fact that one curve seems to be shifted from the other
by an amount of 0.03 GHz. This difference may be due to the approximation of the
circular coaxial line by a rectangular coaxial line in the FDTD method. The input
impedance calculated by the two methods is also shown in Fig. 3.18.

The effect of the position of the feeding point is shown in Fig. 3.19 by plotting
the input impedance loci as a function of frequency in a Smith chart. The position
of the feeding point is indicated in the legend and inset in the figure. The frequency
range is from 3.5 GHz to 5 GHz and each mark on the curves indicates a frequency
increment of 0.1 GHz. From the figure, we can see that the impedance locus forms
approximately a circle. The radius of the circle increases as the feeding point moves
away from the center of the patch. This indicates an increase in the coupling factor,
if we define the radius of the impedance locus circle as the coupling factor between
the feedline and the cavity-patch structure as in [21].

The electric field intensity inside the cavity is shown in Fig. 3.20. Plots (A) and
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Figure 3.17: N .
8T Comparison of the reflection coefficient of a coaxial line-fed cavity-

backed patch antenna calculated by the method presented in this dis-
sertation and the FDTD method. The FDTD data were contributed by
Nihad 1. Dib[40).

(B) show the field intensities on cross sections along lines aa and bb in the inset of
Fig. 3.20, respectively. Plot (C) shows the field intensity at the top of the cavity.
The black lines and white circles mark the boundaries of the patch and the coaxial
line. This figure is drawn according to the scale of the physical dimensions. The field
intensity is interpolated between sample points and smoothed to reduce the effect of
finite discretization. The figure shows that the field spreads from the feeding point
to the left and right edges of the patch and reaches maximum intensity at the two
edges.

Comparing Fig. 3.12 with Fig. 3.20, the total field underneath the coaxial line-fed
patch is greatly distorted by the conductor post protruding from the coaxial line to
the patch. This is because in both cases the dominant E-field beneath the patch is

z-directional and is forced to diminish near the post in order to satisfy the boundary
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condition.

3.6 Conclusion

In this chapter, the hybrid method presented in Chapter II is applied to the
analysis of cavity-backed patch antennas. Examples of coaxial line-fed and microstrip
line-fed patch antennas are given. The calculated reflection coefficient and input
impedance are compared to the results calculated by the FDTD method. Good
agreement is achieved. This result shows that the MoM/FEM technique is capable

of analyzing various cavity-backed patch antenna structures.
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Total E-field
z (A)

(B)

Total E-field intensity in the cavity of Fig. 3.2 at resonant frequency
(4.190 GHz). The parameters are the same as in Fig. 3.17. (A) and (B)
are the cross section views along lines aa and bb shown in the inset,
respectively. (C) is the view just beneath the patch. The black lines
and white circles indicate the boundaries of the patch and coaxial line.
This figure is drawn according to the scale of the physical dimensions.



CHAPTER IV

Microstripline-fed Cavity Couplers and
Resonators

4.1 Introduction

Recent advances in Si micromachining techniques enable the fabrication of minia-
ture metallic cavities in MMIC’s. These cavities can be used as resonators, vertical
transitions, or couplers. In contrast to conventional metallic cavities, micromachined
cavities are easily integrated into planar circuits. They are also light in weight and
easy to fabricate compared to conventional metallic cavities.

In the following sections, the theoretical analysis of microstripline-coupled cavities
based on the hybrid technique of Chapter II is presented. A design example of a
broadband vertical coupler which achieves minimum insertion loss of 0.086 dB and
a 80% 1 dB insertion loss bandwidth is given. A high-Q resonator was also designed

and fabricated. Measured result indicates that a high-Q of 506 is achieved.

4.2 Single Cavity Formulation

As show in Fig. 4.1, two slots are open on the top and bottom of a metallic
cavity that is sandwiched between two layers of dielectric substrates. Either one of

the microstrip lines passing the slots can be used as the input line or output line

46
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of this structure. Without loss of generality, we choose the lower microstripline as
the input line. By closing the two slots and applying the equivalence principle as
shown in Fig. 4.2, we can derive the following matrix equations from Chapter II and

Chapter III:

- i, 17 - -
Vine Z; 0 || J 7, 0 || M
+ - , (4.1)
o | o z||x] |on]||-M
Cinc Cj' 0 Jf )/11+th Yi? Ml
+ - (42)
0 | i 0 G 11 Ji | i Ya Yo + Y -M,

where Jy, J;, My and M, are the expansion coefficients of the unknown currents J;,
Ji, My and M, are as shown in Fig. 4.2. The meaning of the matrices is tabulated

in Table 4.1. The above equation is related to (2.11) and (2.12) as follows:

V;‘nc Cinc
[V1] = ) [C‘l] = ’
0 0
( [ M
I R N S I B
Ji —M2
Z
I N I I
0 Zt O Ct
r -
T, 0 Y, 0
[Ta] = ) [Ya] = )
0 T 0 Y
Yu Y
[Yeq =
Ya Y

By substituting the above equations into (2.21) and (2.22), the unknown coeffi-
cients Jy, J;, My and M, can be solved. Note that, we use the same basis functions on
the microstriplines as described in Section 3.4. This allows us to derive the reflection

and transmission coeflicients of the input and output lines directly.
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Figure 4.1: The structure of a microstrip cavity coupler.

4.3 Multi-cavity Formulation

Consider the structure in Fig. 4.3. Instead of single cavity, n cavities are stacked
together and coupled through slots on their common walls. One way of analyzing
this structure is considering the n-cavity structure as one big cavity and using the
formulation of the previous section. However, it is more efficient to perform FEM

computation separately on each cavity instead of on the whole cavity.



49

Je Microstripline

Substrate

Substrate

Microstripline inc

Fi 4.2:
gure The side view of the cavity coupler show in Fig. 4.1. Note that the slots

on the cavity are closed by a PEC with an equivalent magnetic current.
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Figure 4.3: The side view of a multi-cavity coupler.
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Outside the Cavity Inside the Cavity
Matrix | Interaction between Matrix | Interaction between
Vine Jj Jine Y1 M, M,
Cine M, Jine iz M, M,
7z, | U J, wo | M | M
Z Jy Jy 2 M, M,
r, | 5 | m
T, Ji M,
e, | m | 7
Cy M, Ji
v, | m | M
Y: M, M,

Table 4.1: The meaning of matrix in(4.1) and (4.2)

Based on the equations in the previous section and the extra boundary conditions

on each slot between the cavities, we can derive the following equations:
Vine Zs 0 J Ty 0 M,
+

0 0 Zt Jt 0 Tt —iVip41
[Cinc] + [Ch][J] = [Yu+YF][M] - Y] [Ma], (4.4)

Yar] [Mi] — [Yao] [Mo] = [¥,] [Mo] = [Yas] [Ms], (4.5)

[Yao] [Ma] — [Yas] [Ma] = [Y35] [Ma] — [Ya4] [My], (4.6)

Yiiaa] [Mica) = V] [M] = [V2] IM] = Yiia) [Mina),  (47)
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[Yan-1] [Mna] = [Yon] [My]

Vo] [Ma] = W] [Masa], (48)
Yosin] [Ma] = Yasrnm + Y] [Maa] = [C][7], (4.9)
where [Y; ;] is the interaction between M; and M;, [Y;;] is the self interaction of M; in

its lower cavity, and [Kf,] the self interaction of M; in its upper cavity. Reassembling

(4.3) to (4.9), we can solve this equations in a single formula:

[z, -1, 0 0 0 - 0 o o ol g v, |

C; Y1 Y2 0 0 - 0 0 0 0| M ~Cine

0 Yy =Y, Yo 0 -« 0 0 0 0| M 0

0 0 Yy -YsYy-- 0 0 0 0| M 0

0 0 0 0 0 - Youy =Y, Yonu O || M, 0

00 0 0 0 - 0 Yiun —Yau G| | Mups 0

(000 0 0 0 0 0 Ty Z|| k| | O
(4.10)

where Y; = Y;; + Y;', fore=2,3,...,n, Y1 =Y+ Yy and Vo1 = Yopi o1 + Ve
If the cavities and the slots are all the same, instead of solving (4.10), all the
unknowns can be solved by using interaction of the single cavity structure.

Assuming the cavities and the slots are all the same, we have

Yiial ={Yiin] =4,

[Yiica] = [Yii] (1)
Vi = [v4] = B,

for ¢ = 2,...,n. To simplify these equations, we use M; instead of [M;]. (4.7)

becomes

AM;_y — BM; = BM; — Ai4,
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= M;_y—B'M;=B'M; — M, (4.12)
where B' = A™!B. Assume (4.12) can be recast into the following recursive form:
M;_y — bM; = c(M; - bM;},). (4.13)
We find ¢ and b satisfy
b+c=2B" and cb=1. (4.14)

Solving (4.14), we have
b = B+vB?-1,
¢c = BFvB?-1.

Note that it maybe difficult or impossible to explicitly derive the square root of a

(4.15)

matrix. However, we will show that the final equations will not involve the square
root terms in (4.15).
Substitute the recursive relationship to (4.5)-(4.8), we can derive the following

formula:

My —bMy = oMy — bMs) (4.16)
= *(M; — bMy) (4.17)

(4.18)

= (M, — bM,_y). (4.19)

From (4.15), exchanging c and b will still satisfy the recursive relationship, such that

we also have

M1 — CM2 = bn_l(Mn - CMn_l).. (420)

Solving (4.19) and (4.20) simultaneously, we can derive M, and M, in terms of M
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and M, ,; as follows:

Mz _ (bn—l_cn—lb)ﬁl';‘-(b—c)Mn+l — CYMI + ﬂMn+1, (4 21)
Mn = (I)---C)J"!1‘|'(b”_1 “Cn_l)M'H‘l |

bn_cn

= BM; +aMp4.
Note that it seems the above solution is not unique because b and ¢ have two sets
of solutions. However, after carefully examining the form of (4.21), we find they are

symmetrical to b and ¢ and either set of the solution of b and ¢ gives the same result.

Substituting (4.21) to (4.14) and (4.15), we have

Cinc C’f 0 Jf )/1 - Yl2a _}/i2,8 Ml

+
Il

. (4.22)
0 0 Ct Jt - n+1,n,3 Y;H'l - }/n+1,na Mn+1

With (4.22) and (4.3) the unknowns Jy, J;, My and M, can be solved easily as
in the case of single cavity. Other unknowns can be derived from M; and M,y
recursively.

Note that in (4.21) o and f§ are evaluated in terms of ¢ and b. However, ¢ and
b may be difficult to derive because of the square root terms in (4.15). Instead, we
can derive « and 8 in terms of b + ¢ and be.

By taking out the common factor b — ¢ in (4.21), @ and B become

a = gj (4.23)

B = Snl_l’ (4.24)
where

Sp = Z b (4.25)

1=0

If Welet S_; = 0 and Sp = 1, we can derive the following recursive relationship for
N

Sp=(b+¢)Sn-1 —bcSn_z forn>1. (4.26)
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With (4.23), (4.24), (4.26) and (4.14), & and S can be derived solely from the A and
B in (4.11) without solving b and c directly. To check the validity of these equations,
set n =1. We find o = 0 and § = 1. After Substituting this result into (4.22), this

equation becomes the same as (4.2) which is the single cavity formulation.

4.4 Validation

In this section, the computed result using the single-cavity formulation is com-
pared to the computed and experimental data of [34]. In that paper, a microstripline
coupler with thick ground plane as shown in Fig. 4.4 was investigated. The cavity
was treated as a rectangular waveguide and only the TE;q mode was used in its MoM
formulation. Outside the cavity, quasi-static Green’s functions were used in its MoM
formulation.

Fig. 4.5 shows the comparison between the paper’s result and the computed
result of the hybrid technique for three different ground plane thicknesses. The
dimensions of the structure are as indicated in Fig. 4.4. Good agreement is achieved
for thicknesses of 300 mil and 1000 mil. In the 50 mil case, the result of the hybrid
technique is closer to the experimental data than the computed data of [34].

Since 1000 mil and 300 mil are multiples of 50 mil, we can use the multi-cavity
formulation to derive the computed result of 1000 mil and 300 mil cases from 50 mil
case. Fig. 4.6 shows the result of considering the 1000 mil and 300 mil cavities as
twenty and six 50 mil cavities stacked together respectively. The computed data is
almost the same as the single cavity model except for a small deviation of |S;| near

resonance.
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Figure 4.4: A microstrip line coupler as described in [34]
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Comparison of the result from [34] and the hybrid technique of this disser-
tation. In the legend, EXP and MoM are the experimental and computed
results of [34], and MoM/FEM is the computed result using the hybrid

technique.
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Figure 4.5: Continued from previous page.
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model.
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4.5 Wide-band Cavity Couplers/Vertical Transitions

Conventionally, via holes are used as a vertical transition between different layers
of a MMIC. As the operating frequency increases, the fabrication of the via holes
becomes very difficult. To circumvent this problem, non-direct-contact vertical tran-
sitions are necessary. In [51], broadband vertical interconnects using slot-coupled mi-
crostrip lines are presented. In that paper, two microstrip lines are coupled through
a slot on their common ground plane. A 3:1 bandwidth of 1.0 dB insertion loss
is achieved. In [34], a similar design is presented except that the thickness of the
common ground plane of the two microstriplines is considered. A thick ground plane
can be used as a heat sink or a part of the housing of the circuits.

A similar design employing metallic cavity as the transition between the mi-
crostriplines is presented in Fig. 4.7. The dimension of the structure is chosen ac-
cording to the feasibility of current manufacturing processes. The computed results
indicates a minimum insertion loss of 0.086 dB at 72 GHz, and a 1 dB bandwidth
from 54.1 GHz to 126.3 which is amount to 80% .

Due to the manufacturing process of the micromachined cavity, errors in the
dimension and alignment are inevitable. Sensitivity study on the dimension of the
structure is necessary to ensure the feasibility of a practical design. Fig. 4.8 and
Fig. 4.9 show the effect of possible errors in the width of the cavity and in the
positions of the slots which may be caused by imprecise alignment. Both computed
results indicate the performance of the coupler is very stable under the above error
range. This is because the change in dimension is small compared to the wavelength
in the operational frequency range.

Fig. 4.10 shows the minimum insertion loss achievable v.s. the height of the
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Figure4.7:

(a)the structures of a microstripline vertical coupler. The cavity size is
0.0968 x 0.968 x 0.10. All unit in mm.(b) computed S-parameters.
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cavity. Each data point is computed by adjusting the other dimensions to achieve
a minimum insertion loss while keeping the height of the cavity fixed. The figure

shows that the insertion loss increases as the height increases.
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igure 4.8 Sensitivity study of the cavity in Fig. 4.7. Three cavity widths 0.968

mm, 0.138 mm and 0.188 mm are compared. The data shown in (b) is
the same as (a) except that the scale of the figure is different.
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Sensitivity study of the cavity in Fig. 4.7. Three slot positions are com-
pared. Curve 1: both of the slots are at the center of the cavity. Curve
2: both of the slots are offset by 0.01 mm to the center of the cavity.
Curve 3: the same as the second except that the offset of one slot is in
the opposite direction to the other. The data shown in (b) is the same
as (a) except that the scale of the figure is different.
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4.6 High-Q Micromachined Cavities

Conventional microwave high-Q resonators made by metallic rectangular or cylin-
drical waveguides are heavy in weight, large in size and costly to manufacture. It
is also difficult to integrate these resonators into MMIC’s. Extra circuitry is alway
necessary to connect the resonators to other solid state devices, resulting in increased
complexity and cost.

With the maturity of micromachining techniques in fabricating microwave cir-
cuits, it is now possible to make miniature waveguides or cavities [35]-(38] as build-
ing blocks of high-Q bandpass filters. The quality factor that can be achieved with
this technique is much higher than the quality factor of traditional microstrip res-
onators either printed on a dielectric material or suspended in air with the help of
a dielectric membrane [39]. Fig. 4.11 shows possible high-Q filter geometries that
consist of input and output microstrip lines and rectangular cavities on different di-
electric layers. The cavities are made by excavating and metallizing the dielectric
using micromachining techniques as described in [41]. Coupling between the cavities
and microstrip lines are achieved via the slots etched at appropriate locations with
respect to the microstrip lines. Coupling between cavities is controlled by the size,
position, and orientation of the corresponding coupling slots. The microstrip lines
can be laid on the same plane as in Fig. 4.11-(a), or on different planes to serve as
a vertical transition as in Fig. 4.11-(b). The vertical stacking of the cavities greatly
reduces the occupied area when multiple cavities are needed in the filter design.

In the following sections, a detailed study of the resonator is presented. A high-
Q micromachined resonator was designed and built. The computed and measured

results are compared.
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Figure 4.11:
8 The structures of the proposed micromachined bandpass filters. (a)

input and output microstrip lines on the same substrate. (b) input and
output microstrip lines on different substrates.
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4.6.1 Design Consideration

Fig. 4.12 shows a design of a square cavity resonator coupled by two slots at
the center of its top and side wall. Fig. 4.13 shows the computed results of this
structure with different cavity sizes. The dimensions are as shown in Fig. 4.12. Note
that, the first resonant modes of the cavities in Fig. 4.13 are at 16.2 GHz, 19.1
GHz and 23.3 GHz. However, from the data we can see no resonant behavior in
the frequency range. The reason is because the two slots are too close. This causes
the higher order modes excited by the slots to be strongly coupled. To avoid this
phenomenon, the two slots should be separated by a sufficient distance. However, to
efficiently excite the first resonant mode, the slots should be near the center of the
cavity. Fig. 4.14 shows a compromised design in which the slots are located at 1/4
and 3/4 of the cavity length. Fig. 4.15 shows the computed |Sy1|, [S12| and the loss
defined by 1 — |S;1|> — |S12|%. Since the dielectric and conductor are assumed to be
lossless, the only contribution to the loss is the radiation of the two feedline layers.
Three resonances are observed in the frequency range shown in the figure. The 3
observed resonant frequencies are very close to those of TMj39, TM;30 and TM;50
to z modes of the cavity as listed in Table 4.2. Note that, because of the symmetry
of the structure, only odd modes are excited. Fig. 4.16 — 4.18 show the field plots
inside the cavity at these resonant frequencies. From these field patterns, we can see
clearly the corresponding cavity modes.

Fig. 4.15 also shows a peak loss at 28.6 GHz. Comparing the stub length and
the guided wavelength of the microstripline at this frequency, we find that the stub
length is equal to half the guided wavelength of the microstripline such that the
stubs become resonate dipoles and strongly radiate. As long as the microstriplines

are kept the same, this peak loss at 28.6 GHz is always observed for different cavity
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Figure 4.12: A square cavity resonator with both feeding slots at the center.
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Figure 4.13:

The |S11] of square cavities. The cavity sizes are shown in the legend.
Other parameters are the same as in Fig. 4.12.



70

______ 0.635 . ._........0-835
A s meint W
! 5 i - =
0.404 1 + 7 | [ 17 ; 0.404
A : L 4— ' ' !
! L1 1.778 1.778 ! :
S e o E Unit: mm
32

Fi 4.14: : . . .
glire A rectangular cavity resonator with feeding slots separated by a dis-

tance.

sizes.

To investigate the effect of multi-cavity configurations, consider stacking the same
cavity of the previous paragraph. Fig. 4.19 shows the result of single, two and three-
cavity configurations around the first resonant frequency at 19.38 GHz. We find that
the first resonance is split into two and three resonances in two-cavity and three-
cavity configurations, respectively. This phenomenon is expected because when N
identically resonant systems are weakly coupled, the resonant frequency will split to
N slightly different ones. Also notice that the resonant curves become sharper as the

number of cavities increases.

4.6.2 A High-Q Resonator

In this section, a high-Q resonator is designed and fabricated. For ease of fabri-
cation, the feedlines are placed on the same dielectric layer. Due to the fabrication

process, the angle between the vertical walls and the top and bottom walls is no
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Coplanar Coupler. Cavity: 8mm x 32mm x 0.5mm
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Figure 4.15: The computed results of the structure shown in Fig. 4.14.

longer 90 degrees, but 54 degrees [41]. Although the cavity is no longer rectangular,
its characteristics are still very close to the rectangular one, because the thickness
of the cavity is much smaller than its width and length. The coupling between the
two coplanar microstriplines also has little influence on its characteristics. Fig. 4.20
is provided as evidence of the above statement.

A resonator with the dimensions shown in Fig. 4.21 was built!. The computed S-
parameters are shown in Fig. 4.23 and the field plot at the first resonance is shown in
Fig. 4.22. Four transmission peaks are observed at the frequencies listed in Table 4.3
with comparison to the resonant frequencies of an ideal rectangular cavity of the

same size. Compared to the cavity in the previous section, the discrepancy between

1Fabrication and measurement were performed by John Papapolymerou
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Cavity size: 8mm x 32mm x 0.5mm

No. || Observed Resonant Freq. | Resonant Mode | Mode 2.

1 19.38 GHz T M1 19.33 GHz

T M 20.96 GHz

2 23.92 GHz T M3, 23.44 GHz

TM140 26.52 GHZ

3 30.40 GHz T M50 30.01 GHz

T Mieo 33.80 GHz

Table 4.2:

The comparison of the observed resonant frequencies and the frequencies
of cavity resonant modes.

the observed resonant frequencies and those of the ideal rectangular cavity is larger.
Note that, the cavity size in the previous section is 8mm X 32mm x 0.5mm compared
to 16mm x 32mm x 0.465mm in this section. This results in a lower decaying rate of
the high order modes excited by the slots such that the coupling between the slots
is not only dominated by the cavity modes but also slight influenced by these higher
order modes.

Quantitatively, consider the cavity as a waveguide with width @ and length b. Let
a < b. The propagation constant § of the second waveguide mode at the resonant

frequency of the cavity is

=
I
y
[+

(4.27)

I
1y
|
|

(4.28)

Since @ < b, f is pure imaginary and decreases as a increases. Thus, the second
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Cavity size: 16mm x 32mm x 0.5mm

No. || Observed Resonant Freq. | Resonant Mode | Mode Freq.

1 10.54 GHz T Mo 10.48 GHz
T M 13.26 GHz
2 18.29 GHz T M3 16.90 GHz
T M 20.96 GHz
3 23.00 GHz T M50 25.24 GHz

TM]G() 29.64 GHZ

4 33.95 GHz TM170 34.13 GHZ

Table 4.3: . .
able The comparison of the observed resonant frequencies and the frequencies

of cavity resonant modes .

waveguide mode decays faster in the cavity of the previous section than in the cavity
of this section.

The measured results near the first resonance is shown in Fig. 4.24. The fab-
rication process is as described in [41]. The measurement shows that a minimum
insertion loss of 0.36 dB and 5% 3-dB bandwidth are achieved. The unloaded Q of
this cavity is 506 computed as in [39, 41], which is close to the theoretical value of

526 for a metallic cavity of the same size.

4.7 Conclusion

In this chapter, the hybrid MoM/FEM method is successfully applied to a microstripline-
fed slot-coupled cavity. Depending on the dimension and operating frequency, the

cavity can serve as a vertical transition between two substrate layers, or as a high-Q
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resonator. A wide band vertical coupler is designed and simulated by the hybrid
technique. The computed results indicate a 80% bandwidth and a minimum inser-
tion loss of 0.086 dB. A micromachined resonator is also designed and fabricated.

The computed results are in good agreement with the measurement. A high Q of

506 is achieved.
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Fi 4.16: . .
glire The z component of the electric field inside the cavity at the first res-

onant frequency 19.38 GHz. The figure is drawn to scale. From left
to right columns are the field profile on x-y plane at the top and the
bottom of the cavity, on x-z plane at the center of the slots and the
cavity, on y-z plane at the center of the cavity. The dimension of the
structure is as in Fig. 4.14.
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Maximum= 1.777767e+06

Cavity size: 8mm x 32mm x 0.5mm

z—component of E field, at 23.92 GHz

Fi 4.17:
gure The z component of the electric field inside the cavity at the second

resonant frequency 23.92 GHz. Refer to Fig. 4.16 for more detail.
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Fi 4.18:
gre The z component of the electric field inside the cavity at the third

resonant frequency 30.04 GHz. Refer to Fig. 4.16 for more detail.
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he comparison of |Sy;| of single, two and three cavity configurations.
The dimension of the structure is the same as in Fig. 4.14
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The comparison of the effect that cavity shape has on the coupling
between the microstriplines. The dimension of the structure is as in
Fig. 4.14. Curve 1: coplanar feedlines, trapezoidal cavity. Curve 2:
feedlines on different sides, rectangular cavity.
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Figure 4.21: A high-Q resonator fabricated by micromachining[41].
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i 4.22: . . .
Figure The z component of the electric field inside the cavity at the first reso-

nant frequency 10.54 GHz. The figure is drawn to scale. The dimension
of the structure is as in Fig. 4.21.
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Figure 4.23: The computed S-parameters of the resonator shown in Fig. 4.21
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Figure 4.24: )
he comparison of measured[41] and computed S-parameters of the

resonator in Fig. 4.21 near the first resonance.



CHAPTER V

Wavelet-Based Method of Moments

5.1 Introduction

In recent years, we witnessed an explosion of interest in wavelet theory in various
applications. For instance, wavelet theory has been applied to compression of digital
images, noise reduction in signal processing, and numerical methods in electromag-
netics [44]-[48]. Wavelet theory is characterized by a special group of basis functions
used to expand a linear space. When combined with the method of moments, these
basis functions produce a matrix with many small off-diagonal terms that can be
treated as zero without seriously reducing the accuracy of the solution. Thus, the
storage space occupied by these zero terms can be removed by sparse matrix storage
schemes so that the memory size required to solve the problem is reduced. This
feature is important for solving large scale problems like the full-wave simulation of
a finite patch antenna array or a complex microwave circuit. Although computer
memory size is growing rapidly, it is still a challenge to run a full-wave simulation of
electromagnetic problems in the scale of a few wavelengths.

In the following sections, the theory of multiresolution expansion and FWT are
introduced. The thresholding effect on the characteristics of a microstrip patch

antenna is investigated. 3 x 3 and 6 x 6 arrays are also used as large scale problems

82
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to show the benefit of wavelet bases.

5.2 Multiresolution Expansion

From the point of view of linear algebra, wavelet theory[49, 50] employs a special
group of basis functions to expand a linear space. These basis functions consist of
two sub-groups: scaling functions and wavelets. The scaling function represents the
local average. In contrast, the wavelet represents the local variation and possess zero
average. These two groups of functions are orthogonal to each other and form a
complete basis of the linear space. Let Sp and Wy denote the linear space expanded
by the base scaling functions and the associated wavelets respectively. Suppose we
can define a contraction operation to transform these basis functions to a higher level
of resolution in the solution space we seek. To qualify as a multiresolution expansion,
the space expanded by the lower level scaling functions must be a subset of the space
expanded by the higher level scaling functions. Also the direct sum of the space
expanded by the same level of scaling functions and wavelets are equivalent to the

space expanded by scaling functions one level higher. That is

So C 51C-+CSp, and (5.1)
Smi1 = Wi ® S (5.2)
= Wy ® Wit @ Sps (5.3)

(5.4)

= Wn®Wnaa @+ Wo® So, (5.5)

where S; and W; are the space expanded by i levels of contraction of the base scaling
functions and wavelets respectively, and @ is the direct sum operator as defined in

linear algebra. As an example, Fig. 5.1 shows a set of scaling functions consisting of
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The concept of multiresolution expansion. S™ and W™ are the linear
space expanded by n-th level scaling functions and wavelets respectively:
The lower half of the figure illustrate the concept of multiresolution ex-
pansion by pulse functions and their wavelets.

Figure 5.1:

8 pulses. The space expanded by these scaling functions is equivalent to the space
expanded by its lower level scaling functions and wavelets.

In the method of moments, each matrix element represents the interaction be-
tween two basis functions defined by an integration with a kernel. Except self in-
teraction terms, the matrix elements tend to be very small if at least one wavelet
is involved in the integration. This is because in most of the cases the kernel func-
tion is smoother than the locally fast-changing wavelets. Since the wavelets have
zero average, the resulting integration tempts to cancel itself and become very small.
From the multiresolution expansion, the space expanded by a higher level scaling
basis functions is equivalent to that expanded by a set of base scaling functions plus
a series of wavelet bases as described in (5.5). By using the later as the basis in
the moment method, the resulting matrix will have many small matrix elements
which can be neglected without adversely degrading the solution. By using sparse

matrix storage scheme, the memory required to store the matrix will be dramatically
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reduced.

5.3 Moment Method Formulation of a Patch Antenna

In the moment method modeling of a patch antenna, the triangle rooftop func-
tions are frequently used as the basis functions of the induced current on the patch
as shown in Fig. 5.2. Along the direction of the current, the solution space is ex-
panded by those triangle functions in Fig. 5.2-(a), which satisfy the requirement of
zero current at both ends of the patch. Along the transverse direction, the solution
space is expanded by those pulse functions in Fig. 5.2-(b), which can approximate
the infinite current density near the two edges of the patch.

Compared to B-spline scaling functions defined in [52], the pulse basis corresponds
to the zero degree B-spline scaling functions as shown in Fig. 5.3-(a). Thus, we can
use their associated wavelets (Fig. 5.3-(b)) directly. However, the triangle basis is
not exactly the same as the first degree B-spine scaling functions shown in Fig. 5.3-
(c) which includes half triangle bases at both ends of the problem domain. The
linear space expanded by this basis no longer satisfies the condition of zero current
at the ends of the patch, thus the associated wavelets can not be used directly in
the multiresolution expansion of our patch problems. Instead, the edge wavelets are
modified to have zero value at the two ends of the problem domain as shown in
Fig. 5.4. Note that the modified edge wavelets still have zero average, but are not
orthonormal to the scaling functions anymore. The latter feature is not important
in our problem since the matrix elements are not the direct integration of two basis
functions, but with a kernel.

To summarize, zero degree B-spline scaling functions and wavelets can be used

directly to model the transverse current profile on a patch. To model the longitudinal
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current profile, we use modified first degree B-spline scaling functions and wavelets.
The scaling functions and wavelets are the same as the original ones except the edge
scaling functions are removed and edge wavelets are modified such that their values
are zero at the edges.

The two-dimensional rooftop basis and its associated wavelets[53] are formed
by direct multiplication of the zero and first degree B-spline scaling functions and
wavelets as shown in Fig. 5.5. These basis functions are used in the following deriva-
tion of the method of moments.

Let Ji, Js, ..., J. be basis functions. Let J, be the induced current on the patch.

J, can be expanded by the basis as follows:
5= 3 andm, (5.6)

where a,, is the unknown expansion coefficient. Suppose the incident field is £, then

the total field E* can be represented as follows
- / G(rlr') - J(r') ds', (5.7)
Sl

where ﬁ(rlr') is the electric field dyadic Green’s function of a conductor-backed
dielectric substrate as described in Chapter III. Since the total tangential electric

field on the patch must vanish, we have

0= [//]J -G(r]r') - Jo(r')ds'ds, form=1,...,n (5.8)

Substitute (5.7) to (5.8) and rearrange, we reach the following matrix equation:
[Z]11] =[V], (5.9)

where

[Z]);; = ////J -G(r|r') - Ji(r')ds' ds, n xn matrix,  (5.10)
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Figure 5.2:
& The rooftop basis functions used to expand the current on a patch. (a)

Profile along the direction of the current. (b) Profile along the transverse
direction of the current.

1] = ai n —element vector,  (5.11)

V] = —//j,(r) - E(r)ds, n —element vector.  (5.12)

(5.9) can be solved by direct matrix inversion when the matrix dimension is small, or

by iterative algorithm such as bi-conjugate gradient when matrix dimension is large.

5.4 Fast Wavelet Transform

Due to the convolutional property of the Green’s functions, The integration of

(5.10) only depends on the distance between the two basis functions when they have
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Fi 9.3:
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wavelets, also called Haar wavelets, (c) first degree B-spline scaling func-
tions, (d) first degree B-spline wavelets.
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The modified first degree B-spline scaling functions and wavelets. The
scaling functions consist of only triangle functions without the two half
triangles basis at the ends. The wavelets are the same as the original
except the edge wavelets have zero value at the end. Only one edge
wavelet is shown in figure since the other one is just a mirror.
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The two-dimensional rooftop basis functions and its wavelets[53]. (a) the
scaling function formed by the multiplication of the zero and first degree
B-spline scaling functions, (b) a wavelet formed by the zero degree scaling
function and the first degree wavelets, (c) a wavelet formed by the zero
degree wavelet and first degree scaling function, (d) a wavelet formed by
the the wavelets of zero degree and first degree.
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Expansion Level 0 1 2 3

Number of Unique elements | 705 | 3568 | 8876 | 13097

Table 5.1: Comparison of unique elements v.s. expansion levels.

the same form. Thus, when only one kind of scaling function is used in the aforemen-
tioned patch problem, the elements of [Z] will only have n different values, where
n is the dimension of the matrix. Instead of performing n x n times of integration,
only n integration are needed, which results in a great saving in computation time.
As discussed in Section 5.1, we expect the use of wavelets as part of the basis
functions will have the benefit of reducing the memory requirement. However, the
introduction of wavelets will ruin the Toeplitz property of the matrix, which increases
the computation time. As an example, a patch antenna is discretized as a 16 x 16
grid. The number of basis functions in both x and y directions are 15 x 16 respec-
tively. Table 5.1 shows the number of unique elements in different expansion levels.
From the table, we see a 5 time increase in the number of unique elements when
merely changing the basis from scaling functions only to one level expansion which
compromises approximately the same number of scaling functions and wavelets.
Here comes the dilemma. We want to use wavelets to reduce the memory require-
ment. However, doing so will increase computation time. To avoid this, instead of
using the wavelet basis directly, we perform the integration of the matrix elements
using higher level scaling functions. Since these functions span the same linear space
expanded by the lower level scaling functions and wavelets as shown in (5.5), there

must exist a linear transform between them.

" = {41,605 ...,9,} ® = {41,62,...,6n} Let ® be the basis only consisting of
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higher-level scaling functions, and ®’ be the basis consisting of the lower-level scaling

functions and wavelets. Assume

¢ = {¢17¢27--',¢n}7q)1= {¢Il3¢,2’7¢:;} (513)

If matrix [P] is the transformation matrix between ® and @', we have

¢i = Zpij¢ja (514)
j=1
where p;; is the i-th row and j-th column element of [P]. Let [Z] in(5.10) be the
matrix evaluated in basis ® and [Z’] evaluated in basis @', then we have

(2] = [P)"[Z][P] (5.15)

where 1 is the transpose operator. Since the relationship of scaling functions and

wavelets are well defined, [P] is easy to derive.

5.5 Microstrip Patch Antenna

In this section, the wavelet theory described in previous sections will be applied
to the analysis of a microstrip patch antenna as shown in Fig. 5.6. Without loss of

generality, we assume a normal incident field E* which can be expressed as follows
Ei(r) = (1 4 T)eliko2)g, (5.16)

where I is the reflection coefficient at the interface between the substrate and free
space and ko is the propagation constant of free space. Since the patch current

includes both z and y components, J,, is expanded as follows

Ip(r) = oz, y)2 + Jy(2,9)9 (5.17)

Jr and J, are expanded by the scaling and wavelet basis discussed in previous sec-

tions.
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Ground Plane

Figure 5.6: A microstrip patch antenna

Each element of the impedance matrix is integrated by an adaptive Gaussian
Quadrature algorithm. The number of divisions used in this algorithm is dynamically
determined to guarantee the convergence of the numerical results. The convergent
criterion is set to 107° in the following cases, such that each element in the impedance
matrix has at least five-digit accuracy.

A uniform grid of 16 x 16 was used to discretize the patch. The grid size is
equivalent to 15 triangle functions in the direction of the current and 16 pulse func-
tions in the transverse direction as shown in Fig. 5.7-(a). Let this set of scaling
functions be the highest-level resolution, and called them a zero-level multiresolu-
tion expansion. Then, the one-level multiresolution expansion contains the scaling
functions and wavelets at the next lower-level resolution, i.e. 8 x 8 grid as shown in

Fig. 5.7-(b). Similarly, the two-level multiresolution expansion contains scaling func-
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Fi 5.7:
e Multiresolution grids at different resolution levels: (a) 16 x 16, (b) 8 x 8,

(c) 4 x 4.
tions and wavelets defined on 4 X 4 grid as shown in Fig. 5.7-(c) plus the wavelets in
the previous resolution. Fig. 5.8 shows the dominant component of the patch current
distribution near the resonant frequency of the patch in Fig. 5.6. The result of using
the bases of the three multiresolution expansions is exactly the same as the theory
predicted.

To investigate the effect of thresholding, the moment matrix produced by the
level-one basis is examined. Those elements smaller than a given percentage of the
maximum element are set to zero. Then, the moment matrix is inverted to solve
the unknown expansion coeflicients. Fig. 5.9 shows the resulting current distribution
after applying thresholding levels of 0.001%, 0.01%, 0.05% and 0.1% respectively. As
expected, the larger the thresholding level, the more seriously the current distribution
deteriorates. At a level of 0.05%, degradation of the current distribution is already
obvious.

Fig. 5.10 shows the structure of the moment matrices after thresholded at the
aforementioned levels. Non-zero matrix elements are marked by a black dot in the

figure. Sparsity values of 65%, 76.8%, 80.4% and 81% are obtained respectively for



95

the four cases. The sparsity value is defined by dividing the number of zero elements
by the total number of the matrix elements. Note that the elements involving the
interaction of two scaling functions are excluded in the thresholding process.

In order to show the strength of the interaction between two basis functions,
Fig. 5.11 plots the absolute values of the elements of the impedance matrix in
Fig. 5.10 before thresholding v.s. the distance between the two basis functions.
The figure is categorized by the types of basis functions shown at the right hand side
of the figure. Only 4 types are plotted as examples. We found that the maximum
value of the impedance matrix is 0.02044 which is produced by the wavelets shown in
figure (b). At a distance of 0.025 meter, or equivalently, 0.128 free space wavelength,
the value drops to less than 0.001% of the maximum value. Note that in (c) the
maximum value produced by the interaction of a scaling function and a wavelet is
much smaller than the other three cases. The maximum value in (b) is larger than
(a). This is because the wavelet spans an area 1.5 times of the area spanned by the
scaling function. As expected, (b) and (d) show that the interaction decays faster
when only wavelets are involved.

Fig. 5.12 shows the comparison of the sparsity of the moment matrix generated by
the one-level and two-level multiresolution expansions. Contrary to what we expect,
the sparsity of the latter case is not always higher than the former one. One possible
explanation is that the larger cell size of the lower level wavelets overlays with other
functions, thus reducing the canceling effect of the wavelets.

Fig. 5.13 shows the magnitude of the dominant current at the center of the patch
for different threshold levels. The resonant frequency can be determined by the
peak of the curve. From the figure, very accurate results are obtained by one-level

expansion even at a 0.05% threshold level. However, in the two-level expansion, the
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curve is already seriously deteriorated at the same threshold level.

To investigate the effect of thresholding on the far-field pattern, the radiation
pattern of the patch antennas at different threshold levels are computed from the
current distribution on the patch. Fig. 5.17 shows the un-normalized far-field pattern
for the case of a one-level expansion. Compared to the current distribution, the
pattern is more immune to the error caused by thresholding. The result shows very

good accuracy for up to a 0.1% threshold level.

5.6 Patch Antenna Arrays

In this section, based on the single patch of previous section, a 3 x 3 and a 6 x 6
arrays are studied to explore the potential of multiresolution expansion in large scale
problems. Fig. 5.14 shows the configuration of the arrays. By default, the distance
between adjacent elements is equal to half the free space wavelength in both  and y

directions. Using the same resolution as the single patch, the number of unknowns

is 4320 and 17280 respectively.

5.6.1 3 x3 Array

Fig. 5.15 shows the comparison of the sparsity of the one- and two-level expansions
at different threshold levels. Unlike the single patch, the sparsity of the two-level
expansion is always higher than the one-level expansion at the same threshold level.
The reason is that the majority of the matrix elements are from the integration
of the basis functions on different patches such that the canceling effect of wavelet
bases is more obvious. Note that, at 0.01% threshold level, the two-level expansion
already gives a high sparsity of 96.1%. Fig. 5.16 shows the structure of the sparse
matrix of this case. Fig. 5.17 shows the un-normalized far-field pattern of the array.

The “array factor” shown in the legend of the figure means that the pattern is
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computed by multiplying the array factor with the pattern of a single patch without
thresholding. The figure shows that the pattern computed by the array factor has
a significant difference in the power level with the other patterns. This discrepancy
may be caused by the neglect of the coupling between patch elements when using the
array factor to compute the pattern. At all the threshold levels shown in the figure,
good agreement is obtained in the main beam. However, noticeable differences are

seen in the side lobe levels. exhibits larger difference.

5.6.2 6 x6 Array

In this section, a 6 x 6 array is studied. Fig. 5.18 shows the comparison of the
sparsity of the one- and two-level expansions at different threshold levels. Similar
to the results of the previous section, the sparsity of a two-level expansion is alway
higher than the case of a one-level expansion. The difference is even larger than
in the previous section. At a threshold level of 0.01%, the two-level case already
achieves a very high sparsity of 98.84%. The structure of the sparse matrix of this
case is shown in Fig. 5.19. Fig. 5.20 shows the normalized far-field pattern of the
array. At all threshold levels, the pattern changes very little. This indicates that
the radiation pattern is highly insensitive to the error incurred by the thresholding
process.

Table 5.2 shows the memory size of the sparse matrix at different threshold levels.
Note that, the full matrix storage requires 4778 MBytes, which is prohibited by most
of today’s computers. However, even at the lowest threshold level of 0.001%, the

memory size reduces to only 118 MBytes.
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Fi 5.8: . .
gure The dominant component of the induced current on the patch antenna.

The parameters used in the computation are a = 5.95 cm, b = 5 cm, .
d = 0.159 cm, and €, = 2.55. The definition of these symbols are shown
in Fig. 5.6

Threshold level | Sparsity | Memory size (Bytes)
None Full matrix 4778 M
0.00001 98.35% 118 M
0.0001 98.84% 83.1 M
0.0005 99.10% 64.5 M
0.001 99.26% 53.0 M
0.01 99.58% 301 M

Table 5.2:

Comparison of sparsity levels and memory usage at different threshold
levels.
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Figure 5.9: : e o
gtire Effect of thresholding on the current distribution after applying different

threshold levels: (a) 0.001%, (b) 0.01%, (c) 0.05% and (d) 0.1%.
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Figure 5.10: . .
) Structure of the moment matrix generated by the one level multireso-

lution expansion after thresholded by levels (a) 0.001%, (b) 0.01%, (c)
0.05% and (d) 0.1%.
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Fi 5.11:
e This figure shows the absolute values of the elements of the impedance

matrix in Fig. 5.10 before thresholding v.s. the distance between the
two basis functions. The figure is categorized by the types of basis
functions shown at the right hand side of the figure.
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5.7 Conclusion

In this chapter, the multiresolution expansion was incorporated into the formula-
tion of the method of moments. This formulation was applied to microstrip patches
and arrays. The result indicates that by using wavelet bases, the impedance matrix
is highly sparse when the system is large. Thus, a significant reduction in memory

size is achieved.
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Fi 5.16:
e Structure of the sparse matrix of the 3 x 3 array at 0.01% (two-level

expansion).
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CHAPTER VI

Application of Parallel Computing in MoM

6.1 Introduction

Due to advance in semiconductor industry, the price of high performance proces-
sors falls rapidly, making it economical to build parallel computers with large number
of processors. The need of high performance computing not achievable by single pro-
cessor also drives the development of parallel computing technology. During the
past decade we saw a lot of commercial parallel computers made by IBM, SGI and
INTEL, to name a few. Parallel computers are no longer the proprieties of govern-
ment or university research laboratories, but a reality. However, there is one cause
hindering its widespread adoption. To tap into the power of parallel computing, the
user has to modify his program according to the programming interface provided by
the vender. Every time the user changes the parallel computer he used, he will need
to modify his program again. There is no common programming interface among
parallel computers until the Message Passing Interface (MPI) was standardized in
1994 [32]. Since then, MPI has been widely adopted by the computer industry.

To utilize parallel computers, first a programmer needs to design a parallelization
model for his program. The idea of parallelization is to divide a single task to

many independent jobs. A simple and easy way to implement is the Single Program
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Multiple Data (SPMD) model. In this model, different data sets are executed by
the same program on different processors. These data sets have to be independent
of each other, otherwise they cannot be executed in parallel. One simple example in
electromagnetic problems is frequency response. In FEM or MoM, the computation
process at each frequency point will not effect the outcome of other frequencies.
Thus, we can simply submit the whole computation process of one frequency point
to one processor [42, 43]. However, this may not achieve the best efficiency in terms
of processor utilization. For instance, if there are 8 frequency points and 7 processors,
when the last frequency point is computed on one processor, all other 6 processors
will be idling. To achieve better efficiency, it is necessary to go to the inside of
the computation process to seek out other independent operations which can be
parallelized.

Many numerical techniques for solving electromagnetic problems have utilized
parallel computers. Especially, the FDTD has attracted a lot of effort in paralleliza-
tion due to its computer-intensive nature. A comprehensive study of its implemen-
tation can be found in [55]. A detailed description of a parallelized implementation
of a MoM code is presented in [56]. A comparison of linear equation solvers for
integral-equation formulations can be found in [57].

In the following sections, two processes in MoM are parallelized using MPI. One
is the impedance matrix fill process; the other is the FWT process. The detail of the

implementation and the measurement of the turn around time are included.

6.2 Parallelization Model of MoM Matrix Fill Process

The formulation of MoM always leads to a matrix equation as follows

Az = B, (6.1)
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where A is a two-dimensional matrix, B is a column vector, and z is the unknown
column vector we want to solve by direct inversion of A or by an iterative linear
equation solver. The elements of matrix A are often the result of numerical integra-
tion of two basis functions with an integration kernel. The following equation is an

example in one-dimensional space:

a; = [[ fi(z)g(2,2) fi(a) de do'

where a;; is the element of the matrix at ¢-th row and j-th column, fi(z) and f;(z) are
the basis functions, and g(z, z') is the kernel. Depending on the form and the distance
between the basis functions, the time needed to perform the numerical integration of
one element may vary greatly. To fully utilize the processors of a parallel computer,
a dynamical job allocation scheme is necessary. As shown in Fig. 6.1, a processor
is reserved as a dispatcher to send jobs and receive results from the workers. Other
processors are served as workers to perform the numerical computation. 4 types of

messages are passed between the dispatcher and workers. They are
FREE: sent by a worker to inform the dispatcher that it is ready to accept new jobs,

RESULT: sent by a worker to the dispatcher, containing the result of numerical inte-

gration,
TERMINATION: sent by the dispatcher to inform the worker that all jobs are sent.
JOB: send by the dispatcher, containing the information of a job.
Following are the procedures performed by the dispatcher:
1. create a list of the unique elements,

2. wait for messages from the workers,
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3. if the message is a RESULT message, store the result, otherwise the message is

a FREE message and a JOB message is sent to the worker,
4. repeat step 2 and 3 until all jobs are sent and returned,
5. send TERMINATION message to inform each worker to quit.
For the worker, the procedures are:
1. send FREE message to the dispatcher,
2. wait for messages from the dispatcher,

3. if it is a JOB message, perform the numerical integration and return the result,

otherwise it is a TERMINATION message and the worker quits.
4. goto step 2.

Fig. 6.2 shows the flow chart of the above process. The dashed lines in the
figure indicate the communication paths. Two kinds of processes, dispatcher and
worker, are concurrently executed. First, the process of the dispatcher sorts out the
unique matrix elements and builds a job list after it starts and reads in the necessary
parameters. Then, it enters a loop waiting for messages from the workers. The
loop terminates only after all the jobs are sent and all the data are collected from
the workers. Inside the loop, the dispatcher checks the messages from the workers.
If the message contains data, the dispatcher will store it and then wait for new
messages. If the message is a FREE message, the dispatcher checks if all the jobs
have been sent. If not, the dispatcher will send a job to the worker which sends the
message. If all jobs have been sent, the dispatcher will send a TERMINATION message

to the worker. If all worker have been terminated, the dispatcher exits the loop,
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Parallelization Model of Impedance Matrix Fill
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Figure 6.1: A dynamical allocation scheme for matrix fill process.

outputs the results and quits. If there are still active workers, the dispatcher will
continue waiting for new messages.

The worker process, after starts and reads in the necessary parameters, sends a
FREE message to the dispatcher to indicate that it is ready to accept new job. Then,
it waits for a reply from the dispatcher. If the reply is a TERMINATION message, the
worker quits. Otherwise, the message contains a job and the worker starts to execute
it. After the worker has finished the job, the result is sent back to the dispatcher
via a RESULT message. After sending the RESULT message, the worker sends a FREE
message to the dispatcher and waits for the reply from the dispatcher again. A short
program section is included in Appendix C to reveal the detail of implementation.

A measurement of turn around time v.s. number of processors is shown in Fig. 6.3.

Here the “turn around time” means the elapsed time from the start of the program
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until completion. The measurement is performed on a 48 processor IBM SP2 ma-
chine. In the figure, the theoretical result is curve-fitted to the experimental result

according to the following formula

time(i) = P + Comm X n + Comp/(¢ — 1), forz>1 (6.2)
where

time(¢) : turn around time,

P : preprocessing time,
Comm : communication time per message,

Comp : total computation time of the jobs,
¢ : number of processors,
n : number of transmitted messages.

Note that Comm includes the communication latency and the actual transmission
time of one message. Since the message size is fixed , Comm is a constant. Let N be
the total number of the jobs. From the flow chart, there are N +:—1 FREE,, N JOB,
N RESULT, and ¢ — 1 TERMINATION messages. Thus, the total number of transmitted
messages is 3 X N +2(:—1). When N is much larger than ¢, the total communication
time is proportional to N.

From (6.2), it is seen that when the number of processors increases, only the third
term in the formula decreases. This means that the preprocessing time plus the total
communication time governs the limit. The formula also indicates that the curve of
the turn around time should approximate a hyperbola when N is much larger than :.
The measured results show very good agreement with the above theoretical model.
The improvement of turn around time is larger when the number of processors is
small. However, when the number of processors is large, only a small improvement

is achieved because the preprocessing and communication time dominate. Note that
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the turn around time of 2 processors is higher than 1 processor. This is due to
the higher preprocessing time of parallelized program and the communication cost.
Also note that, due to the programming model, one processor is always reserved for
coordinating other processors. When the communication cost is small, this processor
will mostly be idle. It is possible to also utilize the idle time on this processor to

perform numerical integration by more sophisticated programming.

6.3 Parallelization Model of FWT

As discussed in Section 5.4, the FWT process transforms the matrix derived in
MoM from one set of basis to another. (5.14) and (5.15) are repeated below for

convenience.

¢ = L1 piids (6.3)

2] = [PI"[Z][P] (6.4)

In (6.3), 4; and ¢ are the members of the basis ® and ®' respectively, and N is the
rank of the basis. In (6.4), [Z] and [Z’] are the MoM matrices evaluated in bases ®
and @’ respectively. The p;; in (6.3) is the i-th row, j-th column element of matrix
[P] in (6.4). Let 2/, be the m-th row, n-th column element of [Z’], from the above

two equations, we can derive

N N
zz{j = Z meizmnpnja (65)

m=1n=1
which is the form of the single operation in the FWT.

The process of FWT fits to the SPMD model which is characterized by repeating
the same operation, for example, (6.5), on different data. Comparing to the previous
matrix-fill process, each operation of FWT is shorter and fixed, however the total

number of operations is much larger. If the same algorithm as the previous one is
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used, the overhead of communication will be too great. In stead, a fixed job-allocation
scheme as shown in Fig. 6.4 is devised. At the beginning, each processor computes the
job list and equally divides it to the total number of processors. Each processor can
determines its share of jobs by his “rank”!. The only communication that takes place
is when each processor sends its final computed results to one designated processor
for post-processing.

Following are the procedures performed by each processor:
1. create a list of the operations,
2. divide the list equally into n shares, where n is the total number of processors,

3. use the rank of the processor as an index to determine which share belongs to

itself,

4. perform the FWT,
5. send the computed result to the processor with rank equal to 0.

Fig. 6.2 shows the flow chart of the above process. A short program section is
included in Appendix C to reveal the details of the implementation.

A measurement of turn around time v.s. number of processors is shown in Fig. 6.6.
The definition of “turn around time” is the same as in the previous section. The
measurement is also performed on the same parallel computer. In the figure, the
theoretical result is curve-fitted to the experiment result according to the following
formula

time(z) = P 4+ Tran X N + L x i + Comp x N/1, (6.6)

1A terminology used by MPI to number the processors. If there is n processors, the rank of the
processors will be 0, 1, 2, ..., n.
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where
time(¢) : turn around time,
P : preprocessing time,
Tran : actual transmission time of one unit of data,

L : communication latency,

Comp : computation time,

¢ : number of processors,

N : number of unique matrix elements.

Since each processor only sends computed results once, the total latency time
equals to L x i. Comparing to other terms in (6.6) the total latency is negligible
since the latency of SP2 is only 40 xS.

As in the previous section, when the number of processors increases, only the
last term in the formula decreases, while the first and second terms remain the
same. This means that the preprocessing time and the total communication time
is the limit. The formula also indicates that the curve of the turn around time
should be a hyperbola. The measured results show very good agreement with the
above theoretical model. The improvement of turn around time is larger when the
number of processors is small. However, when the number of processors is large, only
diminishing returns are obtained because the preprocessing and communication time

dominates.

6.4 Conclusion

In this section, the matrix-fill process and FWT in MoM are parallelized. The
measured improvement is consistent to the theoretical model of the turn around
time. Another bottleneck not addressed in this chapter is the process of solving

(6.1). When the size of matrix A is large, direct inversion of A becomes impossible.
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Thus, iterative solvers need to be used. An iterative solver by nature is sequential.
Each iteration relies on the result of last iteration. In this dissertation, a bi-conjugate
gradient [6] iterative solver is used when the matrix size is large. In this solver, the
most time-consuming part is the multiplication of a matrix with a column vector.
Every iteration produces an improved guess of the solution vector. Thus, the commu-
nication overhead of at least one solution vector in every iteration is not avoidable.
When the dimension of the matrix is large, this communication overhead outweighs
the improvement incurred by parallelizing the linear solver, since the communica-
tion speed is much slower than computation speed. This problem still needs to be

addressed if further improvement on the speed of MoM is necessary.
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Parallelizing Model of Fast Wavelet Transform
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Figure 6.4: A static allocation scheme for the FWT process.
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CHAPTER VII

Conclusion

7.1 Summary of Achievements

The goal of this dissertation is to develop efficient numerical techniques which can
be used in modeling complex and large structures like MMIC’s. To achieve this goal,
first we have developed a hybrid MoM/FEM technique which combines the efficiency
of MoM and the flexibility of FEM. As shown in Chapter 24, this technique has been
successfully applied to the design of a microstripline-fed slot-coupled cavity-backed
patch antenna, a coaxial line-fed cavity-backed patch antenna, a wide bandwidth
low-insertion-loss microstripline vertical cavity coupler, and a high-Q micromachined
cavity resonator.

Second, we have incorporated multiresolution expansions to the method of mo-
ments to utilize the locally oscillatory and zero averaging property of wavelet bases.
These properties tend to make the off-diagonal terms of the impedance matrix very
small when these terms involve the integration with a wavelet. These terms can be
neglected and occupy no memory space in a sparse matrix storage scheme. Thus,
the memory size required to store the matrix is reduced. Our test on patch antennas
shows that when the problem size is large, significant saving in memory is possible.

The 6 x 6 patch array in Chapter V reduces memory size to only 1.16% of the original
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under a low threshold value of 0.01%.

Third, in order to utilize parallel computers, the programs for the impedance
matrix fill process and the FWT process are ported to MPI. The programs have
been tested on a 48 CPU IBM SP2 parallel computers. Significant improvement in

speed is evidenced by the measured turn around time.
7.2 Future Work

Following is the research work that can be continued in the future.

First, the high-Q resonator introduced in Chapter IV has been fabricated and
tested. The feasibility of the design concept has been proved. To fulfill its potential,
the next step is to design a band-pass filter by stacking several cavities vertically.

Second, the bottleneck in MoM or FEM is always in the matrix fill process and
the iteration solver. Since the matrix fill process can be parallelized, the iteration
solver remains as the primary bottleneck. However, the parallelization of the iteration
solver is difficult due to the large quantity of data passed around in each iteration.
The benefit of parallel processing is always outweighed by the extra communication
cost. Thus, it is necessary to develop a more efficient algorithm to parallelize the
iteration solver.

Finally, in the multiresolution expansion, although we get good result out of
thresholding the impedance matrix, how the error relates to the threshold level is
not clear. Hence, a systematic study on the relationship between the error and

threshold level is necessary to ensure the accuracy of the results.
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APPENDIX A

Tetrahedral Edge Elements

Fig. A.1 shows the labeling system of the nodes and edges of a tetrahedral element.
Let W; be the edge basis corresponding to edge €;. Referring to Table A.1, W for
i=1,2,...,6 is defined by

froit G xT TEV,

7-1 = )
0 TgV,
fos = b7—iF X T,
7—i — Taxs lil 125
6Ve
g = bib7—ig
T—i iy
6Ve
s = T2 —Ta
1 - )
b
bi = [Ti —Tal,
V. = element volume.

Note that W satisfies following relationships

vV-W;=0,

1

\% XW: =2z7ia

Wi() & = &,
1 =3 .
where 0;; = and 7 is a vector on j-th edge of the tetrahedron.

0 i#j
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i A.l:
Figure The node and edge labels of a tetrahedral element. ny, ny, ns3 and ny

are the nodes. ey, e, ..., e are the edges.

Node number
Edge Number | 7, 19
1 1 2
2 1 3
3 1 4
4 2 3
5 3 4
6 4 2

Table A.1: Labeling system of a tetrahedron.
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APPENDIX B

Green’s Functions of Conductor-backed Dielectric
Slabs

Fig. B.1 shows a conductor-backed dielectric slab with thickness d and dielectric

constant ¢,. The notation of the Green’s functions are explained below

Gs (e, ky; 22,21),
d; : direction of the source. Can be z or ¥,
dy : direction of the field. Can be z or y,
F : field type. F for electric field; H for magnetic field,
S . source type. J for electric current; M for magnetic current,
21 : z component of the source point coordinate,

zo : z component of the field point coordinate.

The following definitions are used in the Green’s functions.

ko = wn/ Ho€o

Z() = "H—O
€0

B = ki tky
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Dielectric
d
Yy

Ground Plane

Figure B.1: The structure of a conductor-backed dielectric slab.

kit = Vérk‘g — ﬂ2, %(kl) <0, §R(k‘1) > 0,
k‘g - \/kg - ﬂ2, C\}(k‘g) < 0, §R(k2) > 0

T. = kicoskid+ jkysinkid

T = ¢€kycoskid+ jkysinkyd

The spectral domain Green’s functions used in this dissertation are listed below:

. Zo  (&kd — k2)ky cos(kyd) + j(k§ — k2)ky sin(kyd)

Wylkoskyidid) = i ) i
Gy ke, by dyd) = 47i°k0 kaky (ks COS(k%:i%:Jkl sin(had))
_ i
3 (kg by 0,d) = 47172 frklk2C°S(k1d)+.7;/:;5;r 1) - K)sin(ind)
il bi0.0) = o e [ — 1)+ (oK )

x {kiky(e, + 1) sin(kyd) cos(knd) + j (.2 sin*(kyd) — K cos?(kyd))}]

1 jksky(& —1)sin(kid)

iiahe B0 ) = T,

Note that due to reciprocity,

GY(koyky;dyd) = GF)(koy by d, d),
G (kg ky; d,0) = =G5 (ke ky; 0,d),
32k ky; d,0) = =G5y (ko ky; 0, d).

Also G%5,(kg, ky; d, d) can be derived from G%;(ks, k,; d, d) by exchanging « and y.
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APPENDIX C

The Implementation of Parallel Programming in

C++

The following two sections show the implementation of the parallel programming of
dynamic and static job allocation schemes in C++ language. The definition of the

MPI functions can be found in [32, 33].

C.1 Dynamic job allocation

int rank, process_size;

mpidata mdata; /* common buffer for MPI messages */

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank==0)
{
/* Dispatcher Process */
int send_count=0, receive_count=0, actual_count;
int *process=new int[process_size-1];
/* for storing the status of processors */

for (int i=0;i<process_size-1;i++) process[i]=0;
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intpair* ip;/* pointer to the job list */

int finished=0;

do

{
MPI_Status status;
/* receive message from workers */
MPI_Recv(&mdata, sizeof(mdata), MPI_BYTE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

int sent=0;
switch (status.tag) /* check message type */
{
case TAG_REQUEST: /* request for job */

if (finished) /* inform the work to end */

{
MPI_Send(&mdata, sizeof(mdata), MPI_BYTE, status.source,
TAG_END, MPI_COMM_WORLD);
process[status.source-1]=1;
sent=1;
¥

while (!finished && !sent) /* send job to the worker */
{
mdata.job=ip[send_count]
mdata.i=send_count++;
MPI_Send(&mdata, sizeof(mdata), MPI_BYTE, status.source,

TAG_DATA, MPI_COMM_WORLD);
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actual_count++;

if (send_count>=count)

{
finished=1;
¥
sent=1;
¥
break;

case TAG_DATA: /* returned results */
ip[mdata.i].v=mdata.v;
receive_count++;
break;
¥
} while (receive_count<actual_count || finished==0);
/* inform workers to end */
for (int i=1;i<process_size;i++)
{
MPI_Status status;
if (process[i-1]==0)
{
MPI_Recv(&mdata, sizeof(mdata), MPI_BYTE, i, TAG_REQUEST,
MPI_COMM_WORLD,&status);
MPI_Send(&mdata, sizeof(mdata), MPI_BYTE, i, TAG_END,

MPI_COMM_WORLD) ;
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};

/* output the results */

}
else
{
/* Work Process */
MPI_Status status;
while (
MPI_Send(&mdata, sizeof(mdata), MPI_BYTE, 0, TAG_REQUEST,
MPI_COMM_WORLD),
MPI_Recv(&mdata, sizeof(mdata), MPI_BYTE, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status),
status.tag==TAG_DATA)
{
/* compute the job stored in mdata.job */
/* store the result in mdata.v*/
/* return the result in mdata.v */
MPI_Send(&mdata, sizeof(mdata), MPI_BYTE, O, TAG_DATA,
MPI_COMM_WORLD) ;
¥
};

MPI_Finalize();

C.2 Static Job Allocation

int size; /* total number of jobs */
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int rank, process_size;
mpidata mdata; /* common buffer for MPI messages */
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &process_size);

/* compute the size of jobs for each processors */
int count=size/process_size;

int remain=size Y% process_size; /* remaining jobs */
int *recvcount, *displs, offset;

if (rank==0)

{

/* processor 0 is also in charge of collecting
the results, so it needs to prepare the
place to store them */

recvcount=new int[process_size];

displs=new int[process_size];

for (int i=0; i<process_size; i++)

{

if (i<remain)

{
displs[i]=i*(count+1)*sizeof(intpair);
recvcount [i]=(count+1) *sizeof (intpair) ;
}
else
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displs[i]=(i*count+remain)*sizeof (intpair);

/* adjustment for the remaining jobs */

if (rank<remain)

{
count++;
offset=count*rank;
}
else
{
offset=count*rank+remain;
};

/* compute the jobs */

/* return the results */

MPI_Gatherv(&(z.ialoffset]),count*sizeof(intpair) ,MPI_BYTE,&(z.ia[0]),
recvcount, displs, MPI_BYTE, 0, MPI_COMM_WORLD);

if (rank==0)

{

/* processor 0 output the total results */
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