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CHAPTER I

INTRODUCTION

1.1 Electromagnetic Interference and Compatibility

With the rapid development of microwave engineering, electromagnetic interfer-
ence (EMI) has become a serious environmental pollution problem. Sources of EMI
can be catagorized into natural and artificial. Examples of major natural sources of
electromagnetic pollution, or noise, include atmospheric noises produced by electrical
discharges(lightning) that occur during thunderstorms, and cosmic noises from the
sun[1}-[4]. Since lightning generates an extremely high momentary electromagnetic
field, its interference with electronic equipment may be significant, and therefore,
many measurements have been performed and much research undertaken to study
the effects of lightning[1]-[3]. Likewise, a solar noise that results from an increased
solar activity can be a source of interference to electronic equipment|4].

Artificial, or man-made sources of EMI are, strictly speaking, all electric or elec-
tronic devices. Some major sources of man-made electromagnetic noise are RF
heaters, high A. C. voltage transmission lines, automotive ignitions, trains, fluores-
cent lamps, microwave ovens, communication transmitters, electric motors, etc.[5]-

[9]. Furthermore, the noise generated by the sources mentioned above can be en-

hanced by reflections from buildings and other obstacles[10]-[15].



There are many electrical and electronic devices that may not operate properly
under severe EMI. The problems attributed to EMI range from simple annoyances
to catastrophe or permanent failure. Examples of such problems include interference
to TV and radio reception[11],[12] and communication[13], malfunction of electronic
equipment(16],(17], and failure of digital systems. Since digital systems use low
voltage electronic devices, they are easily impacted even under a low level of EMI. To
maintain reliable performance of digital systems, EMI testing has become a standard
test for electric and electronic devices(18]-[20].

Many countries also impose commercial and military regulations on the level of
emissions from electronic or electrical equipment, as well as on the electromagnetic
compatibility (EMC) of such equipment with each other. The EMC regulations re-
quire that the electronic equipment be designed and built to function correctly under
the standard EMI levels without creating additional EMI. When designing equip-
ment to satisfy the EMC requirements, it is desirable to predict the electromagnetic
performance of such equipment in its design stage. To accomplish this, numerous
prediction techniques have been developed[19]-[24]. However, one still needs to mea-
sure and test the EMI and EMC performance of the equipment to verify that it is
complies with applicable regulations.

The EMC measurement results are inevitably affected by the measurement equip-
ment and the facilities used. For example, the sensor used in the field measurement
affects the field itself. Even though the measurements may include such errors, it
is said that one measurement is worth a hundred predictions. It is important that
great care be exercised in designing the facility and making the measurements to
keep the errors as low as possible.

In the EMC tests, measurements are often used to locate the sources of emission



and the areas of susceptibility. The measurements are also useful for EMC predic-
tion in that they provide magnitudes of fields, voltages, and currents, which form
the bases for the prediction analysis. There are several diagnostic measurements
typically performed: radiated electric and magnetic field measurements, conducted
line voltage and current measurements, and radiated and conductive susceptibility
measurements. For both the radiated and susceptibility measurements, a broadband
antenna is desirable to receive and transmit the signals. This thesis deals with a de-
sign and analysis of an antenna that simplifies these EMC and EMI measurements,

due to its extremely broadband characteristics.

1.2 Desirable Antenna Properties for EMC Measurement
and a Four-wire Antenna

Since the majority of unintentional electromagnetic noise occupies a wide fre-
quency spectrum, a broadband measurement technique is desirable for the EMC
measurements. The frequency range in measurements is limited by the bandwidth
of the measurement system including its antenna. Thus, the equipment used in
broadband measurements needs to be designed to cover as wide a frequency range as
possible. Otherwise, the number of measurements becomes large and costly to cover
the required frequency range (e.g., 10 KHz to 18 GHz in electric field susceptibility
tests). Therefore, the design of broadband components[25]-[37] is quite desirable.

With the availability of broadband measurement equipment, broadband radiators
are also needed. For this, many antenna designs, which show over 10 to 1 broadbani
characteristics, have been developed and are used. These include spiral antennas.
log-periodic antennas, horn antennas, tapered horn antennas with resistive loading.

ridge-horn antennas, tapered resistive dipoles, etc.[29]-[37]. However, these antennias,



except for the wire antennas, are inadequate for low frequency measurements since
the antenna becomes physically too large to handle and too expensive to construct.
A long wire antenna is one of the structures that has broadband potential and is
economical and simple to implement[33],(34]. However, the long wire by itself is not
a broadband device nor does it produce the desired field pattern. The broadband and
uniform field characteristics can be achieved by forming the proper wire geometry
and using a distributed and lumped loading at the ends of the wires[34],[37].

The broadband antennas used in EMC measurements are different from broadcast
or communication antennas in the field distribution aspect. In a broadcast antenna,
a high directivity is usually a desirable parameter. In EMI measurements, on the
other hand, an antenna with an excessive directivity may be disadvantageous|38].
An overly narrow beamwidth may not cover the entire equipment under test (EUT),
and would necessitate an increase in the distance between the antenna and the test
unit.

Likewise, it is desirable to design an antenna for EMI measurements that can
produce a uniform field distribution in the test area over a broad frequency range. In
radiated susceptibility tests, for example, an antenna is required to generate uniform
fields over the EUT. A tapered resistive dipole(37] is a simple wire antenna that can
be used as a wideband antenna, but it is not adequate in creating a uniform field.
If a far field region is chosen as the test region, then a uniform field distribution
is obtained. However, since the field intensity decreases with distances, the signal
would be too low to make the satisfactory measurements. This can be overcome by
using a near field region as the test region, provided uniform fields can be obtained
in this region.

Another important aspect of the broadband antenna is its input impedance var-
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ation with frequency. The EMC measurement antennas are specified with a nominal
input impedance of 50 ohms, whereas the actual impedance of the antenna may
be much different. This discrepancy results in a high voltage standing wave ra-
tio(VSWR) that may limit the use of high power amplifiers in driving the antenna.
In order to obtain a lower VSWR, impedance matching may be used, but this is
difficult to achieve for high VSWR cases, especially over a broadband frequency
range. Consequently, an antenna must be designed with an input impedance that
does not vary appreciably over the required frequency range. Besides these aspects,
it is desirable to build the antenna at a reasonably low cost.

To satisfy such requirements, a four-wire antenna is proposed in this thesis. The

advantages of the four-wire antenna are summarized as follows:
¢ broadband characteristics

e low frequency operation (> 50 MHz)

uniform field distribution in the test region

nondispersive characteristics

compatibility with anechoic chamber use

low cost and relatively simple implementation

The idea of the four-wire antenna basically comes from the parallel four transmission-

line simulator proposed by Carl E. Baum([39]. He found that four parallel wires can
create uniform field distribution at the center of the four wires. The most uniform
field distribution is obtained with the specific spacing ratio of 1//3 between wires

of the same polarity to the wires of the opposite polarity. This idea is applied to a



double-V antenna, and leads to the concept of the four-wire antenna presented in
this thesis.

The four-wire antenna is formed by two V antennas spreading away from each
-other from the center feed (see figure 2.1). Four wires essentially form a low frequency
(low-pass) transmission system[40],(41] since they support waves whose wavelengths
are larger than, or at most equal to, the spacing between the wires. The field in the
test region is essentially a TEM wave with a spherical phase front. The four-wire
antenna is also a broadband radiator. When the spacing of the antenna approaches
a wavelength, the wave starts to radiate and propagate in the same direction as the
low frequency TEM wave. Thus, the high frequency limit of the four-wire antenna
depeﬁds only on the gap size and its geometry at the feed. An important property
of this antenna is that it is essentially dispersionless—the currents on the wires, or
the TEM waves, travel at the same velocity as the launched waves thus preserving
the phase coherence.

Besides the EMC application, the four-wire antenna can also be used in other
electromagnetic measurements such as backscattering or radar cross section mea-

surements and surface field measurements.

1.3 The Use of an Anechoic Chamber

In general, outdoor measurements may be more accurate than indoor measure-
ments if the ambient and other external noise sources are sufficiently small. However,
it is practically impossible to avoid such noises and weather conditions may further
delay or interfere with the measurements. For such reasons, EMC and EMI mea-
surements are often made in shielded rooms.

The use of a shielded room, however, can produce errors in both the radiated emis-



sion measurements and the radiated susceptibility tests. The errors are attributed

to:
e internal room reflections
e coupling of antennas with the conductive walls
o field distortion due to standing waves
e room excitation in various cavity modes

These errors, however, can be reduced significantly by covering the walls with ab-
sorbing materials[38]. Such rooms are called anechoic chambers.

The anechoic chamber uses absorbing materials (absorbers) that are placed on the
walls, ceiling, and floor of the chamber to absorb microwave energy. These absorbers
have good performance at relatively high frequencies (above 300 MHz). However,
in the lower frequency range (below 300 MHz), the absorbers perform poorly and
may even introduce additional scattering[42]-[43]. Despite these inherent problems
at low frequencies, the use of anechoic chambers is still a popular facility for EMC
measurements.

Under the study presented in this thesis, a four-wire antenna was installed in the
tapered anechoic chamber at the Radiation Laboratory of the University of Michigan.
Before installing the antenna in the chamber, distortions in field distribution due to
the chamber walls were anticipated and are analyzed here. It was expected that
the performance of the four-wire antenna in the chamber at high frequencies (above
300 MHz) would be essentially the same as in free space, while the low frequency
performance would be significantly different from that in free space. The chamber

resonances and reflections would have a significant affect on the field distributions.



Therefore, to fully understand the performance of such an antenna in the anechoic
chamber, the analysis must take into account the antenna and the chamber as a

whole.

1.4 Overview

Chapter I presents the introduction of this thesis. Chapter II presents an anal-
ysis of the four-wire antenna when it is located in free space. In this analysis, an
appropriate loading resistance is determined that eliminates the standing waves on
the wires. Then the input impedances and the field distributions are computed to
characterize the antenna.

Chapter III presents an analysis of the wedge absorber used in the anechoic cham-
ber based on the method of moment technique. Volume-surface integral equations
are developed for this analysis. When considering the whole chamber it is desirable
to simplify the wedge absorber to an equivalent layered slab to reduce the size of
the (numerical) problem. The equivalent layer is formulated so that its reflectivity is
compatible with that of the original absorber. These results are then used in analyses
presented in Chapters IV and V.

Chapter IV presents an analysis of a dipole antenna when it is located near lossy
dielectric layers backed by a perfect conductor. A Green’s function is derived which
satisfies the wave equations with proper (absorber) boundary conditions for this
analysis. Lossy dielectric layers with conductor backing simulate the absorbers and
the chamber walls, respectively. This particular study provides pertinent information
on the performance of the absorbing materials that are illuminated from nearby wire
antennas.

Chapter V presents an analysis of the tapered anechoic chamber with the f



wire antenna using a three dimensional finite element technique. To reduce the
total number of unknowns, the chamber geometry is simplified by replacing the
pyramidal absorbers with equivalent absorbing layers. In the analysis, currents and
field distributions are obtained at frequencies below 100 MHz.

Chapter VI describes the construction and the installation of the four-wire an-
tenna in the anechoic chamber. The electrical performance of the antenna and the
test measurements are presented. These include the antenna impedance measure-
ments, field distribution measurements, and sample measurements of surface current
and backscattering.

Finally, Chapter VII provides conclusions and suggestions for future work.



CHAPTER II

ANALYSIS OF FOUR-WIRE ANTENNA IN
FREE SPACE

2.1 Introduction

In this chapter, a four-wire antenna is analyzed in free space. The results of the
analysis provide data that are necessary for the design and construction of a four-
wire antenna. The results of the analysis are also used to predict the performance
of the antenna.

The free space analysis provides input impedances, current distributions on wires,
field distributions, and optimum loading resistance distributions. To obtain the cur-
rent distributions, the computer code called Numerical Electromagnetic Code (NEC)
[44] is used. The NEC program uses the method of moments to solve an integral
equation for the electric field. This equation, given below, models the electromag-
netic response of thin-wire structures of small or vanishing volume conductors. When

an incident electric field, £ is given, the total electric field is written as
E‘tot(r-,') - E‘inc(;") +Ev‘acat(7-:) (2‘1)

where

ey

B = 2(7)J(7)

10



-‘acat -—-JT)O — - — - = ’
= 22 7) - dV
Bt = T8 [ )G
with
G(77) = (KT+vv)eFr)

9(Fr) = exp(—jko|7 = r|)/|F = 7|
ko = Wy/Ho¢co
To = \/lio/fo

and I is a unity dyad. The impedance, Z, is defined as the ratio of the electric field
to the current density and E®!(7), Ei"¢(7), and E**(7) denote the total, incident,
and scattered field, respectively. In the above equations and throughout the thesis,
ezp(jwt) time convention is implied.

Once the current distribution on the antenna is obtaiﬁed for a given voltage
source, the input impedance is calculated by dividing the driving voltage by the cur-
rent at the input terminals. The total field distributions are obtained from Eq.(2.1)
by substituting the computed current density J (1:7 ). The analysis is performed up to
1 GHz since the numerical implementation is computationally too intensive at higher
frequencies.

In section 2.2 the optimum loading distribution is determined to suppress current
reflections from the wire ends, thus enhancing the antenna bandwidth. In section 2.3

the computed input impedances of the four-wire antenna in free space are presented,

and in section 2.4 the computed field distributions at the test area are presented.

2.2 Effects of Loading Resistance on Current Distributions

A long wire is usually used for a traveling wave antenna. When one end is excited

by a source and the other end is open, there exists a standing wave pattern that is



12

the result of two waves propagating in opposite directions along the wire. Since the
waves are radiated even though the medium is lossless, the waves propagating in
opposite directions do not have the same magnitudes, except at the open end. The
resultant standing wave has a decaying sinusoidal wave form. The long wire antennas
are usually designed to have a traveling current wave only in one direction. This is
achieved by loading a proper impedance at the end of the wire so that the reflection
at the end is minimized. The value of the proper impedance is usually adjusted
about the characteristic impedance of the wire antenna to minimize the reflection.

By using loading to produce traveling waves only in one direction, the antenna
illuminates single direction and produces a more uniform field. In addition, the
voltage standing wave ratio (VSWR) at the feed point is acceptable over a broad
frequency range.

The effective resistance loading over a broad frequency range is obtained by using
distributed resistances. The proper loading resistance distributions are achieved by
considering the following: since the high frequency waves are highly dependent on
the slope of the loading resistance per unit length and are dissipated over a short
distance, the early part of loading resistance must have a small value and vary slowly.
The low frequency waves are less sensitive to the slope of resistance and propagate
farther in comparison to the high frequency waves. Therefore, the latter part of the
loading resistance can be changed more rapidly and the value must be large enough
to dissipate the lowest frequencies. Consequently, the length of distributed loading
resistance must be sufficiently long to eliminate the lowest frequency wave without
allowing the highest frequency wave to be reflected due to abrupt changes in the
resistance.

There are a number of ways to distribute the loading resistances, including the
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forms of quadratic, exponential, and inverse functions. In this analysis, a quadratic
function is chosen,

R(z) | (z= D1 ifl<z<l+lg
Ro (

0 otherwise

!Q
[§%]
~

where
z : distance from the source along the wire [cm)]
R(z) : resistance density [ohms/cm]
Ry: maximum resistance density at the end of the wire [ohms/cm]
[ : antenna wire length without the loading resistance [cm)]

[r: the length of loading resistance [cm].

Figure 2.1 shows the four-wire antenna with the loading resistance distribution.
With this loading distribution, the wire currents on the antenna are computed for
different values of Ry. The results are shown in Figure 2.2. The antenna wires are
15 meters long (/=15 m) and the loading resistances are distributed over 3 meters
(I = 3 m). The operating frequency is 100 MHz. For the distributed resistances
with Ry = 10 ohms/cm, the resistance value is too small to eliminate the standing
waves. The current with this loading is not sufficiently attenuated at the end of the
loading. Thus, there exists a reflected wave at the end of the loading that generates a
standing wave in currents. When Ry is 100 ohms/cm, the fast increase of the initial
section of the tapered loading causes reflections that give rise to a standing wave
in currents. Using a trial and error approach, the loading with Ry=18 ohms/cm s
found to eliminate the standing waves almost entirely. With this loading resistance
distribution, most currents are dissipated before reaching the end of the loading 4::!

the slope of resistance is small enough as not to reflect the waves.
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Figure 2.1: The four-wire antenna with loaded resistance distribution.
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RELATIVE CURRENT MAGNITUDE

20

Figure 2.2: Current distribution on the wire of the four-wire antenna.
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Figure 2.3: T as a function of Ry at 100 MHz.
Figure 2.3 shows a reflection coefficient, I', as a function of maximum resistance
density, Ry. The reflection coefficient is defined as

I' = Average [I—mf—:—l—mﬂ]

Imaz + Imin (23)
where I, and I, are locally maximum and minimum values of current over a
distance of a half wavelength, respectively. Figure 2.3 indicates that the optimum
Ry is 18 ohms/cm for the resistance distributions of Eq.(2.2). Computations also
showed that the same resistance distribution eliminates the standing wave effectively
in dipoles and V antennas of the same length and diameter as the four-wire antenna.
Numerical results also showed that the maximum resistance value, Ry, is not depen-
dent on the inside angle of the four-wire antenna. This optimum loading resistance is
valid for higher frequencies as shown in Figure 2.4 for the four-wire antennas, where

[ is plotted as a function of frequency. However, the optimum value of Ry did seem

to be highly dependent on the radius of the wire. The optimum R, decreases as the
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Figure 2.4: T as a function of frequency when Ry = 18 ohm/cm.

wire becomes thicker.

Harold E. Foster studied the current distribution on a transmission-line for various
type of loading resistance[45]. In his study, Foster used a one meter long transmission-
line when the wavelength was 8/9 meters. The loading resistance was distributed
over one wavelength. He obtained optimum current distribution when the loading

was an inverse resistance function of the distance and given by

— - 1) [ohms/meter] (2.4)

where Zj is the characteristic impedance of the transmission-line and z is measured in
meters along the line. Using the resistance distribution of Eq.(2.4), Foster obtained
a reflection coefficient of about 0.005. Although his inverse resistance distribution
is optimum in transmission-lines, it is not clear whether it is valid for the four-wire
antenna since the characteristic impedance of the four-wire antenna is not constant

due to diverging geometry of the wires. In our analysis, the comparison of various
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loading resistance distributions for a long wire antenna was not performed. How-
ever, according to the Figures 2.3 and 2.4, the quadratic function distribution with
optimum Ry produces sufficiently good results when compared to Foster’s results.
Foster also showed that although the continuous resistance distribution reduces
the reflection coefficient more than the discrete loading resistance, an eighth of a
wavelength spacing of lumped resistances produces very nearly the same current
distribution and transmission-line impedances as a continum of resistance loading.
The numerical computation in our analysis confirmed that the same is valid for the

four-wire antenna.
2.3 Input Impedance

The useful bandwidth of an antenna is the range of frequencies over which the
antenna maintains a certain required input impedance, radiation pattern, and po-
larization characteristics. When designing an antenna to operate over a large band-
width, the major task is to maintain a desired input impedance and radiation pattern
characteristics. Since the main interest of this study is in the near field region, the
primary concern is to maintain the desired input impedance over a wide frequency
range.

To find input impedance, the current was calculated for the given voltage source
and then the applied voltage was divided by the current at the input terminals. Fig-
ure 2.5 shows the input impedance of the four-wire antenna with and without loading
resistances. Without loading, the impedance oscillates as a function of frequency,
and this would not be adequate for broadband operation. With proper loading,
the input impedance oscillates below 50 MHz and becomes uniform above 50 MHz.

Hence, the low frequency limit with such a loading is 50 MHz.
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(b) Input impedance with the optimum loading.

Figure 2.5: Comparison of input impedances between open and loaded termination-
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Figure 2.6: Input impedance of the four-wire antenna with resistive loading.

Figure 2.6 shows the input impedance of the four-wire antenna with the loading
for expanded frequency range. Based on the input impedance, this analysis shows
that the possible frequency range is from 50 MHz to over 1 GHz. The upper frequency
limit, however, is expected to extend to about 5 GHz, according to the trend of

Figure 2.6, and is limited only by the geometry of the feed.

2.4 Field Distribution

Since the four-wire antenna system will eventually be used in an anechoic cham-
ber, the design parameters such as wire length, inner angle, loading length etc. must
be chosen under the consideration of the anechoic chamber geometry. The anechoic
chamber at the University of Michigan has a tapered cross section that is shown in
Figure 2.7. The main dimensions of the chamber are 18 feet wide, 60 feet long, and

18 feet high. The anechoic treatment consists of 72 inch pyramidal absorbers on the
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Figure 2.7: Geometry of anechoic chamber.

endwall of the chamber; 24 inch and 18 inch pyramidal absorbers, and 12 inch wedge
absorbers on the side walls, ceiling, and floor surfaces of the 18 ft. x 18 ft. x 22
ft. test region; and 18 inch pyramidal and 12 inch wedge absorbers on remaining
surfaces of the tapered section. In addition, the 140 square feet of the test region
floor surface is treated with 24 inch walkway absorber.

Carl E. Baum|39)] reported on a parallel four transmission-line simulator designed
for a uniform field distribution near the center of the four wires. He found that the
four wires can create the best uniform field distribution at the center of the four
wires with the specific spacing ratio of 1/1/3 between wires of the same polarity to
the wires of the opposite polarity.

To find the widest uniform field distributions around the test region for the four-

wire antenna, field computations were performed for various lengths and wire angles



21

considering the dimensions of the anechoic chamber. The Baum’s ratio was found
to be applicable to the four-wire antenna based on an inner angle ratio instead
of a spacing ratio. The optimum dimensions that have the widest uniform field
distribution are

a = 4.85 degrees B = 8.37 degrees

[ = 15.0 meters lgr = 3.0 meters
where a, 3, | and I are defined in Figure 2.1. The wire diameter is 0.125 inch. For
these dimensions, the four-wire antenna has a uniform field within £+ 0.5 dB within
a region defined by a two meter diameter sphere.

A design with four wires symmetrically placed was also investigated. With such
an arrangement, the field distribution is not optimal, but some flexibility is provided.
The configuration allows the user to change the polarization of the antenna by simply
selecting the proper excitation at the feed point. Also, the symmetric arrangement
is more compatible with the square cross section of the chamber.

With the following design specification, the antenna can illuminate the uniform
field distribution within £0.5 dB inside a target area defined by a 1.2 meter diameter
sphere.

a = 8.37 degrees B = 8.37 degrees

[ = 15.0 meters lgr = 3.0 meters
Similarly, a +£1 dB uniform field distribution exists within a two meter diameter
sphere. Figure 2.8 shows the field deviation within a test region defined by a two
meter diameter sphere at various frequencies. In Figures 2.8(a) and (b), the field
deviations along the horizontal and vertical axis of the cross section plane, which is
located 14 meters from the feed, are shown, respectively. These fields are normalized

to the field at the center point. Figure 2.9 shows the field deviation along the
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propagation direction. In this figure, the fields are normalized to the field at the 14
meter point.

In Figure 2.10, the field deviation is shown as a function of frequency in the test
zone of a one meter diameter sphere. The degree of field deviation is defined as the
ratio of the maximum field to the minimum field within the sphere. Here, we see
that the deviation is &+ 0.25 dB from 100 MHz to 1000 MHz.

In practice antennas are usually located at a sufficient distance from other ob-
stacles that they may be analyzed as isolated antennas in so far as impedances and
current distributions are concerned. The four-wire antenna under consideration will
be built in an anechoic chamber relatively close to the walls. Hence, it is expected
that a substantial interaction between the antenna and the chamber will occur. This

interaction is considered in the following chapters.
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CHAPTER III

FULL WAVE ANALYSIS OF WEDGE
ABSORBER

3.1 Introduction

In this chapter, a full wave analysis of the wedge absorber is performed to obtain
an equivalent layer. The equivalent layer is formulated so that its reflectivity is
compatible with that of the original absorber. This equivalent layer is then used in
Chapter V, where the four-wire antenna in the chamber is solved numerically.

The use of wedge type absorbing materials is gaining popularity in anechoic
chamber linings, especially on side walls where incident illumination is near graz-
ing. A substantial number of studies have been done on these materials and their
applications, both experimentally and theoretically[46], and in the latter case, high
frequency techniques such as geometrical theory of diffraction (GTD) have been
applied. In this chapter a numerical technique is presented that covers low- and
mid-frequency regions in order to analyze the scattering created by an infinitely long
periodic wedge absorber backed by a perfect conductor.

The wedge absorbers used on the side walls of the anechoic chamber have a
periodic structure in the transverse direction. The periodic structures have been

studied by many researchers both analytically[47] and numerically[48]-[52]. Usually,

25
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these structures are catagorized into two classes of problems: a dielectric surface
scattering problem[48],[49] and a metallic or resistive grating problem[50]-[52]. Both
problems are solved by using the surface integral equations for electric and magnetic
fields. The surface integral equations, however, do not include the multiple reflections
that occur due to the finite thickness of the absorber. When the absorber contains
a finite dielectric volume or depth, the volume integral must also be used.

The volume-surface integral equations (VSIEs) were introduced by Jin, et al.[53]
to solve these types of problems. The original VSIEs were formulated only for a
side incident wave (which means that the incidence plane is perpendicular to the
longitudinal axis of the wedge absorber) and this leads to two decoupled integral
equations for E- and H-polarized cases. However, when treating the absorbing wedges
on the side walls of an anechoic chamber, the forward incident wave (which means
the incidence plane is parallel to the longitudinal axis) must be considered since the
wedges are illuminated by such a wave.

In this chapter, the VSIEs are modified with proper boundary conditions. The
resultant VSIEs are two coupled (for forward incidence) or decoupled (for side inci-
dence) integral equations for longitudinal electric and magnetic fields. The modified
VSIEs are then applied to the forward incidence problem as well as the side incidence
problem of the wedge absorber. Since the wedge absorber is a periodic structure, the
Floquet mode expansion can be used to reduce the analysis region.

In section 3.2 the modified volume-surface integral equations are derived and ap-
plied to a periodic geometry. The numerical technique is described in section 3.3. In
order to obtain realistic results, the dielectric and the magnetic constants of the ab-
sorbing material were measured using the coaxial line technique. The measurements

and results are presented in section 3.4. Finally, in section 3.5, numerical results for
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V4

Figure 3.1: Infinitely periodic cylindrical structure on a perfect conductor (P.C.).

the absorber are presented. Also, an equivalent layered slab is obtained for which
the reflection coefficients are similar to those of the wedge absorber. The use of
an equivalent slab reduces the complexity of the problem, especially in numerical

analysis.

3.2 Formulation

Consider a cylindrical or two dimensional structure composed of periodic arbi-
trary cross sections embedded in a single surrounding medium as depicted in Fig-
ure 3.1. In the cylindrical geometry, provided the axial component of the propagation
vector is known, two components are sufficient to obtain all the six electromagnetic
field components from Maxwell’s equations. Therefore, a formulation of equations to
solve for any two components of the field is required and here, the axial components

of the electric and magnetic fields are chosen. Once the axial components, E, and
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H,, are found, the other four field components are obtained from

E, = —jk, (GE +wu aHZ)

K2 —k2\dz 'k, Oy
=il (5 )
H, = 7 k/zcg (%H, - ;y E)
= g (e )

where k, denotes an axial component of the propagation vector and k* = kZu.¢, =

wlpe.

In an isotropic homogeneous medium, the Z component of the total electric or

magnetic field, denoted by F(7), satisfies the scalar wave equation
VIF(F) + K F(F) =0

Applying Green’s second identity to this wave equation and the free space Green’s
function, Go(7, r ), which satisfies

-

V2Go(7, ) + k2Go(F, ) = —6(F = 1)

one can obtain an integral equation for the 2 component of electric field inside the

dielectric medium, E,(r), as
fr (GoV'E, () = E,(7)V'Go) - dT” + k2 /ﬂ (i, — 1) E,(F)God®¥ = E,(7)  (3.1)
In free space or outside the medium, the integral equation for the Z component of
electric field, E3(r), is
$(GoV'E2(7) - E2(F)V'Go) - dI = E<(7) = E2() (3.2)

In the above equations, ! and I' denote the volume and boundary surface of the
dielectric medium and 7 and r represent the field and source point vectors. respe

tively. E"*(F) is a # component of the incident electric field and is given 1 '«
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form

Einc(;.‘) — Eoerp{—j(kzix - k,,.-y + kz.'z)}

For side and forward incidences, which are shown in Figures 3.2(a) and (b), respec-

tively, the propagation vector of the incident field is defined as

l;:' = kri-i - kyi:‘) + kzié

where
{
ko sin ¢; for side incidence
kzi =
| 0 for forward incidence
ko cos ¢; for side incidence
ki =
\ ko cos; for forward incidence
(
0 for side incidence
kzi =
{ kosin@; for forward incidence

and ¢; and 6; are angles of incidence measured from the axis normal to the zy and
yz planes, respectively.
In a way similar to the one described above, integral equations inside the medium

for the  component of the magnetic field, H,(r), are obtained as

-
/

ﬁ (GoV'H,(7) = H,(F)V'Go) - dI" + k2 /ﬂ (prey — V) H,(7)God® = H,(7) (3.3)
and for H3(r'), in free space, as

fr (GoV'HE (7) — HY(F)V'Gy) - AT’ = H™(7) — H(7) (3.4)

Next, we apply the boundary conditions which require that all tangential fields( .

H,, E;, and H;) be continuous across the boundary surface, I'. When the incident
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P.C.

(a) Side incidence (b) Forward incidence

Figure 3.2: Incident wave configuration with respect to the geometry.

wave propagates perpendicularly to  (side incidence), E- or H-polarization is de-
fined in a conventional way in which either E, or H, exists. We choose E, and

H (=

18%:) for E-polarization, and H, and E; (= 13%) for H-polarization to
be continuous(boundary conditions) at the dielectric/air boundary. By combining
Eqgs.(3.1) and (3.2) (for E-polarization) and Eqs.(3.3) and (3.4) (for H-polarization)
with the boundary conditions, we obtain two decoupled integral equations for both
polarizations.

However, when the propagation vector of the incident wave has a nonzero 2
component and a zero £ component (forward incidence), both E, and H, exist at the
same time. In this case, it is preferred to enforce all tangential fields to be continuous

on the dielectric-air boundary for the purpose of formulation even though some fields

are related through Maxwell’s equations. The transverse tangential fields, E; and H,
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can be written in terms of Z component of fields, £, and H,, as

_ —jk. (0B.  wudH,

=R < o an) (35)
_ —jk. (0H, we 0E,

H"kz_k3<al & an) (36)

where [ and 7 denote the unit transverse tangential and outward normal vectors
on the boundary surface, respectively, as shown in Figure 3.2. On the conducting
boundary surface, the tangential electric fields, E, and E;, and the normal magnetic

field, H,, are zero or from Eq.(3.5)

By enforcing these boundary conditions on Egs.(3.1) through (3.4), two coupled

integral equations for E, and H, are obtained as

kgk? L\ (hady’ K BE.(T) .,
[ Emle— E: . (7)GodV +/c 0 S
k(K2 — K)wpo ., OH,(M) k2 k? - 0Gy .,
- N q
¥ /a (k2 — k2) (k3 — kf)Go or (kg -k (k- kz))E (M) G &
(_ﬁ:k:_g)T;Ez(F) 7 inside dielectric
2| i@ 7 outside dielectric
= k2 — k2 E + LB " . (3.7)
((kz_p)“r + (k’—ki’))E (T-") T on Fd
0 7on I,
k2k* 1 - k2 Y Te
/ " __ A Nn_-9 '
Q k? — k2( c,)Hz(r )GodV r. €(k? — kﬁ))Hz(r ) on' |dS
k. (k2 — k®)weo ., OE,(r) k2 k? - 0Go
—_ . ______d !
* / (k2 — k2)(k3 - kf)Go ol (k3 -k e (k- kﬁ))H () an
(
(kz_p)c H, () 7 inside dielectric
K2 e e .
k2 i H, () 7 outside dielectric
= k k2Hmc+4 (k5 —k2 )2 . (38)
1((k2 kkz)Cr + (kz kg))H (7?) Fon Fd
\ m‘_"EHz(;’) T on I‘c




32

where I' = Ty + I, and Ty denotes the dielectric/free space interface and I, the
dielectric/perfect conductor interface. The integral over T' can be evaluated using
the Cauchy principal value integral to remove the singular point, 7 = r, from the
integration([55)].

This formulation for E, and H, may yield unreliable results when |k? — k?| is zero
as is noted in [54]. When the value of [k? — k?| is very small, but not exactly zero,
the numerical solution of the above equations may not be stable. The trouble can
be overcome by multiplying both sides of Eqs.(3.7) and (3.8) by (k? — k2). Another
way to avoid this difficulty is to formulate the equations in terms of transverse fields,
that is, E; — E, or H, — H, as was done in [54].

In this formulation, the coupled terms appear because both E and H have a
nonzero axial component when the incident wave is forward. The nonzero axial com-
ponent of a magnetic (or electric) field induces an axial surface electric (or magnetic)
current on the dielectric surfaces. The equivalent electric current for a scattered field

due to the existance of the axial component of magnetic field in Eq.(3.7) is

K-k OH,
“k3(k2 - k2) ol

J. = —jk
and the scattered field due to the equivalent current is
E. = ~jutio [ J,GodS

A similar interpretation can be made for the coupled term of Eq.(3.8) with the
equivalent magnetic current.

For the case of side incidence, the coupled terms disappear because H, is zero in
Eq.(3.7) and E, is zero in Eq.(3.8). In other words, k, is zero for the side incidence,
and hence, the coupling terms of Eqs.(3.7) and (3.8) are zero. The physical inter-

pretations for the other terms of Eqs.(3.7) and (3.8) are corresponding to those of
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Eq.(13) in [53].

Since the dielectric medium has an infinite dimension in both the z and 2 axes,
the volume and the surface integrals in Egs.(3.7) and (3.8) should be evaluated over
infinite intervals. The infinite integrations in the Z direction, however, can be reduced
to the infinite summations of integrals over one period interval by taking advantage
of the periodicity. Also, the infinite integration in the Z direction can be performed
analytically by exploiting the cylindrical geometry. With periodic properties of fields,

the Z component of electric or magnetic fields, F(7), can be written at any point as
F(z +mP,y,z) = F(z,y,0)ezp(—jksmP)ezp(jk.i2) (3.9)

where m is an arbitrary integer and P is the period. The free space Green function,

-
/

Go(7, '), can be expanded as an integration of plane waves as

Go(f,) = exp(—jk[F—7

2L

expl-j{kE(y —y) + kolz — o) + k(2 = 2k (310)

)/4~ 'F— r

where
+
kj fory>y

+ _
ky =

k; fory<y'

—J\/k:+ k2 —k* for k < \/k%+ k2
k; = —k; =
VK% — k2 — k2 for k > (/k2 + k2

Using Eqgs.(3.9) and (3.10) with the following relations

and

Y exp{—jm(ksi—k;)P} = Y 273'5(1% i ?.’;7_”
,/oo exp{—jz(kzi - kz)}dz = 27r6(kz,~ — kz)
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Eqs.(3.7) and (3.8) can be rewritten as

1

J
2P

k2k2 1 k?

m—ooP

Z /A ewp{ ilky(y —y) + ko2 - 2') + ke2]}

—-00 IP k;

1 2
Rl A
k,(k2 k2)w#0 [ kg _ k2 )13
(k? — k2)(kE - k2) =& (kg — k2 (K2 - k2) E.
(‘p':’sngz(ﬂ 7 inside dielectric
k2 . eq g .
k? i F (T 7 outside dielectric
. sz3"°+< GRS . (3.11)
2 -
l(rrkkf)“' + (k'l__k})) Z(F’) T on Fd
0 ron I,
k3k? 1., k? s
W kz( = Mu. - m)h{,
k(K ~ B, K2 B
(K — k2)(kg - k2)1 tgom ek
(p—p‘)'g‘H (™) 7 inside dielectric
k2 ‘Tf—'Hz r 7 outside dielectric
e LA T g . (3.12)
2 -
° (e + iy () Fon T
2 -
{ (;gﬁmez(f") ron [,
_ 0 . ) o
5p Z / / Al y) 22 ilkly —y) + k(e JB)Jrk’Z]}dac’dy’
Sp k;’
oQ - > k - I kz _ ! kz ,
L 5 [ Ak 4y SR ) R 2T ) Wy
y



35

In the above, Sp denotes the cross section area of the periodic cell and {p denotes a
boundary line of the cross section of the cell. The function A(z',y’) represents H.(7),
E.(7) or their derivatives with respect to [ or n indicated by the subscript of I. Also,
m represents the m** order of Floquet mode. The 0** Floquet mode corresponds to
the specularly reflected or transmitted wave. The modes corresponding to m, such
that k < \/k2 + k2, are evanescent modes that decay exponentially in the § direction.

As shown in Egs.(3.11) and (3.12), the infinite volume and the surface integra-
tions are reduced to the infinite summations of the surface and the line integrations
over one period, respectively. While the infinite integrations of Egs.(3.7) and (3.8)
converge slowly, the infinite summations of the above I'’s converge fast. Some alge-
braic~ manipulations after dividing the summation into two cases, when m = 0 and
m # 0, give the following forms that converge more fast.

L ) ———ezp{—j[kosinbi(z — 7') + kocosOily — y'| + k
| «/SPA(x’y)[kocos&exp{ jlkosindi(z — o) + kocosbily — y/'| + k.z])

—P .27r ! 27r !
+ 8_7rln{[1 - exp(—]F(iv —z') - 7;]11 -y'])]

L - )

b 3 {eonl-{( + hosind)(z — =) + K 3y ~ /K
- Ll e~ )~y — )

+ epl=il (TR + kusind)(z — 2) + (v~ ¥}/

P . =2mm 2mr
- —ezp[—j{ (z—2') - J—P—Iy - y'|}]}]dz"dy’

f'(z')kosinb; — kocosb;sgn(y — y')
kocosb;

exp{—j[kosinb;(z — z') + kocosb;|ly — y'| + k.z]}

) +sonly — ot TEZ TS0 2
(e —2) +jly -yl

P }—2sgn(y — ')}

+ (=) + jsgnly — v")]cot{ -



36

+ Z{f’ —-+kosm9 Jezp[—j{( —+kosm9 Nz ~2')+kf(y —y)}/kT

— i empl-i{ e~ #) = 122y ~ ¥ ]

—- sgn(y—y )exp[—j{(—ﬁ— + kosinby)(z — ') + k] (y — ¥")}]

+ sgn(y—y')ezp[—j{g%z(x—x’) JgT;—ﬂ(y y¥')}}

+ z{f' 2"”’+kosz'neaemp[—j{(—‘—"’hkosino.-xx—x')-+k;<y—y'>}]/k;

2mm

+ if'(z )epr{——(z—x)ﬂ——ly y'})

- sgn(y — y')ewp[-j{(—P— + kosinb;)(z — ') + k; (y — ¢)}]

2m7r 2mm

(2 =2") = j—~(y =) }]}]dz’

+ sgn(y —y')exp[—j{

2P/A

+ ?—ln{[l - ezp(—]2;,r($ -z') - —I?/ y'])]

- ezp(j%;(m ~2) = Ty -y}

+ Z{ezp[ J{(—+koszn0)(z_x)+k+(y YNk

—c
1

exp{—j[kosin0,-(m — ') + kocostily — y'| + k.z]}

m=1
P 2mn 2mm
- Qmezp[ -1 2 (z—-2')-j Iy y'}]

¥ expl-g (T + kosindi)(z - x') +E (- y0/k

) z%emp[—y{”m"(%x') 3y -y W+ PPl

In the above expressions, f'(z) represents a derivative of a boundary surface function
with respect to z. The sgn(y — y’) denotes +1ify > y" and -1 if y < y'.

For the half space problem, Eqs.(3.7) and (3.8) can be simplified and solved
analytically to obtain the reflectivity and the transmittivity. The periodic structures
in both & and 7 directions can also be formulated in a similar manner, but are not

considered in this thesis.
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Figure 3.3: Cross section discretization of cylindrical structure over one period.

3.3 Numerical Procedure

The resultant integral equations over one period of Eqs.(3.11) and (3.12) are
solved numerically using the point matching technique. In order to apply this tech-
nique, the dielectric region and the boundary lines are discretized into N cells as
shown in Figure 3.3. The cells are plane segments inside the dielectric medium and
line segments on the boundary. Next, we can approximate the unknown field in

terms of a set of pulse functions. For the field inside the dielectric, we write

N
F.() =Y FP

where P, is a pulse function being one in i** cell and zero elsewhere, and F, is an
b

unknown coefficient. Similarly, for the field of dielectric/free-space boundary.

M
FZ(F) = Z FtPt
1=1
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and for the field of dielectric/conductor boundary,
L

F.(f)=Y_FP.
1=1

Here, N, M and L denote the total number of segments inside, on the dielectric/free
space boundary, and on the dielectric/conductor boundary, respectively. The normal
derivative of the field, which appears in the second integral of Eq.(3.11), is also
considered as an unknown field and is expanded as

oF &
on. - Z Kk

1=1

where K; is an unknown coefficient as was done in [55]. Note that when a normal
derivative of an unknown field is considered as a variable, the field itself need not be
considered as a variable. The derivative of field with respect to  can be approximated
as

66_11? = (F(rjin1) = F(ri41))/ (i1 = 1)

at r; where r;,; and r;_; are centers of adjacent line segments of r; at the dielectric/free-
space boundary. Every segment, therefore, has two unknowns: E, and H, or 0F,/0n’
and H,.

With these pulse expansions of the field, there are 2( N + M + L) linearly inde-
pendent equations with 2(N + M + L) variables from Eqs.(3.11) and (3.12). These
linear equations are then solved using a matrix inversion process.

After solving for the fields in the dielectric medium and on the conductor, the
fields are computed at any point of free space using Eqs.(3.11) and (3.12). The fields
that are scattered by truncated periodic wedges are obtained using an array factor,

AF, which is written as

_ [sin{ M (ki + kosing)}
- sin{%(kz;-i'kosin(b)}

|AF(4)|
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Figure 3.4: Dielectric constant measurement set up for microwave absorbing mate-
rials.

The scattering pattern is then given by

|A(¢)] = |A1(g)] - |AF]|
where NV, is a total number of wedges. In the above, A;(¢) denotes the scattered

electric or magnetic field computed over one period.

3.4 Dielectric Constant Measurement

To provide realistic and practical results, the dielectric constants of the wedge
samples were measured using a coaxial line measurement technique with a microwave
Network Analyzer[56]. Figure 3.4 shows the equipment set up and instruments used.
A full 2-port calibration[57] is performed at the calibration planes shown in the figure.
This essentially eliminates the reflections from all the connectors except the air-line

connectors. The reflections from the air-line connectors are eliminated using time
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domain gating techniques. However, one should be careful when using the gating
technique, since it may introduce errors, especially at lower frequencies[56].

The dielectric and magnetic constants are computed from measured values for
S11 and Sy of a 50 ohm air line filled with the absorber sample. In short, the reflec-
tion coefficient, I', from the surface of the semi-infinite sample and the transmission

coefficient, T, in the sample, are written in terms of measured S;;(w) and Sz (w) as

I = K+VK? -1
Shw) = Sp(w) +1

T
1- (Su(UJ) - Sgl(w))l‘
where
2511(w)

Since I' and T are [58]

|

r = er
41

T = exp(~jwy/med) = eap(—j(w/c) /ired)

the dielectric and the magnetic constants are obtained as

= odel=Ty oy
&w) = (wd1+I‘lnT)
= 2Ly
ww) = (Sr—pinT)

where c is light velocity and d is the physical sample length.

In these measurements, two samples were taken from a microwave range pyrami-
dal absorber: (1) the upper part and (2) the lower part. The microwave absorber
is the 8-inch wedge absorber used in the University of Michigan anechoic cham-
ber. Figures 3.5(a) and (b) show the measured dielectric and magnetic constants

of the sample as functions of frequency, respectively. Both samples give the same
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Figure 3.5: Measured dielectric and magnetic constants of the wedge absorber.
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results. As expected, the magnetic constants are almost 1. — 70. for all frequencies
because the absorber consists of carbon and urethane foam and no magnetic ma-
terials. In addition, the measured dielectric constants have been verified through a

cavity measurement[59],(60] for several frequency points.

3.5 Numerical Results

The computer code that was written based on the formulation given in sections 3.2
and 3.3 was checked by computing the reflection coefficient of a flat dielectric slab
backed by a perfect conductor. The period of the flat slab can be chosen arbitrar-
illy and we chose 0.2 wavelength for the calculation. The number of nodes used in
this analysis was at least 20 per one wavelength. The comparison of reflection co-
efficients for forward incidence and side incidence with analytical solutions is made
in Figure 3.6. The plots (a) and (b) show the reflectivity for E-polarized and H-
polarized cases, respectively. As is seen in the plots, the reflectivities computed with
our code agree almost exactly with the analytical results.

Next, the algorithm was applied to the periodic lossy wedge absorber. The model
of the wedge absorber is the one from the anechoic chamber of the University of
Michigan. The cross section and the dimensions of the 8-inch wedge absorber are
shown in Figure 3.7. The computed specular reflection coefficients of this wedge for
forward incidence are shown in Figure 3.8. This figure shows that the wedge absorber
is good above 1000 MHz with reflection coefficients less than —20 dB for both E and
H-polarized incident waves up to 60 degrees of incidence angle. At 500 MHz. the
absorber performance is only —10 dB. Figure 3.9 shows the scattered field pattern
of the wedge absorber for normal incidence at 1 GHz.

For side incidence waves, the back scattering patterns of the wedge absortur .
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Figure 3.6: Comparison of specular reflection coefficients of VSIE solution with those
of equivalent transmission line solution.
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Figure 3.7: Geometry and dimensions of periodic wedges.

shown in Figures 3.10(a) and (b) for E- and H-polarization, respectively. As shown
in those figures, up to 60 degrees, the absorber has at least —20 dB performance at
1000 MHz but only —10 dB performance at 500 MHz. They also show a field peak
at 75 degrees that corresponds to specular reflections from the wedge faces.

In order to find an equivalent layered slab that has a similar reflection perfor-
mance as the wedge absorber, several numerical experiments were performed. The
numerical experiments showed that a layered slab which has a linearly varying di-
electric constant profile is a good candidate. Figure 3.11 shows the comparison of
the reflection coefficients between the wedge absorber and the equivalent layer. In
this figure, the dielectric constant is 4. — j1. for all frequencies. The computed reflec-
tion coefficients for wedge and equivalent slab absorbers are compatible, especially
at 100 MHz which is an important frequency for our purpose. Since the absorbers in

the chamber have good performances in the high frequency range (above 300 MHz),



45

-10

] 500 MHz, H-boriz.

=)
=2,
=
<
E -20 1000 MHz, E-horiz.
o)
Q HoE
Z 301 _
g kl [
5
-50 T - T Y
0 30 60 9%

INCIDENCE ANGLE [degree]

Figure 3.8: Specular reflection coefficient from periodic wedges for forward incident
wave.

the effects of absorbers at high frequency do not need to be considered. Also, since
the antenna wires are passing over the absorber horizontally, the currents on the
wires are affected only by the horizontal electric field. (See Figure 3.11.) Therefore
only the TE (or E-horizontal) incident waves are important to our purpose and were
considered here. In Chapter V, the equivalent lossy layer that was obtained in this

chapter will be used to simulate the absorber of an anechoic chamber.
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Figure 3.9: Bistatic scattering pattern of a unit cell for normal incidence.
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Figure 3.10: Backscattering from a unit cell for side incidence.
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CHAPTER IV

ANALYSIS OF DIPOLE ANTENNA NEAR
LOSSY LAYERS

4.1 Introduction

To determine the effect of the anechoic chamber on the wire antenna, the dipole
antenna above an absorbing layer is analyzed in this chapter. The lossy layer has
linear dielectric constant profile with respect to its depth and is backed by a perfect
conductor. This configuration is used to simulate the absorbing material and the
shielded chamber walls. The analysis of the dipole antenna over a lossy layer is used
to estimate how the absorbing material in the anechoic chamber affects the wire
antennas.

The analysis of the dipole antenna over a lossy layer requires an appropriate
Green’s function. The Green’s function that is applicable to a radiator over a uniform
lossy half space ground was first introduced by A. Sommerfeld in 1909[61]-[63]. Since
then, L. Brekhovskikh[62] has formulated the fields for a continuous one dimensional
inhomogeneous half space using an adequate Riccatti Equation. J. Wait [63] and J.
Kong [64] derived the fields due to dipole antennas over an isotropic and anisotropic
stratified media, respectively, in a compact form using a propagation matrix.

When calculating the fields using the Green’s function, one faces the problem

49
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of evaluating the Sommerfeld type integral. This type of integral can not be eval-
uated analytically and it requires a huge amount of computing time for numerical
integration. The fact that the integrand has poles and branch cuts makes the eval-
uation even more complicated. To overcome these difficulties, Miller et al.[65],(66)
suggested the use of the plane wave reflection coefficient approximation(RCA) for
a vertical and a horizontal dipole antenna located in free space near the interface
with a lossy half space. This approximation provides results with accuracy within
10 percent for a vertical dipole and 20 percent for a horizontal dipole at approxi-
mately 1 percent of the computing time required by more rigorous computational
approaches. Karwowski and Michalski[67] modified the RCA method by using the
reflection coefficient in the evaluation of the magnetic vector potential rather than
the electric field of the dipole. The modified RCA gives more accurate results than
the original one when the antenna is close to the interface. Parhami et al. [68],
Michalski[69], and Michalski et al.[70] evaluated the Sommerfeld integral numeri-
cally along the steepest descent path passing through the saddle point, as is done
in the asymptotic approximation of the integrals. When a branch point is captured
in the process of the contour deformation, the branch cut path integration is added
to the steepest descent path integral. Tsang et al.[71] formulated the fast Fourier
transform algorithm to evaluate the integrals via proper decomposition of the inte-
grand. Mohsen[72] suggested other possible decompositions of the integrand for the
FFT algorithm. Katehi and Alexopoulos[73] developed an efficient analytic-numeric
real axis integration technique for an embedded dipole in a dielectric slab. In this
technique, they divided the integration interval into two ranges. The first interval,
which is the main portion of the integral, is evaluated numerically and the second

interval, which is the tail portion, is evaluated with the combination of numerical
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and analytical integration. Lindell and Alanen[74],[75] presented an exact image
theory for the Sommerfeld half space problem with vertical and horizontal current
sources. Using the exact image, the fields can be calculated within 0.2 % error with
computing time comparable to that of RCA. However, the exact image for a layered
medium has not been found yet and is not applicable in our case.

In section 4.2, the Green’s function is derived for an electric dipole over a stratified
anisotropic medium backed by a perfect conductor by following Kong’s approach. In
section 4.3, the method of moments is applied to a thin wire antenna with the Green’s
function. The key to a successful application of the integral equation techniques for
solving wire antenna problems involving the lossy half space is the effective and
accurate computation of the Sommerfeld integral. The evaluation of the Sommerfeld
integral is performed using the fast Fourier transform algorithm, which is one of the
fastest and most exact methods. In section 4.4, the computation results for a vertical

and a horizontal half wavelength dipole are presented.

4.2 Field Equation

The geometry of the problem under consideration is shown in Figure 4.1. The
source is assumed to be located at the origin and the ground plane is layered with
anisotropic media and backed by a perfect conductor. The Maxwell’s equations in

source free region are

<
X
X
I
[
€
ol
e
N
=
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Figure 4.1: Geometry of the dipole over a layered slab backed by a conductor.

i = p (4.4)

L ”l .
where 4 and € are uniaxial permeability and permittivity tensors, respectively.! The
tensor € contains information about the dielectric constant and the conductivit v oof
the medium, that is , é = € — je” where ¢ = olw.

Employing cylindrical coordinates, (p, ¢, 2), the longitudinal electric and mag-

netic components, which are denoted by E, and H,, are used to derive TE and |\l

!The tensor formulation has been introduced here for generality and later the tensors are roj .\ - ¢
by scalars.
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waves. By taking the Zz component of Eq.(4.2) in view of € given by Eq.(4.3), em-
ploying Eq.(4.1) to eliminate transverse magnetic field components, and using the
fact that V- E = (1 - a)O0F,/0z, the equation for the longitudinal component of the
electric field is

2

(V2 + a% +k%)E, =0 (4.5)

In the same manner, the wave equation for the magnetic field is

2
(V24 béa—; + k*0)H, =0 (4.6)

In Eq.(4.5) and Eq.(4.6),

and
_1a 0 1 02

2 — — — ——
Vi pap(papH p? 04?

is the transverse Laplacian operator expressed in cylindrical coordinates. It is seen
from Eq.(4.5) and Eq.(4.6) that E, and H, are decoupled, which would not be true
if the i and € tensors contain off-diagonal elements. Thus a TM mode is derivable
from E, and a TE mode from H, since the total waves can be decomposed uniquely
into TE and TM modes. The transverse electric and magnetic components can be
obtained in terms of the longitudinal components of the fields, E, and H,, which are
characterized as TM and TE waves, respectively.

By introducing the plane wave expansion as

E™ - / " dk,E,(k,)



and

54

HTE = /°° dk, H,(k,)

the transverse components are related to E,(k,) and H.(k,) by

E(k,)™ =

Ht(kp)TE

OE,(k,)
t

1 0. (k)

0z

0z k2

k,

Cand Hi(k,)™ = 25V, x 3E,(k,)

. and Ey(k,)TE = —j=£V, x 3H,(k,)

In cylindrical coordinates, the solutions of E, and H, to the wave equations, Eq.(4.5)

and Eq.(4.6), are well known. By choosing the wave solutions which are outgoing in

the j direction and traveling or standing in the Z direction, the solutions in the 1**

layer are constructed with a fixed separation constant, n, as,

ETM -

HTM

HTE

where

J(Aie*ss — Bie ) HP)(k,p) ST (9)

JE(Aiee® — Biem%*) H (k,p)ST™ (9)

(Aie5* + Bie=) HO (k,p)STM(9)

FES (A + Bie ) HO (k,p) ST (9)

—j%,f(A;ejkgz + Bie7%:7) H®' (k,p)ST™(9)

0

—J 4 (Cie™*7% + D;e~i*72) H® (k,p) STF'(4)

(Cie?™* + Diem ) H Y (kyp) STE(9)
0

m . . I} ]
(G - DR D () STE(9)
km
k

FHE(CieH = D) HO) kyp) ST ()

P

r}
(Ciei*F* 4 Dy~ ) H®)(k,p)STE()

ke

k* —k2/a

(4.7)

(4.9)

(4.10)
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ko= (Jk2—k2/b

and each row element denotes the p, ¢ and z component, respectively. The H(? is the
n** order Hankel function of the second kind. S,(¢) stands for the sinusoidal function
of ¢ and primes on H(®(k,p) and S,(¢) denote differentiation with respect to their
arguments. In Eqs.(4.7) through (4.10), the first term of each integrand can be
considered as a direct field from the source, while the second term is a reflected field
by the ground. The k, dependent functions A;, B;, C;, and D; are to be determined
by the appropriate boundary conditions.

The boundary conditions at all interfaces require all tangential electromagnetic
field components to be continuous for all p and ¢. For the TM waves these boundary

cond.itions at the interface, z;, are
B (A Hm — B} = e e ot B Mt g 11)
{Aie™ 5 4 Bie*en) = gqn{Aipre w0 4 Byt (412)
By defining a; and b; as
a; = A;exp (—Jkf,z;) and b; = B;exp (Jk,z),
the following propagation matrix equation can be derived from Eq.(4.11) and Eq.(4.12).

a; ait1

= M* (4.13)
bi b{+1
where
pit = L e(+)ite(+)s e(=)ite(-)s
' 2 $ e t e
e(=)itle(+): e(+)e(-)s
b (g R
(£ = (Cq:i:k;z)

()i = exp(Fikfisr).(zi — zi41)]

K, = Jk-k/a



56

and the + sign of k¢ should be chosen so that the imaginary part of k¢ is negative.

Thus we can write

ao at My My ag
=MMP- M| | =
bo by My My b

With RTM representing the reflection coefficient at the interface between air and the

slab or

ao = Agexp (—jki,z0) and bo = RT™ Agexp (jk¢,20)

the reflection coeflicient is written as

By
Ao
My + Maobe/ay

= exp (72k;, 2 4.14

RTM

b )
= = exp (j2k¢, 20)
ao

In the case of the lossy dielectric layers backed by a perfect conductor, b;/a; = 1 for

TM wave.
The same procedure can be applied to the TE case with ¢; and d; which are
defined as
¢ = Ciexp(—jkZz) and d; = D;exp (jk; z)

and the following equations are obtained.

¢ | oG
=N | F (4.15)
d; di+1
where
o _ L[ W) W)
‘ T2 i ;
u(=)e(4)s w(+)ite(-)s
Hp k;’;
+)Y = (—4+ =
i = (B

e(£); = exp[Fik(ipr)(2i — 2it1)]

N T
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and the reflection coefficient of TE wave, RTZ, is found as

g = Do _ % 0ok z)
Co (&)]
Nai + Nopdi/ .,
= 2IC zZ 416
Nll + N12d¢/C: (] 0 0) ( )
where
Nu N
NgNE---N;_, =
Nay Na
and d;/c; = —1 for TE wave on the perfect conductor. Alternatively, the reflection

coefficients can be obtained through an appropriate Riccati equation, which may
be more accurate for a continuous dielectric profile [62]. Since the Ay and By, and
Co and Dy, are related via the reflection coefficients in Egs.(4.14) and (4.16), once
the magnitude of the direct fields, Ag and Cy, are known, the reflected field can be
obtained.

For a 2 directed dipole in a homogeneous space, the magnitudes of the Z compo-

nent of electric and magnetic fields, which are Ay and Cy, are given as

. = - Ik, (4.17)
8rwek,
Co = 0 (4.13)
using the relation
Il exp (—jkr) —]Il (2) +5k,z
L / dk,,k kop)e (4.19)

The vertical dipole, therefore, excites only TM modes since Cy = 0. For a vertical
dipole over a lossy medium, there is no ¢ dependence so that S,(#) = 1, which means

n = 0. With imposed radiation condition, the fields can be constructed as

r ~

_jk;.:(eztjk:z + RTMe—jk:z)H(g2)'(kpp)

o0 -1l
™ _ e
b [-m 4, (87rwe) 0 '

;%(eijkiz + RTM=ikis\ H)(k p)

z
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0
HY = [k, (sﬁ) JR(eE 4 RO HD (kyp) | (4.2)
0

and ETE = HTE =,
For a horizontal (Z directed) dipole in a homogeneous space, using the same
relationship as in Eq.(4.19), one can show the magnitude of the 2 component electric

field and magnetic fields, Ag and Cy, to be

_Illc;‘:
Ao = :E]
8rwe
c - _Ilkf,
° T g,
STM = cos¢
STE = _sing

For a § directed dipole, the field magnitudes can be obtained by simply changing
the coordinates by 90 degrees. The horizontal dipole excites both TM and TE waves
and the total fields are the sum of TM and TE fields. The fields are expressed from

Eqs.(4.7) through (4.10) as

q

Tkeky(etF7 — RTMe"jkgz)Hl(zy(kpp) cos ¢
o0 Il . .
R R R

. — k2 (etikez — RTMe’jkfz)Hl(z)(kpp) cos ¢ |

—_—

4.22)

| L(setite _ BT HO) k) sin g

0 Il . . '
I (“) —hy(£e*iHr — R™Me=ie) HI (kyp) cosd | (423)

87
0 J
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r 7
L (exikTz 4 RTEe=ikT5 @)k 5) cos o

s
oo Ilw . m ]
BT = [ dk (?ﬁ) fo (4472 4 RTEHI)H® (kyp)sing [4.24)

0

L o

[ jk,(£eti*7 RTEe‘jk;"‘)Hlml(k,,p)sin )

o i m v
Hre = [ d (17) J(£EEHT 4 RTEC ) B (kyp) cos 6 | (425

B CLER RTEe—jk;"z)Hl(z)(kpp) sin ¢

k3

-

The + signs in the above field equations is + if 2 < 0 and — if 2 > 0 so that the

radiation condition is satisfied for the direct field.

4.3 Numerical Implementation and Evaluation of Sommer-
feld Integral

In order to obtain the current distribution and the input impedance of the dipole
antenna over lossy dielectric layers backed by a perfect conductor, the method of
moment is used. As is well known, the electric field integral equation for a thin wire

antenna is

E)(r) = /ll(r’)(G"(r; ')+ G (r;r'))dl' = —Ei™(r) (4.26)

where superscript s and inc denote scattered and incident field, respectively. The
subscript w is z for a Z directed dipole, which will be called a vertical dipole, and z
for an z directed dipole, which will be called a horizontal dipole. I(r’) is the current
at v’ and [ is the length of the dipole. The kernels, G¢(r;r') and G"(r; '), are Green’s
functions for direct and reflected waves, respectively. For a vertical dipole over an
isotropic layered medium, the kernels are obtained from the Z component of Eq.(4.20)

as

Gir) = (B+ )
' 07 922

—1k
drwegr exp( jkor)
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o K3
G'(rr') = / dk —D——RTMCXP(_ijIZ_2,|)J0(kpp)

0 *4rweks
For a horizontal dipole over an isotropic layered medium, the kernels are obtained

from the & components of Eqgs.(4.22) and (4.24) as

9? :
G(r;r') = (kg + 52 Troear exp (—jkor) (4.27)
oo N * kpkz . ’ ™M Jl(kpp)_ TE k?
6 () = [ dhy g exp (ke = DR )4 R )
(4.28)

where

ro= =P -yt (-2

V@ =22+ (y - y)?

p

In the above equations, a = b =1 is imposed so that k, = k = kJ".
Discretizing the dipole and applying the Galerkin’s method with sinusoidal ba-

sis function for the current expansion, a set of linear equations are obtained from

Eq.(4.26) as
=N
)) (‘I?j + “fj) I;i=b
J=1
where
Wyl Wy
Wit1 'Lj-:-l
a; = fi(w) f;(w) G (w; w')dw'dw (4.30)
wi—1 Jwjy
b= [ fi(w)El(w)dw (431)
Wiy
In the above, ¢ = 1,2,- .-, N where N is a total number of nodes. I; denotes the

current on the node j which will be solved for. The basis function, f.(w), is a
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sinusoidal function and is defined as

4

sin ko(w — wy_1)/ sin ko(Wn — Wao1) i waoy < w < w,
fa(w) = ¢ sinkg(wng1 — w)/ sin ko(Wng1 — wy) if Wo < W < Woyy

0 otherwise

\

The coefficient elements for the direct field (Eq.(4.29)), and the forcing elements
(Eq.(4.31)), can be evaluated as is done in the usual method of moment technique[76].
However, the evaluation of a reflected field coefficient element (Eq.(4.30)), is quite
complicated and requires a huge amount of computing time since the kernel for the
reflected wave includes another infinite integral. When evaluating a; for the case

of a vertical dipole(TM), one obtains the following form by changing the order of

integration.
@ = /0 " Jolk,p)Kis (k,)dE, (4:32)
where
Kij(k,) = —-:—j-lfi—RTM /z‘l+l o fi(2)fi(z)) exp (=jk.|z — 2'|)dZ'dz.
4rwek, iy Jz,

When evaluating the integral of Eq.(4.32) using an FFT algorithm, both sides of

Eq.(4.32) are multiplied by ezp(vrk,)ezp(—vrk,) to obtain
a5y = [ Tk, Jeap(—vmk,) ol kop)d, (4.33)

vhere T;;(k,) = Ki;(k,)ezp(vrk,). By introducing the discrete Fourier transform of

nij(kp) as
1 M/2-1
T'J(kp) MAkp m=§{/2 t'](fﬂ) exp (_szfﬂkp) (434)

() = [ Tilks)exp (2 fuk,)dks,
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where Ak, ~ 1/2F, and F is the Nyquist frequency[77], Eq.(4.33) becomes

1 M/2-1 0
R R [ eap(=vrk,)dolkop)dk,
1 Mpa 1
= AL tiilfn) 75— 4.35
MAkp m:—zhlﬁ ](f ) v +p ( )

vhere v = vgp + j2nf, = vr + j2mn/(MAk,). In the above equations, M is the
otal number of sampling points which is a certain integral power of 2 (i.e., 2!, 22 23,

tc). The integration of Eq.(4.35) was evaluated using the following integration

»rmula[78].

NGET
NZET

hen v = vg + jvr and for Re(v + jp) > 0. The expansion coefficient ¢,;(f) in

/(; exp(—vk,)Ju(kyp)dk, = il

q-(4.34) is easily obtained using the FFT algorithm available in [79)].

The total number of sampling points, M, should be chosen so that the value
function Tj;(k,) is small enough to be neglected in the range k, > MAk,. The
crement, Ak,, must be chosen considering the effect of the pole that appears in the
nction Tj;(k,). If the upper half space is slightly conductive, which corresponds
that the imaginary part of ko is not perfectly zero, the Ak, can be smaller than
e distance of the branch point from the real axis on the complex k, plane. If the
aginary part of ko is perfectly zero, the Ak, must be chosen in such a way that
e of the data points coincides with the branch point and such that Ak, is smaller
in the distance of the pole or branch point closest to the real axis on the complex
plane.

In the case of a horizontal dipole that creates both TM and TE, a similar proce

e is applied to evaluate af; and it is omitted here.
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4.4 Numerical Results

In order to verify the algorithm, the driving point impedance of a half wavelength
dipole over a perfect conducting plane is computed and compared with results ob-
tained from NEC code. Figure 4.2 shows the comparison of input impedances of a
horizontal dipole and Figure 4.3 for a vertical dipole. In these figures, the impedances
are normalized with the input impedance of the dipoles in free space. The results
are in good agreement as seen in the figures.

The dipole over a lossy layer with perfect conductor backing is then analyzed
using our code to estimate the effect of lossy layers on wire antennas. Since the
layer is used to simulate the pyramidal or wedge absorber of the anechoic chamber,
a linearly varying dielectric constant profile is appropriate (see chapter III) for the
layer. The input impedances of a horizontal dipole are computed as a function of
layer thickness and are shown in Figure 4.4 when it is located 0.1 and 0.5 wavelengths
above the layer. The dielectric constant used in this computation is 1. (free space) at
the top and 4. — j0.3 at the bottom of the layer. The impedances are very sensitive
to the thickness of the layer when the dipole is located 0.1 wavelengths above the
laver. When the dipole is at 0.5 wavelengths above the layer, the impedance becomes
less sensitive and approaches the free space impedance if the thickness is larger than
one wavelength.

Figure 4.5 shows the input impedances of vertical dipole as a function of layer
thickness when the center of dipole is 0.3 and 0.5 wavelengths above the layer. The
vertical dipole is affected much less by the lossy slab than the horizontal dipole is.
The input impedance of a vertical dipole is almost that of free space if the thickness

of the layer is greater than 0.5 wavelengths.
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NORMAIZED INPUT IMPEDANCE

0.0 - T —
0.0 0.5 1.0 1.5
HEIGHT [wavelength]

Figure 4.2: Input impedance of the horizontal half wavelength dipole over a P.C. as
a function of height.

20

=0 Input resistance (NEC)
—— Input reactance (NEC)
15 1 ——®— [nput resistance
9 —— Input reactance

?Z

NORMALIZED INPUT IMPEDANCE
2

0.5 |
. | -fheigm
: P.C.
0.0 v v v v T v —v T v p—
0.0 0.5 1.0 1.5
HEIGHT [wavelength]

Figure 4.3: Input impedance of the vertical half wavelength dipole over a P.C. as a
function of height.
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NORMALIZED INPUT IMPEDANCE

] linearly varying €, (2) thickness
: €.=4.j03 y
0.0 +—— —
0.0 0.5 1.0 1.5
THICKNESS [wavelength]

(a) height = 0.1 wavelength

2.0
—®— input resistance
1 ——¢— input reactance
1.5 1

1.0 1

NORMALIZED INPUT IMPEDANCE

] [ height
0.5 E=1. \
] linearly varying € (2) thickness
1 £,=4.0.3 i
0.0 q e EESCIN— N v R— v
0.0 0.5 1.0 1.5
THICKNESS [wavelength]

(b) height = 0.5 wavelength

Figure 4.4: Input impedance of the horizontal half wavelength dipole over a lossy
dielectric layer as a function of thickness.
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(b) height = 0.5 wavelength

Figure 4.5: Input impedance of the vertical half wavelength dipole over a lossy di-
electric layer as a function of thickness.



CHAPTER V

3-D FINITE ELEMENT SOLUTION OF
FOUR-WIRE ANTENNA IN TAPERED
ANECHOIC CHAMBER

5.1 Introduction

Due to the complex geometry, the four-wire antenna in an anechoic chamber is
lmost impossible to analyze without using numerical techniques. For the free space
wnalysis of the four-wire antenna, the method of moments(MOM) was employed with
. free space Green’s function and this was presented in Chapter II and in [80],[81].
{owever, when the antenna is inside a chamber, a new Green’s function associated
7ith the chamber and lossy absorbers is required. Unfortunately, such a Green's
inction cannot be obtained due to the complex geometry of the chamber. The
se of the free space Green’s function instead of the new Green’s function would
2quire an extremely large number of unknowns, including fields in the chamber. in
bsorbers, as well as on the wires, that it would be quite difficult, if not impossible.
» manage and solve. As an alternative, a three-dimensional finite element method
‘EM)(82)-[86] is employed to study the four-wire antenna in a tapered ancchoic
1amber. Even though the total number of unknown variables in the finite clemet

rmulation is larger than that in the method of moments, the system mat::\

67
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the FEM is extremely sparse and easier to solve than the impedance matrix of the
MOM, which is full. This makes the analysis of the four-wire antenna in the chamber
feasible.

The finite element technique has been a popular tool in most engineering applica-
tions as well as in microwave engineering due to its flexibility and versatility[82]-[90].
In applying the finite element technique to wave problems, the solutions have been
known to include nonphysical spurious results[87]-[91]. To eliminate these spurious
results, a combined method formulated with transverse field components has been
developed[89]. However, this is not valid for three-dimensional problems, and for
these a penalty function method has been used successfully[90].

In this chapter, we describe the analysis of the four-wire antenna in a tapered
anechoic chamber using a three-dimensional finite element technique. Section 5.2 de-
rives global system equations from Maxwell’s equations. In setting up the equations,
two types of formulations are available in the finite element technique. One is the
variational formulation[92], which uses the concept of minimizing the total energy in
the system[90]. The other one is the weighted residual formulation, which uses the
concept of minimizing an error introduced by approximating a solution[85]. Both
formulations result in the same system equations. In section 5.2, a weighted resid-
ual formulation is used. Then, in section 5.3, the system equations are discretized
into element system equations for each element. For this discretization, two kinds
of shape functions, linear and quadratic, are considered. Section 5.4 describes the
method of assembling and solving the system equations. To assemble and solve the
system matrix, a frontal technique is employed. In section 5.5, the four-wire antenna

is solved when it is in the tapered anechoic chamber and the results are presented.
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.2 Finite Element Formulation

In a linear homogeneous medium, when an electric current density J is applied,

e point(local) form of Maxwell’s equations for electric field, £, and magnetic field,

are given as

-

Ux &R = —jwpH() (5.1)

- -

VxHF) = jwel(F)+ J(P) (5.2)

eere 1 and € are the uniform permeability and permittivity at point 7, respectively.
Vector Helmholtz or wave equations for electric and magnetic fields are obtained

applying curl operations on Egs.(5.1) and (5.2) to give

-

VxVxER-kER = —jwud(7) (5.3)

-

VxVxHF-kHF = VxJ (5.4)

;re k is a propagation constant expressed as k = w,/ue. When electric(or mag-
c) fields are obtained by solving Eq.(5.3) (or Eq.(5.4)) with appropriate bound-
conditions, the magnetic(or electric) fields are easily obtained from Eq.(5.1)(or
'5.2)).

When solving the governing equation, one must consider the composition of the
ain. If the domain consists of different dielectric materials, but of the same per-
bility, the use of Eq.(5.4) is more convenient than that of Eq.(5.3) because every
ponent of the magnetic field is continuous in the domain. The use of Eq.(5.3) for
same domain is not as convenient since the normal electric field component to
lifferent dielectric interfaces is not continuous and may require special attention.
2 the four-wire antenna system in the anechoic chamber consists of several di-

ric material classes, such as loading resistance and absorbers, Eq.(5.4) is chosen
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wnd solved for magnetic vector fields.

In general, for a complex geometry, it is difficult to obtain an exact solution that
atisfies Eq.(5.4) with proper boundary conditions. However, the solution can be
xpressed in a form of infinite summation of independent basis (or trial) functions
rith appropriate coefficients. An approximate solution, ﬁ(r“'), can be obtained by
sing a finite number of summations instead of infinite summations and written as

M
HF) ~ A7) = Y HaNa(7) (5.5)

m=1
here ﬁ(f") is the exact solution, N, (7) are the expansion function, and H,, are the
veflicients to be computed to obtain a good approximation. The basis function set
ould be chosen so as to ensure that the approximation is improved with increased
imber, M, of basis functions used. One obvious condition for the convergence of
is approximation is that the approximate solution, H (7), can adequately represent

y exact solution, H(F) as M — oo.

The coeflicients, ﬁm;m = 1,- -+, M, are determined by the following weighted

sidual process. This process begins by introducing a residual (or error), Ry (), in

lomain volume that is defined as
Rv(M =V xVxHF-kKAR-VxJ (5.6)
| conducting boundary surfaces, residuals, ése(ﬂ and ﬁsm(ﬂ, are defined as

Rs,() = V x H(F) x 7 on electric conducting surfaces

ﬁsm(ﬂ = H (7) X i on magnetic conducting surfaces

ere 7t is an outward normal unit vector to the boundary surfaces. The domain

idual comes from Eq.(5.4) and the boundary residuals are constructed to satisfy



the boundary conditions

vV x f](f‘) xn = 0 on a perfect electric conducting surface (5.7)

H( x# = 0 on a perfect magnetic conducting surface (5.8)

One can introduce other residuals for other types of boundary surfaces. In this
thesis only the above two types of boundary conditions are considered. That is, the
boundary surface, S, of closed domain volume, V, is expressed as S = S, + S,,..
Note that the residuals are also functions of position. As ﬁ(f") becomes zero
everywhere, the approximate solution becomes the exact solution. Therefore, the
summation of integrals of the residuals over the domain and boundaries, weighted in

different ways, is required to be zero, that is,

[, W) - By + [ W) B s + [ W () - B (7S =

/VW,(F)-(V XV x H(F) - B*H(7) = V x J)dv

+ /S We(R) -V x H(7) x ﬁd5+/s Wi () - B(7) x 7dS = 0 (5.9)

where | = 1,2,---, M. In the above equation, W;(f"‘), [=1,2,---, M is a set of indepen-
dent weighting vectors in the domain and the superscripts e and m of W,(7) denote
the electric and the magnetic perfect conducting boundaries, respectively. For each
[, three independent weighting vectors are required to make the weighted residual
vectors identically zero. By imposing the three independent weighting vectors, three
equations for each [ are obtained.

To meet the convergence requirement, Eq.(5.9) must be satisfied for all / as M —
co. This is true when R(7) — 0 at all points of the domain and boundary. Using

a vector identity and Gauss theorem, the first term in the parenthesis of Eq.(5.9)
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becomes

/ Wi(7)-Vx V x B(F)dV = f v x A (7) x Wz(v’)-fzdﬂ/v(v x H(7))-(V x Wy(7)dV
v S

(5.10)
This form is often called a “weak form”. Using the vector identity, the surface integral

of Eq.(5.10) is rewritten as

foﬁ(F)XWz(r‘)-r‘zdS = —/S vXﬁmxfl-vT/,(ﬂds+/S V x H(7)- Wi(7) x #dS
s . -

(5.11)
and by combining Eqs.(5.10), (5.11), and (5.9) and choosing Wf(r"') = Wl(r") and

W (7) = —=W,(7), one obtains
/V{(v x (7)) - (V x Wi(7) + B*Wi(7) - B(7) = Wi(7) - V x J}dV =0 (5.12)

Eq.(5.12) is a resultant global system equation.

It is well known that Eq.(5.12) has spurious solutions[88]-[91]. In order to avoid
such solutions, a penalty method is used by adding to Eq.(5.12) a least squares
constraint satisfying divH = 0 so that the governing equations are explicitly the
Helmholtz equation plus the vanishing of divH. By adding the constraint in a least

squares sense, Eq.(5.12) becomes

(7 x B@) (3 x @) + ) - A7)+ 5(V - A W) ) v

= [ WV xT av (5.13)

where s is a penalty number that represents how heavily the constraint is imposed.

One thing to note in using the penalty method is the choice of an appropriate
penalty number since the imposition of a constraint can be compared with changing of
natural boundary conditions of the equation by introducing an additional appropriate

integrand. If the penalty number is not chosen properly, the solution may not . .
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1ysical one. One advantage of using the penalty method is that it does not increase
e matrix order, and the additional computation time is negligible.

There exist a large number of possible choices for the weighting vector set. The
sst popular weighting functions are, as Galerkin originally used, the basis functions

>mselves, that is,

Wi = Ni (P& + N} (7)j + Ni(7)z (5.14)

order to make the weighted residual vectors identically zero, three independent
ghting vectors for each [ are necessarily required, with which the dot operations
the residual vectors are zero (see Eq.( 5.9)). For this, one can simply choose three

ependent weighting vectors for the same [ as
Wi = NP(Mp (5.15)

re pis z,y, and z. Applying the expanded expression of Eq.(5.5) and Galerkin’s

thting vector of Eq.(5.14) into the Eq.(5.13), the following equation is obtained.

M I D ISR RN BN AR B
3 f,  HAg NalgNe = o NE) 4 5 NalG N = 5 ?)
0 0 a.,0

g Nn(g NP + 5 N5 Vi) + KN N7
b HAS NN - %Nf) + L NN - a%zvf)
+ S%Nm(%f\ff + (%N,”%N,’) + KN N
b BN = N+ Nl = 1)

0 0 e, 0,.,0 . 2 N
+ Sasz('a—x'Nz + a_yNI -a—le ) +k Nle] } dV

= /V [NE(V % J)s + NY(V x J)y + NF(V x D] dV (5.16)

= -

' (Vx J), denotes the p component of (V x J) and H?, represents p component of

‘or each [, Eq.(5.16) is divided into 3 equations for each independent weighting
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vector of Eq.(5.15). One of the three equations is Eq.(5.16) where N7 = N; with
VY = Nf = 0 and the other two are Eq(5.16) where N} = N, with N7 = N =0,
wnd Nf = N; with N7 = N} = 0. By solving Eq.(5.16) with appropriate boundary
onditions for a given geometry, an approximate solution set is obtained.

Before closing this section, let us rewrite the boundary conditions in terms of the
oefficients of Eq.(5.5). If a node n is on the magnetic conducting boundary, the

elds at 7, must satisfy Eq.(5.8). That is,

M
Hi)x =Y HuNp(fo) Xt = Hy x 2 =0 (5.17)
m=1

hen
1 if m=n
N (7n) = (5.18)
0 if m#n
herefore, H, x & = 0 can be used for the boundary condition of Eq.(5.8). For the

undary condition on the electric conducting boundary, Eq.(5.7) is rewritten as

HF) 7=0 (5.19)

ice V x H(7) is perpendicular to H (7). Therefore, for a node n located on the
ctric conducting boundary, the boundary condition to be enforced is H,-A=0

ien Ny, (7,) satisfies Eq.(5.18).
3 Finite Element Discretization and Basis Functions

For a numerical implementation of Eq.(5.16), the integration must be discretized
subdividing V into smaller volumes, V¢. The shape of the discretized volume can
a tetrahedron, triangular prism, hexahedron, etc. This smaller volume is called
“element” and each element has its nodal points; r,,n = 1,2, -, M" where M"

he number of nodes of one element. In order for the coefficient, H,, to represent
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the unknown field at the nodal point n, the value of the basis function is chosen so
that Ny (%) = 1 if 7y = 7n and Ny (F) = 0 if 7y # Tm. In elements containing a
node m, the nodal basis function N,,(7) is a nonzero function, while in elements not
containing a node m, N,,(7) is a zero function. Therefore, the global basis function

is expressed as

N&(7) if element e contains node m
N (7) = (5.20)
0 if element e does not contain node m
where N¢ (7) is a basis function defined only in the e** element. The element basis

function N¢ (7) can be a linear, a quadratic, or a higher order function.

Thus, Eq.(5.16) is discretized and rewritten as

M;j::l/ { [6 (aa N - a% ,"‘)+%N§,(%Nﬁ"—a%N,‘"°)
+ saiN;(aiNf‘ + %Nf‘%Nf‘) + k2NN
+ [(9 (; Ny© — %N,”) + %N,;(%Nf'° - %N,“)
+ s%N;(aiNf” + aiN,y'f%N,“) + K2NE NP
+ [a (aaN —%N,’"”H%N:n(;—zN,“—%N“)
+ (,f Na(5z ;fo * a% ,”'°5‘9;N,"°)+k2N;Nf"] } v

/V [NFE(V x J¢), + NPV x J¢), + NFS(V x J¢),) dV (5.21)

where M¢ is the total number of elements and the superscript e denotes the e'*
element.

If the basis functions defining geometry and function are the same, the elements
are called isoparametric. In the isoparametric elements, the coordinates z, y, z as

well as ﬁ(:c, Yy, z) are expressed as

ny, ZN‘:cy,

m=1
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Man

r = ZN;(m,y,z)zm

m=1

Mn
y = Y No(2,9,2)ym
m=1

Mﬂ
z = ZN;(:r,y,z)zm (522)
m=1
Mﬂ
1= Y Niz..2) (5.23)
m=1
(5.24)

In most finite element formulations, a tetrahedral and a rectangular (brick) el-
ement with linear basis functions are commonly used because of their simplicity in
formulation. However, the use of rectangular brick elements is restricted when ap-
plied to a non-rectangular geometrical shape. Also, the use of a linear basis function
requires a large number of elements and nodes when the domain includes a radiator
or when the field in the domain changes rapidly. In this section, a linear basis func-
;ion for tetrahedral elements and a quadratic basis function for hexahedral elements

ire described for use in later sections.

3.3.1 Tetrahedral Element with Linear Basis Functions

A tetrahedral element is one of the commonly used elements in the three-dimensional
inite element technique because this element has an appropriate shape to construct
iny three-dimensional geometry with the least approximation. Figure 5.1 shows a
etrahedral element with consistent node ordering. The ordering of nodal numbers
yk,I,m of Figure 5.1 follows a “right hand” rule. For this, the first three nodes are
wmbered in an counterclockwise manner when viewed from the last one.

The linear basis function of node j for the tetrahedral element e is expressed as

N: !

¢ = 6_V—‘(aj + bjz + cjy + d;z) (5.25)
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with
1 z; y 2z
1 zr ¥ %
6V° = det
1 =1 y 2
1 Thm Ym 2m
and
Tr Yk 2% 1 oy 2
a’j = (+1)Jd€t T i 2 b] = (—I)Jdet 1 Y 2]
Tm Ym Zm l Yym 2zm
Ty 1 2 Ty Yk 1
cj=(—1)jdet o 1 z d,-=(—1)jdet o oy 1
T 1 Zm Tm ym 1

where the value, V¢, represents the volume of the tetrahedron.

One of the advantages in the use of linear basis function is that the integration
over a volume can be performed analytically[84]. Applying the basis functions of
Eq.(5.25) to Eq.(5.21) and integrating over the element volume, element system
equations for e** element are obtained. The element system equations consist of
the following 12 linear equations with 12 unknown coefficients (three magnetic field

components for each of the four nodes).

4

1
z 36V [H;(Sbmbz + dmdi + cmer) + H,’{‘(scmb1 = bnar) + HE(sdpmb — bmd,))
m=1

K HZVy = (V x J),V./4
4

1

Z 6 [HE (sbmei — emby) + HY (semer + bnbi + dmdi) + HE (sdmer — cmd))]

3

~KHLV = (V x J), V. /4

4
1 :
Z 36V ¢ [H:z(Sbmdl - dmbl) + H#;(scmdl - dmcl) + H;.(Sdmdl +cmar + bm hii
m=1

kK HZV, = (V x J),V./4
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Figure 5.1: A tetrahedral volume element. The numbering of the nodes are consistent
so that the first three nodes are numbered counter-clockwise when viewed
from the last one.

where
Ve/10 ifm=n

Vi

Vej20 ifm#n
with [ = 1,2,3,4. Each equation in the above set corresponds to each of the in-
dependent weighting vector of Eq.(5.15) with p = z,y, and z, respectively. These
element system equations are assembled for all the elements to generate the global

system equations.

5.3.2 Hexahedral Elements with Quadratic Basis Functions

When the domain includes a source or a radiator inside, the use of linear basis
functions would require many elements around the radiator. For this kind of problem.
a quadratic or a higher order basis function is much more efficient than the lincar

one. A disadvantage of higher order basis function is that the integration cannot he
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performed émalytically and requi>res a numerical technique that requires longer time
to generate the element system matrix. This numerical integration time, however,
is negligible compared to the time required for solving system equations. In this
section, a hexahedral element with quadratic basis function is described.

Figure 5.2 shows the general hexahedral element with 20 nodes (8 corner nodes
and 12 mid side nodes) in cartesian coordinates and transformed coordinates. Any
shape of a hexahedron in cartesian coordinates can be uniquely mapped into trans-
formed coordinates using a shape function transformation. In the transformed co-
ordinates, the hexahedron is a rectangular brick as shown in the figure. In both
coordinates, the shape functions should satisfy N,, = 1 at node m and N,, = 0 at

other nodes. Therefore, in isoparametric elements, one can write

. M, , . My
Hz,y,2) = Y Ni(z,9,2)Hn =Y Na(,n,()Hn
m=1 m=1
M, , Mn
z = Y Nie,y2)en= Y Nol6n, O
m=1 m=1
Mn , M,
y = > N3y, 2)ym= Y Na(&1,)0m
m=1 m=1
M, , M,
z = ZN,:(:E,y,Z)Zm Z (f»’l C)C (526)

3
n

m=1
where N,¢ and N denote the element basis function in cartesian and transformed
coordinates, respectively. In general, the element basis functions in cartesian coor-
dinates are not easy to obtain in a compact form due to the irregular shape of the
element. However, the basis functions in transformed coordinates are easily obtained

as

No = 214 €)1+ m)(1 4 () €+ M+ CGn =) (327)
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[S—

Transformed Coordinates

Figure 5.2: A hexahedral volume element in the cartesian and the transformed co-
ordinates.



81

for corner nodes and

L1 =€) (14 1m)(1 + ((m) for €m = 0,nm = £1,(m = 1
Nm = «%(l +'££m)(1 - 7’2)(1 +CCm) for Em = il,flm = 0, Cm = +1

Y1+ ER)(L+mmm)(1 = ¢2) for bm = £1,mm = £1,(n =0 |

—~

5.28)

for mid-side nodes where the coordinates are shown in Figure 5.2.

Although the basis functions for each node are given in Egs.(5.27) and (5.28),
he differentiation and integration of the functions in cartesian coordinates are re-
juired to generate the system equation of Eq.(5.21). The differentiation in cartesian
oordinates is obtained using the rule of partial differentiation. Differentiating with

espect to the transformed coordinates and writing in matrix form, one can obtain

4 3 [ 9 ( 3\ { 3\
ANE 9z 8y oz aNg, aNZ,
3¢ 3 3¢ ot oz oz
{ WNg = |2z 3y 8z |{ Nz 3} =J{ 3Ng } (5.29)
an On On 0On dy dy
IN® 9z B8y oz ANt Nz
e | 3¢ 3 a | | o= | | oz |

here J denotes the Jacobian matrix. In the above relation, the left hand side can
> evaluated directly from Eqs.(5.27) and (5.28). The Jacobian matrix is found
tplicitly from the relation of Eq.(5.26) as a function of the transformed coordinate

rriables and written as

- -

%fm = %nm E m (m
J = Z %Em Z %nm E W Cm (530)
C8atn T%Emm T %A |

1e cartesian derivatives can be obtained by inverting the Jacobian matrix and

1tten as ) . )
ONp ONp W
oz o¢
! g f:J‘1< g ) (5.31)
dy o ’
ONm ONm
\ 0z J \ 3( J
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By performing this, the cartesian variables (z,y, z) of the integrand in Eq.(5.21) have
been replaced by the transformed variables (¢,7, ().
The volume integration with respect to the cartesian coordinates is also trans-

formed to the integration with respect to the transformed coordinates using
dr dy dz = |J| d¢ dn d( (5.32)

where |J| is the determinant of the Jacobian matrix.
Provided that the inverse of J can be found, the integral form of Eq.(5.21) can

be written as
/ / / (€,7,()dédnd( (5.33)

where G(£,7,() contains the the integrand of Eq.(5.21) in terms of transformed
coordinates including the determinant of Eq.(5.32).

Therefore, by transforming the coordinates, a simple form of the integration is
obtained that is carried out over a unit rectangular brick whatever the shape in the
cartesian coordinates is. However, the explicit form of G cannot be obtained and
thus a numerical integration technique is required. For this, a Gaussian Quadrature
technique[84], which is commonly used in the finite element technique, is chosen.

The integration of Eq.(5.33) is replaced by a summation as

/ / [ Gle.n,¢)dedndc

Z Zzw'wam 61117,]76111) (3“)

1i=1
where n is the number of integrating points and w is weighting coefficients. The
number of integrating points in each direction is chosen to be the same although this
1 not necessary. For the quadratic basis function, the chosen number of integrat:: .«

points in each direction is three and thus the total integrating points in a +. . .-
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are 27. The positions of the points in each direction are chosen with —1/1/3,0.1/1/3
and their weighting coefficients are 5/9,8/9,5/9.

By performing the integration of Eq.(5.34) numerically, the element system equa-
tions are obtained. The global system equations are obtained by assembling these

element system equations for all the elements.

5.4 Element Assembly and Equation Solving

In order to obtain solutions by the finite element method, one is eventually faced
with the task of solving a large set of simultaneous, linear algebraic equations. When
solving the large system equations numerically, one can use direct or iterative meth-
ods. The iteration method is faster and has less error than the direct method pro-
vided that a convergence factor, which is different in different system equations, can
be obtained. Since it is not an easy task to find the convergence factor, especially in
large system equations, a direct method may be preferred in some cases.

In our analysis, a frontal technique, which uses a direct method, is used to perform
the element assembly and equation solving at the same time[86],{94],[95]. The frontal
algorithm is a special method that is suitable for the finite element technique. This
algorithm assembles the finite element system equations into global system equa-
tions and solves for the unknowns using Gaussian elimination simultaneously, and
then performs a back-substitution process. It requires less storage, fewer arithmetic
operations, and smaller peripheral equipment when compared to other direct solving
routines.

The basic idea of the frontal algorithm[94] is that it assembles the equations
and eliminates the variables at the same time. As soon as the coefficients of an

equation are completely assembled from the contributions of all relevant elements.
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the equation is transferred to back-up storage and the corresponding variable is
eliminated. Therefore, the complete global system matrix is never formed during the
process.

At a certain step during the process when a new element is assembled, a coefficient
matrix for variables, which are yet to be eliminated, remains in the core memory.
These equations, their corresponding nodes and degrees of freedom, are termed the
front. The number of unknowns in the front is the frontwidth. This frontwidth
changes during the assembly and reduction process and the average front-width de-
termines the maximum size of problem that can be solved using this method.

In the frontal method, the ordering of elements is important while the nodal
numbering is irrelevant. The reason for this is that the life time of a node in the
front depends on the element numbering, not the node numbering. Therefore, the
element numbering must be done so as to reduce the life time and thus the frontwidth.
Another efficient method is a band solution, which requires the entire global matrix
to be assembled first and begins to solve it with Gaussian elimination process. The
frontal method, however, is a more efficient method, especially in three-dimensional
problems[86).

The anechoic chamber geometry that will be solved has a long length compared
to its width and height. This geometry enables one to reduce the frontwidth even if
it has a large number of unknowns. Therefore, the frontal technique is suitable for
this geometry.

For an overview of the frontal algorithm, a flow chart is shown in Figure 5.3.
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Figure 5.3: Flow chart of frontal technique.
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5.5 Modeling and Numerical Results

5.5.1 Modeling

Figure 5.4 shows the anechoic chamber model with the four-wire antenna adapted
for the finite element analysis. Since the chamber with the four-wire antenna has a
symmetric structure, the analysis for the first quadrant of the chamber is sufficient.
In the first quadrant of the chamber, an image plane is at the bottom and a symmetry
plane at the left side for the vertically polarized excitation. The top and right side
planes are perfect electric conductors covered with absorbers. An electric perfect
conductor with absorber is used for the back wall except in the area where the wire
is terminated. The front plane is modeled to be a perfect electric conductor without

absorber. For such geometry the following boundary conditions are applied:

H #a=0 on a perfect electric conductor
(chamber walls and image plane)

Hxn=0 ona perfect magnetic conductor(symmetry plane).

For the excitation of the antenna, a magnetic frill source model is used at the
feed of the wire. For this, the magnetic field vectors are given at nodes around the
wire at the feed so as to circulate the wire uniformly. This means that a constant
current source is applied to excite the wire.

An exact model of the real chamber would require too many unknowns to compute
with the available computer system. Therefore, the chamber is modified to reduce
the number of nodes. The real absorbers on the walls are a wedge type in the tapered
region and a pyramidal type at the quiet zone and backwall of the chamber. These
absorbers are replaced with equivalent layers so that the layers have similar reflection

properties to the absorber for the plane-wave incidence[93]. In the equivalent layers
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Figure 5.4: Modeling of the first quadrant of anechoic cham‘ber with four-wire sys-
tem. Absorbers are substituted with equivalent dielectric slabs that have
similar reflection properties. Numbers in parentheses are dimensions for
reduced size chamber.
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the dielectric constant, €., of layer [ is given as

L

d=flle—-1)+1 (5.35)

where f' is the volume fraction of absorbing material at layer I and ¢, is the measured
dielectric constant of the absorber. At the bottom of the absorbers, the volume
fraction is one and at the top it is zero. Since the volume fraction varies linearly
from top to bottom of the absorber, the dielectric constant of the equivalent layers
has linearly varying profile from €. = 1 to €. = ¢,, respectively. In this simulation,
only two layers of equal thickness are used as the equivalent layers to reduce the
unkowns. The dielectric constant of the layer close to the wall is the value measured
in Chapter III. The layer adjacent to the air has the dielectric constant of (1 +¢,)/2.
In Chapter III, several comparisons of the reflectivity between the absorber and the
equivalent layers were made. Although the reflection coefficients of these equivalent
layers are not exactly the same as those of the real absorbers, the effects of the
equivalent absorbers on the response of the antenna are expected to be similar.
The other significant change is the size of the wire. The diameter of the real
wire is four millimeters. It is important in the finite element technique that the
sizes of adjacent elements should not change abruptly. If they change abruptly, the
technique would generate serious numerical errors. With this in mind, the use of
four millimeter diameter wire would require a huge number of elements for modeling
the chamber of three meter width and height. Therefore, in order to reduce the
number of elements, the diameter of the wire is assumed to be 7.5 centimeters at
the feed point and tapered to 50 centimeters at the back wall. As a matter of fact,
the chamber with wires is expected to guide a TEM wave at low frequencies(below
several hundred megahertz). Therefore, the use of the thick wire is a justifiable

assumption considering that the original goal of this analysis is to observe the !
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equency response.

In this chapter, two types of elements are considered for the analysis of the cham-
or with the four-wire antenna. One is a tetrahedral element with linear basis func-
on and the other is a hexahedral element with a mid-side quadratic basis function.
nce the use of the first one requires too many nodes to solve the whole system, the
duced geometry has been used. The dimensions of the reduced chamber are shown
the parentheses of Figure 5.4. In this case, the total number of nodes is dependent

the geometry rather than on the frequency. The reason is that the number of
'ments around the radiator, which is wire in our case, must be at least ten in order
obtain a physical solution. The use of hexahedral elements with mid-side nodes
1 simulate the radiator with fewer elements. Therefore, the full size chamber can
accurately analyzed. In this case, the size of element is bigger than the tetrahedral
ment and hence the total number of nodes is dependent on the frequency. For a
»d solution, the number of nodes must be at least eight per wavelength.

The numerical experiments were performed to see the effects of the penalty num-
If the penalty number is zero, the solution is nonphysical. We obtained a

rsical solutions for the penalty numbers between 0.1 and 1.

.2 Numerical Results

In the finite element simulation with tetrahedral elements, 7168 nodes and 31000
‘ahedral elements are used for a reduced chamber geometry. Figure 5.5 shows
discretization of the cross section into hexahedral elements. Each hexahedral
nent is discretized again into five tetrahedral elements.

By solving the system equations, the magnetic fields are obtained at each node.

» current distributions are then obtained from the magnetic fields at the wire
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[

Figure 5.5: Discretization of cross section of the chamber with hexahedral elements.
Each hexahedral element is divided into 5 tetrahedral elements.

surface from Ampere’s law
I= f; A -dl (5.36)

where the integration path [ is around the wire following the right hand rule. Fig-
ures 5.6 through 5.8 show the current distribution on the wire for different termina-
tions at 100, 150, and 300 MHz, respectively. These terminations include a short, an
open, and a resistance loading. Figure 5.6 clearly shows the standing waves appropri-
ate to the termination of the wire. For the open termination, the current at the end
is zero and, for the short termination, it is maximum. When the 48 ohm resistance is
used, the standing waves disappear. At 150 MHz similar behavior exists, but is less
pronounced. It is interesting to note that the 48 ohm resistor, that worked very well
at 100 MHz, is not effective here. This is not surprising, since the optimum loading,

in general, is a function of frequency. At 300 MHz the termination barely affects the
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Figure 5.6: Current distribution on the wire at 100 MHz with different termination.
The currents are normalized to the input current.

current on the wire because, at this frequency, the current has already decayed before
reaching the end. Also, at the end, the absorber absorbs the remaining current that
reaches the end.

Figure 5.9 shows the discretization with hexahedral elements with mid-side nodes.
With these elements, the full size chamber is discretized into 1998 elements with 9359
nodes. The computed current distributions on the wire are shown in Figures 5.10
through 5.12 with a short termination to the back wall at 30, 50, and 70 MHz, respec-
tively. In these figures, the solid lines represent the current magnitude normalized
to the input current and the dotted lines represent the phase.

To obtain the field plots, the computed magnetic fields are assumed to be el-

liptically polarized at a given cross section of the chamber. Figure 5.13 shows the
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Figure 5.7: Current distribution on the wire at 150 MHz with different termination.
The currents are normalized to the input current.
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Figure 5.8: Current distribution on the wire at 300 MHz with different terminati.u
The currents are normalized to the input current.
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Figure 5.9: Discretization of the cross section of the chamber with hexahedral ele-
ments with mid-side nodes.
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Figure 5.10: Current distribution at 30 MHz. The wires are terminated to the back-
wall with short. Hexahedral elements with mid-side nodes are used
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gure 5.11: Current distribution at 50 MHz. The wires are terminated to the back-
wall with short. Hexahedral elements with mid-side nodes are used.
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are 5.12: Current distribution at 70 MHz. The wires are terminated to the back-
wall with short. Hexahedral elements with mid-side nodes are used.
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Hy =B sin(@t +9)

Figure 5.13: Elliptically polarized magnetic fields at a cross section of the chamber.

solarization ellipse. If the field components are expressed at a cross section as

H, = Asinwt

H, = Bsin(wt+ ¢)

he lengths of two axis of the ellipse, A’ and B’, are written as

1
A =
VB?cos?0 — ABcos¢sin26 + A?sin*f
B' = !

V/B?sin?0 — ABcos¢sin20 + A’cos?6
here 8, the tilted angle of A’ from z axis, is

1, _,2ABcos¢
= Em o

(5.37)

(5.38)

(5.39)

(5.40)

he major axis of the ellipse is the longer one of A’ and B’ and the minor axis the

orter one.

With this expression, the computed magnetic fields are drawn in Figures 5.14

rough 5.16 for 30, 50, and 70 MHz, respectively. Figure 5.17 shows the field



Figure 5.14: Field distribution at a cross section of 15 meter distance from feed point
at 30 MHz. The wires are terminated to the backwall with a short.
Hexahedral elements with mid-side nodes are used.

variation obtained by this analysis at 50 MHz. In the figure, (a) and (b) show the
magnetic field intensity variation along the horizontal and vertical axis, respectively.
The field intensities are normalized to the intensity at the center point. The plane
used in these figures is the cross section at 14 meters from the feed. Figure 5.18
shows the field variation along the propagation direction at 50 MHz. The fields are
normalized to the fields at 14 meters from the feed. As expected, the fields decrease
as an inverse function of distance. According to these figures, the fields are uniform

within & 1 dB in the 0.5 meter radius spherical test area.
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Figure 5.15: Field distribution at a cross section of 15 meter distance from feed point
at 50 MHz. The wires are terminated to the backwall with a short.

Hexahedral elements with mid-side nodes are used.
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Figure 5.16: Field distribution at a cross section of 15 meter distance from feed point
at 70 MHz. The wires are terminated to the backwall with a ~l.or
Hexahedral elements with mid-side nodes are used.
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Figure 5.17: Field variation along the center line at 50 MHz.



99

5.0
4.0 |
3.0 |
3 20}
& 1.0
&
5 0.0 F
8 1.0
3 o0l
E —2-0
-3.0 |
-4.0 |
-5.0 L L L
13 135 14 145 15

DISTANCE FROM THE FEED [meter]

Figure 5.18: Field variation along the propagation direction at 50 MHz.



CHAPTER VI

IMPLEMENTATION AND MEASUREMENTS

The four-wire antenna was built and installed in the tapered anechoic chamber at
the University of Michigan Radiation Laboratory. The performance of the antenna
was tested by measuring the input impedances and the resultant field distributions.
The antenna showed good performance in producing a uniform field at the test
area and has a good impedance behavior over a broad frequency range. Using the
lour-wire antenna system, surface current meaéurements were conducted to demon-
strate EMC capabilities[96]. In addition, electromagnetic reflection or backscattering
neasurements were performed to show the potential of this antenna for radar cross
iection (RCS) measurements in the low frequency regime.

Section 6.1 describes the construction of the four-wire antenna in the anechoic
‘hamber. In section 6.2, electrical property measurements of the system are described
.nd performed. For measuring the input impedance, a small four-wire antenna model
vas constructed and measured in free space. Also, the input impedance of the full size
our-wire antenna was measured when it was installed in the chamber by measuring
he S-parameters at the feed point. The field intensity in the test area was measured
o show the uniformity of the field. In section 6.3, backscattering measurements

re presented for a tilted cylinder. Surface current measurements are presented in

100
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section 6.4 for induced surface currents on a model aircraft.

6.1 Installation of the Four-wires in Anechoic Chamber

Even though it has been analytically shown that the optimum arrangement of
the four wires is not symmetrical[97], a symmetric arrangement was chosen. One
of the reasons for this choice is that it allows the user to change the polarization
of the antenna by simply changing the feed connections. Another reason is that
the symmetric arrangement is more compatible with the square cross section of the
anechoic chamber.

Figure 6.1 shows the drawing of the tapered anechoic chamber with a four-wire
system and instrumentation set up for Sy, or reflectivity measurement. The overall
dimensions of the chamber are 5.4 meters wide, 18 meters long, and 5.4 meters high.
The anechoic treatment consists of 1.8 meter deep pyramidal absorbers on the target
endwall of the chamber; 0.6 meter and 0.45 meter deep pyramidal absorbers, and 0.3
meter wedge absorbers on the side walls, ceiling and floor surfaces of the 0.45 meter
x 0.45 meter x 0.56 meter test region; and 0.45 meter deep pyramidal and 0.3 meter
deep wedge absorbers on all surfaces of the tapered section. The 12.85 square meters
of the test region floor surface are treated with 0.6 meter deep walkway absorber.

At the feed point, each wire of the four-wire system starts with a one meter
ong brass tube (4 mm diameter) followed by an outer shield conductor of RG-58/U
soaxial cable, which has the same diameter as the brass tube. The top two wires
wre connected to one SMA connector with a “V” form and the bottom two wires to
he other SMA connector symmetrically. The top and bottom wires also have the
ame “V” form with each other. The two SMA connectors are mounted on the metal

late as closely as possible (1.2 centimeters) in a vertical line. For the mechanical
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igure 6.1: The tapered anechoic chamber with four-wire system with equipment set
up for field and backscattering measurements.
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Figure 6.2: The four-wire antenna feed showing the support plexiglass block.

plate as closely as possible (1.2 centimeters) in a vertical line. For the mechanical
support of the wires at the feed, a plexiglass block is drilled in a “V” form and tubes
are inserted and glued into the holes. Figure 6.2 shows a photograph of the feed
including the plexiglass block. In order to terminate the wires on the back wall,
holes are drilled through the absorber and the back wall. The antenna wires are
passed through these holes and secured. However, due to the 18 meter length of the
wires, the wires droop about 50 centimeter at their midpoint. To correct this droop,
two ropes are stretched along the top of the chamber and each wire is supported by
two strings that are attached to these ropes. With these ropes, the droop is reduced
to less than 3 c¢m in the radiation area of the wires. Figure 6.3 shows photographs
taken inside the chamber. The upper photo shows the feed plate with the four wires
coming out diagonally and the two ropes at the top. The lower photo shows the wire

going through the back wall at the crevice (or the low spot) in the pyramids.
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Figure 6.3: Photographs of the antenna wires in the chamber. Upper photo shows
the feed point. Lower photo shows one of the wires going through the
back wall.
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6.2 Electrical Property Measurements

6.2.1 Input Impedance Measurements

The antenna input impedance was measured on two versions of the antenna. One
is the antenna in free space using a ground plane configuration and thus needing only
a half of the antenna (equivalent to monopole vs. dipole), and the other is the full

antenna in the anechoic chamber.

Free Space Version

Using the same feed geometry, a smaller version of the four-wire antenna was
constructed, but using an image plane. In this case, only half of the antenna with
single port excitation is used. (This is like feeding and measuring a monopole when
data for a dipole are desired.) This antenna has a single V-element fed through a
SMA connector which is mounted on a ground plane (or image plane) as is shown
in Figure 6.4. The angle of the V-element is 8.6 degrees and the angle between the
V-element and ground plane is 4.3 degrees. The V-element consists of two brass
tubes that are one meter in length and four millimeters in diameter. Impedance
of the structure was measured on a network analyzer and the results are shown in
Figure 6.5. The oscillations in the curves for R and X are caused by reflections
from the ends of the wires. When the signal is range gated to remove the end
reflections, the smooth curves are obtained. The real part shows about 80 ohms and
the imaginary part is near 0 ohm. For the four-wire antenna, the impedance would

be twice, or 160 ohms.



106

V-element

SRR

e
S

SMA
connector

g e @

Image plane
HP 8510
Network
Analyzer

Figure 6.4: A “V” element with image plane for input impedance measurement.
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Figure 6.5: Antenna impedance measured on an image plane version of the antenna

Double the impedance for free space version.



107
Four-wire Antenna in the Chamber

The input impedances of the four-wire antenna in the anechoic chamber was
measured by measuring the two-port S-parameters of the antenna. Figure 6.6 shows
the two port network representation of the four-wire system. In the operation of
the antenna, ports 1 and 2 are excited with voltages of the same magnitude but
with 180 degree phase difference. The antenna impedance is then twice the port

impedance. Using a two-port measurement procedure, the impedance of an antenna

driven differentially can be obtained as follows.
Assume both sources are matched and a’s and b’s represent the voltage waves

vhen the circuit is excited in differential mode. The S-parameters are defined as done

n the Hewlett Packard literature[57]. For the differential (and matched) excitation,
ay = —a;

"hen

by = a1511 + 2512

b
— = 511~ S
a1
1d thus, the port impedance is
14511 =51
Z, = ———7,
P 1-Su+5s "

here Zy is 50 ohms. The antenna input impedance is then simply
Zin =27,

Figure 6.7 shows the measured input impedance of the four-wire antenna in the

echoic chamber. This input impedance has similar behavior to that measired
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Figure 6.6: Two port representation of the four-wire antenna in the anechoic cham-
ber.

from the antenna in free space, but there are also differences. The real part for the
antenna in the chamber is about the same magnitude (100 ohms), but varies more
with frequency. The major difference between the two antennas is that the chamber
antenna has an inductive reactive component rather than zero reactance for the free
space version. The difference could be attributed to a different reference plane in the
calibration of the network analyzer. For the free space version antenna the reference
plane was at the antenna base, whereas for the chamber antenna, the reference plane
was at the connector. Of course, the chamber antenna is expected to have somewhat
different impedance characteristics due to the interaction of the antenna with the

chamber walls.
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Figure 6.7: Measured input impedance of the four-wire antenna in the anechoic
chamber.

6.2.2 Field Measurements

The monostatic radar equation is written[98] as

where

P.  G*)o

P, ~ (4r)3R

P. : power returned from target

P, : power transmitted from antenna
G : antenna gain

A : wavelength

o : scattering cross section of target

R : distance from antenna to target.

The power density, S,, of the incident wave on the scatterer is given by

_ PG
" 4rR?

Ss

(6.1)
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By substituting-Eq.(G.Q) into Eq.(6.l) for G, we obtain

oAr , 4w P, P,
Pr=4_7r—1_3;53 or Sg—' 0_/\2

(6.3)

According to Eq.(6.3), we see that the incident power density on a scatterer is pro-
portional to the square root of the returned power, provided that the scatterer is
characterized by Radar Cross Section . Consequently, the field distribution can
be obtained by measuring the power returned from the target located at the corre-
sponding scanning point.

Figure 6.8 shows the block diagram of the system set-up used for the field mapping
measurements. A 0-180 degree hybrid coupler (0.1 MHz — 2000 MHz) was used to
obtain the differential mode signal for the wires. The two top wires were fed at 0
legree phase and the two bottom wires were fed at 180 degree phase. Connectors
vere made using equal lengths of semirigid coaxial cables(L,, L, in Figure 6.8) to
sreserve the signal balance. For the scatterer, a 12.875 inch diameter flat circular
>late was used. The measurements were made with the HP8753B Network Analyzer,
vith the sweep frequency range set from 50 MHz to 1550 MHz.

Figure 6.9 shows the time domain response of the whole system, obtained by
‘ourier transforming the measured frequency domain data. The first peak, which is
lenoted with “A” in the figure, is due to the reflection at the coupler and the second
veak, “B”, is due to the reflection at the feed of the wires. A peak between “B” and
‘C” seemed to be due to the fire extinguishers on the ceiling of the chamber. The
reaks denoted with “C” and “D” are due to the reflections at the backwall and the
pen ends of the wires, respectively. In this case, there was no loading applied at the
nd of the antenna wires. The wires were pulled through holes in the back wall, tied
o anchors, but not electrically connected. By loading even with a lumped resistance,

he last peak, “D”, can be eliminated. Figure 6.10 shows the time domain response of
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Network Analyzer Hewlett Packard, 8753B

Coupler Anzac, Model H-9
L1, L2 Lines adjusted for phase match
Wires Brass Tube (1 m), plus

Outer Conductor of RG-58/U
Target 12.875 inch Diameter Circular Plate

Figure 6.8: The block diagram of the four-wire system for field measurements.
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Figure 6.9: The time domain response of the four-wire system.
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1e system with a 120 ohm lumped loading resistance. The peak, “D”, of Figure 6.9
as disappeared in Figure 6.10. Nevertheless, there still exist significant reflections
t the feed of the antenna and the back wall of the chamber. The reflection at the
ack wall is due to the poor performance of the absorbers at low frequencies and is
ttributed to reflection of the space wave rather than the current on the wires.

Since the reflection from the target (12.875 inch diameter flat circular plate) is
uite small compared to the other reflections, a special procedure is required. For
1s, the response of background is subtracted from the response with the target
resent. Figure 6.11 shows the time domain response after subtraction. By sub-
acting, a 30 dB signal to noise ratio is achieved in the time domain as shown in
1e figure by marker 1. Since the noise at the feed and coupler was still high (the
rst peaks in Figure 6.11), it was removed by software gating. The gate span was
ve nanoseconds and the gate shape was normal. The five nanosecond gate span
as chosen to include the direct ray and the rays bounced off the walls. In the field
leasurements, the test area was scanned with the circular plate every 10 inches in
orizontal, vertical, and propagation directions (80 in. x 60 in. X 30 in.). Fig-
res 6.12 through 6.14 show the field variations in horizontal and vertical axes of
iree crosscuts that are shown in Figure 6.1. In each figure, the field intensities
‘e normalized to the field at the center of the plane. These figures show the field
istributions are uniform as expected. Within a 40 inch diameter circle in each plane,
1e field deviation is £ 0.5 dB for most frequencies.

In the propagation direction, the field intensities were measured along the center
ne of the chamber from 190 inches to 120 inches measured from the back wall. The
ttensities are normalized to that of 160 inches from the back wall and are shown

. Figure 6.15. As is shown in the figure, the fields tend to decrease as an inverse
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Figure 6.11: Subtracted signal by background in time domain.
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Figure 6.15: Measured field intensity in propagation direction (normalized with the
intensity at center point).

function of distance from feed. Figures 6.12 through 6.15 reveal that the field is
uniform within £ 1 dB in a 40 inch diameter sphere at the test area, the worst case

being at 1500 MHz, the highest frequency measured.

6.3 Backscattering Measurements

In this section, the four-wire system is used to demonstrate its application for
low frequency backscattering measurements. For the backscattering measurements,
the same system as used for field mapping measurements was used ( see Figure 6.8).
A closed 21 inch high, 7 inch diameter aluminum cylinder was used as a scatterer.
Measurements were made for various tilt angles as the tilted cylinder was rotated.
Figure 6.16 shows the geometry of the cylinder showing the tilt and the rotating
angles. The incident polarization was vertical. The measurements were performed

for the tilt angles of 0, 30, 45, 60, and 90 degrees, separately. The cylinder was



120

Tilt angle 4 z

\\,/"'

w
>

Rotation angle

Figure 6.16: A geometry of cylinder used in backscattering measurement.

mounted on a styrofoam pedestal that was then mounted on an azimuthal rotator.
The tilting of the cylinder was accomplished with styrofoam support wedges. For each
tilt angle, the cylinder was rotated around the z axis and measured every five degrees.
Calibration was performed with a 12 inch diameter sphere. The measured data were

transferred to the HP9836 computer and processed according to the formula

eyl back

Ooy = Su "Su a,m:: (6 4)

cyl — 1 .
St - Stk

vhere S,c"l‘l, Sback  and S:P% are the measured Sy; of the cylinder, the empty room and
he sphere, respectively. The aﬂ,‘,f is the theoretical radar cross section of the sphere
omputed from the Mie series[99).

Figure 6.17 shows the radar cross section (RCS) of the cylinder, which is not
ilted, as a function of rotating angle. In the figure, two frequencies are compared:
.3 GHz with dotted line and 1 GHz solid line. The cylinder is rotated from —90

egrees to 90 degrees and measured at every five degrees. The RCS of the cylinder
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Figure 6.17: RCS of 0 degree tilted cylinder at 0.3 and 1 GHz.

is about —2.5 dBsm(dB square meters) at 1 GHz with + 1 dB error and at 0.3 GHz,
the RCS is about —3 dBsm with less error. Theoretically, the result should be a
straight line. The error is attributed to the imperfect surface of the cylinder and
different surface shapes of the sides of the styrofoam supports.

Figures 6.18 through 6.21 show the radar cross section of the cylinder with 30. 45,
60, and 90 degrees tilt angle, respectively, at both 0.3 and 1 GHz. The cylinder was
rotated to 360 degrees and measured at every five degrees. When the cylinder is tilted
to 30 degrees, the RCS at 1 GHz is very sensitive to the rotating angle while the R('S
at 0.3 GHz is not. At 90 degrees tilt angle, the RCS of both frequencies have lobes
but with different widths and levels. As a matter of fact, the five degree rotating
step may be too large for the measurements, especially at 1 GHz. However. these

are sample measurements to demonstrate the usefulness of the four-wire antenna
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Figure 6.18: RCS of 30 degrees tilted cylinder at 0.3 and 1 GHz.

L0 GHz 0.3.0Hz.
0.0
-10.0
‘E
2
< —20.0
=
2
w0
-30.0
-40.0 ' ' .

0 90 180 270 360
ROTATING ANGLE [Deg]

Figure 6.19: RCS of 45 degrees tilted cylinder at 0.3 and 1 GHz.
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Figure 6.20: RCS of 60 degrees tilted cylinder at 0.3 and 1 GHz.
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Figure 6.21: RCS of 90 degree tilted cylinder at 0.3 and 1 GHz.
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6.4 Surface Currents Measurements

In this section, the surface current is measured again to demonstrate the appli-
cation of the four-wire system in the EMC measurements. In these measurements,

the broadband characteristic of the system is tested.

6.4.1 Initial Set up

Figure 6.22 shows the sketch of the tapered anechoic chamber with the four-wire
system instrumented for surface current measurements (S;; measurements). In this
set up, amplifiers are used to increase the signal to noise ratio. Some of the targets
used have resonances at several hundred megahertz and some below one hundred
meg#hertz. Figure 6.23 shows the block diagram of the feed and the instrumentation.
The four-wire antenna is fed by +V and —V voltages to obtain vertical polarization.
To obtain the differential mode, a broadband balun followed by a pair of matched
amplifiers was used. These amplifiers are rated one watt each in the frequency range
from 0.01 to 4.2 GHz. By using two amplifiers in the differential configuration,
two watts of power are obtained. The amplitudes and phases of the differential
configuration are carefully matched to within +1 dB tracking in amplitude and + 10
degrees in phase in the frequency range by selecting proper attenuators and coaxial
lines. Figure 6.24 shows the photograph of the balun and the two amplifiers at the
feed. The bundles of strings are the ends of ropes and strings used to raise the wires
to eliminated drooping.

In these measurements, a two millimeter diameter(D=2 mm) shielded loop sensor
[100],{101] is used to measure the surface currents. Figure 6.25 shows the loop sensor
that is constructed from 0.020 inch diameter semirigid cable. The voltage induced at

the gap of the loop sensor is delivered to the preamplifier through a coaxial line that
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“igure 6.22: The tapered anechoic chamber with four-wire system with equipment
set up for surface current measurements.
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Figure 6.23: Block diagram for the feed for a surface current measurement.
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Figure 6.24: Feed instrumentation. The strings are used to support and adjust the
height of the antenna wires.

center conductor

semirigid cable
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connector

b

Figure 6.25: A single turn loop sensor.
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is supported horizontally in the chamber. With the network analyzer set to sweep
from 0.3 MHz to 5000 MHz, the time domain response of an empty chamber is shown
in Figure 6.26. The first peak, denoted by “A”, is the direct signal. Peak “B” appears
due to a ray bounced by the chamber ceiling, and peak “C” is due to the reflection
at the rear wall. The antenna wires in this case were not terminated, but left in an
open circuit. We note that these peaks are over 20 dB below the direct signal and

can easily be gated out as was done in the field measurements (Section 6.2.2).

6.4.2 Measurements

For the surface current measurements, we performed measurement on two kinds
of objects: spheres and B-1B aircraft models. A sphere is the most obvious model to
start with to check the performance of the facility. For a sphere, the fields are well
known and easily computable from the Mie series[99]. Also, the sphere is commonly
used as the calibration target for most measurements. Aircraft models were selected
for the targets of the test fneasurements. Similar aircraft models had been used in
[100] and [101].

Figures 6.27 and 6.28 show the surface currents of the 7.96 centimeter and 15.24
centimeter diameter spheres, respectively. In the figures, the solid lines represent
the magnitudes of the current densities that are normalized to the incident magnetic
fields and the dotted lines show the phases. The theoretical curves (Mie series)
are shown in (a) and the measured curves in (b) of each figure for comparison. For
the measured curves, the 7.96 centimeter diameter sphere is used for calibration.
In Figure 6.27, the measured data show the repeatability and the accuracy of the
measurement since the measurement is calibrated with the same model at the same

location. The measured data contain significant noise in the frequency ranges below
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Figure 6.27: Theoretical and measured current on the 7.96 cm diameter sphere. Solid
line shows magnitude and dotted line phase.
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Figure 6.28: Theoretical and measured current on the 15.24 cm diameter sphere
Solid line shows magnitude and dotted line phase.
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50 MHz and above 4500 MHz. Figure 6.28 demonstrates the performance of the
four-wire facility for the use of the surface current measurement. Comparing to
the theoretical curve (upper graph), the measurement is accurate to + 0.2 dB in
amplitude and to five degrees in phase from 0.1 to 4.5 GHz.

In these measurements, the gate width, gate shape, and the bandwidth (or fre-
quency range) of the network analyzer affect the final results. For example, Fig-
ure 6.29 shows a measurement on the 15.24 cm diameter sphere measured from 0.3
MHz to 1 GHz and gated with the same gate width as in Figure 6.28. The results
are slightly different, which is not necessarily unexpected.

For the B-1B aircraft measurements, we acquired three models. Those mod-
els were 1/48 scale B-1B (Revell No.4900), 1/72 scale B-1B (Monogram No.5606).
and 1/72 scale Boeing 707 Intercontinental (Heller No.80305). These aircraft were
prepared in the usual way including spraying with conductive (silver) paint. The
measurement point was selected on top of the fuselage at 30.3 percent of the fuselage
length when measured from the tip of the radome. In all cases, the illumination was
top incidence, electric vector parallel to the fuselage, and the measured field compo-
nent was the axial surface current density normalized to the incident magnetic field.
Figure 6.30(a) shows the the B-1B models mounted on the styrofoam with the loop
Sensor.

Figures 6.31 and 6.32 show the measurements of the current on the 1/48 scale
and 1/72 scale models, respectively. In these figures, the upper graphs are for the
“wings-forward” and the lower for the “wings-swept” configurations. Note that the
frequency scales are not converted to full scale frequencies in order to help access
the frequency range performance of the four-wire antenna facility. The amplitude

curves in these figures show the classical half-wave resonance of 18 to 20 dB abuve
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(b) Measured current.
Figure 6.29: Theoretical and measured current on the 15.24 cm diameter sphere; 0.3

MHz to 1 GHz frequency range. Solid line shows magnitude and dotted
line phase.
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Figure 6.30: B-1B models. A loop sensor is located at 30.3 percentile fuselage posi-
tion from the radome of the B-1B.
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Figure 6.31: Surface current on 1/48 scale model of B-1B at 30.3 percentile fuselage
position; wings forward (top) and wings swept (bottom). Solid line
shows magnitude and dotted line phase.
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Figure 6.32: Surface current on 1/72 scale model of B-1B at 30.3 percentile fusclage
position; wings forward (top) and wings swept (bottom). Solid l:ne
shows magnitude and dotted line phase.
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Figure 6.33: Surface current on top of 1/72 scale model of B-1B at 30.3 fuselage
percentile position for the in-flight refueling mode. The tanker is the
KC-135 with same scale. Top incidence, axial fuselage current. Solid
line shows magnitude and dotted line phase.

the incident field. The amplitudes vary around 6 dB, which is the high frequency
optics approximation.

Figure 6.30(b) shows the 1/72 scale B-1B model for the in-flight refueling mode
configuration. The tanker is the KC-135 at 1/72 scale that is a modified version of the
Boeing 707 Intercontinental. The measurement point is chosen at the 30.3 percentile
fuselage position when measured from the tip of the radome. The measured surface
currents are shown in Figure 6.33. To show more detail in the resonance behavior,
the measurement was performed over a 0.3 MHz to 1 GHz range. As this figure
shows, the main resonant peak is at about 80 MHz, corresponding to 1.1 MHz full
scale frequency. It is also observed that the peak here is about 8 dB higher than that

of the individual cases shown in Figures 6.31 and 6.32.



CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, a four-wire antenna was introduced for use in EMC measurements.
The four-wire antenna consists of two V-antennas that also form V geometry with
each other. The antenna was designed to produce a uniform field in the test area
over a wide frequency range. Since an anechoic chamber is a widely used facility in
EMC measurements, the antenna was installed and tested in the anechoic chamber.

The antenna was first analyzed in free space using the Numerical Electromagnetic
Code(NEC). In order to remove the reflections at the end of the wires, an appropriate
loading resistance distribution was determined. The obtained resistance distribution,
which has the form of a square function, is effective over a broad frequency range from
50 MHz to 1000 MHZ. The free space analysis showed that the antenna produced a
+ 1 dB uniform field in a two meter diameter spherical test area with the symmetric
arrangement of the wires. The computed input impedances and field distributions
indicate that the antenna is usable in the frequency range from 50 MHz to 1000 MHz
and possibly to 5000 MHz since the computations were limited to below 1000 MHz.

Since the antenna was installed in the anechoic chamber, the effects of absorbers
were also studied. When frequencies are high, typically above 500 MHz, the ab-

sorbers show good performance and the antenna can be considered as being in free
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space. However, below 500 MHz, and especially below frequencies where the ab-
sorbers are ineffective, the antenna performance will be affected by the chamber. To
consider the effects of the chamber walls, which are covered by the absorbers, modi-
fied volume-surface integral equations(modified VSIEs) were developed. By applying
the modified VSIEs, the chamber walls with wedge type absorbers were analyzed.
From the results of the analysis, equivalent lossy layers were obtained. The equiv-
alent layers have compatible reflectivities with those of wedge absorbers. With the
equivalent layers, the anechoic chamber with the four-wire antenna was analyzed
using the finite element technique. In the finite element analysis, the fields were
confirmed to be uniform.

The four-wire antenna was constructed and installed in the anechoic chamber
at the University of Michigan Radiation Laboratory. The field distributions were
measured and are within + 1 dB field deviation in a two meter diameter spherical
test area. The input impedances of the antenna were also measured in the frequency
range from 3 MHz to 6000 MHz. The advantage of the four-wire antenna is the
extremely wide bandwidth capability. Whereas typically horn antennas have a 2:1
bandwidth and ridge-horns a 10:1, or even 20:1, bandwidth, the four-wire structure
can easily achieve 100:1 bandwidth such as 50 MHz to 5000 MHz.

To show the potential of the four-wire system for EMI/EMC applications, sample
measurements were performed and presented. These include induced surface field
measurements on spheres and model aircraft and backscattering measurements from
a cylinder. In surface field measurements a + 0.2 dB measurement accuracy is
demonstrated on the measurements made on spheres. The results of backscattering
measurements are not as impressive (£ 1 dB), but it must be emphasized that such

measurements can be made at frequencies below 100 MHz, a frequency region that
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otherwise could not be measured in an anechoic chamber.

There are two topics that need further study to bring the four-wire designs closer
to practical implementation. One is the development of a practical and effective
matching of the wire at the back wall and the other is a study of the interaction
between the device under test and the antenna wires. In the case of resistive loading,
some theoretical studies were presented in section 2.2, but the such design would be
impractical to implement. In hindsight, the appropriate loading would be a lumped
resistor located at the end of each wire and embedded in an absorbing material.

Finally, because of the presence of antenna wires along the walls of the chamber,
questions still exist concerning the level of interaction between the model and the
wires. This interaction could be studied in two ways (or in conjunction): (1) by
theoretically /numerically analyzing the entire chamber with the test model present,
and/or (2) by making careful backscattering or surface field measurements on objects

for which the results are known and then analyzing the data.



BIBLIOGRAPHY

141



142

BIBLIOGRAPHY

(1] P. L. Rustan,“ Description of an aircraft lightening and simulated nuclear elec-
tromagnetic pulse (NEMP) threat based on experimental data,” IEEE Trans.
Electromagn. Compat., vol. EMC-29, pp. 49-63, Feb., 1987.

[2] C. E. Baum, F. L. Breen and G. D. Pitts, ” The measurements of lighten-
ing environmental parameters related to interaction with electronic systems,”
IEEE Trans. Electromagn. Compat., vol. EMC-24, pp. 123-136, May 1982.

[3] M. A. Uman and P. E. Krider, “ A review of natural lightening: Experimental
data and modeling,” IEEE Trans. Electromagn. Compat. vol. EMC-24, pp.
79-112, May 1982.

[4] N. C. Gerson and W. H. Gossard, “Sweepers, communication and solar activ-

ity,” IEEE Trans. Electromagn. Compat., vol. EMC-5, pp. 86-97, Mar. 1963.

[5] A. U. H. Sheikh and J. D. Parsons, “Statistics of electromagnetic noise due to
high-voltage power lines,” IEEE Trans. Electromagn. Compat., vol. EMC-23,
pp. 412-419, Nov. 1981.

[6] T. Nakai and Z. Kawasaki, “Automotive noise from a motorway:Part [, Mea-
surement,” IEEE Trans. Electromagn. Compat. vol. EMC-26 pp. 169-174, Nov.
1984.

[7] R. Shepherd, “Measurements of amplitude probability distributions and power
of automobile ignition noise at high frequency,” IEEE Trans. Veh. Technol.,
vol. VT-23, pp. 72-83, Aug. 1974.

[8] T. Nakai and Z. 1. Kawasaki, “APD’s and CRD’s for noise from bullet trains
in Japan,” in Proc. IEEE Int. Symp. EMC, Tokyo, Japan, pp. 250-255, Oct.
1984.

[9] H. A. Turner and G. H. Hagn, “Measurement of radiation from selected TD-2
microwave relay stations,” IEEE Trans. Electromagn. Compat., vol. EMC-7,
pp. 104-111, June 1965.

[10] M. Kanda, “ Time and amplitude statistics for electromagnetic noise in mines.”
IEEE Trans. Electromagn. Compat. vol. EMC-17, pp122-129, Aug. 1975.



143

(11] H. H. Hoffman and D. C. Cox, “ Attenuation of 900 MHz radio waves prop-
agating into a metal building,” IEEE Trans. Antennas Propagat., vol AP-30,
pp 808-811, July 1982.

[12] D. C. Cox, R. R. Murray, and A. W. Norris, “ Measurement of 800 MHz radio
transmission into buildings with metallic walls,” Bell Syst. Tech. J., vol. 62,
no. 9, pp. 2695-2717, Nov. 1984.

(13] S. G. Lutz and D. E. Miller, “ Interference problems of co-channel communi-
cation satellite system,” IEEE Trans. Electromagn. Compat., vol. EMC-4, pp.
49-57, Oct. 1962.

[14] M. Haskard, M. Miller, A. Johnson, and P. Marconi, “ Radio noise measure-
ments in an urban environment,” J. Elec. Electron Eng. Australia, vol. 2, no.
2, pp. 94-102, June 1982.

[15] J. Parsons and A. Sheikh, “ Statistical characterization of VHF man-made
radio noise,” Radio Elec. Eng., vol. 53, no. 3, pp 99-106, Mar. 1983.

[16) P. L. Rustan, “The lightning threat to aerospace vehicles,” AIAA J. Aircraft,
vol. 23, no. 1, pp. 62-67, Jan. 1986.

(17] J. P. Muccioli and S. Awad, “ The electromagnetic environment of an auto-
mobile electronic system,” IEEE Trans. Electromagn. Compat., vol. EMC-29,
pp. 245-251, Aug. 1987.

(18] R. E. Richardson, V. G. Puglielli, and R. A. Amadori, “ Microwave interference
effect in bipolar transistors,” IEEE Trans. Electromagn. Compat., vol. EMC-
17, pp 216-219, Nov. 1975.

(19] J. J. Whalen, J. G. Tront, C. E. Larson, and J. M. Roe, “ Computer aided
analysis of RFI effects in digital integrated circuitts,” IEEE Trans. EMC, vol.
EMC-21, pp. 291-297, Nov. 1979.

[20] J. G. Tront, “ Predicting URF upset of MOSFET digital IC’s,” IEEE Trans.
Electromagn. Compat., vol EMC-27, pp. 64-69, May 1985.

[21] S. Gutsche, “ A spectrum prediction technique for AM puse of arbitrary shape,”
IEEE Trans. Electromagn. Compat., vol. EMC-13, pp.64-69, May, 1971.

[22] B. Audone, “ Graphical harmonic analysis,” IEEE Trans. Electromagn. Com-
pat., vol. EMC-15, pp.72-74, May 1973.

[23] C. Y. Wu and D. K. Cheng, “ A method for symmetrizing generalized
impedance matrices,” IEEE Trans. Electromagn. Compat., vol. EMC-19, pp.
81 -88, May 1977.

[24] T.E. Baldwin, Jr., and G. T. Capraro, “ Intrasystem Electromagnetic Compat-
ibility Program (IEMCAP),” IEEE Trans. Electromagn. Compat., vol. EMC-
22, pp. 224-228, Nov. 1980.



144

[25] J. W. Ashforth, A broadband, multichannel transient monitoring system
for improved interference control,” IEEE Trans. Electromagn. Compat., vol.
EMC-T7, pp. 55-63, May 1965.

[26] M. Kanda and F. X. Ries, “ A broad-band isotropic real-time electric-field
sensor (BIRES) using resistively loaded dipoles,” IEEE Trans. Electromagn.
Compat., vol. EMC-23, pp.122-132, Aug. 1981.

[27] C. E. Baum, “Winding topology for transformers,” Air Force Weapons Lab.
Measurement Notes, Note 31, Kirtland AFB, NM, Oct. 1986.

[28] W. K. Roberts, “ A new wideband balun,” Proc. IRE, pp. 1028-1031, Dec.
1957.

[29] V. H. Rumsey, Frequency Independent Antennas. New York: Academic Press,
1966.

[30] C. E. Smith, Log Periodic Antenna Design Handbook. Cleveland, OH: Smith
Electronics, 1966.

[31] H. Jasik, Antenna Engineering Handbook. New York: McGraw-Hill, 1961.

[32] M. Kanda, “ The effects of resistive loading of "TEM” horns,” IEEE Trans.
Electromagn. Compat., vol. EMC-24, pp. 245-255, May, 1982.

[33] Constantine A. Balanis, Antenna Theory, New York: Harper & Row Publish-
ers, Inc., 1982.

[34] H.F.Harmuth, “ Antennas for nonsinusoidal waves. I. Radiators,” IEEE Trans.
Electromagn. Compat., vol. EMC-25, pp. 13-24, Feb. 1983.

[35] C. W. Gillard and R. E. Franks,  Frequency independent antennas - several
new and undeveloped ideas,” The Microwave Journal, pp. 67-72, Feb. 1961.

[36] K. L. Walton and V. C. Sundberg, “ Broadband rigid horn design,” the mi-
crowave journal, pp. 96-101, Mar. 1964.

[37) M. Kanda and L. D. Driver, “ An isotropic electric-field probe with tapered
resistive dipoles for braod-band use, 100 KHz to 18 GHz,” IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-35, Feb. 1987.

[38] D. A. Weston, Electromagnetic Compatibility: principles and application, Mar-
cel Decker, Inc., 1991.

[39] C. E. Baum, “Impedances and field distributions for symetrical two wire and
four wire transmission line simulators,” Sensor and Simulation Note 27, Octo-
ber 1966.

[40] J. M. Jarem, “Electromagnetic field analysis of a four-wire anechoic chamber,”
IEEE Trans. Antennas and Propagat., vol. 38, pp. 1835-1842, Nov. 1990.



145

(41] J. M. Jarem, “TEM wave.propagation in a parallel, four-wire anechoic chamber
enclosure,” Proc. 21st South Eastern Symp. Syst. Theory, Mar. 26-28, pp. 476-
480, 1989.

[42] E. N. Clouston, P. A. Langsford, and S. Evans, “ Measurement of anechoic
chamber reflections by time-domain technique,” Proc. IEE, vol. 135, Pt. H, no.
2, Apr. 1988.

[43] B. T. Dewitt and W. D. Burnside, “ Electromagnetic scattering by pyramidal
and wedge absorber,” IEEE Trans Antennas and Propagat., vol. 36, pp. 971-
984, July 1988.

[44] G.J. Burke and A. J. Pogio, “Numerical Electromagnetics Code,” Naval Ocean
Systems Center, 1981.

[45] H. E. Foster, Transient Radiation from Resistively Loaded Transmission Lines
and Thin Biconical Antennas, Ph.D. Dissertation. Univ. of Michigan, 1973.

[46] B. T. Dewitt and W. D. Burnside, “ Electromagnetic scattering by pyramidal
and wedge absorber,” IEEE Trans. Antennas Propagat., vol. AP-36, pp. 971-
984, July 1988.

[47] J. L. Yen, “ Multiple scattering and wave propagation in periodic structures,”
IRE Trans. Antennas Propagat., vol. AP-10, pp. 769-775, Nov. 1962.

[48] S. L. Chuang, J. A. Kong, “ Wave scattering and guidance by dielectric waveg-
uides with periodic surfaces,” J. Opt. Soc. Am., vol. 73, pp. 669-679, 1983.

[49] K. Sarabandi, “ Simulation of a periodic dielectric corrugation with an equiv-
alent anisotropic layer,” Int. J. of Infrared and Millimeter Waves, vol. 11, pp.
1303-1321, Nov. 1990.

[50] K. Uchida, T. Noda, T. Matsunaga, “ Spectral domain analysis of electromag-
netic wave scattering by an infinite plane metallic grating,” IEEE Trans. on
Antennas Propagat., vol. AP-35, pp. 46-52, Jan. 1987.

[51] R. C. Hall, R. Mittra, and K. M. Mitzner, “ Scattering from finite thickness
resistive strip gratings,” IEEE Trans. Antennas Propagat., vol. AP-36, pp.
504-510, Apr. 1988.

[52] T. C. Tong, Scattering of electromganetic waves by a periodic surface with
arbitrary profile, Ph.D. Dissertation. Univ. of Michigan, 1972.

(53] J. M. Jin, V. V. Liepa, and C. T. Tai, “ A volume-surface integral equation for
electromagnetic scattering by inhomogeneous cylinders,” J. of EM Waves and
Appl., vol. 2, pp. 573-588, 1988.

[54] C. C. Su, “A surface integral equations method for homogeneous optical fibers
and coupled image 1Lines of arbitrary cross sections,” IEEE Trans. Microwave

Theory Tech., vol. MTT-33, pp. 1114-1119, Nov. 1985.



146

[55] J.M. Jin, V. V. Liepa, “Simple moment method program for computing scat-
tering from complex cylindrical obstacles,” Proc. IEE, vol. 136, Pt. H, No. 4,
Aug. 1989.

[56] C. Cheon and V. Liepa, “Dielectric constant measurement of microwave ab-
sorber for four-wire system,” Radiation Lab. Report 027631-1-F, EECS, Univ.
of Michigan, July 1990.

[57) Hewlett Packard, “Measuring Dielectric Constant with the HP 8510 Network
Analyzer,” Production Note No. 8510-3., 1985.

[58] Johnson, W. C.,“Transmission Lines and Networks,” New York: McGraw-Hill
Book Co., 1950.

[59] R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York:
McGraw-Hill Book Company, pp.373, 1961.

[60] Ulaby, F. T., T. Bengal, J. East, M.C. Dobson, and J.Garvin, “Microwave
Dielectric Spectrum of Rocks,” Radiation Lab. Report 023817-T, EECS, Univ.
of Michigan, March, 1988.

[61] W. P. R. King, The Theory of Linear Antennas, Harvard University Press,
1956.

[62] L. M. Brekhovskikh, Waves in Layered Media, Academic Press, 1960.

[63] J. R. Wait, Electromagnetic Waves in Stratified Media, A Pergamon Press
Book, 1962.

[64] J. A. Kong, “Electromagnetic fields due to dipole antennas over stratified
anisotropic media,” Geophys., vol. 37, pp. 985-996, Oct. 1972.

[65] E. K. Miller, A. J. Pogio, G. J. Burke, and E. S. Selden, “Analysis of wire an-
tennas in the presence of a conducting half-space. Part I: The vertical antenna
in free space,” Can. J. Phys., vol. 50, pp. 879-888, 1972.

[66] E. K. Miller, “Analysis of wire antennas in the presence of a conducting half-

space. Part II: The horizontal antenna in free space,” Can. J. Phys., vol. 30,
pp. 2614-2627, 1972.

[67) A. Karwowski and K. A. Michalski, “A comparative numerical study of several
techniques for modeling a horizontal wire antenna over a lossy half-space.”

Radio Science, vol. 22, pp. 922-928, Nov. 1987.

[68] P. Parhami, Y. Rahmat-samii and R. Mittra,“An efficient approach for eval
uating Sommerfeld integrals encountered in the problem of a current elcrient
radiation over lossy ground,” IEEE Trans. Antennas Propagat., vol. AP ’~.

pp. 100-104, 1980.



147

[69] K. A. Michalski, “On the efficient evaluation of integrals arising in the Som-
merfeld halfspace problem,” Proc. IEE, vol. 132, Pt. H, pp. 312-318, Aug.
1985.

[70] K. A. Michalski, C. E. Smith, and E. M. Butler, “Analysis of a horizontal
two-element antenna array above a dielectric halfspace,” Proc. IEE, vol. 132,

Pt. H, pp. 335-338, Aug. 1985.

[71] L. Tsang, R. Brown, J. A. Kong, and G. Simmons, “Numerical evaluation

of electromagnetic fields due to dipole antennas in the presence of stratified
media,” J. of Geophys. Res., vol. 79, pp. 2077-2080, May 1974.

[72] A. Mohsen, “On the evaluation of Sommerfeld integrals,” Proc. IEE, vol. 129,
Pt. H, pp. 177-182, Aug. 1982.

[73] P.B. Katehi, N. G. Alexopoulos, “Real axis integration of Sommerfeld integrals
with applications to printed circuit antennas,” J. Math. Phys., vol. 24, pp. 527-
533, Mar. 1983.

(74] 1. V. Lindell and E. Alanen, “Exact image theory for the Sommerfeld half-space
problem, Part I: Vertical magnetic dipole,” IEEE Trans. Antennas Propagat.,
vol. AP-32, pp. 126-133, Feb. 1984.

[75] 1. V. Lindell and E. Alanen, “Exact image theory for the Sommerfeld half-space
problem, Part II: Horizontal electric dipole,” IEEE Trans. Antennas Propagat.,
vol. AP-32, pp. 841-847, Aug. 1984.

[76] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley
& Sons, Inc., 1981.

[77] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Application of the fast Fourier
transform to computation of Fourier integrals, Fourier series, and convolution
integrals,” IEEE Trans. Audio Electroaccoustics, vol. 15, 1967.

[78] 1. S. Gradshteyn and I. W. Ryzhik, Tables of Integrals Series and Products,
pp. 707, Academic Press, 1965.

[79] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, 1986.

[80] C. Cheon and V. Liepa, “ Analysis and design of broadband antenna for ane-
choic chamber illumination,” Nuclear EMP Meeting, Digest pp. 48, May 1988.

[81] V. Liepa and C. Cheon, “ Analysis and design of 4-wire antenna for anechoic
chamber excitation,” IEEE AP-S/URSI Symp, San Jose, CA, June 1989.

[82] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers,
Cambridge University Press, 1983.



148

[83] A. J. Davies, The Finite Element Method: A First Approach, New York:
Oxford University Press, 1980.

[84] O. C. Zienkiewicz, The Finite Element Method, London: McGraw-Hill Book
Co., 1977.

[85] O. C. Zienkiewich and K. Morgan, Finite Element and Approximation, New
York: John Wiley & Sons, 1982.

[86] E. Hinton and D. R. J. Owen, Finite Element Programming, Academic Press,
1977.

[87] Z.J. Csendes, P. Silvester, “ Numerical solution of dielectric loaded waveguides:
I-finite-element analysis,” IEEE Trans. Microwave Theory Tech., vol. MTT-18,
pp. 1124-1131, Dec. 1970.

[88] B. M. A. Rahman and J. B. Davies, “ Finite-element analysis of optical and
microwave waveguide problems,” IEEE Trans. Microwave Theory Tech., vol.
MTT-32, pp. 20-28, Jan. 1984.

[89] C. C. Su, “ A combined method for dielectric waveguides using the finite-

element technique and the surface integral equations method,” IEEE Trans.
Microwave Theory Tech., vol. MTT-34, pp. 1140-1146, Nov. 1986.

[90] J.-M. Jin and J. L. Volakis, “ A finite element-boundary integral formulation

for scattering by three-dimensional cavity-backed apertures,” IEEE Trans. An-
tennas Propagat., vol. AP-39, pp. 97-104, Jan. 1991.

[91] B. M. A. Rahman and J. B. Davis, “ Penalty function improvement of waveg-
uide solution by finite elements,” IEEE Trans. Microwave Theory Tech., vol.
MTT- 32, pp922-928, August 1984.

[92] A. Konrad, “ Vector variational formulation of electromagnetic fields in
anisotropic media,” IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.
553-559, Sep. 1976.

[93] C. Cheon and V. Liepa, “Full wave analysis of infinitely periodic lossy wedges,”
IEEE AP-S/URSI Symp., May 6-10, Dallas, TX, 1990.

[94] B. M. Irons, “ A frontal solution program,” Int. J. Num. Meth. Eng., vol. 2,
pp. 5-32, 1970.

[95] P. Hood, “ A frontal solution program for unsymmetric matrices,” Int. J. Num.
Meth. Eng., vol. 10, pp. 379-400, 1976.

[96] V. Liepa, C. Cheon and N. Fang, “ Performance of four wire antenna in anechoic
chamber,” Nuclear EMP Meeting, Albuquerque, NM, May 1990.



149

[97] C. Cheon and V. Liepa,  Analysis and design of broadband antenna for ane-
choic chamber illumination,” The University of Michigan, Radiation Labora-
tory Report #026589 1-F, August 1, 1989.

[98] F.T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Volume
I1, Addison-Wesley Publishing Co., 1982.

[99] J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co., New-York,
1941.

[100] V. V. Liepa, “ Scale model measurements of the B-52,” AFWL Interaction
Application Memo 36, Kirtland AFB, NM, Dec. 1980.

[101] V. V. Liepa, “Surface field measurements on scale model EC-135 aircraft for
VPD and SRF data interpretation,” The University of Michigan, Radiation
Laboratory Report #015414 1-T, July 1977.



