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Abstract

Scattering from variable planar resistive and impedance sheets with one dimen-
sional variations is studied in this report. An approximate solution is obtained us-
ing a perturbation technique in the Fourier domain. It is shown that the solution
for a variable resistive sheet with resistivity R(z) is identical to the solution for
an impedance surface with impedance n(z) by replacing R(z) with n(z)/2. The
solution for the induced current on the sheet in terms of the resistivity (impedance)
function is given in a recursive form. The closed form nature of the solution enables
us to study the statistical behavior of the scattered field when the perturbation
function is a random process.

The solutions based on the perturbation technique are compared with those
obtained by other methods such as the moment method for periodic resistive and
impedance sheets (Appendix A), numerical solution of the integral equation for
scattering from a dielectric object above a resistive sheet (Appendix B), and GTD

for the problem of impedance insert.
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1 Introduction

In view of the difficulties associated with obtaining exact solutions of Maxwell’s
equations under given initial and boundary conditions, approximate solutions are
often sought instead. A common approximation technique is perturbation theory
which is useful primarily when the problem under consideration closely resembles
one whose exact solution is known. Perturbational methods have been successfully
used for many problems such as cavity and waveguide problems [e.g. Stephen et al
1967, Eftimiu and Huddleston 1983], scattering from stratified media [Bates and
Wall 1976], and scattering from rough metallic surfaces [Rice 1951].

In this paper we will employ a perturbation method to solve the scattering
problem of variable resistive and impedance sheets. Study of this problem is mo-
tivated by number of important applications. For example, a thin dielectric slab
whose thickness and dielectric constant are non-uniform provides a model for a
vegetation leaf, and can be approximated by a resistive sheet with variable resis-
tivity. The variable resistivity R(z) is an explicit function of the thickness and
material properties of the slab. Another variable resistive sheet of concern is a
periodic resistive sheet, with application to spatial filters and polarizers. Charac-
terization of the scattering behavior of a variable impedance sheet is also a matter
of increasing concern since dielectric coated perfect conductors can be modeled by
a surface impedance, and a variation of the material property of a terrain surface
can be represented by a variable impedance surface.

The approximate solution is obtained using a perturbation technique in the



Fourier domain. The solution for the induced current on the sheet in terms of
the resistivity function is given in a recursive form. The closed form nature of the
solution enables us to study the statistical behavior of the scattered field when
the resistivity function is a random process. The solution for the current on an
impedance sheet with impedance 7(z) is identical with that of the resistive sheet
and can be obtained by replacing R(z) with n(z)/2.

The solution to any desired order for a periodic perturbation is obtained an-
alytically and the results are compared with an exact solution obtained using a
moment method which is developed in Appendix A. The technique is also used
to characterize the scattering behavior of a thin dielectric slab with a hump and
the solution is compared to that obtained using the moment method in conjunc-
tion with the exact image theory for resistive sheets developed in Appendix B.
To demonstrate the ability of this perturbation technique to handle sharp varia-
tions in the spatial domain, the problem of scattering from an impedance insert

is considered and compared with a uniform GTD solution [Herman and Volakis

1988).

2 Derivation of Integral Equation for Resistive
Sheet

The resistive sheet is simply an electric current sheet modelling a thin dielectric
layer capable of supporting electric currents. The electric current on the sheet

is proportional to the tangential electric field and the proportionality constant is



denoted by a complex resistivity R given by

12
=D .
Here, Z, and kq are the characteristic impedance and propagation constant, re-
spectively, of free space. Also 7 and e = € +ie are the thickness and the dielectric
constant of the dielectric layer, respectively, and for convenience a time factor =%
has been assumed and suppressed.

The electromagnetic boundary conditions that govern the fields on the resistive

sheet are given by [Senior et al 1987]

[fi x E]t =0 (2)
ix(ixE)=-RJ (3)
J=[hxH|t (4)

where i is the unit vector normal to the top (+) side of the sheet, J is the induced
current on the sheet, and [ ] denotes the discontinuity across the sheet.
Consider a planar resistive sheet occupying the zy plane and having a resistivity
which is only a function of z. Suppose a plane wave is incident on the sheet at an
angle ¢o measured from the normal. The geometry of the problem is depicted in
Fig. 1. For the E polarization case where the electric field is perpendicular to the

plane of incidence, we assume

Ei — }A,eiko (sin oz —cos ¢g z) (5)

H' = Yj(cos ¢oX + sin ¢oi)ekolsindoz—cosdoz) (6)



Variable Resistive Sheet  R(x)

Figure 1: Geometry of the scattering problem for a variable resistive sheet.

The scattered field due to the induced current is

E*(7) = —iwpo | 3(p) - (5, p)ds (7)

where -f_(p*, ;? ) is the two-dimensional dyadic Green’s function and is given by

- -
y 4

= o = Vv - 1
D7) = =T + S H ko | 5= ') (8)

Here, H(()l) is the Hankel function of first kind and zeroth-order. The induced
current in this case has only a y component, and from (7) the scattered field is

found to be

!

Jy(@\H ko | 5= ¢ |)da (9)

JkoZo [t
E'() = -3 [

—00

The induced current and the total electric field given by
E'=E +E° (10)

must satisfy the boundary condition given by (3). Noting that i = Z and sub-

stituting for E' and E* from (5) and (9) the following integral equation for the

4



induced current can be obtained:

. k‘ Z +00 f ] '
R(z)J,(z) = e*osindos _ "4" et VHP (ko |z -2 )dz’ (11)

For the H-polarization case in which the magnetic field vector is perpendicular

to the plane of incidence, we have
E = —(cos goX + sin ¢02)eik° (sin doz—cos o) (12)

Hz' — yYOeiko(sinqSoz—cosqﬁoz). (13)

In this case the induced current has only a £ component and from (7) the scattered

electric field components are

Ey(z,2) = -

k"f" +°°Jz(a:')(1+ kl 83 VH O (kor/(z — /)2 + 22)dz (14)

_E;(gc,z):-é /_ Jo(z )aaa (ko[ (z — 2')? + 22)dz’ (15)

The scattered magnetic field is in the y direction and can be obtained from

1 +m ] a !
Hyfa,2) =~ / Jo(a) - HS (ko (o = ') 4 22)da (16)

By obtaining the total field at the surface of the sheet and applying the bound-
ary condition (3) the following integral equation for the induced current in the H

polarization case can be derived:

i koZy [too 1 92 by
R(:c)]x(x)=—cos¢oe’k°sm¢°x—o—49 C )(1+ﬁﬁ)H((,l)(k0|:c—w )dz'.
(17)



3 Derivation of Integral Equation for Impedance
Sheet

Consider an impedance surface occupying the zy plane. Suppose the impedance
is a function only of the variable z and is denoted by n(z). Further assume that
this surface is illuminated by a plane wave at an angle ¢o as depicted in Fig. 1.

The boundary condition on the surface is

fi x (A x E) = —q(2) x H (18)

The field scattered from this surface can be obtained by replacing the total tan-
gential magnetic field on the surface by an electric current over a perfect magnetic
conductor using the field equivalence principle [Harrington 1961]. The equivalent
electric current is

J=hxH (19)

and by invoking image theory, the magnetic wall can be removed by doubling the
electric current.

The incident electric and magnetic field in the E polarization case are given
by (5) and (6) respectively. In this case the total tangential magnetic field on
the surface is in the z direction which implies that the electric current is in the y

direction. The scattered electric field can be obtained from expression (9) and is

koZy [t ' '
S [ P G~ . (@)

E(z,z) =

Y

The total electric field on the surface is composed of the incident field, the field

6



reflected from the magnetic wall, and the scattered field. From (18) and (19) we
have

[y + E} + E;).=0 = n(2)J,(2) (21)

which leads to the following integral equation for the electric current:

/

o +o0 ' '
1) 7 (z) = hosindor _ FoZo [ 1 oy O o~ o' e

2 4 —oo Yy (22)

When the incident field is H-polarized the total tangential magnetic field is
in the y direction which implies that the equivalent electric current flows in the
z direction. The scattered electric field can be obtained from (14) and (15) by

doubling the electric current. Also, from the boundary condition (17), we have
[E: + E; + EZ)oz0 = n(2)Jo(2). (23)

Upon substituting the appropriate quantities from equations (12) and (14) into

the above equation the following integral equation for the electric current can be

obtained:
I . . k Z +o0 ' ]. 82 ' !
%—)Jx(x) = — cos goe’o Sindoz _ 04 0/_00 Jo(z )(1+k—gﬁ)Hél)(k0|x—x )dz'.

(24)

The scattered magnetic field in this case is

]. +OO ] a !
Hy(s,2) = —5- / Jo(a') B (ko (& — 2')? + 22)de” (25)

Note that the integral equations obtained for the impedance sheet are identical to
those obtained for the resistive sheet if R(z) is replaced by n(z)/2. Therefore all
the analysis that will be carried out for the resistive sheet can be applied to the

corresponding impedance sheet.



4 Perturbation Solution

The integral equations for the induced current on the resistive sheet are Fredholm
integral equations of the second type, and for an arbitrary resistivity function
R(z) there is no known technique for finding their exact solution. Here we obtain
an approximate iterative solution to these integral equations using a perturbation
technique and Fourier transform. For the sake of simplicity let us represent the

integral equations (11) and (17) by the following equation:

R(2)J(z) = aeosintos _ ’“O—fB(J r 9)(2) (26)

where g(z) is the kernel of the integral equation and (J * g)(z) denotes the convo-

lution integral. The kernel function ¢(z) and constant a are

HP (ko |2 )) E-polarization
9(z) = o (27)
(1+ ég%;)Hé )(ko | z|) H-polarization
1 E-polarization
a= (28)

—cos @9 H-polarization

By taking the Fourier transform of (26), the integral equation in the Fourier domain

becomes

%(R + J)(a) = 21aé(a — kosin ¢o) — ’“"f“ J(a)j(a) (29)

where the Fourier transform of functions are denoted by a tilda and é is the

Dirac delta function. The Fourier transform of the kernel function for E- and



H-polarization cases respectively are given by

i0) = ——— (30)

mw=%¢%—w (31)

where the branch of square root is defined such that «/—1 = . When the resistivity

of the sheet is constant, an exact solution to the integral equation (26) can be

obtained, and if R(z) = Ry, then

R(e) = 27 Roé(a). (32)

The transform of the current can be obtained from (29) and is given by

. _ a[27r5(a — kosin ¢0)]
) = R+ BBga)

(33)

and the induced current in the spatial domain for E and H polarization respectively

are
n 2Y0 Cos ¢0 iko sin do
e — 1ko sin oz 4
0( ) y1+2ROYOCOS¢Oe Y (3 )
—2Y. .
Th(z) = % X0C05 00 _ ikpsingos (35)

2RoYo + cos ¢o
which are identical to the result obtained from a plane wave reflection coefficient

calculation [Senior et al 1987).

If the resistivity has a small variation as a function of position, let

R(z) = Ro(1 4 Ar(z)) (36)



where r(z) is the perturbation function assuming | r(z) |< 1 and A is a complex

constant (| A |<1). The induced current on the sheet is assumed to be

J(z) = +i:an(ars)A”, (37)

where J,,(z) denotes the n® component of the induced current. Obviously, if A = 0

then J(z) = Jo(z). From (36) and (37)

~

R(a) =27 Ryb6(a) + Rof(a)A (38)
Je) = 3 Jufe)ar (39)

and when substituted into (29), the terms given by (33) can be cancelled, and the

remaining terms can be written as

o0 ~ 1 ~ k()Zg . ~
S {RalJa(@) + 5-7(@) ¢ Jos(e)] 4 (@ ()AT =0 (10

Since this must hold for any value of A, all of the coefficients must be zero. Thus
for E polarization

-5 .

Jr(a) = ~2YoRo- —— (P i) (), (41)
1+ 2YyRo, /1 — %07 4

and for H polarization we have

1 () ) (42)

Ji(@) = —2Y,R, - -
9YoRo + \/1 —g o

The above recursive relations along with the expressions for Jy() given in (34)
and (35) can be used to derive the induced currents to any desired order of approx-

imation. The first-order solution can be obtained very easily and the transforms

10



of the first component of the induced current for E and H polarizations are

) ny 1-%
Je(a) = o facosdo L Ha—kosing)  (43)
14+ 2YOR0 Ccos ¢0 14 2YOR0\/1 _ %fr
. 2
Ji(a) = 2o o5 b L Ha—ksind) (44

cos ¢0 + 2YOR0 ZYZ)RO +./1- %g_
The complexity of obtaining high-order solutions depends on the perturbation

function r(z).

5 Periodic Resistivity

A simple case where it is possible to determine the n* components of the
induced currents is a periodic resistivity with period L. In this case we can write
+00 orm
ri@)= Y, cme'' L7, (45)
m=-—00

and the Fourier transform of the perturbation function is

oo 2rm
Fla) =2r ; cmb(a — —L—) (46)

For the E polarization case the transform of the n** component of the induced

current can be obtained from (41) and (46) and is

1 T - 2
= Y endila==m) (D)
2YoRo +/1 - §7 m=o

Jé(@) = —2Y,R, -

11



By employing the expression (33) for Jo(a)and after some algebraic manipulation,

a closed form for J,(a) can be obtained:

e _  =2YoRg cos g (—2Yo Ro)"
Jn(a) - 142Yy Ry cos ¢o

\/l—(sin¢0+-2- Z;=1 m;)?
(1+2Y0Ro\/1—(sin¢o+% Yoy mi)?

“Compy cm127r5[a — kgsin ¢o — 2_[7:(2?:1 mt’)]

' Zjn?:—oo T z;?:—oo[ ?:1

I (48

and in the spatial domain

e _ 2YoRo cos¢o(—2YoRo)™
Jn(z") - 142Yo Ry cos ¢o

. A [ me
SIS s B |1 e Tame
(1+2Yo Ro \/1—(sin¢>0+-]’)- E;=1 m;j)?

Comy "+ Comg eilko singo+2E ) me)z
A problem associated with the perturbation techniques is that when there is
a sharp variation in the perturbation function there could be a sharp variation in

b _ order

the solution which is not to the order of perturbation. Therefore in an n*
solution it is not guaranteed that the solution is of O(A™?) for all values of the
variable in the domain of the integral equation. To check the validity of our
assumption we consider two limiting cases: 1) when the perturbation function has
sharp variations in the spatial domain and 2) when the perturbation function has
sharp variations in the Fourier domain. The first case will be studied in Section
7 and to study the latter case we consider a constant function (r(z) = 1) for the
perturbation function. Note that the perturbation technique was applied to the

integral equation (29), and in this case the perturbation function 7(a) = 276()

has the sharpest variation possible. When r(z) = 1 the resistivity is constant and
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from equation (34) it follows directly that

2Y, cos ¢

JO(:L.) - 1 + 2YOR0(]. + A) COSs ¢0

eikg sin¢o.1:. (50)

The solution based on the perturbation technique can be obtained from equation

(49) with L = oo and

1 m=0
Cm = ; (51)
0 otherwise
thus
2Y5 cos ¢o(—2Y0R0)™ ik, sindo
(53 — 1 sin T 52
Ja(2) (1 + 2Yo Ry cos ¢o)™t? ‘ ’ (52)
and

Lo Y, cos o~ 2oRo)"
J(z) = Z (14 2YyRg cos o)+

n=0

eiko sind)orAn. (53)

This series is absolutely convergent and represents the Taylor series expansion of
equation (50), implying that the perturbation solution can be made as close as we
wish to the exact solution.

For H polarization the analysis is similar and the expression for the component
of the induced current in the Fourier and spatial domains respectively are given

by:

Th _ —2Yo Ry cos ¢o (—2Yo Ro)™
Jn(a) - 2Yo Ro +cos ¢g

. E+(:1°=— e Z+OO:— 7.1'=1 1 . 54
m 0 mq oo 11z (2YOR0+ 1—(sin¢o+‘2‘2;=] m]-)2 ( )

Cmn N Cm127r6[a - ko Sin ¢0 - Q_E(X:?zl ml)]
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h(..\ — —2YoRo cosgo(—2YoRo)"
Jn(f”) = 2Yo R +cos do

D DAATINETES DrscliNNN | k2 L ; 9
=00 I o Roby [1-(sindo+2 Y, mi )2 %)

“Comy " Coy €70 singo+2E ) ) me)z

In Appendix A a numerical solution for a periodic resistive sheet is given. The
solution is based on the moment method, and in Section 8 the results are compared
with the above perturbation solution.

The closed form expression for the induced current enables us to study the case
when the perturbation is a periodic random process. In this case the perturbation
function may still be represented as a Fourier series but with the Fourier coeffi-
cients (c/,s) as random variables. It can be shown from (A.14) that the average
value of the diffracted field is directly proportional to the average value of the in-
duced current. To obtain the average value of the current, assume that the periodic
process has zero mean, which implies that the Fourier coefficients have zero mean
({em) = 0), and further assume that the Fourier coefficients are mutually indepen-
dent. These assumptions imply that the process is wide sense stationary, and from

(49) and (55) the following expressions for the mean value of the components of

the induced current can be obtained:

2Y¢ ~2Yo n
[Jifel) = Holeseslomib]

in go + 2 (56)
+00 n [ 1—(sin go 92 )2 ]<Cn )ei(k" sin o+ 22212 )
m=-—00 =1 (1+2Y6R0\/1_(51n¢0+v\l(m)2 m
h(p)) = =2YoRocosdo(~2YoRo)"
(Jn(m)> - ; 2};;?1;%05%0 : (57)
‘ er;f—.—o—-oo ?_1[ ! ](Cnm>ei(k0 Sind’0+27r£m )1‘

(2YoRo+/1-(sin do+ 42 )2
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6 Scattering Model for a Variable Thickness Di-
electric Slab

Consider a dielectric slab whose thickness is a function of = (see Fig. 2). Let

the thickness be

- A) (58)

where w is a measure of the width and A is the height of the dielectric hump
with a possibly different dielectric constant. This thickness function resembles the
variation in thickness of a vegetation leaf and in this case w and A are random

variables. If the dielectric slab is electrically thin, it can be represented by two

Figure 2: Geometry of a dielectric slab with a hump.

parallel resistive sheets one with a constant thickness 7y and the other one with a

variable thickness

ATO (59)
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where we assume here that A < 1. Resistivity of the underlying and the top sheets
are respectively denoted by Ry and R, which can be obtained from equation (1).
These parallel sheets can be replaced by an equivalent sheet whose resistivity is

equal to that of the two parallel resistors Ry and R,, i.e.

(@) = ke
B RO + Rv -

(60)

By substituting the expressions for Ry and R, in the above equation and then

approximating the resultant expression to the first order of A it can be shown

To 1 w?

R(z) =R =R, ~ Ro(1 — A 61
(2) 07‘0+ 7(z) % + I;”j_ﬁz of z? 4 w? ) (61)

The perturbation function then takes the form

2

—w
r(z) = 22 + w?’ (62)
and the transform of this is

(a) = —rwevll (63)

The Fourier transforms of the first components of the induced current for E and

H polarization can be obtained from (43) and (44) respectively, and are

1 -2
jle(a) _ 4Y RO Cos ¢0 . k2 (ﬂ_we—wla—ko sm¢o|) (64)
1+2Y6ROCOS¢0 1+2YE)R0\/1——
—4Y 2Ry cos ¢

—wla—kg sin¢~o|). (65)

jh
1(@) = cos do + 2Y, R QYR0+\/’— (mwe

The scattered field due to the zeroth-order induced current consists of reflected

and transmitted plane waves in the specular and forward directions, while the first

16



component of the induced current gives rise to a cylindrical wave which will be

denoted by the superscript s. In the far zone
(z—a')2 422~ p—z sing, (66)

where p and ¢, denote the distance and direction of observation point, and

[ 2 By e !
Hél)(ko (x — $')2 + 22) ~ —-Wkopel(kop—z)e—tko sin ¢,z , (67)

(69)

It is now easy to obtain the far field amplitude P(do, ¢,) defined by

2 . n
S~ —_— 'L(kop—r)
B~ e DRG0, 4.) (70)

in terms of which the bistatic echo width is

(60,6 = 2 | P(do,6.) [ (1)

In the E polarization case the scattered field is in the y direction and

Pe(¢07¢s) =y I » Jl (l‘l)e-iko sin ¢z d(L‘I =y 1 Jf(ko sin ¢s) (72)

. —koZy /+°° . ~—koZy

For H polarization substitution of (68) and (69) into (14) and (15) shows that the

scattered field has only a ¢ component, and the far field amplitude is

Ph(¢07 ¢s) = QZBCOS ¢s

Y Foo ' e o / ] *k Z ~
kofo Jh(a e ~hosinesr qp' = § 04 % cos ¢, J(kosin 4).

(73)
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Hence, from (64) and (65),
. —koYoRg cos do Cos P,
Pe sy Ps) = :
(90:00) = Y T oV R cos o 1+ 2YRocos o,

2 —kOYbRO COS ¢0 Cos ¢s
Py(¢o, 65) = ¢cos do+2YoRy 2Y,R, + cos ¢,

_(WwAe—kowlSin%—sinrﬁol), (74)

. (WwAe—k°w|Sin¢’—Sin¢°'). (75)

If w and A are independent random variables such that w is Gaussian with

mean and standard deviation wq and s respectively, its probability density function

1S

fw(w) = \/zl_me—v”—:‘m){ (76)

Assume also that the second moment of the random variable A is known. The

mean value of the bistatic scattering width may now be calculated from (71) and

(72) by noting that
(w2e—2kow|sin¢,—sin¢o|) — (32 + wg)e(kgsz|sin¢3—sin¢0|2—2k0w0|sin¢3—8in¢0|)’ (77)

with the result that

—koYoRg cos ¢ COS ¢
1 +2YyRocos ¢o 1+ 2Y, R, cos o

<Ue(¢03 ¢s)) =27mA '

|2 <A2> (w2e—2kowlsin¢s—sin¢ol)

)

(78)
—koYo Ry cos ¢ . oS @,
cos ¢g + 2YyRy  2YyR, + cos bs

(o360, 6.) = 277 | ]
(79)

The above is a first-order solution, and for a higher order solution, analytical
results may not be achievable. When the height of the dielectric hump above the

resistive sheet is not much smaller than the wavelength, the above solution fails to

work for two reasons: 1) the solution is a first-order one in A, and 2) the dielectric
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hump cannot be modeled as a single resistive sheet. In such cases we have to resort
to numerical techniques to get the solution. In Appendix B the Green’s function
for a planar resistive sheet is obtained and used to derive an integral equation for
the induced polarization current. A moment method technique is then employed
to obtain the solution for a dielectric structure of arbitrary cross section above
the resistive sheet. Results based on the perturbation technique and the moment

method are compared in Section 8.

7 Scattering from Impedance Insert

Another application of the perturbation technique is the scattering of a plane

wave from the impedance insert whose geometry is shown in Fig. 3. The impedance

w w
2 5 X

Mo n Mo

Figure 3: Geometry of an impedance insert.

of this surface can be represented as
T
n(z) =no(l + A H(Zu_))
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where [](z) is the gate function defined by

1 Jz|<
H(.’L‘)z )

0 otherwise

0O |

w is the width of the insert, and as before, A is a constant with | A |[< 1. The
transform of the first components of the induced current for E and H polarization

respectively can be obtained from (43) and (44) by replacing Ro by 70/2 as follows:

J(a) = —2Y 20 cos ¢o . 1- 2 wsin(w(a — kosin ¢g)/2) (50)
! 1+ Yonocos go 4 + Yo’]o\/l _ %22. w(a — kosin ¢o)/2
. 2Yino cos ¢ 1 sin(w(a — kosin ¢g)/2)
h 0'l0 0 0
= 1
Ji() 2 w(a — kosin ¢o)/2 (81)

" cos ¢o + Yoo . Yono + /1 — %E
Unfortunately, analytical expressions for the higher order components of the in-
duced current cannot be obtained for this case but they can be found numerically.
To observe the behavior of the current in the spatial domain, expressions (80) and
(81) were transformed numerically and the results are shown in Figs. 4 and 5.
They show the expected behavior of the currents at the edges.

The far field amplitudes can be found by doubling the expressions given by

(72) and (73). Thus

P.(0,6:) = § —koYono cos g Cos ¢, w sin(wko(sin @5 — sin ¢g)/2)
e\P0, @s) =YY + Yonocos ¢ 1 + Yoo cos @, wko(sin ¢, — sin ¢o)/2

(82)

~—koYono cos ¢o Cos ¢, WA sin(wko(sin @5 — sin @o)/2)

P s )
w(do, ¢s) = ¢ cos ¢o + Yono Yono + cos ¢, v wko(sin ¢ — sin ¢g)/2

. (83)
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Figure 4: Distribution of the first component of induced current on an impedance

insert for E polarization.
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Figure 5: Distribution of the first component of induced current on an impedance

insert for H polarization.
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The results of this technique are compared with a uniform GTD solution [Herman
and Volakis, 1988] that accounts for up to third order diffracted fields in the next

Section.

8 Numerical Results

Computations based on the results derived in Sections 4-7 will now be presented
and, where possible, compared with data obtained by other methods. First let
us consider the periodic resistive sheet. Figures 6 and 7 show the amplitude and
phase of the induced current on a resistive sheet with sinusoidal variation of period
L = 2) and A = 0.7 for E polarization. In these plots the first through fourth
order solutions are presented using the expression (49), and compared with the
data obtained by the moment method as given in Appendix A. It is seen that by
increasing the order of solution we can get as close as we wish to the exact solution,
and that the fourth order solution provides excellent agreement with the moment
method data. We note here that the required order is directly proportional to
A and L/A. Similar results are shown in Figs. 8 and 9 for H polarization. The
normalized field amplitudes of the propagating modes (Bragg modes) defined in
Appendix A are given in Table 1 for a sinusoidal resistivity with L = 3X, A = 0.7,
and Ry = 04100 at angle ¢o = 30 degrees. Since the resistivity is pure imaginary,
there is no power loss and the total power carried by all of the modes is equal to the
incident power. Table 2 gives the normalized field amplitude for a lossy resistive

sheet Ro = 180+1:270. In this case 31% and 29% of the incident power is dissipated



in the resistive sheet for E and H polarization respectively. Note that apart from
the case n = 0, E; = Ef and H; = —H,+, where EX and HZ are the field
amplitudes of n® mode in the upper (+) and lower (-) half-spaces for E and H
polarizations respectively. When n = 0 the incident field should be added to the
zeroth mode in the lower half-space, i.e. E; = Ef + E* and Hy = —H + H'.
We now turn to the problem of a variable thickness dielectric slab. The results of
the perturbation technique presented in Section 6 are compared with the numerical
solution based on exact image theory for a resistive sheet in conjunction with the
moment method (see Appendix B). In all of the test cases the dielectric slab is
assumed to be homogeneous with € = 36 + 17, 7o = A/100, A = 0.3, and A = 3
cm. These parameters correspond to By = 180 + 270, a = 112 — 230 and
B = 75+ :1154. Figures 10-20 show the bistatic echo width and the phase of the
far field amplitude of a dielectric hump over the resistive sheet for w = A/15 and
w = A/25 and two incidence angle ¢y = 0, ¢o = 45 for both polarizations. In
each figure the results based on the perturbation technique are compared with the
numerical results. The agreement is good in spite of the fact that the perturbation
solution is only a first order one. For larger dielectric structures the perturbation
technique cannot be used and the moment method is the only available method
of solution. For example, the central vein of a vegetation leaf can be modelled as
a square dielectric cylinder above a resistive sheet. Figure 21 shows the bistatic
echo width of a square cylinder with dimensions A/10 x A/10 in free space, above

perfect conductor, and above a resistive sheet, at normal incidence with f = 10
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GHz, € = 36 + 717, and Ry = 180 + ¢270 for E polarization. The phase of the far
field amplitude is shown in Fig. 22. Similar plots for H polarization are presented
in Figs. 23 and 24. Figures 25 and 26 show the backscattered echo width and
phase of the far field amplitude of the same structure with the same parameters
for E and H polarizations. It can be deduced that a vein and a variation in the
thickness of a leaf do not have a significant effect near the specular direction, but
in other directions they are substantial contributors to the scattered field.
Figures 27-32 compare the results of the perturbation method and the GTD
technique for the impedance insert problem where there are sharp variations in
perturbation function in the spatial domain. The figures show the normalized
bistatic echo width (o/)) of an impedance insert having w = 2\ and 7o = 40 — 140
using the two methods. The agreement is excellent (for A = 0.5 the error is only
0.3 dB) in spite of the sharp changes in the perturbation function in the spatial

domain.

9 Conclusions

Problems of scattering from variable resistive and impedance sheets have been
studied using a perturbation technique in the Fourier domain. A recursive form
for the n*® component of the induced current on the resistive sheet was derived that,
in principle, allows evaluation of the current to the desired order of perturbation.
Having analytical expression for the induced current in Fourier domain culminates

in having an analytical form for the far field amplitude. The solution for the
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induced current on an impedance sheet is identical to that of a resistive sheet
whose resistivity is twice the impedance of the surface impedance.

The validity of the technique was checked in two limiting cases where the vari-
ation in perturbation function is sharp in either the spatial or the Fourier domain.
It was shown that the perturbation method is capable of handling both. The first
order expression for the induced current was obtained analytically for an arbi-
trary perturbation, but the ability to obtain analytical expressions for the higher
orders depends on the perturbation function. For a periodic resistivity a closed
form solution for any arbitrary order of perturbation was obtained. The results
based on the perturbation method were compared with an exact solution based on
the moment method as explained in Appendix A. The analytical results were also
checked against a GTD solution for the impedance insert problem and the mo-
ment method for the problem of a dielectric hump over a resistive sheet as given in
Appendix B. Excellent agreement between the analytical and other methods was
observed. It was found that the required order of perturbation is proportional to
the perturbation constant A and the width of perturbation in spatial domain, i.e.
L for a periodic perturbation and w for the impedance insert and dielectric hump
problems.
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Figure 6: The amplitude of the induced current on a periodic resistive sheet with
resistivity R(z) = (180 4 #270)(1 + 0.7 cos #2), L = 2) at normal incidence for E
polarization: (——) moment method, (- - - - - ) fourth order solution, (— —) third

order solution, (— — —) second order solution, (— - - - —) first order solution.
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Figure 7: The phase of the induced current on a periodic resistive sheet with
resistivity R(z) = (180 + i270)(1 + 0.7 cos #%), L = 2) at normal incidence for E
polarization: (——) moment method, (- - - - - ) fourth order solution, (— —) third

order solution, (— — —) second order solution, (— - - - —) first order solution.
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Figure 8: The amplitude of the induced current on a periodic resistive sheet with
resistivity R(z) = (180 +4270)(1 + 0.7 cos Z2), L = 2 at normal incidence for H
polarization: (——) moment method, (- - - - - ) fourth order solution, (— —) third

order solution, (— ~ —) second order solution, (— - - - —) first order solution.
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Figure 9: The phase of the induced current on a periodic resistive sheet with
resistivity R(z) = (180 44270)(1 + 0.7 cos #£), L = 2 at normal incidence for H
polarization: (——) moment method, (- - - - - ) fourth order solution, (— —) third

order solution, (— — —) second order solution, (— - - - —) first order solution.
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E-polarization H-polarization

n| Er/E E;|E H[H Ho/H

-4 | 0.001£62.37 | 0.001£62.37 | 0.001£-150.10 | 0.001£29.90

-3 |1 0.003£169.70 | 0.003£169.70 {| 0.004£-18.57 | 0.004£161.43

-2 || 0.020£-76.15 | 0.020£-76.15 || 0.022£99.93 | 0.022£-80.07

-1 0.124/40.43 | 0.124/40.43 | 0.136/-143.68 | 0.136.36.32

0 || 0.887£156.86 | 0.394£62.13 | 0.831/-27.13 | 0.460.55.50

1| 0.136£49.53 | 0.136£49.53 | 0.210£-158.67 | 0.210£21.33

Table 1: Normalized field amplitude of the propagating modes in the upper (+)
and lower (-) half-spaces for a periodic resistive sheet R(z) = Ro(1 4 0.7 cos 222)

with Rg =0 +:100 and L = 3X at ¢ = 30 degree.

31



E-polarization H-polarization

n EY/E E;|E HY/H' H-/H!

-4 |1 0.002£-105.65 | 0.002£-105.65 || 0.003£47.66 | 0.003Z-132.34
-3 || 0.008£40.63 | 0.008240.63 | 0.008£-145.58 | 0.008.34.42

-2 | 0.028£-163.62 | 0.026£-163.62 || 0.030£13.43 | 0.030£-166.57
-1|[ 0.110£-6.41 | 0.110£-6.41 || 0.112£170.56 | 0.112£-9.44

0 || 0.484/150.69 | 0.625£22.29 | 0.425/-32.24 | 0.679/19.49

1 0.14124.41 0.141/4.41 0.135£161.00 | 0.1352-19.00

Table 2: Normalized field amplitude of the propagating modes in the upper (+)
and lower (-) half-spaces for a periodic resistive sheet R(z) = Ro(1 + 0.7 cos 22)

with Ry =180 +:270 and L = 3 at ¢o = 30 degree.
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Figure 10: Bistatic echo width of a dielectric hump with € = 36 + 417, A = 0.3,
and w = A/15 over a resistive sheet with Ry = 180 + i270 (e = 112 — i230) at
f =10 GHz and ¢o = 0 degrees for E polarization: (——) numerical technique, (-

- - - -) perturbation technique.
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Figure 11: Phase of far field amplitude of a dielectric hump with € = 36 + ¢17,
A = 0.3, and w = A/15 over a resistive sheet with Ry = 180+4:270 (o = 112—1230)
at f =10 GHz and ¢, = 0 degrees for E polarization: (——) numerical technique,

(----- ) perturbation technique.
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Figure 12: Bistatic echo width of a dielectric hump with ¢ = 36 4+ 17, A = 0.3,
and w = A/15 over a resistive sheet with Ry = 180 + 1270 (a = 112 — 1230) at
f =10 GHz and ¢, = 45 degrees for E polarization: (——) numerical technique,

(----- ) perturbation technique.
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Figure 13: Phase of far field amplitude of a dielectric hump with € = 36 + 117,
A = 0.3, and w = A/15 over a resistive sheet with Ry = 180+i270 (o = 112—1230)
at f = 10 GHz and ¢, = 45 degrees for E polarization: (——) numerical technique,

(----- ) perturbation technique.
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Figure 14: Bistatic echo width of a dielectric hump with € = 36 +¢17, A = 0.3,
and w = A/25 over a resistive sheet with Ry = 180 + 270 (o = 112 — ¢230) at
f =10 GHz and ¢y = 0 degrees for E polarization: (——) numerical technique, (-

- - - -) perturbation technique.
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Figure 15: Bistatic echo width of a dielectric hump with € = 36 + 717, A = 0.3,
and w = \/25 over a resistive sheet with Ry = 180 + 1270 (o = 112 — i230) at
f =10 GHz and ¢, = 45 degrees for E polarization: (——) numerical technique,

(----- ) perturbation technique.
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Figure 16: Bistatic echo width of a dielectric hump with e = 36+:17, A = 0.3, and
w = A/15 over a resistive sheet with Ry = 180 + 1270 (8 = 75 + ¢154) at f = 10
GHz and ¢ = 0 degrees for H polarization: (——) numerical technique, (- - - - - )

perturbation technique.
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Figure 17: Phase of far field amplitude of a dielectric hump with ¢ = 36 + 717,
A = 0.3, and w = A/15 over a resistive sheet with Ro = 1804270 (8 = 75+ i154)
at f =10 GHz and ¢¢ = 0 degrees for H polarization: (——) numerical technique,

(----- ) perturbation technique.
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Figure 18: Bistatic echo width of a dielectric hump with € = 36+:17, A = 0.3, and
w = A/15 over a resistive sheet with Ry = 180 +i270 (8 = 75 + 1154) at f = 10
GHz and ¢y = 45 degrees for H polarization: (——) numerical technique, (- - - -

-) perturbation technique.
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Figure 19: Bistatic echo width of a dielectric hump with € = 36 +¢17, A = 0.3, and
w = A/25 over a resistive sheet with Ry = 180 + 4270 (8 = 75 +i154) at f = 10
GHz and ¢¢ = 0 degrees for H polarization: (——) numerical technique, (- - - - - )

perturbation technique.
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Figure 20: Bistatic echo width of a dielectric hump with e = 36 4+:17, A = 0.3, and
w = A/25 over a resistive sheet with Ry = 180 + 270 (8 = 75+ i154) at f = 10
GHz and ¢ = 45 degrees for H polarization: (——) numerical technique, (- - - -

-) perturbation technique.
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Figure 21: Bistatic echo width of a A/10 x A/10 square dielectric cylinder with
€ = 364117, at f = 10 GHz and ¢ = 0 degrees for E polarization: (——) cylinder

over resistive sheet Ry = 180 + 4270, (- - - - - ) cylinder over perfect conductor, (—

—) cylinder in free space.
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Figure 22: Phase of far field amplitude of a A/10 x A/10 square dielectric cylinder
with € = 36 4417, at f = 10 GHz and ¢ = 0 degrees for E polarization: (—
—) cylinder over resistive sheet Ry = 180 + 1270, (- - - - - ) cylinder over perfect

conductor, (— —) cylinder in free space.
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Figure 23: Bistatic echo width of a A/10 x A/10 square dielectric cylinder with
€=36+:17, at f =10 GHz and ¢y = 0 degrees for H polarization: (——) cylinder
over resistive sheet Ry = 180 +¢270, (- - - - - ) cylinder over perfect conductor, (—

—) cylinder in free space.
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Figure 24: Phase of far field amplitude of a A/10 x A/10 square dielectric cylinder
with € = 36 4+ ¢17, at f = 10 GHz and ¢ = 0 degrees for H polarization: (—
—) cylinder over resistive sheet Ry = 180 + 1270, (- - - - - ) cylinder over perfect

conductor, (— —) cylinder in free space.
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Figure 25: Backscattering echo width of a A/10 x A/10 square dielectric cylinder

over resistive sheet By = 180 + 1270 with € = 36 4+ ¢17 at f = 10 GHz: (——) E

polarization, (- - - - - ) H polarization.
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Figure 26: Phase of far field amplitude (backscattering) of a A /10 x A/10 square
dielectric cylinder over resistive sheet Ro = 18044270 with € = 36 + {17 at f=10

GHz: (—) E polarization, (- - - - - ) H polarization.
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Figure 27: Normalized bistatic echo width (¢/)) of an impedance insert with
w =2\, n = 44 — 144, 9o = 40 — 40 (A = 0.1) at ¢y = 0 degrees for E

polarization: (——) perturbation technique, (- - - - - ) GTD technique.

50



dB

~lO )»l’"ITIIIIl]lllilll’fYIITIXTIIIII'IIIIIII

|

~ND

O
T

_80 RSN EN NSRRI NN NS SRR NN

llllllllIllllljIllllllIllllllllIllllllllllllllllllLLL

-30 -70 -50 -30

-10 10 30 50 70 80

Scattering Angle (Degrees)

Figure 28: Normalized bistatic echo width (¢/)A) of an impedance insert with

w =2\, 0 = 44 — 44, 7o = 40 — 140 (A = 0.1) at ¢o = 45 degrees for E

polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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Figure 29: Normalized bistatic echo width (¢/)A) of an impedance insert with

w

= 2\, n; = 60 — 60, no = 40 — 740 (A = 0.5) at ¢o = 0 degrees for E

polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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Figure 30: Normalized bistatic echo width (¢/)) of an impedance insert with

w

2\, 7y = 44 — 44, no = 40 — 140 (A = 0.1) at ¢y = 0 degrees for H

polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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Figure 31: Normalized bistatic echo width (6/)) of an impedance insert with
w =2\ n = 44 — 44, no = 40 — 40 (A = 0.1) at ¢o = 45 degrees for H

polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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Figure 32: Normalized bistatic echo width (¢/)) of an impedance insert with
w = 2), 0y = 60 — 160, no = 40 — 40 (A = 0.5) at ¢y = 0 degrees for H

polarization: (——) perturbation technique, (- - - - - ) GTD technique.
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APPENDIX A
NUMERICAL ANALYSIS FOR A PERIODIC
RESISTIVE SHEET

A1l Derivation of Green’s Function
For a resistive sheet which is periodic in one dimension with period L, we have
R(z+ L) = R(z) (A1)
If the resistive sheet is illuminated by a plane wave of the form
Fi — &igiko(singoz—cos ¢oz) (A2)

where &' is the polarization unit vector, the induced current on the resistive sheet

must satisfy the periodicity requirements imposed by Floquet’s theorem, i.e.
J(z+nl) = J(:c)e““" singonL (A3)

Let us first consider E polarization case where & = §. The scattered electric field
can derived from (9). By subdividing the integral into multiples of a period, the

equation can be written as

r; + 00
B koo
4

zo+(n+1)L , (1) - ,
/ L HD (e -+ e (A4)
zo+n

If the variable ' is now changed to z' + nL and the property (A3) is employed,
we get

By ==

k Z $0+L ’ 1 1
_0 0/ Jy(2)Ge(z, 2, 2)dz (A5)

0
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where

+00 o
Ge(:c,x’,z) = E Hél)(ko\/(x g — nL)2 + 22)etko sin ¢gonL (AG)

n=-—oo

is the Green’s function of the problem. The series is very slowly converging, spe-
cially when L is small compared to the wavelength. To make the problem com-
putationally tractable a better form for Green’s function is needed. If the Fourier
integral representation of the Hankel function is inserted into (A6) and the order

of summation, integration reversed, we have

oo pil\/K~o?|z o(z—-2 ’
by 1/+ eV ko —a?lzl+a(z—z )] i’:o e—inla—Fkosingo)L . (A7)

n=—0o

T J-o0 kg_QZ

But

Z e~ima—hosingo)L — 9 Z 8[(a — kosin o)L — 27n). (A8)

n=-—00 n=-—oo

Applying the above identity to (A7) and changing the order of summation and in-

tegration one more time provides the following expression for the Green’s function:

I

9 oo ei\/kg—-(“T"-{rko sin ¢0)?|z|
Ge(z,z,2) = —

L n=-—o00 \/k‘g — (2—22 + ko sin ¢0)2

This series converges very fast specially when z is relatively large, and with the

(i((P Hhosindn)a=)  (Ag)

aid of this Green’s function, the integral equation for the induced current given in

(11) becomes

koZg zo+L '

R(z)J,(z) = ehosindor _ /. Jy(z)Ge(z, 2 ,0%)dz’ (A10)

By a similar technique the Green’s function for a periodic resistive sheet in the

H polarization case can be derived and is given by

. 92 oo ez‘\/kg—(i;ﬂq-ko sin ¢ )2 2|
Gu(z,z,2) = —(14+ =—)
L 81’.2 nzz—:oo \/kg - (‘2—%& + ko Si]l ¢0)2

[N

ei(L’iﬁ+ko sin d)o)(:c—-xl)

9

(A11)
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and the resulting integral equation for the induced current is

koZo zo+L

R(J))Jx(x) = —COos (]506“‘0 singoz __ ;

Jo(2)Gh(z, 2 ,01)de’.  (A12)

The form of the Green’s functions shows that the scattered field is composed of
two types of waves: 1) propagating waves and 2) surface waves. The latter decay
exponentially away from the surface and there are an infinite number of them. In
contrast, the number of propagating waves is finite, depending upon the period L

and the angle of incidence. The n*® mode is a propagating mode if n belongs to

set N defined by
L . L :
N = {n; _X(l +singg) < n < -X(l — sin ¢o)} (A13)

Note that even for I, < A we get two propagating modes corresponding to n = 0
and n = —1. In the far zone only the propagating modes are observable and the

electric field of the n** mode for E polarization is, for example, given by (n € V)

koZo S J,(c)e CE Hosint)e g
2L\ JkE — (2 + kosin go)?

Ep =

] ei\/kg—("h{ﬂ+ko sin 0)? 2| ,i( 32 +ko sin o)z
v .

(A14)
For H polarization the scattered magnetic field corresponding to the nt® propagat-

ing mode can be obtained from

+L . . r - - o .
H;L =F % 0 J:c($,)€—z(2%ﬂ+k0 sin ¢ )z dz ]ez\/kg—(z—Lﬂ+ko snn¢0)2lz|ez(2fl+ko sindp )z
o

)
(A15)
where the upper and lower signs apply for an observation point in the upper or

lower half-spaces respectively. The direction of propagation of each mode is defined
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by the angle ¢° measured from the normal to the surface and can be obtained from
. A :
sin @2 = " + sin ¢y (A16)

Figure (A1) depicts the scattering directions of the propagating waves as indicated

by (A16).
Az
X n=- n=-1
n=-3 ) 4 n=0
\ 1
‘\ ) 1 o‘
- * \ ! l‘ —
n= 47\ SR n=1
S ‘y\_l B R
Sse N r e Lt X
‘. “u‘:,' >
> o
v‘l’l‘: N
RASUFTI NN

4 R
n=-3 " * n=0
n=-2 n—':'l

Figure A-1: Scattering directions of propagating waves for a periodic resistive sheet

with L = 3A and ¢o = Z.

A2 Numerical Analysis

Numerical solutions of the integral equations can be obtained by the method
of moments. The unknown current is represented approximately by an expansion

of pulse basis functions as

J@)= S J.P(z - z,) (A17)



where J,, are the unknown coefficients to be found, M is the total number of

segments, and P(z) is the pulse function defined by

b 1 |z|< 48
(0) = (A1)

0 otherwise

In the case of E polarization, by substituting (17) into integral equation (A17) and

setting zo = ___15 we get

. M l'm+éi ’ '
R(z)J(z) = ehosindor _ koZo Y Jm/ " Go(z,2,0%)de (A19)

4 m=1 z"‘_%a

After evaluating the integral and setting the observation point at z = xj, the
following expression results:

R(.’Ek)J(IUk) — eiko sin g T

H(FE™ ko sin ¢0)(ek=2m) Gin (228 1k, sin g ) 2)

—kZy M g 5t
L Zm=1 PETO (3R 4ko singo)y/kE— (B +ho sin do)?

)

(A20)
This can be cast in matrix form as
[2][T] = V] (A21)
where [Z] is the impedance matrix and its entries are
00 i(3zn sin Tk—Tm) o ™ : T
o koZo T ei(*Fh+kosingo)(zs )sln((-2—L—- + kg sin ¢0)%—) Etm
L n=-00 (EL—H' + kg sin (bo)\/kg - (%Tn + ko sin ¢0)2
(A22)
koZO + S]Il((2_’ll‘;11 + ko sin QS())%) n R(xk) k=m

= S

w=Zoo (B2 + kosin o)/ kg — (22 + kosin ¢o)?
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[J] is a column vector whose components are the unknown J,,’s and [V] is the

excitation vector whose components are given by
vy, = ekosindozi (A24)

Derivation of the impedance matrix for H polarization is rather difficult because
of the higher order singularity of the Green’s function. Using the same expansion

of the induced current as before and inserting it into the integral equation (A12)

we obtain
R(z)J(z) = — cos goe'Fo sin o2 FoZo ij J / x’”*u + : )Gi(z,z ,0%)dz’
L)=— - T m a9 y Ly
‘ ° 4 m=1 :L‘m—Af- axZ "
(A25)
To find the impedance matrix consider the following integral:
62 ! ! ! !
. @Gh(ac,x y2)de = =Gy (2,2, 2) (A26)

where G',(z, 2, 2) is the derivative of Gj(z, 2, z) with respect to z and is given by

400 ei\/kg—-(z’iﬂ+kosin¢o)2lz| 9rn

2
— R
L n=—00 \/k‘g - (%Tn + ko sin ¢0)2 ( L

!

G;l(:t,:z: +ko sin ¢0)ei(1?+k° sin o) (=),

)=
(A27)

The convergence of the series is very poor when z — 0, but the limit does exist.

To achieve a better convergence rate, consider the following geometric series based

on the asymptotic behavior of the individual terms in (A.27) for large n, positive

and negative:

e~ Z(l2l+i(z ~2))

2 TR iz i2mm kg sino)o—s) _ 2 —ikos '
SI:—ZC T2l g1 (“F sindg )(x x): e—zosmqso(x_g;)

L L 1 — e~ Z(zl+ile—2))

(A28)

n=1
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e~ (l2|-i(z -2))
1 — e~ F(2l-i(z'-2))
(A29)

o~ ko sin g0 (z-2')

b«lw
]

—Z g—i- 2’"‘+k0 sin ¢o )(z— .7:) —

By adding and subtracting the above series from G (z,z , z) and then letting z — 0

it follows that

Gy(z,2',0%) =lim,_o[G}(z,2,2) — 51 — Sy

' . ' A30
+ 9 eiko sin go (v~ )[ _,Zir.(_., ) elzf-(z —lz) ] ( )
—tzf-(z —z) l—eizﬁm(x —z) 1’
which can be rearranged to give obtain
21rn !
/ "ot _ 2 _—ik sind:o(z:—z IR 4 ko singo) _ _iM(z ~z)
Gh(max 30 ) - Le { n_l[( \/k2 (u+k051n¢0)2 1)6 L
i(— 2—"—'5+ls:o singo) ,Z_E(_,L. -z)
(\[k2 27rn+k0 Sln¢0)2 ]')e L ]
(= -2) )
+[t tan ¢o + = _zim(z,_z) G w= )
l-e L 1-€'L
(A31)

The above series is absolutely convergent and its rate of convergence is relatively

fast ( like J5). By defining the following parameters:

Alz,zn) = fom_+§ 2 Gh(z,a,0%)da" = Hyeihosindo(s=zm)
2 0

AT N TZ-;k:ISc;nsﬁlo)z 1)61.2%(%%) Sin((%Tn + kosin ¢°)'A2_x)

#(— 222 4 ko sin go ) _i2mn (g, ) . N
+(\/kg"(:2—mikosin¢o)2+1)e it )sm(( 2 +kosm¢0)7)]

41 tan @g sin(ko sin ¢0Az) + 3 cot(E(z —zp + %))ei(ko sin ¢o 4F)

—1cot(E(z — o — -A2—f))e—i(ko sin ¢o 4% N,

(A32)

xm,+g ’ ’
B(SE,:L‘m) = xm—A,;i Gh(il),:l} ,O+)d$ .
— 4 piko sin ¢o(c—zm) Z 'Zi-ﬂ(x_xm)sm( 272 4 ko sm¢0)AI) ( )
n=Tee (m‘l'ko sin ¢o \/k2 27""+k0 sin ¢p )2
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and setting the observation point z = z, (A25) can be written as
tho singoz __ kOZO
R(zk)J(zk) = — cos doe Z In[A(zk, Tm) + Bz, zm)]  (A34)

This can be cast as a matrix equation similar to (A21) with the impedance matrix

and excitation vector having entries

2pm = Bala Tky Ty Thy T m
k A(zk m) + B )| k# (A35)

zpp = BA[A(zy, 7)) + B(ag,zx)]  k=m

Vg = — COs PoetRo STk (A36)
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APPENDIX B

SCATTERING FROM DIELECTRIC STRUC-
TURES ABOVE RESISTIVE AND IMPEDANCE
SHEETS

In this appendix we seek the scattered field of a two dimensional dielectric
object with arbitrary cross section above a uniform resistive or impedance sheet
when the object is illuminated by a plane wave. The geometry of the problem
is depicted in Fig. B-1. First the Green’s function is derived by obtaining the
the exact image of a line source and then the problem is expressed as an integral

equation that can be solved numerically by the method of moments.

AZ

Dielectric Cylinder

| B's

Resistive (Impedance) Sheet R(02)

Figure B-1: Geometry for the scattering problem of a dielectric cylinder above a

uniform resistive or impedance sheet.
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B1 Exact Image of a Current Filament above
Resistive Sheets

An integral representation for the image of a source line above a resistive sheet is
derived. This representation has an excellent rate of convergence for most practical
purposes and can be computed very easily. First, by using the electric vector
potential, the exact image is derived for an electric current line source in the
y direction. Following the same procedure, the image representation for a line

source whose direction is in the transverse plane (zz plane) is obtained next.
B1.1 Line Current in y Direction

Consider a uniform resistive sheet lying in the zy plane of a coordinate system
(z,y,2). Assume a constant current is placed above the sheet at p = (z',z') and

the current density is given by
J=§é(z—-2',z-2) (B1)

The electric vector potential in this case has only y component and must satisfy

the wave equation, i.e.
(V2 4+ kDA, = —pob(z — 2')6(z — 2) (B2)

By taking the Fourier transform from both sides of the above equation with respect

to £ we obtain
0* 9 ko
s + (68 = k)i ke, ) = —prob(z — )eh (8B3)
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where

+oo .
ay(ksy2) = / Az, 2)e*"de (B4)

is the Fourier transform of the electric vector potential. By dividing the space into
three regions as shown in Fig. B2 and then imposing the radiation condition, the

solution to the differential equation (B3) in each region can be expressed by

ay(ksy2) = cyeikzztha) (B5)
i3(ky, 2) = coe'Fe7Hhe®) . gpemilkemhes) (B6)
@3(ky, 2) = cqe™ ez het’) (B7)

where k, = /k% — kg and branch of the square root is chosen such that /—1 = «.

region 1
;' Filament Current
Tregion2[TTTT pY T
' X
. : ’
region 3 X'

Figure B-2: A constant line source above a uniform resistive sheet.

The field quantities in terms of the vector potential are given by

E,(z,z) = iwA,(z,2) (B8)
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1o

H,(z,2) = _Eaz

Ay(z,z) (B9)

Continuity of the tangential electric field at z = 2’ and the resistive sheet boundary
conditions as given by (2)-(4) at z = 0 together with the equations (B8) and (B9)

impose the following conditions on the Fourier transform of the vector potential

ay(kgy 2") — @(ksy 2') = 0 (B10)
ay (kz,0) — ay(kz,0) = 0 (B11)
~R 0. d . -
-i:(-)- &az(km,O) — 5;(12(/9,;,0)] = zwaZ(kz,O) (B12)

and from jump condition we have

a ~1 ! £~2 AN
8zay(kx,z) aZay(kw,z)-- Lo (B13)

Upon substitution of (B5)-(B7) into (B10)-(B13) and then solving the resultant
set of equations simultaneously the unknown coefficients ¢y, - -, ¢4 can be obtained
and are given by

— =M =1 ik, 2 —ik!
1 = 2k, [1+2_Q__Fk?‘k76 % +e Z]
0

_ 1 iky

€2= ik, 13 2R0E: €
ko (B14)

=i ik 2!

3= 3, €
2RYp ks
- 1k, 2!

Cqy = e

— k0

2tk, 1+2_}2’aﬁ
ko

The electric vector potential in each region can be obtained by taking inverse

Fourier transform. Let us represent the electric vector potential in the upper and

lower half-spaces by A}(z,z) and Aj (, z) respectively and then use the following
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identity

$oo pilkzlz—2! |~k (z—2')]
/ — dk, = rHO (koy/(z — )2 + (2 — 2/)?) (B15)
we obtain
Ar(z,2) = B HD (koy/(z — 2)? + (2 — 2')2)
v B o/ (B16)
_ +o0 -1 ks (2+2")—1kz (z—2")
ﬁ;f_oo 1+ %o z‘)kze dks

A7 (z,2) = — M}H(l)(ko (x —2")2+ (24 2')?)

Y G oy (B17)

+00 -1 tky(—z42' )ik (z—2'
— L it me ( )=ike (z=2) q f;
0
The first term in the (B16) and (B17) represents the effect of the current filament
in absence of the resistive sheet while the second term is due to the image of the
current filament. Unfortunately the integral representing the contribution of the

image does not have a closed form and its convergence rate is very poor. To achieve

the image contribution in an efficient way consider the following transformation

+oo 1
—av _—kyv _ : _
/0 e" e " Vdy = ai k. provided Re[a] > —Relk,]. (B18)

The choice of the branch cut for k, guarantees that Re[k,] is nonnegative as k,

takes any real number, therefore the sufficient condition for (B18) is
Re[a] > 0. (B19)

By defining o = ﬁ?ﬁ; we note that the above condition is satisfied (Re[a] = 53% >
0) and the integral representing the image contribution in the upper half-space can

be written as

TR =l ket —ika (oo
Kz\(2+2 1Kz \T—2 dkz:/
/. 1+ 50k, 0 =0 k.

+00 +oo gikz (242" +iv)—iks (z-2')
—ae_"‘"[/ dk,]dv.

(B20)
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Employing the identity given by (B15), the electric vector potential in the upper

half-space is given by

Af(2,2) = R[HD (ko2 — )2 + (2 = 2)?)

o ae“"”Hél)(ko\/(x — )2+ (2 4 2/ 4 w)2dv].

(B21)

In a same manner the electric vector potential for lower half-space is found to be

A7 (2,2) = o[ HY (ko/(c — ') + (=2 + /)?)

— i aem HP (ko /(& — /)2 + (=2 + 2/ + iv)2dv].

(B22)

This integral representation converges very fast because both functions in the inte-

A Im(Z]

Z Plane

Re[Z]

Figure B-3: The location of the image of the line source in the complex z plane.

grand are exponentially decaying. Also from this representation it can be deduced
that the image of a line current above a resistive sheet is a half plane current with
exponential distribution and is located in the complex z plane occupying region

—2z' =100 < z < —2' (Fig. B-3). The validity of the image representation can be

B-6



checked by considering some special limiting cases. Suppose the resistivity is very
small (approaching the perfect conductor) which implies that | o [> 1. In this

case the integral in (B21) can be approximated by

0+°° ae‘“”}]((,l)(kg\/(x —2)2 4+ (z4+ 2 +w)d)dv =

H((,l)(ko\/(m — )2+ (2 + 2)2) [ ae™*dv = Hél)(ko\/(x — )24 (2 4 2')?)
(B23)

(contribution to the integral comes mostly from point v = 0) which is the image
for the perfectly conducting case. An asymptotic behavior of the integral in terms
of a convergent series of inverse power of « can obtained by taking integration by

part repeatedly, thus

/O " e B (ko [z — ) + (2 + 2 + 9))dv = io(_;l)”h‘")(ﬂ) (B24)

where A(™(0) is the n*® derivative of Hél)(ko\/(x —2')2 4+ (z + 2' 4+ 1w)?) with re-

spect to v evaluated at zero. To the first order of approximation we have

—,—1 1 -1 Z
—)"AM(0) & h(0) = B'(0)= ~ h(—) = g \/ — N2 r_ 22
ga) (0) ~ h(0) = K (0) = ~ h(—) = Hg (ko[ (z — ') + (2 + = )%
(B25)
which is a line image located in the complex plane at z = —z' + é The other

asymptotic behavior of interest is the far field approximation where the point of

observation is far from the image point, i.e. p, = \/(w —2)2 4 (24 2)2 > ) (see

Fig. B-4). In this condition

1 COS ¢y

\/(a:—:c’)2+(z+z’+i1/)2 ~ po(1 + ;
2

), (B26)

where we have assumed that p, > v. The validity of this assumption comes from

the fact that the integrand of the (B21) is approximately zero if v > v,,,, for some
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finite V. Now by using large argument expansion for Hankel function and then

substituting for a we get

lim,, o0 foF™ —-ae“"“’H((,l)(ko\/(w -2+ (242 4+ w)d)dv =

2 gitkopp-F)___ =1
T2 1+2YyRcos ¢

Note that the last term in the above equation is the plane wave reflection coefficient

(B27)

for the E polarization case. This result is identical to the asymptotic value of the

integral given in (B16 ) evaluated by saddle point technique.

% . (x,2)
y p
0, ’
1 X
Resistive (Impedance) Sheet 4 >
(x'a'zl)

Figure B-4: Geometry of image point for far field approximation.

B1.2 Line Current in the Transverse Plane

Here we separate the problem into two problems: 1) when the current is in z
direction and 2) when the current is in the z direction. First consider the situation

where the current filament above the resistive sheet is in the z direction and its
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current density is given by
J=%6(z -2,z - 7). (B28)

The electric vector potential has only £ component and must satisfy the the wave
equation as given in (B2). The analysis of obtaining the electric vector potential
(Az(z,2)) is similar to the previous case. The Fourier transform of the vector
potential must satisfy an equation similar to (B3), and the solution is identical
to those given in (B5)-(B7). The field quantities in terms of the electric vector

potential are given by

o 1 §? o w 0? .
E =iw(Ay(z,2) + 1202 Az(z, 2))X + k—g-—axazA,(x, z)2 (B29)
10 .
H= %5/11:(% 2)y (B30)

The following relations for the Fourier transform of the vector potential can be
obtained by using equations (B29) and (B30) and applying the continuity of the

tangential electric field at z = 2’ and the resistive sheet boundary conditions at

z=0
:kigﬁ %&;(kr, 2) — g;&i(kz,z')] =0, (B31)
k)~ a0, 0] =0 (B32)
0 - ik 0) = 2 a0 (B
g;ai(kr’ Z') - %&i(kx, 2) = po (B34)



where the last equation comes from the jump condition. The unknown coeflicients

cl, -+ c4 in this case are given by
=M -1 tky2' —k!
€1 = 2ik,[1+iz’0£ne +e7]
z

_ po —1 tky 2!
Cy = 2k, 1+2Fk70ku e
z

(B35)
c3 = Z:iijzleikzz'

Cy = %%3(1 + _Fy-r—l.{.?__;(l_ﬂ. )eikzzr
The electric vector potential in the upper and lower half-spaces can be obtained

by taking the Fourier inverse then using the identity (B15 ) and respectively are

given by

Af(e,2) = PP (bo/(z — @)+ (2 = 2)7) = H (ko (o = 22 + (= + 2)7)]

Ko /+oo 1 tkz(242") ik (z-2')
CBo fre 1 dk, (B36)
dim J-o (1 + ﬁ%m)kz
- fo [+ 1 ik, (—242')—ikz (z—2')
A = —f/ —_— ' z dk,. B37
2(z,2) el (1+§-§%g)kze (B37)

The integral in (B36) represents the contribution of the difference between resistive
sheet and perfect conductor images.

Now suppose the current filament is in the z direction and as a result the electric
vector potential has only z component. The analysis in this case is very similar to
the previous cases. The only difference is that we should use the continuity of the
normal component of electric field at z = z’ rather than the tangential component.
Also note that the field components in terms of the electric vector potential are
given by

w 0% 1 62

E=——— X+ —_—
R i?a:@zZAz(x’z)x + w(A,(z,2) + K 927

Auz,2)z  (B38)
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H= - Ao (2,2)y (B39)

Following an identical procedure as in the previous case the vector potential can

be obtained as

At(@,2) = —PHP (ko =22+ (2= 2)7) + H (ko (2 = 2)? + (2 +2)2)

fo [T 1 ik (z+2")—tkz(z-z")
ho L)), (B10)
4im Joo (1 + 2RY0ko)k
- Ho too 1 1k (—2+2')—tkz (z—~2')
A(e,z) = -2 / S 2(e=2) g, B41
(@:2) 4t Jooo (L+ 2 )br (B41)

The integral in expressions (B36) and (B40) does not have a closed form and is
not appropriate for numerical calculation. A better representation for this integral

can be obtained by employing a transformation similar to (B18). By defining

B = (2RYoko) and noting that Re[f] = |2 > 0 then we have
/ oo 1 ik (e45)—iks(o=2') g,
—oo (14 558 ko)k
/ Be=? HY (k \/ (¢ —2")? 4 (24 2' + iv)*dv. (B42)

This representation has a much better rate of convergence when compared to the
original form. The rate of convergence depends upon the real part of 8 and the
wavenumber. The asymptotic value of this representation for large value of 8 can

be obtained by the same technique as in the equation (B24) and we have

oFee ﬁe"ﬁ"Hél)(ko\/(w -2+ (24 2+ w)t)dv =
2o(F)"h(0) m HY (koo /(- @) + (2 + 2/ — i/ B)?)

Another asymptotic value of interest is the far field which can be obtained by

(B43)

using the large argument approximation of the Hankel functions and the expression
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given in (B26). Therefore the contribution of the image in the far zone can be

approximated by

lim o[BS (koy/ (2 — 2/)2 + (2 + 2/)?)

— 570 BeP HD (ko (2 — &) + (2 + 2/ + iw)?)dv] v | [ZeilborD)
(B44)

Employing the new representation into equations (B36)-(B37) and (B40)-(B41)

the electric vector potential for x- and z-directed current are given by

Af(w,2) = Pk (e =2+ (2 = 2)%) = HP (koy[(2 = 22 + (2 + 7))

+ " Be HO(kor [z — )2 + (2 + 2 + in) )], (B45)

AZ(z,2) = —% 0+°o ﬂe"ﬂ”Hél)(ko\/(x — )2+ (=2 + 2’ + )y, (B46)

Af(e,2) = HP (kof(w =2+ (2 = 2)2) + B (hoyfle — 22 + (= + 2)2)
+00 1 -

- Be P H (koy/(z — 2/)? + (2 + 2 + iv)?)dv], (B47)

A (z,z) = —-% 0+oo ,Be_ﬂ"Hél)(ko\/(x —2)2 4 (—z 4+ 2+ w)?)dv. (B438)

B2 Exact Image of a Current Filament above
Impedance Sheets

In Section 2 it was demonstrated that an impedance surface characterized by sur-
face impedance 7 can be replaced by a perfect magnetic conductor plus an electric
current sheet. This fictitious current is identical to the current on the equiva-
lent resistive sheet (R = 7/2). Further it was shown that the scattered field for

impedance sheet is twice of the scattered field for the equivalent resistive sheet.
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Therefore the image of a current filament over an impedance sheet can be ob-
tained from the expressions derived for resistive sheet by replacing R with /2,
doubling the expressions, and adding the contribution of image of the current fil-
ament above the magnetic wall. By following the above procedure and employing
equation (B21), the electric vector potential for a y-directed current filament above

the impedance sheet can be obtained from

Ay(z,2) = Z2IHD (koy/(z — 2/) + (2 — 2/)?) + H (koy[(z — /)2 + (2 + 2')?)

9 [ ale-a’VH(gl)(kO\/(x —2)2 4 (—z + 2/ 4+ 1v)2dv].

(B49)
where o' = n_kl% By defining 8 = nYoko and from equations (B47) and (B48) the

electric vector potential for X- and Z-directed current are respectively given by

Af(e,2) = F[H (ko/(z — 2)? + (2 — 2)2) — HY (ko (2 — @) + (2 + 2/)?)

+2 57 Be=? Y H{D (koy[(z — @/)? + (2 + 2/ + iv)2)dv],

(B50)
Af(a,2) = H[H (koy/(w — 2)2 + (2 = 2/)2) + H (koy[(z — 2)2 + (2 + )2)

=2 7 Bre P HD (koy[( — )2 + (2 + 2 + iv)?)dv],

(B51)
B3 Derivation of Integral Equations

Suppose the dielectric object above the resistive sheet is illuminated by a plane
wave whose direction of propagation is denoted by angle ¢y measured from normal
to the resistive sheet. The incident field induces conduction and displacement

current in the dielectric object which are known as polarization current and is
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given by

J = —ikoYy(e(z,2) — 1)E! (B52)

where ¢(z, z) is the relative dielectric constant of the object and E* is the total
electric field inside the dielectric body. If the incident, reflected, and scattered field

respectively are denoted by E*, E”, and E?, then
E‘'=E +E +E° (B53)

Let us first consider the E polarization case where the electric field is perpendicular

to the plane of incidence. The incident and reflected fields are given by
Ei — yeiko(sin PoT—cos d:oz), (B54)

5 —1 iko (sin o z—cos ¢o z)
T — 1 s I —Cos ¥4 . B
y1 + 2RY, cos ¢06 (B53)

In this case the incident field excites y-directed polarization current therefore the

scattered field is in the y direction and can be obtained using equations (B8) and

(B21) as follows

—koZ,
E;= —:——9//8 J (2, 2)Gy(z,2; 7', 2")dz'd2’ (B56)

where

Gy(w,z0",2") = HP(koy/(z — 2)2 + (2 — 2/)?)

1 (B57)
— e ae=H| )(ko\/(x — )2+ (24 2 4 w)?)dv.

B-14



Now an integral equation for the polarization current can be obtained by substi-

tuting (B54),(B55), and (B56) into (B52) therefore

Jy(IE, Z) = “ik()}/o(f(.’ll,Z) _ l)eiko sincboa:(e—iko cosdoz __ eiko cos¢0z)

1+2Rl%cos¢o
k2 /
2(e(z,2) = 1) f[, Jy(2',2)G (2, z; 2", 2")dz'd2".
(B58)

In the H polarization case where the incident electric field is parallel to the

plane of incidence assume
E* = —(cos ¢oX + sin go2)e! (s dormcosdoz), (B59)

The reflected field in the absence of the dielectric structure above the sheet is of

the form

1 N . A\ 1ko(sin ¢ox+cos ¢z
Er= 1+2RYoseC¢O(COS PoX — sin PoZ)e Folein dostecedos) (B60)

The induced polarization current has both z and z components which are denoted
by Ju(z,2) and J,(z,z) respectively. The scattered field can be evaluated using

the expressions for the electric vector potential as given in (B29) and (B38) and

are of the following form

E: = —_kQZn(1+~1;3I2)ff Jo(2!,2")Gy(z, 2;2', 2")dz'd2’

(B61)
— o I, (2, 2) Gz, 2527, 2')de'd 2,
E; = =£ - sz J (IE z) (x,Z;SC',Z')d:L"dz’
4k dzd (B62)

—044(1 + %azg)ff J(2',2")G (2, 2;2', 2')d2'd,
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where

Golz,z32,2') = HP (koy/(z — /)2 + (2 — #/)2) — H(koy[(z — 2')2 + (2 + 2/)?)
+ Ji>e Be HV (ko (2 — 2')2 + (2 + 2/ + iv)?)dy,

G(w, 20, 2') = Hi(koy/(w — 2/)? + (2 = 2)2) + HiO (koy/(z — o) + (2 + 2/)?)
— Jor Bem P HP (koy[(z — 2')? + (2 + 2/ + iv)2)dw.

(B63)
Upon substitution of the incident, reflected, and scattered field as given in equa-
tions (B59), (B60), and (B61), (B62) respectively into (B52) the following coupled

integral equations for the induced current can be derived

Jo(,2) = —ikoYo(e(x, 2) — 1) cos goetko sinbor(—g=thocosdoz | oz giko condoz)
+5(dz,2) = 1)1 + ) [, Jala', #)Cala, .0, 2')da'd’
+i(e(z,2) — 1)3222 [, J.(2,2")G (2, z;2', 2')da'd2’,
(B64)
Jo(z,2) = 1koYo(e(z, 2) — 1) sin goethosindos(g=thocosdoz —_—1+2RY1 — gtko cos doz)
+i(e(z,2) — 1)(%32 [, Je(2!,2")Gy(z, 2;2', 2')dz'd2’
+§(e(m,z) D1+ —17 57) [[, (2!, 2')G (2, z; 2, 2)da'd2'.
(B65)

B4 The Method of Moment Solution

There is no known exact solution for the integral equations which were developed
in the previous Section. In this section approximate numerical solution of these
equations is obtained by employing the moment method technique.

Let us divide the cross section of the dielectric structure into N sufficiently small
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rectangular cells such that the dielectric constant and the polarization current can

be approximated by a constant over each cell.
B4.1 E Polarization

First consider the integral equation (B58) which correspond to the E polarization
case. Using point matching technique the integral equation can be cast into a

matrix equation of the following form
(2171 =] (B66)

where [Z] is the impedance matrix, [J] is the unknown vector whose entries are
the value of polarization current at the center of each cell, i.e. (z,,2,), and finally

[V] is the excitation vector whose entries are given by

1

n = koY, n n. -1 tko sin ¢ozn ( ,—1ko cos dozn __
vn = tkoYo(€(2n, 2n)—1)e (e TR

eiko cosqSozn) (B67)

The off-diagonal elements of the impedance matrix can be obtained by approxi-
mating the Green’s function via its Taylor series expansion around the midpoint
of each cell and then performing the integration analytically. This technique al-
lows us to choose very small cell sizes without incurring too much error because
of the adjacent cells . For diagonal elements the free space Green’s function is
approximated by its small argument expansion and then integration is performed
analytically over the cell area. This allows us to choose rectangular shape cells
instead of squares that are approximated by circle of equal area in the traditional

method [Richmond 1965]. In order to give the expressions for elements of the

B-17



impedance matrix, let us define the following functions

Wz, na
(e ) = ~HEbord ) cos? 0, + o) ot gr —sint,) (B9
0fmn
HOY(kgre )
V(s O = = Ho" (ko) sin’ 0, + = S (sin® 07, - cos?0,,) - (BG9)
ol"mn

where 71 and 62 are defined as

(
\/(:cm —z0)? 4 (2m — 20)? ifg=s

on =) \/(@n = Ta)2+ (2m +22)? i g=i (B70)

L \/(a:m—:cn)2+(zm+zn+iz/)2 ifg=c

(
arctan(ZB=f)  ifg =3
Omn = arctan(Zatz)  if ¢ =14 (B71)
arctan(ﬁ";i'—zf%ﬂ) ifg=c

\

The diagonal entries are given by

fan = =1 = Helan,z0) = (G2 (8 /Act + 822) 47—~ ]

+(-’9°-—“A2’” )2 arctan(-ﬁﬁ) + (&—-—"%z (- arctan(ﬁf’:))}

A8 (0, 20) — Ve f5° e B (kors,, ) dv,

(B72)
and the non-diagonal entries are expressed by
fn = R (0, 2n) = DS (ko) + 252201, 05,,) 573

o2V (s 02) — 57 € B (ko) v},

mn) > mn

Here, Az, and Az, are the dimension of the n*® rectangular cell and v = 0.57721

is the Euler’s constant.
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The integrals in the (B72) and (B73) are evaluated numerically using Gauss-
legendre quadrature technique. It should be mentioned here that when the ob-

servation and source points are both close to the surface (ko(2zm + 2z,) < 1) for

some value of v = vy the distance function ry = \/(acm — Tn)2 4 (2m + 20 + 110)?
becomes very small. Consequently the integrand of the integral representing the
image contribution varies very sharply around this point. In order to evaluate the
integral accurately the contribution of the integrand around v should be evaluated
analytically. The integrand achieves its maximum when the absolute value of the

distance function is minimum. This minimum occurs at

Vo = \/ —Tn)t = (2m + 2n)? (B74)

If the argument of the square root in (B74) is negative then the distance function
takes its minimum at »o = 0. Figure B-5 shows the integrand function in (B72)
when both observation and source points are very close to the surface. The ana-
lytical evaluation of the integral around the point v, can be performed by using

small argument expansion of Hankel function, i.e.

e~ él)(kormn) ~ e [l + 2;7 + 2;iln(kogﬁ)] vo—Av <v <yy+ Av
and
L7 e B s, aw = (1 + 21 2
where
h= et 2 +ive) In BREiniedintind 4 suen In G0 bvlonn)

—Av[2 —In —f\/(ro — Av)? + 4AV (2 + 2, + 11p)?).
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50, ————————————————————————

40. F ' .

20.

10.

0,000 0.005 0.010 0.015 0.020

Figure B-5: The absolute value of the integrand function in (B73) for @ = 112—1230
at 10 GHz, 2, + 2, = 6 x 107°), and five values of z,, — z,: (—) 0, (- - - - - )
A8, (— =) M4, (— = —) 3A/8, (—-- - —) A/2.
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For self-image calculation we note that z,, = x,, which renders vy = 0 and

Av 12 2
[ o B s, oo = (vl + 22y 4 21
0 T T
where
) m+ 2 + 1A
Il =(2p+2,)In Zmt 2z 1AV + iAv[ln ko(zm + 2n + iAv) —1]
Zm + 2n 2

B4.2 H Polarization

In the H polarization case using the same partitioning of the cross section of the
dielectric body the coupled integral equations (B64) and (B65) can be cast into

the following coupled matrix equation

lex+Z2Jz= vz‘
Z3Jx+Z4\72= vz

(B75)

where as before Z;,---, Z, are N x N impedance matrices and V, and V, are the
excitation vectors. The above coupled matrix equation can be represented by a

2N x 2N matrix equation similar to (B66) with

\73: Zl

Z? V.’L‘
[(T]) = , [2]= yand [V] = . (B76)
JZ ZS 24 Vz

The elements of excitation vector are given by (m=1,---,N)

— y _ tko sin¢ozm (__,—tko cos ¢pz 1 ko cos
U = tkoYo(€(Zm, zm) — 1) cos goeko sindozm (_g=iko cos dozm 4 AT s st bozm)
UmiN = —1koYo(€(Zm, zm) — 1) sin geiho sinbozm
. p—1ko cos ¢pzm 1 1kg cos ¢g 2
(6 + 142RY, sec¢oe m)

(B77)
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Here again the entries of the impedance matrix are obtained by expansion of the
Green’s function over each cell as explained in the E polarization case. Because
of higher degree of singularity of the Green’s function in this case using these

expansions are even more important to avoid anomalous errors. The following
derivative of the functions defined by (B68) and (B69) are needed to obtain the

entries of the impedance matrix

U (100, 08,) = K3{H (kord,, ) cos? 03, (3 cos? 62,,, + Lsin? 02,,)

mn’ Y mn 8
in2 g4 .
+2(Z.—iq—’;:i";§~(3 cos? 02, —sin?09 )]

+H (korq )[7‘-754— cos? 02 sin? 07 i(ii‘%—e%g-(ii cos? 89 —sin?6? )]

+H; (kord,, ) [~ 3 cost 03, + #fhs (9 cos? 02,, + sin® 03,,)]
+H{ (kord,,,)[4 cos? 0, (cos? 62, — sin?03,)]}
(B78)
22U(r8,,62,) = K3{H (kord,,)[sin? 02, (2 cos? 62, + Lsin? 63, )

8

—!—2(°Tf’52r0§)%1(cos2 02, — 3sin?62 )]

r

+H{ (korg, o= i cos® 04, sin? 62, +4(c_0i$fﬁu(33in20q —cos” 07,
+H§1)(ko7"3nn)[_%sm 02 cos® 02 +(CA’%)%(QSIH 65 — cos®07,,)]
+H; (kors,,)[§ sin” 03, (cos? 03, — sin? 03,,)]}

(B79)
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agjazU(r?nm 02,.) = k2sinf? cos G%H{Hél)(kgrfnn)[% cos? 09, + gsin® 07,

-}—(TT‘};"‘—)z(sin2 9% . — cos?6? )]
+ Hf”(korgm)[kng(z sin” 07, — 3 cos? 07,,,) + i—y7 (cos® B, — sin® 02, )]
+HM (korg, 2)[—3cos? 0%, + _?)(cosz 0%, — sin® 0%,)]
+H{(kors, ) [§(cos” 03, — sin® 02,,)]}

(B8O0)

g—-V( T 03) = kz{H(l)(kor;l,m)[cos2 62, ( sin? 09, + écos2 62..)

+2(s—m:;qf%§(sin2 0%, — 3cos? 02 )]
+H§1)(k0rfnn)[%§iﬂ~(—4 cos?02 +sin?09 )+ ‘tﬂqﬁﬂ)m({i cos?09 —sin?f? )
-l—H(l)(kor?nn)[—% sin? 02 cos? 01+ (S,;‘—iq—;iﬁ;(g cos?0?, . —sin?09 )]

+H (kor o)[g cos? 02, (sin? 02, — cos? 02, )]}

(B81)
SV (i 00) = RE{(HS (kors,,)[sin 0, (2 5in 62, + L cos?2,,)
+2(Z°f 9) Teosrtma (35in? 02 — cos? 02 )]
+H{ (korgnn)[min-q—" sin® 0?7 cos?09 4(20"": 9) T2rma (3sin? 09 — cos? 09 )

+H{ (korq )|~ sin* 62, — (c"s <08 fag (9 5in2 99 — cos? 62.)]

+H 1)(k0rq )| sin? 62, . (sin? 02 — cos? 02 )]}
(B82)

225V (1 08,,) = KEsin 02, cos 0, {HS (kors, )[2sin? 07, + L cos? 02,
+orp (cos® 04, — sin®02,)]
+H{D (kors, ) [t (2 cos? 62, — 3sin? 09, ) + Ty (sin? 02, — cos? 62, )]
+H (kore,, ) [~ sin? 02 + T (sin? 62, — cos? 02, )]
+H, (kort,,,)[(sin? 02, — cos? 02,,)]}
(B83)

B-23



The non-diagonal elements of the impedance matrix are given by

. (1) s
funn = 2B () 1) (HE (kors,) sin? 0, + D7) (cos2 02— in?03, )
zn)? 5% s s zn)? s s
+IATL(% + kg)U(rmn’ amn) + -(AW)_(% + ktz))V(rmn’ emn)
, . 1) (ko 7d . .
—Hél)(kgr:nn) sin?! — —1——H((k0(ff’r")‘") (cos?8i  —sin?@! )
zn)? (O i opi 2n)? i pi
_L%L(a—ﬁ;? + kg)U(rmn’amn) - '(ATL(% + kg)V(T‘mn, amn)
(1) (g re
+8 5> e [Hg) (ko) sin? 05, + Hrleimal (cos? g, — sin? 02, )]dv},
(B84)
k2 Arn Az (1) (8 .
Zamn = R (@, 2) = D{[—HS (kory,) + ZHEn)] cos 03, 5in 65,
(Azn)® 52 s s (Azn)? 82 s s
+ 24 ﬁU(T’mn, omN) + A24 &2_8£V(rmn’0mn)
. (1) (g i . .
+[=H (korty,) + Hitond] cos 0, sin 0,
(Azn P a2 i pi (Azn)® 52 i pi
+ 24 ﬁU(rmm Hmn) + 24 %V(rmm omn)
1) (e
B J3° eV (— B (hurs, ) + 2400l o g2 sin g Jdu),
(B85)

ik2 Az, Az (1) s .
P (2, 2m) — D{[—H (korgyn) + 2 E5a)] cos 97 sin 6y,

Z3mn = 1

AT O U (1 0200) + 2L 2V (72, 02, )

24 Ox0z mn) ’mn 24 0zdz mn)mn
(- HP(kort,,) + ZE G cog i sin g,
— e U (v, O — B2L PV (56
8 J57 (= HO (kors,,) + Z3200%8a) cog g in g5, v},

(BS6)
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] 1) rs . s
Zamn = i‘g—é{ﬂéﬁ(c(xm, 2m) — D{HD (kor2,) cos? 02, + ﬂ-—(—kf-—"ﬂ)(sm?’ 03, — cos? 0 )

(koTgn)
Bl (B LR U(rs,,, 05,) + Lol (L RV (rs,, 65,

. ) (ko ri . . .
+H(kors, ) cos? 0, + B CRad sin? | cos? )

+M(3z2+k2)U( 61 ) f%)_( 92 +k2)V( 01 )

24 mn’ mn 24 822 Trno mn

=B 5 e H (ko) cos? B, + Pl sin? 6, - cost 0, ).
(BST)

Noting that cos 8 = cos#S, =0 and sin ! =sinf° = 1, the diagonal elements
are of the following form
Pt = =1 = 1(e(2n, 2) — 1){BAZAm I (ke [AG2 L AZ2) 4y — iz 3]
+2 arctan(%ﬁ) + (ﬁn%n)?(g - arctan(%l))}

1 Ty N H( kOTnn
HATAD (21, 2) — 1){— H (o) + P oria)
— (Bl (B U (rd 00 — LEE(E Ly (6 )
0 —By c HY (kors,
+8 f5° e~ [HG (kors,) — Zrletiadldy ),
(BSS)
Zonn = Z3nn=O (B89)

Zagn = —1— —( (T, 2) — ){M[l (—‘H/A:zc2 + Az2) + 4 — % — %]
+2(% - arctan(ﬁ':)) + (fadza)? arctan(—ﬁfﬁ))}

k2 AznAzy HY korjm
RO (T, 2m) — D Prpemial
+E8L(Z + YU, 05,) + L2l (L + R)V(r,, 0%,)

oo—l/ ann
—B s zﬁ—Tg)—d}

(B90)
The distance function in the integrand of all the integrals in (B84)-(B87) assumes

a very small number when the observation and source points are both close to
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the surface of the resistive sheet. Since the singularity of the integrands in this
case are much higher than the E polarization case analytical evaluation of the
integrals around the point vq is even more important. For example the integrand

in equation (B83) can be approximated by

(1) c
e P HG (kors,y) sin? 05, + Hpi2re(cos? 6., — sin? 65,,)] ~ e~ {H{Y (koro)
Zm+zn+ivg )2 1 : 7 : 101 (Zm—=2n )2 = (2m +2n +ivp )
Amfeel - [y (- 2 - 3) - fln ) esnlfatntinl)

(B91)
where small argument expansion of Hl(l)(korfnn) is used and v is set to v every-
where except in the denominators. Figure B-6 shows the variation of integrand as
a function of v for some typical values of source and observation points and Fig.
B-7 compares the integrand with its approximation. It should be noted here that
the phase of integrand varies very rapidly around vg resulting in faster variation
of the integrand than what is shown in Fig. B6. If the integrand in (B83) around

the Av neighborhood of v is denoted by S; then
Sy=" e P HO (koro)(zm + 20 + i) — (& — 2 — 1) — £ 1n kam)

[(@m = 20)? = (2m + 20 + ivo)?},

_e_ﬁ"c'ﬂlk% (wm - xn)z - (zm + 2, + iVO)?lIS

where
2 2
_ 1 6+ AV +2(zm—zn)Av
Iy 2(zm—2zn) In T+ AV =2z —z0)AV?
I = Av 2 —Av%—2(zm +2n+ivp )? + 1 124 A2 42(T —zn ) Av
3 (Em—2n)? (1E—A12)2+4A02 (2m+ 20 +1A 10 )2 4(zm —zn)3 n 7o+ AV —2(Tm—an)Av"

In evaluation of diagonal elements when z,, = z, then vy = 0 and the integral in
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Figure B-6: The absolute value of the integrand function in (B ) for 8 = 75 41154

at 10 GHz, z,, + 2, = 6 x 107%), and five values of z,, — z,: (—) 0, (

/\/8> (_ —) )‘/47 (”“ "_) 3)‘/8’ (_ oo _) /\/2'
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Figure B-7: The absolute value of the integrand function in (B ) and its approxi-

mation for 8 = 75 4 i154 at 10 GHz, 2,, + 2, = 6 x 107°), and z,, — z, = \/8 :

(

) integrand, (

) approximation of integrand.
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(B88) is approximated by

LR N ko(zm + 2n + 1v) i2 1
Integrand ~ (2_7r o 2) T In 2 T K&(zm + 2, + 1v)?

If 57 is the integral between 0 and Av, then

12 , oy 1
_T A
k2I T I +(27r s 2) Y

S1=
where

Iy= —i[(zm + 2a) In Zmtzatibe 4 Ay |y Rolombmmbit) Ay

II — Av
3 (zm+2n)(2m +2n +iAv)

To extract the contribution of the integrand in (B85) around vy we use similar

approximations as in (B84). If this integral is denoted by S, then

12 2.k 42
S = €7 (@ = 20)(2m + 20 + iv0) ({HS (horo) + (= = =L = 1) = “ln =22, —

The integral in (B86) around the point v is approximated by S3 where

Sg=52

and similarly for the integral in (B87) if Sy represents the integral around vy then

Sy= e P {HP (koro)(m — )’ +[(& -

[(@m = 20)? = (2 + 20 + 1w0) |} I

17r T2
_6—'ﬁyo-ﬂ.l[:g[(xm - xn)2 - (Zm + Zn + 2.1/0)2]]3

When z,, = @, then vy = 0 and this integral is represented by

X o
T r+(’-ﬁ_1mm

!
T 2r 2
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B4.3 Far Field Evaluation

Once the system of linear equation (B66) for the polarization current has been
solved the scattered field due to dielectric structure at any point in the upper
half-space can be obtained by means of (B56) and (B61) and (B62) for E and H
polarization respectively. Here again it is convenient to approximate the integral
representing the scattered field by summation of integrals over each cell. For E

polarization we get

E;(x,z)z :l“-g-ZQ-ZN Jy(@n, 2n) Az, Az,

n=1
{H (kors) + 233 LU (3, 02) + B3 BV (00 (B92)
—afi7 e Hy(kor$)dv},
where r? and 0% (¢ = s or ¢) are similar to those defined in equations (B70) and
(B71) with z,, and z,, replaced by z and z respectively. The far zone radiation
pattern may be obtained by employing expression (B92) and the large argument
expansion of Hankel function (keeping the terms up to the order p%). If the angle

between the direction of observation and normal to the sheet is denoted by ¢, as

shown in Fig. B4, then
re & p — T, Sin @y — 2y, COS P (B93)

Finally employing the definition of far field amplitude as given by (70) in the upper

half-space (| ¢, |< %) we have

Pf(do,¢s) = §=RATN J (2n,2,)Az, Az {[1 — ﬁﬁ%ﬁsin?‘ by — @—%‘ﬁ cos? @]

4 n=1

.e—iko sind)szn(e—-iko cos pgzn __

1 1kg cos ¢sz
142RY, cosque ) n)}

(B94)
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The far field amplitude in the lower half-space also can be found if we use the
Green’s function for lower half-space as given by equation (B22). Again employing
distant approximations the far field amplitude in the lower half-space (| ¢, [> 7)
can be obtained from

P-(¢o, ¢5) = y:—kglu N Jy(Zn,y 20) Az, Az [ — 1&24’”‘"—£sin2 by — %ﬁ cos? ¢,]

_e—iko(sin GsTn+cospszn) . —2RYg cosds
1-2RYy cos¢s *

(B95)
The scattered field in the H polarization can be obtained from equations (B61)
and (B62) which can basically be expressed similar to (B92). In far zone such

expression can be simplified by noting that

é%ﬂél)(ri,(ﬁ) ~  —H{(re,09)sin? 02

;lgg—zHél)(rq 01) ~ —H((,l)(rq 02) cos® 02 (B96)

n’n n'’n

fgafazHél)(Tq 07) ~ Hél)(r" 62) cos 01 sin 92

n Un n Un
and further as distance from origin to the observation point (p) approaches to
infinity then 82 — ¢,. Under the mentioned conditions we notice that the scattered
field in the polar coordinate system has only ¢ component. Using large argument
expansion of Hankel functions and expression (B44) the far field amplitude in the

upper half-space is of the following form

P} (40, ¢s) = &—_k%Zu YN Az, Azl — i-k"‘;%ﬁ sin? ¢, — ik"—éjﬁﬁ cos? ¢,

. ,—tko sin ¢pszn : —tkg cos bs2n etho cos pszn
e {J:(2n, 2s) sin ¢(e + 1o RTreecdr)

_'Jz(xna zn) COos ¢s(6_ik0 €08 $s2n - li;(};;; :;:s, )}’

(B97)

B-31



and in the lower half-space (| ¢, |> %) we get

- Zn 2, Zn 2
P (d0,6:) = ¢4 L1, Avalz[1 — 255 sin g, — gk cos® 4]
.emtho(sindsantoosdazn) . (] (g, 2,)sin ¢y — Jo(Tn, 25) COS B4

( —2RYp sec ¢, )
1-2RYysec¢s/*

(B98)
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