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Abstract

A polarimetric calibration procedure useful for both laboratory and field mea-
surements is introduced. The procedure requires measurements of three known
targets in order to determine the distortion matrices that characterize the effect
of the measurement system on the transmitted and received waves. The form
of the scattering matrices for the known targets is arbitrary, with the restriction
that at least one scattering matrix be invertible. The measured scattering matrix
associated with this target must also be invertible. The approach involves form-
ing matrix products from the measured scattering matrices to obtain a similarity
transformation where the transforming matrix is the unknown distortion matrix.
The relationships between the eigenvalues and eigenvectors of the similar matrices
are then used to solve for the distortion matrices to within an unknown absolute
phase. A special case, wherein the transmit and receive distortion matrices are
the transpose of one another, is considered also. This form can be used with some
single antenna systems, and it has the advantage that only two known targets need
to be measured. In this case, the measured and theoretical scattering matrices of
both targets must be invertible. Finally, application of the technique to measuring

the propagation characteristics of random media is briefly discussed.






1 Introduction

A Traditional radar system transmits and receives a single polarization. Hence,
the scattering characteristics of the illuminated scene are obtained for only one
transmit and receive polarization combination. Because the radar measures only
the amplitude of the scattered wave, any information contained in the phase or
polarization of the wave is lost. However, a polarimetric radar system measures
the complete scattering matrix (amplitude and relative phase) of the illuminated
scene using an orthogonal set of polarization configurations, and this information
can be used to synthesize the scattering characteristics of the scene at any ar-
bitrary transmit and receive polarization combination [1,2]. Much of the early
research in polarimetry concentrated on point targets, and an extensive review of
this history is given by Guili [3]. Polarimetric radars and techniques have received
increased attention in the last few years, following the development of several po-
larimetric imaging radar systems [1,4,5]. Laboratory and truck-based polarimetric
radars have also been developed with the advent of the HP 8510 vector network
analyzer [6,7,8,11]. With an increasing number of operating polarimetric radars,
it has become important to develop effective techniques for accurate polarimetric
calibration.

Calibration of polarimetric radar systems has been considered by several in-
vestigators in recent years. A technique proposed by Barnes [9] characterizes the
errors introduced by the transmitter and receiver in terms of distortion matrices

that alter the measured scattering matrix of the target. This calibration tech-



nique requires the measurement of three known targets, some of which have zero
elements in their scattering matrices. Two algorithms are proposed by Barnes,
differing only in the type of known targets to be measured. A technique similar to
the one by Barnes was used by Freeman, et al. [10] where the known target scat-
tering matrices were realized by Polarimetric Active Radar Calibrators (PARC's).
A technique introduced by Riegger, et al. [11] characterizes the system errors in
terms of coupling coeflicients between elements of the theoretical scattering matrix
and elements of the measured scattering matrix. It is in essence the same model
as used by Barnes, except that Riegger has expanded the matrix product which
resulted in twice the number of unknowns. In its most general form, this technique
would require the measurement of four known targets to solve for sixteen unknown
coupling coefficients. However, Riegger neglects four of the coupling coefficients
and reduces the required number of known targets to three.

The calibration techniques described above have a number of disadvantages.
The algorithms used by Barnes and Freeman depend upon the actual known tar-
gets that are measured. If a new set of targets is used, the derivation must be
repeated. In addition, if the scattering matrices of at least some of the targets
do not contain zeros, it becomes difficult (if not impossible) to solve for the ele-
ments of the distortion matrices. In many cases, the scattering matrix elements
are known to be non-zero, but one must assume they are zero for derivation of
the calibration algorithms. Relying on certain elements of the scattering matrix

to be zero places a considerable restriction on the targets that can be used. This



is seen as a major disadvantage, because one would like to examine a variety of
known targets and choose the best possible set. The technique used by Riegger,
as already mentioned, introduces more unknowns than required and is therefore
inefficient.

Two additional polarimetric calibration techniques are of interest because they
require only a single non-depolarizing target (such as a sphere or trihedral) to
correct for co-polarized channel imbalance and absolute magnitude errors. The
cross-polarization coupling (or cross-talk) errors are corrected using unknown tar-
gets. The first technique, proposed by Sarabandi, et al. [12] achieves calibration of
the cross-talk errors by measuring any arbitrary depolarizing target. Knowledge of
the scattering matrix of the arbitrary target is not required. A similar technique
by van Zyl [13] uses measurements of distributed natural targets to determine the
cross-talk errors. The advantage of these techniques is their insensitivity to target
positioning, which makes them particularly useful in field calibration. The disad-
vantages, however, include (1) the radar systems are assumed to be reciprocal (i.e.,
the distortion matrix for reception is the transpose of that for transmission), (2)
the cross-talk errors are assumed to be small (i.e., cross-pol isolation is good), and
(3) in the case of the technique by van Zyl, the co-polarized and cross-polarized
scattering matrix elements from natural distributed targets are assumed to be
uncorrelated.

The purpose of this paper is to develop a general polarimetric calibration tech-

nique that is independent of the scattering matrices of the known targets to be



measured. The errors are modeled as distortion matrices (see Section 2) in the
same way as was done by Barnes [9]. No assumptions are ide about the mag-
nitude (or form) of the distortion matrices. Instead of solving a set of possibly
nonlinear equations for the elements of the distortion matrices, an eigenvalue ap-
proach is employed. Two types of polarimetric radar systems will be considered:
(1) dual antenna systems for which the distortion matrices for transmit and receive
are unrelated and (2) specialized single antenna systems for which the distortion is
reciprocal. The first type is considered in Section 3, and the second type is consid-
ered in Section 4. Finally, we consider application of the technique to measuring

the propagation characteristics of random media in Section 5.

2 Distortion Model

When using an ideal polarimetric radar, the measured scattering matrix M of
a point target would be equal to its theoretical (or actual) scattering matrix P.
Because this is rarely the case, the errors introduced by the radar system must be
determined and then the process must be inverted in order to obtain an estimate of
the actual scattering matrix. In the present work, we consider two types of errors:
additive errors due to the presence of some unknown background and multiplicative
errors which modify the polarization, amplitude, and phase of the transmitted and
received waves. The multiplicative errors occur because of unknown gain and phase
differences between the vertical and horizontal channels of the system. In order

to account for these errors, we write the measured scattering matrix M for some



point target P as
M = B + ¢/*r,,t,,RPT, (1)

where the matrix B represents the effect of the background, and the distortion
matrices T and R represent the effect of the antenna system (or the multiplicative
errors) for transmit and receive, respectively. Throughout the paper, all matri-
ces will be considered in the linear (vertical and horizontal) polarization basis;

therefore the matrices of equation (1) re represented by

Myy My bvu bvh Pvv  Puh
M = , B= , P= , (2)
Mhy Mk by ban Phv  Phh
1 Tuh 1 tvh
R = , and T= (3)
Thy Thhk thy thn

Notice that R and T are relative matrices, meaning that the entire matrix has been
divided by the first element which is then used as a common scalar constant. The
phase factor e/® accounts for propagation to the target and back, and it depends
on the exact position of the target phase center.

With some single antenna systems, the transmit and receive distortion matrices

are simply the transpose of one another (i.e., the system is reciprocal) resulting in

the equation

M =B + ¢/*a? ATPA, (4)



where the distortion matrix A is given by

1 ayh

A= . (5)
Ahy  Qpp

If the matrices B, T, and R (or A in the reciprocal case) can be determined,

then the actual scattering matrix P can be obtained from M through one of the

expressions
|
P = e_”r ; R (M -B)T! (6)
B 'll)‘U VU _ _
P = Jd’aT(AT) 'M-B)A™, (7)

which are obtained by rearranging equations (1) and (4). The propagation phase
factor e7¢ in equations (6) and (7) is difficult to measure, since the phase center
of the target and the target position must be known exactly. However, in most
cases only the relative phase of P is desired.

By making a single measurement with no point target present, we can directly
determine the matrix B when the background is stationary (M = B when P = 0).
Considering only a stationary background, the dual antenna and specialized single

antenna problems in (1) and (4) are thus reduced to

N = e®r,t,, RPT (8)

N = e%a? ATPA, (9)

where N = M — B is now a known matrix. If T and R (or A) are known, the

actual scattering matrix P can be obtained from one of the expressions

P = e—de 1

R-INT"! (10)

T‘U‘U U
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P = e'j¢—12—(AT)‘1NA'1, (11)

aU‘U

where we have simply replaced M — B with N in (6) and (7).

In the next two sections, techniques for determining the distortion matrices
for the general dual antenna problem and the specialized single antenna problem
are discussed. We will assume that the background scattering matrix has been

removed as in equations (8)-(11) above.

3 General Dual Antenna System

Consider measurements of the form in (8) on three different targets with known
scattering matrices. Using subscripts to denote the corresponding target and mea-

surement scattering matrices, we obtain three matrix equations;
N; = e’%r,t,,RP;T, with i=1,2,3 (12)

where N; and P; are known matrices, but R and T are unknown. Notice that a
subscript is also used on the absolute phase to account for the positioning of the
targets. The phase centers of the three targets will generally be located at different
distances from the radar.

The following derivation requires that both the measured scattering matrix N;
and the target scattering matrix P; be invertible for at least one of the targets.
Without loss of generality, we assume that this requirement is satisfied with the

first target. Premultiplying both N, and N3 by N7! and denoting the products



as Nt and N—T, we obtain the simiiarity relations

Nr = @=*T-'p,T (13)

Nr = ®=4)T-1P,T, (14)

where N7 = N7'N;, Ny = N7!N;, Pr = P{'P;, and Pr = PP,
We now consider an important property relating the eigenvalues and eigenvec-
tors of similar matrices [14, pp. 165-166]. The eigenvalues and eigenvectors of the

matrices N7 and Pr in equation (13) satisfy the relations

PrXr = XrA7 (15)

NrYr = YrAr, '6)

where AT and A7 are the diagonal matrices composed of the eigenvalues of Pr

and N7, respectively. The eigenvalue matrices are related by the expression
Ay = Aqel(#1-92), (17)

Notice that the propagation phase difference, ¢; — ¢;, between the phase centers
of any two known targets can be determined using equation (17), even though this
fact is not used in the present development. The corresponding eigenvectors of Pr
and N7 form the columns of X7 and Y7, respectively. Equations (15)-(17) state
that the eigenvalues of similar matrices are equal. Furthermore, the eigenvectors

of P7 and Nr are related by the expression

Yr= T—1XT. (18)



However, equation (18) does not uniquely specify T since the eigenvectors com-
prising X7 and Yr have arbitrary scale factors. Upon independently solving the
eigenvalue problems in (15) and (16) for the matrices X7 and Yr (arbitrarily

choosing the scale factors), the matrix T is uniquely specified by
Yr = T'XtC or (19)
T = X7CY7l, (20)
where C is the diagonal matrix with elements ¢; # 0 and ¢; # 0 on the diagonal.

In the same way, the eigenvalues and eigenvectors of the matrices Ny and Py

in equation (14) satisfy the relations

PrXr = XrAp (21)

NrY¥Yr = YrAr, (22)

where again XIT and A7 are composed of the eigenvalues, and X7 and Y7 are
the matrices whose columns are given by the corresponding eigenvectors. The

eigenvalues of P and N7 are related by the expression
A7 = ApedB1-%0), (23)
From these results, we obtain another matrix equation for T;
T =X;CY;, (24)

where C is the diagonal matrix with elements ¢, # 0 and ¢; # 0 on the diagonal.

Equating (20) and (24), we obtain
XrCY7' =X;C Y, (25)

9



and after rearranging, (25) becomes
CY;'Yr = X;7'XC. (26)

If the eigenvalues of Pr, Nr, Pr, and Ny are distinct, then the corresponding
eigenvectors are linearly independent. Therefore, the matrices X7, Yr, X7, and
Y r have rank two, which means that they are nonsingular and invertible [14, p.
149].

Expanding equation (26) and writing it in terms of four scalar equations, we

have

aA(X7)(Y22Tyy — 112021) = GA(Y7)(222T11 — T12T21) (27)
aA(Xr)(y22¥12 — Y12¥22) = CA(Y7)(220T12 — 212T22) (28)
AXr)(y11Tn — y27n) = GA(Y7)(zuTa — 2aTn) (29)
e AXT) (11722 — yu¥12) = ©A(Y7)(z11T22 — 201712), (30)

where Zn, Ymn, Tmn, and 7,,,, are the elements of the matrices X7, Yr, X, and
Y 1, respectively. The notation A(...) is used to denote the determinant of the
argument. Assuming that equations (27)-(30) are all nonzero, we can obtain two

expressions for ¢;/c; and two for ¢, /%;;

& _ (2uTu — ZnTn)(¥2¥u — Y120a) (31)
a (222711 = 12T ) (Y111 — Y21911)
&2 _ (211T22 — T0T12) (22712 — Y12¥22) (32)
o] (22712 — 12T22) (Y122 — Y21712)
] _ (222T11 = 12T ) (Y2272 = Y127a2) (33)
&) (222T12 = T12T22)(Y22T11 — Y12721)
C2 _ (21T — T0T11) (Y1020 — Y21712) (34)
[ (2122 — 2nT12) (YT — Y21T11)

10



As long as any two of the equations (27)-(30) are nonzero, we can obtain either
c2/cy or T2/t from at least one of equations (31)-(34). Without loss of generality,
we assume for the remainder of the development that ¢,/c; is known.

The first element of T must be unity, and from (20) it is given by

1

m (c1211Y22 — C2%12y2n1) = 1. (35)

This expression can be used to obtain ¢; and ¢; in terms of the ratio c;/¢y;

c -1

¢ = A(YT) (l'uyzz - 6—31'123/21> (36)
C1 -1

C; = A(YT) (C—2$11y22 - ~’E12y21> . (37)

The matrix R can also be determined using a similar procedure. Postmultiply-

ing both N, and N3 by Nj?, we obtain

Np = @ *RPRR™? (38)

Np = @ 4)RPRR, (39)

where Ngp = NyN7', Np = N3Ni!, Pr = P,P7}, and Pp = P;P;%.
Since equations (38) and (39) are again similarity transformations, we can uniquely

specify R by the relations

R = XgD Y}—gl (40)

R = XgDY,, (41)
where the eigenvector matrices Xg, Y, Xg, and Y g satisfy the relations

NeXp = XgpAh (42)
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PR.YR = YRAR (43)
rXp = XgAp (44)

PrYr = YrAg, (45)
and the eigenvalue matrices are related by the expressions

Ay = ARej(¢z—¢1) (46)

X,R = Xnej(¢3_¢l). (47)

The matrices D and D are analagous to C and C; they are diagonal with elements
(di # 0, dz #0) and (d; # 0, da # 0), respectively. Equations (40) and (41) are of
the same form as (20) and (24), therefore equations (31)-(37) can be used to find
expressions for d; and d, by replacing ¢ with d and letting Z,mn, Ymns Tmn, and 7,
denote the elements of the matrices X, Yr, Xr, and Y g, respectively.

With the distortion matrices known, the absolute magnitude can be obtained
by substituting back into one of the original measurements. Equating the elements
of the matrices on both sides of (12) and taking the magnitude, we obtain for the

mnth element

|(Ni)ma|

Tvutvv =TT n N (48

The best estimate of |r,,t,,| will be obtained by choosing the target for which the
theoretical matrix P; is most accurate.

Using (48), the scattering matrix P for an unknown point target can be written

12



in terms of the measured scattering matrix N;

Poei? 1 RINT™!, (49)

Irvutvvl

where ¢’ is the unknown absolute phase given by

(50)

=0+ tan™! (___Im{rwtvu}> .

Re{r,tyo}

4 Specialized Single Antenna System

In general, single antenna radar systems, like dual antenna systems, have differ-
ent distortion matrices for transmit and receive. Even though the single antenna
affects the transmitted and received waves in a similar manner, the remaining por-
tions of the transmit and receive paths through the system affect them differently.
Therefore, equation (1) should be used to describe the measured scattering matrix
for a general single antenna system, and the technique of Section 3 should be used
in calibration.

In many cases, the antenna assembly is the major contributor to the distortion
errors, and the contributions due to the different transmit and receive paths is neg-
ligible. Usually with such systems, care has been taken to make the transmit and
receive paths practically identical, and only antenna effects need to be considered.
The measured scattering matrix can then be described with equation (4), and a
slightly different technique can be used in calibration. The major advantage of the
technique is that only two known targets need to be measured to fully calibrate the

measurement system. The technique is described in the following development.
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Consider measurements of the torm in (9) on two different targets with known
scattering matrices. Using subscripted notation similar to that of equation (12),

the measured scattering matrix of the i** target is
N; = e%a? ATP,A  with i=1,2 (51)

where P; is the known scattering matrix of the target. The unknown distortion
matrix is A. The calibration technique to be described requires a more restrictive
condition on the form of the known scattering matrices than does the general
technique of Section 3. With the present technique, both calibration targets must
have invertible scattering matrices, whereas only one was required with the general
technique.

Forming the products N = N;'N; and N = (N;N;!)7, we obtain the two

similarity transformations
N = G1-6)pA-1pA (52)
N = ei(¢2—¢1)A—1ﬁA’ (53)
where P = P;'P; and P = (P,P7!)T. This method can be applied to the
specialized single antenna system only because the transmit and receive distortion

matrices are related by a transpose. In a manner similar to that in Section 3, we

can uniquely specify A by the relations

A =

>
)]
=
L
=
N

A =

ol
@l
|
=
=



where the matrices G and G are diagonal with elements (¢; # 0, g2 # 0) and
(G, # 0, g, # 0), respectively. The eigenvector matrices X, Y, X, and Y satisfy

the expressions

PX = XA (56)
NY = YA (57)
PX = XA (58)
NY = YA, (59)

where the eigenvalue matrices A’, A, X’, and A are related by

A = Ae@=®) (60)

el

A = Allba—¢1) (61)
Equating (54) and (55) and then rearranging, we obtain
GY 'Y =X"'XG. (62)

Equation (62) is of the same form as (26), so g; and g, are given by equations (36)
and (37) with g replacing c. Here, the elements Zmn, Ymn, Tmn, and J,,, denote
the elements of the matrices X, Y, X, and Y, respectively.

By substituting equation (54) into (51) and equating the elements on both

sides, we obtain for the mnt" element

|a2 _ !(Ni)mnl

- |(ATP{A)mnI. (63)

As in the general technique, the best estimate of |a2,| will be obtained by using

the known target for which the theoretical matrix P; is most accurate.
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We now have the effect of the distortion matrices determined to within an
unknown phase factor. The scattering matrix for some unknown point target can

be written as

1

P=¢
2
|a‘l}1)

(AT)"INA?, (64)

where ¢’ is the unknown absolute phase given by

()

Rel{d?, ) (65)

¢ =¢+tan! (

5 Application to Measuring the Propagation
Characteristics of Random Media

Experimental investigations into the nature of propagation in random media
have traditionally used two measurement configurations. The first type involves
the use of a transmitter on one side of the random medium (considered as a layer)
and a receiver on the other side. Measurements are made at a number of spatial
locations through the layer to determine the statistics associated with the attenua-
tion. In cases where only the extinction in the forward direction is desired, angular
resolution is obtained by making the antenna beamwidths small. This technique
is cumbersome to use, particularly at oblique incidence to the random layer, due
to the difficulty associated with proper pointing of the small beamwidth antennas.
A second technique uses a transmitter and receiver placed at the same location
(radar mode) on one side of the random layer and a point target on the other side.
Because the received signal contains contributions from both the point target at-

tenuated by the medium and the random layer itself, the precision associated with

16



the measurement of the two-way attenuation depends upon the amplitude ratio
of the two contributions {15, pp. 768-770]. Thus, the technique requires a point
target with a large scattering cross section to obtain precise attenuation measure-
ments. Furthermore, with this technique only the amplitude of the attenuation is
measured; the propagation phase is usually ignored.

Recently, a polarimetric technique for measuring the propagation character-
istics of random media was proposed and then demonstrated by measuring the
characteristics of a forest canopy [16],[17]. The technique uses the same configura-
tion as the second technique above, with the transmitter and receiver on one side
of the random layer and a point target (trihedral) on the other side. The difference
is that polarimetric measurements are made of the canopy scattering matrix with
and without the presence of the trihedral underneath the canopy. The measure-
ment without the trihedral yields the scattering matrix of the canopy alone, and

the scattering matrix of the canopy/target combination is modeled as [16],[17]
S=T+ ¢ LTPL, (66)
with
S = scattering matrix of the canopy/target combination
L = one-way relative propagation (loss) matrix of the canopy
P = scattering matrix of the point target alone

T = scattering matrix of the canopy (trees) alone.

17



The major restriction with the tecnnique as described in [17] is that it assumes L
to be a diagonal matrix. For the canopy and frequency (L-band) considered, this
was a reasonable assumption to make. However, a more general technique without
the restriction on the form of L would be applicable to a wider range of problems.

The calibration technique described in this paper can be used to extend the
method above to cases where L is an arbitrary matrix. We notice that equation
(66) is in the same form as (4) representing the specialized single antenna system.
In essence, the propagation through the random medium is treated as a transfor-
mation analagous to that produced by the antenna for the single antenna system.
By measuring the canopy alone and two additional known targets underneath the
canopy, the method described in Section 4 can be used to determine the two-way
extinction and the relative propagation (or loss) matrix L of the canopy.

The technique can be further extended by considering the propagation through
the canopy as non-reciprocal. Denoting the loss matrices in the upward and down-
ward directions through the canopy as U and D, respectively, the scattering matrix

of the canopy/target combination becomes
S = T + ¢’®uy,d,, UPD. (67)

Since equation (67) is of the same form as (1), the method of Section 3 can be
used to determine the two-way extinction and the relative loss matrices U and D.

The application of the techniques discussed in this paper to measuring the
propagation characteristics of random media (specifically vegetation) will be the

subject of future investigation by the authors.
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6 Conclusions

A general polarimetric calibration technique has been developed, requiring the
measurement of at most three known targets. The form of the scattering matrices
of the known targets is arbitrary (but must be known), with the restriction that
at least one target scattering matrix must be invertible. The errors introduced
by the transmitter and receiver are modeled by distortion matrices that alter the
measured scattering matrix of the illuminated target. A set of eigenvalue problems
are then solved on matrix products involving the measured and theoretical scat-
tering matrices to determine the distortion matrices. Calibration of the absolute
magnitude is achieved by inserting the measured distortion matrices back into one
measurement and solving for the magnitude. The two distinct advantages of the
technique are that (1) almost any targets can be used and (2) no assumptions are
made about the magnitude of the distortion.

The technique is applicable to both laboratory and field measurements, with
the known targets being chosen according to the application. For example, in a lab-
oratory environment the emphasis should be placed on accuracy of the theoretical
scattering matrices of the calibration targets. The sensitivity to positioning of the
targets is only a secondary consideration, since one would conceivably have very
fine control of target orientation. In field calibration, one should choose targets
that are generally insensitive to positioning, since this aspect is the most difficult
to control. The errors in the theoretical scattering matrices for these calibration

targets can be determined with laboratory measurements using a different set of
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very accurate calibration targets. Hence, the actual scattering matrices can be

determined.

Further research is being conducted to determine the best possible calibration
targets to use with the techniques described in this paper. The results of this re-
search and the implementation of the techniques will be considered in an additional

paper to follow.
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