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CHAPTER 1

INTRODUCTION

In this chapter, a brief motivation for the dissertation is offered, some fundamental
concepts are presented, a high-level description of the proposed approach is given and

the organization of the dissertation is outlined.

1.1 Motivation

Most practical electromagnetic problems dealing with microwave circuit charac-
terization, scattering analysis or wireless communication contain regions where the
field exhibits rapid variations and others where it varies slower. Rapid spatial field
variations are often encountered in dense materials, at material boundaries and in
the vicinity of corners, edges and small geometrical details while the opposite typ-
ically is the case away from such regions. For microwave circuits, examples are
stripline, microstrip, slotline or coplanar line structures used extensively for con-
structing complex microwave components such as inductors, capacitors, resonators,

filters and transformers of use in various system circuitry. For scattering analysis,



examples are different airborne or ground vehicles for which accurate radar signa-
ture predictions are necessary for target recognition and observability minimization
in commercial and military frameworks. For wireless communication, examples are
numerous narrowband and broadband metallic printed antennas (rectangular or cir-
cular patches, bowties, spirals, log-periodics and tapered slots) possibly backed by
dielectric or magnetic substrates of interest for antenna miniaturization and multi-
frequency communication purposes.

Brute force application of traditional sub- or entire-domain method of moments
(MoM) is of limited applicability for large-scale three-dimensional electromagnetic
problems involving inhomogeneous media. Whether solving for volumetric polariza-
tion currents or repeatedly invoking equivalence principles to solve for equivalent and
induced surface currents at material boundaries, the MoM leads to a set of linear
equations described by a fully populated system matrix. As the number of unknowns
increases, the central processing unit (CPU) time and memory requirements for com-
puting and storing matrix elements become unrealistic. Moreover, for electromagnetic
problems characterized by regions with different degrees of field variation, uniform
discretization at a rate appropriate in the regions where the field varies the most
typically leads to excess discretization elsewhere contributing even further to an un-
manageable computational problem. Acceleration methods like the fast multipole
method [71] or the adaptive integral method (AIM) [12] can be invoked for avoiding
the storage of a full matrix and for speeding up matrix-vector products within the
iterative solver but these approaches add significant complexity to the formulation

and implementation. The problems associated with uniform discretization through-
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out the computational domain can partially be remedied by changing the sampling
rate within the computational domain. However, such non-uniform meshing does not
address the problems pertaining to a full system matrix and is unattractive in practice
since robust software packages for non-uniform meshing are rare and expensive.

Brute force application of lowest order scalar or vector finite element (FE) ap-
proaches only partially alleviates the problems related to traditional sub- or entire-
domain MoM. The finite element method (FEM) as well as hybrid finite element
/ boundary integral (FE/BI) methods have been demonstrated to be attractive for
modeling complex materials and fine geometrical details [91] and FE approaches for
solving partial differential equations inherently overcome the MoM problem of a full
system matrix by leading to sets of linear equations described by sparsely populated
system matrices. However, the problems related to uniform versus non-uniform dis-
cretization are as serious for FE approaches as for MoM approaches.

Robust and efficient modeling of electromagnetic problems characterized by re-
gions with different degrees of field variation calls for a numerical method that is
capable of accurately and efficiently modeling complex materials and geometric de-
tails, leads to a set of linear equations described by a (partly) sparse system matrix
and in addition offers the possibility of locally increasing resolution. To this end,
various MoM solutions utilizing wavelets have been proposed. Wavelets are classes
of functions based on the elegant mathematical theory of a multi-resolution analysis
(MRA) [21, 90, 99] and therefore have several attractive properties such as contain-
ment, upward and downward completeness, scaling, translation and, possibly, orthog-

onality or semi-orthogonality. They have been applied extensively in mathematics,



electromagnetics and signal processing for the past decade [21, 73, 90].

Within the context of the MoM in electromagnetics, wavelets have been applied as
basis and weighting functions to directly produce a set of linear equations described
by a system matrix that can be sparsified via thresholding [84]. Alternatively, one can
use traditional sub-domain MoM to generate a set of linear equations described by
a full system matrix and subsequently utilize a wavelet based transformation matrix
and thresholding for sparsification [102]. Similar to the fast computation of a discrete
Fourier transform via the fast Fourier transform [90], wavelet based MoM matrix
elements can be computed in an extremely efficient manner using Mallat’s fast wavelet
algorithm [56, 73]. In addition, matrix elements small enough for thresholding can
under certain circumstances be predicted a priori [73], lowering the computational
and storage requirements even further. Moreover, wavelet based MoM matrices are
inherently well-conditioned [73]. Despite all these attractive features, wavelet based
MoM analysis is not free of serious drawbacks. The definition and implementation
of wavelets in the vicinity of discontinuities and material boundaries is tedious and
unattractive [73]. Also, wavelets on arbitrarily curved three-dimensional surfaces are
notoriously difficult to implement. Furthermore, the choice between a host of different
wavelets (Haar, Daubechies, Shannon, Meyer, Battle-Lemarié and Littlewood-Paley
to mention just a few) is far from obvious when considering such factors as trade-off
in resolution between domains, threshold limit, infinite versus compact support and
orthogonality versus semi-orthogonality.

In summary, disjoint regions with different degrees of field variation are a nearly

inevitable part of any practical electromagnetic application. Accurate simulation of



electromagnetic problems comprised of such regions is therefore of significant practical
importance but traditional numerical methods often have difficulties doing so. It is the
goal of this dissertation to develop a FE based multi-resolution method for accurate

and efficient analysis of electromagnetic problems of that particular nature.

1.2 Fundamental concepts

In order to understand the approach proposed in this dissertation, certain funda-
mental concepts must be familiar. These are presented in the following.

For the initial application of the FEM in mechanical and civil engineering [108], the
FE expansion of an unknown quantity was based on groups of scalar basis functions
whose unknown expansion coefficients are associated with nodes of a finite element
mesh. These groups known as node based finite elements are suitable for model-
ing scalar quantities but typically not so for simulating vector electromagnetic fields.
When assigning vector field values to element nodes, values may need to be specified
at locations where the true field is undefined (corners, edges), spurious modes can
be generated and the enforcement of the boundary conditions occurring in electro-
magnetics can be a challenging task. These drawbacks prompted the introduction of
groups of vector basis functions whose unknown expansion coefficients are associated
with edges, faces and cells of a finite element mesh. These groups are known as tan-
gential vector finite elements (TVFEs) [15] and have been shown to be free of the
shortcomings of node based finite elements [96].

A TVFE is referred to as polynomial-complete to a given order n if all possible

Tt



polynomial variations up to and including order n are captured within the element
and on the element boundary. Nédélec pointed out [61, 62] that it is not neces-
sarily advantageous to employ polynomial-complete TVFEs. It was proven that a
polynomial-complete expansion of a vector field A can be decomposed into a part
representing the range space of the curl operator (V x A # 0, A # V¢) and a part
representing the null space of the curl operator (V x A = 0, A = V¢). For rep-
resentation of electromagnetic fields in a source free region, it suffices to employ a
TVFE that is complete only in the range space of the curl operator. Since such a
TVFE captures polynomial variations of order n interior to the element and poly-
nomial variations of order n — 1 for the tangential field along edges, it is referred to
as a mixed-order TVFE. In line with the syntax adopted by Webb [97], it will be
referred to as complete to order n — 0.5 in the remainder of this dissertation. For
extensive discussions of mixed-order TVFEs versus polynomial-complete TVFEs, see
[15, 61, 62, 67, 68, 85].

A TVFE is referred to as interpolatory if the vector basis functions forming the
TVFE interpolate to (tangential) field values within or on the boundary of the ele-
ment. For an interpolatory TVFE, the meaning of the expansion coefficient corre-
sponding to a given vector basis function is typically easy to interpret physically.

A class of TVFEs is referred to as hierarchical if the vector basis functions forming
the TVFE of order n — 0.5 are a subset of the vector basis functions forming the
TVFE of order n + 0.5. This desirable property allows use of different order TVFIs
in different regions of the computational domain for efficient discretization of the
unknown quantity - an approach we will refer to as selective field expansion. This

6



selective choice of TVFEs over the computational domain can lead to a memory and

CPU time reduction as well as improved accuracy.

1.3 Proposed approach

The FEM as well as hybrid FE/BI methods have been demonstrated to be attrac-
tive for modeling complex materials and fine geometrical details [91]. They implicitly
allow a local increase of resolution, either by locally increasing the mesh density
(h-refinement), the polynomial order of the expansion (p-refinement) or both (hp-
refinement). In the context of FE or FE/BI methods, a discretization scheme em-
ploying hierarchical mixed-order TVFEs permits robust combination of expansions of
different orders within a computational domain. In a straightforward manner, it al-
lows use of lowest order expansions where the field varies slowly and use of (different)
higher order expansions where the field varies rapidly for an appropriate discretization
of the unknown electromagnetic field. Although not formulated within the stringent
framework of a MRA, such a discretization scheme is truly a multi-resolution dis-
cretization scheme in the sense that it allows different levels of field modeling within
a computational domain. The concept of hierarchality is widely known but the ap-
plications hereof in electromagnetics seem few and far between. Nevertheless, FE or
FE/BI discretization exploiting hierarchality appears to be a nearly ideal candidate
for simulating and designing a large class of complex electromagnetic systems.

In this dissertation, hierarchical mixed-order TVFEs for triangular (two-dimensional

problems) and tetrahedral (three-dimensional problems) elements are developed and
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tested and the effectiveness of selective field expansion is investigated for solution of
electromagnetic scattering problems as well as for analysis of various narrowband and

broadband antennas.

1.4 Organization

Chapter 2 introduces background material. Vector wave equations used through-
out the dissertation are presented and TVFEs for triangular and tetrahedral elements
used for discretizing partial differential equations are reviewed.

Chapter 3 deals with two-dimensional TVFEs. Hierarchical mixed-order TVFEs
of order 0.5, 1.5 and 2.5 for triangular elements are proposed and tested for solution
of closed- as well as open-domain problems. For solution of certain classes of electro-
magnetic problems, field expansion using hierarchical mixed-order TVFEs of order
0.5 and 1.5 selectively is demonstrated to be a very promising approach in terms of
accuracy, memory and CPU time requirements as compared to a more traditional
approach.

Chapter 4 extends the work in chapter 3 to three-dimensional TVFEs. Hierarchical
mixed-order TVFEs of order 0.5, 1.5 and 2.5 for tetrahedral elements are proposed and
tested for solution of closed- as well as open-domain problems. Again, selective field
expansion using hierarchical mixed-order TVFEs of order 0.5 and 1.5 is demonstrated
to be a very promising approach for accurate and efficient solution of certain classes
of electromagnetic problems.

Chapter 5 discusses matrix condition numbers. The condition numbers resulting

(o9)



from FEM analysis using the hierarchical mixed-order TVFEs of order 1.5 for trian-
gular and tetrahedral elements proposed in chapter 3 and chapter 4 are contrasted to
those of existing interpolatory and hierarchical mixed-order TVFEs of order 1.5 for
triangular and tetrahedral elements. The proposed hierarchical mixed-order TVFEs
of order 1.5 are proven to be better conditioned than existing hierarchical mixed-
order TVFEs of order 1.5 and thus the analysis fosters no concerns for potential
future convergence problems due to excessive matrix condition numbers. In addi-
tion, an approach for improving the condition numbers of FEM matrices resulting
from selective field expansion is suggested and tested. The improvement comes at
the expense of a more complicated formulation and computer code but does not alter
accuracy.

Chapter 6 focuses on adaptive TVFE refinement. A review of existing error es-
timators and indicators is given and the effectiveness of the proposed hierarchical
mixed-order TVFEs of order 0.5 and 1.5 for tetrahedra is investigated when some
of the reviewed error indicators are applied in the context of a very simple adap-
tive refinement strategy. The results are extremely promising for both narrowband
and broadband antennas provided the refinement is carried out on a sub-domain by
sub-domain basis as opposed to an element by element basis.

Chapter 7 integrates the work in the previous chapters and presents an advanced
application of the approach proposed in this dissertation. Specifically, adaptive TVFE
refinement with hierarchical mixed-order TVFEs of order 0.5 and 1.5 for tetrahedra
is used to analyze tapered slot antennas (TSAs) with large impedance and pattern
bandwidths. The adaptive inclusion of a very small percentage of higher order TVFEs

9



is found to have a dramatic effect on the accuracy of the computed input impedances
and far field patterns, thus justifying the approach proposed in this dissertation for
large and complex problems.

Chapter 8 closes the dissertation. Brief summaries and the most important con-
clusions for the individual chapters are given and several future tasks to be completed

are suggested.
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CHAPTER 2

BACKGROUND

In this chapter, vector wave equations used throughout the dissertation are pre-
sented and tangential vector finite elements (TVFEs) for triangular and tetrahedral

elements used for discretizing partial differential equations are reviewed.

2.1 Vector wave equations

Consider a possibly inhomogeneous and anisotropic region V' characterized by the
permittivity tensor ¢ and the permeability tensor 7i. The electric and magnetic field

intensities E and H, respectively, then fulfil Maxwell’s equations [40] *

VxE=—jwi -H-M (2.1)

VxH=jws E+J (2.2)

where J and M, respectively, denote the impressed electric and magnetic volume

current densities. Elimination of H in (2.1) or E in (2.2) then leads to the vector

"Throughout this dissertation, a time factor e/“* is assumed and suppressed.
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wave equations

Vx(Z™ " VxE)-wE -E=-Vx (g~ "-M)—jul (2:3)

V(' VxH) -l -H=Vx (') - juM (2.4)

for E and H, respectively. By applying Galerkin’s method with the vector weighting

function T and invoking elementary vector identities, we derive their weak forms
/((VxT)-(ﬁ'l-VxE)—wZT-(f -E))dV:—/ T-ax(p'-VxE)dS
v Ty
—/T'Vx(ﬁ_l-M)dV
v

—jw/T-JdV (2.5)
v

/((VXT)-(E—l-vXH)—w2T-(ﬁ-H))dvz—/ T-ax (- VxH)dS
+/T-V><(?‘]~J)dv
—jw/T-MdV (2.6)

where n denotes the outward directed unit normal vector to the boundary I'y of V.
Boundary conditions at I'y are incorporated in (2.5)-(2.6) through the first term on
each right-hand side. These terms vanish at a perfectly electrically conducting (PEC)
or perfectly magnetically conducting (PMC) surface.

The tensors £ and i are constant if V' is homogeneous while they are functions of
the spatial variables if V' is inhomogeneous. Letting ¢9 and p9 denote the permittivity
and permeability of free space, respectively, we introduce the relative permittivity and

permeability tensors Z. and 7, by

™|
Il
ol
Q)
=)
IS
-1
S—
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For an isotropic material, g. and i, are given by

g =el (2.9)

=1 (2.10)

where 1 denotes the 3 x 3 identity tensor while ¢, and ., are the scalar relative
permittivity and permeability, respectively. Specialized weak vector wave equations
can be obtained by substituting (2.7)-(2.8) or (2.7)-(2.10) into the general weak vector
wave equations (2.5)-(2.6) but for brevity such weak vector wave equations are not

given here.

2.2 Review of TVFEs

Consider a triangular element with nodes 1, 2 and 3 and a tetrahedral element
with nodes 1, 2, 3 and 4, as illustrated in Fig. 2.1-2.2. The area of the triangle is
denoted by A and the volume of the tetrahedron is denoted by V. Simplex coordinates
at a point P of the triangle or the tetrahedron are defined in the usual manner [91],

le.

A
A
for the triangle and
.o
G = v ool €{1,2,3,4} (2.12)
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for the tetrahedron where A; denotes the area of the triangle formed by P and the
nodes of the edge opposite to node ¢ and V; denotes the volume of the tetrahedron

formed by P and the nodes of the triangular face opposite to node 1.

3
P(C1.82:Cs)

2

Figure 2.1: Illustration of a triangular element.

1 P(C1’C2’C3’C4)
2

Figure 2.2: Illustration of a tetrahedral element.

In his seminal papers, Nédélec determined the number of vector basis functions
required for a mixed-order TVFE of order n — 0.5, n € N [61, 62]. The starting point
is the number of vector basis functions required for a polynomial-complete expansion
of order n. By excluding the degrees of freedom representing the null space of the

curl operator, one arrives at
NI™ = n(n +2) (2.13)

and

n(n +2)(n + 3)

tet __
N = 5

(2.14)

for triangular and tetrahedral elements, respectively. These equations hold for inter-
polatory as well as hierarchical mixed-order TVFEs. The vector basis functions can
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be separated into three types, namely edge-based, face-based and cell-based vector
basis functions. General verbal descriptions of each of these types of vector basis
functions are given in the following while pictorial illustrations of specific vector basis
functions appear in section 3.1.

An edge-based vector basis function and its corresponding edge-based expansion
coefficient can be associated with an edge in a triangular or a tetrahedral mesh.
Edge-based vector basis functions affect tangential as well as normal field components
at edges and field continuity requirements across edges force expansion coefficients
in adjacent elements corresponding to an interior edge to be related. Edge-based
expansion coefficients are therefore referred to as global unknowns. They provide
tangential field continuity across edges but allow normal field variation across edges.

A face-based vector basis function and its corresponding face-based expansion
coefficient can be associated with a face in a triangular or a tetrahedral mesh. Face-
based vector basis functions affect normal field components at edges and tangential as
well as normal field components at faces. For triangular elements, the corresponding
expansion coefficients are not related across element boundaries. Face-based expan-
sion coefficients for triangular elements are therefore referred to as local unknowns.
They allow normal field variation across edges. For tetrahedral elements, field con-
tinuity requirements across faces force expansion coeflicients in adjacent elements
corresponding to an interior face to be related. Face-based expansion coefficients for
tetrahedral elements are therefore referred to as global unknowns. They provide tan-
gential field continuity across faces but allow normal field variation across edges and
faces.

15



A cell-based vector basis function and its corresponding cell-based expansion coef-
ficient can be associated with a tetrahedron in a tetrahedral mesh. Cell-based vector
basis functions affect only normal field components at edges and faces and the corre-
sponding expansion coefficients are not related across element boundaries. Cell-based
expansion coefficients are therefore referred to as local unknowns. They allow normal
field variation across edges and faces.

Given a number N of vector basis functions W¢, 3 =1,--- /N, for an element e,

the expansion of the unknown electric or magnetic field intensity E® or H® within the

element is
]\T
E =) EWE (2.15)
J=1
or
]V
H =) H/W: (2.16)
=1

where £ and Hf are unknown expansion coefficients. Their physical interpretation
is determined by the vector basis functions W¢.

In the following, vector basis functions for different mixed-order TVFEs are re-
viewed. The vector basis functions presented in this dissertation are not normalized.
To normalize them, each edge-based vector basis function must be multiplied by the
length of the edge it is associated with. Furthermore, the indices 7, 7 and k are im-
plicitly assumed to belong to the set {1,2,3} for vector basis functions for triangular
elements and the set {1,2,3,4} for vector basis functions for tetrahedral elements.

For n = 1 leading to N"* = 3 and N{* = 6, a mixed-order TVFE of order 0.5 is
obtained for triangular and tetrahedral elements. Such a TVFE provides a constant

16



tangential / linear normal (CT/LN) field along edges and a linear field at faces and
inside an element.
Whitney [98] initially presented a mixed-order TVFE of order 0.5. It is charac-

terized by the edge-based vector basis functions

GVEG = GVG 1<, (2.17)

The vector basis function (;V{; — (;V(; provides a constant tangential component
along the edge between node 7 and node 7, zero tangential component along all other
edges and a linearly varying normal component along all edges. A detailed explanation
of the characteristics of this vector basis function is given in [13].

For n = 2 leading to N = 8 and NI = 20, a mixed-order TVFE of order 1.5
is obtained for triangular and tetrahedral elements. Such a TVFE provides a linear
tangential / quadratic normal (LT/QN) field along edges and a quadratic field at
faces and inside an element.

Peterson [66] (triangular elements) and Savage and Peterson [77] (tetrahedral ele-
ments) proposed an interpolatory mixed-order TVFE of order 1.5. It is characterized

by the edge-based vector basis functions

GVG 1<y (2.18)

GVG , 1<y (2.19)

and the face-based vector basis functions

(jk(QVCJ- — CJVQ) , 1 <j <k (220)
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g‘j((ng} —GV(G) 1< J <k (2.21)

Graglia et al. [37] proposed an interpolatory mixed-order TVFE of order 1.5. It

is characterized by the edge-based vector basis functions

(B3¢ = D(GVG=GVEG) 1<y (2.22)

(3G = DIGVG = GVEG) i< (2.23)

and the face-based vector basis functions (2.20)-(2.21).
Webb and Forghani [97] proposed a hierarchical mixed-order TVFE of order 1.5.

It is characterized by the edge-based vector basis functions

GVG=GVG 1<y (2.24)

and the face-based vector basis functions (2.20)-(2.21).

For n = 3 leading to Ni™ = 15 and N = 45, a mixed-order TVFE of order 2.5 is
obtained for triangular and tetrahedral elements. Such a TVFE provides a quadratic
tangential / cubic normal (QT/CuN) field along edges and a cubic field at faces and
inside an element.

Peterson and Wilton [68] (triangular elements) and Savage and Peterson [77]
(tetrahedral elements) proposed an interpolatory mixed-order TVFE of order 2.5.
A correction of the vector basis functions in [68, 77] was later given by Peterson

[65]. This corrected set of vector basis functions is the one presented here. It is
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characterized by the edge-based vector basis functions

G2G =1V i #] (2.26)

GG(VG=VG) i<y, (2.27)

the face-based vector basis functions

(26 = D(GVG = GVG) i <)<k (2.28)
G2G = GVG=CGVEG) L i<j<k (2.29)

VI(GGG) i<y <k (2.30)
GIGVG—=GVG) L i<j,i#j#k#1 (2.31)

and (for tetrahedral elements only) the cell-based vector basis functions

GOGVEG=GVG) G k>1 1#F5Fk#0, j<k. (2.32)

The vector basis functions for the above mixed-order TVFEs of order 0.5, 1.5
and 2.5 were given explicitly since we shall use them in this dissertation. However,
several other TVFEs for triangular and tetrahedral elements have been presented in
the literature. We mention the work of Carrié and Webb [14], Cendes [15], Garcia-
(Castillo and Salazar-Palma [27], Lee et al. [53, 54], Mur and de Hoop [60], Wang [94],
Webb [95]. Wu and Lee [100] and Yioultsis and Tsiboukis [103, 104, 105].

We note that a vast number of TVFEs for several other element shapes have also
been presented in the literature. A comprehensive review of these is beyond the scope
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of this dissertation. However, we stress that triangular and tetrahedral elements offer
a geometrical modeling flexibility that does not place serious restrictions on the classes
of problems to which they can be applied. For this reason, it is not unreasonable to
devote our attention to triangular and tetrahedral elements only. TVFEs for curved
triangular and tetrahedral elements would provide even greater modeling flexibility
but such TVFEs can be constructed from those proposed in this dissertation for
straight triangular and tetrahedral elements via a straightforward mapping, see for
instance [37].

We also note that Mur [59] throughout the past decade has strongly criticized
the use of TVFEs in general. However, his viewpoints are not accepted within the

computational electromagnetics community.

2.3 Summary

In this chapter, vector wave equations used throughout the dissertation were pre-
sented and TVFEs for triangular and tetrahedral elements used for discretizing partial

differential equations were reviewed.



CHAPTER 3

TWO-DIMENSIONAL TVFES

In this chapter, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for
triangular elements are proposed and tested for solution of closed- as well as open-

domain problems. The work in this chapter is published in [7, 8].

3.1 Hierarchical mixed-order TVFEs for triangu-

lar elements

The proposed class of hierarchical mixed-order TVFEs is based on an expansion
introduced by Popovi¢ and Kolundzija [50, 69] for the surface current on a PEC
generalized quadrilateral. For this expansion, it is demonstrated in [50, 69] that the
surface current can be expanded using approximately ten unknowns per square wave-
length as opposed to approximately one hundred unknowns per square wavelength
for traditional sub-domain pulse basis functions. This suggests that the expansion

introduced by Popovi¢ and Kolundzija is very efficient. Below, corresponding vec-



tor basis functions applicable for finite element (FE) expansion are constructed and
hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 are presented.

As a degenerate case of the generalized quadrilateral considered in [50, 69], we
consider a triangular element of area A with nodes 1, 2 and 3 described by position
vectors ry, ry and rz with respect to the origin O of a rectangular coordinate system,
see Fig. 3.1. The edges from node 1 to node 2, node 2 to node 3 and node 3 to node
1 are referred to as edge #1, #2 and #3, respectively. Simplex coordinates (i, (s
and (3 at a point P described uniquely by a position vector r are defined in the usual
manner, see section 2.2. We let n denote a unit normal vector to the surface of the

triangle.

Figure 3.1: Geometry of a triangular element and illustration of the vectors n x (r —
r.), n € {1,2,3}, describing the directions of the vector basis functions
at the point P.

Popovi¢ and Kolundzija expands the surface current J over the triangle as [69]

3 3
n=1 n=1

where




is a vector whose direction is from node n to P and ¥, is a polynomial function of
position that provides the amplitude variation of the vector current component Jy, =
V¥,V,. The polynomial ¥, contains a number of unknown expansion coefficients.
Its specific form is irrelevant at this point and will be given later. As in the Rao-
Wilton-Glisson expansion [70], J5, has no normal component along the two edges
sharing node n and J,, has both a normal and a tangential component along the

edge opposite to node n. Thus, the quantity

(r—ry,)

. . n X
F,=nxJ,, =V, nxV, =Y, 54

-0, W, (3.3)

with

nx(r—ry)

Wa=—"23

(3.4)

has no tangential component along the two edges sharing node n and has both a
tangential and a normal component along the edge opposite to node n. This suggests
that the vector basis functions multiplying the expansion coefficients in the expansion
(3.3) of F,, can be employed as vector basis functions for the edge opposite to node
n when applying the finite element method (FEM). Considering all three edges, the

FEM expansion of an unknown vector quantity F becomes

where expressions for ¥, (depending upon the order of the expansion) and W, (in-
dependent of the order of the expansion) are to be presented.

Introducing normalized coordinates over the triangle and using relations from [69],



it is shown in Appendix A that

Wi =GVEGE - GVEG (3.6)
Wy =GVa -GV (3.7)
W5 =GVE -GV (3.8)

The polynomial ¥, is a function of position that in terms of a number of unknown
expansion coefficients provides the amplitude variation of the vector component W,,.
It can be defined using normalized coordinates u,, and v, over the triangle. Specif-
ically, we choose u, = 0 at node n, u,, = 1 along the edge opposite to node n and
v, = *1 along the two edges sharing node n. A detailed description of the variation

of u,, and v, is given in Appendix A. From [69], we have

¥, =2y
j=1

where n, and n, are integer constants determining the order of the approximation

i3t <o) 53)
1=3

and b’

) and a)) are the expansion coefficients. Also, u; = (3 + (3, uivy = (o — G,

Uy = (34 (1, ugvy = (3 — (1, uz = (4 + ¢ and uzvs = (; — (3, as shown in Appendix
A.

The expansion (3.5) for F along with the expressions (3.6)-(3.8) for Wy, W3 and
W; and the expression (3.9) for W, describes the proposed vector basis functions.
However, a certain simplification provides a more familiar form. By regrouping the

terms in (3.9) for ¥, the expansion (3.5) for F can be cast into

3
F=Y Y cuwpm (3.10)



where N™™ = n,(n, —1) denotes the total number of vector basis functions per edge
for the given values of n, and n,. Also, ¢j™* are expansion coefficients corresponding
to edge #k while W} are vector basis functions associated with edge #k. W™ is
given as a function of (1, (; and (3 times a direction vector ((;V(, — V¢ for k =1,
(VG — GVEG for k=2 and GV — (Vs for £ = 3). Except for normalization
constants, the vector basis functions W™ are directly used for forming hierarchical
mixed-order TVFEs.

From (3.10), we recover for (n,,n,) = (1,2) the three vector basis functions
introduced by Whitney [98], see section 2.2. For larger values of n, and n,, (3.10)
includes additional vector basis functions all of which maintain the same fundamental
direction vectors ((;V{y— (o V(i for edge #1, (V{3 — 3V (; for edge #2 and (GV(, —
(1 V(s for edge #3). Thus, the proposed higher order vector basis functions differ from
the lowest order vector basis functions only in magnitude and hence in a given point of
the triangle, the field is represented as a linear combination of vector basis functions
having only three fundamental directions. This is one of the major differences between
the proposed and traditional hierarchical TVFEs [14, 97]. For the latter, the higher
order vector basis functions differ from the lowest order vector basis functions in
both magnitude and direction. The field in a given point of the triangle is again
represented as a linear combination of vector basis functions but in this case the
number of fundamental vector directions used for representing the field grows with

the order of the TVFE.

An important property of (3.10) is that the vector basis functions W™ for k =

\m

(no+1)(nu+1)

1,2,3 and m = 1,--- | N™"™ are a subset of the vector basis functions W,""

[
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for k =1,2,3 and m = 1,--- , Nw+D4D)  This shows that TVFEs based on the
above presented vector basis functions are hierarchical.

Based on the vector basis functions in (3.10) for different values of n, and n,
along with knowledge of Nédélec spaces [61, 62] and existing interpolatory mixed-
order TVFEs, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 will now be
proposed and compared to existing interpolatory mixed-order TVFEs. The method
has the potential of providing hierarchical mixed-order TVFEs of even higher orders
i so desired. Explicit expressions for vector basis functions are given in Appendix B.

For the case (n,,n,) = (1,2), we obtain from (3.10) a set of three vector basis
functions forming a mixed-order TVFE of order 0.5 identical to that introduced by
Whitney, see section 2.2. This result is expected since the lowest order expansion
adopted by Popovi¢ and Kolundzija is identical to the Rao-Wilton-Glisson expansion
[70] whose vector basis functions reduce to the vector basis functions introduced by
Whitney when converted using the procedure applied above.

For the case (n,,n,) = (2,3), we obtain from (3.10) a set of twelve vector basis
functions. To make a comparison to the interpolatory mixed-order TVFE of order
1.5 presented by Peterson [66], see section 2.2, the twelve vector basis functions are
reduced to eight vector basis functions forming a hierarchical mixed-order TVFE of
order 1.5, see Appendix B.

Peterson’s interpolatory mixed-order TVFE of order 1.5 [66] has the desirable
property of being complete to second order in the range space of the curl operator.
This property ensures a complete second order expansion of a field with non-zero
curl and guarantees eigenvalue solutions free of spurious non-zero eigenvalues. Since
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Peterson’s interpolatory mixed-order TVFE of order 1.5 and the proposed hierarchi-
cal mixed-order TVFE of order 1.5 span the same space (the existence of a linear
transformation from Peterson’s eight vector basis functions to the proposed eight
vector basis functions is demonstrated in Appendix B), the proposed hierarchical
mixed-order TVFE of order 1.5 has the same desirable property. However, the two
mixed-order TVFEs are not identical as they have different properties and may not
be equally efficient numerically. For both mixed-order TVFEs, six edge-based vector
basis functions provide a linearly varying tangential component along edges while
the remaining two face-based vector basis functions (identical for the two different
mixed-order TVFEs - added to provide a complete linear representation of the curl
of the field that is expanded) provide a quadratic variation of the normal component
along edges. However, the linear variation of the tangential component along edges is
obtained in two different ways. For Peterson’s interpolatory mixed-order TVFE, the
two unknowns per edge represent the magnitude of the field at edge endpoints. For
the proposed hierarchical mixed-order TVFE, the two unknowns per edge represent
the average field value along the edge and the deviation from this average value at
edge endpoints.

A generalization to even higher order hierarchical mixed-order TVFEs is possible.
For the special case of (n,,n,) = (3,4), (3.10) gives vector basis functions that based
on knowledge of Nédélec spaces [61, 62] and the interpolatory mixed-order TVFE of
order 2.5 presented by Peterson and Wilton [65, 68], see section 2.2, can be used to
form a hierarchical mixed-order TVFE of order 2.5, see Appendix B. The similarity

between the hierarchical mixed-order TVFEs of order 1.5 and 2.5 is apparent and one
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gets an impression of the needed generalizations to obtain even higher order TV Es.
However, use of TVFEs beyond order 2.5 does not seem to be of practical interest.
The proposed vector basis function (;V(; — (;V(; providing a constant tangen-
tial component along an edge and a linearly varying normal component along all
edges is pictorially illustrated in Fig. 3.2. The proposed vector basis function ({; —
GGV — (V) providing a linearly varying tangential component along an edge
and a quadratically varying normal component along all edges is pictorially illustrated
in Fig. 3.3. The proposed vector basis function (x(¢;V{; — (;V(;) providing zero tan-
gential component along all edges and a quadratically varying normal component

along two edges is pictorially illustrated in Fig. 3.4.

3.2 Application to closed-domain problems

In this section, various TVFE options are employed for solution of closed-domain

problems. The pertinent formulation is given and numerical results are presented.

3.2.1 Formulation for closed-domain problems

Consider a source free homogeneous and isotropic waveguide with PEC walls. The
waveguide region is denoted by V' and its cross section is denoted by S with 'y and
I's being the boundaries of V' and S, respectively. The waveguide is filled with a
material characterized by a constant relative permittivity e, related to the complex
permittivity tensor £ via (2.7) and (2.9) and a constant relative permeability u,

related to the complex permeability tensor 7z via (2.8) and (2.10).
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Figure 3.2: Illustration of the proposed vector basis function (;V({; — (;V(; for a
triangular element.

IE\
1 HH

Figure 3.3: Tllustration of the proposed vector basis function ({; — (;)(GV (= V()

-
- e e

for a triangular element.

Figure 3.4: Illustration of the proposed vector basis function (x((;V(; — (;V () for a
triangular element.

The weak vector wave equations (2.5)-(2.6) hold for the electric and magnetic

field intensities E and H. However, a simplification is provided by reducing these to



weak vector wave equations for the transverse field components E; (transverse electric
(TE) modes) and H; (transverse magnetic (TM) modes) over S only. Assuming the
waveguide is in the 2-direction, we can let E = E;e™% H = H,e™%*, V =V, + 238’—92
and T = T, in the general weak vector wave equations (2.5)-(2.6) and substitute

(2.7)-(2.10) for € and 7 to arrive at the TE and TM weak vector wave equations

/((Vt X Ty) - (Vi x Ey) =42 Ty - Ey) dS =0 (3.11)
S

/((vt X Tt) . (Vt X Ht) — 72 T, - Ht) dS =0 (3,12)

with v = y/k? — 3? being the transverse propagation constant and k = w,/e,f1,€0ft0

being the wave number. We now discretize S into Ng triangular elements via

§=) s (3.13)

e=1
and enforce the TE and TM weak vector wave equations (3.11)-(3.12) in each element
5S¢ Next, we expand the transverse electric and magnetic fields Ef and Hf in 5 via

i=1,-

(2.15)-(2.16). Choosing the vector weighting functions T; = W¥¢

19

, N, then

leads to

Z/ (Vi x WE) - (Vy x W) d 4—72 Wi WOdSES  (3.14)

N N
Z/qé(vt x W) (Ve x WE)dSH] = 722/56 W WedSHS.  (3.15)

These element equations can be formulated in the matrix form

[A{z°} = 72[36]{376} (3.16)

30



with the element matrices [A°] and [B?] having the matrix elements

A5 :/ (Vi x W)+ (V, x W) dS (3.17)

By = | Wi-Wids (3.18)

for both TE and TM modes. Assembly of element equations then leads to a global

matrix equation system of the form

[Al{z} = ¥*[B{x} (3.19)

for both TE and TM modes. We note that the assembly process includes the enforce-
ment of boundary conditions along I's. For TE modes, this leads to a condensation

of the equation system making the equation system for TE modes smaller than that

for TM modes.

3.2.2 Numerical results for closed-domain problems

To validate the proposed hierarchical mixed-order TVFE of order 1.5 and to make
a comparison with the interpolatory mixed-order TVFE of order 1.5 presented by
Peterson [66], see section 2.2, we consider a homogeneous rectangular waveguide of
side lengths a and @/2. The dominant transverse propagation constants for this
waveguide are YLF = 7/a and yM = \/57/a for TE and TM modes, respectively
[40]. The percentage of error in determining v/F and /M as a function of the
number of unknowns is given in Fig. 3.5 (log-log plot) for the mixed-order TVFE of

order 0.5 (denoted ‘Basis 1’), Peterson’s interpolatory mixed-order TVFE of order
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Figure 3.5: Error of the dominant transverse propagation constant for a rectangular
waveguide as a function of the number of unknowns. TE modes (left) and
TM modes (right).

1.5 (denoted ‘Basis 2’) and the proposed hierarchical mixed-order TVFE of order 1.5
(denoted ‘Basis 37).

In all cases, we observe the expected behavior that as the number of unknowns
increases, the error decreases. Furthermore, higher order TVFEs are seen to be su-
perior to the lowest order TVFE for a given number of unknowns. Matrices based on
the proposed hierarchical mixed-order TVFE of order 1.5 were observed to be better
conditioned than matrices based on Peterson’s interpolatory mixed-order TVFE of
order 1.5, something we discuss in more detail in chapter 5. More importantly, Ba-
sis 2 and Basis 3 give indistinguishable results. This is not surprising since the two
mixed-order TVFEs are related through a linear transformation, see Appendix B,
and consequently span the same space within each triangle. Thus, the proposed hier-
archical mixed-order TVFE gives results that are identical to those obtained by using
a traditional interpolatory mixed-order TVFE and in addition has the advantages of
being hierarchical and (for this particular application) leading to better conditioned

matrices. Similar observations were made for higher order modes.
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3.3 Application to open-domain problems

In this section, various TVFE options are employed for solution of open-domain

problems. The pertinent formulation is given and numerical results are presented.

3.3.1 Formulation for open-domain problems

Consider a two-dimensional scattering problem where the scatterer and all fields
are independent of a spatial coordinate, say z. The scatterer can be composed of PEC
and isotropic dielectric and / or magnetic materials and is situated in free space. The
relative permittivity and permeability is denoted by €, and p,., respectively. The scat-
terer is illuminated by a TE polarized ' (the derivation for TM polarization closely
parallels the one for TE polarization) incident electromagnetic field (E{, H!) (sub-
script ‘t” denotes ‘transverse to Z’, subscript ‘z’ denotes ‘Z-directed” and superscript
‘i’ denotes ‘incident’) and the scatterer then gives rise to a TE polarized scattered
electromagnetic field (E7, H?) (superscript ‘s’ denotes ‘scattered’). The configuration

is illustrated in Fig. 3.6. The total electric field (transverse to 2) is then
E, =E +E: (3.20)
and the total magnetic field (Z-directed) is
H. =H +H’. (3.21)

Similar to the derivation in section 3.2.1, a weak vector wave equation for the

total electric field E; can be derived from the general weak vector wave equation (2.5)

n this section, polarization is with respect to the Z-axis.
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Figure 3.6: Geometry of a scatterer illuminated by a TE polarized incident electro-
magnetic field and giving rise to a TE polarized scattered electromagnetic
field.

and (2.7)-(2.10) for € and [ by carrying out the substitutions E — E;, T — Ty,

V=V, +?358; =V,V-2S=Ty —=Ts dV —dS and dS — dL and letting J =0

and M = 0. We arrive at
1
/((Vr X Tt) . (M—Vt X Et) — kg Tt . (ErEt)) dS
JS r
1
= —/ Tt “n X (—Vt X Et) dL (322)
FS /’l’r

with kg = wy/Eoptg being the free space wave number. The computational domain
is of infinite extent at this point but will become finite through the introduction of
a mesh truncation scheme, see below. Introducing the separation (3.20) of E; in the

weak vector wave equation (3.22) gives

1 1
/((vt KT (VX E) - KT, - (c,E2)) dS +/ T, @t x (—V, x E) dL
S r FS

r

1 . .
= —/Tt (Vi x (—V, x B) — k2 &,E}) dS (3.23)
S

r

where the right-hand side vanishes in free space since the incident field is Maxwellian
and therefore fulfils the vector wave equation in free space. We now discretize S into

Ng triangular elements via

Ns
§=) 5 (3.24)
e=1
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and enforce (3.23) in each element S¢. Next, we expand the scattered electric field E;

in S¢ via (2.15) and choose the vector weighting functions T; = W¢, i =1,--- | N,
to arrive at
al 1
Z/ ((V, x W¢). </7vt X W) — kg WE- (6, W¢)) dS ES
j:l S(z r
. 1
+ W:.nx (—V, x Ej)dL
[ge lu‘r
=— | Wi (Vi x(—V,xE})—kjeE!)dS. (3.25)
Se Hr

Above, the boundary integral over I'se was not considered. This terms requires
special attention as it is through this term boundary conditions, including the radia-
tion condition, are incorporated. Two different mesh truncation schemes are consid-
ered, an artificial absorber (AA) and a boundary integral (BI).

With an AA mesh truncation scheme, the mesh is terminated by a layer of a
fictitious homogeneous and isotropic material backed by a PEC surface and placed a
certain distance from the scatterer. It is important to note that the AA influences
only the scattered field, not the incident field. In this case, evaluation of the boundary
integral in (3.25) along all pertinent boundaries is trivial. In conclusion, each element

leads to a set of element equations that can be formulated in matrix form as

[AT{E} = {g"} (3.26)

where [A] is a known N x N matrix, {£°} is an unknown N x 1 vector and {¢°}
is a known N x 1 excitation vector. Subsequent assembly of element equations then

leads to a sparse global matrix equation system of the form

[AJ{E} = {g} (3.27)
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where [A] and {g} are a known matrix and vector, respectively, and {£} is a vector
containing the unknown expansion coefficients £ for the electric field as introduced
by (2.15).

With a Bl mesh truncation scheme, the mesh is terminated by a contour where an
exact integral equation incorporating the radiation condition is enforced. We denote
this contour by I'y. Consistent with the discretization (3.24) of S into triangular

elements, we discretize 'y into Ny piecewise straight segments via

No
o= T¢. (3.28)

=1

For an element S that does not bound I', the discretization of (3.25) is again straight-

forward and we arrive at a set of element equations of the form
[AT{E} = {9} (3.29)
where [A] is a known N x N matrix, {£°} is an unknown N x 1 vector and {¢°} is

a known N x 1 excitation vector. For an element S¢ that bounds I'g, we are faced

with the incorporation of the integral

W? . n x (—l-vt X E)dL = —jwpo | W!-nx HS dL (3.30)
ry Hr ry

with the index v (describing a segment of I'g) being a known function of the index e

(describing a triangular element bounding I'g). To discretize (3.30), we introduce an

expansion of H? over I'y via

Noy
H=H =) HYW!: (3.31)

v=1

where H{" are unknown expansion coefficients and W are scalar pulse basis func-
tions. In this case, we arrive at a set of element equations that can be formulated in
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matrix form as
[AGT{EG} + B} Hy = {95} (3.32)

where [Af] is a known N x N matrix, {E§} is an unknown N x 1 vector, {BS} is a
known N x 1 vector, Hj is the unknown expansion coefficient H?” for the yth segment
of I'y corresponding to the eth triangular element of S and {g¢5} is a known N x 1
excitation vector. The expansion (3.31) of H? introduces Ny additional unknowns
and hence Ny additional equations must be constructed. These are provided via the

exact integral equation [3]

k / Y s ! At /
Hip) =~ 3 [ HE (bl = o) (Bi(p) + Eilp) i dS

b7 [V ol = ) (B + BG4S (353
relating Ef and H on I'g. In this equation, (, = \/M is the intrinsic impedance
of free space, Héz) is the Hankel function of zeroth order and second kind and p is
the usual polar vector in a circular cylindrical coordinate system. Discretization of

E; and HS leads via testing to Ny equations that can be formulated in matrix form

as

{Ho} = [Ao] {Eo} + [Bo] {Ho} + {0} (3.34)

where {H,} is an unknown Ny x 1 vector, [Ag] is a known Ny x Ny matrix, { Fy} is an
unknown Ng x 1 vector, [By] is a known Ny x N matrix and {go} is a known Ny x 1
excitation vector. Upon assembly of (3.29), (3.32) and (3.34), we arrive at a partly

sparse / partly full global matrix equation system of the form

[A{E H}" = {g} (3.35)
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where [A] and {g} are a known matrix and vector, respectively, and {£ H}' is
a vector containing the unknown expansion coefficients ¥ for the electric field as

introduced by (2.15) and the unknown expansion coefficients /" for the magnetic

field as introduced by (3.31).

3.3.2 Numerical results for open-domain problems

Finite element / artificial absorber (FE/AA) and finite element / boundary inte-
gral (FE/BI) computer codes were developed to evaluate the scattering of a TE or TM
polarized plane wave by an arbitrary infinite cylinder composed of PEC and isotropic
dielectric and / or magnetic materials. These are based on the FEM in conjunction
with an AA or Bl mesh truncation scheme as detailed above. The AA termination
scheme is approximate but attractive for reasons of simplicity. We use a fictitious
material of relative permittivity and permeability 1 — 2.7 and thickness 0.25Xg (Ao
denotes the free space wavelength) backed by a PEC surface and placed a distance
0.5Ag from the scatterer. The BI termination scheme is exact until discretized and
coupled with a FE system and hence it is attractive for rigorous truncation of FE
meshes. For our test, the integral contour is situated a slight distance away from the
scatterer so that piecewise constant (lowest order) expansions can be employed for
discretizing and testing the BI. The resulting matrix equation system is solved using
a quasi minimal residual (QMR) solver [72] with a relative tolerance of 107* .

In the following, we compare the scattering by various cylinders using different

TVFE options and different uniform discretizations to demonstrate the merits of



the proposed hierarchical mixed-order TVFEs of order 0.5 and 1.5 when the field is
selectively expanded over the computational domain. The reference results in this
chapter are obtained using the method of moments (MoM) code RAM2D developed
by Northrop. They are all found with a very fine discretization and thus can be
considered accurate.

To test the AA termination scheme, we consider a square PEC cylinder of side
length A situated in free space. Centered on the upper side of the cylinder is a
rectangular groove of length Ag/2 and height Ag/4. The groove is filled with a material
characterized by the relative permittivity ¢, = 2 — 72 and the relative permeability
i = 2 — 32. The cylinder is illuminated by a TE polarized homogeneous plane
wave whose propagation vector forms a 45° angle with all sides of the cylinder, as
illustrated in Fig. 3.7. In Fig. 3.8, we give a comparison of results for the two-
dimensional radar cross section (RCS) or echo width oy_p normalized to A as a
function of the observation angle ¢ 2. The MoM result is denoted ‘MoM’. For a mesh
where the generic edge length is 0.15Ag, the FE/AA result using the mixed-order
TVFE of order 0.5 is denoted ‘FEM - 1 TVFE - Coarse mesh’ and the FE/AA result
using selective field expansion (with the groove and a layer surrounding the scatterer
as the region in which the proposed hierarchical mixed-order TVFE of order 1.5 is
employed) is denoted ‘FEM - 2 TVFEs - Coarse mesh’. For a mesh where the generic
edge length is 0.1Xg, the FE/AA result using the mixed-order TVFE of order 0.5 is
denoted ‘FEM - 1 TVFE - Denser mesh’.

The ‘FEM - 1 TVFE - Coarse mesh’ result is seen to compare reasonably well with

2¢ = 45° corresponds to backscatter and ¢ = 225° corresponds to forward scattering, see Fig. 3.7.
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Figure 3.7: Square cylinder with a groove illuminated by a TE polarized plane wave.
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Figure 3.8: Bistatic RCS of the cylinder in Fig. 3.7.

the MoM result. However, discrepancies can be seen and this is not surprising since
the mesh is relatively coarse. For the denser mesh, the ‘FEM - 1 TVFE - Denser
mesh’ result shows a slight improvement. However, by keeping the original mesh
and employing the proposed hierarchical mixed-order TVFE of order 1.5 close to the
scatterer where the field can be expected to vary rapidly and accurate modeling is

therefore necessary, the ‘FEM - 2 TVFEs - Coarse mesh’ result shows a significant
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improvement. It matches the MoM result exactly except in regions surrounding nulls
and it was obtained using less computational resources (less unknowns, less non-zero
matrix entries and less matrix solution time) than the ‘FEM - 1 TVFE - Denser mesh’
result. In conclusion, we observe selective field expansion to be superior to the more
traditional approach of using a denser mesh and the mixed-order TVFE of order 0.5
throughout the computational domain.

We now consider a slightly different cylinder geometry by introducing a slab of
length Ag and height A\o/4 on top of the cylinder. As depicted in Fig. 3.9, the groove
is filled with free space and the slab has the relative permittivity ¢, = 2 — 72 and the
relative permeability g, = 1. For the same illumination as before, results similar to
those in Fig. 3.8 are given in Fig. 3.10 and they reinforce the conclusions from the
previous case : The ‘FEM - 1 TVFE - Coarse mesh’ result compares reasonably well
with the MoM result and the ‘FEM - 2 TVFEs - Coarse mesh’ result is, though found
using less computational resources than the ‘FEM - 1 TVFE - Denser mesh’ result,
significantly more accurate than the ‘FEM - 1 TVFE - Denser mesh’ result.

Explicit parameter values quantifying the computational savings for the results in
Fig. 3.8 and Fig. 3.10 are given in Tab. 3.1-3.2, respectively. In both cases, improved
accuracy is obtained for less non-zero matrix entries (i.e., less memory) and less
solution time.

To test the BI termination scheme, we consider a rectangular PEC cylinder of
width 3Ag and height 0.25A¢ covered by a dielectric material of width 3\, and height
Ao whose relative permittivity is e, = 2 — 70.5. On top of the dielectric is a grating
structure of height 0.25) consisting of three PEC strips of lengths 0.75\g, 0.5A¢
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Figure 3.9: Square cylinder with a groove loaded by a dielectric slab illuminated by
a TE polarized plane wave.
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Figure 3.10: Bistatic RCS of the cylinder in Fig. 3.9.

and 0.75Ag, respectively, separated by dielectric inserts of length 0.5A; having the
relative permittivity e, = 10. The structure is illustrated in Fig. 3.11. A structure
of this type (but of different size and different material composition) is of practical
interest for guiding electromagnetic waves and below we demonstrate how a selective
field expansion can lead to accurate modeling of the fields in and near the grating

structure and hereby accurate prediction of the scattered field. The structure is
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Non-zero Matrix RMS

FE/AA approach Unknowns | matrix entries | solution time error
1 TVFE - Coarse mesh 811 3955 9 seconds | 3.8657 dB
1 TVFE - Denser mesh 3977 19664 111 seconds | 2.1059 dB
2 TVFEs - Coarse mesh 1070 7292 21 seconds | 1.5614 dB

Table 3.1: Comparison of relevant parameters for the FEM results in Fig. 3.8.

Non-zero Matrix RMS

FE/AA approach Unknowns | matrix entries | solution time error
1 TVFE - Coarse mesh 900 4398 11 seconds | 2.1952 dB
1 TVFE - Denser mesh 4469 22118 133 seconds | 1.6213 dB
2 TVFEs - Coarse mesh 1280 9466 34 seconds | 0.6114 dB

Table 3.2: Comparison of relevant parameters for the FEM results in Fig. 3.10.

Non-zero Matrix RMS

FE/BI approach Unknowns | matrix entries | solution time error
1 TVFE - Coarse mesh 1230 19662 172 seconds | 5.3980 dB
1 TVFE - Denser mesh 2421 43961 301 seconds | 0.9807 dB
2 TVFEs - Coarse mesh 1716 25884 534 seconds | 0.7705 dB

Table 3.3: Comparison of relevant parameters for the FEM results in Fig. 3.12.

situated in free space and illuminated as the previous two cylinders. Results similar

to those in Fig. 3.8 and Tab. 3.1 are given in Fig. 3.12 and Tab. 3.3. The results again

reinforce the conclusions reported above, except that the matrix solution time for the

‘FEM - 2 TVFEs - Coarse mesh’ result is larger than that for the ‘FEM - 1 TVFE -

Denser mesh’ result. We note that the pre-processing, matrix element evaluation and

assembly time is significantly larger for the ‘FEM - 1 TVFE - Denser mesh’ result

than the ‘FEM - 2 TVFEs - Coarse mesh’ result due to the larger BI system. This

must be kept in mind when interpreting Tab. 3.3.

We note that higher order TVFEs (either Peterson’s interpolatory mixed-order

TVFE of order 1.5 or the proposed hierarchical mixed-order TVFE of order 1.5) could
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Figure 3.11: Grating structure on top of a grounded dielectric illuminated by a TE
polarized plane wave.
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Figure 3.12: Bistatic RCS of the cylinder in Fig. 3.11.

alternatively be applied throughout the computational domain. This approach was

tested and the two mixed-order TVFEs gave similar and accurate results. However,

the approach could not measure up with the selective one in terms of computational

resources.
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3.4 Summary

In this chapter, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for
triangular elements were proposed and tested for solution of closed- as well as open-
domain problems. For solution of certain classes of electromagnetic problems, field
expansion using hierarchical mixed-order TVFEs of order 0.5 and 1.5 selectively was
found to be a very promising approach in terms of accuracy, memory and central

processing unit (CPU) time requirements as compared to a more traditional approach.
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CHAPTER 4

THREE-DIMENSIONAL TVFES

In this chapter, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for
tetrahedral elements are proposed and tested for solution of closed- as well as open-
domain problems. The work in this chapter is published in [5, 9] and expected to be

published in [25].

4.1 Hierarchical mixed-order TVFEs for tetrahe-

dral elements

Hierarchical mixed-order TVFEs for tetrahedral elements have been proposed up
to and including order 1.5 by Webb and Forghani [97], see section 2.2. These were
written up by inspection. The purpose of this section is to propose a set of hierarchical
mixed-order TVFEs for tetrahedral elements beyond order 1.5. Specifically, hierar-
chical mixed-order TVFEs are presented up to and including order 2.5 where the

mixed-order TVFE of order 1.5 differs from the one presented by Webb and Forghani



[97]. We derive the hierarchical mixed-order TVFEs from the interpolatory mixed-
order TVFEs for tetrahedral elements proposed by Savage and Peterson [65, 77], see
section 2.2, and the hierarchical mixed-order TVFEs for triangular elements proposed
in section 3.1 in a fashion that makes the proposed set of hierarchical mixed-order
TVFEs for tetrahedral elements the direct three-dimensional equivalent of the set of
hierarchical mixed-order TVFEs for triangular elements proposed in section 3.1. Hi-
erarchical mixed-order TVFEs for higher orders than 2.5 can be derived by modifying
the TVFEs proposed by Graglia et al. [37].

Consider a tetrahedral element with nodes 1, 2, 3 and 4 for which simplex coordi-
nates are defined in the usual manner, see section 2.2. Below, vector basis functions
are formulated in terms of these coordinates.

A mixed-order TVFE of order 0.5 providing CT/LN variation along edges and
linear variation at faces and inside the element is characterized by N{* = 6 linearly
independent vector basis functions. The three-dimensional equivalent of the two-
dimensional CT/LN vector basis functions presented in section 3.1 is identical to the
vector basis functions presented by Whitney [98], see section 2.2. The 6 edge-based
vector basis functions are given by (2.17).

A mixed-order TVFE of order 1.5 providing LT/QN variation along edges and
quadratic variation at faces and inside the element is characterized by Ni* = 20
linearly independent vector basis functions. Savage and Peterson [77] proposed the
12 edge-based vector basis functions (2.18)-(2.19) and the 8 face-based vector basis
functions (2.20)-(2.21). The 20 linearly independent vector basis functions (2.18)-
(2.21) do not compare to the vector basis functions (2.17) in a hierarchical fashion.
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We propose to replace the 12 edge-based vector basis functions (2.18)-(2.19) by (2.17)

and

(G =GUGVG = GVG) i<y (4.1)

The 20 linearly independent vector basis functions (2.17), (4.1) and (2.20)-(2.21)
form a mixed-order TVFE of order 1.5 that compares hierarchically to the proposed
mixed-order TVFE of order 0.5.

A mixed-order TVFE of order 2.5 providing QT/CuN variation along edges and
cubic variation at faces and inside the element is characterized by Ni" = 45 linearly
independent vector basis functions. Savage and Peterson [65, 77] proposed the 18
edge-based vector basis functions (2.26)-(2.27), the 24 face-based vector basis func-
tions (2.28)-(2.31) and the 3 cell-based vector basis functions (2.32). The 45 linearly
independent vector basis functions (2.26)-(2.32) do not compare to the vector basis
functions (2.17) in a hierarchical fashion. We propose to replace the 18 edge-based

vector basis functions (2.26)-(2.27) by (2.17), (4.1) and

(G = GPGVG—GVG) i<y (4.2)

Further, we propose to replace the 8 face-based vector basis functions (2.28)-(2.29) by
(2.20)-(2.21). The 45 linearly independent vector basis functions (2.17), (4.1)-(4.2),
(2.20)-(2.21) and (2.30)-(2.32) form a mixed-order TVFE of order 2.5 that compares

hierarchically to the proposed mixed-order TVFEs of order 0.5 and 1.5.



4.2 Application to closed-domain problems

In this section, various TVFE options are employed for solution of closed-domain

problems. The pertinent formulation is given and numerical results are presented.

4.2.1 Formulation for closed-domain problems

Consider a possibly inhomogeneous and anisotropic cavity V characterized by the
permittivity tensor & and the permeability tensor 7z. The cavity V is assumed to be
free of sources and the boundary I'y of V' is assumed to be a PEC surface. The electric
and magnetic field intensities E and H, respectively, then fulfil the weak vector wave
equations (2.5)-(2.6) with the surface integrals over I'y eliminated. Introducing now

the relative permittivity and permeability tensors g, and f, by (2.7)-(2.8), we obtain

/((vxT)-(ﬁrl.VXE)—k2T-(a.E))dvzo (4.3)
//((VxT)-(?ﬁl-VxH)—k"’T-(ﬁr-H))dV:O (4.4)

with £ = w,/Egpio being the wave number. We now discretize V' into Ny tetrahedral

elements via

Ny
V=Y v (4.5)
e=1

and enforce (4.3)-(4.4) in each element V°. Next, we expand the electric and magnetic
fields E€ and H® in V* via (2.15)-(2.16). Choosing the vector weighting functions

T=W;, 1=1,---, N, then leads to

N N
D /V,W XWO) (VX WOAVE =k | Wi (5 - W) dVES (4.6)
=17V

j=1 7V
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N N
Z/VF(V x W) (571 -V x W5)dVHS = kzz WE- (T - WO dVHE. (4.7)
j=1 ) J=1

Ve

These element equations can be formulated in the matrix form
(A2} = K*[B e} (4.8)

for both electric field formulation (E-formulation) and magnetic field formulation (H-
formulation). Assembly of element equations then leads to a global matrix equation

system of the form
[Al{z} = k*[B]{x} (4.9)

for both E- and H-formulation. We note that the assembly process includes the
enforcement of boundary conditions along I'y. For E-formulation, this leads to a
condensation of the equation system making the equation system for E-formulation

smaller than that for H-formulation.

4.2.2 Numerical results for closed-domain problems
Homogeneous and isotropic rectangular cavity

Consider a homogeneous and isotropic rectangular cavity of normalized dimensions
1 x0.75 x 0.5, see Fig. 4.1. The exact eigenvalues for this geometry are well-known
[40]. A FEM solution (E-formulation) for the eigenvalues of the cavity is carried
out for various tetrahedral meshes of different average edge length with the proposed
mixed-order TVFEs of order 0.5 and 1.5 used for field expansion.

The convergence rate for the two cases is illustrated in Fig. 4.2 where the average
error of the first eight eigenvalues is plotted in percent as a function of the average edge
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Figure 4.1: Homogeneous and isotropic rectangular cavity.

length in the mesh (log-log plot). The approximate distribution around a straight line
suggests that the average error decreases as " for a decreasing average edge length.
For the mixed-order TVFE of order 0.5, the exponent is 2.37 which is slightly larger
than the expected value 2 [77]. This is due to the very low average error 0.56% for
the average edge length 0.175. Similarly, for the mixed-order TVFE of order 1.5, the
exponent is 4.66 which is again larger than the expected value 4 [77] and the exponent
3.86 found in [77] for a different mixed-order TVFE of order 1.5. This demonstrates
that the mixed-order TVFE of order 1.5 proposed in this dissertation has slightly
better convergence properties than the one in [77] for this particular geometry and

for the employed meshes.
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Figure 4.2: Convergence rate for expansion of the field within the homogeneous and
isotropic rectangular cavity in Fig. 4.1 using mixed-order TVFEs of order
0.5 and 1.5.



Inhomogeneous and isotropic rectangular cavity

Consider a rectangular cavity of normalized dimensions 1 x 0.75 x 0.5. It is com-
posed of a rectangular cavity of normalized dimensions 0.25 x 0.75 x 0.5 filled with a
homogeneous and isotropic dielectric of relative permittivity e, = 10 and a rectangu-
lar cavity of normalized dimensions 0.75 x 0.75 x 0.5 filled with a homogeneous and
isotropic dielectric of relative permittivity e, = 1, see Fig. 4.3. The true eigenvalues
can be obtained via accurate numerical solution of an exact analytical transcendental

equation, see for instance [40].

Figure 4.3: Inhomogeneous and isotropic rectangular cavity.

We compare the error in computing the eigenvalues for the first few modes for
three different cases. In Case 1, we apply the mixed-order TVFE of order 0.5 for a
fine mesh consisting of 778 tetrahedral elements. In Case 2, we apply the mixed-order
TVFE of order 1.5 for a coarse mesh consisting of 130 tetrahedral elements. In Case 3,
we apply the mixed-order TVFEs of order 0.5 and 1.5 selectively for the same coarse
mesh consisting of 130 tetrahedral elements. The dielectric material is modeled with
the mixed-order TVFE of order 1.5. In free space, the region away from the dielectric
is modeled with the mixed-order TVFE of order 0.5. This makes the region close
to the dielectric a transition region where incomplete mixed-order TVFEs (complete

to order 0.5 but not to order 1.5) are applied. The three cases are summarized in

Q»
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Tab. 4.1 where also the number of unknowns and number of non-zero matrix entries

are given for E- and H-formulation.

E-formulation H-formulation
TVFE Matrix Matrix
Case | order(s) | Elements | Unknowns | entries | Unknowns | entries
1 0.5 778 695 9161 1151 16051
2 1.5 130 604 17876 1084 38080
3 105/15 130 354 9120 668 20060

Table 4.1: Definition of Case 1-3.

The eigenvalue error of the first six modes for the three different cases is given in
percent in Fig. 4.4-4.5 for E- and H-formulation, respectively.

Comparing Case 2 and Case 3, we see that the average error is approximately the
same. This is the case for both E- and H-formulation. Thus, we do not compromise
accuracy by modeling only part of the cavity with the mixed-order TVFE of order 1.5
and the remainder of the cavity with the mixed-order TVFE of order 0.5 as compared
to using the mixed-order TVFE of order 1.5 throughout the cavity. However, the
storage and CPU time requirements drop significantly making selective field expansion
an attractive option.

Comparing Case 1 and Case 3, we see that Case 1 is best for E-formulation while
Case 3 is best for H-formulation. This demonstrates that the choice of TVFE(s)
is not necessarily unambiguous. This unambiguity can be further demonstrated by
considering the eigenmode corresponding to a given eigenvalue. As noted above, Case
3 is generally better than Case 1 for H-formulation. However, for the TM;;; mode,
Case 1 gives a more accurate eigenvalue than Case 3. The tangential magnetic field on
the back PEC wall for the TM;;; mode is plotted for Case 1 and Case 3 in Fig. 4.6-4.7,
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Figure 4.4: Eigenvalue error (E-formulation) for the inhomogeneous and isotropic
rectangular cavity in Fig. 4.3.
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Figure 4.5: Eigenvalue error (H-formulation) for the inhomogeneous and isotropic
rectangular cavity in Fig. 4.3.

respectively. Clearly, transitions are much smoother for Case 3 than for Case 1 and
significantly more accurate fields at edges can be observed for Case 3 as compared
to Case 1 (the tangential magnetic field for Case 1 possesses normal components at
edges that do not exist for Case 3). Thus, for a mode where Case 1 gives a more
accurate eigenvalue than Case 3, Case 3 gives a more accurate eigenmode than Case

1. Further discussion of TVFE ambiguity is given in [75].

4.3 Application to open-demain problems

In this section, various TVFE options are employed for solution of open-domain

problems. The pertinent formulation is given and numerical results are presented.
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Figure 4.6: Magnetic field on the back PEC wall for the TM;;; mode of the inho-

mogeneous and isotropic rectangular cavity in Fig. 4.3 with mixed-order
TVFE of order 0.5 applied (Case 1).
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Figure 4.7: Magnetic field on the back PEC wall for the TM;;; mode of the inho-

mogeneous and isotropic rectangular cavity in Fig. 4.3 with mixed-order
TVFEs of order 0.5 and 1.5 applied (Case 3).

4.3.1 Formulation for open-domain problems

Consider a PEC patch antenna backed by a PEC cavity and recessed in an infi-
nite PEC ground plane. The cavity-backed patch antenna is situated in free space
characterized by the permittivity ¢y and the permeability g as illustrated in Fig. 4.8
(side view) and Fig. 4.9 (top view) for the case of a triangular patch backed by a finite
circular cylindrical cavity. The volume of the possibly inhomogeneous and anisotropic
cavity is denoted by V' and characterized by the permittivity tensor Z and the perme-
ability tensor i. The region V' can include internal PEC surfaces. Internal resistive
and impedance surfaces can easily be incorporated [92] but we restrict ourselves to

internal PEC surfaces in this dissertation. The boundary of the cavity V' defined as

Tt
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Figure 4.8: Side view of a cavity-backed patch antenna recessed in an infinite PEC
ground plane.

Figure 4.9: Top view of a cavity-backed patch antenna recessed in an infinite PEC
ground plane for the case of a triangular patch and a circular cylindrical
cavity.

the top surface (the PEC patch or the non-PEC part between the PEC ground plane
and the PEC patch), the PEC side surfaces, the PEC bottom surface and any internal
PEC surfaces is denoted by I'y. The non-PEC part of I'y is denoted by S while the
PEC part of I'y is denoted by I'y\.S.

Assuming the antenna feed is described by an electric volume current density
J within V| the electric and magnetic field intensities E and H, respectively, ful-
fil Maxwell’s equations (2.1)-(2.2) for M = 0 and E fulfils the weak form (2.5) of
the vector wave equation (2.3) for M = 0. Combination of the weak vector wave

equation (2.5) with Maxwell’s equation (2.1) for M = 0 and introduction of the rel-



ative permittivity and permeability tensors &, and Ji, via (2.7)-(2.8) then leads to E

fulfilling

/((\7><T)-(ﬁ,fl-v><E)—kéT-(a-E))dV:jwuo/T-(ﬁ><H)dS
5

S

—jw,uo/ T -JdV (4.10)
Vv

where kg = w,/Egito is the free space wave number, where 7 denotes the unit normal
vector to S directed out of V' and where a surface integral over the PEC part 'y~

of I'v has been eliminated since it vanishes.
We now proceed to discretize (4.10) using the hybrid FE/BI method. We initially

neglect the surface integral in (4.10) and discretize
/((V xT) (" VxE)=kiT-(5 -E)dV = —jw,u(]/ T-JdV (4.11)
v v
to obtain a FE system of linear equations. Upon discretization of the surface integral

Jwito / T (nxH)dS (4.12)
s

in (4.10) using a BI (an expression for H in terms of E) and subsequent correction
of the FE system of equations according to (4.10), the final FE/BI system of linear
equations is obtained.

We consider (4.11). Let us discretize V' into Ny tetrahedral elements via

Ny
V= Z Ve (4.13)
e=1

and enforce (4.11) in each element V°. Next, we expand the electric field E in V¢ via



(2.15) and choose the vector weighting functions T = W{, 1 =1,--- | N, to arrive at
Z/ (V x W¢)- url\—/xwe)

—RRWE (B W) AVES = —jupe | WE-JdV.  (4.14)
Ve

The N element equations (4.14) for the eth element can be formulated in the matrix

form

[ANE} =19} (4.15)
where [A°] is the element matrix with entries
Af]-:/ve((VxWe) (™" Vx W) =k W (.- W5))dV, (4.16)
{¢°} is the excitation vector with entries

g5 = —Jwio W JdV (4.17)
‘/6

and {E°} is a vector containing the unknown expansion coefficients £f. Assembly of
the element equations (4.15) and elimination of unknowns along I'v\.S then leads to

a global matrix equation system that can be formulated

AH AIS EI gI
= (4.18)

ASI ASS ES gS
where [AT], [AT5], [AST] and [A%®] are known matrices, {¢g’} and {g°} are known
vectors and { B} and {E®} are vectors containing the unknown expansion coefficients
associated with the interior of V' (superscript /) and the boundary S of V' (superscript

S). This is the desired FE system of linear equations resulting from discretization of

(4.11).



We now consider the surface integral (4.12) which is in terms of the magnetic
field H. As mentioned earlier, we seek an expression in terms of the electric field E.
This is obtained by using the surface equivalence principle [45] to relate H to E just

outside S via
H-= —2jw50/ Eo(r,r') (E'x ') dS' (4.19)
S

where 60 is the dyadic free space Green’s function given by

Eg(r, r') = (f kl—gvv ) Go(r, ') (4.20)

with T being the identity tensor and Gy being the scalar free space Green’s function
given by

, e—jkolr—l"l )
Go(r,r') = ———— (4.21)

Cdrnfr -

Substitution of (4.19) for H into the surface integral (4.12) yields

jw,uO/T-(fz x H) dS :ng/T-(ﬁ ></ Golr,r') - (B' x i) dS')dS (4.22)
S S S

which is in terms of E and can be directly discretized. Before doing so, it is advan-

tageous to substitute 60 from (4.20) and use elementary vector identities to obtain

jwuo/T~(ﬁ x H) dS =2 kg//ao(r, r') (E' x i) - (T x #) dS' dS
S SJS

—2//G0(r, F) V(B x #') V(T x #4)dS"dS.  (4.23)
SJS

The singulatities of the integrands on the right-hand side of (4.23) are of a lower
order than the singulatity of the integrand on the right-hand side of (4.22) and hence
the tangential electric field in (4.23) can be expanded using an expansion of a lower
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order than that in (4.22). Consistent with the discretization of V' into Ny elements

via (4.13), we now discretize S into Ng triangular faces via

S

N
§=Y s

e=1

Next, we expand the tangential electric field Ef;ng linearly in S¢ via

M
e E e yre
Etang - Et,]V]
j=1

! . .
where Ey are unknown expansion coefficients and

Vi =W, — (W7 -a)n

J

(4.24)

(4.26)

are known vector basis functions, respectively, for the e'th segment. With the field

representation (4.25) over S, the field uniqueness requirements at S mandate that all

higher order edge- and face-based vector basis functions associated with edges and

faces of S are eliminated. This implies that mixed-order TVFEs for elements with a

triangular face bounding S can be complete to order 0.5 or incomplete to order 1.5

but not complete to order 1.5. Further discussion is given in section 8.2. Choosing

the vector weighting functions T = V¢, 1 =1,--- | M, we obtain the equations

Ns M
Jwho / T-(hxH)dS=) ) / Gofr.v') (245 VS - Ve
S Jse Jse!

=1 j=1

=2V (VS x @) V- (V£ x ﬁ)) ds' dS E;;.

Upon assembly of these equations, we end up with

60

(4.27)



which is the desired discretization of (4.12).
The FE/BI discretization of (4.10) now follows from the FE discretization (4.18)
of (4.11) representing the FE part of (4.10) by combining it with the BI discretization

(4.28) of (4.12) representing the BI part of (4.10). We obtain the final FE/BI system

AII AIS EI gl
= . (4.29)

AST ASS _ gss S g
We note that the adaptive integral method (AIM) [11, 12] can be invoked for
avoiding the storage of a full BI matrix and for speeding up matrix-vector products
within an iterative solver. For conservative choices of AIM parameters (dense AIM
grid and large AIM near-zone threshold), these computational improvements come
with virtually no compromise in accuracy. The AIM was conservatively taken advan-
tage of for some of the computations in this dissertation but since the AIM is not

essential to this dissertation the formulation is not repeated here.

4.3.2 Numerical results for open-domain problems

Consider a square metallic patch antenna backed by a rectangular cavity recessed
in an infinite metallic ground plane, as illustrated in Fig. 4.10 (side view) and Fig. 4.11
(top view). The cavity-backed patch antenna is situated in free space characterized
by the permittivity go and the permeability po. The cavity is of dimensions 1.85 cm
x 1.85 em x 0.15 cm and filled with a dielectric material of permittivity 10 ¢, and
conductivity 0.0003 S/cm. The patch is of side length 0.925 cm and centered in the

cavity aperture. It is fed by a vertical coaxial line whose outer conductor is attached
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Figure 4.10: Side view of a square metallic patch antenna backed by a dielectric-filled
rectangular cavity recessed in an infinite metallic ground plane.

0.925 cm

Figure 4.11: Top view of a square metallic patch antenna backed by a dielectric-filled
rectangular cavity recessed in an infinite metallic ground plane.

to the ground plane and whose inner conductor is attached to the patch at the mid
point of an edge, as illustrated in Fig. 4.10-4.11. The coaxial feed is modeled as a
vertical probe of constant current.

An almost identical antenna was considered by Schuster and Luebbers [81]. In [81],
the cavity walls and the ground plane was removed and a similar patch on a similar
but finite grounded dielectric substrate was analyzed using the finite difference time
domain (FDTD) method. In spite of these geometrical differences, the two antennas
are expected to have the same input impedance and, consequently, the same resonant
frequency since the dominant fields are confined to a volume under and in the vicinity

of the patch. The resonant frequency was found in [81] to be 4.43 GHz. The resistance
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at resonance was found to be 400 € while the reactance was in the range of 230
to -170 Q close to resonance. We note that the results in [81] were found with an
extremely fine discretization and hence can be considered accurate.

The patch antenna is analyzed using the FE/BI method in conjunction with an
iterative QMR solver. We discretize the cavity into tetrahedral elements and con-
sequently discretize the surface forming the boundary bhetween the cavity and free
space into triangular faces. Two different TVFE options are applied. The first TVFE
option is to use the mixed-order TVFE of order 0.5 throughout the mesh. For a
mesh of average edge length 0.260 cm (Case 1), the input impedance is determined
as a function of frequency and the resonant frequency of the patch is predicted. The
coarse discretization of Case 1 means that this resonant frequency is most likely not
accurate. For meshes of average edge lengths of 0.188 cm (Case 2), 0.153 c¢m (Case
3) and 0.133 c¢m (Case 4), more accurate resonant frequencies but also higher com-
putational costs can be expected. The second TVFE option is to use the hierarchical
mixed-order TVFE of order 1.5 close to the radiating edges and the mixed-order
TVFE of order 0.5 elsewhere. For the meshes of average edge length 0.260 cm (Case
5) and 0.188 cm (Case 6), the input impedance is again determined and the resonant
frequency is again predicted. The effectiveness of this approach (Case 5-6) in terms
of accuracy, CPU time and memory requirements is compared to the previous one
(Case 1-4). The six cases are summarized in Tab. 4.2.

Real and imaginary parts of the input impedance as a function of frequency are
given in Fig. 4.12-4.13 for Case 1-6 and corresponding resonant frequencies are pro-
vided in Tab. 4.2. For Case 1-4, a larger and larger resonant frequency is observed
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Average Time per
edge | Resonant frequency
TVFE | length | frequency BI Matrix | point
Case | order(s) | [cm] [GHz] | Unknowns | unknowns | entries [sec]
1 0.5 0.260 3.974 345 120 17119 7.52
2 0.5 0.188 4.147 817 288 89695 44.78
3 0.5 0.153 4.258 1489 528 291359 | 222.92
4 0.5 0.133 4.302 2361 840 725791 | 771.59
5 0.5/1.5 | 0.260 4.323 827 120 30675 17.33
6 0.5/1.5 | 0.188 4.437 1467 288 107963 77.28

Table 4.2: Computational effort for Case 1-6 for the antenna in Fig. 4.10-4.11.

as the mesh becomes denser and denser. However, even for Case 4, the error as
compared to the result obtained by Schuster and Luebbers is quite large (2.98 %)
for resonant frequency computation. Use of selective field expansion (Case 5-6) leads
to a significant accuracy improvement. Case 5 (error 2.42 %) gives a more accurate
result than Case 1-4 and Case 6 (error 0.16 %) matches the result by Schuster and
Luebbers almost exactly. The computational cost (number of unknowns, number of
BI unknowns, number of non-zero matrix entries (memory usage) and CPU time per
frequency point) to obtain these results are also given in Tab. 4.2. It is evident that
the second TVFE option corresponding to Case 5-6 is significantly more attractive
than the first TVFE option corresponding to Case 1-4. Case 5 gives a more accurate
result than Case 4 but uses only 4.22 % of the memory and 2.15 % of the CPU time
that Case 4 does. The accuracy of Case 6 is vastly superior to that of Case 4 and yet
Case 6 uses only 14.88 % of the memory and 10.02 % of the CPU time that Case 4
does. We note that the savings in Case 5-6 are reached in part because coarse meshes
with higher order TVFEs lead to significantly smaller BI portions of the resulting

matrix equation systems than fine meshes with lowest order TVFEs.
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Figure 4.12: Real part of the input impedance of the antenna in Fig. 4.10-4.11 for
Case 1-6.
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Figure 4.13: Imaginary part of the input impedance of the antenna in Fig. 4.10-4.11
for Case 1-6.

We note that the proposed approach was tested favorably for empty cavities as
well as cavities filled with dielectric and gyrotropic (magnetic) materials. For brevity,

the results are not included in this dissertation.

4.4 Summary

In this chapter, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for
tetrahedral elements were proposed and tested for solution of closed- as well as open-
domain problems. Selective field expansion using hierarchical mixed-order TVFEs of
order 0.5 and 1.5 was found to be a very promising approach for accurate and efficient

solution of certain classes of electromagnetic problems.

65



CHAPTER 5

ANALYSIS OF CONDITION NUMBERS

In this chapter, the condition numbers resulting from FEM analysis using the
hierarchical mixed-order TVFEs of order 1.5 for triangular and tetrahedral elements
proposed in chapter 3 and chapter 4 are contrasted to those of existing interpola-
tory and hierarchical mixed-order TVFEs of order 1.5 for triangular and tetrahedral
elements. In addition, an approach for improving the condition numbers of FEM
matrices resulting from selective field expansion is suggested and tested. The work

in this chapter is published in [6].

5.1 Background

Linear equation systems associated with the FEM and hybrid versions hereof are
often solved using iterative solvers which are known to perform relatively poorly
(require many iterations) when the system matrices are badly conditioned. This is
the case for (generalized) eigenvalue problems as well as excitation problems. This

drawback makes it desirable to construct system matrices having small condition
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numbers. It is generally postulated that higher order TVFEs lead to larger condition
numbers than the lowest order TVFE and that hierarchical higher order TVFEs lead
to larger condition numbers than interpolatory higher order TVFEs [75]. These are
two postulates that make selective field expansion using hierarchical higher order
TVFEs significantly less attractive.

The condition numbers of element matrices based on the mixed-order TVFEs of
order 1.5 developed by Graglia et al. [37] (interpolatory) and Webb and Forghani [97]
(hierarchical) have been studied before [75]. However, no detailed study has been pre-
sented that examines the inter-relationships between the condition numbers of element
as well as global matrices based on various interpolatory and hierarchical mixed-order
TVFEs. It is the aim of this chapter to carry out such a comparison. Specifically,
we compare the interpolatory mixed-order TVFEs of order 1.5 developed by Peterson
[66] (two-dimensional problems), Savage and Peterson [77] (three-dimensional prob-
lems), Graglia et al. [37] and Webb and Forghani [97], see section 2.2, with the
hierarchical mixed-order TVFEs of order 1.5 proposed in this dissertation. The study
includes results for two- as well as three-dimensional problems, TE field formulation
(TE-formulation) as well as TM field formulation (TM-formulation) (two-dimensional
problems), E- as well as H-formulation (three-dimensional problems), element as well
as global matrices and unnormalized as well as normalized vector basis functions.
Based on the study, an approach for improving the condition numbers of system

matrices resulting from selective field expansion is suggested and tested.
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5.2 Formulation for closed-domain problems

Given a mixed-order TVFE, different applications lead to structurally different
global matrix systems and hence it is impossible to uniquely define a global matrix
whose condition number characterizes the mixed-order TVFE for all applications. If
we consider a waveguide or a cavity with metallic walls, FEM analysis based on a
given mixed-order TVFE leads to element matrix equation systems of the form (for

specifics, see chapter 3 and chapter 4)
(A} = MB) (5.1

where each entry of [A°] is the integration of the dot product of the curl of two vector
basis functions over the element and each entry of [B°] is the integration of the dot
product of two vector basis functions over the element. Assembly of element equations

then leads to a global matrix equation system of the form

[Al{z} = A[Bl{z}. (5.2)

The matrices [A°] and [A] are singular while [B°] and [B] are non-singular. In this
chapter, we perform FEM analysis of waveguides and cavities with metallic walls
based on different mixed-order TVFEs and use the condition numbers of [B¢] and [B]
as indicators of the matrix condition numbers that the different mixed-order TVFEs
lead to. We note that the condition number of a matrix can be defined in a variety
of ways [36]. The condition number used in this dissertation is the absolute value of

the ratio of the maximum to the minimum eigenvalue.
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5.3 Homogeneous application of TVFEs

In this section, condition numbers for FEM matrices are computed when mixed-

order TVFEs of order 0.5 and 1.5 are used throughout computational domains.

5.3.1 Two-dimensional case

Consider a rectangular waveguide of normalized dimensions 1 x 0.5, as illustrated
in Fig. 5.1. For TE- and TM-formulation, the eigenvalues are determined using the
FEM (64 triangular elements) with the mixed-order TVFEs by Whitney, Peterson,
Graglia et al., Webb and Forghani and that proposed in this dissertation used for

field expansion (unnormalized as well as normalized vector basis functions).

0.5

1

Figure 5.1: Illustration of a rectangular waveguide.

In Tab. 5.1, the condition number of the global matrix [B] is given for TE- and
TM-formulation with unnormalized as well as normalized vector basis functions. The
abbreviations ‘Wh’, ‘Pe’, ‘Gr’, ‘An’ and ‘We’ denote the mixed-order TVFEs devel-
oped by Whitney, Peterson, Graglia et al., that proposed in this dissertation and that
developed by Webb and Forghani, respectively. The higher order TVFEs are seen to
lead to much larger condition numbers than the lowest order TVFE. Also, unnor-
malized vector basis functions are seen to lead to much larger condition numbers

than normalized vector basis functions for all TVFEs. For interpolatory TVFEs,
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the TVFE by Graglia et al. leads to better conditioned matrices than the TVFE
by Peterson while for hierarchical TVFEs, the TVFE proposed in this dissertation
leads to better conditioned matrices than the TVFE by Webb and Forghani. The
hierarchical TVFE proposed in this dissertation leads to better conditioned matrices
than the interpolatory TVFE by Peterson, especially when the vector basis functions
are normalized. The interpolatory TVFE by Graglia et al. leads to slightly better

conditioned matrices than the hierarchical TVFE proposed in this dissertation.

TE-formulation TM-formulation
TVFE | Unnormalized | Normalized | Unnormalized | Normalized
Wh 3 3 5 6
Pe 428 90 479 149
Gr 144 37 144 61
An 402 43 451 72
We 827 71 926 101

Table 5.1: Condition numbers for the global matrices resulting from FEM analysis of
the waveguide in Fig. 5.1.

To possibly correlate the global matrix condition numbers to those of the individ-
ual element matrices, condition numbers for the element matrix [B¢] for each of the 64
elements used to discretize the waveguide are displayed in Fig. 5.2-5.3 for unnormal-
ized and normalized vector basis functions, respectively. For higher order TVFEs, the
results are presented in a slightly different form in Fig. 5.4-5.5 where for each element
the condition numbers of [B¢] obtained with the mixed-order TVFEs by Peterson,
Webb and Forghani and those proposed in this dissertation are given relative to the
one obtained with the mixed-order TVFE by Graglia et al. Fig. 5.2-5.5 show that all

conclusions for global matrices also hold for the individual element matrices.
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Figure 5.2: Condition numbers for the individual element matrices for the waveguide
illustrated in Fig. 5.1; TE/TM-formulation with unnormalized vector ba-
sis functions.
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Figure 5.3: Condition numbers for the individual element matrices for the waveguide
illustrated in Fig. 5.1; TE/TM-formulation with normalized vector basis
functions.

5.3.2 Three-dimensional case
Consider a rectangular cavity of normalized dimensions 1 x0.75 x 0.5, as illustrated

in Fig. 5.6. For E- and H-formulation, the eigenvalues are determined using the FEM

(130 tetrahedral elements) with the mixed-order TVFEs by Whitney, Savage and
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Figure 5.4: Ratios of condition numbers the for individual element matrices for the
waveguide illustrated in Fig. 5.1; TE/TM-formulation with unnormalized
vector basis functions.
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Figure 5.5: Ratios of condition numbers for the individual element matrices for the
waveguide illustrated in Fig. 5.1; TE/TM-formulation with normalized
vector basis functions.

Peterson, Graglia et al., Webb and Forghani and that proposed in this dissertation
used for field expansion (unnormalized as well as normalized vector basis functions).

Condition numbers similar to those in Tab. 5.1 and Fig. 5.2-5.5 are given in
Tab. 5.2 and Fig. 5.7-5.10 for E- and H-formulation with unnormalized as well as

normalized vector basis functions. The conclusions for the two-dimensional case are
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Figure 5.6: Illustration of a rectangular cavity.

E-formulation H-formulation
TVFE | Unnormalized | Normalized | Unnormalized | Normalized
Wh 8 12 23 31
Pe 2173 287 5939 958
Gr 684 99 1387 239
An 1834 195 5341 656
We 4238 472 11564 1414

Table 5.2: Condition numbers for the global matrices resulting from FEM analysis of
the cavity in Fig. 5.6.

also seen to be valid in the three-dimensional case.

5.4 Inhomogeneous application of TVFEs

In this section, condition numbers for FEM matrices are computed when mixed-
order TVFEs of order 0.5 and 1.5 are combined selectively within a computational
domain.

Consider a rectangular cavity of normalized dimensions 1 x 0.75 x 0.5. It is
composed of a rectangular cavity of dimensions 0.25 x 0.75 x 0.5 filled with a dielectric
of relative permittivity e, = 10 and a rectangular cavity of dimensions 0.75x0.75x 0.5
filled with a dielectric of relative permittivity ¢, = 1, as illustrated in Fig. 5.11.

The field and its derivatives within the cavity are expected to be largest in the

dielectric and in the immediate vicinity hereof. An effective field expansion would
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Figure 5.7: Condition numbers for the individual element matrices for the cavity il-
lustrated in Fig. 5.6; E/H-formulation with unnormalized vector basis
functions.
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Figure 5.8: Condition numbers for the individual element matrices for the cavity il-
lustrated in Fig. 5.6; E/H-formulation with normalized vector basis func-
tions.

therefore use a higher order TVFE within the dielectric and in the part of the air-filled
region closest to the dielectric and the lowest order TVFE elsewhere. The field con-
tinuity requirements between the lowest and higher order regions make hierarchical
higher order TVFEs attractive and the detailed investigation of matrix conditioning

in the previous section suggests using the hierarchical mixed-order TVFE of order 1.5
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Figure 5.9: Ratios of condition numbers for the individual element matrices for the
cavity illustrated in Fig. 5.6; E/H-formulation with unnormalized vector
basis functions.
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Figure 5.10: Ratios of condition numbers for the individual element matrices for the
cavity illustrated in Fig. 5.6; E/H-formulation with normalized vector
basis functions.

proposed in this dissertation rather than the one developed by Webb and Forghani.
However, the field continuity requirements between the lowest and higher order re-
gions only mandate use of a hierarchical higher order TVFE at the boundary to the

lowest order region and hence away from this boundary an interpolatory higher or-
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Figure 5.11: Illustration of an inhomogeneous rectangular cavity.

der TVFE could be used. When the field within an empty cavity is expanded using
the mixed-order TVFEs of order 1.5 proposed in this dissertation as well as those
developed by Savage and Peterson and Graglia et al. throughout the cavity, the in-
terpolatory TVFE by Savage and Peterson leads to larger condition numbers than
the hierarchical TVFE proposed in this dissertation while the interpolatory TVFE by
Graglia et al. leads to smaller condition numbers than the hierarchical TVFE pro-
posed in this dissertation. This suggests that combination of the hierarchical TVFE
proposed in this dissertation with the interpolatory TVFE by Savage and Peterson
within the higher order region will lead to larger condition numbers than those when
the hierarchical TVFE proposed in this dissertation is used throughout the higher
order region whereas combination of the hierarchical TVFE proposed in this disserta-
tion with the interpolatory TVFE by Graglia et al. within the higher order region will
lead to smaller condition numbers than those when the hierarchical TVFE proposed
in this dissertation is used throughout the higher order region. Below, we examine
the three different approaches for modeling the inhomogeneous cavity. They span the
same space within each element and give identical eigenvalues. However, they are
not equally efficient numerically as the different TVFEs provide matrices of different

condition numbers.
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Condition numbers are given in Tab. 5.3 for E- and H-formulation. The abbrevia-
tions ‘Wh/An’, ‘Wh/An/Pe’ and ‘Wh/An/Gr’ denote the three different approaches.
For both E- and H-formulation, the expected relative size of the different condition
numbers is observed. Hence, an approach for improving the condition numbers of
FEM matrices resulting from selective field expansion has been suggested and tested.
The improvement comes at the expense of a more complicated formulation and com-
puter code but does not alter accuracy. In essence, the suggested approach uses
hierarchical TVFEs to transition between regions with lowest and higher order inter-
polatory TVFEs. Such use of transition TVFEs is directly equivalent to the use of
scalar transition elements for efficient transition between coarse and fine meshes or
between regions with lowest and higher order expansions [38, 87, 108]. This is a well-
known concept that has been applied successfully in mechanical and civil engineering

for decades.

TVFEs E-formulation | H-formulation

Wh/An 1188 654
Wh/An/Pe 1747 996
Wh/An/Gr 534 282

Table 5.3: Condition numbers for the global matrices resulting from FEM analysis of
the cavity in Fig. 5.11.

5.5 Summary

In this chapter, the condition numbers resulting from FEM analysis using the

hierarchical mixed-order TVFEs of order 1.5 for triangular and tetrahedral elements



proposed in chapter 3 and chapter 4 were contrasted to those of existing interpola-
tory and hierarchical mixed-order TVFEs of order 1.5 for triangular and tetrahedral
elements. The proposed hierarchical mixed-order TVFEs of order 1.5 proved better
conditioned than existing hierarchical mixed-order TVFEs of order 1.5 and thus the
analysis fostered no concerns for potential future convergence problems due to exces-
sive matrix condition numbers. In addition, an approach for improving the condition
numbers of FEM matrices resulting from selective field expansion was suggested and
tested. The improvement comes at the expense of a more complicated formulation

and computer code but does not alter accuracy.
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CHAPTER 6

ADAPTIVE TVFE REFINEMENT

In this chapter, a review of existing error estimators and indicators is given and
the effectiveness of the proposed hierarchical mixed-order TVFEs of order 0.5 and 1.5
for tetrahedra is investigated when some of the reviewed error indicators are applied
in the context of a very simple adaptive refinement strategy. The work in this chapter

is expected to be published in [4].

6.1 Background

Numerous methods for a posteriori error estimation or indication have been stud-
ied extensively in mathematics and engineering for decades and a vast amount of
literature exists on the subject. For reviews of the various methods, see for instance
[2, 16, 23, 46, 63, 74]. Following the approximate solution of a partial differential
equation using a lowest order FE or hybrid FE/BI approach, each method seeks to
identify local regions with large error for subsequent adaptive refinement of the mesh

(h-refinement), basis functions (p-refinement) or mesh and basis functions simulta-
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neously (hp-refinement) leading to an improved FE or FE/BI solution. This process
is repeated until a desired accuracy is deemed to be reached. The identification of
local regions can be performed by estimating the actual local error (error estimation)
or by determining a local quantity that indicates whether the local error is small or
large without estimating the actual local error (error indication). The local error
estimation or indication can be carried out on an element by element basis or clusters
of elements can be grouped together in sub-domains whereby the local error estima-
tion or indication can be carried out on a sub-domain by sub-domain basis. Methods
for which the error estimator or indicator can be computed directly from the initial
solution are referred to as explicit methods whereas methods for which computation
of the error estimator or indicator requires the solution of a local boundary value
problem are referred to as implicit methods.

The various methods for a posteriori error estimation or indication can be grouped
in several different ways and hence a unique classification of these is not possible. The
one presented here closely follows that of [74]. Implicit residual methods are based
on the solution of a local Dirichlet or Neumann boundary value problem constructed
from the lowest order FE solution [1, 76]. Explicit residual methods are based on
local error estimation or indication by computation of a residual directly from the
lowest order FE solution [10, 32, 34, 39, 47, 48, 93]. Among these, explicit complete
residual methods take into account both local interior and boundary effects, explicit
incomplete residual methods take into account only local interior effects and explicit
interface residual methods take into account only local boundary effects. Recovery /

gradient / average / smoothing methods are based on local comparison of the gradi-
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ent of the original lowest order FE solution to a smoothened version of this gradient
[109]. Dual / complementary / variational / mixed / hybrid methods are based on
local comparison of solutions of two dual / complementary problems [16, 32, 33]. Per-
turbation methods are based on the estimation of local errors from differences between
FE solutions of different orders [42, 57]. Interpolation and extrapolation methods are
based on interpolation and extrapolation theory to compute approximations to higher
order derivatives [31, 86]. For comparisons of the different methods, see for instance
[16, 20, 24, 29, 33, 35, 41]. We note that the above classification is not complete. In
addition to the main classes of methods presented above, other methods have been
presented [74].

Hierarchical mixed-order TVFEs for tetrahedral elements have been proposed up
to and including order 1.5 by Webb and Forghani [97], see section 2.2, and up to and
including order 2.5 in this dissertation. The hierarchical mixed-order TVFE of order
1.5 proposed by Webb and Forghani was tested [76] for adaptive refinement using an
implicit residual method. The purpose of this chapter is to investigate the merits of
various explicit residual methods for a posteriori error indication. This is done via
adaptive p-refinement of hybrid FE/BI solutions using the hierarchical mixed-order
TVFEs of order 0.5 and 1.5 for tetrahedral elements proposed in this dissertation.
We restrict ourselves to an adaptive p-refinement approach in this dissertation and
refer to [22, 74, 82, 89] or additional references in [74] for adaptive h- or hp-refinement

approaches.

81



6.2 Adaptive refinement strategies

Consider a general three-dimensional electromagnetic problem. We perform a
lowest order FE or FE/BI analysis (mixed-order TVFEs of order 0.5 applied for field
expansion) with the computational domain discretized into N° tetrahedral elements
denoted by T¢, ¢ = 1,---,N¢, ecach having 4 faces denoted by Ff, + = 1,--- 4.
The center of T¢ and Ff is denoted by C(T°) and C(FY), respectively, and the unit
normal vector to F¢ directed out of the element T is denoted by ni. The lowest
order FE or FE/BI solution leads to approximations of the electric field intensity E
and the electric flux density D within and on the boundary of each element 7°. On
the face F¢, we let Df’i“ denote the value of D evaluated in 7¢ and let D{"* denote
the value of D evaluated in the element bounding 7. Based on these, we present
three different methods for indicating the error in a given region of the computational
domain. For each method, we give the error indicator corresponding to an element.
The corresponding error indicator for a sub-domain is simply the maximum of the
error indicators for the elements comprising the sub-domain.

The magnitude of the electric flux density generally does not correlate with the
error associated with the electric flux density. Nevertheless, regions with high flux
densities often give the dominant contributions to the physical response of a given

electromagnetic eigenvalue, radiation or scattering problem. This justifies accurate

modeling of such regions and hereby use of the simple error indicator
Ely(e) = [D(C(T))]. (61)

Although we are strictly not computing a residual, we will refer to this method as an
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explicit incomplete residual method.
The trivial three-dimensional extension of the two-dimensional error indicator
applied by Wang and Webb [93] for adaptive refinement in surface MoM problems is

the error indicator

[

Ely(e) = max {lnf (DY — Df’OUt)|C(F;f)} : (6.2)

This method is an explicit interface residual method.
A slightly different and computationally more expensive error indicator initially

proposed by Golias and Tsiboukis [34, 35] is the error indicator

El(c) = max { g (DS — D?"“)Pds} . (63

Fe
This method is also an explicit interface residual method.

In this dissertation, a conceptually very simple adaptive refinement strategy is
adopted. Following the lowest order FE or FE/BI analysis, we determine the degree
of error in each element via an error indicator and compute a refined solution where
a certain pre-specified percentage of the elements having the highest degree of error
are modeled with mixed-order TVFEs of order 1.5 and the remaining elements are
again modeled with mixed-order TVFEs of order 0.5. A more advanced refinement
strategy would estimate the optimal percentage of refinement for the improved so-
lution, use TVFEs of more orders for refinement and incorporate a feedback loop
leading to multiple error indications and refined solutions. However, given the lack of
previous applications of adaptive refinement for practical electromagnetic problems,
the simple adaptive refinement strategy described above was deemed sufficient in this
dissertation.
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6.3 Numerical results

In this section, the merits of the error indicators EI;, El and El; presented in
the previous section are investigated for determining input impedances of metallic
patch antennas backed by material-filled cavities recessed in infinite metallic ground
planes. We apply a standard hybrid FE/BI formulation with mixed-order TVFEs of

different orders used for field expansion, as detailed in section 4.3.1.

6.3.1 Square patch antenna

In section 4.3.2, we considered a square metallic patch antenna backed by a rectan-
gular cavity recessed in an infinite metallic ground plane. In this section, we consider
the same antenna and we therefore refer to the beginning of section 4.3.2 for a pre-
sentation of the antenna.

We discretize the BI surface and the patch into 8 x 8 = 64 squares each of which
are broken into two triangles. This surface mesh is extruded into the cavity to form
a prism layer and each prism is broken into three tetrahedra. Four different TVFE
options are applied : First, the mixed-order TVFE of order 0.5 is applied throughout
the cavity. Second, the mixed-order TVFE of order 1.5 is applied throughout the
cavity. Third, the mixed-order TVFE of order 0.5 is applied in conjunction with the
mixed-order TVFE of order 1.5 in the vicinity of the radiating edges of the patch
(38% of the TVFEs are of order 1.5). Fourth, the mixed-order TVFE of order 0.5
is applied in conjunction with the mixed-order TVFE of order 1.5 in regions found

adaptively (40% of the TVFEs are of order 1.5). The refinement is carried out for
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each of the error indicators E1y, EI; and EI; given by (6.1)-(6.3) on a tetrahedron
by tetrahedron (384 elements), prism by prism (128 sub-domains) as well as brick by

brick (64 sub-domains) basis. The nine different cases are defined in Tab. 6.1.

Error | Base of adaptive | Percentage of
Case | indicator refinement refinement
1 El Tetra 40
2 El Prism 40
3 El Brick 40
4 El, Tetra 40
5) El, Prism 40
6 El, Brick 40
7 El; Tetra 40
8 Els Prism 40
9 El3 Brick 40

Table 6.1: Definition of Case 1-9.

For the mixed-order TVFEs of order 0.5 and 1.5, the particular mesh is too coarse
to yield the correct resonant frequency of 4.43 GHz as obtained by Schuster and
Luebbers [81] and confirmed in chapter 4 for finer meshes. Nevertheless, the mesh
is very useful for evaluating the merits of the various error indicators. The dynamic
range of the differences in resonant frequency between solutions where mixed-order
TVFEs of order 0.5 and 1.5 are applied throughout the computational domain are
the largest for coarse meshes and hence coarse meshes are ideal for investigating how
well shifts in resonant frequency are predicted by adaptively refined solutions based
on various error indicators. This approach can of course only be justified for problems
where proper convergence has been ensured by very accurately predicting the correct
resonant frequency by using a more accurate approach (finer meshes, higher order

TVFEs). As demonstrated in section 4.3.2, such convergence was observed for this
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particular antenna.

Real and imaginary parts of the input impedance as a function of {requency are
given in Fig. 6.1-6.9 for each of the four TVFE options for Case 1-9. The results
for the first three TVFE options are the same for Case 1-9. The resonant frequency
predicted with the mixed-order TVFE of order 1.5 applied throughout the cavity
is larger than that when the mixed-order TVFE of order 0.5 is applied throughout
the cavity. Application of the mixed-order TVFE of order 1.5 in the vicinity of the
radiating edges only and the mixed-order TVFE of order 0.5 elsewhere is seen to
predict this shift very well. Most importantly, we observe that adaptive refinement
on an element by element basis (Case 1, 4, 7) is seen to predict an inaccurate upward
shift while adaptive refinement on a sub-domain by sub-domain basis (Case 2-3, 5-
6, 8-9) is seen to predict the upward shift very well. For EI, and El3, prism by
prism refinement is slightly more accurate than brick by brick refinement but more
complicated antennas must be studied before decisive conclusions can be reached
regarding the relative merits of these two sub-domain refinement schemes.

Corresponding regions of refinement at the resonant frequency are displayed in
Fig. 6.10-6.18. These figures show a top view of the mesh where the cavity and
patch boundaries are marked with thick black lines. A white / light gray / average
gray / dark gray triangle indicates that 0 / 1 / 2 / 3 of the three elements in the
prism beneath the triangle are being refined with a mixed-order TVFE of order 1.5.
Adaptive refinement on an element by element basis is seen to lead to very sporadic
regions where the mixed-order TVFE of order 1.5 is applied. Such combination of

lowest and higher order TVFEs is inefficient and consequently leads to less accurate

86



400 T T T T T T T T

g
g
&

—o— 05+ .5(edges)
—»—  0.5+1.5(adaptive)

inf

Re(Z. ) [Ohms]
51
S
T

=)
S
T

4 4.1 42 43 44 45
Frequency [GHz]

L 1 L ' I L L L
35 36 37 38 39 4 4.1 42 43 44 45
Frequency [GHz]

Figure 6.1: Real and imaginary part of input impedances for Case 1 (E1, Tetra).
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Figure 6.2: Real and imaginary part of input impedances for Case 2 (E1y, Prism).
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Figure 6.3: Real and imaginary part of input impedances for Case 3 (£}, Brick).
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Figure 6.7: Real and imaginary part of input impedances for Case 7 (E I3, Tetra).
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Figure 6.8: Real and imaginary part of input impedances for Case 8 (E I3, Prism).
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Figure 6.9: Real and imaginary part of input impedances for Case 9 (E I3, Brick).



Figure 6.10: Regions of refinement for Case 1 (E1y, Tetra) at 4.15 GHz.

Figure 6.11: Regions of refinement for Case 2 (EI;, Prism) at 4.30 GHz.

Figure 6.12: Regions of refinement for Case 3 (£, Brick) at 4.30 GHz.
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Figure 6.13: Regions of refinement for Case 4 (E 1, Tetra) at 4.10 GHz.

Figure 6.14: Regions of refinement for Case 5 (EI, Prism) at 4.30 GHz.

Figure 6.15: Regions of refinement for Case 6 (E 1, Brick) at 4.30 GHz.
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Figure 6.16: Regions of refinement for Case 7 (El3, Tetra) at 4.10 GHz.

Figure 6.17: Regions of refinement for Case 8 (E 13, Prism) at 4.30 GHz.

Figure 6.18: Regions of refinement for Case 9 (F 3, Brick) at 4.30 GHz.



results, as observed. Adaptive refinement on a sub-domain by sub-domain basis
inherently circumvents this problem and leads to very accurate results, as observed.

We note that all adaptive refinement schemes were tested for less than 40% re-
finement. 30% refinement was found to lead to very accurate results with E1; but
slightly less accurate results with £, and ETs5. Generally, 20% refinement was not
enough to significantly improve the lowest order solution. For brevity, these results

are not included.

6.3.2 Printed bowtie antenna

Consider a metallic printed bowtie antenna backed by a rectangular cavity recessed
in an infinite metallic ground plane, as illustrated in Fig. 6.19 (side view) and Fig. 6.20
(top view). The cavity-backed patch antenna is situated in free space characterized
by the permittivity o and the permeability po. The cavity dimensions are 48 cm x 64
em X 12 cm. The interior metallic cavity walls are covered with an AA of permittivity
(1—j2.7)e0, permeability (1 — j2.7)po and thickness 4 cm. This absorber layer would
not be part of an actual antenna but is merely a well-established computational
tool [64] that serves to approximately simulate a metallic printed bowtie antenna
situated in free space. Such an antenna is expected to exhibit broadband behavior in
contrast to the narrowband square patch antenna considered above. Consequently,
the printed bowtie antenna can provide a second and independent evaluation of the
error indicators presented in section 6.2. The specific printed bowtie antenna consists

of two isosceles triangular patches characterized by the opening angle 67.38° and the
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Figure 6.19: Side view of a metallic printed bowtie antenna backed by an air- and
absorber-filled rectangular cavity recessed in an infinite metallic ground

plane.
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Figure 6.20: Top view of a metallic printed bowtie antenna backed by an air- and
absorber-filled rectangular cavity recessed in an infinite metallic ground

plane.

maximum width 24 cm. The bowtie patches are centered in the cavity aperture and

fed by a probe of constant current connecting the two triangular patches.

An antenna very similar to the above was discussed by Collin [18] and is expected

to cover the UHF channels 14 to 83 spanning the frequency range [450 MHz, 900 MHz]

when used with a 300 Q feed line. That is, the real and imaginary parts of the input

impedance are expected to hover around 300 Q and 02, respectively, in this frequency

range.
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The distance from the antenna to the absorber is 8 ecm which translates into
Xo/8.33 at 450 MHz and A\g/4.17 at 900 MHz. Similarly, the thickness of the absorber
is 4 cm which translates into \g/16.67 at 450 MHz and Xo/8.33 at 900 MHz. These
distances should be sufficient to simulate an antenna in free space. That the absorber
actually works is confirmed by the fact that the behavior of the antenna is significantly
altered if the absorber is removed and the antenna is backed by a purely metallic
cavity. The main purpose of the absorber is to prevent excitation of modes normal
to and bounded by the metallic antenna and the bottom of the metallic cavity. If
such modes are excited, the antenna ceases to operate as an antenna situated in free
space but starts to function in the presence of the cavity which is not intended here.
The absorbers covering the side walls are not essential for this purpose and therefore
can be expected to have less influence on the behavior of the antenna. Indeed, it
was confirmed that results strikingly similar to those presented in the following are
obtained when the absorbers covering the side walls are removed. The extent of the
feed region is 4 cm (Ao/16.67 at 450 MHz and Xo/8.33 at 900 MHz) and hence it
is reasonable to assume a constant current over the probe in the frequency range in
which the antenna is operated. For larger feed regions, a phase variation of the probe
current will have to be accounted for. Doing so is trivial within the context of the
FE/BI method but it was deemed unnecessary in this case.

For analysis and evaluation of the proposed error indicators, we discretize the BI
surface and the patch into a coarse (56 antenna triangles and 330 BI triangles) and
a fine (160 antenna triangles and 1030 BI triangles) mesh. These surface meshes

are extruded into the cavity to form three prism layers. Fach prism is broken into



three tetrahedra and four different TVFE options are applied : First, the mixed-order
TVFE of order 0.5 is applied throughout the cavity for the coarse mesh. Second, the
mixed-order TVFE of order 0.5 is applied throughout the cavity for the fine mesh.
Third, the mixed-order TVFE of order 1.5 is applied throughout the cavity for the
coarse mesh. Fourth, the mixed-order TVFE of order 0.5 is applied in conjunction
with the mixed-order TVFE of order 1.5 in regions found adaptively (20% of the
TVFEs are of order 1.5) for the coarse mesh. Supported by the findings for the
square metallic patch antenna, the refinement is carried out for each of the error
indicators EI;, El, and Els given by (6.1)-(6.3) on a sub-domain by sub-domain
basis only with a sub-domain being three adjacent prisms extruded from a surface
triangle (386 sub-domains for the coarse mesh). That is, we opt not to examine
adaptive refinement on an element by element basis since it did not prove efficient in
the previous analysis and we further limit ourselves to only one type of sub-domain

by sub-domain refinement. The three different cases are defined in Tab. 6.2.

Error Base of adaptive | Percentage of
Case | indicator refinement refinement
10 El Prisms (3 adjacent) 20
11 El, Prisms (3 adjacent) 20
12 Els Prisms (3 adjacent) 20

Table 6.2: Definition of Case 10-12.

Real and imaginary parts of the input impedance as a function of frequency are
given in Fig. 6.21 for the first three TVFE options (no adaptivity). Instead of the
strongly resonant behavior characterizing cavity-backed patch antennas, we observe

the expected slightly oscillatory behavior of the real and imaginary parts. Mixed-
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order TVFEs of order 0.5 for the fine mesh and mixed-order TVFEs of order 1.5 for
the coarse mesh give similar results that are better (real parts closer to 300§ and
imaginary parts closer to 0 Q) than those with mixed-order TVFEs of order 0.5 for the
coarse mesh. Although mixed-order TVFEs of order 0.5 for the fine mesh and mixed-
order TVFEs of order 1.5 for the coarse mesh give similar results, the latter approach
1s more attractive than the former in terms of memory and CPU time requirements.

To demonstrate the merits of adaptive refinement, Fig. 6.22 shows the real and
imaginary parts of the input impedance as a function of frequency for the coarse
mesh with mixed-order TVFEs of order 1.5 throughout the cavity and with 80%
mixed-order TVFEs of order 0.5 and 20% mixed-order TVFEs of order 1.5 found
via adaptive refinement using El;, Ely, and El3 on a sub-domain by sub-domain
basis (Case 10-12). The results are almost indistinguishable expressing that we can
accurately predict the behavior of the antenna using only 20% mixed-order TVFEs of
order 1.5. This presents a significant memory and CPU time improvement at, virtually
no cost.

To illustrate the regions of refinement for Case 10-12, we consider a cross-section
of the mesh parallel to the antenna with the boundaries of the metallic cavity and
antenna marked with thick black lines. As mentioned previously, the tetrahedral
volume mesh is grown from a triangular surface mesh in a cut in the plane of the
bowtie patches by extruding it into three prism layers and breaking each prism into
three tetrahedra. Since we consider sub-domain by sub-domain refinement only, 0 or
9 tetrahedra can be refined corresponding to a given triangle in the cross-section. In
the following, a white / dark gray triangle indicates that 0 / 9 tetrahedra are being
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Figure 6.21: Real and imaginary part of the input impedance for the metallic bowtie
patch antenna in Fig. 6.19-6.20.
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Figure 6.22: Real and imaginary part of the input impedance for the metallic bowtie
patch antenna in Fig. 6.19-6.20.

refined. The regions of refinement at 0.7 GHz (close to the center of the frequency
band of operation) are shown in Fig. 6.23 for Case 10-12. Although they are seen to
differ slightly for the three different error indicators, they all show the general trend of
predicting the feed area and, to a lesser extent, the corners of the triangular patches
as the regions where mixed-order TVFEs of order 1.5 are applied.

We note that all approaches predict almost the same far field patterns as well as a
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Figure 6.23: Regions of refinement for the metallic bowtie patch antenna in Fig. 6.19-
6.20 for Case 10 (left), Case 11 (middle) and Case 12 (right).

linearly polarized far field (parallel to the feed) in the direction normal to the bowtie

patches. For brevity, these expected results are not included.

6.3.3 Discussion

The error indicator EI; is an explicit incomplete residual indicator taking into
account only local interior effects while the error indicators El; and El5 are explicit
interface residual indicators taking into account only local boundary effects. Explicit
complete residual indicators take into account both local interior and boundary effects
and thus are expected to offer superior performance. An obvious construction of
an explicit complete residual indicator is to simply combine EI; with El; or Els.
That is, a certain fraction of the elements or sub-domains are refined based on E'[;
and the remaining elements or sub-domains are refined based on El; or El;. This
approach was tested and found accurate for analysis of square metallic patch antennas.
However, more complicated antennas must be studied before decisive conclusions can

be reached regarding the efficiency of this approach.
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An apparent drawback of adaptive refinement is that it requires multiple (in this
case two) FE/BI solutions for each frequency. This seems computationally expensive
since it involves the consecutive solution of different equation systems using an itera-
tive solver for which zero is the traditional starting guess. A possible remedy might be
use of the previous FE/BI solution at a given frequency as the starting guess for the
iterative solver for all adaptive FE/BI solutions. As stated by Golias and Tsiboukis
[33], this should greatly accelerate the convergence of the adaptive FE/BI solutions.
We note that each adaptive FE/BI solution requires a starting guess for numerous
unknown expansion coefficients that have not previously been solved for. For these
unknowns, we shall continue to use zero as the starting guess.

To investigate the effectiveness of this approach for the metallic printed bowtie
antenna considered above, Fig. 6.24 shows the final number of iterations to reach a
1072 relative residual with a QMR solver as a function of frequency. Convergence
curves are given for the approaches where TVFEs of order 0.5 are used for a coarse
mesh, TVFEs of order 0.5 are used for a fine mesh and TVFEs of order 1.5 are
used for a coarse mesh. These three cases correspond to 3704, 11825 and 19745
unknowns, respectively. The number of iterations is seen to be slightly under 500
for all frequencies when mixed-order TVFEs of order 0.5 are applied for the coarse
mesh. As expected, this number increases when a finer mesh or mixed-order TVFEs
of order 1.5 are applied. It increases more in the latter case but relative to the number
of unknowns this case has the best convergence properties.

Fig. 6.25-6.27 shows the same information for Case 10-12 with zero as well as

the solution with mixed-order TVFEs of order 0.5 used as the starting guess for the
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Figure 6.24: Final number of iterations as function of frequency for different iterative
solutions.

iterative solver. The number of unknowns is around 6400 for all frequencies and
error indicators. The number of iterations is lower than when mixed-order TVFEs of
order 1.5 are applied throughout the coarse mesh. Also, the number of iterations is
consistently seen to drop when the solution with mixed-order TVFEs of order 0.5 is
used as the starting guess for the iterative solver instead of zero. The savings corne
at no cost since we need to carry out the solution with mixed-order TVFEs of order
0.5 in order to determine the regions of refinement. However, even if we pre-select
the higher order regions and thus have no need to find a solution with mixed-order
TVFEs of order 0.5, it is still worthwhile to do so. Subsequent use of such a solution
as the starting guess for the iterative solver can reduce the iteration count by several
hundred iterations for systems with approximately 6400 unknowns for the price of
less than 500 iterations for systems with 3704 unknowns.

Fig. 6.28-6.30 shows the relative residual as a function of the iteration number at
the frequency 0.7 GHz (close to the center of the frequency band of operation) for

(Case 10-12. The results reinforce the conclusions from above.
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Figure 6.25: Final number of iterations as a function of frequency for adaptive so-
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iterative solver.
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Figure 6.26: Final number of iterations as a function of frequency for adaptive so-
lutions for Case 11 (El,, Prism) with different starting guesses for the
iterative solver.
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Figure 6.27: Final number of iterations as a function of frequency for adaptive so-
lutions for Case 12 (E13, Prism) with different starting guesses for the
iterative solver.
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lutions for Case 12 (EI3, Prism) with different starting guesses for the
iterative solver.
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We note that the above comments for reducing the iteration count do not apply
to resonant antennas like the square metallic patch antenna considered previously.
This is due to the fact that the field values throughout the computational domain

experience a strong frequency dependence.

6.4 Summary

In this chapter, a review of existing error estimators and indicators was given and
the effectiveness of the proposed hierarchical mixed-order TVFEs of order 0.5 and
1.5 for tetrahedra was investigated when some of the reviewed error indicators were
applied in the context of a very simple adaptive refinement strategy. The results
were extremely promising for both narrowband and broadband antennas provided
the refinement was carried out on a sub-domain by sub-domain basis as opposed to

an element by element basis.
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CHAPTER 7

ANALYSIS OF TAPERED SLOT ANTENNAS

In this chapter, the hierarchical mixed-order TVFEs of order 0.5 and 1.5 for
tetrahedra proposed in this dissertation are used in conjunction with a simple adaptive
refinement strategy to analyze the impedance and pattern characteristics of tapered
slot antennas (TSAs) using the hybrid FE/BI method. The work in this chapter is

expected to be published in [4].

7.1 Background

Metallic TSAs such as exponentially tapered slot antennas (ETSAs, also called
Vivaldi antennas), linearly tapered slot antennas (LTSAs) and constant width slot
antennas (CWSAs), see Fig. 7.1, are of practical interest as reflector antenna or
lens feeds, as elements of broadband antenna arrays or (for larger TSAs) directly as
transmit or receive antennas [106]. Whether isolated or backed by thin dielectrics,
TSAs have a number of appealing properties. They are broadband with typical

impedance and pattern bandwidths of 5:1 [83] although values as large as 40:1 have
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been reported [52], they can provide an almost symmetric main beam despite their
entirely planar nature [44] with typical -10 dB beamwidths of 30-40° [106], they have a
moderate directivity of approximately ten times the antenna length normalized to the
free space wavelength [107] and they have reasonable cross-polarization characteristics
with a typical isolation of -20 dB in the principal planes [44]. Their beamwidth and
directivity are somewhat controllable when the length of the antenna is varied [106]
and a narrow pattern beamwidth versus broad pattern bandwidth trade-off exists
[107]. In addition, they have the practical advantages that they are inexpensive and
(feed region excluded) easy to fabricate [106], that their transmitting or receiving
portion is well separated from the necessary circuitry providing ample space for the
latter [106] and that the transverse spacing between TSA array elements can be made

very small [106].

Figure 7.1: Illustration of a metallic (dark gray) ETSA (left), LTSA (middle) and
CWSA (right) backed by a dielectric (light gray).

TSAs are traveling wave antennas (TWAs) of the surface wave type, i.e. a travel-

ing wave propagates along the antenna structure with a phase velocity smaller than

the speed of light. A review of TWAs was given by Zucker [110]. During the past two

decades, the characteristics of TSAs have been measured as well as simulated using
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approximate methods and more rigorous numerical techniques such as the MoM, the
FDTD method and the transmission line method. TSAs in air have been charac-
terized in [43, 44, 49] while TSAs backed by thin homogeneous dielectrics to better
confine the field to the slot and thereby provide narrower beamwidths have been
treated in [30, 43, 44, 49, 106, 107]. TSAs backed by inhomogeneous dielectrics (ho-
mogeneous dielectrics with holes) to lower the effective dielectric constant and provide
a directivity improvement have been measured [58] and simulated using the FDTD
method [17]. The bandwidth bottleneck of the ETSA is the transition between the
feed and slot region [52]. The antipodal ETSA was introduced in [28] and compre-
hensively studied in [26] to overcome this difficulty while still providing beamwidths
and directivity comparable to the ETSA. The antipodal ETSA, however, gives rise
to a high degree of cross-polarization and experiences a significant polarization tilt
for high frequencies [52]. The balanced antipodal ETSA introduced in [52] removes
these limitations while maintaining the attractive features of the antipodal ETSA.
Parametric studies of various TSAs are given in [26, 51, 83, 88].

TSAs are often used as elements of large phased arrays [19, 78, 79, 80, 83, 88].
When used as array elements, TSAs are usually much smaller than stand-alone TSAs
and in many cases so small that they cease to work as broadband TWAs [107]. Such
small TSAs are useless as stand-alone antennas but can be useful within an array
framework [80].

Accurate determination of the phase velocity of the traveling wave within the
tapered slot is important for accurate prediction of the beamwidth in the E-plane
and, especially, the H-plane of a TSA [44]. This suggests that TSAs can be more
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accurately characterized by improving the field modeling within the slot. It is the
aim of this chapter to investigate the validity of this hypothesis for TSAs situated in
free space. To this end, the TSAs are placed within a metallic cavity whose bottom
and side walls are covered with an AA that, as discussed in section 6.3, would not
be part of an actual antenna but is merely a well-established computational tool
to simulate an antenna situated in free space. After a validation against results and
trends reported in the literature, the hierarchical mixed-order TVFEs of order 0.5 and
1.5 for tetrahedra proposed in this dissertation are used in conjunction with a simple

adaptive refinement strategy to analyze the impedance and pattern characteristics of

a LTSA using the hybrid FE/BI method.

7.2 Tapered slot antenna analysis

We consider a LTSA uniquely characterized by the height 15.46 cm, the width
2.68 cm 4 3.98 cm + 2.68 cm = 9.34 c¢m, the opening angle 14° and the narrowest
slot width 0.18 cm. The antenna operates at 10 GHz and is fed by a probe of constant
current situated at the narrow end of the tapered slot, as illustrated in Fig. 7.2. The
probe excites a traveling wave in the tapered slot resulting in endfire radiation. Apart
from some minor geometrical differences that do “not change the physics that governs
the radiation mechanism of the antenna” [43], this LTSA was measured and simulated
using the MoM in [43] 1.

We use the FE/BI method to simulate the LTSA situated in free space by placing it

"The LTSA in [43] is actually a slightly larger antenna operating at 9 GHz. It is the same size
in wavelengths as the one considered here.
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Figure 7.2: Geometrical parameters for a LTSA (not drawn to scale).

in a rectangular cavity with an open top surface and metallic bottom and side surfaces.
The interior metallic cavity walls are covered by an AA of relative permittivity and
permeability 1 — j2.7 and thickness 0.15 cm. Thicker absorbers were found to give
similar results. The top of the antenna (the wide end of the tapered slot) is aligned
with the open boundary of the cavity. The vertical distance from the bottom of the
cavity to the bottom of the antenna is 1.65 cm while the horizontal distance from the
side wall of the cavity to the antenna is 1.65 cm parallel to the antenna and 2.45 cm
perpendicular to the antenna. The perpendicular dimension is larger since it is the
main purpose of the absorber to prevent excitation of modes normal to and bounded
by the metallic antenna and the metallic cavity walls parallel to the antenna. If such
modes are excited, the antenna ceases to operate as an antenna situated in free space
but starts to function in the presence of the cavity which is not intended here. Such
operation can, however, be useful for arrays where suppression of scan blindness is of
importance [101].

The measured and MoM E-plane (parallel to the antenna) and H-plane (perpen-

dicular to the antenna) far field patterns (polar cuts) reported in [43] were scanned
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and digitized and are given in Fig. 7.3-7.4 along with FE/BI results using the mixed-
order TVEEs of order 0.5 for a coarse mesh (129492 elements, 264513 faces and 159460
edges). Since the geometrical symmetry of the LTSA ideally translates into symmet-
ric E- and H-plane patterns, only half of the E- and H-plane patterns are actually
given in [43]. The measured and MoM patterns from [43] were therefore mirrored for
comparison with the full E- and H-plane patterns found via the FE/BI method as
given in Fig. 7.3-7.4. However, had the full patterns been measured and computed
in [43], minor discrepancies due to measurement and mesh asymmetries would have
been present. Also, since the measured and MoM data in [43] are normalized to 0 dB
at endfire (6 = 0), the same normalization is applied to the FE/BI data.

Overall, the FE/BI data agree well with the measured and MoM data in both
the E- and the H-plane. The FE/BI main beam in the E-plane is slightly narrower
than the measured and MoM main beams while the FE/BI main beam in the H-
plane is almost identical to the measured main beam. This is quantified by the
approximate E-plane -10 dB beamwidths 22° (FE/BI), 23° (MoM) and 26° (measured)
and the approximate H-plane -10 dB beamwidths 37° (FE/BI), 35° (MoM) and 36°
(measured). In the E-plane, the measured data have a shoulder at 30 — 40° and a
null at 50° while the MoM data have nulls at 30° and 50°. The FE/BI data fall in
between with a null at 40°. The MoM and measured data stay below -15 dB beyond
50° whereas the FEE/BI data stay below -12 dB for these angles. In the H-plane, the
FE/BI data follow the MoM and measured data very well down to -20 dB (50°) at
which point the measured and MoM data level off while the FE/BI data continue to

decrease.
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Figure 7.3: E-plane patterns for the LTSA in Fig. 7.2.
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Figure 7.4: H-plane patterns for the LTSA in Fig. 7.2.
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Considering the fact that the above FE/BI results were found using mixed-order
TVFEs of order 0.5 with a coarse discretization, better overall agreement cannot be
expected. The results show acceptable agreement with independent measured and
MoM data and display trends (such as an almost symmetric main beam with the
H-plane being somewhat broader than the E-plane) that agree with the literature
[43, 49, 106]. However, several other trends that we can confirm with the above
antenna but cannot confirm from the above plots have been reported for LTSAs.
Before proceeding to demonstrate the merits of hierarchical mixed-order TVFEs for
LTSA modeling, we shall therefore discuss some of these trends to provide further
validation.

LTSAs have very low cross-polarization in the principal E- and H-planes and
larger cross-polarization in the diagonal D-plane [49]. The actual values of the cross-
polarization in the D-plane will inevitably depend on how co- and cross-polarization
is defined as this definition is not unique [55] 2. Following Ludwig’s Definition III [55],
it is demonstrated in [49] that for a LTSA backed by a dielectric, the cross-polarized
field in the D-plane is significantly smaller than the co-polarized field close to the
endfire direction # = 0 but rises to a level comparable to and in some cases higher
than the co-polarized field off-axis. To investigate the polarization characteristics of
the above antenna, we plot the co- and cross-polarized patterns as defined by Ludwig’s
Definition III [55] in the E-, H- and D-planes, see Fig. 7.5-7.7. They are seen to be

in full agreement with the trends reported in [49]. The lack of symmetry for the

?Ludwig’s Definitions II and III [55] suitable for antenna patterns lead to the same definitions
for co- and cross-polarization in the E- and H-planes but different definitions in the D-plane.
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cross-polarized fields in the E- and H-planes is not unexpected and is due to the fact
that the cross-polarized field values in these planes are very small and thus extremely
sensitive to any asymmetries introduced by the FE/BI analysis process (asymmetrical
meshes, integrations and so on). We note that similar patterns were not given in [43].

LTSAs are inherently broadband antennas with typical bandwidths up to 5:1 [83].
Using only one mesh for accurate simulation over such a wide range of frequencies
is inefficient. It is necessary to keep the distance to the absorber large enough in
terms of wavelengths at low frequencies (large wavelengths) which in combination
with the requirement of a discretization rate small enough in terms of wavelengths
at high frequencies (small wavelengths) results in an unmanageable computational
domain. The solution is to re-mesh the geometry so the analysis at each frequency
is carried out with a mesh that provides approximately the same electrical distance
to the cavity wall and approximately the same electrical discretization rate. Since
it is not the purpose of this chapter to investigate LTSA bandwidth limitations but
rather to demonstrate the effectiveness of modeling LTSAs using a multi-resolution
FE/BI approach, this re-meshing approach was not adopted for the LTSA in Fig. 7.2.
However, the antenna in Fig. 7.2 was simulated at 8§ GHz, 9 GHz, 11 GHz and 12 GHz
with the mesh used at 10 GHz to show essentially similar patterns at all frequencies.
Although this does not demonstrate the extreme bandwidths reported in the literature
[52], sufficient bandwidth for validation purposes has been observed.

To demonstrate the merits of hierarchical mixed-order TVFEs for multi-resolution
FE/BI modeling of LTSAs, extensive numerical simulations are carried out. We there-
fore opt to consider a slightly smaller antenna and cavity than above. Specifically, we
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Figure 7.5: Co- and cross-polarized E-plane patterns for the LTSA in Fig. 7.2.

H-plane

_60-
——  Co-pol
——  Cross—pol

_70 N L L L L L L L L
-80 -60 -40 -20 20 40 60 80

0
6 [degrees]

Figure 7.6: Co- and cross-polarized H-plane patterns for the LTSA in Fig. 7.2.
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Figure 7.7: Co- and cross-polarized D-plane patterns for the LTSA in Fig. 7.2.
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consider a LTSA uniquely characterized by the height 9.00 cm, the width 1.50 em +
2.55 cm + 1.50 cm = 5.55 c¢m, the opening angle 15.2° and the narrowest slot width
0.15 cm, as illustrated in Fig. 7.8. As above, the antenna operates at 10 GHz and is
fed by a probe of constant current situated at the narrow end of the tapered slot, see
Fig. 7.8, for excitation of a traveling wave in the tapered slot. For FE/BI analysis of
this antenna situated in free space, we place it in a rectangular cavity with an open
top surface and metallic bottom and side surfaces. The interior metallic cavity walls
are covered by an AA of relative permittivity and permeability 1 — 2.7 and thickness
0.15 cm and the top of the antenna (the wide end of the tapered slot) is aligned with
the open boundary of the cavity. The vertical distance from the bottom of the cavity
to the bottom of the antenna as well as the parallel and perpendicular horizontal

distances from the side walls of the cavity to the antenna are all 1.65 cm.

1.50cm 2.55cm 1.50 cm

9.00 cm

> b

0.15cm

Figure 7.8: Geometrical parameters for a LTSA (not drawn to scale).

For analysis of the LTSA, we employ a coarse and a dense tetrahedral volume
mesh grown from a coarse and a dense triangular surface mesh in a cut in the plane
of the antenna. Each surface mesh is extruded into a number of prism layers (ten for
the coarse mesh and fourteen for the dense mesh) and each prism is broken into three
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tetrahedra. The coarse mesh has 44370 elements, 91269 faces and 55621 edges while
the dense mesh has 148638 elements, 303013 faces and 182109 edges. Four different
TVFE options are applied for FE/BI analysis : First, the mixed-order TVFE of order
0.5 is applied throughout the coarse mesh. Second, the mixed-order TVFE of order
0.5 is applied throughout the dense mesh. Third, the mixed-order TVFE of order
0.5 is applied within the coarse mesh in conjunction with the mixed-order TVFE of
order 1.5 in the four prism layers closest to the metallic antenna (40% of the elements
within the mesh) where the dominant fields are expected and accurate field modeling
is therefore necessary. Fourth, the mixed-order TVFE of order 0.5 is applied within
the coarse mesh in conjunction with the mixed-order TVFE of order 1.5 in regions
found adaptively (Case 1-4). The refinement is carried out by confining the higher
order TVFEs to the two (Case 1-2) or four (Case 3-4) prism layers closest to the
metallic antenna and performing the refinement with the error indicator £1; (shown
in chapter 6 to be at least as good as EI, or El3) on an element by element (Case
1,3) or sub-domain by sub-domain (Case 2,4) basis with 0%, 1%, ..., 9% of the 44370
elements in the entire mesh being refined, as defined in Tab. 7.1. With the refinement
confined to the two or four prism layers closest to the metallic antenna, a sub-domain
is defined as the two or four adjacent prisms extruded from a given surface triangle,
respectively.

Since the input impedance of an antenna is an extremely sensitive parameter, it is
expected to be influenced more than any other through improved field modeling. We
therefore expect the different TVFE options to result in different input impedances.
With the mixed-order TVFE of order 0.5 applied throughout the coarse mesh, the real
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Error Base of adaptive | Percentage of | Constraint on

(Case | indicator refinement refinement refinement
1 ElL Tetra 0-9 2 middle layers
2 EL Prisms (2 adjacent) 0-9 2 middle layers
3 Kl Tetra 0-9 4 middle layers
4 KL Prisms (4 adjacent) 0-9 4 middle layers

Table 7.1: Definition of Case 1-4.

part of the input impedance is 77 Q while the corresponding imaginary part is —78 €.
The latter value is comparable in magnitude to the real part which is physically
unrealistic for a broadband antenna like the LTSA considered here. With the mixed-
order TVFE of order 0.5 applied throughout the dense mesh, the real part of the input
impedance increases to 162} whereas the corresponding imaginary part of —81 € is
almost unchanged. However, if the mixed-order TVFE of order 0.5 is applied within
the coarse mesh in conjunction with the mixed-order TVFE of order 1.5 in the four
prism layers closest to the metallic antenna (40% of the elements), the real part of the
input impedance increases to 234 () while the corresponding imaginary part of 36 (2
is almost an order of magnitude smaller. The real and imaginary parts of the input
impedance for Case 1-4 are given in Fig. 7.9 as a function of the percentage of higher
order TVFEs within the computational domain. The addition of just a few percent
of higher order TVFEs is seen to have a dramatic influence on the input impedance.
It converges very quickly to a real part of around 220 — 260 Q2 and an imaginary part
that is significantly smaller. This is very close to the result when 40% of the cavity
is modeled with the mixed-order TVFE of order 1.5, i.e. a very small percentage of
higher order TVFEs is needed provided these are placed properly. This is true for all

the Cases 1-4, i.e. the specific refinement scheme is unimportant for this antenna.
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Figure 7.9: Real and imaginary part of the input impedance of the LTSA in Fig. 7.8
for different refinement schemes.

When mixed-order TVFEs of order 0.5 are applied throughout the coarse mesh,
the system with 47823 unknowns converges in 2143 iterations (10~ relative tolerance
with a QMR solver). Improvement of accuracy via a denser mesh or (adaptive)
refinement with mixed-order TVFEs of order 1.5 leads to increased memory and CPU
time requirements. When mixed-order TVFEs of order 0.5 are applied throughout
the dense mesh, the system with 164222 unknowns converges in 8858 iterations (107>
relative tolerance with a QMR solver). When mixed-order TVFEs of order 0.5 are
applied within the coarse mesh in conjunction with mixed-order TVFEs of order 1.5
in the four prism layers closest to the metallic antenna (40% of the elements), the
system with 130967 unknowns converges in 7801 iterations (107 relative tolerance
with a QMR solver). When mixed-order TVFEs of order 0.5 are applied within the
coarse mesh in conjunction with mixed-order TVFEs of order 1.5 in regions found
adaptively (Case 1-4), an initial solution with mixed-order TVFEs of order 0.5 must

be computed (47823 unknowns and 2143 iterations for a 10~ relative tolerance with



a QMR solver), regions of refinement must be determined and a refined solution must
be computed. The number of iterations to reach this refined solution (107 relative
tolerance with a QMR solver) with the previous solution used as the starting guess
is given in Fig. 7.10 for Case 1-4 as a function of the percentage of higher order
TVFEs within the computational domain. As for the input impedance, the number
of iterations required for convergence reaches a plateau (6000-7000 iterations) after a
few percent of higher order TVFEs have been added. That the number of iterations
goes up as higher order TVFEs are added is fully expected and in agreement with
previous observations in the literature and in this dissertation. In fact, the numbers
of iterations when mixed-order TVFEs of order 1.5 are applied are by no means
excessive since we are dealing with problems of 49155 (Case 1, 1% refinement) to
130967 (40% refinement) unknowns. Note that all approaches applying hierarchical
mixed-order TVFEs of order 0.5 and 1.5 selectively lead to less unknowns and less
iterations than when mixed-order TVFEs of order 0.5 are applied throughout a denser

mesh for accuracy improvement.
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Figure 7.10: Number of iterations to reach a relative tolerance of 107" with a QMR
solver for the LTSA in Fig. 7.8 for different refinement schemes.
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To illustrate the regions of refinement for Case 1-4, we restrict ourselves to 3%
refinement. We consider a cross-section of the mesh parallel to the antenna with
the boundaries of the metallic cavity and antenna marked with thick black lines. As
mentioned previously, the coarse tetrahedral volume mesh is grown from a coarse
triangular surface mesh in a cut in the plane of the antenna by extruding it into
ten prism layers and breaking each prism into three tetrahedra. With the refinement
constrained to at most four prism layers around the antenna, anywhere between 0 and
12 tetrahedra can be refined corresponding to a given triangle in the cross-section.
In the following, a white / light gray / average gray / dark gray triangle indicates
that 0 / 1-4 / 5-8 / 9-12 tetrahedra are being refined. The regions of refinement
for Case 1-4 (3% refinement) are given in Fig. 7.11-7.14. For Case 1 (Fig. 7.11), 0-6
elements can be refined and hence white, light gray or average gray is used. For
Case 2 (Fig. 7.12), 0 or 6 elements can be refined and hence white or average gray
is used. For Case 3 (Fig. 7.13), 0-12 elements can be refined and hence white, light
gray, average gray or dark gray is used. For Case 4 (Fig. 7.14), 0 or 12 elements can
be refined and hence white or dark gray is used. The figures show that the elements
within and immediately bounding the tapered slot as well as elements close to the
bottom metallic antenna edges in the vicinity of the feed are being refined. This is
fully in agreement with the facts that the antenna works as a TWA and that certain
fringing effects can be expected due to the sharp metallic edges.

Electromagnetic near field parameters are generally more sensitive than far field
parameters. A well-known example is electromagnetic scattering problems where
fairly crude approximations to induced currents can often yield very accurate scat-
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Figure 7.12: Regions of refinement for the LTSA in Fig. 7.8 for Case 2 with 3%
refinement.
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tered fields since integration of induced currents via radiation integrals is a very
forgiving process. This also holds for certain antenna problems where crude approx-
imations to equivalent near field currents can be integrated to provide very accurate
far field patterns. To investigate the far field characteristics of the above LTSA as
predicted with the different TVFE options, E- and H-plane patterns with mixed-
order TVFEs of order 0.5 applied throughout the coarse mesh, mixed-order TVFEs
of order 0.5 applied throughout the dense mesh and mixed-order TVFEs of order 0.5
applied within the coarse mesh in conjunction with mixed-order TVFEs of order 1.5
in the four prism layers closest to the antenna are given in Fig. 7.15-7.16 with the last
pattern normalized to 0 dB at endfire. The need for accurate field modeling within
the tapered slot is obvious from these figures as the pattern found with mixed-order
TVFEs of order 0.5 applied throughout the coarse mesh differs significantly from the
two others. The reason is that the poor field modeling within the tapered slot accu-
mulates and leads to aperture fields so inaccurate that the integration of equivalent
aperture currents cannot provide the correct far field patterns. More accurate field
modeling via a denser mesh or addition of higher order TVFEs provides more accu-
rate patterns. They are similar although the levels at endfire (§ = 0) and close to
grazing are different.

To investigate the merits of adaptive refinement and determine whether 40%
higher order TVFEs are really needed, the E- and H-plane patterns with mixed-order
TVFEs of order 0.5 applied within the coarse mesh in conjunction with mixed-order
TVFEs of order 1.5 in the four prism layers closest to the antenna are repeated in
Fig. 7.17-7.18 where also E- and H-plane patterns for Case 1-4 with 3% refinement
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Figure 7.15: E-plane patterns for the LTSA in Fig. 7.8.
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Figure 7.16: H-plane patterns for the LTSA in Fig. 7.8.
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Figure 7.18: H-plane patterns for the LTSA in Fig. 7.8.

125



are given (same normalization as above). We observe that Case 1-4 give almost iden-
tical patterns. Discrepancies around the E-plane shoulders at 40 — 60° can be viewed
but overall they are of similar value and shape, i.e. the specific refinement scheme
is unimportant for this particular application. More importantly, the patterns for
Case 1-4 with 3% refinement are seen to be very similar to that corresponding to 40%
higher order TVFEs, expressing again a need for very few higher order TVIFEs for

accurate field modeling provided these are placed properly.

7.3 Summary

In this chapter, the hierarchical mixed-order TVFEs of order 0.5 and 1.5 for tetra-
hedra proposed in this dissertation were used in conjunction with a simple adaptive
refinement strategy to analyze the impedance and pattern characteristics of TSAs
using the hybrid FE/BI method. The adaptive inclusion of a very small percent-
age of higher order TVFEs was found to have a dramatic effect on the accuracy of
the computed input impedances and far field patterns, thus justifying the approach

proposed in this dissertation for large and complex problems.



CHAPTER 8

SUMMARY, CONCLUSIONS AND FUTURE

WORK

In this chapter, brief summaries and the most important conclusions for the indi-

vidual chapters are given and several future tasks to be completed are suggested.

8.1 Summary and conclusions

In chapter 1, the work presented in this dissertation was introduced. After a brief
motivation, some fundamental concepts were presented, a high-level description of the
proposed approach was given and the organization of the dissertation was outlined.

In chapter 2, background material was given. Vector wave equations used through-
out the dissertation were presented and tangential vector finite elements (TVFEs) for
triangular and tetrahedral elements used for discretizing partial differential equations
were reviewed.

In chapter 3, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for tri-
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angular elements were proposed. An efficient set of vector basis functions for the
expansion of the surface current on a perfectly electrically conducting (PEC) general-
ized quadrilateral was converted to vector basis functions applicable for finite element
(FE) analysis and hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 were pro-
posed for triangular elements. The proposed hierarchical mixed-order TVIFEs of order
0.5 and 1.5 were tested for solution of closed- as well as open-domain problems. For
solution of certain classes of electromagnetic problems, field expansion using hierar-
chical mixed-order TVFEs of order 0.5 and 1.5 selectively was found to be a very
promising approach in terms of accuracy, memory and central processing unit (CPU)
time requirements as compared to a more traditional approach.

In chapter 4, hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for tetrahe-
dral elements were proposed. They were constructed as the direct three-dimensional
equivalents of the hierarchical mixed-order TVFEs of order 0.5, 1.5 and 2.5 for trian-
gular elements proposed in chapter 3. The proposed hierarchical mixed-order TVFEs
of order 0.5 and 1.5 were tested for solution of closed- as well as open-domain prob-
lems. Again, selective field expansion was found to be a very promising approach for
accurate and efficient solution of certain classes of electromagnetic problems.

In chapter 5, the condition numbers resulting from finite element method (FEM)
analysis using the hierarchical mixed-order TVFEs of order 1.5 for triangular and
tetrahedral elements proposed in chapter 3 and chapter 4 were contrasted to those of
existing interpolatory and hierarchical mixed-order TVFEs of order 1.5 for triangular
and tetrahedral elements. The proposed hierarchical mixed-order TVFEs of order 1.5
proved better conditioned than existing hierarchical mixed-order TVFEs of order 1.5

128



and thus the analysis fostered no concerns for potential future convergence problems
due to excessive matrix condition numbers. In addition, an approach for improving
the condition numbers of FEM matrices resulting from selective field expansion was
suggested and tested. The improvement comes at the expense of a more complicated
formulation and computer code but does not alter accuracy.

In chapter 6, a review of existing error estimators and indicators was given and
the effectiveness of the proposed hierarchical mixed-order TVFEs of order 0.5 and
1.5 for tetrahedra was investigated when some of the reviewed error indicators were
applied in the context of a very simple adaptive refinement strategy. The results
were extremely promising for both narrowband and broadband antennas provided
the refinement was carried out on a sub-domain by sub-domain basis as opposed to
an element by element basis.

In chapter 7, the hierarchical mixed-order TVFEs of order 0.5 and 1.5 for tetra-
hedra proposed in this dissertation were used in conjunction with a simple adaptive
refinement strategy to analyze the impedance and pattern characteristics of tapered
slot antennas (TSAs) using the hybrid finite element / boundary integral (FE/BI)
method. The adaptive inclusion of a very small percentage of higher order TVFEs was
found to have a dramatic effect on the accuracy of the computed input impedances
and far field patterns, thus justifying the approach proposed in this dissertation for

large and complex problems.
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8.2 Future work

The hybrid FE/BI formulation for three-dimensional open-domain problems pre-
sented in this dissertation is based on a lowest order boundary integral (BI) formu-
lation even when higher order TVFEs are (partly or fully) used within the interior
of the computational domain. This implies that even when higher order TVFEs are
(partly or fully) used within the cavity, higher order vector basis functions associated
with edges and faces on the BI surface are eliminated to maintain field uniqueness.
Since the BI surface is partly in the near field of the metallic antenna, a (partly or
fully) higher order BI formulation is expected to provide superior accuracy. Such
a formulation would require a (partly or fully) higher order testing scheme for the
pertinent integral equation. This formulation could be carried out and the results
could be compared to those based on the lowest order BI formulation.

Motivated by the superiority of hierarchical mixed-order TVFEs of order 1.5 over
those of order 0.5, the merits of even higher order hierarchical mixed-order TVFEs
could be investigated. Those of order 2.5 for triangular and tetrahedral elements
proposed in this dissertation could be implemented and their effectiveness could be
assessed. If deemed necessary, even higher order TVFEs could be suggested, imple-
mented and evaluated following the principles outlined in this dissertation.

Although methods for adaptive refinement have been studied in mathematics and
engineering for decades, use of such methods for solution of practical engineering
problems is only beginning to emerge. This dissertation includes a study of adaptive

TVFE refinement for the hierarchical mixed-order TVFEs proposed in this disserta-
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tion using three different error indicators in the context of a very simple adaptive
refinement strategy. Alternative hierarchical mixed-order TVFEs, other error indica-
tors, various error estimators and more complex adaptive refinement strategies could
be studied to provide an understanding of the inter-relations between the different
approaches and their applicability for solution of practical electromagnetic problems.

This dissertation is limited solely to polynomial order refinement (p-refinement)
techniques with a uniform mesh density. The effectiveness of mesh density refine-
ment (h-refinement) techniques with a uniform polynomial order could be studied for
similar problems and contrasted to that offered by p-refinement techniques with a uni-
form mesh density. Subsequently, hp-refinement techniques could be developed. Dual
hp-refinement techniques are theoretically always superior to isolated h-refinement
or p-refinement techniques but often difficult to implement practically [29]. Useful
progress to this end has been reported in [22, 89].

As justified previously, this dissertation focuses on triangular and tetrahedral ele-
ments due to their geometrical modeling flexibility. However, hierarchical mixed-order
TVFEs for alternative element shapes could be developed and contrasted to those pro-
posed in this dissertation. Hierarchical mixed-order TVFEs for curved triangular and
tetrahedral elements could be constructed from those proposed in this dissertation for
straight triangular and tetrahedral elements via a straightforward mapping, see for
instance [37], and similar hierarchical mixed-order TVFEs for other elements (rectan-
gles, bricks, prisms, pyramids) could be constructed by direct analogy. A comparative
study of all these hierarchical mixed-order TVFEs could be carried out for solution

of practical electromagnetic circuit, scattering or radiation problems.
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Appendix A

Explicit expressions for W;, W, and W

To derive an expression for Wy, we introduce two coordinates (uy,v;) over the
triangle. These are degenerates of similar coordinates for a generalized quadrilateral
[69]. u; takes its minimum value uj,;, = 0 at node 1 and its maximum value
Uymaer = | along edge #2 while v, takes its minimum value vy ,,;, = —1 along edge
#3 and its maximum value vy ., = | along edge #1. u; is constant and v; is linear
along straight lines parallel to edge #2 while u; is linear and v, is constant along
straight lines starting a node 1 and ending at edge #2, as illustrated in Fig. A.l.

Using these coordinates, the position vector r defining P can be expressed as [69]

I' =T + Uy Ly + UYL Ty (A1)
where
1
ryy = 5l(rs = 10) + (12 — 1)) (A.2)
] <
Pupyy = 5(r2 = T3). (A.3)

Further, u; and vy can be shown to be related to the simplex coordinates ¢}, ¢, and
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Figure A.1: Illustration of the variation of u; and v; over a triangle.

C3 via

up =G+ G (A4)
(2—GCs

= . A5

’ G+ (3 (4.5)

From (3.4) for n = 1, trivial algebra then leads to

Wi =GVE— GV (A.6)

To derive expressions for Wy and W3, we can similarly introduce coordinates
(ug,v2) and (us, v3) where uy 3 = 0 at node 2,3, uy 3 = 1 at the edge opposite to node
2,3 and vy3 = £1 along the two edges shared by node 2,3. The algebra is similar

and we arrive at

Uy =G+ G (A.7)
=G

Vg = " A8

G+ G (A-8)

W2 == (3VC1 - C1VC3 (A9>
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g " ‘A.10
uz = (1 + G2 (A.10)

G- G (A1)
U3 = N
G+ G

W3 = CIVCQ - L:ZVCI- (Al?)
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Appendix B

Expressions for vector basis functions

Peterson’s interpolatory mixed-order TVFE of order 1.5

Peterson’s interpolatory mixed-order TVFE of order 1.5 is characterized by the

eight vector basis functions

W! = (VG (B.1)
W; = (VG (B.2)
W =GV (B.3)
Wi=G0VG (B.4)
Wi =GV (B.5)
Wi =G6VG (B.6)
Wi = G(G VG — V) (B.7)
Wi = GGV = GYE6). (B.8)
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Proposed hierarchical mixed-order TVFE of order 1.5

The proposed hierarchical mixed-order TVFE of order 1.5 is characterized by the

eight vector basis functions

W2 = VG - GVG (B.9)

W3 = GVG -GV (B.10)

Wi =0GV6 -GV (B.11)
Wi= (6= GGV - GYG6) (B.12)
W2 = (G — ()G VG — G VG) (B.13)
Wi = (G = G)GYEG =GV (B.14)
Wi =G(GVG - GVG) (B.15)
Wi = GGV - GVG), (B.16)

Transformation between mixed-order TVFEs of order 1.5

The two mixed-order TVFEs of order 1.5 presented above are related through
a linear transformation. Let [W]] be a column vector containing Peterson’s eight

vector basis functions VV]1 J=1,---,8 and [W}] be a column vector containing the
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proposed eight vector basis functions W2, 7 = 1,--- 8. In this case, [W?] is related

to [W1] via

J

(Wi = [44][W]] (B.17)

i J

where [A;;] is the sparse 8 x 8 transformation matrix

I =10 0 0 0 0 O

O 01 -10 0 0 0

i 1

Proposed hierarchical mixed-order TVFE of order 2.5

The proposed hierarchical mixed-order TVFE of order 2.5 is characterized by the

fifteen vector basis functions

Wi =GV - GV6 (B.19)
Wi = (VG -GV (B.20)
W3 =0V6e -GV (B.21)
Wi= (G = 6)(GVE—(VG) (B.22)
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W; = ((3 - QU(CSVQ - ClVC3)

Wg = ((1 - C2)(C1VC2 - szfl)

W2 = (G = G (GVE - GVE)

Wi = (G Q)" GV - GVG)

Wi = (G = G)HGYG - GVEG)

Wi = GGV~ GVEG)

Wfl = C?(CBVQ - Clvﬁs)

Wi, = GGVE - GVG)

W?:a = C12(§2VC3 - CBVCQ)

Wi, = GGV~ GVEG)

Wfs = v(§1<2<3)'

139

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)



BIBLIOGRAPHY

140



1]

[2]

3]

[4]

BIBLIOGRAPHY

M. Ainsworth and J.T. Oden. ‘A procedure for a posteriori error estimation
for h-p finite element methods’. Computer Methods in Applied Mechanics and
FEngineering, vol. 101, pp. 73-96, December 1992.

M. Ainsworth and J.T. Oden. ‘A posteriori error estimation in finite element
analysis’. Computer Methods in Applied Mechanics and Engineering, vol. 142
pp. 1-88, March 1997.

L.S. Andersen. Scattering by non-perfectly conducting structures. MSc thesis,
Technical University of Denmark, 1995.

L.S. Andersen and J.L. Volakis. ‘Adaptive multi-resolution antenna modeling
using hierarchical mixed-order tangential vector finite elements’. Submitted to
IEEFE Transactions on Antennas and Propagation.

L.S. Andersen and J.L. Volakis. ‘Accurate and efficient simulation of antennas
using hierarchical mixed-order tangential vector finite elements for tetrahedra’.
IEEE Transactions on Antennas and Propagation, vol. AP-47, pp. 1240-1243,
August 1999.

L.S. Andersen and J.L. Volakis. ‘Condition numbers for various FEM matrices’.
Journal of Electromagnetic Waves and Applications, vol. 13, pp. 1661-1677,
December 1999.

L.S. Andersen and J.L. Volakis. ‘Mixed-order tangential vector finite elements
for triangular elements’. IEEE Antennas and Propagation Magazine, vol. APM-
40, pp. 104-108, February 1998.

L.S. Andersen and J.L. Volakis. ‘Development and application of a novel class
of hierarchical tangential vector finite elements for electromagnetics’. IEEE
Transactions on Antennas and Propagation, vol. AP-47, pp. 112-120, January
1999.

L.S. Andersen and J.L. Volakis. ‘Hierarchical tangential vector finite elements
for tetrahedra’. IEEE Microwave and Guided Wave Letters, vol. 8, pp. 127-129,
March 1998.

141



[10] I. Babugka, L. Planck, and R. Rodriguez. ‘Basic problems of a posteriori error
estimation’. Computer Methods in Applied Mechanics and Engineering, vol.
101, pp. 97-112, December 1992.

[11] S.S. Bindiganavale. Fast memory-saving hybrid algorithms for electromagnetic
scattering and radiation. PhD thesis, University of Michigan, 1997.

[12] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. ‘AIM : Adaptive integral
method for solving large-scale electromagnetic scattering and radiation prob-
lems’. Radio Science, vol. 31, pp. 1225-1251, September-October 1996.

[13] A. Bossavit. ‘Whitney forms : A class of finite elements for three-dimensional
computations in electromagnetism’. Proceedings of the IEE, Part H, vol. 135,
pp- 493-500, February 1988.

[14] C. Carrié and J.P. Webb. ‘Hierarchal triangular edge elements using orthogonal
polynomials’. In Proc. of the IEEE Antennas and Propagation Society Interna-
tional Symposium 1997, Montréal, Québec, Canada, vol. 2, pp. 1310-1313, July
1997.

[15] Z.J. Cendes. ‘Vector finite elements for electromagnetic field computation’.
[EEE Transactions on Magnetics, vol. MAG-27, pp. 3958-3966, September
1991.

[16] Z.J. Cendes and D.N. Shenton. ‘Adaptive mesh refinement in the finite element
computation of magnetic fields’. IEEE Transactions on Magnetics, vol. MAG-
21, pp. 1811-1816, September 1985.

[17] J.S. Colburn and Y. Rahmat-Samii. ‘Linear taper slot antenna directivity im-
provement via substrate perforation : A FDTD evaluation’. In Proc. of the
IEEE Antennas and Propagation Society International Symposium 1998, At-
lanta, Georgia, USA, vol. 2, pp. 1176-1179, June 1998.

[18] R.E. Collin. Antennas and radiowave propagation. McGraw-Hill Book Com-
pany, USA, 1985.

[19] M.E. Cooley. D.H. Schaubert, N.E. Buris, and E.A. Urbanik. ‘Radiation and
scattering analysis of infinite arrays of endfire slot antennas with a ground

plane’. IEEFE Transactions on Antennas and Propagation, vol. AP-39, pp. 1615-
1624, November 1991.

[20] W. Daigang and J. Kexun. ‘P-version adaptive computation of FEM’. [EEF
Transactions on Magnetics, vol. MAG-30, pp. 3515-3518, September 1994.

[21] 1. Daubechies. Ten lectures on wavelets. Society for Industrial and Applied
Mathematics, USA, 1992.

142



[22] L. Demkowicz and L. Vardapetyan. ‘Modeling of electromagnetic absorp-
tion/scattering problems using hp-adaptive finite elements’. Computer Methods
in Applied Mechanics and Engineering, vol. 152, pp. 103-124, January 1998.

[23] R.E. Ewing. ‘A posteriori error estimation’. Computer Methods in Applied
Mechanics and Engineering, vol. 82, pp. 59-72, September 1990.

[24] P. Fernandes, P. Girdinio, P. Molfino, and M. Repetto. ‘Local error estimates
for adaptive mesh refinement’. IEEE Transactions on Magnetics, vol. MAG-24,
pp- 299-302, January 1988.

[25] D.S. Filipovi¢, L.S. Andersen, and J.L. Volakis. ‘A multi-resolution method
for simulating infinite periodic arrays’. Submitted to IEEE Transactions on
Antennas and Propagation.

[26] N. Fourikis, N. Lioutas, and N.V. Shuley. ‘Parametric study of the co- and
crosspolarisation characteristics of tapered planar and antipodal slotline anten-

nas’. Proceedings of the IEE, Part H, vol. 140, pp. 17-22, February 1993.

[27] L.E. Garcia-Castillo and M. Salazar-Palma. ‘Second order Nedelec tetrahedral
element for computational electromagnetics’. In Proc. of the Jth International
Workshop on Finite Elements for Microwave Engineering 1998, Futuroscope-
Poitiers, France, July 1998.

[28] E. Gazit. ‘Improved design of the Vivaldi antenna’. Proceedings of the IEFE,
Part H, vol. 135, pp. 89-92, April 1988.

[29] D. Giannacopoulos and S. McFee. ‘Towards optimal h-p adaption near singu-
larities in finite element electromagnetics’. IEEE Transactions on Magnetics,
vol. MAG-30, pp. 3523-3526, September 1994.

[30] P.J. Gibson. ‘The Vivaldi aerial’. Proc. 9th European Microwave Conference,
Brighton, UK, pp. 101-105, 1979.

[31] P. Girdinio, P. Molfino, G. Molinari, L. Puglisi, and A. Viviani. ‘Finite differ-
ence and finite element grid optimization by the grid iteration method’. IEEE
Transactions on Magnetics, vol. MAG-19, pp. 2543-2546, November 1983.

[32] N.A. Golias, A.G. Papagiannakis, and T.D. Tsiboukis. ‘Efficient mode anal-
ysis with edge elements and 3-D adaptive refinement’. IEEE Transactions on
Microwave Theory and Techniques, vol. MTT-42, pp. 99-107, January 1994.

[33] N.A. Golias and T.D. Tsiboukis. ‘Adaptive methods in computational mag-
netics’. International Journal of Numerical Modeling : Electronic Networks,

Devices and Fields, vol. 9, pp. 71-80, January-April 1996.

[34] N.A. Golias and T.D. Tsiboukis. ‘Adaptive refinement in 2-D finite element ap-
plications’. International Journal of Numerical Modeling : Electronic Networks,
Devices and Fields, vol. 4, pp. 81-95, June 1991.

143



[35]

[40]

[41]

N.A. Golias and T.D. Tsiboukis. ‘Adaptive refinement strategies in three dimen-
sions’. [EEE Transactions on Magnetics, vol. MAG-29, pp. 1886-1889, March
1993.

G.H. Golub and C.F. Van Loan. Matriz computations. The Johns Hopkins
University Press, USA, 1983.

R. Graglia, D.R. Wilton, and A.F. Peterson. ‘Higher order interpolatory vector
bases for computational electromagnetics’. [FEE Transactions on Antennas

and Propagation, vol. AP-45, pp. 329-342, March 1997.

A K. Gupta. ‘A finite element for transition from a fine to a coarse grid’.
International Journal for Numerical Methods in Engineering, vol. 12, pp. 35-
45, 1978.

S. Hahn, C. Calmels, G. Meunier, and J.L. Coulomb. ‘A posteriori error es-
timate for adaptive finite element mesh generation’. [FEE Transactions on
Magnetics, vol. MAG-24, pp. 315-317, January 1998.

R.F. Harrington. Time harmonic electromagnetic fields. McGraw-Hill Book
Company, USA, 1961.

S.R.H. Hoole, S. Jayakumaran, A.W. Ananadaraj, and P.R.P. Hoole. ‘Relevant,
purpose based error criteria for adaptive finite element mesh generation’. Jour-

nal of Electromagnetic Waves and Applications, vol. 3, pp. 167-177, February
1989.

S.R.H. Hoole, S. Jayakumaran, and N.R.G. Hoole. ‘Flux density and energy
perturbation in adaptive finite element mesh generation’. [EEE Transactions
on Magnetics, vol. MAG-24, pp. 322-325, January 1988.

R. Janaswamy. ‘An accurate moment method model for the tapered slot an-
tenna’. IFEFE Transactions on Antennas and Propagation, vol. AP-37, pp. 1523-
1528, December 1989.

R. Janaswamy and D.H. Schaubert. ‘Analysis of the tapered slot antenna’.
IEEE Transactions on Antennas and Propagation, vol. AP-35, pp. 1058-1064,
September 1987,

J.M. Jin and J.L. Volakis. ‘A finite element - boundary integral formulation for
scattering by three-dimensional cavity-backed apertures’. IEEE Transactions
on Antennas and Propagation, vol. AP-39, pp. 97-104, January 1991.

C. Johnson and P. Hansbo. ‘Adaptive finite element methods in computational
mechanics’. Computer Methods in Applied Mechanics and Engineering, vol. 101,
pp. 143-181, December 1992.

144



[47]

D.W. Kelly, J.P.S.R. Gago, O.C. Zienkiewicz, and I. Babuska. ‘A posteriori
error analysis and adaptive processes in the finite element method : Part [ -
Error analysis’. International Journal for Numerical Methods in Engineering,
vol. 19, pp. 1593-1619, November 1983.

H. Kim, S. Hong, K. Choi, H. Jung, and 5. Hahn. ‘A three dimensional adap-
tive finite element method for magnetostatic problems’. IEEE Transactions on
Magnetics, vol. MAG-27, pp. 4081-4084, September 1991.

A. Koksal and J.F. Kauffman. ‘Moment method analysis of linearly tapered slot
antennas’. International Journal of Microwave and Millimeter-Wave Computer-
Aided Engineering, vol. 4, pp. 76-87, January 1994.

B.M. Kolundzija and B.D. Popovi¢. ‘Entire-domain galerkin method for analysis
of metallic antennas and scatterers’. Proceedings of the IEE, Part H, vol. 140,
pp. 1-10, February 1993.

P.S. Kooi, T.S. Yeo, and M.S. Leong. ‘Parametric studies of the linearly tapered
slot antenna (LTSA)". Microwave and Optical Technology Letters, vol. 4, pp.
200-207, April 1991.

J.D.S. Langley, P.S. Hall, and P. Newham. ‘Novel ultrawide-bandwidth Vivaldi
antenna with low crosspolarisation’. Flectronics Letters, vol. 29, pp. 2004-2005,
11th November 1993.

J.F. Lee, D.K. Sun, and Z.J. Cendes. ‘Full-wave analysis of dielectric waveg-
uides using tangential vector finite elements’. IEEE Transactions on Microwave

Theory and Techniques, vol. MTT-39, pp. 1262-1271, August 1991.

J.F. Lee, D.K. Sun, and Z.J. Cendes. ‘Tangential vector finite elements for elec-
tromagnetic field computation’. IEFE Transactions on Magnetics, vol. MAG-
27, pp. 4032-4035, September 1991.

A.C. Ludwig. ‘The definition of cross polarization’. IEEE Transactions on
Antennas and Propagation, vol. AP-31, pp. 116-119, January 1973.

S.G. Mallat. ‘A theory for multiresolution signal decomposition : The wavelet
representation’. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 11, pp. 674-693, July 1989.

F.J.C. Meyer and D.B. Davidson. ‘Error estimates and adaptive procedures for

the two-dimensional finite element method’. FElectronics Letters. vol. 30, pp.
936-938, 9th June 1994.

J.B. Muldavin, T.J. Ellis, and G.M. Rebeiz. ‘Tapered slot antennas on thick
dielectric substrates using micromachining techniques’. In Proc. of the IEEE
Antennas and Propagation Society International Symposium 1997, Montréal,
Québec, Canada, vol. 2, pp. 1110-1113, July 1997.

145



[59] G. Mur. ‘The fallacy of edge elements’. IEEFE Transactions on Magnetics, vol.
MAG-34, pp. 3244-3247, September 1998.

[60] G. Mur and A.T. de Hoop. ‘A finite-element method for computing three-
dimensional electromagnetic fields in inhomogeneous media’. ITEEE Transac-

tions on Magnetics, vol. MAG-21, pp. 2188-2191, November 1985.

[61] J.C. Nédélec. ‘Mixed finite elements in R*’. Num. Math., vol. 35, pp. 315-341,
1980.

[62] J.C. Nédélec. ‘A new family of mixed finite elements in R*’. Num. Math., vol.
50, pp. H7-81, 1986.

[63] J.T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann. “Toward a
universal h-p adaptive finite element strategy, Part 2. A posteriori error estima-
tion’. Computer Methods in Applied Mechanics and Engineering, vol. 77, pp.
113-180, December 1989.

[64] T. Ozdemir. Finite element analysis of conformal antennas. PhD thesis, Uni-
versity of Michigan, 1998.

[65] A.F. Peterson. Private communication, e-mail, August 1997.

[66] A.F. Peterson. ‘Vector finite element formulation for scattering from two-
dimensional heterogeneous bodies’. IEEFE Transactions on Antennas and Prop-

agation, vol. AP-42, pp. 357-365, March 1994.

[67] A.F. Peterson and D.R. Wilton. ‘Curl-conforming mixed-order edge elements
for discretizing the 2D and 3D vector Helmholtz equation’. In T. Itoh, G. Pelosi,
and P.P. Silvester, editors, Finite element software for microwave engineering,
chapter 5, pp. 101-124. John Wiley and Sons, Inc., USA, 1996.

[68] A.F. Peterson and D.R. Wilton. ‘A rationale for the use of mixed-order basis
functions within finite element solutions of the vector Helmholtz equation’. In

Proc. of the 11th Annual Review of Progress in Applied Computational Electro-
magnetics, Monterey, CA, USA, vol. 2, pp. 1077-1084, March 1995.

[69] B.D. Popovi¢ and B.M. Kolundzija. Analysis of metallic antennas and scatter-
ers. IEE Electromagnetic Waves Series, vol. 38, 1994.

[70] S.M. Rao, D.R. Wilton, and A.W. Glisson. ‘Electromagnetic scattering by
surfaces of arbitrary shape’. IEEE Transactions on Antennas and Propagation,
vol. AP-30, pp. 409-418, May 1982.

[71] V. Rocklin. ‘Rapid solution of integral equations for scattering theory in two
dimensions’. Journal of Computational Physics, vol. 86, pp. 414-439, 1990.

[72] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing Company,
USA. 1996.

146



[73] K. Sabetfakhri. Novel efficient integral-based techniques for characterization of
planar microwave structures. PhD thesis, University of Michigar, 1995.

[74] M. Salazar-Palma, T.K. Sarkar, L.E. Garcia-Castillo, T. Roy, and A. Djordjevic.
Iterative and self-adaptive finite-elements in electromagnetic modeling. Artech
House, Inc., USA, 1998.

[75] J.S. Savage. ‘Comparing high order vector basis functions’. In Proc. of the
14th Annual Review of Progress in Applied Computational Electromagnetics,
Monterey, CA, USA, vol. 2, pp. 742-749, March 1998.

[76] J.S. Savage and J. Manges. ‘Local error estimation for high-frequency problems
using hierarchical tangential vector finite elements’. In Proc. of the 15th Annual
Review of Progress in Applied Computational Electromagnetics, Monterey, CA,
USA, pp. 524-529, March 1999.

[77] J.S. Savage and A.F. Peterson. ‘Higher-order vector finite elements for tetra-
hedral cells’. IEEE Transactions on Microwave Theory and Techniques, vol.
MTT-44, pp. 874-879, June 1996.

[78] D.H. Schaubert. ‘A class of E-plane scan blindnesses in single-polarized arrays

of tapered-slot antennas with a ground plane’. I[EEE Transactions on Antennas
and Propagation, vol. AP-44, pp. 954-959, July 1996.

[79] D.H. Schaubert, J.A. Aas, M.E. Cooley, and N.E. Buris. ‘Moment method
analysis of infinite stripline-fed tapered slot antenna arrays with a ground plane’.
IEEFE Transactions on Antennas and Propagation, vol. AP-42, pp. 1161-1166,
August 1994.

[80] D.H. Schaubert, J. Shin, and G. Wunsch. ‘Characteristics of single-polarized
phased array of tapered slot antennas’. In Proc. of the IEEE International
Sympostum on Phased Array Systems and Technology 1996, Boston, MA, USA,
pp. 102-106, October 1996.

[81] J.W. Schuster and R. Luebbers. Private communication.

[82] M.S. Shephard. ‘Automatic and adaptive mesh generation’. IEEE Transactions
on Magnetics, vol. MAG-21, pp. 2484-2489, November 1985.

[83] J. Shin and D.H. Schaubert. ‘A parameter study of stripline-fed Vivaldi notch-
antenna arrays’. IKEE Transactions on Antennas and Propagation, vol. AP-47,
pp. 879-886, May 1999.

[84] B.Z. Steinberg and Y. Leviatan. ‘On the use of wavelet expansions in the
method of moments’. [EFE Transactions on Antennas and Propagation, vol.

AP-41, pp. 610-619, May 1993.

147



[85]

[89]

[90]

[91]

[96]

D. Sun, J. Manges. X. Yuan, and Z. Cendes. ‘Spurious modes in finite-element
methods’. [EEE Antennas and Propagation Magazine, vol. APM-37, pp. 12-24,
October 1995.

B.A. Szabd. ‘Estimation and control of error based on p convergence’. In
[. Babuska, O.C. Zienkiewicz, J. Gago, and E.R.A. Oliveira, editors, Accuracy
estimates and adaptive refinements in finite element computations. John Wiley

and Sons, Inc., USA, 1986.

R.L. Taylor. ‘On completeness of shape functions for finite element analysis’.
International Journal for Numerical Methods in Engineering, vol. 4, pp. 12-22,
1972.

E. Thiele and A. Taflove. ‘FD-TD analysis of Vivaldi flared horn antennas
and arrays’. IEEFE Transactions on Antennas and Propagation, vol. AP-42, pp.
633-641, May 1994.

L. Vardapetyan and L. Demkowicz. ‘hp-adaptive finite elements in electromag-
netics’. Computer Methods in Applied Mechanics and Engineering, vol. 169, pp.
331-344, February 1999.

M. Vetterli and J. Kovacevic. Wavelets and subband coding. Prentice-Hall,
USA, 1995.

J.L. Volakis, A. Chatterjee, and L.C. Kempel. Finite element method for elec-
tromagnetics. IEEE Press, USA, 1998.

J.L. Volakis, T. Ozdemir, and J. Gong. ‘Hybrid finite element methodologies
for antennas and scattering’. IEEE Transactions on Antennas and Propagation,

vol. AP-45, pp. 493-507, March 1997.

J. Wang and J.P. Webb. ‘Hierarchal vector boundary elements and p-adaption
for 3-D electromagnetic scattering’. IEEE Transactions on Antennas and Prop-
agation, vol. AP-45, pp. 1869-1879, December 1997.

J.S. Wang. On “edge” based finite elements and methods of moments solutions
of electromagnetic scattering and coupling. PhD thesis, University of Akron,
1992.

J.P. Webb. ‘Hierarchal vector basis functions of arbitrary order for triangular
and tetrahedral finite elements’. IEEE Transactions on Antennas and Propa-

gation, vol. AP-47, pp. 1244-1253, August 1999.

J.P. Webb. ‘Edge elements and what they can do for you'. IEEE Transactions
on Magnetics, vol. MAG-29, pp. 1460-1465, March 1993.

J.P. Webb and B. Forghani. ‘Hierarchal scalar and vector tetrahedra’. [FEF
Transactions on Magnetics, vol. MAG-29, pp. 1495-1498, March 1993.

148



[98]

99

[100]

[101]

102]

103]

[104]

[105)

[106]

[107]

[108]

H. Whitney. Geometric integration theory. Princeton University Press, USA,
1957.

M.V. Wickerhauser. Adapted wavelet analysis from theory to software. IEEE
Press, USA, 1994.

J.Y. Wu and R. Lee. ‘Construction of the basis functions for Nedelec’s finite
element spaces for triangular and tetrahedral elements’. In Proc. of the North
American Radio Science Meeting 1997, Montréal, Québec, Canada, pp. 38, July
1997.

G.J. Wunsch and D.H. Schaubert. ‘Effects on scan blindness of full and partial
crosswalls between notch antenna array unit cells’. In Proc. of the IEEE Anten-
nas and Propagation Society International Symposium 1995, Newport Beach,
California, USA, vol. 4, pp. 1818-1821, June 1995.

Z. Xiang and Y. Lu. ‘An effective wavelet matrix transformation approach for
efficient solutions of electromagnetic integral equations’. IEEE Transactions on
Antennas and Propagation, vol. AP-45, pp. 1205-1213, August 1997.

T.V. Yioultsis and T.D. Tsiboukis. ‘Development and implementation of second
and third order vector finite elements in various 3-D electromagnetic field prob-
lems’. IEEE Transactions on Magnetics, vol. MAG-33, pp. 1812-1815, March
1997.

T.V. Yioultsis and T.D. Tsiboukis. ‘Multiparametric vector finite elements : A
systematic approach to the construction of 3-D higher order tangential vector
shape functions’. [EEE Transactions on Magnetics, vol. MAG-32, pp. 1389-
1392, May 1996.

T.V. Yioultsis and T.D. Tsiboukis. ‘A generalized theory of higher order vector
finite elements and its applications in three-dimensional electromagnetic scat-

tering problems’. Flectromagnetics, vol. 18, pp. 467-480, September-October
1998.

K.5. Yngvesson, T.L. Korzeniowski, Y.-S. Kim, E.L. Kollberg, and J.F. Johans-
son. ‘The tapered slot antenna - a new integrated element for millimeter-wave
applications’. [EEE Transactions on Microwave Theory and Techniques, vol.

MTT-37, pp. 365-374, February 1989.

IX.S. Yngvesson, D.H. Schaubert, T.L. Korzeniowski, E.L. Kollberg, T. Thun-
gren, and J.I'. Johansson. ‘Endfire tapered slot antennas on dielectric sub-
strates’. IEEE Transactions on Antennas and Propagation, vol. AP-33, pp.
1392-1400, December 1985.

0.C. Zienkiewicz and R.L. Taylor. The finite element method - Volume I - Basic
Jormulation and linear problems. McGraw-Hill Book Company (UK) Ltd., UK,
1989.

149



[109] O.C. Zienkiewicz and J.Z. Zhu. ‘A simple error estimator and adaptive pro-

cedure for practical engineering analysis’. International Journal for Numerical
Methods in Fngineering, vol. 24, pp. 337-357, February 1987.

[110] F.J. Zucker. ‘Surface-wave antennas and surface-wave-excited arrays’. In R.C.

Johnson and H. Jasik, editors, Antenna engineering handbook, chapter 12, pp.
12.1-12.36. McGraw-Hill Book Company, USA, 1984.

150



