(None)- RL-2007 Dielectric Paper Project n Original figures 1 0 LL ".r 00 E Do Zm,u- V oo E 00_ IrE 0, E Icr t Ca; 1. ' - I xg o1 oe oc x t%^l cr V) c 5450 - I. ~ --- —------ I.1 --0) Il I I I

Field 2 TeMPo.es_ t; nd,, Sample Thic 04100zm ~~l~ 5 olur' ~Hrness a /cnd'3 Freq w t Lec. e..s,,,.. L; Rcmid Ony ~'q 4 E: ~tra 2..n ' (10~ C,..cm Insulation "- / -4. $:'('~C 4.+i,, 0" '1 250' woo 10 _.g: 4. -o E jl2m rn saw~.. — _........wo —'..- ___.-. _.-odoop..w —wo ---- -250,, d- - ~& -250. L -:..a --- —.... ___.__.....___ 10 -I~Oof E31n -- ',E) m~ ou2r0 3/a~,sed- 3 o (oa) I ntes; 60 50 ~nridb e./ll 2"cm,, /' 10;,&tra2 -25 40 E.,..C),,, U.n,u, C): -,w 3-' -o #00 250 lo — 10o, 0000 - 250.-.",L II As -'/ Mm (b) 60

20 N ff m 2 ff......... I II I 0* * I I I I I li t I -- Present Data Sv 0. 30 cm3/cm3 A 0.20 cm3/cnm3 A O. 10 cm3/cn3 - * 0.05 cm3/cim3 0 O.O0003cm3/ci3 4-J L. 4-J U0 '4 (L)in c=4 16 - 0 12 - 0 A AA A * A 81 - 4 -A A A -- - A 0 00 0 0 0 n I I I I I II I, I 1.I III I m a a..... E 5 %a 10-1 10~ 10l 10-2 Frequency (GHz) 101 w L. 0 t 100 U) -j 0 L 4-J - I 10-1 4) pm — m I l *,, ' I... * " % 0 1"- ** >^ A A \ S * A * \ "K * A. 0 00 0 00o A / l m m 10-2.lo-, 100 101 Frequency (GHz) 102

14 I I I I I 9 I I I I I I I I I I I I I I I I I I I I I I I I I I r, I I I I I I I I I I II I' E I I II I I I I I I I I I I1II I..IIIII 121 - 0 "-I I.) 4)i 4) lO F 8H~ 0 6H~ Present Data, 4HP ElN 21~ loftfm PrsentData I mII i a111 I I 11111 0IL I I II I I III11... 'I2I m 0 00m m 0 io7 108 i09 F requency (Hz) 1L010

On-Axis Power Density Normalized to Unity at A= 1 CoD Nr oo o D... i i. - ~D C /l) i- I I II, \< o,\.c:)^^ /_ ^ ^ o" }

3 GHz I2dB 4 GHz 6 GHz 8 GHz 10 GHz 12 GHz 14 GHz 16 GHz 18 GHz 33cm 11cm

I '" 0-, C: C 0 C) 4 -*) w 2.0 1.8 1.6 1.4 1.2 1.0 0.0 Pulley Method A 4 GHz * 18 GHz E' = 1 + 1.910 P, r =0.984 0.1 0.2 0.3 Density P,(g/cm3) 0.4

85 r cJ | 80 C:).r I 75.0 70 Frequency: 4 GHz [421 I I I I I ~ i~~ I 0 5 10 15 Water Depth d (mm) 20 25 25 w L. 0 E 20 %n to 0 -. 15.2 -5x Frequency: 4 GHz Theoretical Value 142] 10L 0 I I I I I a I I I 5 10 15 Water Depth d (mm) 20 25

Field #2 Temperature: 230 C Volumetric Wetness: 0. Cr cm39/cm3 Nominal Sample Thickness: 48 mm 4 l -t U- -4m47mm 2 W rE 1 -c I' 0 '49mm lb..-4 o- -0- -0c- - -0- - 40 - -O M4 E 100 75 mtA50 K %!-3301~ E 25 0 C) 4 0 22 R la Ia' lft lit f E 0 EV47mm 0 - - - -a =49mm 2 4 E I 0826 0 4 8 12 16 20 Frequency f (GHz)

Test Arm Reference Arm

28 Frequency: 4.0 GHz Soil Type: -- Sand ------ I -am 24 - E III -4 --- Clay / 22 20 - 18 Real Part _o /7 18 1 s12 /7,o 8 6 / Imaginary Part..~ 4 2 0 0.0 0.1 0.2 0.3 0.4 0.5 Volumetric Wetness (cm3/cm3)

22 Frequency: 10.0 GHz 20 - Soil Type: Sand / 18 — Loam ---- Clay / | 16 a c:: Real Part 14 -12 " 10 -4 -V l u e WeImaginary ( 0. 0 0.1 0.2 0.3 0.4 0.5 Volumetric Wetness (cm3/cm3)

Far-Field Distance LF (cm) i.,a-r 00 -n CD C-) (D I 3 -O,, Antenna Half-Power Beamwidth D12 (deg) I

1I 0 IL Horn/Sample Separation * — No Separation 11 A - 7 mm --- - 32.4 cm 10 a I 4-,.t 0 -) 0 CD a, 9 8 7 0 6 E 4 4 0 A A 3' 2 1.0 0 0 w 0 2 4 6 8 10 12 14 16 Gravimetric Wetness (Dry Basis) (Percent) 18 20

// 18 * 17 C -A 16 C (V> 15 ' 10 15 20 25 Distance (cm) 7 A \ 'I 4 l l l 10 15 20 25 Distance (cm)

Sample Transmitting Antenna Receivi ng Antenna

'i - 4GHz 6 GHz 8GHz 10 GHz 12 GHz 14 GHz -16 GHz - 18 GHz I dB I I 10 cm 35 cm

a) 3 - 8.5 GHz b) 8 - 12.4 GHz 1 dB 1 GHz -I c) 12.5 - 18 GHz

/ 7 01 = 00 i= 150 3 GHz 4 GHZ 6 GHz ~rt~ S GHZ 10 GHz 12 G Hz ~wW~14 GHz ~ 16 GHZ 1I2 dB 18 GHZ 4 11 cm 33cm 11 cm 33cm

/ Amplitude I2dB Phase I10 Degrees 3 GHz 4 GHz JvxAk 6 GHz 8 GHz 10 GHz r~f 12.4 GHz 14 GHz WwA A\Mw/A A1NV~WvVA -#MMA/W^ -%qYWVV ~WfVNIV(/ 16 GHz M A 18 GHz Sample Close to Sample Close to Transmitting Antenna Receiving Antenna

Start I 2.5 - 8.5 GHz I -i GHz IldB 8 - 12.5 GHz 12.5 -18 GHz

Sample Diameter D (cm) IIII I I I I I I -4 U Ct -Ti coo C3 0 -of G-S 60h - I L C)

Maximum Deviation from Average Phase Shift A.8 (Degrees) Maximum Deviation from Average Loss IAL2KdB) CDjb ~- 00 C m N A N 0'~ A) A mt II IN CD CD 0 a.CD N 0 Un CD CD 0 Pa CD -v0o N P-A %A

Transmitting Antenna;Receiving Antenna

Transmitting Antenna.RI Receiving. Antenna 3 — Lossy Sheet Sample Lossy Sheet

To Network Analyzer -.. i I Flexible CableI At enu Receiving tern Attenuato ntenna Pulley Sysl Sample Holder (Styrofoam) El --— Wood ZStyrofoam S Support Support 2 At ^ \ /Transmitting c Attenuator Antenna -Flexible Cable itor To Oscilla Absorbing Sheets

10 r 8 $ 6 42 -/ Sample Holder ~ / Styrofoam Thickness: 2cm 2- _ Coating: 4 mil Plastic 2 4 6 8 10 12 14 16 18 Frequency f (GHz)

-7 13 - Distance Between Antennas: 13 cm 12 11 - 10- ~ 9 -8, " 13 r Distance Between Antennas: 23 cm X 12 in 0 11 * 10 *, 9 - *c 0 8 t 13 Distarce Between Antennas: 32cm Diameter: 12 -. 36 cm 25cm 1 ~ 31 cm.19 cm 1. 0 10 9 -8 - 0 4 8 12 16 20 Frequency f (GHz)

4 -Distance Between Antennas: 13 cm 3 -, 1 - o) 2 I. I. I I 4 -Distance Betweeen Antennas: 23 cm 3 1 O ' ' I, I I, I, I 4 Distance Between Antennas: 32 cm 3 f0 (G 2 - Diameter: o 36 cm 25 cm - " 31 cm ~ 19 cm, I, I I I,! 0 4 8 12 16 20 Frequency f (GHz)

20 18 16 14 12 Distance Between Antennas: 13 cm <X I I I I I I I I 4 -on -0 Ct 0 CL).o 22 20 18 16 14 12 22 20 18 16 14 12 0 Distance Between Antennas: 23 cm 0 9 0 0 *r~ 01 0. * b' I I I I A m K Distance Between Ub * 0 a * Antennas: 32cm Diameter: o36cm 0 31 cm ~ OC8 go8 B 25cm 19cm I, I I I I I I a a * a a I 4 8 12 Frequency f (GHz) 16 20

Distance Between Antennas: 13 cm 8 4 6 4 2 0 0 I, I I.. I, I 8 Distance Between Antennas: 23 cm 6 2 ~s P_ 4. Diameter: Dae 36n c 25 cm 4 -. Diameter: 2 31 cm ~19cm 0 *.,.,. I, l 0 4 8 12 16 20 Frequency f (GHz)

17 16 14 GHz 8 GHz 18 1400 1200 1000 800 600 400 200 0 4 GHz Measured: v 4GHz * 6 GHz * 8 GHz o 10 GHz * 12 GHz A 14 GHz o 16 GHz o 18 GHz Theory Distilled Water T = 23 ~C Antennas 13.5 cm Apart Perpendicular Incidence I I I I I I 0 4 8 12 16 Water Depth d (mm) 20 24 28

GHz 8 GHz 1600 1400 1200 1000 6 GHz 0-.r(D G) -c mr CL 4 GHz 800 Measured 400 200 0 v 0 0 I 0 4 GHz 6 GHz 8 GHz 10 GHz 12 GHz 14 GHz 16 GHz 18 GHz Theory Distilled Water T = 23 ~C Antennas 16.7 cm Apart Perpendicular Incidence 0 4 8 12 16 20 24 Water Depth d (mm) 28

33 GHz 8 GHz 1I 1400 -e / u 6 GHz 1200 4GHz 'Q. n /Measured: v 4GHz, ~* 6GHz * 8GHz 200 o 10GHz 7 12GHz Distilled Water A 14 GHz 0 T 23~C o 16 GHz Antennas 23 cm Apart o 18 GHz Perpendicular Incidence Theory 0 4 8 12 16 20 24 28 Water Depth d (mm)

*3 C 181614 12 ~ 50 45 40 35 30 m 5 - 25 10 20 15 10 5 0 GHz '6 GHz 0 4 GHz v v Measured: 'Vw v v 4GHz 6 GHz * 8GHz o 10 GHz * 12 GHz A 14 GHz o 16 GHz o 18 GHz Theory Distilled Water T = 23 ~C Antennas 13. 5 cm Apart Perpendicular Incidence 0 4 8 12 16 Water Depth d (mm) 20 24 28

18R614 1 1 inn H? ^ I I 50 | A iHZ 45 0 ~* GHz 40 0 35 * 14 GHz _., 25 20 Measured: 15 v 4 GHz T6 GHz 8 GHz * 12 GHz Distilled Water A 14 GHz 5 T = 23 OC o 16 GHz Antennas 16.7 cm Apart <> 18 GHz Perpendicular Incidence Theory 0 4 8 12 16 20 24 2 Water Depth d (mm) 8

12 50 10 GHz GHz U 45 - GHz 40 35 i0 _25 v4 GHz o I -J 20 -Measu red: 15 v 4GHz * 6 GHz m 8 GHz 10 0 10 GHz * 12 GHz Distilled Water A 14 GHz 5 T= 23 ~C o 16GHz Antennas 23 cm Apart o 18 GHz Perpendicular Incidence Theory 0 4 8 12 16 20 24 2E P B Water Depth d (mm)

37 1600 r 8 GHz 1400 6 GHz 1200 1000 - / V 4/ /GHz ~i 800 rCr600 400 200 Measured: Distilled Water v 4GHz 0 T 23 ~C 6 GHz Antennas 13 cm Apart * 8 GHz Perpendicular I ncidence Theory,,, I I I I 0 4 8 12 16 20 24 2 Water Depth d (mm) B

10 GHz "Iil 1600 1 n z 1 z 18 1400 -6 GHz 1200 1000 - | /4/ / o4GHz ^ 800 -c a 600 P d Measu red: 400 v 4GHz 6 GHz D * 8 GHz 010 GHz 12GHz Distilled Water 14 GHz T = 23 ~C 0 16 GHz 0 Antennas 16 cm Apart o 18 GHz Perpendicular Incidence Theory 0 4 8 12 16 20 24 2E Water Depth d (mm) 3

1600 - 8 GHz 1400 / / GHz 1200 1000 -4GHz 6800 400 200 / Measured: Distilled Water v 4GHz 0 T = 23C * 6 GHz Antennas 22 cm Apart * 8 GHz Perpendicular Incidence - Theory 0 4 8 12 16 20 24 28 Water Depth d (mm)

50 8 GHz 45 GHz 40 35 30 U oJ -0 00 0_ 25 GHz 20 15 10 5 0 Distilled Water T = 23 ~C Antennas 13 cm Apart Perpendicular Incidence Measured v 4 GHz * 6 GHz * 8GHz Theory 0 4 8 12 16 20 24 28 Water Depth d (mm)

4t 50 18 16 14 12 10 GHz 45 - - 8GHz GH; 40 Ml *4 GHz 25 20 Measu red: 1 5r 4GHz 6 GHz 8 GHz 10 o 10 GHz 12 GHz Distilled Water A 14 GHz 5 T = 23 ~C o 16 GHz Antennas 16 cm Apart o 18 GHz Perpendicular Incidence Theory 0 I I I I I I - 0 4 8 12 16 20 24 28 Water Depth d (mm) Z 3

i' 50 8 GHz 45 / 6GH; 40 35 30 25 0 / 4 812 GHz 20 - v 15 10 Measured: Distilled Water 4 GHz 5 T = 23~C ~ 6GHz Antennas 22 cm Apart * 8 GHz Perpendicular Incidence Theory 0 4 8 12 16 20 24 28 Water Depth d (mm) z

2000 ism0, Distilled Water Temperature:. 23 ~C Angle of I ncidence: 45~ Vertical Polarization Antennas 36cm Apart Distance from Transmitting Antenna to Sample:. 12cm Transmitting Antenna: 4- 18 GHz Aperture: 6 x6 cm2 Receiving Antenna: 4-6 GHz Aperture: 16 x 22cm2 Sample Size: 50 x 50cm2 6GHz / 4 -C 0) (D) CL 1400 -,Hz 1200 H / 1000 - 800 6001 - 400k Measured: v 4 GHz *6 GHz Theory 200 - 0 I IIIII I I I I1 I I - 0 4 8 12 16 20 24 Water Depth d (mm) 28 32 36

ift 50 45 40 35 30 -I ~ 25 20 15 10 5 0 Distilled Water Temperature: 23 ~C Angle of Incidence: 450 Vertical Polarization _Antennas 36 cm Apart GHz Distance from Transmitting Antenna to Sample: 12 cm - Transmitting Antenna: 4- 18 GHz Aperture: 6 x 6 cm2 Receiving Antenna: 4-6 GHz -Aperture: 16 x 22 cm2 Sample Size: 50 x 50 cm2 B~S 4 GHz v T F r Measured: v 4GHz 6GHz Theory I I I I I I I I I -. 0 4 8 12 16 Water 20 Depth 24 d (mm) 28 32 36

501 Distilled Water Temperature: 23 o C Angle of Incidence: 45~ Vertical Polarization Antennas 36 cm Aoart 45 401 Distance f to S- Both Ante Aperture: Sample Si; 35 - - I'-.. — From Transmitting Antenna ample: 19cm 6GHz nnas: 4-18 GHz 6 x 6 cm2 ze: 5Ox0 cm2 * 4 /l 30 ~1.0 No,%oo __j AA 25 GHz/ /' 20 15 10 5 Measured: T 4GHz * 6 GHz f i Theory 0 I I I I I I I I I I L I I I I I 0 4 8 12 16 20 24 Water Depth d (mm) 28 32 36

22 Field #2 Sample Thickness: 13 mm Volumetric Wetness: 0.33 cm3cm3 Bulk Density: 1.60 g/cm3 20 I w Ci Lrt. C: a) 18 16 U" *v V 12 10 Diameter, Angle of I -and Polarization: * 31cm, el =0~ -* 31 cm, el Z15, * 31 cm, ol ' 15~, - 25cm, e 15~, v -25 cm, 9e 15~, - I I I I ncidence.* HP VP HP VP I I I I I, i 0 4 8 12 Frequency f (GHz) 16 20

10r Field #2 Sample Thickness: 13 mm Volumetric Wetness: 0.33 cm3/cm3 Bulk Density: 1.60 g/cm3 8 L. 0 -C u m Lt$ 0 5-1 6 4 *1 J1 2 0 - 0 p I I I Diameter, Angle of I ncidence and Polarization: * 31 cm, e1-0~ * 31 cm, el= 15, HP 31 cm, e 15, VP * 25 cm, e = 15, HP v 25 cm., = 15~ VP - I -- I I I I I i n ~ a II I 4 8 Frequency ~ —.~ 12 f (GHz) 16 20

2 -o -J -1 0 0 -1 -2 Density of Snow: 0.39 g/cm3 Temperature: -18 ~C - Sample Thickness: 54 mm Pulley Measurement Angle of Incidence: 0~ * Measured - Theory (E' = 1. 8) I ~~ ~~ ~ ww ~ 0 0 0 0 0 0 0 0 * 0 0 ~ I I I I I I I I I I I ~ ~~ Ill I II I ~ --- 0 4 8 Frequency f 12 (GHz) 16 20 -J 0 -I -- 3 2 1 Density of Snow: 0.38 g/cm3 Temperature: -12 ~C Sample Thickness: 56 mm Sweep Measurement - Angle of I ncidence: 15~, VP * Measured -— Theory (E' = 1. 8) 0 -1 I I I I I I I I I I 0 4 8 12 16 20 Frequency f (GHz)

Polymethyl Methacrylate. Thickness: 15.87 mm - Theory for oe = 0~ o Angle of Incidence 0~ * Angle of Incidence 15~, Vertical Polarizatio 1.2 r Sweep Technique in 1.0 -0 0.J 0.8 0.6i 0.4 0.2 0.0 4 6 8 10 12 14 16 18 Frequency f (GHz)

2. 8 2.7 -0 -C-) tA 2.6 I Polyrnehyl Methvacrylate Thickness: 15. 87, ram~ -W 2.5 El (451 Without Sample, Vertical Pola-rization (VP) VP 2. 4 2. 3 * L Lmin e1 150, * ei 15", To, = 00 I I I I -- I I II -- I —I1 0 4 8 12 16 20 Frequency f (GHZ)

3.5 Tap-Water Ice o --- Angle of Incidence: 15~, Temperature: -10~C 3.4 --- Angle of Incidence: 0~, Temperature: -15 ~C Pulley Method.~'. 3.15 1441 3.3 30 - 3.2 - == - -=o 3.1 3.0 I I 4 6 8 10 12 14 16 18 Frequency f (GHz) C

Dielectric Constant E CCD) C' " A ' I — CD C ) s

12 10 o-# a 0 C-) 8 6 4 2 0 6 -20 -10 0 10 20 Temperature, (00C) 301 4 -~, ~ IN

Error After Compensation Wj A mv1. -J/ Measured Thickness 0S5 Ap~ttoo Small' o |A U Error after Compensation d Measured Thickness I m,2\ too Large 06 I Volumetric Wetness mv

Field #2 TemPerature. 230 c E Q w > 00 E K 0 tn Volumetric Wetness: 40 20 0 CM3 kM3 0 4 10 a 12 16 2 Frequency 16(G20 t-)

15r 10 12mm El Fild# 2 Volumetric Wetness: 0.33 cm3fcm3 Nominal Sample Thickness: 13 mm -E, 0-3 ='-' S a C.) 5 0 -5 -10 -15 I I! I -I -J 0 4 8 12 Frequency f (GHz) 16 20 C" (U m 20 15 10 5 Field #2 Volumetric Wetness: 0.33 cm3/cm3 Nominal Sample Thicknesses: 18 mm, 35 mm 17mm ~ - E 34mm, E 36mm E i:=E I I19 aEt 0 -5 -10 A I' / /\ / / X 2,j 0 4 8 12 16 Frequency f (GHz)

Field #2 Volumetric Wetness: 0. 33 cm3/cm3 Nominal Sample Thickness: 33. 3mm and 17. 5mm 15 10 a) (0 0, 5 0 32.3mm El1 — 4 El' -34.3 mm El- P - -,I 16.5mm ii I 18.5mm E.l - -E - 0 —g=m-0 E~" -5 -10.,I 0 4 8 12 Frequency f (GHz) 16 20 'v "

"j i, ': ^ - r/ -- JC c-i C2L~ 150 r \ Field #2 Temperature: 23~ C Volumetric Wetness: 0. 33 cm3/cm3 Nominal Sample Thickness: 13 mm 130 at.2 8. " 110 C E 0 90 70 C - Assumed Sample Thickness: -,o 14 mm -, "e" ---- 12mm - --— l 14mm I I, '' —'t —,~ 12mm ) 4 8 12 16 20 Frequency f (GHz) 120r Field #2 Ass Temperature: 23~ C Sample Volumetric Wetness: 0.33 cm3/cm3 Nominal Sample Thicknesses 18 mm, 35 mm.2 (U C: E 0 u umed Thickness: ( 5 — l19 mm 1 / — *17mm \/I 100 80 -' —9 - 36mm 34mm _36mm E 34mm m m — I 19 mm 0 17 mm 60 I I I I I - --- 40 0 4 8 12 16 20 Frequency f (GHz)

Field #2 Volumetric Wetness: 0. 33cm3/cm3 Nominal Sample Thicknesses: 17. 5mm and 33. 3mm 120 34. 3mm0 32.3mm., 41 E a K E 0.r I C1 100oo 80 34.3mm El 32. 3mm e — " 18. 5mm '*16.5mm e.t EI -.-,,^o. 18.5 mm >"- -* — 16.5 mm 60 I I 0 4 8 12 Frequency f (GHz) 16 20

sof a ft5 Umm Irt ~Field #2 ~~ Volum,&tricWla P3c-n ftftO N lnllp. iness: 13 mm 22 Frequency f (GHZ) 20 4r Fi'eld #2 VolmetIC Wetness:a3cJ/m NOminal Sam, V CM3se:1 m,3~m 00, 2 f 35 m Ell El am ftwft sowAf." 17mm 36 mm 00 -E0 El FI 9f21M i2 Frequency C2 16 fin

Field #2 Volumetric Wetness: 0. 33 cm3/cm3 Nominal Sample Thicknesses: 17. 5mm and 33. 3mm E~' 1 t16.5mm -A 3 -O% 0 E o 0 L. cw so w: 2 1 0 -1 34 -2 --, 18.5 mm I I I I -.3 2 a 0 4 8 12 Frequency f (GHz) 16 20

6/ 1600 1400 18161412 10 GHz 8GHz 6 GHz 1400 -0 1200 0 1000 - / 4 GHz t' 800 600 -Measu red: v 4GHz 400 GHz ~ 6GHz * 8GHz Distilled Water o 10 GHz T- =23 ~C m 12 GHz Antennas 23 cm Apart A 14 GHz 0 Angle of Incidence: 19~ n 16 GHz Vertical Polarization <18 GHz Pulley Method Theory I I I I I I 0 4 8 12 16 20 24 21 Water Depth d (mm) 8

1A 19.UJ7 0 / /10 GHz /8GHz 45 - 6 GHz 40 35 S MaueetMeasured: v 4GHz e 6GHz v 4~ 8 GHz 10 Distilled Water o 10 GHz T a 23 ~C * 12 GHz Antennas 23 cm Apart A 14 GHz 5 Angle of Incidence: 150 o 16 GHz Vertical Polarization o 18 GHz Sweep Measurement Theory 0 4 8 12 16 20 24 2a Water Depth d (mm) I

/ * 14 r Measured Phase Shift (degrees).... Volumetric Wetness cm3/cm3) 0.33 Sample Thickness (mm) 18 1000 12 F JE (U -C 0 4) 0 om C..-, -5 c {!5 10 - 0.33 cm3/cm3 35mm 15PZ P,650~ '800~ 0.015 0.22 49 18 Amplifier ho 8h 0.33 13 6 4 45500 L=Lmin 580 580~ 1400 1050 - 0.015 44 2 Field #2 T = 23~ C The Results Sample at 5 I Were Obtained by Measuring a Different Antenna Distances. I I 0 I I 0 4 8 12 Frequency f (GHz) 16 20

1.25 1.00 The Results were Obtained by Measuring a Sample at 5 Different Antenna Distances. ---- Sweep Technique Pulley System -J OR.- 0.75 0.50 co %(U.7 Measured Loss (dB) H 0.33 cm3/cm3 35 mmnA 15dB, *A40dB I I // 1OdBA /19dB~ Volumetric Wetness (cm3/cm3), oo — 60dB 0.33 With 8-18 GHz Amplifier - 41dB 0.33 541dB 0.22 5dB 0015 -> 5dB 0.015 Sample Th icknes (mm) 18 13 12 46 0.25 - 8dB 1 dB F --- —-. ---- ' -—..- 5dB 0.015 39 It O0 0. *.. ) 4 8 12 Frequency f (GHz) 16 20

2.9 Field #2 Volumetric Wetness: 0.015 cm3/cm3 I Bulk Density: 1.27 gcm3 w Antenna Distance: 23 cm 2.8 e = 15~, Vertical Polarization, * Sample 1 - * Sample 2. _ v v Sample 3 i 2.7.6 I I I I I I I 2*6 0 4 8 12 16 20 Frequency f (GHz) 2.9 Antenna Distance: 29cm * Sample 4 L ~ * Sample 5 C v Sample 6 a 2.8 0 t U o i 2; 27 2.6 0 4 8 12 16 20 Frequency f (GHz)

6 0.15r Field #2 Volumetric Wetness: 0.015 Bulk Density: 1.27 g/cm3 Antenna Distance: 23 cm 4) 0 (U LL 0.1 0 cm3/cm3 * - ~ 0.10 5 I 0.05H 0 I v *, I 0 Sample 1 Sample 2 Sample 3 0.00 I J.IL --- I v- I I I I I I A. = m I A 0 4 8 Frequency f 12 (GHz) 16 20 0.15 ) L. 0 *| 0.10 Lo t0.05.-j G) U)m I II I I I I I 0 - Antenna Distance 29 cm * *eSample 4 * Sample 5 v Sample 6 I I, I,I I I [ 0.00 0 4 8 Frequency f __j 12 (GHz) 16 20

67 4.0 r The at 3 Results were Obtained by Measuring 3 Identical Samples Different Antenna Distances Each (Tabe 13). Average -- Worst Case 3.5 F 3.0 tAJ C=.o 0 a us 2.5 m, 0. 22 cm3/cm3 and mv a 0.33 cm3/cm3 /d-20mm d-13mm _ 0 I fU "6 w -.& 0000,00, 2.0 - /cm3 Amplifier 1.5 1.0' - 0. 5' mv 0.015 d 49mm cm3/cm3 0.0 1 I 1 I I I I I I 0 2 4 6 8 10 Frequency 12 f (GHz) 14 16 18 20

40 r The Results were Obtained by Measuring 3 Identical Samples at 3 Different Antenna Distances Each (Table 13). d -Average - - Worst Case 35 - 30 25 -- w 0 - (U 'I.~ -9.C: 14 0 0) 20 15 my = 0.015 cm3/cm3 d =49mm Sweep Technique m = 0. 22 cm3/cm3 d = 20mm Sweep and Pulley Methods and: m O. 33 cm3/cm3 \ d= 12mm 10 5 0 m, = 0. 33 cmo/cmj d = 35mm Sweep Technique d = 18mm Sweep Technique with 8-18GHz Amplifier I I I I I I I I I I 0 2 4 6 8 10 Frequency f 12 (GHz) 14 16 18 20

25 A Waveg uide a Free-Spac F req uen'cy: 6 Field 2: Loam i Torh ni ri i in 20 C V;15 0 C-).10 'r- ran.114U e Technique M ''G Hz 1 ~ Am AA AA AA E*A AA A A a 5 e a 0 10 20 30 40 Volumetric Wetness m,(%) 50

6 -k 5 woe w w %S A %W 0 1 U. U.- 3 uj w %A w 11,, t; %M. 0 3:.03 = (.33 CM3 el" MV d == 12 MM 20 0 L. 12 9 VA-Z) f requencY.000 -A U) ts 20.12 9 ency GVII-l frequ 0

- Field 1 -51.5%Sand, 35.1%Sillt, 13.4%C~lay - Vol umetric Wetness 0. 24 cm3lcrfi3 -Bulk Density: 1. 54g gcri3 181 16 14 El w 440 0 -a? 12H 101 - 230 C 8 6 4 (-ho0c 230 C El I& a - =2 18o C - I- ~ v '~-240 C 21[ El'{ c~ c -i C -240 C 0 I - I 7 T7 -r- i I I - - I A a I I 0 4 8 12 Frequency f (GHz) 16 20

20 18 Field 5 5%6Sand, 47.6%Silt, 47.4%Clay El Vol umetric Wetness: 0. 36 CM3/cfi3 Bulk Density: 1.42g crfi3 230 C 16 - 14kF w mem C. a; 0 121 101 8 6 4 2 &C 1 -11o c 180 C ~ -240 C E-ho P4 8 12 16 20 Frequency f (GHz)

25 20 w +j15 L F5 0.0 0.1 0.2 0.3 0.4 0.5 Volumetric Moisture 0.v6

24 Field 2. Loam Temperature: 23~C Free-Space Method: * 3 GHz 20- * 4 * 6 * 8 18 - 10 12.4 A 14 16 *- 16 x 18 4 Waveguide Metl 14 -12 - I, - ~ 10 - 43 GHz 4 A hod at 4 GHz 1181 16 18 x pb -1.46 1.47 4 4 4 4 4 GHz 0.15 0.20 0.25 Volumetric Wetness mv (cm3/cn13) 0.30 0.35 0.40

24 A I._ Field 2: Loam ~ L inz Temperature: 230C Free-Space Method: 6 3 GHz 8 20 - 4 *4 /// / / /10 18 10 12 4 12.4 12.4 "14 14 16 ~ 16 16 x 18 4 Waveguide Method at 4 GHz [181 18 w. 14 - 0 C0 0 12 Pb 1.46 ' 1.47 ~ -10 *:P 1.60 0 1.58 16,18 4m 14 8" 1. 53 12.4 4 1.56 10 4 8 6 Pb' 1.42 6 1.50 o 4 ' 1.39 4 3 GHz 2 0.10 0.15 0.20 0.25 0.30 0.35 0.40 Volumetric Wetness m, (cm3/cmi3)

24 A # % I l Field 2: Loam 4 3GHZ 22 Temperature: 230C 6/ Free-Space Method: / A3 GHz ///8 20 - 4 / o 6 // V10 El1 " A14 14/W/ 16 - - 6/ / / ^16 x 18 /^/ / / 4 Waveguide Method at 4 GHz I18J 1/ / 18 14 - x^^X^ k14 tA/7 // '" ^A i10- p^= 1.60 ^^^:/ /16918 4O00.001502.503 1.35 0.4 Volumetric Wetness m, (cm3/cm3)