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NOMENCLATURE
E = electric field vector
k = 2m/\
A = wavelength
o = the radar cross-section
s = the differential scattering cross-section (¢ = 4w aD)
j = A -1
J (kr) = cylindrical Bessel function of degree x and argument kr
% (in this report x almost always has the value n + 1/2)
i
P:l (1) = associated Legendre function of the first kind, order m,
degree n, and argument p
n, = real number defined by P%li(p,o) =0, (n;> - 1/2)
dPp, (k)
m, = real number defined by o = 0, (mi > -1/2)
b= M
r = distance from scatterer to field point in space
n = cos O (p.o = coS 90)
60 = the supplement of 1/2 the total included cone angle
(spherical coordinates)
0, =m -6 = 1/2 the total included cone angle
0, = 1/2 the wedge angle

o-p o (0) = the value of o determined by physical optics

iii )
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NOMENCLATURE (Continued)

o(0) = the value of ¢ determined by scalar theory
o'(0) = the value of o determined by the exact methods of elec-
tromagnetic theory
e-:th = the type of time dependence used throughout this paper
with the exception of the discussion of the scalar case
in Section V-A where eJWt is used
af(Xo) _ of(x)
9x 0x
X=X
(o)
zx(kr) = the spherical Bessel function of order x and argument kr
> >
A (r) = the vector potential
1
. 2
o
1 2
1
Bmi = f [Pmi(p)] dp
Mo
5 _ 1 - cos 0,
2
v =Sl xe)
dx
S 2
o(d%) : lim °o(%7_,
5+ 0
2
O (3% : lim OS ) - constant # 0 or o.
5+0

iv




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-92

PREFACE

This paper has one central purpose, the determination
by exact electromagnetic theory of the radar cross-section of
a semi-infinite cone. The result obtained is compared with ex-
periment and with the cross-sections obtained by the approxi-
mate methods of physical optics and scalar theory.

Part I contains an explanation of why there is an interest
in the problem and a review of some of the historical back-
ground.

Part II contains a discussion of the reasoning which leads
one to consider scalar approximations.

Part III contains a discussion of the role that special sum-
mation techniques can have in research dealing with scattering
problems. It is shown why these summation techniques can be-
come a valuable aid in such research and how, a priori, one
may state whether summation techniques should be used.

In Part IV the fact that summation techniques had really
been used previously in scattering problems is exhibited. The
wedge is used as an example.

The radar cross-section of a semi-infinite cone is discussed
in Part V, and the results of the theoretical evaluations are
compared with experiment in the Conclusion.

The Appendices are self-explanatory when associated with
those portions of the text where they are referenced.

This paper is the fourth in a series of reports dealing with
the problems of the scattering of microwaves by various bodies.
The third in this series contained a review of the work previous-
ly done on the cone problem and the beginnings of the analysis
leading up to the work reported in this paper. This paper com-
pletes the consideration of the problem of determining the radar
cross-section of a semi-infinite cone for the case of axially-
symmetric back-scattering.
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INTRODUCTION

In order to determine the radar cross-section of an object of
specified shape and size, it is necessary to solve a vector equa-
tion, (v? + k?) ﬁ = 0, subject to vector boundary conditions. This
equation was first stated in the 19th century by Helmholtz, and the
complete solution was obtained about 50 years ago by Mie for a
sphere. Since that time complete solutions have been obtained for
a small number of other bodies. The results obtained from the
solution of this equation for one additional body, the semi-infinite
cone, are discussed in this paper.

SEMI-INFINITE CONE

Since all real objects are finite in size, it becomes necessary
(from a practical point of view) to justify the effort involved in ob-
taining a solution for the semi-infinite cone, The justification is
that the solution of the semi-infinite cone problem leads directly
to the solutions for many shapes of practical interest. These
shapes include almost all pointed bodies of revolution and many ac-
tual missile shapes.,

One reason for approaching the problem of the semi-infinite
cone before approaching the problem of the finite cone is because
the problem is easier to solve, This follows since it is possible
to expregs the semi-infinite conic surface as a contour surface
(6 = constant) in spherical coordinates.

Furthermore, the cross-section of the semi-infinite cone re-
mains unchanged in many cases when the sides of the cone are
curved back and smoothly terminated. Thus, for example, it can
be shown that the cross-section of an ogive (the minor segment of
a circle revolved around its chord)is approximately equal to the
cross-section of a semi-infinite cone having the same angle at the
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nose, if the radar is on or near the axis of the conz or ogive, !
The ogive is an extremely important missile nose configuration,

The cross-section of a finite cone and of many actual missile
shapes which are not easily represented by any simple geometric
figures can also be approximated in many cases by the cross-section
of a semi-infinite cone. The cross-section of the semi-infinite
cone is due essentially to tip-scattering, as is shown in this paper.
Similarly, the cross-section of the ogive, if viewed from near the
axis is also due to fip-scattering, Finally, the cross-section of
a finite cone if viewed from nose-on or near nose-on is due to
contributions from the tip and the base. However, if the base is
rough, the phases of the waves scattered from the base will gen-
erally be such as to cancel one another almost completely so that
once again the principal contribution is from the tip. As a first
approximation many missiles, when viewed from nose-on or near
nose-on, may be so considered.

METHODS OF SOLUTION

The determination of the exact solution of the vector Helmholtz
equation is an extremely difficult task, A number of approxima-
tions to this solution are possible in specific cases. When the
wavelength is large with respect to the characteristic dimension
of the scatterer, the Rayleigh approximation is valid. If the wave-
length is small with respect to the characteristic dimension of the
scatterer, the methods of physical optics are applicable. In the
limit of vanishing wavelength the simple methods of geometric op-
tics are applicable. The sound theory solution, in which a scalar
equation is substituted for the vector equation, is often very use-
ful. The application of these considerations to the case of the
semi-infinite cone is puzzling, since the characteristic dimension
which can be associated with the object is infinite, This would
lead one to guess that the wavelength is always small with respect
to the characteristic dimension, and that the physical optics approxi-
mation is quite accurate for all finite wavelengths. This indeed

lproviding the wavelength is very much smaller than the maxi-
mum diameter of the ogive.
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turns out to be the case. In this paper it is shown that a physical
optics approximation computed by the current distribution method is
virtually identical with the exact value of cross-section obtained
from the vector equation. In fact, the agreement between these
two determinations of ¢ is better than the agreement between the
exact solution and the best experimental measurements, although the
agreement between theory and experiment is quite good. In addi-
tion, it might appear at first glance that geometric optics would

be applicable. However, since the principal cross-section contri-
bution is due to scattering from the tip, geometric optics yields no
information because it predicts a cross-section of zero.

TYPES OF SOLUTIONS

A complete solution to the problem of the semi-infinite cone
would involve first, the case in which the transmitter and the re-
ceiver are coincident and on the axis of the cone; second, an ex-
tension to those values of ¢, where the receiver and transmitter
are coincident but off the axis of the cone; and third, an extension
to values of o, where the receiver and transmitter are separated.
The equations derived in this paper suffice for the solutions of the
first case and numerical results have been computed only for that
case. Extension to the second and third cases would require modi-
fications of the mathematical methods.

OTHER WORK ON THIS PROBLEM

This paper is the fourth in a series designed with the ultimate
purpose of presenting sufficient cross-section material of a general
nature to allow one to predict missile cross-sections to within the
accuracy required by defensive missile system designers. Hence,
the cone is presented as one facet of the whole problem. In addi-
tion, certain allied topics stemming from the third in this series
of cross-section studies are presented. For this reason UMM-87,
"Studies in Radar Cross-Sections - III, Scattering by a Cone'",
should be read prior to this paper. In particular, careful obser-
vation should be made (in UMM-87) of the mathematical relations
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that exist between the scalar and vector cone solutions.! A fuller
understanding of the significance of scalar solutions appears to be
necessary. Consequently, a portion of this paper is used to dis-
cuss the meaning of the scalar solution and/or the sound solution
as applied to the vector problem. This discussion is by no means
exhaustive, and it is hoped that it will serve as a stimulus for
further research.

The Hansen and Schiff wedge solution is also discussed because
it allows one to think in terms of trigonometric functions and clearly
points out the type of difficulties one must overcome in the cone
problem.

This paper makes extensive use of the works of Spencer (Ref.
1), Hansen (Ref. 2), Hansen and Schiff (Ref. 3, 4, and 5) and Sletten
(Ref. 6). Without their individual work, whole sections of this re-
port would not appear. If their collective work had not appeared,
the basis of this report would not exist.

1Since the reader has been referred to UMM-87, it should be
pointed out that Appendix E of this report contains corrections to
errors in UMM-87.
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II
COMPARISON BETWEEN SCALAR THEORY
AND ELECTROMAGNETIC THEORY

The steady state scattering of a harmonic electromagnetic wave
may be expressed in terms of the solution of the vector Helmholtz
equation, (v + k%) E = 0, subject to vector boundary conditions., If
a plane wave is incident on the scattering body, then the differen-
tial scattering cross-section is defined by

. = lim r
D T+ f}

where Es is the scattered field,

EI is the incident field,
r is+ the distance between the scatterer and the point at which
ES is measured, and

n is the number of dimensions of the space.

Since a scalar equation is usually easier to solve than a vector
equation, it is of interest to determine the circumstances under
which an electromagnetic cross-section can be approximated by some
appropriate scalar cross-section.

This problem has already been considered in some detail by
R. C. Spencer (Ref. 1). He states that under certain assumptions
"P, M. Austin (Ref. 7) has shown that, for the special case of
back-scattering, electromagnetic theory leads to the same results
that would have been obtained by the simpler scalar theory of sound
and physical optics. Moreover, [it is also shown that under the
same assumptions] the polarization of the back-scattered radiation
coincides with the incident polarization."
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The assumptions (or simplifications to the electromagnetic
theory) mentioned above are, as listed by Spencer:

1. the incident wave is plane;
2. the surface is perfectly conducting; and

3. the current distribution over the illuminated region of
the surface is obtained on the assumption that at every
point the incident field is reflected as though an infi-
nite plane wave were incident on the infinite tangent
plane.

Whenever the radii of curvature of the scattering body are at
every point large compared with the wavelength, the third assump-
tion would appear to be a valid simplification of the electromagnetic
problem. Furthermore, a '"ray'" treatment of the problem would be
expected to produce the same results for either a vector or scalar
problem in the limit of vanishing wavelength. Thus, Austin's con-
clusion that the cross-section of a smooth body obtained from scalar
sound theory will agree with the cross-section obtained from electro-
magnetic theory (at least for back-scattering) is verified whenever
the incident wavelength is sufficiently small,

If the ratio, \/p is very large,1 the Rayleigh scattering law
applies and the cross-sections for sound and electromagnetic waves
have the same dependence on wavelength,  Thus, these cross-
sections agree with one another to within a constant factor. For
example, the back-scattering cross-section of a circular disk at
normal incidence is four times as large for electromagnetic scat-
tering as for sound scattering in the Rayleigh region. For back-
scattering from a sphere the electromagnetic answer is nine times
as large as the sound answer,

A case in which a correspondence between the electromagnetic
problem and a scalar problem holds for all wavelengths is that of
scattering from a cylinder. If the cylinder is perpendicular to the
x-y plane and the incident radiation is polarized in the x-y plane,
the electric field can be expressed as the curl of a vector which
has only a z component. This component satisfies the scalar

‘p denotes the characteristic dimension of the body.

6
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Helmholtz equation with a scalar Neumann boundary condition,
Thus, this component corresponds to the velocity potential in sound
scattering from a rigid body. If the incident radiation is polarized
parallel to the z axis, the electric vector has only a z component.
This component satisfies the scalar Helmholtz equation with a sca-
lar Dirichlet boundary condition. Thus, for the type of body we
are now discussing, due to the linearity of the equations, the field
for the electromagnetic problem for arbitrary incident polarization
can be obtained from the solutions of two independent scalar prob-
lems. These statements are in agreement with Reference 8 (an
article on ripple tanks). It is stated therein, that an analogy be-
tween ripples and both acoustic and electromagnetic waves may be
made when the electromagnetic problems can be stated in terms of
scalar functions satisfying the scalar Helmholtz equation.

Another illustration of the correspondence between scalar and
electromagnetic theory is presented in Section V of this paper for
the case of back-scattering from a cone. The electromagnetic
cross-section is shown to be greater than the sound cross-section
by a factor which is independent of wavelength. The factor varies
from Ofour for a half-cone angle of 0° to one for a half-cone angle
of 90~.
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II1

SPECIAL SUMMATION TECHNIQUES

Before turning to the actual problem of determining the scat-
tering cross-section for a cone, a few general comments on the
nature of the analytic solution and the method by which this solution
is made to yield numerical results are in order.

The original equation of the motion is hyperbolic. (The scalar
scattering problem will be discussed to simplify the presentation.)
This equation requires Cauchy conditions (two conditions at the
boundary either in space or in time)., However, since almost all
the time dependences can be obtained from a linear combination of

expressions of the form e-JWt and since this type of time dependence
can be used successfully to separate time out of the equation, the
solution of the equation of the motion may be assumed without loss

et 1
of generality to be the product of a function of space and e-JWt.
This procedure allows one to obtain an elliptic differential equation
in the space variables. One then applies a Neumann condition at
the body and the Sommerfield radiation condition as the distance

from the scatterer becomes '"large'.

This latter condition causes extreme difficulty, This difficulty
is not in the nature of the physics of the scattering problem but in
the nature of the mathematical description of the physics.? The
physical problem under discussion has a finite source a large dis-
tance away which, when no scatterer is present, appears to the ob-
server to produce plane waves. One then introduces a scatterer

Throughout this paper j is used to denote J-1.

2The authors wish to thank Professor R. C. Bartels of the Uni-
versity of Michigan and Dr. C. L. Dolph of the Willow Run Research
Center for their presentation of this viewpoint.
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into the field. The observer now measures the total field. This
total field consists of an incident plane wave and a scattered wave.
Unfortunately, although making complete sense physically, the radia-
tion condition applies only to the scattered field. Thus, it is the
nature of the mathematical description of the radiation condition
which forces the separation of the incident field from the scattered
field. Such a separation is impossible physically because one can-
not measure the scattered and incident waves individually. This
separation causes (or forces) the functions of the distance vari-
ables to be broken up, when the distance becomes large, into forms
that can be recognized as incoming and outgoing waves. This leads
(or forces) the investigator to use asymptotic expressions which are
applicable only when the distance variable represents a '"large' dis-
tance from the scatterer. For an infinite cone it appears as though
an essential ambiguity has been introduced into the problem because
there is no characteristic dimension of an infinite cone compared
with which the distance variable can be considered large. In this
respect the cone problem is different from the previously solved
three-dimensional problems.

In scattering problems special summation techniques may be
applied to improve the rapidity of the convergence of the series
solutions. When the characteristic dimension of a body is very
large with respect to the wavelength, \, one would expect that
special summation techniques would facilitate the numerical evalua-
tion of a solution, since the number of terms to be summed is
greater than or equal to the ratio of the characteristic dimension
to the wavelength, The latter fact may be :llusiriied by some simple
examples. If m represents the order of the highest order term re-
quired in the general summation, we have for sound scattering
from a cylinder of radius a, that

m > 2T
A
and [(ml)z]l/zm Ta
—— >> c— M
™m X

Similarly, for sound scattering from a sphere of radius a, m> ET):_"’E
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1
(2m + 1)1 ]™F 2ma
and —— >> T
Zm m!

This latter inequality is exactly the same as that obtained in colli-
sion theory in Quantum Mechanics (Ref, 10). For electromagnetic
scattering from a perfectly conducting sphere of radius a we have
(Ref. 11 and 12)}

2ma

m > ~
In any case straight summation could be employed to obtain cross-
sections as long as the ratio of characteristic dimension to wave-
length is finite., However, as the characteristic dimension increases
without limit (in the direction of propagation), the number of terms
required for a meaningful solution increases without limit, This
increase in the number of terms to be summed indicates that a
special summation technique should be used if the ratio of charac-
teristic dimension to wavelength is large. If the ratio of character-
istic dimension to wavelength is without bound, a special summation
technique must be used.

In any particular problem the choice of the type of summation
technique to be employed must be governed by the nature of the
mathematical expression of the problem and by the investigator's
experience. The Euler method of summation (Ref. 13, p. 62) has
been selected for use in the cone problem.

!The equals sign appears in Reference 11; however, the authors
believe that it should be >.

10
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IV

THE WEDGE

The role of summation methods in obtaining the field scattered
from the cone can be clarified by comparing the cone and the wedge
solutions. For simplicity we will deal with scalar scattering and
consider only the field along the axis of symmetry. For the cone
the field is given by (see UMM-87)

Jn m/2 <n +1>
Z sm( j > Jni"";:(kr)
N ey n. +2 9% P, (ko)
"(‘”)( )(I-M)Pn (u)mr

(IV-1)
. . 1 o .
where n, is the (i + 1)th zero of Pni(po), 0, = 6, is 1/2 the

cone angle, and M = cos 60. The corresponding expression for

the wedge (Ref. 3) is

o .owei

-]
_ ™ 11'-97_ [ .]; ]
uW—Z“_ez 2 e Jiw(kr) 1 2810 (IV-2)
i=0 'n'-ez

where Bio is the Kronecker delta and 6, = %the wedge angle.

Both of these series converge because of the rapidity with which
Jq(kr) goes to zero as 1 goes to infinity when n >> kr, To deter-
mine the behavior of the series for i << kr,it is convenient to use
the appropriate asymptotic expression for the Bessel function. Us-

ing this asymptotic expression we find that the wedge series be-
comes

11
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I<<kr | w4
'ﬂ'"ez

4 = 2 T 2 E
w7 -0, N nkr Z ©
i=0

‘ex ['(kr-—-—ﬂi——>]+ X [-'(kr-—-——-i-ﬁ——)]
y Pl 1 2w -6/ TP 1 2m-0y)/)
2
) 5 w2
m-0; S ¥ (_1_)
+2'rr-92 Z © Jﬂ(kr) m - 0,4 mwkr cos[kr 4]+0kr'
i=£+1 17-92

(IV-3)

Thus, the initial terms of the series (IV-3) oscillate in magni-

tude with a constant maximum magnitude.

The series, therefore,

does not show signs of convergence when i << kr,

For large kr

the series may converge very slowly indeed.

The situation is

more complex for the case of the cone, but it is found that for

i << kr the magnitude of each term of the series increases rough-
ly linearly with i, Thus, the cone series also converges very
slowly for large kr. These two series (the one for the cone and
the one for the wedge) can be made more rapidly convergent by
means of the following transformation (which is certainly legitimate
since the two series are absolutely convergent):

(o]

Z emJ V., =
i

i=0

[o4]

2 i) {Vi+1 - Vi} (IV -4)

i=0

1

VO+
1 -

Applying this transformation to the first sum appearing in
2

2(m - 0,)

-3

_———Z(w = 6;) and

(IV-3) and taking a = respectively for the

12
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two parts of that sum, one obtains:!

. 2 exp [j(kr i %)]

(r - 0,)
<< kr | mee— -
-3 (i + 1)
X1+ Z {exp[z(Tr 5,) ] (1-1)}
i=0 T
. s /0
Db [ e gt
2 2 SHECEDD)
e gl

T 2 T 1
g 5, /:rrk_r cos [kr —ZJ +O(-l-{?) (IV-5)

Thus the u series has been evaluated to within O (1/kr).
The method of evaluating u, is the same except that the transfor-

mation must be applied to the series twice.

1Although the portion of the u series from £ to » is not in-

dicated in (IV-5), it can be shown that (IV-4) transforms this por-
tion of (IV-3) into a negligible quantity.

13
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v

THE CONE

In what follows the radar cross-section of a cone is discussed
and the results obtained are compared with experiment. In Part A
the analytic expressions for o obtained from physical optics, scalar
theory, and electromagnetic theory are considered. The physical
optics form, orp o (0), is merely stated, but the latter two are dis-

cussed in some detail. For the scalar case the discussion consists
of two parts, the proof of the convergence of the series solution

and the break up of the solution into an "incoming'" and an "outgoing"
part. The "outgoing' part yields the scalar cross-section ¢(0).

The discussion of the electromagnetic theory result consists pri-
marily of the methods used in expressing the result as a sum of

an incoming plane wave and an outgoing wave which at large dis-
tances from the scattering body appears to be a spherical wave.
Again this break up of the solution leads directly to the electro-
magnetic cross-section, which is denoted by ¢'(0).

Part B of this section contains the analysis involved in apply-
ing the special summation methods to the problem of finding o (0)
and ¢' (0) for small cone angles. Part C contains a similar analy-
sis for the large cone angles, and also an approach that might be
used for any cone angle.

A THE ANALYTIC EXPRESSIONS FOR o

One of the aims of this paper is to compare the results ob-
tained by the methods of physical optics with those obtained by
electromagnetic theory. Thus, a few comments on the physical op-
tics expression for o are in order prior to discussing the exact
methods., These comments need not be lengthy; in fact, it will
suffice to quote the physical optics results obtained in Section II-A
of UMM-87. Therein the well known '"scattering from the tip" an-
swer is derived and expressed as

14
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2

A
crp.o.(O) T tan* 0, (V-1)

with 6; equal to 1/2 the cone angle.

It was pointed out in the introduction that interest in the infinite
cone is partially tied up with its connection with the finite ogive.
If one applies the method of physical optics outlined in UMM-87,
he finds that the back-scattering cross-section of an ogive of length
£ (d /A>>1) and 1/2 ogive-nose angle 0, (8, < m/2) is given by’

2

~ Téw

2 cos® 0, cos (Znﬁ)

cos* 0, A

(1 + cos 0,)° * 1 + cos 0,

o tan* 9, |1 + (V-2)

One can readily see that the two results, (V-1) and (V-2), are ap-
proximately equal.

In this discussion of the analytic expressions for o,the scalar
case will be considered next, As was pointed out in UMM-87, the
solution, u, to the wave equation, V2u + k®u = 0, consists of a
finite number of terms; i.e., the series solution is convergent and
thus can be approximated by a sum of a finite number of terms.
The convergence is established as follows:

The solution of the wave equation for the scattering of sound
waves from a cone is

© .Jniw/z

e Jo.. 1 (kr) P, .(p)
T nj+ - nj
R e Z ] ; . (V-3)
i=0 f [Pni(ﬂ)] dp

Po

(See UMM-87, p. 15).

IThe derivation of this result will be included in a future re-
port under the title '"Theoretical Scattering Cross-Section as a
Function of Angle at Small Wavelengths'. This report will be pub-
lished under another contract. The d, maximum diameter of the
ogive, and 4 are related by the equation d = £ tan (6,/2).
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Let kr be large but finite. To show that the above series is con-
vergent it suffices to demonstrate the convergence of

w jniTr/ 2
e Jnﬁ%— (kr) Pni(p) ;
1 ; ’
i= f[kr] +1 / [Pni(u)] dp
HO

with £ such that n,é[kr]+1 >> kr and 4 >> 1.

We first note that

2 1 T
Pni(cos 0) ~/ ™, sin 6 cos {(ni * E) 0 - Z}

1
for large values of n, and e < 8 <m - €, >0, n, >> = (Ref. 14,

p. 71). Thus we obtain the inequality,

1 2 eo 2
| [Pyt ae > / [Py(cos 0)] sin & do
P~0 -0
0
0

2 0 2 ( 1) ™

> m / cos [ni+‘2 0 "1 de

m-0
)
20 -m

> — o<1> (V-4)

™, ;17 ’
i i
From page 498 of Reference 15 (also Ref. 14. p. 25)

ni+1/2

5

‘ 2
Jn“__é_(kr)z 3 , ni > kr
(e d)
i 2

'[kr] denotes the largest integer in kr.

16
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which can be expressed in the form

nj 1/2
( kre ) (kre)
2nj +1 2

Jor (n, +1/2)

1 (kr)=

Ini+4 (V-5)

when the asymptotic form of r(z) (Ref. 14, p. 4) is employed.
Using (V-4) and (V-5) and the fact thatIPni(p)‘ <1 for the values

of u of interest, one obtains the inequality

o n;mi/2 ®
€ Jni“"é‘(kr) Pni(p) (krev)l/‘2 kre =
2 1 2 < 2 2(290-11') Zni+1) .
i=¢[kr]+1 p/ [Pni(“)] dp i=f[kr]+l
0
{V-6)
Since i < (n, + 1/2) in this region
kre kre
2 EH <2 ®
i=4[krl+l i=f0[kr]+1
e
e
i=f[kr]+1
- n. % £[kr]
But Z e/20) * < f (e/20) dx = - (%Zé)/zz) (V-8)
i=f[kr]+1 dlkr]

Thus, if we use (V-6), (V-7), and (V-8), we find that

17
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niwj/Z
e Jni"' } (kr) Pni(p,)

00

2

1 2
i=4[kr]+1 ,/ [Pni(“')] dp

Ho

(krem)/2 ( - (e/20)" [kr])
2(290 - ) loge (e/28)

(V-9)

The convergence of the integral in (V-8) implies the absolute
convergence of the original series. Since we wish to conclude that
the series can be given by a sum of a finite number of terms, it
is informative to get an idea of the magnitude of the upper bound
indicated in (V-9). If Z = 100 and kr = 106 (which are reasonable
values) this upper bound has the value

8
en/?x10°  (e/200)"°
2(28_ - m) * Tog  (2007¢)

7
which is much less than 1/(6o - w/2) 100", Therefore, it is ob-

vious that the sum from 100 [kr] to » is much less than 1 if

' 7
<90 - %) > 10-(10°-2), Thus, we can conclude that with £ = 100
the sum in (V-3) is approximately given by

nmj/2
100[kr] i
Ingt 4 () Pr,(h)

2/_2% 2 : 1 2 (V-10)
i=0 _/ [Pni(u)] dp

o

under the assumption that (V-10) is large in comparison to the up-
per bound computed above., One cannot at this point rule out the
possibility that the sum in (V-10) is of the same order of magni-
tude or less than the upper bound as defined in (V-9). However,

18
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the computations which follow in Parts B and C of this section show
that the assumption that (V-3) and (V-10) are approximately equal

is in fact a valid one. Thus, not only can we conclude that the
series in (V-3) converges but also that it can be considered to be
given by a sum of only a finite number of terms.

The next step is to obtain explicitly the differential scattering
coefficient for the cone. In order to do this, the solution must be
broken up at large kr into an incoming and an outgoing part, i.e.,

1

u=

It is the coefficient, f(6) , of the outgoing part of the solution
that is the differential scattering coefficient, and we may write in
the limit as kr »> «,

_r __jkr cos 9}
f(0) = e-jkr {u (r,0) - e

jn,m/2

® 1
= — —_— 3 )
e Jkr 2kr -0 (1 - IJ‘OZ) Pnl(p') 3 Pn1 (I“LO)
ani Op

[+9]

- D) etk Py (v-11)

i=0

ik s 6
The plane wave eI €0 has been written symbolically as an ex-

pansion in the Pni's with coefficient ai(kr). The summation method

will be applied to the first few terms of the above expression, The
justification for doing this lies in the fact that the numerical values

In the.discussion of the scalar case the time dependence de-
fined by eJ"! is used.
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obtained after applying the summation method decrease very rapidly
after the first few terms. Since (V-11) is convergent, the result
obtained by using only the first few terms represents the entire
series. In UMM-87 the asymptotic form of (V-11) is given as

jn,w

e ' Pp.(n)
| N
@ - L Q) T,
i=0 /p [Pogts] e

(0]

where no upper limit is given on the summation since approxi-
mately@/loo terms of the series will have the form shown above
and the remaining terms do not contribute to the value of f(8) when
the summation method is employed.

For back-scattering one may write the differential scattering
cross-section as

o (0) = |f(e)|2 = % Z € — | (V-12)

For the vector case (Ref. 5)' the situation is analogous to the
scalar case. In this case, there are two sums throughout since
the vector potential A(r), which must _Pe conftructed from the two
linearly independent vector solutions m and n, is used (Ref. 11,
p. 414), If the situation is as depicted in Figure V-1, and with
the incident plane wave polarized in the x-direction, then

IThe notation of Hansen and Schiff is employed throughout this
discussion of the vector case. It should be noted that spherical
coordinates are used and zx(kr) denotes the spherical Bessel func-
tion.
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FIG. ¥ -1 GEOMETRY OF SCATTERING FROM AN INFINITE CONE
i=0 0.1

1 Zﬁml e 1
. ® P, (1)
=g 2 on; Sime Zny(kr) cos ¢

i=0

P (W) 1y o
Z ﬁml — [kr a Erzm (kr)]} cos ¢

dP} (")

Z Ony de zni(kr). sin ¢

P 1 5
2 ﬁml sin 0 [E; g—r'[rzmi(kr)]} sin

A m, (mi +1)
+ ir 2 T zmi(kr) P;ni(}l) cos ¢ (V-13)
i=0
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where the boundary condition (tangential component of the vector
potential is zero on the surface of the cone) determines the n, 's
and m, 's according to the relations

1
P;. (cos 6 ) = 0 and dPm; (k)
i 0 —_—
dp
p=cos 90
Since dni and ﬁmi are independent of 0, ¢, and r, let us consider
the special case 6 = 0 since we are interested only in back-scatter-
ing. Using the relations
1
de

1
= -é-ni(ni+ 1) and pEm— =50 (n; +1)

6=0 0=0
we find that

o]

> A 2 \
A(r,0) = i an; zni(kr)

i=0

2 ﬁml = [5-; (rzm (kr)):l m, (m +1)

(V-14)

n, (ni + 1)

-jk
For 6 = 0 the plane wave polarized in the x-direction is 1 e 2,

At large kr we require that the total wave minus the plane wave
(which is shown in Ref. 5 to be only incoming) have the form of an
outgoing wave. The plane wave has the form

D anyfkr) ——— Z (k) ———

i

n(n+l) m(m+1)

where in the limit as kr + =

22
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je-jkr je-jkr
ani(kr) - Bni(kr) and gmi(kr) > Bmi(kr)
and 1 1
B, = P, )zd and B Pl (w? d
nj ° n, (k- B m; = [ m; u] M-
IJ‘0 p'0

Thus, we require

[+

n.(n, + 1) - n.(n, + 1)
D ony i) S - D gy thr) S

i=0 i=0
Dt 3wt il
* Pmi v 3¢ ( Zm r) 2
i=0
00
m.(m, + 1) :
i )
- 2_ gmi(kr)_'_z—— = outgoing wave,
i=0

We only know how to break up the spherical Bessel functions ex-
plicitly into outgoing and incoming parts when we can replace them
by their asymptotic forms valid for v kr > n, or m.. Thus, we

break up the sums into two parts, from i = 0 to [\) kr/lOO] and
from [«/kr/lOO] +1to w.
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Thus
Vi /100] o 0.41) [Vir/100] o (n41)
1 1 1 1
Z (an,)s Zni(kr)in — - Z an, (kr) —
0 — 0
[x/H/loo] o
n, (n,+1) n (n,+1)
¥ Z (an)s Znylkr) _lz;— * Z (ani)zzni(kr)in_l_il_—
0 [Vir/10041] B
® n.(n.+1) > n. (n.+1)
S e e
[Vir/10041] [Vir/100+1] =

+ similar terms in Bmi and gmi(kr) = purely outgoing wave,
(V-15)

Since neither ani(kr) nor gmi(kr) change in form over the entire

range i = 0 to i = «», then we have

[@100] o n.41) [Vir/100] (541}
2 (an; )y zni(kr)i_n % - 2 2, (kr) 'Lél'_
0 - 0
® n (n,+1) ® n,(n,+1)
2 (an; ) Zni(kr)m'iz_l— ) Z an,(kr) _1—2L—
[J’E/mml] B [JE/100+1]

and two similar equations in ﬁmi and gmi(kr).
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The first two equations imply that(an.)l =(0.n.)z = ap;. Substituting

the asymptotic forms for an (kr) and for the Bessel functions (in
the limit as kr — «):

] ni +1
zni(kr) ~ o cos kr - ST

1 1 n; +1
o Br [rzn (kr)] = o sin kr - — 7).
We obtain ap; = ]—3}— e-Jni"/ 2. Similarly the two equations contain-
n-

2j  -jmjm/2
e .
Bmi

ing [Smi and gmi(kr) give ‘Smi =

Since Ay, and ﬁmi are independent of kr they are correct for

all kr, and (V-14) takes on the form

-Jn 1r/2

A(r,0) =1 E kr) n 1)
r,0) = i ni( r) n, (ni +

- ] 19
_S. 5 © e Epzmi(kr)] m, (m, + 1)
i
.20
' (V-16)
By exactly the same procedure used in the scalar case, it can be

seen that the two series are convergent. Just as in the scalar

case the coefficient of the outgoing wave may be written (for the
back-scattering case) as

25




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-92

©  =jn, 1r/2

jkr R
1(0) S z{lA(r,0)| ; sz} Z 2n(kr) m, (0, + 1)

© -jm w/2

1
B} e 129 { ' }
2, Bo. kr O \omif ™y (my+l)
1
i=0

<)

n(n +1) m(m +1)

- D) anylir) —5— 2 B, ) ———

i=0 .
(V-17)

Again, the summation method will be applied only to the first few
terms of f(0). Using the appropriate asymptotic forms we get

2
01'3(0) = |f(0)|

2

1 ni(ni + 1) e-Jni-rr mi(mi +1) e-Jmiw
- —_— - —_—
k , ZBni . ?.Bmi
1 (V-18)

where no upper limit is given on the sums to indicate that approxi-
mately\/_kT/IOO terms of the series will have the form shown and
the remaining terms do not contribute to the sum when the summa-
tion method is employed.

B ¢ FOR SMALL CONE ANGLES

It has been shown on the preceding pages that the nose-on
radar cross-sections of a semi-infinite cone for the cases of vector
and scalar scattering are given by!

1 =
Note that o 411'0'D.
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2
j-rrni j'rrmi
\2 ni(ni‘+ e mi(mi +1)e
c'(0) = — 2 -
4'"' Bni Bmi
(see footnote !)
2
jﬂ'ni
\2 n, (n +1)e
o(0) = — _5_ . (V-19)

The "i = 0 term" in ¢'(0) series vanishes and the '"i = 0 term" in
the o(0) series is equal to 1/(l + cos 6,). This term is used in
the final evaluation of the scalar cross-section, but the discussion
which follows relative to approximating the n, 's and the m, 's is re-
stricted to i > 1.

Letting 6, denote 1/2 of the total cone angle we have 6, = - 0.
Then, by means of a formula given by Schelkunoff (Ref. 16, p. 54),
it is possible to obtain expressions for the cross-section valid for
small cone angles, The formula is

P [cos (r - 8,)] = MZ (ILF(n+1+s)[ 54y (n+5)
L T (8!1)2r(n+l-s)

<)

S s
+¥(n=8) -2y (s)]8% + cos "“ZH) P(n+1+s)s

oo (8T (n+1-s)
(V-20)
where 5 = }—;_%o_s_.gl

'An independent method was used as a check on the summation
method employed in this paper, In this independent approach the
sum in ¢'(0) is expressed as an integral and then it is seen that
the sum itself is real. The details of this investigation appear in
Appendix D,
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and | (x)--i 1 (x + 1)
V T odx n (r I.
. dP (x)
Using this formula and the relation PT] (x) = - N1 -x* gx
we find that
i
n, = i1+ +1)8+(1+1)i(i+1)Ind +2 E %)
k=1
1 ; 2 2
--2-(1-1)(31+2) 5 + 0(d9)
i
m, = il -(i+1)3 +(i+1){i(i+1)<1n 5+ 2 2 -1-1{->
k=1
1
t3 (i+2)(5i- 1)} 5% + 0(d?) (V-21)
. 2 s . o . ofd?
where i = 1, 2, 3, and ¢(8°) is a function satisfying lim =z - 0.
5+ 0
In addition
ni(ni+1) i 1
2——]-3-—— = (2i+ 1)+ (bi* + 61+ 1)8 + [2i(i+1) (512+5i+1)<1n5+2 2 l—{>
n-
i k=1
i
2
+i2(1+ 1) (2i+ 1)<1'§— -2 E %)- (15i* + 10i® - 12i% - 9i - 1)] 52
_ k=1

+ 0(3?)
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m, (m, + 1)

2 —————— = (20 41) - (6i®+6i+1)5
Bm;

1
1
+ |2i(i+1)(5i¢+5i+1)( In & +2 .5_ ”

k=1
i
2
2 4 2 1o Ll 1
+1i%(i+ 1) (21+1)<3 2 E =
k=1
+ (25i* + 70i® + 48i% + 5i - 1)| 8% + o(3?) (V-22)

If the above expressions are substituted into the cross-section
formulas (V-19), expansions of the cross-sections are obtained which
are valid for small angle cones. In order to obtain these expres-
sions it is necessary to sum a number of series, The series

0 0 n
are of the form E (—1)n nm, E (—l)n nm%{-, and
n=1 n=1 k=1

o n

1
4‘ , _/: , (-1)n n 3 where m = 0, 1, 2, .... Using the formula
n=1 k=1

n 1 n
n=1 . n=1

the following values of the necessary series are obtained:

n=1
Z(-nnn: -% 1+4Y'(-1)n = -
n=1 n=1

N
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] -]
2 (-l)nn2=-% 1+ E (-1)“(2n+1) =0
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) n i . .
RIPATEE SEY PP APNEF T Rt
1 n=1

n=1 k=1 n=1 k=1
ml 1
"1 " 3 In 2
0 n L n ]
n ,1 1 2‘ 1\ 1 .
E E(-l) n® 7 = > 1+ (-1) (2n+1)§z+ 2(1)
n=1l k=1 n=1 k=l n=1
1 1
—-Z+E In 2
00 n ] n
E E-nsl-l-ﬁ E-n4 1.1
(l)n-lzz-—49, (l)n—z—421n2
n=1 k=1 n=1 k=1
0 n (_l)nnS]- _i+772
22 K~ 1618
n=1 k=1

Using these sums the final expressions for the cross-sections
become

c'(0) = Sl [1+ 65 + ]

T

o(0) = 4

[1 +(4 In -;—- 2) 8 + ....]. (V-23)

It is interesting to compare these results with the physical
optics expression for the cross-section,

2 4 2 a2 - s\2 2.2
- (0)_>\tan91_>\5(1 8)° _ A8

p.o.' ' 1léw TTr (1 - 28) 14+68+¢ue.]. (V-24)
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T ¢(0) 7 o'(0) T crp 0 (0)
Clearly 4 lim -5 = lim —5—5 = lim —5—5—. The
X d \“d A D
5+0 5+0 5+0

three expressions are compared in Figure V-2 for half cone angles
from 0° to 35 .

C ¢ FOR OTHER CONE ANGLES

In using (V-19) to determine either ¢'(0) or o(0) it is necessary
to find the values of the parameters ni, mi, Bni’ and Bmi' An

approximation technique for the determination of these quantities
was developed at the Willow Run Research Center and originally
presented in References 17 and 18. A discussion of this technique
and its application to the case 65 = m - 6; = 165° appears in Ap-
pendix A.

The summation technique employed in finding o is extremely
sensitive to the first few values of these parameters. Hence, the
errors resulting from this approximation method are greatly mag-
nified by errors in the values of the four parameters. The Institute
of Numerical Analysis (I.N.A.) of the University of California at Los
Angeles has considered the problem of the determination of the para-
meters and has found these values to a greater degree of precision
than can be obtained from the approximation techniques indicated
in Appendix A.

If the parameters n., m,, Bni’ and Bmi are given, the cross-

section of a cone can be determined as follows:

The scalar and vector cross-sections are given by

. \2 ] \ 2 ni(ni+ 1) eTrniJ
o0 = = 1T ¥ cos 5, B

i=1 nj

2

A2 ivi
0-'(0) = — - (V_lg)
4 251 Bp, Bm; -
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This method for summing these series will be illustrated ofxly for
the o(0) series since the method is exactly the same for the o'(0)
series, The summation method is based on the Euler transforma-

tion
. n+l
iaj el® n
E e Vi = T AV, (V-25)
i=1 n=0 1-e '
where Af =1 - f
n n+l n
and 2P =A™,
n n
Since for large i, -n, =& m -m, & , it is most con-

n,
i+l ,
venient to choose a =

i+l 1 11'-91 n
. This choice ensures that A V, ap-

11'-91
proaches zero rapidly as n increases and that the transformed
series is rapidly convergent. The n, series transforms as follows:

Zni(ni+ 1) exp [j‘"( i~ ;%)J ej(ntzeil)

Bn.
i=1 !
. k+1 ) T
eJ‘“'z/(“"91) ' k| ™ (n; +1) exp ["J (nl “Ir- GQ)J
= r - A
] - et j/(m-6,) Bnl
k=0

When the series has been evaluated, it is substituted into the cross-
section expression,

If this method is applied using the values of the parameters ,
computed by the technique of Appendix A, we find that for 6,=15

Elgl = 2 X 10-4
i)(}) = 1,3 X 1074 (V-26)
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Using the I.N,A. values of n, and Bni (see Appendix B), this

method gives for the scalar case

o(0) _ -5
T 269 x 10 (V-26a)

These two values of ﬂig-)- differ by a factor of approximately five.

This factor of five illustrates that this summation method is very
sensgitive to the first few values of the parameters, n., mi, Bni'

and Bp,. Therefore, one would expect the "I.LN.A. -¢'" to be
the more accurate one. Examination of Figure V-2 shows that the
"small cone angle'' evaluation yields E;f?l -3 x 107 for 6, = 15,
which is consistent with the I,N,A., results,

The above technique can certainly be applied to other cone

angles. However, it would require the detailed computation of the
four sets of parameters, ni, mi, Bni‘ and Bmi' These parameters

can be determined by using the technique of Appendix A or by high
speed digital computing techniques such as those used by the I.N,A.

An approximation technique for determining o¢(0) and ¢'(0) ap-
propriate only for small cone angles was discussed in Section V-B.
A similar approach can be used for large cone angles.

When this is done (the details are given in Appendix C), the

expressions
a'(0 1
)\(2) = 16‘"6‘ [1 - 2 Gz + cee ] (V'Z?)
o (0 1

are obtained, where e = cos 6,,
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As in the "small cone angle" case, it is interesting to compare
these results with the physical optics expression for cross-section,
i.e.,

o (0) 4
. L t 1
BE— - T e et el (v-29)

The three expressions (V-27), (V-28), and (V-29) are plotted
in Figure V-3 for half cone angles between 50° and 80 . No dif-
ference between these three evaluations of cross-section can be
detected in the range 80° < 0; < 90° when they are displayed
graphically using the scale of Figure V-3.
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VI

CONCLUSION

The exact radar cross-section solution of an infinite cone has
been obtained. The excellent agreement between physical optics,
exact electromagnetic theory, and experiment is displayed in Fig-
ure VI-1,

Examination of Figure VI-1 shows that the theoretical values
of o'(0) and o-p o (0) agree with the experimental values for a cone

to within a factor of two, In addition these theoretical values are
within a factor of three of the experimental ogive data, The com-
parison between scalar theory and electromagnetic theory is also
seen to be good,

If o-p o (0) is computed up to the degree of approximation used

in finding ¢'(0), there is complete agreement between o-p o (0) and

¢'(0). This complete agreement between the approximate determina-
tions of crp o (0) and ¢'(0) and their close agreement with the exact

value of o-p.o.(O) may imply that the exact value of ¢'(0) is identi-

: \? tant 0
cally equal to the physical optics value of " o(.0)= T .

Outside of the cone problem itself criteria were found in this
paper which determine when special summing techniques should be
used for scattering problems and when special summing techniques
must be used.

It should be emphasized that many more experiments should be
made in this field. The amount of experimental information on the
cone and other bodies, such as the ogive, the prolate spheroid, and
the paraboloid, is very small indeed. It is hoped that more ex-
perimenters will enter this field and help fill the gaps in classical
electromagnetic theory.
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The authors would like to reiterate the fact that the work of
this paper was made possible by the earlier contributions of Spencer,
Sletten, Schiff, and Hansen, and by the contribution of unpublished
data by Yowell. (See Appendix B).
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APPENDIX A

THE DETERMINATION OF THE QUANTITIES

n.,, m,, B and B,..}
i* i Ty mj

Since much of the computation involved in this work is based
on the values of the Legendre functions, Pn(x), the Legendre poly-

nomials for integral values of n were written out for a greater
range in n than can ordinarily be found in existing literature on
dP (x)

dx

this subject. Table A-1 lists the Pn(x) and through n = 20,

The values of these functions, which appear in Table 3 of Ref-
erence 17, were computed from these polynomials using 15-digit
accuracy for all intermediate computation. The results were cross-
checked to 10-digit accuracy by the use of recursion formulas. The
calculations involved in determining the parameters ni, mi, Bni’

and Bmi necessitated the computation of other partial derivatives
of Py(x). The values of these parameters appear in Reference 17

and Reference 18, The general theory of the approximation methods
used is explained in these two references. To illustrate the method
of evaluating these parameters in greater detail, we now present

all of the formulas that are required to supplement the material of
References 17 and 18.

We start with the following definitions:

The material of this appendix was presented, in part, in a
talk, ""The Zeros of the Legendre function of Order One and Non-
Integral Degree', by K. M. Siegel, J. W. Crispin, and R. E.
Kleinman, given at the April 25-26, 1952, meeting of the American
Mathematical Society held in New York City.
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N =[n]
0(N,s) = y(N+1+8)- ¥(N+1-5)
0'(N,s) = V' (N+1+s) - ¥ (N+1 -5)
0"(N,s) = V" (N+1+s) -Vv"(N+1 -s)

O"YN,s) =¥ "(N+1+s) - V'(N+1-5)

1 +x

a(N,s,x) =/ 1n >

+ V(IN+1+s)+ y(N+1-8)-2ys+l)

a'(N,s) = y(N+1+s8)+ V(IN+1-5)
a"(N,s)= V(IN+1+s)+ vV"(N+1 -5)

a"(N,s) = v"'(N+1+s)+ v"'(N+1 -5)

Note: The V-function has the form used in the tables of Reference
19, The argument has been increased by one over that indicated
in Reference 17 due to the construction of the tables of Reference
19.
S S (_1)‘5
AN,s) = T (N+1-r) [T (N+r) 7
r=1 r=1 (s%)

n
F =2 A(N, s) q(N,s,x) (1—+2_x—o>s
s=0

n S
1 +x
F! =2A(N,S) [¢(N,S) a(N,S,X) + a'(NaS)]< 2 0>
s=0

n
F'" = EA(N,s){[é(N,s) o(N,s,x) + 2a'(N,s)] §(N,s)

s=0
>S

1 +x
+ P(N,5) olN,5,%) + o"(N,8)} | —5—
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n

P = ZA(N,S){[é(N,s) o(N,s,x) + 3a'(N,s)] ¢¥N,s)
s=0

+ 30'(N,s) O(N,s) a(N,s,x) + 30'(N,s) a'(N,s)

1 s
+ 30(N,s) oa"(N,s) + 0"(N,s) a(N,s,x) + a"'(N,s)} (JE’_‘Q.)

n
G - ZA(N,S) G—;xg)s
520
n S
G = 2 A(N,s) §(N,s) (1—2&)
5=0

n
S
G" = ZA(N,S) [0, ) + (N, 5)] <1 +2x>

s=0

n

‘ S
G"' _ ZA(N,S) [¢II(N,S) + 3¢(N,S) ¢‘(N,S) + ¢3(N;S)] (1 -{-ZXO)

s=0

OF _ 1 { t - f ]
dox 1 +x0 2 s(terms in the £ for )} + G
OF' 1 . the 3 g ' |
3x 1 +x_ 2 s(terms in the or F )} + G

" )
oF" 1 { t in th ¢ " |
dx ‘1+XO 2 s(terms in the £ orF)}+G
aFH' 1
Sx 1+ x_ [ 2 {s(terms in theZ for F"'} + Gm:|
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3G 1 [ { . ]
= E s(terms in the » for G)}
dx 1+ X
3G 1 [ { . }:l
= E s(terms in the § for G')
ox 1+ X
oG" 1 -S- ' : "
S - 133 {s(terms in the x for G'")
)

a "t
G __1 E {s(terms in the £ for G"')
J x 1+ X

We then have the formulas:

At y = N = n = an integer

éPy(x) n

ay = (-1) [F + G']
92 Py(x‘) n
—5e = D) [2F + G" - n*G]
3P (x) n
__a..%;— = (-1) [BF" - w?F + G"' - 3n%G]
8Py(x) n|oG

3x (-1) [é_x-}
02 P (x)

y - (_l)n |:_6_F_ + é_q.}

dx 9y dx dx
83P(X)- ]_n 2E+5G” L a_(.;_:I
dxdy? (-1) ox dx dx
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4
_a__P_y(_Xl_ _l)n 3E_ZE+5_G”_'__31TZE
dx3y° ( 3x " x dx dx
Aty =N =mn+ 1/2
P (x)
Yot E
3y ¢ & [v “G]
02 P_(x) [t
n |F
——T—ayy = (-1) - - F - ZwG'}
0* P_(x) B
8?3 = ('l)n _Eﬂ— - 37F' - 3nG" + w3G]
be(x) nf1 4F
d3x (-1) T X
52 Py(x) _ -l)n l BF' .ég_
Sxoy T 3% " ox
3
R e [LaE | 3R, aGr
Sx oy - | T 3% "3 ™3
4
) Py(X) ) (-l)n 1 dF™ 3 SF! s el N 3_52
Sxdy 3 "T3x T dx
The values of Py(x) and its derivatives are given in Table A-2
° oP (X) .
= y
for X cos 165 ., Values of Py(x) and = are included for

completeness. As mentioned above, 10 place values for these
quantities appear in Table 3 of Reference 17.
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1
2
In Reference 18, the values of _/ [P;ni(x)] dx were tabu-

%o
> Py(x) >t Py(x)
lated as computed without using ——5— and
oy’ x=x, 3% 3y x=%,
y=N y=N

Also the values of some of these integrals were shown as re-
evaluated to include the extra derivatives. Similarly in Table 4
1

2
of Reference 17 the values of / [Pni(x)] dx were given as

X
o

evaluated without using the two derivatives mentioned above. We
show in Table A-3 those values of both sets of integrals, as re-
evaluated by using the extra derivatives, which were not included
in the tables of References 17 and 18,

3P (x)
In order to illustrate further the effect of including ——a;};—— and
X=Xq
* P (x) y=N
—a-;#— in the evaluation of the two sets of integrals, we
X=X, 1
y=N 2
show three charts. In Chart A-I, we show the graph of / [Pni(x)] dx

X
o

as based on the "best" values as explained in Reference 17. Also
shown are the corresponding values as re-computed by using the
extra derivatives. Chart A-II gives a similar representation of
1
1 / 1 2 .
———— [Pm.(x)] dx. Note that in both cases the new
m, (mi +1) e i
0
points lie on a much smoother curve which is very nearly an en-
velope of the set of discontinuous curves originally plotted. The
smoothness of these new curves seems to indicate that there would
be no appreciable increase in accuracy if still more derivatives
were used. Chart A-III shows the new points from Charts A-I
and A-II on a single graph.
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Reference 20 shows how the n, can be evaluated to any desired

degree of accuracy by the use of hypergeometric series, although
the labor involved is far greater than that needed for the approxi-
mation method used here. Similarly the m, can be computed much

more accurately by use of the same technique. The procedures
outlined in the Appendix of Reference 20 can also be employed for
1 +k(1+p)

the m, computiclon by including the factor T+ k-Dl+m’ where
X = 1 in K
2 Ak-l
TABLE A-1
LEGENDRE POLYNOMIALS
Po(x) =1
P (x) = x
1 1 2
PZ(X) =3 (3x - 1)
X 2
P3(x) =3 (5x - 3)
1 4 2
P4(x) =3 (35" - 30x + 3)
P (x) = %(63;{4 - 70x° + 15)
P,(x) = i(231 6 315 4+105 2 5
6 = 18 X X X )
P, (x) = 1’% (429x° - 693%™ + 315%° - 35)
1 8
Py(x) = oo (6435% - 12012x° + 6930x™ - 1260%° + 35)
Py(x) = 1% (12155x8 - 25740x° + 18018x" - 4620x° + 315)
1 10 |
Plo(x) = 256 (46189 - 109395}{8 + 90090}(6 - 30030){4 + 3465}(2 - 63)
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TABLE A-1 (Continued)

10 4
() = 256 (88179x"° - 230945x° + 218790x - 90090x* + 15015x> - 693)
P._(x) = —— (676039 1939938x 0 + 2078505%° - 1021020%°
12 1024 x! X X
+225225%" - 18018x° + 231)

1 1
P13(x) = 1024 (1300075x 2. 4056234x 0 + 4849845}:8 - 2771340){6

+ 765765 - 90090x° + 3003)

(5014575x 14 16900975x12 + 22309287x10 - 14549535x8

+ 4849845){6 - 765765x4 + 45 045x2 - 429)

1
P, &) = 3518

4 35102025}(12 + 50702925){10 - 37182145}{8

2048
6 4 2
+ 14549535x - 2909907x + 255255x =~ 6435)

1
(300540195x 16 - 1163381400}(14 + 1825305300x 2

- 1487285800}{10 + 669278610x8 - 16295479.2)(6

1
P = 3378

+ 193»99380x4 - 875160}{2 + 6435)

(583401555){16 - 2404321560}(14 + 4071834900x12

Py, = 32768
10 8 6
- 3650610600x — + 1859107250x - 535422888x

+ 81477396x4 - 5542680x2 + 109395)

16

14
P 2268783825x18 - 9917826435x  + 18032411700x

1
18 = Z5536 ¢
12 10 8

- 17644617900x - + 10039179150x - 3346393050x

+ 624:660036x6 - 58198140){4 + 2078505x2 - 12155)
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TABLE A-1 (Continued)

X 18 16 14
= — 57975 - 05740
P19(x) 65536 (4418157975x% 20419054425x  + 396713 X
12

- 42075627300x  + 26466926850}{10 - 10039179150x8

2
+ 2230928700}{6 - 267711444x4 + 14549535x - 230945)

1 20 18 16
on(x) = Se314a (34461632205x - 167890003050x  + 347123925225x
14 12 10
- 396713057400x ~ + 273491577450x - 116454478140x
8 6 4
+30117537450x - 4461857400x + 334639305x
- 9699690}:2 + 46189)
TABLE A-la
DERIVATIVES (with respect to x) OF THE
LEGENDRE POLYNOMIALS
!
Po(x) =0
1
Pl(x) =1
!
Pz(x) = 3x

P'3(x) = % (5x2 - 1)

P;(x) = %’5 (7% - 3)

P'S(x) = 185 (21x" - 14x% + 1)
P'6(x) = % (33x4 - 30x° 4 5)

Pl (x) = 173 (429x° - 495x* + 1357 - 5)

Pé(x) = (1’—’;(7157;6 - 1001x" + 385x° - 35)
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TABLE A-la (Continued)

P! olx) = 123 (2431x8 - 4004x° + 2002x" - 308x° + 7)
P‘lo(x) = ‘rl’z’g (4199 - 7956x° + 4914x* - 1092x% + 63)

P! (x) = '233% (29393x%"° - 62985x° + 46410x° - 13650x" + 1365%° - 21)

39x 1 4
P'lz( x) = 96 (52003x 0 - 124355x° + 106590x° - 39270x* + 5775x - 231)
P'13( x) = 13;4 (185725x 2 - 490314x"° + 479655%° - 213180x° + 42075x "
- 2970x2 + 33)
1
14( X) = 13052}1 (1002915x 2. 2897310x10 + 3187041x8 - 1662804x6

+ 415701:{4 - 43758x2 + 1287)

1 12
P15(x) = 2(1)28 (9694845x 4. 30421755x  + 37182145x10 - 22309287){8'

+ 6789783x6 - 9699691'(4 + 5105 lxZ - 429)

(x) = —% (17678835 - 59879925x 2 + 80528175x ' - 54679625x°
Pl o(x) = 5o
+ 196846650 - 3594591x" + 285285 - 6435)
153 16 14 12
- 5x-° - 235717800 34597290
P!_(x) = 2o (64822395 3 x * 4 345972900x
10 8 6
- 262462200% 0 + 109359250x° - 24496472x
4 2
+ 2662660%" - 108680x° + 715)
\ 171x 16 14 12

P (119409675x ~ - 463991880x = + 738168900x

18%) = 3578
10 8 6
- 619109400x ~ + 293543250x - 78278200x

+ 10958948x4 - 680680xZ + 12155)
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TABLE A-la (Continued)

1
g = 655536 (883631595%° - 3653936055x'° + 6263890380x -+

1 0
-5757717420x 2 + 3064591530){1 - 951080130){8

+ 164384220){6 - 14090076){4 + 459459x2 - 2431)

' 105x 18 14

16
PZO( X) = %5536 (1641030105x ~ - 7195285845x  + 13223768580x

- 13223768580x12 + 7814045070){10 - 2772725670}(8

2
+ 573667380}{6 - 63740820x4 + 3187041x - 46189)
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TABLE A-2

VALUES OF LEGENDRE FUNCTIONS AND DERIVATIVES FOR x = cos 165° AND y = i

3P (x) 3P (x) | 3P _(x) 3P (x) | 3°P_(x) P _(x) | 3*P_(x)
i | P y y y y y_ Y. y
y > x dy dx dy dy 3x Jy dy dx dy°

1. | -.96593 | + 1.0000 | +1,96767 | -31,4201 | +6.65926 | - 15.5070 | -18,1077 | +280.4622

1.5| +.40531 | -10.9463 | +2.57248 | - 6.90411| -4.27345 | + 96.1650 | -18.57077 | + 79,0258

2, | +.89952 | - 2.8978 | - .83151 | +33.3189 | -6.99490 | + 31.9902 | + 8.85285 | -288.6843

2.5| -.09820 | +11.5866 | -2.42716 | +13.2839 | +1.49086 | - 98,6800 | +19.11724 | -132,6410

3. | -.80416 | +5.4976 | + .03762 | -33.7786 | +6.55209 | - 53.5628 | - 1,90483 | +284.3069

3.5| -.12691 | -11.5354 | +2.15301 | -21.4427 | + .55693 | + 95.6504 | -17,63258 | +199.7114

4. | +.68470 | - 8,5269 | + .55236 | +31.9740 | -5.72620 | + 78.0203 | - 3,37350 | -262.5904

4.5| +.29430 | +10,5713 | -1.79864 | +30.2723 | -2.08678 | - 85.5819 | +15.09171 | -270,5686

5. | -.54713 | +11.6599 | - .98476 | -27.4380 | +4.66630 | -102.8882 | + 7,29546 | +219.5962

5.5| -.41302 | - 8.5925 | +1.39206 | -38.8391 | +3,18357 | + 67.5910 | -11.91910 | +338.0942

6. | +.39831 | -14,5453 | +1.27923 | +20.0474 | -3.46794 | +125.4107 | -10,01824 | -154,3421

6.5| +.48750 | +5.6150 | - .95798 | +46.1510 | -3.89064 | - 41.8106 | + 8.40506 | -394.4973

7. | -.24554 | +16.8378 | -1,44737 | -10.0114 | +2.21014 | -142.8545 | +11.64229 | + 68,55149
7.5| -.52104 | - 1.7674 | + .51982 | -51.2758 | +4.23964 | + 9.2902 | - 4.78779 | +432.4211

8. | +.09618 | -18.2284 | +1.49951 | - 2,1543 | - 96401 | +152,7732 | -12.25865 | + 33.55306
8.5| +.51722 | - 2,7217 | - .09965 | +53.4261 | -4.26309 | + 28.1030 | + 1,27606 | -445,6640

9. | +.04277 | +18,4730 | -1.44745 | +15.6726 | - .20615 | -153.2447 | +11,97032 | -145,6297

9.5] -.48040 | + 7.5425 | - .28249 | -52.0351 | +3.99940 | - 67.8441 | + 1,94733 | +427,8117

10. | -.16506 | -17.4158 | +1,30552 | -29.5703 | +1.24419 | +143.0667

10.5 | +.41592 | -12.3297 | + .60942 | +46.8156 | -3.49440 | +106.9611 | - 4.72841 | -382,7211

11. | +.26549 | +15.0068 | -1.09060 | +42.7584 | -2.10402 | -121.8947

11.5| -.32922 | +16.6926 | - .86760 | -37.7962 | +2.80080 | -142.2833 | + 6.94652 | +304.8202

12. | -.34022 | -11,3096 | + .82173 | -54.1232 | +2.75140 | + 90.3117

12.5| +.22922 | -20,2478 | +1.04774 | +25.3334 | -1.97642 | -170.7213 | - 8.51829 | -199.1999

13. | +.38690 | + 6,5014 | - ,51933 | +62,6213 | -3.16523 | - 49.8228

13.5] -.12094 | +22.6524 | -1,14518 | -10.0965 | +1.08174 | -189.4793 | + 9.40032 | + 71.48611
14, | -.40482 | - .8633 | + .20422 | -67.3711 | +3,33825 | + 2.7733

14.5 | +.01217 | -23.6343 | +1.16002 | - 6.9736 | - .17695 | +196.4178 | - 9.58984 | + 70.49965
15. | +.39489 | -5.2385 | + .10335 | +67,7340 | -3.27697 | + 47.8035

15,5 | +.09038 | +23.0176 | -1.09695 | +24.7285 | - .68099 | -190.1477 | + 9.12328 | -217.2708

16. | -.35950 | +11.3782 | - .38478 | -63.3776 | +3.00079 | - 98,3994

16.5 | -.18075 | -20,7420 | + .96484 | -41.8952 | +1.44124 | +170,2384 | - 8,07277 | +358.3586

17, | +.30241 | -17.1019 | + .62404 | +54,3173 | -2.54050 | +145.2905

17.5 | +.25399 | +16.8721 | - .77613 | +57.1716 | -2,06158 | -137.2863
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TABLE A-3
/1 2 %P _(x) a‘*Py(x) .
VALUES OF XO [Pni(x)] dx, USING —W— x=x, AND m X%, X, = cos 165
y=nj y=nj
/1 2 /'1 2 1 . /‘1 2 /1 2
n =i+ zJ! . [P“i(x)] dx ni(ni+1) e [Pni(x)] dx no=j+g + zj e [Pni(x)] dx ni(ni+l) A [Pni(x)] dx
o o 0 o

1,03158 .625683 1.31127

2.08361 .365737 2.34988

3.14588 . 258622 3.37306

4,21990 . 202284 4.44054 4,24367 .197114 4,38625
5.31014 .159313 5.33822
6.38439 . 134097 6,32199
7.46564 .115786 7.31785
8.55028 .101809 8.31348
9.63336 .091175 9.33955
10.71202 . 083506 10.47667

1 2 3P (x) P (x)
VALUES OF/ [Pr‘n.(x)] dx, USING —%— AND —2— x_ = cos 165°
X i Ay X=Xgq dxdy° X=X,
y=mj y=my
. ' J[l 1, 2 1 jd 1 2 o1 " /A 1 2 1 /A 1 2
m, =] + Zj [P‘n'i.('\)] dx m—('m [Pmi(x)] dx mi. =j+ 3 + Zj [Pmi(x)] dx m [Pmi(x)] dx
X i x X i X
o o o o

0.9673 1.35806 .71365

1,9198 2.42491 .43260

2.8894 3.37945 .30072

3.8900 4.28564 . 22530

4.9180 5.18033 .17799

5.9657 6.09038 . 14656

7.0264 7.03236 . 12469

8.0940 7.93860 .10785

9.1638 8.66236 .093005
10, 248 10.0889 . 087524
11,333 11,5397 .082562
12.410 12.0322 .072301
13.492 12.8305 . 065620
14.576 13,7103 .060388
15.658 14.1082 . 054089
16.750 16.8298 . 056606

53




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

© = Recomputed Values of the Integral (xo=cos 165°)

1 2
CHART A-l GRAPH REPRESENTING "“BEST VALUES" OF [P,,(X)} dx vs n,
i
AS ORIGINALLY COMPUTED X0
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= cos 165°
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APPENDIX B

CERTAIN VALUES OF n, AND Bni COMPUTED BY THE I.N.A.

The Institute of Numerical Analysis at the University of Cali-
fornia at Los Angeles has computed the parameters n, and Bn for
0o = 165°, Those values computed by the I.N.A, that are employed
in this report in computing o(0) are listed below. The authors
would like to express their appreciation and gratitude to Dr. Everett
Yowell and the I.N.A. for their cooperation in furnishing these un-
published data, thereby making the computation of ¢(0) for 6, = 165"
possible.

i n. Bni
—_—

1 1.03163 1.31078
2 2,08443 2.34637
3 3.14992 3.34731
4 4,22309 4,34068
5 5.30108 5.33248
6 6.38224 6.32443
7 7.46557 7.31653
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APPENDIX C

DERIVATION OF SCALAR AND VECTOR CROSS-SECTIONS

IN THE LARGE CONE ANGLE CASE

When 0, is close to /2, cos (w -6;) = -cos 8, = - ¢. Thus
we may write
Zcos(—q;—l w)F(ﬂzl%
P! (-¢) = 1 J1-¢?
1 r (" )J?
2
(ﬂ+2)(l-q) (q+2\/q+4)(l-n> 3-1 4
2 2 ) 2 N\ 2 2 2 )€
X |1+ 1 + 1 3 + .
2 22 ¢
4 sin (-n?—l w)r‘ (—TL;—?’-)
- : eN1-¢?
r @)H

t+..

.69 |, et |

3
2

W

2

Using this expression of the Legendre function and the defini-
tions of the two quantities n, and m., we obtain

2i2 (21 +1)2 |1 1 (1)
w2 P
2

2i
=2i -— (2i + 1) 2 NIRRT
ni i - (21 + )ﬁle + [31 e“+

m =2i-1-44c -8 [AfAZ . A1A3] €+ ...
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where 0o n +1 1
(m) _ (-1) (1 o 1
% né; D %2 41}
5 - rii+1/2) 1!
I ri+1) Ji
1 o1
A, = A, [-3-2(1- ”(”E)] + Ag
_ 1 (1)
Be = 1Tz By
A, = [ﬁ;:—léi - 4A, (i - 1/4)] + Al
o
with
i 21 By ' i+l 4T
= (- = (-1 — (i-1
Ag = (-1) = Ay = (-1) b (i-1/2)
"o 1 (1)
Ao = Ao {i 2%

In order to obtain 0"(0) and ¢(0) [Equations (V-27) and (V-28)],
it is necessary, as in the small angle case, to find the sums of a
number of series. The basic formula for finding these sums is

o]
2
1-2 +V, + -2
(1-2x)V,+V,+ X [V, xVi+l+xVi}

* i=1 i+2
D V- T
1=1

. %] 1
with x = exp p— and 0, = 5 cone angle.
!

'The asymptotic forms hold for 1> >1.
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™™, j
ni(ni +1)e

For the n, series Vi = . By using the ex-

By

pression given for n., Vi can be expressed in the form

0 1 2 4 0
Vi= (V§)+V§)e +V§) ez+....>. x=exp{ L }can also be

1T-91

expressed as a series in ¢ as follows:

x =1-4je - 8(1 -3—> ¢ +(1o;| --lﬂ+3—2 e+ .
™ TI' ™
Using these series and the fact that Vr(10) = 4n + 1 it can be shown
that
®
(1 -2x)V,+V, + 2 (V,,, - 2% Voat x2 Vi)
i=1

i 1+1

= lim (V(O) - iy, {( (- ()) + 8j v(o)]

i+ o

i+1

[(V(Z) ) (2))+16< ) . +3 Vl)-16(212-i)+16]ez+....

Upon applying these series, we find that
™ J

ni(ni+1)e
B [1+2€ o..-ooo] .
2 nj

i=1

The m, series can be evaluated in the same way. The final ex-
pressions for cross-section are given in the text in Section V-C.
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APPENDIX D

DERIVATION OF AN INTEGRAL EXPRESSION
FOR THE SUM OCCURRING IN ¢'(0)

o'(0) is given by Equation (V-19) as

2 n(n, +1) jwmn, m/(m, +1) jrm,
o—l(o) = %; E _1_1—-— e 1 _.—1—1_—_ e 1 . (V_lg)

Bni Bm;

As noted before, one must apply a summation technique to this
sum since it is divergent as it stands. In this appendix the sum
will be defined as follows:

2
S(0) = lim

00 4m
2
. 1 . 1
ni(ni + 1) J-rrni-a<ni+ 2) mi(mi +1) mei-a<mi+ 2)
X —B e - B e . (D-1)
nj mj

i=1

It is shown that this summation method always yields the same an-
swer as the summation method used elsewhere in this paper when-
ever the latter method gives a finite result. Using the definitions
of Blrli and Bmi as given in UMM-87 we find that Equation (D-1)

becomes
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® (n, + 1)(2n, + 1) exp |jwn -a<n +l
N\, A i PU™i™ "2
o'(0) = lim o Bl ( )fdP’( Y
a>0 -1 (k2 - 1) nipo nj o
o o du dn,

. 1
mi(mi + 1)(2mi + 1) exp [mei-a <mi+ Eﬂ_

+ Z dzpéli(po)' 1 (D-2)
() - 1) W P (ko)

Representing the sum on the right by S(1 (D-2) takes on the form

2 2

2 2 2 '
N
1 - 1 —— = e— i = e— -
o'(0) = lim o S(1 ym lim S ym So (D-3)
a>0 a+>0 )
1 dP,;i(uo) )
Now the n, and m, are given by Pni(po) =0 = T n,,m, > - E)'

Thus, the n, and m, are all distinct except for n = m = 0.
Furthermore, the n, and mi are all real (Ref. 21). Thus, S(1 is

the sum of the residues of the function

z(z + 1) (2z + 1) exp [jnz - a(z +%>]

_ -4
£,(2) X dP’z (k) | (D-4)
(k) - 1) an Pz(uo)

at the poles of the function where Re(z) > 0. Thus, if CR is the

contour shown in Figure D-1, Sa is given by

-a/2 , , -1
s - edpl.(.(“)odPll)( ) + lim 2—11” / f (2) dz,
Z Fo z “o R~»>w R
dp dz dz
z=0 (D-5)

where account has been taken of the pole at z = 0. Making use of
the relation
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Y

— /|i|=R

Y
4 » X
0

2=- 1/2+jA J

FIG. D-1
dP
z(po) - 1In 1 +po
dz _ 2
Z=Z,

(Ref. 14, p. 76), the first term on the right of Equation (D-5)
becomes

Lty -a/2
T e .
%o

By making use of asymptotic relations it can be shown that for

large |z|
1
+ 2 . _ ull
2wz sin 60 exp []wz a (z + 2)]

cos [(2z + 1)00]

f (z) = (D-6)
a

Near the positive real axis the factor eno'Z makes (D-6) go to
zero exponentially with R.  Since 00 > w/2, the factor
jTz
e
z + 1
cos [(2z + )eo]

goes to zero exponentially with R except near

the real axis. Thus, on the entire circular arc of C fa(z) goes

R’
to zero exponentially with R and the integral around the arc van-
ishes in the limit R » oo. As a result Equation (D-5) can be
written in the form
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S - _C +p'o> e-a/Z
a - p.o
1
1 f(—~+JS)(E+JS> (2jS) exp l:——m - S -]G.S:I
1)

+ 2‘n‘j 1 1 2 ] ('st)
- (H > E_ S(Ho)
1
_ T /2, L S(48% + 1) exp [ - 7S - jaS) i
1-p 2m 2 1y 9 1 ¢
o e N
(D-7)
where
m. m
-E + ]S .

Since the integral on the right of (D-7) is uniformly convergent
it follows that

00

, L S (482 + 1) e ™
S =limS = - -—
o] a | ) 2m

a0 0 T (11 d—i [Kls(uoﬂ

> dS. (D-8)

Taking account of the fact that Ké(p.o) = Kls(po), this can also be

written in the form

(o]

1 +p 2 .
1 4 1 ‘

_§ - o 1 S (45° + 1) sinh (1TS)2 gs. (D-9)

A LN

0 Mo’ dp Ls'to

1
dPT] .

From the relations (1 - pz)-a-;— = +1)V1 - u? PT] + pLPn and
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dP
PlTl = -1 -2 T;? it follows that

0

s - SR / S (452 + 1) sinh (vS) dS
o 1- ko 2w ; dKS(EO) dKS(po) +<Sz +l) ) .
dp %o dp. 1) st

(D-10)

A +12 .0
2

From the expansion KS(cos 0) =1+ 52 sin

2 2 4 2 2
RGN 12)2 izx +3%) e % + .... (Ref. 14, p. 74),it follows

that KS is real for real S and 6, and that K

S is a monotonic increasing

function of S. From the reality of KS it follows that the sum S is

real. Another expression for KS is

K_(cos 6) = 2 cosh (wS) / cos Su du . (D-11)
S ™ : N2 (cos 0 + cosh u)

2
From (D-11) it follows that Ko(cos 0) = - K <sin —g—) where the right

hand side of the last expression is the complete elliptic integral.
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APPENDIX E

LIST OF ERRORS OBSERVED IN UMM-87

Since the publication of UMM-87, several errors in that paper
have been observed. These errors are as follows:

Equation (II-3) on page 5 of UMM-87 was taken from Reference
11, where Stratton used fi to denote the inwardly directed normal
to the surface. Since N denotes the outward normal in UMM-87,

(1) the sign of Equation (II-3), p. 5, should be changed to +,
(2) the sign of Equation (II-4), p. 6, should be changed to +,

(3) the sign of Equation (II-5), p. 6, should be changed to +,
and

(4) the sentence at the bottom of p. 6 which reads "also Equa-
tion (55) on page 463 ....." should be deleted.

On page 35, a factor of 4 is missing in the right hand member
of (A-T7).

Equation (D-4) on page 47 contains a typographical error. The
(1 - 1)? should be (1 - p2).

On pages 34 and 38 the statements about n, not being an integer do

. dpP
not apply to ni=0 smce___o(_p)__: 0. In the vector case the term for

dp
ni=0 vanishes, but in the scalar case this term must be taken into

account.
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