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ABSTRACT

The scattered field produced by a plane electromagnetic wave incident on
a plasma coated re-entry vehicle is studied, in the low-frequency limit. When
the collision frequency is large with respect to the operational frequency, the
determination of the electric and magnetic dipole moments of the scatterer is
reduced to the solution of two standard potential problems for perfect conductors.
For axially symmetric bodies, only three of the six dipole moment
coefficients are independent. The dipole moments are found for a variety of
scattering shapes, and the low-frequency radar cross section is obtained for
any direction of incidence and for different combinations of the shapes of the

bare vehicle and of the outer surface of the plasma sheath.

vi



CHAPTER I

INTRODUCTION

1.1 General Considerations

At low frequencies, the field scattered by a finite body when an electro-
magnetic wave is incident upon it can be expanded in a series of powers of the
free-space wave number k, which series is absolutely convergent for sufficiently
small k. The leading term is produced by the electric and magnetic dipole con-
tributions, and if the incident wavelength A = 27r/ k is much greater than all the
dimensions of the body, the scattered field can be approximated by the leading
term alone. The result is Rayleigh scattering for which the cross section is
o=Ck".

For metallic bodies, Siegel (1959) reasoned that the coefficient C should
be proportional to Vz, where V is the volume of the body, and from an examina-
tion of the known expression for the backscattering cross section of a prolate
spheroid at axial incidence, Siegel was led to an empirical formula for the con-
stant of proportionality in terms of the shape (length-to-width ratio) of the body.
The resulting expression for o has found considerable utility, but it should be
noted that it applies only to axial backscattering from a body of revolution, that
it is most accurate when the body is long and thin, and that its derivation assumes
that the body is metallic,

Hiatt et al.(1960) subsequently claimed that since the effect of conductivity
is enhanced at low frequencies, any body made of a material with non-zero con-
ductivity appears perfectly conducting if the frequency is sufficiently low. Thus,
it seemed reasonable to conclude that Siegel's formula would still be applicable
to plasma (or absorber) coated bodies by considering the whole scatterer (body

plus plasma coating) as perfectly conducting. Therefore, when a body re-enters



the atmosphere and a plasma is formed around it, the low-frequency cross
section should increase as a consequence of the increased scattering velume,

However, experimental data later showed that the cross section does
not increase nearly as much as would be expected on the basis of the reason-
ing in the preceding paragraph. Although in the experiments the overall length
of the body and near wake were such as to violate the criterion for Rayleigh
scattering, a rigorous analysis of the scattering phenomenon in the Rayleigh
limit appeared desirable. Thus, the main task of this report is the theoretical
investigation and computation of the low-frequency (Rayleigh) backscattering
cross section of a perfectly conducting, axially symmetric, cone-like space
vehicle under atmospheric re-entry conditions.

1.2 Outline of Research

After a survey of low-frequency methods and of Rayleigh scattering,
the electric and magnetic dipole contributions to the far field scattered by an
arbitrary object under plane wave incidence are discussed in Chapter II.

A detailed investigation of the dipole moments of plasma-coated metallic
bodies is performed in Chapter III, where the cases in which the collision fre-
quency v is either much larger or much smaller than the operating frequency
w are considered. It is shown that in the former case the low-frequency
scattering phenomenon can be reduced to the solution of two standard potential
problems for perfect conductors. In the latter case, however, the success of
the method depends on the existence of a continuous spectrum of solutions for
a boundary-value problem for a wave equation with imaginary wave number.

The following two chapters are devoted to the case v, >>w. The dipole
moments of various scattering shapes are studied in Chapter IV, where spheroids,
round-backed cones, flat-base cones and cone-spheres with or without a rounded

nose are considered. From these dipole moments, the backscattering cross



section for a variety of shapes of the bare body and of the plasma outer surface
is obtained in Chapter V, for all angles of incidence and two different polariza-
tions.

Appendix A is devoted to the determination by analytic means of the dipole
moment coefficients of all round-backed cones. A computer program which yields
all dipole moment coefficients but one for any roll-symmetric, perfectly con-
ducting scatterer is developed in Appendix B. These coefficients determine the
backscattering cross section in the entire H~plane. Finally, an alternative approach
to the problem is explored in Appendix C, where a new integral equation is derived
for the jump current at the surface of an overdense plasma sheath surrounding a
thin conical shell.

1.3 List of Common Symbols

Vectors are underlined (e.g. E), unit vectors are indicated by carets
(e.g. 9), scalar products by dots (e.g. p. E), and vector products by wedges
(e.g. {1\,\@) . The rationalized MKSA system of units is adopted.

X, V, z, = rectangular cartesian coordinates
T, 0, ¢ = spherical polar coordinates

v = gradient operator

V. = divergence operator

VA = curl operator

60 = permittivity of free space

By = permeability of free space

Z g /uo / €, = intrinsic impedance of free space (= 120 7 ohm)

Y=7Z = intrinsic admittance of free space

W = operating (angular) frequency

k=w /eouo ' = wave number in free space



plasma frequency
collision frequency

incident electric and magnetic fields

scattered electric and magnetic fields,



CHAPTER II
GENERAL FORMULATION OF LOW FREQUENCY SCATTERING

2.1 Low Frequency Methods

The first attempt to obtain low-frequency solutions of the steady-state
wave equation from the solutions of the corresponding static problems is due
to Strutt, Lord Rayleigh (1897); a comprehensive survey of Strutt's contri-
butions to scattering theory is presented by Twersky (1964). In general, the
term "Rayleigh scatterer" is applied to a body whose characteristic dimensions
are small compared to the wavelength, but authors often disagree with one
another on the precise definition. Thus, for example, to Born and Wolf (1959)
a Rayleigh scatterer is one that does not change the frequency of the incident
field in forming the scattered field, whereas to other authors it is one whose
scattered far field is linearly polarized, or is proportional to k2. For our
purposes a satisfactory definition of Rayleigh scattering has been given by
Kleinman (1965a): for a given scatterer, the '"Rayleigh region" is that range of
values of k for which the quantity of interest, e.g. the scattered far field, can
be expanded in convergent series in positive integral powers of k. For three-
dimensional scattering by smooth finite objects, such series exist and have finite
radii of convergence, as proved by Kleinman (1965b) in the scalar case and by
Werner (1963) in the electromagnetic case. These expansions are known as
'""Rayleigh series", or '"quasi-static series'", or '"low-frequency expansions'.

In the scalar case, the determination of the low-frequency expansion con-
sists of two steps: the terms of the expansion are found for the near field, and
then they are continued into the far field. The details of this procedure may
be found, for exaniple, in Noble (1962) and Kleinman (1965a). When applied to
soft (hard) scatterers, the method consists of a series of steps which require

the solution of the same Dirichlet (Neumann) potential problem, but with



different boundary values at each step. This inconvenience has been
eliminated in a new method developed by Kleinman (1965b) (see also Ar and
Kleinman (1966)), which produces successive terms iteratively, without re-
quiring the solution of a new problem at each step.

In both Rayleigh's and Kleinman's methods, the solution of the potential
problem, i.e. the static Green's function for the scatterer under consideration
must be known. For a limited number of shapes, potential problems can be
solved by separation of variables. Darling (1960) has proposed a method of
solving potential problems for surfaces which are intersections of separable
surfaces, and Darling and Senior (1965) have applied it to a round-backed cone.
A detailed study of the dipole moments of the round-backed cone is performed
in Appendix A.

The extension of Rayleigh's method to electromagnetic scattering by
penetrable three-dimensional bodies was performed by Stevenson (1953a). The
calculations required for obtaining each successive term in the low-frequency
series, however, rapidly become so intolerable (see, for example, Stevenson
(1953b)) that Stevenson's technique does not seem to have been employed in
deriving more than three terms. Kleinman (1965¢, 1967) has achieved some
simplification and removed some of the ambiguities in Stevenson's work, Low
frequency electromagnetic scattering by two-dimensional bodies has been
studied by Van Bladel (1963).

The extension of the method of Kleinman (1965b) to three-dimensional
electromagnetic problems has been achieved by Asvestas (1968), who has derived
two coupled integral equations for the scattered field vectors. The kernels
of the equations are dyadic functions of position and can be derived from the

solutions of standard interior and exterior potential problems. Once these



dyadic kernels are determined for a particular surface geometry, the integral
equations can be solved by iteration, when k is sufficiently small, Alternatively,
the scattered fields in the integral equations may be expanded in a power series

of the wave number k and recursion formulas may be found for the unknown

coefficients by equating equal powers of k.

2.2 Rayleigh Scattering

In keeping with Rayleigh's original work, some authors restrict the
Rayleigh region to the wavelength range in which the Rayleigh series is not only
convergent but is well approximated by its first term. To this order, the
backscattering cross section of a thin, elongated, perfectly conducting body of
revolution on which a plane electromagnetic wave is axially incident is

o=2ty2 (2.1)
where V is the volume of the body. As the body is made less elongated, the
approximation (2. 1) becomes worse; however, it can be improved somewhat
by multiplying the right-hand side of (2. 1) by a shape factor G2 (Siegel 1959).

With this modification, (2.1) becomes

o=$k4V2G2 , (2.2
where G can be written as
G=1+ -+ ¥ (2.3)

and y is a ratio of characteristic dimensions (characteristic length to character-
istic width) of the scatterer. For a long thin body, y-» oo and therefore G#s 1.

Approximate values of G for various scattering shapes are given by Siegel (1959).



Formula (2. 2) is heuristic in nature, and it is based on the observation
that the details of the structure of the body cannot be revealed when the wave-
length is large compared to the dimensions of the body. What we observe
depends more on the size of the body than on its shape, so that the knowledge
of the volume of the scatterer modified by a rough indication of its shape
should yield a reasonable approximation to the Rayleigh cross section, Thus,
the Rayleigh-Siegel formula (2. 2) suffers from two limitations: it only predicts
the monostatic cross section for axial incidence, and it is not always very
accurate. For these reasons, we have developed alternative approaches in
this report, that allow us to accurately estimate the Rayleigh cross section
of any body of revolution for axial incidence (Appendix B), and both the mono-
static and bistatic Rayleigh cross sections of round-backed cones (Appendix A)
and spheroids (section 4-2) for any direction and polarization of the incident
plane wave.

These approaches are based on the fact that the low-frequency far
scattered field can be approximated by a series of radiating multipoles (electric
and magnetic dipoles, electric and magnetic quadrupoles, etc) located at the
scatterer; a precise formulation is presented in section B. 4 of Appendix B.

In the Rayleigh limit, the dominant contribution arises from the dipoles; the
electric and magnetic dipole contributions are of the same order of magnitude
for a metal body, and become nearly equal for a long thin body of revolution
and axial incidence.

Thus, the main effort must consist in deriving the electric and magnetic
dipoles for a given body; these are functions of the shape of the scatterer but
not of the incident field. Once the dipoles are known, it is a simple matter
to derive the Rayleigh far field in any given direction, for any preassigned

direction and polarization of the incident plane wave.



It should be noted that the dipole terms give a good approximation to the
far field scattered by a body which is small compared to the wavelength, but
do not accurately describe the field near the body: the relative magnitude of
terms in the multipole expansion varies with the distance of the observer

from the scatterer.

2.3 Dipole Moments

We wish to explore the dipole moments associated with the low frequency
scattering of a plane electromagnetic wave by a perfectly conducting body of
revolution. Particular attention will be devoted to axial incidence on a long
thin body.

Given an electric dipole of moment P, the electric Hertz vector is

ﬂ(e) .p e1kr

- e Or

s (2.4)

whereas for a magnetic dipole of moment M the magnetic Hertz vector is

A -y 9113 (2.5)
T M. .

The quantity €_ is the permittivity (dielectric constant) of free space, and

P and M are, (())f course, independent of r. These definitions of electric
and magnetic dipole moments are the standard ones (see, for example,
Bowman et al, 1969), but differ by factors k/(41r€0) and k/(4n) respectively
from those employed by Kleinman (1965a).

The electric and magnetic fields resulting from (2.4) and (2.5) are:



ikr ikr

e e
E=% Y, -P41reor + ikZ V), 1_\_44” , (2. 6)
1kr ikr
H = -ikY V) P4”‘0 + % *Mm . (2.7)

Now if a is any constant vector,

eikr eikr 1 elkrt‘
Y g i e (el b : 2.9.

from which the precise form of the magnetic dipole contribution to the electric

field, and the electric dipole contribution to the magnetic field, follow. More-

over:
ikr
" Yla = V E-"") (e/\a +
r
N A E T
r I_2 T AlTAZ)

odik L 3 3k k|e &
r 2 3 2 r r *
r r T
Henee eikr 1 A A ik A
2 VA _a_—:-r—'al :5 3 r,\(r/@)+2§} -'; 394(1\2)"'22. -
eikr
& r (r )] Bl (2.9)
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from which the electric dipole contribution to the electric field, and the

magnetic dipole contribution to the magnetic field, follow immediately.

In the far field ( r-» @), expressions (2.6) and (2.7) become

ikr .3 -

e k )1 |Ia A ] _ A

Evaa < [Ta (BAT) Z (FaM)} , (2.10)
ikr 3 [
e k)l 4 [A A]

Hw kr Y 4 1€0 (raP) + Z [ra(M, 1) s (2.11)

whereas the dominant terms EO and H, in the near field and at low frequencies

are
A
Eo = 4ze 3 ’ (2.12)
0 T
3 b, wrem
I-_IO = 4—1; r3 4 (20 13)

we point out the decoupling of the electric and magnetic near fields: E

=0
depends on P only, and LIO on M only.
If we use the relation
A
r.p 1 A A
V( 3 )=— =3 31'/\(1'/\ P)+2P},
r r
then (2. 12) and (2. 13) may be rewritten as
A
1 r.P
Ev=-Zze. "\ 2 - (2.14
0 T
H =-—v Py
Ho* " %4r 5| (2.15)
r

11



Therefore, in a scattering problem in which P and M are generated by
the incidence of a particular field on a particular scatterer, P and M can
be obtained from the solutions of certain (static) potential problems for the

geometry in question,

2.4 Arbitrary Plane Wave Incidence on an Arbitrary Scatterer

Let us consider the incident plane wave

§1=(21§+m19+n /z\)elk(£x+my+nz) , (2. 16)

1

. oy
_}_{1=Y(£2?c+m2fr+n22)elk( x+my+nz), (2.17

where

with ?1=£ ] %+ ml'y‘r + nlg, etc. The !Zi, m,, and ni(i=1, 2,3) are direction cosines.

To the first order at low frequencies

E~§0-11x+mly+n1z s (

which can be written as

i 2.19)
EO V(11x+m1y+nlz). (

12



A A
Since this is independent of £ and 12, 11 , my and n, can be chosen inde-

pendently of one another. It follows that the corresponding scattered electric

vector can be written as

s s
Eg=vh® , (2. 20)
with o
5 _ -n-1 (1.1
@ =Y L a Pn(cose)cos¢+
n=1
(2) .1 . (3)..0
tm oa’ Pn(cos 6) sin @ + n, a Pn(cos 0)p, (2.21)
(1 (2 (3) . AA A
where a’,a and a = are independent of £ , £ 1 and 12 and can be obtained

from the solutions of three separate and elementary potential problems for the

body in question. In terms of the a(])

3

n
_ (DA (2) A (3) A
2--41r€0(£1a1 x+mla1 y+n1a1 z) . (2. 22)
Similarly
i i A A
HH,= Y(£2x+m2y+n2%) =YV (12x+m2y+n2z) (2.23)

and the corresponding scattered magnetic vector is

Hy=YVy°, (2.24)
with © 1
s -n-1 1 2)_1
Y= nglr £,b P (cos 6) cos f + mzbfl )Pn(cos 6)sin § +
(3)..0
+ nzbn Pn(cos 0) . (2. 25)

13



The solutions of three more separate but elementary potential preblems

serve to determine the bg) , in terms of which
- (1) (2) A (3 A
M= -47Y(L,by 4+ mb ” §+u,b” 2), (2. 26)

In general, therefore, six separate potential problems must be solved
to completely determine P and M. However, if the body is one of revolution

about the z axis (say), then

e a(l) , b2 = (D ' (2.27)
n n n n

and the number of potential problems is reduced to four.

2.5 Scattered Fields
Knowing P and M, the scattered field can be obtained from Egs. (2.6)

and (2.7). In the far zone the results simplify to the forms shown in Egs.
(2. 10) and (2.11).
The back scattered field is of particular interest. This can be obtained by

A
putting /1! = - £ , and the direct and cross polarized components are then

s A eikr
E 'llfs-? == 51 (2.28)
g A eikr
E-fzé__?=—1&'8_,., (2.29)

respectively, where, from Egs. (2.10) and (2.11):

E L 2y-zm. 1 (2. 30)
Sll- 4r 60(2. Ut TP g )

—
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3

k” J1 A

= — - . M ‘2
ym , (P ?2)+z(1\_4

S

A . (2.31)

1

Substituting the expressions for P and M given by Eqs. (2.22) and (2. 26)

respectively, we have

32,0, 2@ 20 201 _ 202 2 (3
S“--k 11 1 +m1a1 +n1a1 -£2b1 -mzb1 -n2b1 s
(2.32)
5, =34, @)+ mmo @4 5 4 0 n (o )
(2.33)

and in terms of Su and S) , the direct and cross polarized components of the

back scattering cross section are

W= o S" , g = — S.L . (2.34)

If the body is one of revolution about the z axis (so that Eq. (2.27) obtains),

the expressions for S” and S ) reduce to

N SR R A BN, (239
8, = K n.n, a(ll) - a(ls) + b(ll) - b(13) . (2.36)

Observe that only the direction cosines n, and n, enter into these equations,
If, therefore, the 1ncldent plane wave has either E perpendicular to g

(so that n, = 0) or _I-_I perpendicular to z (so that n, = 0 , S.L= 0. This is

15



a general result, true at all frequencies. Note also that (i) if n, = O:

1
_ 3] () (1) 2 (3)
S" = -k a (l-ng) b1 -n, b1 , (2.3
so that a(13) does not appear; whereas (ii) if n, = 0:
_ .3 )0 2 () 2 (3
S" = +k b1 (1- nl) a1 —n1 3.1 , (2.38)
(3)
so that b1 does not appear.
In the particular case of nose-on incidence (n1=n2=0) )
_.3,(1) (1)
S" = =k (a1 b1 ), (2.39)

and this is the situation under which the empirical formula (2. 2) of Siegel (1959)

is relevant.
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CHAPTER II

DIPOLE MOMENTS FOR PLASMA-COATED BODIES

3.1 General Considerations

In order to permit the detailed analysis of the low-frequency cross
section of the re-entry vehicle, the plasma sheath and the near wake are
idealized through the assumption that both can be represented by a homo-
geneous, isotropic material having permeability u4 equal to the free-space
value o and permittivity € given by

2
W

0 l_W(bJ‘l'i'I/c) ) (3.1)

where wp is the plasma frequency, v, is the collision frequency, and

W= k”'éouo' is the frequency of the incident field. In the following section 3.2
we investigate the low-frequency expansions of the electromagnetic field for a

lossless plasma (vc = 0), and for a lossy plasma when either vc> >Ww or yc< <w.

In the case vc> >, the determination of the dipole moments Pand M is reduced
to the solution of two standard potential problems, as shown in section 3.3. In
the other two cases (v c< <w and , in particular, v, = 0), the determination

of Pis still easy, but some difficulties arise in the determination of M: they

are examined in detail for a plasma-coated sphere, in section 3. 4.

3.2 Discugsion of the Low-Frequency Expansions

The geometry of the problem is illustrated in Fig. 3-1. A perfectly con-
ducting re-entry vehicle with surface B is embedded in a plasma with outer
surface C. The volume of the plasma is indicated by V(i) , Whereas V(e) is
the free-space volume surrounding C. We denote the total fields interior and
exterior to the plasma coating by _Ig(i), Ll_(i) and E(e), E(e), respectively, We

shall discuss three cases: lossless plasma coating and lossy coating where
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the collision frequency is either much smaller or much larger than the operating

frequency.

Case 1: Lossless Coating

Consider the case when the plasma coating is homogeneous, isotropic,
overdense, with negligible collision frequency such that it may be characterized
by an equivalent dispersive permittivity

2
W

e=e0(1-—§) , (3.2)
W

obtained by setting vc=0 in equation (3.1). The equations governing the

propagation phenomena then take the form:

, 2
AR -iwe, (1- 2p) E
v (3.3)

on B, (3.4)

’ on C, (3.5)
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where ﬁ is the unit normal to the surface considered (B or C).

Now we assume that all field quantities' may be expanded in powers of w

in the form
Em= i w)n E(i) , ete., (3.6)
£ =n

n=0

we substitute these expansions in Maxwell's equations (3.3) and in the boundary

conditions (3.4) and (3.5), and equate like powers of w to obtain:

(5} I ) A
VAE EHH
(i)_ (i) 2_(i) (i) _
VAK€ B 60 a1 Bp 7O $ a1
). (e '
VAE, = HyHpy
(e)_ (e)
VAl T S8 /
IA).A E(i)= 0
A —t(l‘) B, (3.8)
ne LInl =0
ﬁh(E(e)'E_!(li)) - 0 w
2 A (H(e)-fl_:li)) =0
5. @l - o s e (3.9
e) @ 2_@),._
’ﬁ‘ (_E_n -_E_n -wp_En_’_z)—o:
ﬁ' _E_(S)= )
A, E(ll) -0 J

In the above formulas, coefficients with negative subscripts are identically zero.
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If we concern ourselves only with the problem of finding E(()e) and I_{(()e),

from which we can determine the Rayleigh term in the far field, things are

much simplified. The relevant equations are:

E(()i)= 0, uoﬂ_g)= VA E(li) )
VA E(()i)= - 60‘012) E(li) ,
VA E(()e)= 0,
VAR <0, (3. 10)
ﬁ . E(()i)= 0, on B,
ﬁ/\ E_(()e) =0, 3
ﬁ,\(g(()e)-ﬂg)) =0, > onC .
R 1 -1g) =0 -
Obviously E(()e) is exactly the same as it would be had C been a perfectly con-

ducting boundary, that is

(e) _ i
E, =VO+E, . (3.11)
where Et) is the w=0 value of the incident electric field, and
vz@ =0, inv®
AAVE=-A4E, ., oncC, (3.12)

d regular at infinity .
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To obtain the magnetic field terms, however, is a bit more complicated.
If E(ll)= 0, it follows that Eg) also vanishes and this fact in turn may be used to

show that both normal and tangential components of Llée) vanish on C. This

implies that E(()e) vanishes in V(e), which is inconsistent with the fact that I_{(()e)

consists of a non-zero contribution from the incident field as well as a regular
(i)

part. One suspects, therefore, that E.° #0; however, it is easily shown that

1
( Vz-wiuoeo)g_(li)= 0, in V(i) ?
B aEd-0, onB, ) (3. 13)
'ﬁ-g(li)=0, onC,J

and E(li) = 0 is certainly a solution of this homogeneous problem. The exis-
tence of non-trivial solutions has to be investigated, and if there are non-trivial
solutions it is of interest to know whether the spectrum is continuous or discrete.
We remark that a discrete spectrum would be of little interest because the
frequencies would be critical functions of the geometry and even a slight loss

(or inhomogeneity) in the plasma could affect the results. Although it is

unlikely that any members of a discrete spectrum would be excited, there

could sometimes occur a sharp variation in the observed scattering from the
body, at those altitudes where the plasma properties would lead to the excitation
of a member of a discrete spectrum. A study of problem (3.13) for a plasma-

coated sphere is performed in section 3. 4.

Case 2;: Lossy Coating with w<< v c

In this case the permittivity within the plasma is written in the form (3. 1).
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Maxwell's equations are now:

V/\E.(i)=iw uoﬂm ,
. 2
@_ . [ 1Wp ] (i)
VAH "= -iwe, |1=- =—=——=| E""
N= 0 (v Hiw) (3. 14)
VAE(e)=iWOE(e) ,
van'®- -iweog(e) ,
and the boundary conditions are
n AE(i) =0
ﬁ,\ﬂﬁ) 2o on B, (3. 15)
\
4, (E(e)_E(l)) -0
ﬁ,\(g(e) _Ii(i)) 0
> onC . (3.16)
A @w®-a%-=o0
(e) iwg i)
ﬁ'{E [ ] £

As done previously (see eq. (3.6) ), we assume power series expansions
of all field quantities in powers of w ,substituteinthe above relations (3. 14) -
(3. 16), equate like powers of w and obtain finally:
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¢ ¢ > (3.17)

ﬁ,\gn =0
on B, (3.18)

>on C . (3.19)

=22

'(H -H )=0:
-n -m

(e)_.(e) @, @O | 2_3),._
' (vcE-n-l En-2 —vcEn-l+En-2 * waO )= O_J

s>

(()e) and E(()e)

(which necessitates consideration of the interior fields as well), we have that

Again concerning ourselves only with the problem of finding E

VAE) 0.

(i)_, €% (i)
VAl =+ v, Ey
VAE(()e) =0 ,

VAE(()G) =0 ,
/I\IA E(()l) =0 :

) on B, (3.20)
ﬁt LI‘O =0

\
A (Eée)-gg)k 0
B a g -uh- 0 ) on C
A (e) (), _
n- (l{fo -_Iio )=0
4. E(()1) =0 J
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It may be shown that again E(()l)= 0, which simplifies the problem immensely
(e)

by reducing the case to that of a dielectric coating. Also, EO

as it would be if the coating were perfectly conducting and may be found by

(e)
H,

is exactly the same as it would be if the coating were not there and may be found

is exactly the same
solving a standard Dirichlet potential problem for the surface C, whereas

as the solution of a standard Neumann potential problem for the surface B.

Detailed proofs of these statements are given in section 3. 3.

Case 3: Lossy Coating with v, Kw.

The permittivity in the plasma, the Maxwell equations and the boundary
conditions are given by the same expressions considered in Case 2, However,
an expansion in w about w = 0 is not possible, since the equivalent permittivity

has a pole at w = -ivc. We may then assume that
v =dw, (3.21)
where 6 is small compared to unity, and introduce the complex plasma frequency

R (3. 22)

W
P ViHe

The analysis developed in Case 1 is directly applicable to this case, by replacing

w with® .
P p

3.3 Rayleigh Scattering by a Coated Conductor

In this section we consider the Rayleigh scattering of a plane electromagnetic
wave by a perfectly conducting finite three-dimensional object coated with a homo-
geneous, isotropic, non-dispersive material of constitutive parameters e
(permittivity), u (permeability ) and o (conductivity). Geometry and symbols
have been defined in the previous section. The only limitations on the shapes of the
outer surfaces B of the object and C of the coating is that they be sufficiently
smooth for the use of Green's theorem. The incident plane wave propagates in

the direction {y\ and its electric field is linearly polarized in the direction Q

2
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so that
5 ik3~ T

k i A A
s _}_Il(g)-YaAae = . (3.23)

E (1) SR

i and V(e),

The positive unit normals /1\1 on B and C are directed into V(
respectively (see Fig. 3-2).
The particular case we are interested in, namely that of a lossy plasma
coating with v, >>W, is obtained from the results of this section by letting
2

W
2
e-)co, Ky o=-»+ v € - (3.24)

We must solve Maxwell's equations

VAE (r) ik, B (1) (o)

. ] rinVv (3. 25)
Vp H(x) = -iwe  E (1)
and
VA g(l) (r) = iwu I_I(l) M)
rin V', (3. 26)

VA g(i) (r) = (-iwe+oa) E(i) (r)

subject to the boundary conditions
{‘\1,\ E (i) (x) = 0
(i) ronB , (3.27)
R85 (x)=0
the continuity conditions

iAo+ V) 0 )

. [60E8(£)+€0 Ei(g_)— (6 +%o) _E(i)(g)] =0 }
. ronC,
i o rr -Hw] - o

fe g B @+ #(r) -] - 0 J (3.28)
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FIG. 3-2: Geometry for the Derivations of Section 3. 3.
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and the Silver-Miiller radiation condition

lim EA[VAES(E)] + ikr Es (r) =0,

T3 (3.29)
lim y_,\[VALIS(_I;)] + ikr I_Is(g) = 0.
-»00
The total field is E.(i)(g), _Ii(i)( r) for r in V(i), and
(), \ i s ,
E"(r)=E(r)+E(r) , ©
(©) forrinV . (3. 30)

1r) = B(n) + B D) |

In order to find a low frequency solution in the near field, we assume that
all field components have convergent power series representations of the type

(3.6). In particular, for the incident fields,

t

where k=W ‘/ 60 Hy - By substituting these series in (3.25) - (3.28) and by

equating equal powers of w, we obtain a set of equations for each power. In

the Rayleigh limit, we are interested only in g% , gg , _E_g) and _Ij((;), which
must satisfy the equations:
S
VA E (_IL) =
0 Iin V(e) , (3.32)
VA Hy(£)=0
VA E_:g) (r)=0 (i)
rinv: , (3.33)
(i, \_ (1)
VAH, (r) = ¢ E;(x)
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Mo =0

) ron B , (3.34)
2. Hy(x) =0
A [Eg(g) +3 - ES)(E)]= 0 )
A, Eg)(.ll) -0
$ ronC. (3.35)

P [HS (r) + YapR —5§)<z>]= 0

>

n. [uOI_Ig(g)+u0 YQAQ - ugf)i)(;_)] =0 /

In addition, the fact that all the field quantities satisfy Maxwell's equations
means that these quantities have zero divergence, which in turn implies

that all terms in a low frequency expansion are also divergence free. In

particular,

S —

v By (o) =0 ()
rinV , (3.36)
Ve H (1) =0
()

V-E"(r)=0 :

0 vt (3.37)
v. B (p)=0

Firstly, consider the problem of finding E((;)(g_). The first of (3. 33)
(i)

implies that E 0

(r) is the gradient of a scalar function, i.e. that

Eg)(g) = Vﬁ(i)(g), (3.38)
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and from (3.37):

2 0 :
P3N0, rinv? (3.39)
The second continuity condition (3. 35) is actually a boundary condition for

(i)
E

Ey- namely,

3 {)m(g)

dn =0 (3.40)

ronC

Furthermore, the boundary condition (3. 34) states that

v -0 ; (3. 41)
ronB

it can be shown that this is equivalent to the condition

(ﬁ(i)(y_) = A, TonB, (3.42)

where A is an arbitrary constant. Conditions (3.39) - (3.42) may be used to

(i)

' by reasoning in the following

show that FI)( r) is constant throughout V
(i)

manner. The divergence theorem applied to the function V §(1)( r)inV

fﬁ v ds-fa. v§%x) ds=f V% av.
c B v

(3.43)

states that
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The sign difference on the left-hand side of (3. 43) results from the choice

of normal direction (ﬁ into V(l) from B but out of V(l) from C). The facts

that @(l)( r) is a potential function and has vanishing normal derivative on

C imply that

fﬁ. vFi)(g) ds=0 . (3.44)
B

Now we again employ the divergence theorem applied to the function

i(i)(g_) V@i)(;'_) in V(i), obtaining

f 3. 39 v as -f A Y v as- f [(vyi))z@(i)vz@(i)] av .
c B

V(i)
(3. 45)
But (3. 40) implies that

fﬁ. Fi)v@i)ds:o ,
C

whereas (3.42) and (3. 44) imply that

fﬁ. 3 g ds=Af‘ﬁ- v ds-o, (3. 46)
B

B

2 .
and (3. 39) states that V §(1)= 0. Hence equation (3. 45) reduces to

f(i) wPHZav-o. (3.47)
v
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From this we conclude that
VQ(I)(;'_) =0, rin V(i) (3.48)

and therefore from (3. 38):

E)Nr)=0, rin v (3. 49)

A similar result was obtained by Van Bladel (1964) under somewhat different
conditions.

Turning now to the problem of finding gg (r), we see that with the
interior electric field identically zero, this reduces to the problem of finding
the Rayleigh term of the electric field exterior to a perfectly conducting surface

C. Explicitly,

B =vdin) , (3.50)

where QS( r) is an exterior potential function satisfying the boundary condition

@s( r) +4. r = constant, r on C. (3.51)

The ambiguity introduced by the arbitrary constant in (3.51) is removed with

the additional condition (for details see Kleinman, 1965¢c):

fﬁ.vﬁs(gdsw : (3.52)

C

The fact that Eg) = 0 also simplifies the problem of determining the

magnetic field terms. Equations (3. 32) and (3. 36) imply that

H (1) = vy°(r) (3.53)

s
0
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where ws( r) is a regular exterior potential function. Equations (3.33) and"

(3.37) imply that gg‘)

but it is convenient to exhibit explicitly a term corresponding to the incident

(r) is also the gradient of a regular potential function,

field, viz.,

And o), rinv® . (3.54)

This is legitimate since 2 Ag. - r is a regular potential function in V(l).
The boundary conditions become
(i)
A A
8y .. Yn-oa

A
on A?

, ronB, (3.55)

and the continuity conditions

BV [ws( r) - w(i)(z)]= 0
r on C.
2 .{v EJO‘I’S(E) -uw(i)(E)]+ (kg =4 Y&‘Aﬁ} =0
(3.56)
This constitutes a well posed potential problem which cannot be solved in
general, but can be solved for particular choices of B and C.
In the special case when u = Ho»
x//S( r) and w(i)( r) have continuous normal as well as tangential derivatives

the conditions (3.56) require that

at C. This means that it is unnecessary to consider separately the two regions

(e) (i)

of space V' and V'". Thatis,

_}_I(é)(g) Y83+ vy (n), rinv®

)

(3.57)
g%(ghvw(g) , ginv(e) ,
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where ¥ (r) is a regular potential function exterior to B,

v (r)=0, rin V(i) or V(e) , (3.59)

and satisfies the boundary condition

Wi __yv4.4

,\'z} , ron B. (3.59)
But this is exactly the problem of finding the Rayleigh term of the magnetic
field exterior to a perfectly conducting surface B.

In conclusion, we have shown that the problem of finding the Rayleigh term
for the electric field when a coated object is illuminated by a plane wave is
completely solved for points in the coating, i.e., Eg)( g_) =0, and is the same
as that posed if the coating were perfectly conducting for points exterior to the
coating. Furthermore the determination of the Rayleigh term in the magnetic
field has been formulated as a potential problem which takes into account both
object and coating; however, in the special case when the permeability of the
coating is the same as that of free space, the effects of the coating disappear and

the field exterior to the body is precisely that which would be found were the

coating completely absent.

3.4 The Eigenvalue Problem for the Coated Sphere

In the following we investigate the existence of solutions of the problem
(3.13) for the particular case of a concentric spherical system. The perfectly
conducting sphere of surface B (radius r =b) is surrounded by a plasma layer
of constant thickness ( ¢ - b) and outer surface C (radius r = c); (r, 6, §) are
spherical polar coordinates with origin at the center of the sphere. The

boundary conditions are

G-E(li)=6- §(11)=0, for r = b,
(3.60)
?-E(li)=0, for r=c.
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Following the method of Hansen and Stratton, let us consider first the

vector wave function
sin oP (cos 0)

z (kr) P M cos 6) R ) 6‘ - zn(kr)-—n——- sin ¢ ¢,

M-e (z)- 9

mn

0
(3.61)

where m and n are integers, z is any spherical Bessel or Hankel

h( D or (2) ), and

function (i.e., Jpr Yo By

~
k=-iw € (3.62)

p VSoko -
Observe that the boundary condition at r = ¢ is automatically satisfied when
Efl)is any linear combination of wavefunctions (3.61). The boundary conditions

at r = b are satisfied by any wavefunction of the type

i (k) »
M G) - M (') . (3.63)
imn n m(kb) omn n
Thus, an admissible solution is
[00) n 4
j. (kb)
ORI IS, -
n=1 m=0 o 8 (kb) omn
(3.64)

(e, 0)

where the coefficients A mn 2F€ arbitrary; the spectrum of this solution is

continuous.
There is also a discrete spectrum of solutions based on the _1\_/[_e
mn °

Note that o

KD =220, (p=Fr) , (3. 65)
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has a zeroat p = -i. Thus M h(ll)) is a solution if

(
e
oml

oMo ° 1. (3.66)

Similarly, M (h(

mn
0
All of these constitute solutions, each for a single discrete (real positive)

bw ,/€
p

nl)) has a negative pure imaginary zero for any odd n .

value of wp. Therefore, we have proved that the M-e originate both a

. . . mn
continuous and discrete spectrum of solutions. 0

Let us now consider the wavefunctions

n(n+1) N, m cos A
= +
N (z)==% zn(kr) P (cos 6) sinm¢r

e kr
oo

/9 p™ (cos )
cos

_1_[~ ]__n____ 4
+’l‘<'r krzn(kr) 50 ain m@ 6

+1

m / Pm(cos 6)
- = [~ N ] n sin A

N L
N [kr z (kr) 8 cos” po , (3.67)

)
where the prime indicates the derivative with respect to the argument kr.
If n =0 (implying m = 0) the radial component vanishes. Moreover,
BPO

P0 (cos 8) =1, so that 9 = 0. Hence N = 0 and the solution is null.
0 06 —eo 0
0

The radial component also vanishes for m = 0, and the odd function

l\-100n=0 ’

so that here again we have a null function. Since we cannot use a linear

combination of two N e mn based on different radial functions to cancel both
0
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the radial and tangential components at r =cand r = b respectively, we

conclude that there is no continuous spectrum based on the N o
mn
Similarly, no discrete spectrum exists, since the use of a lingar combination
A A
of radial functions to cancel the 6 and @ componentsat r = b does not enable
the ? component to be cancelled at r = ¢, for discrete values of wp.

From relation (3.64) and

wu, @-kN @) -f (3.68)

n
mn mn
(o) : o

it follows that (see the second of relations (3. 10)):

(H_ 1 ()
LIO —“0 V/\ .E.:l
(01) n N
j_('kb)
= - iwa Z ZAglel;IO) He (jn) = r;l) ~ Ee (ht\l))
= & o hn (kb) o
(3.69)
(e,0)

The coefficients A are determined as follows. The known 6 and f} depen-

mn

dence ofy; in V(e) is used to choose the m and the n for which Amn is non-

zero; all other coefficients are equal to zero. The remaining non-zero

(e)

coefficient is found by using the fact that LIS in V'’ is determinable from a

0
regular potential. Specifically, 4 g:) =Y 9 , and the only non-zero coefficient
is A((l))1 , which has the value:

v 2NV (1), W~
() 3 (kb)~ ke h1 ('kb)

Alo)_ : : . (3.70)
11 9 prsin ['13 (c-b)] +%b cos [’l\c' (c-b)]}

In conclusion we have been able to prove that, at least in the particular
case of spherical symmetry, the system (3.13) has a non-trivial solution. It

is therefore intuitive that the same result should be arrived at in the general
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case, i.e. for any shapes of B and C, but we have not derived such general
proof. Also, it should be pointed out that the success of the method employed
in this section is due to the particularly simple geometry of the system; in
fact, the method would fail if spherical symmetry were not present (e.g, when

B and C are two confocal spheroids).
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CHAPTER IV
DIPOLE MOMENTS FOR SPECIFIC GEOMETRIES

4.1 General Considerations

It has been shown in the previous chapter that when the collision frequency
of the plasma coating is large compared with the operating frequency (vc>> W),
the Rayleigh scattered field near the body can be obtained by solving two potential
problems for perfect conductors. Specifically, the coefficients a(lj)(j =1,2,3)
which appear in the expression (2.22) of the electric dipole moment Pare the
same that would obtain if the outer surface of the plasma coating were perfectly
conducting.  Similarly, the coefficients b(lj)

(2. 26) of the magnetic dipole moment M are the same that would obtain if only

which appear in the expression

the bare conducting body were present (no plasma coating). Thus, in the case
vc> > w the problem of finding the scattered field in the Rayleigh limit is reduced

to the determination of the magnetic dipole moment coefficients b(lj) for the bare

(1]) for a perfectly

conducting scatterer whose surface coincides with the outer surface of the plasma

metallic body and of the electric dipole moment coefficients a

coating. It is the purpose of this chapter to present analytic and/ or numerical
expressions of these dipole coefficients for a variety of scattering shapes. Since
we limit our considerations to bodies of revolution about the z axis, only the

1 @& Q) 3)

four dipole coefficients a, ,a , b and b1 are independent (see
relations (2. 27)).

The only previously known results are for ellipsoids (see, for example,
Stevenson (1953b) and references therein). These results are summarized in
section 4. 2 for the particular case of prolate spheroids. Section 4.3 contains
the numerical values of dipole moment coefficients for round-backed cones; the
detailed derivation is presented in Appendix A. For more complicated cone-

like shapes, such as the flat-base cone, the cone-sphere, the ‘sphere-cone-sphere

and the flat-base cone with a rounded nose, which are not easily subjected to
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analytical treatment, the numerical approach developed in Appendix B has
been applied, and the results obtained are exhibited in section 4. 4.

The limitations of the Rayleigh-Siegel formula (2. 2) for bodies that are
not thin have been touched upon in section 2.2 and are discussed again in
section B.6. An alternate approach, which is especially useful when the
scatterer is nearly spherical, is developed in section 4.5. It is there shown
that the low-frequency scattered far field can be written as the sum of three
terms; the first term is the field that would be scattered by the smallest
sphere containing the body, whereas the other two terms are written as
integrals over the volume exterior to the scatterer but interior to the smallest
sphere surrounding it.

4,2 Results for Prolate Spheroids

For a perfectly conducting prolate spheroid of interfocal distance 2d,
2
semi-major axis d§ and semi-minor axis dVY § -1, having the z-axis as
axis of symmetry, the dipole moments P and M are immediately obtained

from the results of Senior and Knott (1967, pp. 75 et seq.):

0

1
P_(8) P. (§)
_Pz-%reod3 (l X+ m y) -1T--%nl’z\ t , (4.1)
QI(E) Q (&)
1! 0!
P. (§) P. (¥
u--Lyd’ e %+ m.f) < -2t —=— 1, (4.2)
Q1 (&) Q1 (&)

where (21, m,, nl) and (12, m,,
electric and magnetic fields (see Eqs. (2.16) and (2.17)), and the prime denotes

nz) are the direction cosines of the incident

differentiation with respect to §£. Since



0! 1
JCERAC

o,.. 1 ’
Ql(S) Ql(i‘;‘)

it follows by comparison of (4. 1) and (4. 2) with (2. 22) and (2. 26) that

1 0
M (2 2.3 59 @ 1350
a = =5d 54—, a - =-3d 5,
Q; ® Q, ®
Pl (8) pl(g)
(0@ 250 (1Y
S - B W 3

(4.3)

(4.4

The analogous results for an oblate spheroid can be obtained by replacing d and &

by -id and i€, respectively.

(3 (3)
1 and b1
all direction cosines (they are functions of £ and d only); also,

For any prolate or oblate spheroid, the a

_ 1. ()
by = -32;

but a(13 )/a(ll) varies drastically with the length-to-width ratio.

We point out the following limiting cases:

(i) the sphere (£ —» 0 ; d —» 0; d& —» a, the radius):

1 1! 0

P (8) 33 P® 4o P 3
P SR T U D
Q,(®) Q, (8 Q,
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and therefore

2 3
a(11)= a( 1)= a(l) = -a3 , b(ll) = b(lz) (13) -é-aB ; (4.7)
(ii) the spindle (E=1+ 6; 6 —» 0):
0
P,(® P (® PO
————N 26, ——-n)26 F 0 M—lna , (4. 8)
Q (E) Q (E) Ql (&)
and therefore
all= a2l oL o, 22 (g (4.9)
(iii) the disk ( £—» 0 ; a = disk radius)
1,, 1},
PLGO , P B
—].———N';,—]."——NO, T"‘NO, (4.10)
Q1 (i8) Q1 (i&) Q1(1€)
and therefore
3 3
(1_ () 4a” (3)_ (1 _ (2)_ (3) _2a_
2, —al—-31, 2, =0, b1 -bl—O, b e (4.11)

For intermediate values of £, corresponding to prolate spheroids with

different length-to-width ratios, some values of the Legendre functions ratios
-3 (1)

are listed in Table 4-1. Of more direct use is Table 4-2, in which (d§) a,

(3) / (1)
1 |
normalized to the volume V of the body, are plotted as functions of the length-

and a (1)/ () are given. The dipole moment coefficients,

to-width ratio for oblate and prolate spheroids in Fig. 4-1. Observe that

v =§zd3s(52+1), v g- 4k (22 -1) . (4.12)

oblate
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Ratios of Legendre Functions With Argument £.

TABLE 4-1

§ length/width Pi /Qi Pi]Q}' P? /ch)

2 1.155 -8.5208 4.6301 20. 2812
1.2 1.809 -0.6543 0. 4426 2.7353
1.1 2. 400 -0.2691 0.2023 1.6308
1.05 3.281 -0.1192 0.09808 1.1062
1.025 4,556 -0.05540  0.04880 0.8191
1.01 7.124 -0.02101  0.01963 0.6007
1.0075 8.211 -0.01560  0.01476 0.5502
1.005 10.040 -0.01028  0.00988 0.5179

TABLE 4-2

Dipole Moment Coefficients for Prolate Spheroids.

£ (dg) -3 a‘(1 1) a(13) a(l 1) b(1 1) /a(1 1)
2 -0.7101 1.1901 -0.5434
1.2 -0.2524 2.0903 -0.6764
1.1 -0.1348 3.0299 -0.7519
1.05 -0.0687 4.6390 -0. 8226
1.025 -0.0343 7.3926 -0. 8809
1.01 -0.0136 14. 296 ~0.9343
1.0075 -0.0102 17.635 -0.9462
1.005 -0.0068 25.190 -0.9611
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4.3 Results for Round-backed Cones

The scattering body is a perfectly conducting circular cone with semi-
aperture angle ( 7 - 60) , truncated by a spherical surface of radius d whose

center is at the tip of the cone. The four distinct dipole moment coefficients

a(11)= a(lz) , a(13), b(ll) = b(lz) and b(13 ) have been determined in Appendix A by
solving four distinct potential problems. The numerical values of the nor-
malized coefficients are reproduced in Table 4-3, for narrow cones. More

extensive results are to be found in Table A-1.

TABLE 4-3
Dipole Moment Coefficients for Round-Backed Cones

N v A Vv
2.5 0.0003 0.0144 0.0003 0.0001
5.0 0.0014 0.0210 0.0011 0.0007
7.5 0.0035 0.0274 0.0025 0.0017
10.0 0.0066 0.0332 0.0041 0.0033
12.5 0.0108 0.0383 0.0062 0.0054
15.0 0.0163 0.0438 0.0084 0.0082
17.5 0.0234 0.0491 0.0111 0.0117
20.0 0.0318 0.0545 0.0139 0.0159

It should be noted that the result (4.5), which has been rigorously proven
for all spheroids, is also valid for all round-backed cones, as seen from Tables
4-3 and A-1. Therefore, we advance the hypothesis (which we put to use in

Chapter V) that relation (4.5) is valid for all bodies of revolution.
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The exact dipole moment coefficients (normalized to the volume V
of the scatterer) for a round-backed cone are compared with those of a
spheroid of the same length-to-width ratio in Fig. 4-2. Observe that for

a round-backed cone of semi-aperture angle (7 - 90):

V=

w o

71+ cos ) & . (4.19)

For nose-on incidence, the back scattering cross section is determined

(11)and b(ll)

equation (2.39). According to Siegel's formula (2. 2),

by a alone; specifically, the far-field coefficient S|| is given by

~ K
~ o VG , (4.19)

5|

where V is given by (4.13), and G by (2. 3) in which now (Siegel, 1963):

cosec O, . (4. 15)

y= 0

o

A comparison of (kd) -3 SIl as obtained from (2. 39) and Table A-1 with the
approximate values provided by Siegel's formula is shown in Table 4-4. As
expected, Siegel's approximation is quite accurate for narrow-angle cones

(6 o hear 1800) but becomes rather poor for wide-angle cones (60 near 90°).

4,4 Results by Numerical Method

The analytical determination of the dipole moment coefficients is possible
whenever the surface of the body is either a complete coordinate surface in a
system of coordinates for which the Laplace equation is separable (e.g. a
spheroid), or is made of portions of such surfaces so that a mode matching
technique is applicable (e.g. a round-backed cone). In all other cases, some
dipole coefficients can be found numerically by the method developed in

Appendix B.
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FIG. 4-2: Exact (normalized) Dipole Moment Coefficients for a

Round-Backed Cone (—) Compared with Those for a
Spheroid (- - -) of the Same Length to Width Ratio.
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TABLE 4-4

Axial Backscattering From Round-backed Cones

7r-6.0 (kd) -3 S"
degrees exact Siegel ratio
5 0.0005(6) 0.0006(3) [  -----

10 0.0105 0.0107 1.02
15 0.0258 0.0256 0.99
20 0.0482 0.0488 1.01
30 0.1122 0.1238 1.10
40 0.2080 0.2425 1.17
50 0.3270 0. 4057 1.24
60 0.4810 0.6106 1.27
70 0.6367 0. 8408 1.32
80 0.8072 1.0867 1.35

When the plane wave

ikz i kz

-85 B =Py (4.16)

is axially incident on a perfectly conducting body of revolution, it produces a
backscattered electric field

b.s. A eikr
E =X (Fe + Fm) el (4.17)

where Fe and Fm are the contributions due to the electric and magnetic dipoles
Pand M, and are related to the x-component of Pand to the y-component of
M by:

3 3

__kZ
» FotoTis My (4.18)




The quantities Fe and Fm are to be found numerically through the computer
program of section B. 8; for any given scattering shape, they can be con-

=1, m, =n, =0, and

sidered as known. From relations (2.22) with £ L=y

1

=1, 4_=n, =0, it follows that (t') = b‘f’):

(2.26) with m 5= By 1

2

_ (1) _ (1)
Px—-47r€0 a;’ My- 47rYb1 . (4.19)

From (4.18) and (4. 19) :

R L0
R 1 ka)dF (4. 20)
3 e’ 3 m :
a a
and
) 3, (1)
Fe+Fm—S"n1=n2=0— k (al 1) s (4.21)

where a is a characteristic dimension of the scatterer. Rigorously speaking,
relations (4. 20) and (4. 21) are valid only if Fe and FIn are computed in the
limit k —» 0. In practice, however, it is sufficient that ka << 1 (e.g.
ka = 0.1), as is evident from the following two examples.

Consider first a sphere of radius a for which the exact values are given

by (4.7):

(1 (1
S I L
3 ! 3 "2°
a a

For ka = 0.1 the computer program of Appendix B gives the surface currents

of Fig. B-5 and the far-field coefficients
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3 6

+10.70283909 x 10,
3 6

.
?

F =1.0084482 x 10~
e ka = 0.1

F_ = 0.49690390 x 10 ° -10.16412946 x 10~

it is seen that the agreement between (4. 20) and the exact values is indeed
excellent.

Secondly, consider a round-backed cone with semi-aperture 7 - 60 = 30°
and base radius d (equal to the length of a generator) for which, from Tables
A-1 and 4-4:

a(1) b(1)
1 1 -3
——=-0.0814, ~——=0.0306, (kd) S, =0.1122,
d3 d3 i\

For kd = 0.1 (and choosing a total N = 20 of sampling points for the surface
currents, ten along a generator and ten on the rounded base), the computer

program yields the far-field coefficients,

F, = 0.079801248 x 10’3 +10.035802121 x 10'3 ,

4

3 ., pkd=0.1
F_ =0.032452983 x 10 +i 0.050564468 x 10,

from which

Fe + Fm = (0. 11225423 + i 0,04085856) x 10-3 ;

again, the use of (4.20) and (4.21) leads to rather precise results.

In conclusion, we may say that the computer program of Appendix B
(11) and b(ll)
provided that ka S50.1 and that a sufficient number of sampling points is

and the formulas (4.20) and (4. 21) give reliable values of a

chosen for the surface curvents on the body (at least 20, and preferably 30).
The imaginary parts of Fe and Fm may be neglected.
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If we accept the relation (4.5) which has been proven valid for spheroids
and round-backed cones, also for all other bodies of revolution, then the only
dipole moment coefficient that cannot be numerically obtained by the method
of Appendix B is a(13) ; this is because the method has been developed for axial
incidence only.

A variety of numerical results are exhibited in Table 4-5, together with
the profiles of the scatterers in a plane through the axis z of symmetry. In
all cases, the computations of Fe and Fm have been carried out for ka = 0.1,

formulas (4. 20) have been used , and the imaginary parts have been neglected.

4.5 The Rayleigh Term in Far-Field Plane Wave Scattering

The purpose of this section is to present some new results on the
Rayleigh term in an expansion of the far electric field scattered when a plane
wave is incident upon a finite three dimensional perfectly conducting object.

The expression of the far field in terms of surface integrals of the static,

near field terms is (Kleinman, 1967):

S eikr 2 A
E =k fAf
B

where B is the surface of the scatterer, r

S

A s
ot 2Zn- ﬂo)] ds ,

A A A A _S A
[#r, 22 Bap A ED - A 2AE

(4.22)

B is the position vector of the inte-

gration point on B, {1\ is the outward unit normal to B at r B ? is a unit

vector directed from the origin of coordinates toward the observation point, and
s S
0 and EO

magnetic fields which satisfy the boundary conditions

E are the Rayleigh terms in an expansion of the scattered electric and

A S_ A i
DAE) = DA E,
{ ponB. (4.23)
0

S

A
o~ 2H

.1
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If the incident field is a plane wave, i.e.

Ei=geik{1\.£ ’ §i=3AgYeik6'.£ , (4.2
then

1_‘3104 , E(ingQY ; (4.25)
and

A §;=-'x‘1;\ﬁ 2. gg=-ﬁ-3,\3 Y . (4. 26)

Substitution of these results in the expression for the scattered field yields:

ikr
s_e . 2A [A AA 5 AA AN A A] .
o 4nk rAj‘ TALg (Zr nALIO ﬂ'E(S))“'EB(T'M 4+ apa)| ds ;
B (4.27)

A
5B(?.?1Aa+?1 .I&Ag) ds

=£ I_'B't‘l . (3,\3-’1’/\ ?1) ds
-4 {(aA 40,0 f xBads}+ 9{@ 1449, f yBads}+ a{(ahg.m f zBs@
B B B
= UAAA D f v(x)dv} +‘y‘{($,\£-'},\%) : f v (y)d\}+ 'z‘{c?hé-'%,\a) £V(z) dV}
\' A%
= [g{(sAa.m.a}@ {aAa.4Aa>.9} 1 {&A

A2A8) V. (4.28)

bu

o>
=>
>
©>
N>,
o,
<

= (8a
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Thus

ikr
2 AA _S A A AAA
- St [yl - oo+ at b

(4.29)
where V is the volume of the scatterer.

The remaining terms involve Eg and gg but following Rayleigh and his

successors these may be written as gradients of potential functions, i.e.

s _ s
EE=v . H-YVy. (4. 30)
where
V2 @ = V2 ¢ =0 exterior to B (4.31)

and with the boundary conditions

A
’r}/\vé =-?14g= -’t\xAV(a-g)
ronB (4.32)
S v¢=-ﬁ-a,\ﬁ -

The first of these may be written as G/\ V({) +4. r) = 0 which may be shown

to imply that §+3 . r = constant on B. The constant may be explicitly

evaluated using the additional condition f 2. V& ds = 0.
Thus B
s eikr 2 A A A AAAA
E=tr K1y 'ALp [r'ﬂB‘\VB‘/’(EB) g VB (} (EB)] dSt(apa-rpa) V
B (4.33)

This expression is rewritten with the help of the following
Lemma

If ¢ is a differentiable scalar function defined everywhere on the closed
surface B, then

r_f.8,v wdS=-?,t£{1‘¢dS. (4.34)
5B B
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Proof

Use the properties of the scalar triple product to write

A A _ A A
f_l_‘_Br .n,\VBx//dS f;Bn . VB YaT dS,
B B

and since

V_ar=0,

B
AR _ A A
LgBr-nAVdeS -J‘an . VBMp rdS .
B

Now employ the Lemma proved in Kleinman (1967) to obtain

A A A A A
f_x;Bf-nAVdeS=an¢/rdS=-rA 1ydS, Q.E.D.
B B

With this result the expression for the scattered field becomes:

ikr
A A
E5- & PdAE T S‘pds-’},\rfngﬁ. vy ds +
B

+[9,\(3,\Q) - ?,\('é,\’é)] vy, (4.35)

or

ikr
s_e 2 A |4 A A A
E-_41rrk rAfnwdS-rAr,:[_r_Bn-VB§dS+
B

B

+TA@ V- EN VY  (4.36)
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An alternate and perhaps more revealing form of the far field expression
may be obtained by using the following theorem, whose proof is here omitted:

If u is a regular potential function exterior to B and 6 V is the
volume exterior to B but interior to the smallest sphere contain-
ing B, then:

f}:B'r‘x-Vuds+2fﬁuds+3f Vudv=0 .
B B 5V

By identifying u first with § and then with ¢ and by using the boundary
conditions it is found after some manipulation that

ikr

s e 24 J[BA A _A N 3 A

E= =k Tp (EaAa-B r/\a)V'_z-f vy dV+3rJ V@dV . (4.37)
6V 6V

This last expression reduces to the first term in the curly brackets when the

scatterer is a sphere.
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CHAPTER V

RADAR CROSS SECTIONS OF VARIOUS PLASMA-COATED BODIES

5.1  Choice of Shapes

The results presented below are valid for a plasma sheath with
vc S>> W, As s?xown in Chapter III, in this case the electric dipole moment
coefficients a(lJ ) are those of a metal body whose surface coincides with the
outer boundary of the plasma, whereas the magnetic dipole mement coefficients b(lj)
are those pertaining to the bare re-entry vehicle, By choosing the shapes of
the body and of the outer surface of the plasma among those whose dipole
moment coefficients have been computed in Chapter IV, various possible
combinations emerge for which the radar cross section has been obtained and
plotted, as described in sections 5.2 and 5. 3.

The choices of shapes are listed in the following table.

TABLE 5.1
CHOICE OF SHAPES

bare body outer plasma boundary figures

round-backed cone cone-sphere 5-1, 5-2
flat-base cone cone-sphere 5-3
flat-base cone sphere-cone-sphere 5-4
flat-base cone with sphere-cone-sphere 5-5

rounded nose
flat-base cone with prolate spheroid | 5-6

rounded nose
round-backed cone prolate spheroid 5-Ta, 5-Tb, 5-8a, 5-8b,
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Even though the shapes of the plasma outer boundary are not very
realistic, certain general conclusions can be drawn for the behavior of the
backscattering cross section (see section 5.4). It should be pointed out that,
in general, we can calculate the backscattering cross section for all angles of
incidence but only in the H-plane, i,e. for an incident plane wave whose magnetic
field vector _}_I_i is parallel to the plane containing the axis of symmetry of the
scatterer (taken as the z-axis) and the direction of propagation of the
incident wave. Even with this limitation, we must postulate the validity of
formula (4, 5) for all bodies of revolution treated here .

The determination of the backscattering cross section for all other
polarizations of the incident field requires the knowledge of all dipole moment
coefficients, Since a(? cannot be obtained by the numerical technique of
Appendix B and is therefore presently known for round-backed cones and
spheroids only, the backscattering cross section in the E-plane (incident electric
field vector Ej parallel to the plane containing the symmetry axis z and the
direction of incidence) is given only for round-backed cones coated by a plasma
whose outer surface is a prolate spheroid,

For each scattering configuration, three curves of the backscattering
cross section as a function of the angle of incidence are given, The curve B
corresponds to the bare vehicle (no plasma coating) and therefore applies to the
exo-atmospheric phase of re-entry. The curve C is obtained by taking the
plasma as perfectly conducting for both the a(ll) 's and the b(J )
following the suggestion of Hiatt et al. (1960), The curve E is derived by

applying the rigorous analysis of the previous chapters: the b(])

, i.e. by

's are those
of the bare body, but the a(lJ )'s are those that would obtain if the plasma

sheath were perfectly conducting,

5.2 Diagrams in the H-plane

When the incident magnetic field _H1 is parallel to the plane containing
the axis z of symmetry and the direction of propagation of the incident plane
wave, the cross-polarized component of the backscattering cross section is

zero, and the direct polarized component is
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2
s
ola) = k2 |S"l (5.1)

where Sll is given by eq. (2.37) with ng = sin2 a, and a is the angle which
the direction of incidence forms with the z-axis,

We normalize the cross section to the value 7% k4 V2 (V = volume of
bare body), i.e. to the Rayleigh approximate value of eq. (2.1) for the bare

vehicle and axial incidence. Thus, we consider the normalized cross section

ola) 2
ola) =—— = A_, (5.2)
n® "4 4 2 h
T
where b(l) b(3) a(l)
A = 1 cos a+ L sinza L (5.3)
h | V/7 v/ v/z|
Since
on(1r -a) =Gn(a), (5.4)

we may restrict our plot of o to the range 0Sa < 90° ,

Various diagrams are presented in Figs. 5-1 to 5-6, 5-7a and 5-8a.

The vertical scale is in db, that is we plot

crn(in db) = 20 log,, A (5.5)

h .
Although the sketches of the scattering shapes are self-explanatory, Figs. 5-7a
and 5-8a deserve a particular comment. Here we have chosen the prolate
spheroid (simulating the outer boundary of the plasma) to touch both the tip

and the circular rim at the base of the round-backed vehicle, and we have

further imposed that the volume of the spheroid be minimum, It then follows
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that the minor axis of the spheroid is equal to the base diameter 2b sin (7r-60)
of the round-backed cone. Thus, the characteristic parameters of the minimum-
volume spheroid are:

major axis = 2b cos (1r-60),

O))

volume = %W b3 cosf sin2 B,

length-to-width ratio = cot .

minor axis = 2b sin (70

5.3 Diagrams in the E-Plane

When the incident electric field Ei is parallel to the plane containing the
axis z of symmetry and the direction of propagation of the incident plane wave,
the cross-polarized component of the backscattering cross section is zero. All
considerations and formulas of section 5.3 still apply to the direct polarized

component, provided that A, is replaced throughout by

h
REURNQY K&
A = J———l—cosza--l—sinza (5.6)
e |V/r V/x V/n . '
Since a(3) is known only for round-backed cones and spheroids, we have limited

1
our diagrams to the two figures 5-7b and 5-8b.

5.4 Discussion of Results

The previous diagrams are confined to the direct polarized component
in the H- and E-planes; for other polarizations, the cross section would exhibit
an intermediate behavior between these two extreme cases, and a cross-
polarized component would also appear, according to formulas (2. 34)-(2. 36).

In the H-plane, the rigorous value of the cross section (curve E) is
always much larger than the bare vehicle value (curve B), so that the formation

of the plasma sheath during re-entry always increases the monostatic cross
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section, in the low~frequency limit. Also, the values of the correct curve E

are always a few db's lower than the corresponding values obtained by consider-
ing the plasma outer boundary as perfectly conducting (curve C). For all practical
purposes, the curve E yields a cross section which is independent of the angle

a of incidence. We again point out that these conclusions are subordinated to

the validity of formula (4.5), which has been proven only for round-backed cones
and spheroids.

It is more difficult to make statements of general validity for the cross
section in the E-plane, due to the paucity of available theoretical results.
However, from the results of Figs. 5-7b and 5-8b, it seems reasonable to
conclude that in this case too the low-frequency cross section increases
significantly as the vehicle re-enters the atmosphere, but its correct value
is somewhat lower than what would be obtained by replacing the plasma with a
perfect conductor. Also, the cross section in the E-plane varies markedly
with the angle o of incidence. For the shapes of vehicle and plasma considered
here, cn(a) increases with o (see curve E on Figs. 5-7b and 5-8b), and the
difference between cn(90°) and an(Oo) becomes more pronounced as the scatterer
becomes more elongated.

For axial incidence (a = 00), the predictions based on the Rayleigh-Siegel
formula (2. 2) agree well with the values cn(Oo) of curves B and C if the corres-
ponding scatterers are very elongated, but are more and more in error as the
scatterers become fatter.

Finally, we observe that although the shapes and dimensions of the plasma
outer surface considered here are rather idealistic, the conclusions of this section
should remain valid in a realistic situation, since they were derived from features
exhibited by a variety of shapes of the plasma sheath. If the dimensions of the
plasma sheath are increased, the major consequence is simply an upward shift

of curves E and C with respect to curve B.

62



25 4

C
20 A
E
15 -
o
n
(db)
10
El
5 H
B
0 J
0 ) 0
0 30 a 60

FIG. 5-1; Normalized Backscattering Cross Section in the H-Plane.
B = Bare Round-Backed Cone (79, = 100), E = Plasma-
Coated Cone, C = Conducting Cone-Sphere.
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FIG. 5-2: Normalized Backscattering Cross Section in the H-Plane.
B = Bare Round-Backed Cone (76, = 200), E = Plasma-
Coated Cone, C = Conducting Cone-Sphere.
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FIG. 5-3: Normalized Backscattering Cross Section in the H-Plane.

B = Bare Flat-Base Cone, E = Plasma-Coated Cone, C =
Conducting Cone-Sphere.
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FIG. 5-4: Normalized Backscattering Cross Section in the H-Plane.

B = Bare Flat-Base Cone, E = Plasma-Coated Cone, C =
Conducting Sphere-Cone-Sphere.
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FIG. 5-5: Normalized Backscattering Cross Section in the H-Plane.
B = Bare Flat-Base Cone with Rounded Nose, E = Plasma-
Coated Cone, C = Conducting Sphere-Cone-Sphere.
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FIG. 5-6: Normalized Backscattering Cross Section in the H-Plane.
B = Bare Flat-Base Cone with Rounded Nose, E = Plasma-
Coated Cone, C = Conducting Prolate Spheroid.
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FIG. 5-Ta: Normalized Backscattering Cross Section in the H-Plane.
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B = Bare Round-Backed Cone (79 = 150), E = Plasma-
Coated Cone, C = Conducting Prolate Spheroid.
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FIG. 5-7Tb: Normalized Backscattering Cross Section in the E-Plane.
B = Bare Round-Backed Cone (70 = 150), E = Plasma-
Coated Cone, C = Conducting Prolate Spheroid.
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FIG. 5-8a: Normalized Backscattering Cross Section in the H-Plane.

B = Bare Round-Backed Cone (70, = 300), E = Plasma-
Coated Cone, C = Conducting Prolate Spheroid.
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CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

The principal results which have herein been obtained in attempting to
derive a reliable theoretical prediction for the radar cross section of a plasma
coated, cone-like re-entry vehicle in the low frequency limit ( k —=0) are
listed in the following:

(1) The backscattered far field is a function of three electric

dipole moment coefficients a(j)

) 1
(1]) (j =1,2,3), which are solely deter-

and three magnetic dipole
moment coefficients b
mined by the shape of the scatterer (assumed to be perfectly

conducting). For a body of revolution about the z-axis, only

O TP R NC

the three coefficients 211 1 1 0 1

a(13) are independent.

(2) A metallic body coated with a homogeneous isotropic plasma
plasma sheath of collision frequency vc has been considered. If
v, > > W, the scattering phenomenon in the low-frequency limit

has been reduced to two standard potential problems for perfect
(3
1

body (no plasma sheath), whereas the a(lj)'s are those that

would obtain if the entire scatterer (vehicle plus plasma sheath)

conductors. The b"''s are those pertaining to the bare metal

were metallic.
(3) All six coefficients a(lJ) and b(lj) have been obtained for spheroids

and round-backed cones. A computer program has been developed

(3)
1
and specific computations have been performed for flat-base cones

to calculate all coefficients except a, for any body of revolution,

and cone-spheres with either a sharp or a rounded nose. The com-
puted coefficients are sufficient to determine the backscattering cross

section in the entire H-plane.
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(4) A variety of diagrams of the backscattering cross section
for all angles of incidence and two different polarizations have
been obtained, for a few shapes of the vehicle and of the outer
surface of the plasma sheath. General conclusions drawn from
these diagrams are to be found in section 5. 4; here we only
remark that our rigorous low-frequency analysis show that the
predictions based on combining the results of Siegel (1959) and
of Hiatt et al.(1960) can often be inaccurate.

(5) If v, <<, and in particular if v, = 0 (lossless plasma),
the scattering phenomenon has again been reduced to the solu-
tion of potential-type problems. However, the success of the
method now depends on the existence of a continuous spectrum
of non-trivial solutions for the boundary-value problem (3. 13).
The existence of such spectrum has been proven only in the case

of a spherically symmetric scatterer.

During the above mentioned investigations, we have also obtained results
which are of marginal interest to the main purpose of this report, but which have
considerable importance per se and are therefore listed below:

a) It has been shown in section B.6 that the two hypotheses

advanced by Siegel (1959) in deriving Eq. (2.1) are a con-

sequence of the zeroth order approximation to the Neumann

series solutions of two coupled integral equations for the

components of the surface current. Unfortunately, the

kernels of the equations are singular and therefore we do

not know whether the Neumann series exist.

b) The new formula (4.37) for the low-frequency scattered

far field ES has been derived. It expresses gs as the

sum of three terms: the field that would be scattered by the
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6.2

smallest sphere surrounding the body, plus two correction
terms given by integrals over the volume exterior to the
body but interior to the sphere.

¢) A new integral equation, which generalizes a previous
result by Barrar and Dolph, has been derived for the jump
current at the surface of a thin overdense plasma sheath

surrounding a conical metallic shell (see Appendix C).

Recommendations for Further Study

Further research along the general lines established in this report should,

in our opinion, be based on the following points:

(1) The existence of non-trivial solutions with a continuous
spectrum for the boundary-value problem (3. 13) ought to
be proved in general, for all (sufficiently regular) shapes
of the vehicle and of the plasma outer surface. Low-fre-
quency cross sections, similar to the curves E plotted in
Chapter V, should then be obtained for the case vc< <w.
(2) The feasibility of low-frequency expansions which are
uniformly valid for all values of vc/w should be investigated.
The results would be especially interesting when v cf:t’l W,
i.e. when the expansions for Ve >>wor vc< < W cannot be
used.

(3) Extension of the previous results to the case of bistatic
scattering. In particular, it may then be possible to prove
that relation (4.5) is valid for all bodies of revolution, by

invoking reciprocity relations.
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(4 The results of this report as well as the suggestions of

the above three points are based on the assumption that both

the bare body and the plasma outer surface have characteristic

dimensions which are small compared to the wavelength of the

incident field. In practice, this is often true for the bare body

but not for the plasma coating. We suggest two possible ways

to overcome this difficulty: (i) determine the far field to higher

orders (in particular, consider the contributions of the quadrupole

moments); (ii) solve numerically the integral equation derived in

Appendix C, and then obtain the far field by integration over the

surface current.

Finally, we wish to emphasize two topics which are closely related to this
research program and which could yield very interesting results:

a) The possibility of using Neumann series solutions for the

integral equations satisfied by the surface current components

should be investigated (see point a) in section 6. 1).

b) The rigorous equation (4. 37), previously mentioned

at point b) of section 6.1, may lead to explicit low-frequency

results for "fat" bodies, which would be analogous to Siegel's

results for ""thin" bodies.
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APPENDIX A

DIPOLE MOMENTS FOR THE ROUND-BACKED CONE

A.1 Round-Backed Cone

The right circular cone backed by a spherical surface having center at the
tip of the cone is the most convenient conical object for any analytical approach
to the solution of the scattering problem. Schultz et al (1963, 1964) have used
mode matching to produce a solution for an electromagnetic wave at axial inci-
dence. The procedure leads to an infinite set of equations for the determination
of the modal amplitudes, and hence, in principle, to the inversion of an infinite
matrix. In practice the matrix must be truncated and because of the limited
number of Legendre function zeros available and the maximum size of matrix
that can be inverted, the numerical results obtained appear accurate only for
kD4, where D is the base diameter of the cone. At low frequencies, how-
ever, the approach is certainly an effective one, and if attention is confined to
the leading (Rayleigh) term in the low frequency expansion, the fact that the
problem can be reduced to a potential problem provides a further simplification.
We shall therefore seek the determination of the electric and magnetic dipole
contributions using the simplified version of the above mode matching techniques
that is appropriate to Rayleigh scattering, and do so not only for axial incidence
on a 15° half-angle cone (as Schultz et al considered), but for all angles of
incidence and a variety of cone angles.

As shown in Fig. A-1, the surface of the body is the intersection of a cone

of (interior) half angle 7 - 6  with a sphere of radius d centered at the apex

0
of the cone. The body is assumed perfectly conducting and in terms of the
spherical polar coordinates (r, 6, @) the boundary conditions on the total

electric and magnetic fields at the surface are:

2.5-f.E-%.H=0 for 66, 0r<d, 0gP<2r
A
8. E=8.E=%.H=0 forr=d, -0, <o<m, 0<p<ar

(A.1)
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Although the conditions on the electric and magnetic fields are not, of course,
independent, the decoupling of the fields that takes place at zero frequency
makes it convenient to specify the conditions on H as well as on E.

In accordance with the procedure adopted in Section 4.3, we take the
incident field to be a plane wave of arbitrary polarization incident in an arbi-

trary direction on the body, viz.

5in 2 e1k(lx+ my + nz)

1 1
; ik(£x + my +
§1=Y(12§+m29+n2g)elk( X + my + nz) (A.2)
’/"—-~‘s\
7 ~
i N
/
/
/
/ d
1 -
| ’
Region | Region / "0 _ _  Region
2 I\ 1 2
\
\
\
\
\
\
N\ //
\\\ ’/,

FIG. A-1: CONE GEOMETRY
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where (x, y, z) is a rectangular Cartesian coordinate system such that
x=rsinfcosf, y=rsin@sinf, z=rcosb,

and ({, m, n), (11, ml,nl) and (12, m,, n2) are sets of direction cosines for
which

(fl, m,, nl) = (12, m,, nz)A(l,m,n),

n,)

(22, m,, nz) = (2, m, n)A(ll, m,, n,

1’

Y is the intrinsic admittance of free space and a time factor e"lwt has been

suppressed. To the first order at low frequencies

E1~E1=2 §+m§'\+n /
= -0 1

1 1

which can be written as

E; =V(£1r sin 6 cos § + m

,t 8in 6 sin g+ n,r Ccos 6).

(A.3
Since this is independent of the direction cosines (£, m,n) and (12, m,, nz),
i 1’ m T and n1 can be chosen independently of one another. It follows that
for the corresponding scattered electric vector we can write

E -V)° (A.4)

with (03]
s -n-1 (1) .1 2) .1
@ = E T {llan Pn(cos 6) cos § + mlan( )Pn (cos 6) sin § +
n=1
(3) o
tna”™ P (cos 8) ), (A.5)
valid for r > d. The coefficients an(l) , aéz) and aés) are independent of

2 1’ ml, and nl, and in general their determination requires the solution of
three separate potential problems. For the particular case of a body of

revolution, however, it has been pointed out earlier (and is at once evident
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from Eqgs. (A.3) through (A.5)) that ar(12) = atfl), which reduces the number
of potential problems to two. In terms of the aéJ) the electric dipole moment

is

) (1) A (2) A (3 A
_13-—41re(£1a1 x+m1 a, y+n1a1 Z). (A.6)
Similarly for the magnetic field we have
gllu_}fo =Y V(L,rsin6 cosf+ m,r sinf sinf + n, T cos 6)
(A.7)
and the corresponding scattered magnetic field is
H = YVy® (A.8)
with -
s _E -n-1 (1) (1) (2),1 :
Yy o=)r szn P (cos 6) cos f + n,b P (cos 6) sinf +
n:
(3 L0
+ n, bn Pn (cos 6)Y, (A.9)

valid for rzd . Here again there are in general three potential problems

that must be solved to find the b(]) , reducing to two for an axially symmetric

body for which bn(z) = bt(11)° In terms of the bé]) the magnetic dipole moment
is
_ (1) a (2) A (3) A
1\1[—-41rY(122b1 x+m2b1 y+n2b1 z) . (A.10)
We are now faced with four distinct potential problems that must be solved
to compute the dipole moment coefficients a{l) = afz), afs), bfl) = b{z)

and bf3) for the round-backed cone, and we shall treat these separately. Once
these have been found, the scattered field at low frequencies can be determined

from Eqgs. (2.10) and (2. 11) by inserting the expressions for P and M.
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A.2 Transverse Electric Dipole Moment

Consistent with Eq. (A. 3) we here postulate an incident electric potential
§'=rsindcos (A.11)

and assume that in region 2 (see Fig. A-1)
o)

@ S - 21 -1 (1) P (cos B) cos § . (A.12)
n -

The total potential in 2 is therefore

Q0

(}2=<§i+€bs=z -l (1)+ 6 )P (cos 6) cos @ (A.13)

n=1

where 6 8 is the Kronecher delta (=1 if @ = B, 0 if @ # ), but in region 1 we
take the total potential to be

, Vpl
@ AR ES (cos 6) cos @ . (A.19)

v

For the Egs. (A.1), the boundary conditions on the total potentials are

1

—_— s — = for 6 =06_, all

radry or o 2 )

29, 24,

5—=—8T forr=d,0\<6<60, all §
= 0 forr=d, 6, <0, all

a62 8@1

T RRY) for r =d, 0g6<60, all §
=0 for r=d, ,<6gm, allp
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1 i,
oy for r=d, 0g6<6, all g .

The first of these can be satisfied by choosing v such that
1
P (cosf6) =0, (A.15)
v 0

with the summation extending over the zeros v = v i=1,2,3,....., ofthe

Legendre function of order unity. From the second and third boundary condi-

tions, we obtain

= [.-n-1 L 1 v.1

z (d a = +ds )Pn (cos 0) = chd Py(cos 6), 0£6<8,

n=1 : v
=0 ) 90<9<7r
(A.16)

and
-1 (1), Vo 1

d a ln)_ P (cos 0)= zcvd é%Pv(cose), 06 <60

n=1 v
=0 , 60<6<1r
(A.17)

1
Pm (cos 6) 5
If Eq. (A.16) is multiplied by —me Eq. (A.17) by sin 6= % P (cos 6),

and the results added, integration with respect to 8 from 0 to 7 gives
2 2 8P apl Pl P !
2m~ (m+1) gme -1 (1) Ginp —Y —m, v m
2m+1 90 06  sin6
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from which we have

-m-1 (1) _ 2mtl 2 v
d ¥ dtslm "~ 2m(m+1) - cvd va (4.18)
where
1 60 anl 8P;1 Pvl P;l
my m(m+1) sin 6 EREE * sin 0 a9 . (A.19)
0
The fourth and last boundary condition yields
®
-n-2 (1) 1 v-1_1
z (n+1) ( a -3 1 ) P (cos ) = -zvcvd Pv (cos ), 0\<6<90
n=1 v

(A. 20)
(1)

from which a further relation between the a' and cy can be found by invoking
the orthogonality of the functions (sin 6) Y Pvl (cos 6) over the range Ogegeo.

If o is any one of the zeros Vi multiplication of Eq. (A.20) by sin8 P(ll (cos6)

and integration with respect to 6 from 0 to 60 gives
o < 1 (1) 1 60
e &\ =-2(n+1) (d'“'a “Las )f sin 0 P-P" d
o fo n 2 "ln o n
n=1 0
where 60 1 9
N\ - sin (Pa) o . (A.21)
o
0

But
6

0
f sin 6 P1P1d9'= X
a n
0

(see Eq. (A.71)), and hence

-n-1 (1) 1
vA z (n+1) ( 2desm) xm/ . (A.22)

85



If we now eliminate the coefficients c from Eqs. (A.18) and (A.22), we have

X X
-m-1 (1) __2mtl -n-1 (1) 1 “my T,
d B Fd8) = T(me]) 2 2 (nt1) |d ( a déln) v/\

m=1, 2, 3,..... , Which can be written somewhat more compactly as
[00)
mAVss o G+l al? Zmy "oy (A.23)
m lm 2 A
n=1 Y

m=1, 2, 3,...., where

(1) . mt1 [ -m-2 (1) 1
m  2mtl ( m T2 61m) : (a.24)

The Egs. (A.23) constitute an infinite set of simultaneous equations for the deter-

W

mination of the coefficients A The particular coefficient of interest is

()

from which we have

3

a(ll) dz (3A(1) 1). (A.25)

A.3 Transverse Magnetic Dipole Moment

The procedure is quite similar to that described above. The incident

magnetic potential is now
i .
Y =1 sin 6 cos @ (A.26)

and in region 2 we therefore take the total magnetic potential to be

‘/,2 = ni (r-n—l br(ll) + réln) Pll1 (cos 6) cos ¢ s (A. 27)

whereas in region 1, the potential is

v, = 2 c I‘I"P1 (cos 6) cos § . (A.28)
.
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From the Eqgs. (A.1), the boundary conditions on the total potentials

for r=d, 06<86

are
Bwl
—_— = for9=9,
96 0
3_¢/2=_3i1 for r=d
or or !
=0 for r =d,
0 96
oY, oY
2 __"1 _
58 3 for r =4d,

all §

06 <8,

00<6<7r,

0)

0<6<8,,

The first of these is satisfied by choosing u such that

0 1
50 PIJ (cos 6)

6=90

all §

all §

all §

all ¢

(A.29)

in which case the summation now extends over the zeros u = “i’ i=12,3,...,

of the first derivative of the Legendre function of order unity. From the second

boundary condition we have

o -2 (1) 1 1 )
z (n+1) (d b~ 5 61n) P (cos 6) =
n=1

from which we obtain

-m-1 b(l) 1

d m 2

dé

_ 2mtl
Im 2m (mt+1)

87

p-1 1
- c d P (cos6),0g£0<
zuu “(cs) < 00

i

0

20 d“Ym
i H

s 90<9<1r

(A.30)

(A.31)



where 1
smBP P dé6; (A.32)
m m

0

~and from the third and fourth boundary conditions,

Q0
z (d“ lb(1)+d6 )9— P (cose)-zc a# a—P (cos 6), 0gB<O

006 006 0
"= K (A.33)
[o0)
Z (d -1 (1)+d61 )P (cos 6) 2 c d! P (cos 9) , 0$9<60
n=1 W (A.34)
yielding

0 pl 1.1
B(B+1)c BAB 2( o 1b(1)+d5 )fo sme—'@ —LP "o de

0 a6 89 sin 6

whereAB has the form shown in Eq. (A.21) and B is any one of the zeros by
But

e0 BPB aPtl1 PB1 Pi
sin 0 + = de=-(n+t]) (B+1) Y , ; (A. 35)
0 06 a6 sin 6

hence

-n-1 (1)
cu 2( +1)( )an . (A.36)

and by eliminating the coefficients c” from Eqgs. (A.31) and (A. 36), we obtain
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Y Y
-m-1 (1) 1  2mtl -n-1,(1) my np
d by "2%m " " 2m (m+1)z Zﬂ (1) \d ( by * 6 ) “A

(A.37)
m=1, 2, 3.... If we now write
(1) mtl -m-2, (1)
Bm alia ey ‘(d bm + 61m s (a. 38)

Eq. (A.37) reduces to

mB E( n+ = (1) z mj\n“ ) (A.39)

m=1, 2, 3...., the form of which is identical to that of Eq. (A.23) for the
coefficients A( ) The coefficient of interest is again the first one, B(ll),
in terms of whlch
n_ & ( (1) )
b1 =-3 , (A. 40)
cf Eq. (A.25).

A.4 Axial Magnetic Dipole Moment

It is convenient to treat this moment next because of the similarity of the
analysis to that for the transverse electric case. For the incident magnetic

potential we assume
;//1 =rcosf (A.41)

and then write the total magnetic potential in region 2 as

®
1//2 = z (r"n-1 bf) +7r 61n) Pg (cos 6) , (A. 42)

n=1
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whereas in region 1,

d/l = ch ¥ PS (cos 6). (A.43)
v

We observe that there is no @} dependence.

From the Eqgs.(A.1), the boundary conditions on the total potentials are

3(//1

_é—=0 for 6=90 s

awz Bwl

W__a—{‘— forr=d, 0<e<60:
=0 forr =4d, 60<6g7r,

oY, By

-é-—e—-z 5—9- forr'-"d, 0<9<90 .

The first of these is satisfied if the v = Ui’ i=1, 2, 3...., are such that

8 P0 (cos 0) =0 (A.44)
00 v

and since

9 0 - .1
Y, Pv (cos 6) = Pv (cos ) ,

it follows that the v are identical to the zeros of the Legendre function of
order unity that were employed in the analysis for the transverse electric

dipole mement. From the second boundary condition we have,

20



2 (n+1) (d_n_2 b513)--21- ) ln) Pg (cos 6) = - zv c, dv-ng(cos 0), 0g0<6

0
n=1 1
=0 90<9 LT
(A. 45)
from which we obtain
‘m-1.(3) 1 _ 2mil z v X
d b ~ 2%y c 2(m+1) cvd =V (A.46)
v v+1
where
% 0.0
X =v(v+1:" sind P P d@ (A.47)
mvy vV m
0

which can be shown identical to the function defined in Eq. (A.19). A further
(3)

n

relation between the b’ and cV is provided by the last boundary condition,

which gives
(0]
-n-1_(3) 9 0 _ v 8 0
z(d bn +d61n) Y Pn (cosG)-chd 86Pv (cos 6), 0$6<60,
n=1

Hence

where ¢ is any one of the set of zeros Vi i=1, 2, 3,....., and
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2
% apg
'Aa/= sin 6 30 do
0

is the quantity defined in Eq. (A.21), But

% apg ap:
s1n—-86 8—6 do = Xna s
0

where Xn o is defined in Eq. (A.19), and therefore
00
¢ a¥=— Z (d'“'l b + g )x :
v A n In/ v
V n=1
If we now eliminate the coefficients c, from Eqgs. (A.46) and (A.48), we obtain
[00)
-m- - X X
dmlb(B)-']:‘dﬁ =_Zgl}_+__1__ dnlb(3)+d5 ) my ny
m 2 1m  2(m+tl) n ln] (v+)A\
n=1 vy v

m =1, 2, 3...., which can be written more compactly as

(00}

(3) _ 1, _(3) X X
(m+1) Bm + 61m = - Z (n+2) Bn Z myv  nv (A.49)
v

n=1l (VH)] {v

m=1, 2, 3,...., where

(3) _ 1 -m-2. (3)
Bm --'—‘2m+1 (d bm +51m ). (A. 50)

Equation (A.49) is very similar to that for the transverse electric dipole moment,

(3)

and once again our main interest is confined to the leading coefficient B1 s

92



in terms of which

b‘f’) - d (3B1(2)+ 1) . (A. 51)

A.5 Axial Electric Dipole Moment

This is the final moment to be considered, and because of the different
Legendre function zeros involved, the analysis does not bear quite the same
relation to the transverse magnetic dipole calculation as does the axial mag-
netic to the transverse electric.

The total electric potential is now
i
@ = rcos 0 (A.52)
and in region 2 we take the total electric potential to be
©
Z -1 (3) 0
= +
@2 & (r a réln) P (cos 0), (A.53)

whereas in region 1 the potential is

b, = z , a Pg (cos 6). (A. 54)
m

There is again no {§ dependence,

From the Eqs. (A.1) the boundary conditions on the total potentials are
) (I)l
Tl for 6 = 00 s

a@z a@l

—é—e—=—8—6— forr=d, 0\<9<60:

=0 forr=d, 0

3@2_311)_1

9r Oor

O<49<7r s

forr =4, 0s6<0O .
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The first of these is satisfied by choosing u such that
P0 (cos 6,) =0
f 0 s (A. 55)

implying that the summation extends over the zeros u = “i , 1=1,2,3,....,

of the Legendre function of order zero, From the second boundary condition

we have
[09)
-n-1 (3) )8 0 u o 0
+ "y = -_—
Z(d a dﬁln 86Pn(cos 0) Zc“d Y Pu (cos 6), 0<(9<60 ,
n=1 [T
=0 , 90 <ogrm ,
(A. 56)
giving
a 3,45 = -g—r"—J'lZc X (A.57)
m 1m 2 [0 mu
M
where
_ . % 5p? apron
Xmu = - —E— sin 6 —'E-a 0 —8_9_ do . (A.58)
0

The third and last boundary condition yields

0
-n-1 (3) 1 0 _ p 0
(nt+1) (d a3 d 61n)Pn (cos 6) Zucud P“ (cos B), 0€6< 60 ,
n=1 7l
(A.59)
from which we obtain
0 0) 90
c dB=- L (u+1)(d'“'1 a3 Ly sin 6 P° P° 6
B B A n 2 1n B n
B n=1 0
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where [ is any one of the set of zeros My i=1, 2, 3,..., and

~ 2
A = 90 i [ 0) |
8 smG\PB de (A. 60)

0
0 00
f SiDGPBP do-= -X B R
0

where X 28 is as defined in Eq. (A.58), and hence

But

Q0

-n-1 (3) 1 ~
Z (n+1)( 2d61n) Xnu . (A.61)
b n=1

c d“=

1
M IJA

Elimination of the coefficients cu from Egs. (A.57) and (A, 61) gives

. ¥ %
g By g, -2 E E (n+1)(d'“'1 3. Lgs |-mpou
m 1m 2 n 2 ln A
n=1 p wd)

m=1, 2, 3,...., which can be written alternatively as

(0 0] ) A
X X

— (Am +61m)-- E (3 ) A E U B (A 62)
n=1 ”'A'u

7

m=1, 2, 3,...., where

(3) lni’l(d'm'z (3 _1 5 ) (A.63)
m

Am - 2m+1 2

The form of Eq. (A. 62) differs only slightly from that of the Eq, (A.23) for the
transverse magnetic dipole moment, Once again, only the first coefficient ,

A(3)

, is of direct interest to us, and in terms of this

o3 (3,
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A.6 Some Legendre Function Relations

Throughout the preceding analyses we have used the same symbols for
a variety of Legendre function integrals which might, at first sight, appear
quite distinct. For the sake of clarity and for the purposes of the subsequent
computations it is therefore desirable to set down the orthogonality relations
which we have invoked and to evaluate, where possible, the expressions for
the Xnu s Yn“ ,» etc. The derivations are rather similar to those in Appendix
A of Schultz et al (1964).

For Legendre functions of order unity, the standard orthogonality relations

are
1

8P
——-.+
P Pm 86 d6=0

ap aP Pipl;} om? (m+1)2 . (A.65)
L = oy .
5in 6 ae 56 | smeJ 4 2m+1 mn

T
1.1 _ 2m(m+1)
s1n6PPmd9-————2 1 6
0

where m and n are integers. If a and B belong to the same set of Legendre

function zeros, either of the function itself, so that
Pl(cose)=0 v=a, B
v 0 J 3
or of its first derivative, so that

) 1
—_— = =Q
58 Pu (cos 6) 0, wm=e,p
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then
1 1 1.1

0 9P 8P. P P
. a B "a’B _
st 0o =+~ ) do= oz(a+1)Aa b, (A.66)
0
% 1l g0 A
smePaPB do= 0603 (A. 67)
0 .
with
% 1.2
A = sine(Pa) de . (A.21)
o
0

It would not appear possible, in general, to evaluate analytically this expression
forAa . With the above definitions of m and @, we also have

0
6 1 .1 1 .1 117°0
oP
0 in 6 aPm aPa + Pm Pa 40 = m(m+1) sin 0 P1 o )
SILY™59 56  sin6 m(mt1)-o{atl) m 99
0 6
1
. oatl) dnopl O (a.68)
m(mt1) - ofat1) @ 86], .
6
% 1.1 1 1 apclr 1 ap; ’
sm@PmPadG = (L) - afarl) sin 6 Pm rY R Pa Y)Y ,
0 0
(A. 69)

with the simplification that can be effected in the right hand sides of Eqs. (A.68)
and (A. 69) depending on whether o is a zero of the Legendre function or its first

derivative,
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We are now in a position to detail the quantities appearing in the
analyses of the transverse dipole moments. In the transverse electric case,

where the required zeros are of the Legendre function itself, o= v and

% ap];rl ap! lenpllz I
sin 670" 55 ¥ Tein 6 (9 0 " mmrD) - vy S 8 P (cos §))
0
"
YR oo , (A.70)
0
" ol 1 1 9 Pl
sin 6 P v do= m(mtl) - vt D) sin 9 P (cos 60)57 ) . (A.T1)
0 0=6,

Hence, the quantity va defined in Eq. (A.19)is

8P1

1

— s A.T2

va m(m+1) - v(r+1) sin. 9 P (cos 90) 9 0 0= ( )
0

providing v =,= m . This, together with Eq. (A.21), completes the specification
of the quantities appearing in the Eq. (A.23) for the A( ) . In the case of the

transverse magnetic dipole moment, the required zeros are of the derivative,

sothat a=u, and

0 1 1 1 1
0 oP 0P P P
. m_ y, . m pu plutl)
+ = P cos 0
f si06 52" 50" Sine (997 mmtl) - wwr1) 0% (cos 6,)
0
.
¢ —_— A, T3
06 0=6 ! ( )
0
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60 11 1 %)P1
sin 6 Pm p do=- () - ) sin 6 P (cos 90 86 .
0

6= 90
(A.74)
Hence, the quantity Ymu defined in Eq. (A.32) is
1
oP

4/ (mt1) P

my (D) - gt sin 6, P (cose) Yy oeo ,  (A.75)
0

providing u # m. This, together with Eq. (A.21), completes the specification
of the quantities appearing in the Eq. (A.39) for the B(l)

The results for the Legendre functions of order zero are quite comparable
to the above, and we shall again present only those relations which are required
in the analysis of the dipole moments,

The standard orthogonality relations are

T 0 0
oP 0P
m _n _ 2m(m+1)
f sin 0 Y 0 Y} 0 do= omt1 6mn’ (A.76)
0

T
: 0 _0 2
fsmepm P o= oomb
0

where m and n are integers, If o and B belong to the same set of zeros of the

Legendre function of order zero, or of its first derivative, then

DIR ©

oP P

0—2 B 4p-
fsm 50 50 dB-AaéaB (A.T77)
0
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]
0. 0.0 Aa
sin 6 Pa PB do = 6 (A.78)

where

0
0 1.2
=f sin 6 (Pa) dé (A.79)

0

and is identical to the quantity shown in Eq. (A.21). Moreover, with the

above definitions of m and o,

% ap° ap° 5p%1%
sing — 2 go - ——mmrtl sing p? =2| -
06 96 m(m+1) - ofat+l) m 90|
0
076
oP 0
a(a+1) . 0 m
") ~e(er) |59 Py 3o ) (A. 80)
6
"o 0 0 { 0 apg 0 apg 0
sin Pmpade :m(m+1) “a(atD) sin 6 Pm _86 -Pa ———-89 . ,
0
(A. 81)

with the simplifications that can be effected in the right hand sides depending
on whether @ is a zero of the Legendre function or its first derivative.
Thus, in the case of the axial magnetic dipole moment where the required

zeros are of the derivative,
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90 E)P::l an ala+1) 3P0
f sme——ae ¥d6= m(mt) - alat 1) sme P (cosO) 89 9:9’
0 0
(A.82)
0
° 0 0 1 BPO
smGP P deo = - (D) - a(ar 1) sme P (cosG) 86 .
6=6
0 0
(A. 83)
apr?a .
But ——=-P and with the definition of a,
906 m
e
P (cos6) a(atl) 36 oo (A.89)

0

Hence, the quantity va defined in Eq. (A.47) is indeed identical to that

given in Eq. (A.72). Together with Eq. (A.21), this completes the specification
of the quantities appearing in the Eq. (A.49) for the B( 3) . The case of the
axial electric dipole is, however, somewhat different. The required zeros are
those of Lhe Legendre function of order zero, and if u is such a zero, the

quantityAu is simply

¥ A

) G (A.85)
poplutl)
but cannot otherwise be simplified. Also
60 aP?n BPZ m(m+1) E’Z
sin 0 0 50 de—m(m+1) Ty smO P (cos 6) ,
0 6=6

0
(A. 86)
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0

0
0sin 2] P0 P0 de = 1 9 P0 ( 9) —£ aP (A.87)
m pu m(m+1) -u (u+1) sin co8 Y e ’
0 0

6=6
and hence the quantity ‘)v{m“ defined in Eq. (A.58) is

BPO

sin 9 P0 (cos 9) (A.88)

:60

ol 1

Xmu ) " m(m+1) -pu(u+l)

This completes the specification of the quantities appearing in Eq. (A.68)
for the A( )

A.7 The Hemisphere

When 60 = 1r/ 2 the round-backed cone is, in fact, a hemisphere, and
though our main interest is in small cone angles (and the computations will be
confined to values of T - 90 less than 7/2), a few comments about this limiting
case would appear to be in order.

Formally at least the approach that we have adopted is valid for all values

of 6, including those less than or equal to 7/2, but when 6, = 7/2, some of the

expx(')essions for the va , ‘Aa , etc given in the previousosection are no

longer applicable, and still others are capable of simpler forms. These changes
are bound up with the Legendre function zeros. As is well known (see, for
example, Senior and Wilcox, 1967), for 60 = m/2 the zeros of the Legendre

function of order unity are even integers. Thus, from Eq. (A.15),
v=2k, k=1, 2, 3.... (A. 89)

and these are also the zeros of the first derivative of the Legendre function
of order zero. Similarly, for the first derivative of the function of order

unity, and for the function of order zero, the zeros are the odd integers.
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Thus, from Eq. (A.54) as well as from Eq. (A.29),
w=2k-1, k=1,2,3,..... (A.90)

To illustrate the changes and/ or simplifications to the general analysis
that are appropriate when 90 = 1r/ 2, it is sufficient to consider the case of
the transverse electric dipole moment. The zeros v are then given by Eq.

(A. 89), and since
m(m+1) -y (v+l) = (m-y) (mtp+l),

it is at once evident that the evaluation of the expression for va given in
Eq. (A.72) is no longer applicable if m is even. From Eq. (A.19), however,
with 60 =7/2and v an even integer, we observe that if m is even

. v p ap;l p! P;l
f sin § =< + L de
0

my 2m(m+1) 960 96 sin 0

_ m(m+1)
T 2m+1 6mv (a.91)
and similarly
viv+1)
AV = 9l (A.92)

If, on the other hand, m is odd, Eq. (A.72) remains applicable, but can

be '"simplified" by observing that (v even)

8P1
v

0 (0) ;

=-(v+ l)Pl
v-1

6 =xf2
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since

it follows that for m odd

8, 1/2 (mty-1) 1 (Ig'n)' (%1)3
va ] ;(—l) (m-v)(mt+y+1) (rgé—_l)' (1_5_ _1) ! (A.93)

Turning now to the Eq. (A.23) for the coefficients Ag)

, for purposes of
digital solution it seems preferable to leave this in the form shown and to treat
the case 6 0° /2 like any other value of 60 with the sole distinction that for m
and n even Eq. (A.91) is used in place of Eq. (A.72). If so desired, Eq. (A.92)
can also be used to obviate the need for the numerical integration that Eq. (A.21)
would otherwise entail. It is, however, interesting to note that as a result of
Eq. (A.91) each coefficient Airll) with even subscript is expressible as a sum

over the coefficients with odd subscripts, viz.

(1)

A( 1) _

m m(3m+1) (2n+1) A

X mn’ m even, (A.94)

.. MB

and this enables us to reduce the set of equations represented by (A. 23) to a set

(1)

involving only the coefficients Am

(1) - (1) 2+l
mAm om Z (2n+1) A Z v(v+t1)(3v +1) va Xnv ’

n=1,3,... v

with odd subscripts, viz.

(A.95)
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m=1, 3, 5,.... Itis not obvious that this is other than of academic interest,
and though it would appear that the relatively simple geometry of the hemisphere
should permit a more straightforward derivation of the dipole moments, no such
analysis has been found, nor are we aware of any treatment of this shape in the

technical literature.

A.8 Numerical Solution

(1) (3) (1) (3)
1 a1 , b1 and b1 ,
necessary to solve the four infinite sets of equations shown in (A. 23), (A.39),

In order to determine the dipole moments a it is
(A.49) and (A. 62) respectively, and we wish to do so for a variety of 90 in the

range % to .

For a given value of 60 there are three main computational tasks associated
with the solution of each equation set: (i) the calculation of an adequate number
of Legendre function zeros; (ii) the evaluation of the various factors involved,
including the numerical integration of the expression forAu ; and (iii) the matrix
inversion. Only the first of these is other than straightforward, and even here
we were fortunate in having available a computational technique that had been
devised (Wilcox, 1968) in connection with the scattering of an electromagnetic
wave by a semi-infinite cone (Senior and Wilcox, 1967). Taking, for example,

the problem of the transverse electric dipole moment for which the required

zeros are those of the Legendre function of order unity, we write

1 1 (w+1!
P (cosB) = - S 6. , (A.96)
v 0 Vﬂsineo (w%)! v 0
where
_ 2 k( k .
Sv (90) = E A 3/2)k sm{(u + 2k) 60} (A.97)

k=0
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valid for 0< 6 0 < 180. The series does converge, albeit slowly, at a rate

which is independent of 6., and the zeros can be found by an iterative method.

0)
Similarly, for the zeros of the Legendre function derivative we use the

recurrence relations to write

5 1 (w+1)!
30, Pl-t (cos 90) = -———H—é— wt l), cos 60 S (90) -(1 +2—1') S _1(90) ,
0 [Tsin 6 "2 H hoH

(A.998)

and again resort to an iterative method. Inasmuch as a computer program
was already available to calculate any number of these zeros for any given
value of 90 and, in addition, to compute the first derivative (or function itself)
at each zero, task (i) for the transverse moments required only the updating
of this program (including rewriting in Fortran IV). Data were obtained for
20 zeros of each type at each of about 20 values of 00.

Of the axial dipole moments, only the electric involves Legendre function
zeros differing from the above, namely, those of the function of order zero.
A new program was written to compute these and in order to use to the utmost

the procedures developed for the first order function, the recurrence re-

lations were employed to give

0 1 aP; 1
= + : :
PIJ (cos 60) T D 860 cos 60 P“ (A.99)

With the aid of Eq. (A.96), the right hand side can be expressed in terms of
the same function S“(OO) previously computed, and the zeros again found by

iteration.
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The remaining tasks (ii) and (iii) associated with the solution of the
equation sets for the dipole moments were straightforward and require no
comment. Because of the form of the original program for the computation
of the zeros of Pi (Icos 6) and ai-e P:‘ (cos 0), it was found convenient to
treat the solution of Eqs. (A.23) and (A. 39) together in the same program.

A slight modification then yielded the solution of Eq. (A.50), and a somewhat
greater change provided the solution of Eq. (A.62). In each instance, only
the leading coefficient, e.g. A(ll), was printed out. The programs were. run
for 6, = 95° (5% 150° (2-1/20) 177—1/20; the results are shown in Table A-1,
along with the deduced values of the dipole moments, and the latter are plotted
as functions of 60 in Fig. A-2. Examination of the first and second differences
of the computed dipole moments suggests that the results are accurate to only
about 3 significant figures. This somewhat limited accuracy is a consequence
of the several stops and tolerance criteria inserted into the program to reduce
the computation time involved. Though it would be a straightforward task to
improve the accuracy at the expense of an increase in the running time of the
program, such an improvement was not felt to be necessary for the purposes

of this study.
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APPENDIX B

NUMERICAL DETERMINATION OF SURFACE CURRENTS
AND FAR FIELDS FOR BODIES OF REVOLUTION

B.1 Introduction

In this Appendix we examine the backscattered field produced by the plane
electromagnetic wave
1=§elkz. §1=9Yelkz

E (B.1)

when it impinges axially on a perfectly conducting body of revolution. Numerical
computations of surface currents and far fields have been previously developed
by Andreasen (1965) and by Harrington and Mautz (1969a,b), among others. The
method given here permits the determination of the various multipole (in par-
ticular, dipole) contributions to the far field.

In section B. 2, the surface current is studied by means of the integral
equation of Maue (1949). The longitudinal and circumferential components of the
current are solutions of two coupled one-dimensional integral equations of
Fredholm's type; these equations become uncoupled only for a conical surface.
Low-frequency approximations to these equations are discussed in section B. 3.

In section B. 4, the general expansion of the scattered far field in terms
of the TM and TE modes is reviewed; the coefficients of the expansion are
given by integrals over the electric current in the scattering volume (much of
this material may also be found distributed through the book by Panofsky and
Phillips (1962)). In particular, the dipole contributions to the backscattered
field are examined in section B.%, and a comparison with the well known
formula by Siegel (1959) is given in section B. 6.

Finally, a numerical evaluation of the low-frequency backscattered field

is performed for various bodies of revolution, in section B.7. This result is
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achieved in two steps. Firstly, the coupled integral equations for the surface
current components are replaced by a system of linear algebraic equations, by
dividing the body profile into a number of cells, over each of which the current

is assumed to be constant. It is well known that at high frequencies this pro-
cedure entails considerable difficulties when the field point and the integration
point belong to the same cell or to neighboring cells (Goodrich and Stenger, 1969);
however, it is shown here that the difficulties can be avoided if the scatterer is
not large compared to the wavelength. Secondly, an integration of the surface
currents over the body surface yields the dipole contributions to the far back-

scattered field. The computer program is printed in section B. 8.

B.2 Surface Currents

Consider the perfectly conducting body of revolution shown in Fig. B-1.

Maue's integral equation for the surface current density I (r) at the point P (x) is:

I (1) +2L7rffK (R)GA{}'_' -;)Ax_(y)} ds'=20am @ | (B.2)
S

where fi is the outward unit normal, r' is the integration point on the surface

S of the scatterer, _}_Il is the incident magnetic field which we choose according

to (B. 1), and

K(R)=R—2(ik-R_1)elkR , R=l£'-g (B.3)
Set:

10 =1, @1, 0 4 (8.4

2\ = t LY, ¢ by ¢ : .
With reference to Fig. B-2, observe that

A A A A

t = cos le\'—sinﬁe , Ir\1=cos39+sinBr (B.5)
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d
tano = P p(z)

FIG. B-2: Unit Vectors at the Point P.

FIG. B-3: Geometry for the Far-field Expansion.
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and therefore:
A A A
/r}/\ (?'At') = - sin B' cos Yt - sin B' sin a sin 'y¢ s

A A
Aada 6’) = -cos 0' sin Yt +(cos 0' sin @ cosy - sin6'cos ) § ,
(B.6)

A A
QA({“At') = (cos 0 sin @' cos ¥ - sin 8 cos a' ) t-sinBsin'ysina'a s

A A
ﬁl\(?l\ﬁ') =-cosf sinyt-sin Bcosyf ,

where f('=6'-a', and

vy=0'-¢ . (B.7)

Now we make the Ansatz:

It(g'_) =Y f(s) cos ¢ eikz s I¢(£) =Y g (s) sin ¢eikz , (B. 8)

and we observe that since

|}
R = r2+r'z-zrr'(cosecos9'+sin6 sin 6' cos ) =

L

o - 0% + (2 - 29%+ 2 pp" (1 - co8 (B.9)
is an even periodic function of ¥ with period 2w, and is symmetric with

respect to vy = 7, then so is K (R).

Therefore:

27 2T
f d¢'Kcos¢'=2Ao cos¢, f d¢'Kcos¢'cos’y=2A2cos¢,
0 0
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2T 27
f df' K sin f'sin v=2 A, cos f, f df' Kcos §'siny=-2A, sing,
0 0

(B.10)
2T 2T
f d¢'Ksin¢'cos’y=2Azsin¢,f d¢'Ksin¢'=2Aosin¢,
0 0
where
T T 5 T 9
A0=j' dYK (R) cos v, A1=f dyK sin” v , A2=j'd’chos Y.
0 0 0
(B.11)

When equations (B.4) - (B. 11) are substituted into (B. 2) the ¢ - dependence
drops out (the Ansatz (B.8) is thus justified), and one finds that

B o
f(s)=2- %r'f ds'p' elk(Z _Z){f(s') [AO p cosa' - Az{p'cosa'+(z-z‘)sin a}]+

A

tg(s" A (z-2"), (B. 12)

Gy
g(s)=-2 sina+;1r- ds'p' elk(Z 2

A
.{g(s') [AO p'cosa - A2 {p cos a + (z'-z) sin 0:}]+

+ f(s") Al [p sin ' cos @ - p' sin @ cos @' - (z-2') sin @ sin oz']} ,

(B.13)
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B
where s is the arclength from A to P shown in Fig. B-1, and JCA means

that the integration is along one half of the whole contour, i.e. in the semi-

plane (x =0, y> 0).

The fundamental equations (B. 12) and (B. 13) are two coupled one-dimen-

sional integral equations of Fredholm's type. They become uncoupled only for

a conical surface.

B.3 Low-Frequency Approximation

Equations (B. 12) and (B. 13) are exact. If low-frequency approximations

are desired and if d is a characteristic dimension of the scatterer, then

6 =kd<<1

(B.14)

is the parameter of smallness. Let us normalize all lengths to d, and let us

"bar" the normalized quantities, e.g.

f=ob |
1}
=
~—~—
&
0.
n
n
~~
R
¢}
[yl
Q

Now observe that

K=R" |[-1+

n

n (M8
=]

. -
—~
i

= |
On
N

=1

and assume that

00

n-=

()= £ 6", @)= ). g (0"
0 n=0
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where fn and g, are independent of 6. Substitution of (B.14) - (B.17)
into (B.12) and (B. 13) yields the following set of coupled integral equations,
all independent of 6. The zeroth-order approximation is:
B T
f(§)=2+LJ( ds! E‘f dy f(g‘)[gcosa'cosv-
0 T R 3( 0
A 0

- (;‘ cos a' + (; -z ") sin a') cos2 'y]+ go(_s-')(; - ;') sin2 Y(,

(B.18)
B U
g (-s_)=—2sina--1—f d_s-'E'f dy g (g')[;'cosacosv -
(o} T ES 0
A 0
= = TN 2 el bl
-(pcosa+(z'-2z) sin a) cos 7]+ fo(s') [p sin a' cos @ -
= = TN . . 2
-p'sinacos ' -(z -2") sin @ sin a'] sin 'y}. (B.19)

The higher-order approximations are obtained by putting n =1, 2, 3,... in the

following coupled equations:
T n-{

n
- &y | m-0R R+ z'-2)
dS'P'f:' — -1 —= X
2 0 R3 R+z'-2z2 (n -2}

-‘-ll'—‘

f(s=

- - - 2
{f (s )[p cos @' cos ¥ -(p'cos a'+ (z - z'") sin a') cos 'y] +

+ 8 (sY) (z - 2" sin2 7} (B. 20)
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o ~ - = 2
x{gz (s [p'cosacos Y-(p cosa+(z'-z) sina)cos” v| +

-

-

=y by — =Ty . . 2
+ fﬁ (s" [p sin @' cos @ - p' sin @ cos @' + (z' - z) sin @ sin @'| sin '}}

(B.21)

It will be shown later that both fo’ go and fl’ gl are needed to obtain
the first-order term in the low frequency expansion of the far field. From a
numerical viewpoint, it is thus apparent that it is simpler to deal directly with
the system (B. 12) - (B.13), rather than with the two systems (B.18) - (B. 19)
and (B. 20) - (B.21).

B.4 Far-Field Expansion

Let us suppose that the scattering body (or bodies) occupies the finite
volume V'of Fig. B-3, so that the secondary sources are confined within a
sphere of finite radius. The scattered electric field at a point (r, 6, ¢) in the

far zone is:

S m S m S
E°Y D )" By + by Ey) (8.22)
L m

where the subscripts E and M correspond respectively to the TM and TE

modes,
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with

oale i im m A\
= () 5 0t smo Yy G F)
RS )’ 1kr/?/\vy ©,9) =
. m
) N elkI‘ BYI (6, ¢)/\ im m A
= - () 20 “smg Y @9 ),
s
Ylm(e, p) = [(2z+1 f———(H I Pm(cose) Jmf ,

ike [5Y,°6, §) A

m
YI (9: ¢) =

*
o, p =0T Y, 6, P,

P;m (cos 6) =0,

= (-1)

The coefficients a;n

aﬂm = 4—Z7-rf l‘ V'A{V'A[!_' ﬂ;m(zt)]} dvl s
V!

for {<m,

m (£-m)!
(£+ )'

and b;n

(os(-)) for £> m

are given by:

&ﬂdV',
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(B.24)

(B.25)

(B. 26)

(B.27)

(B.28)

(B.29)



where J is the true volume current density, i.e.

VAH = J-iwe E, VAE= iy

E=iop H, V.J-iwp=0, (B.30)

and

Ty (1) = 3,00 Y, 70, ), (k) =[5

L1 (kr) . (B.31)
2
The above results are exact. If kr'<<1lin V', then the multipole description
of the scattered far field becomes useful; by replacing j ) (kr") with its first
term in the expansion for small argument in a;n (b;n) , one obtains the
contribution of the electric (magnetic) multipole of order 2£ . In particular,
arzl and bzm vanish for £ = 0 (no radiating monopoles); thus, the leading term
is due to the electric and magnetic dipoles.

Finally, we remark that in (B. 28) and (B. 29):

V'A[E' ﬂ;m (E')] = - jl(krl) {’9\: i ¢| 5" ¢|) (B. 32)

-m A !Z(kr') -m
V'A{V"‘ [?-'7'1 (z')]}= SR Y, (6,00 +

F s [r' jl(kr')]{ o 3} e, . (B.33)

The above formulas are useful if higher-order approximations (such as
quadrupole contributions) are desired in the low-frequency expansion of the far-
field. The leading contribution is due to the electric and magnetic dipoles,

and is considered in detail in the following section.
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B.5 Dipole Contributions to the Backscattered Field

The radiation field due to the electric dipole P is:

3 ikr
S_ _k e A LA
E = -t —
= e Tk [(—PAer] ’
.34
s k3Y eikr (B.39)
B ire o (BAT)
where
:i;' ! =
P “’f Jav' , (w=k/ € H,) - (B. 35)
Vl
The radiation field due to the magnetic dipole M is:
s k3 eikr A
B%- -5 S [uadat] |
3 " (B. 36)
ikr
s kZ e A
E= " o (MAT)
where
1\_4=%f (r'Ad) dv' . (B.37)
VI

By using the results of section B. 2, it is found that

. B 27
i€ -
p= —ff ds'j‘ d@rp! R {f(s') cos ' /t\' + g (s") sin ' ﬁ'}, (B.38)
0

A

and since
A A
t' = sine' cos f' X + sin o' sin §' § +cos o’ %,
(B.39)

A
g = - sin ' ¥+ cos ¢'9
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it follows that
17T€o ikz!
P=P 2-% ds'p'e f(s') sin o' - g(s")} . (B. 40)
A

Similarly, it can be proven that

B
e !
M= Mygf‘ = 9 (- gmf ds' p' elkz {f(S') (p' cos a'-z' sin a') + g (s") z'}.
A

(B.41)
The far backscattered field due to the electric and magnetic dipoles is:

g5 . _ pp F=F +F , (B. 42)
- e m

where Fe and Fm are the electric and magnetic dipole far field coefficients:

f ds' p! ol f(s') sin a' - g(s')} (B. 43)

k
Fe T4q

u;|.-

%— ds'p' e f(s') (o' cosa'-z' sina'") + g (s") z}

=

n

1

*I
N

n

(B. 44)

Let us now consider the low-frequency approximations to Eqs. (B.43) and
!

(B.44). By using (B.17) and expanding the factor elkz in powers of kz', it
is found that

i 2f® - - - <
F =76 X ds'p! .f° (s") Sina'-go(S'):] -
63 e
-4 ]: a5 p{ 1, (&) sina’ - g @]« (50 sne -g1<é'}+ 0159,

(B. 45)
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m - %f‘ ds 51{f0 (s" [51 cos a' - z' sin a']+ go(g') E}+0 (64) .
A

(B. 46)

It can be proven that the integral in the term 0 (62) in F is always equal to
zero, so that both F and F are 0 (6 ). The solutlons fo, g, of the
system (B. 18) - (B. 19) determme Fm, whereas both fo, g, and fl, g, are
needed to find Fe; thus, four near-field quantities determine only two far-
field quantities. A reduction in the number of needed near-field functions
can be achieved only by recognizing that both electric and magnetic fields
are gradients of potential functions, in the static (k —» 0) limit. This is
done in other methods, such as Stevenson's; the present approach is
specially suitable for numerical evaluation of surface currents and far-field

dipole contributions, not for low-frequency expansions in powers of 6.

B.6 Comparison With Siegel's Formula

In this section, a comparison of our results (B. 43)and (B. 44) with those
of Siegel (1959) is performed. On the basis of physical intuition, Siegel

assumes that for elongated bodies:
f(s) =2, (B. 47)

F =F_ . (B.48)

Hypothesis (B. 47) corresponds to the zeroth-order approximating
f(s) =2, g(s)=-2sinc (B. 49)

. 3 1
to the solution of the system (B.12)~(B. 13). Now set elkzﬁ 1 in Eq. (B.44)
and e #1 + ikz' in Eq. (B.43), observe that ds' sin a' =d p', and that,
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obviously

B B
fds'p' sin o' =‘/'(‘ p'dp'=0 . (B. 50)
A A

Thus, within the approximations (B. 49),
B

B
3 . 3
F =- k' /A ds'p'z'sina' = - dz'p'z' tana' , (B.51)
A A
F 3
e k 2
= —  — 1 At
Fm 5 2 dz'p (B.52)
A

2
f dz' p! =¥ s (B.53)
A

where V is the volume of the scatterer, hence:

Fe k3
sz? +"E V. (B.54)
Therefore hypothesis (B.48) implies that
k3
Fe=Fm=% v, (B.55)
so that the backscattering cross section assumes the familiar form:
4 4_2
o= k" VvV . (B.56)
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B.7 Numerical Formulation

In order to solve numerically the system (B.12) - (B. 13), we replace
the two integral equations with a system of 2N linear algebraic equations
obtained by dividing the profile AB into N arcs over each of which f(s) and g(s)
are assumed to be constant (see Fig. B-4).

We indicate with As I the length of the £-th arc (12 N), with fl and
g the constant values of f(s) and g(s) over As ) and with p 0 4 9 the
values of p, z, @ corresponding to the midpoint of the £-th arc. Also, the

quantities A 0 Al’ A2 of Eqs. (B.11) are evaluated in correspondence
of these midpoints; for example, A_ = A means that the first of the integrals

0 0
L,n n,{
(B.11) is to be evaluated with p = Py 22, p' = P, z' = z, in the
B
expression (B.9) for R. The integrals f in (B.12) and (B. 13) are thus
A

replaced by summations over the N arcs.

A difficulty arises when the fixed point n and the running point £ in
the summations belong to the same arc (i.e., £ = n). This difficulty is due
to the singularity in the kernels of the integral equations, and complicates
the problem considerably at high frequencies (Goodrich and Stenger, 1969).
At low frequencies, however, the difficulty can be avoided in the following
manner: we divide the n-th arc in two equal parts and take f = fn’ and g = g,

on both, but choose the summation points n_and n N at distances Asn
8
from the midpoint n (see Fig. B-4). The system (B.12) - (B. 13) is thus

replaced by the following system of 2N linear algebraic equations in the

2N unknowns fn and g, (lKngN):
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1 N / ik(zz-zn)
fn=2-; szAsze fl AO pncosaz -
L =1 £,n

-A (plZ cos @ +(zn-zl) sin ab g, Al (zn—zz) -

2 Ji
{,n ,h
As ik(z -z)
- e " i lAa p cosa -
27 pn n 0 n -

n

_Az gpn_cosanf(zn—zn_) sin @ > +g A (z -z ) Y-
n._ n 1 n n.

n_,n

Asn ik(zn - Zn)
- — e + f 1A p_cosa -
2r T ng n 0 n n,

ny,n

-A
2 p cosa +(z-z )sina \l+g A 7 -z
n,,n

(1gngN), (B.59)
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N ik (z, -z )
g =-2sina + Ly, as, e L owlela. p,cosa -
n n Wz L L 1 0 "1 n
1=1 fn
—Az (Pn cos an+ (zl-zn) smotn) +f1A1 E)ncosafn sinal -
4,n £,n

- p, cos @, sin an-l( z, -zn) sin ¢ sin az] +

AS ik(z -2z)
+ = p. e n- g 1A p_cosa -A p _cosa t
n n 2 n n

Hz -z )sina |I+f A cosa sina - cosa sina +
(n_ n) n) n 1 pn n n._ pn n- n

n_,n

+(z -z)sina sina] +
n. n n n_

Asn ik (zn -zn)

— + -

* 2r Pn +e €n A0 pn+ cos an A2 Pn cos an *
ng,n n+,n

+(z -z)sine)l+f A p cosa sin =-p cOSC sina +
n. n n 1 n n  ng ng n,_ n

n+n

2

+ (zn+- zn) sin @ .sin ozn+ , (1gngN) , (B.60)
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where the prime attached to the summation signz means that the term
£ =n must be excluded from the sum. As
The distance of n N and n_ from n must be less that _4_n , because

As
n
A_, A, and A_ become infinite at n. The choice —— is arbitrary,

bu?; we l:ave verzified numerically in a variety of cases Ezhat other choices
produce very small variations (of the order of one per cent) in the surface
current components.

The correctness of (B.59) - (B.60) and of the related computer program
has been checked by calculating the surface currents on a sphere of radius a
with ka = 0.1 and by comparing these results with the numerical tables
of Ducmanis and Liepa (1965), which were based on the Mie series
solution to the scattering problem. The excellent agreement between these
two different approaches is exhibited in Fig. B-5.

Once the surface current components are known, it is an easy matter

toderive the electric and magnetic dipole far-field coefficients Fq and Fm

From (B. 43) and (B. 44) :

N ikzn
z Asn e (:fn sina - gn) - (B.61)

;-hlv-'-

K
'8

m A s e [fn (pn cosa - z sin afn) + g, zn] . (B.62)

..Mz

For a sphere with ka = 0.1, it is found that F_ = 1.008 x 103175107

and Fm =0.497 x 10_3 -i 1.6x 10_7 ; the exact values are Fe = 10-3 and

F =0.5%10°.
m
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The computer program based on Eqs. (B.59) - (B.63) has been applied
to a variety of scattering shapes. The results obtained are presented in
Chapter 4. Among these shapes is a round-backed cone, whose far-field
coefficients agree very well with the values obtained by another method in

Appendix A.

B.8 Computer Program *

The main program and the various subroutines for the solution of the
system (B.59) - (B.60) and for the determination of Fe and Fm are printed in
the following, with a few obvious changes of symbols., We only remark that the
total number of subdivisions of the arc AB is indicated by M = MA + MB + MC,
instead of N. The most general profile AB that can thus be dealt with is made
of three parts, with subdivisions MA, MB and MC ; the length of the subdivisions
is a constant within each part. The contour part with MA subdivisions always
begins at A and is either a straight line (such as for a cone-sphere) or an arc of
a circle whose tangent is perpendicular to the symmetry axis at A; thus MA 7l= 0
always.

The contour part with MB subdivisions is a straight line joining the first
and third parts of AB (such as the conical part of a sphere-cone-sphere), or a
straight line ending at B (such as for a flat-base cone), or an arc of a circle
ending at B with a tangent perpendicular to the symmetry axis (such as for a
cone-sphere). The contour part with MC subdivisions is either a straight line
ending at B (such as the base of a flat-base cone with a rounded nose), or an
arc of a circle perpendicular to the z-axis at B (such as for a sphere-cone-sphere).
If the contour AB has two parts only, such as for a cone-sphere or a flat-base cone,
then MC = 0; if AB has one part only, such as for a sphere, then MB=MC=0. If
the contour AB is more complicated than those considered in the present report
and must be broken into four or more parts, the computer program can still be
used as it stands, the only needed modifications being the appropriate additions

to the data subroutine.

x®
This program was written by Mr. Wei Cheng Yang.
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APPENDIX C

INTEGRAL EQUATION FORMULATION OF LOW-FREQUENCY
SCATTERING FROM A SLENDER CONE SURROUNDED
BY A PENETRABLE OVERDENSE PLASMA SHEATH*

C.1 The Fundamental Integral Equation

We shall consider a conical metallic shell coated with a thin overdense
plasma sheath extending well beyond the rear of the shell (see Fig. C-1). The
metallic shell should be a good approximation to a slender finite cone for fre-
quencies in the Rayleigh region.

At a point X exterior to both coating and shell, the total electric field
intensity can be expressed in terms of the field components on the outer surface
of the plasma sheath (denoted by Sz) and on the inner portion of the conical shell

(denoted by SI ) by means of the relation:

E(x)-= E°<’-*o’+al;f{iwuoﬁ/\ﬁ<§+(ﬁ@)w d+®.E9 V@}d8+
Sy

+Zl;f{iwuoﬁnf_1@+(ﬁ-ge) v@}ds , (C.1)
-
1

where Eo is the incident electric field,

RU
@ "R ¢ (C.2

sk
This formulation is due to Dr. Vaughan H. Weston.
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FIG. C-1: Geometry of the Problem.
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FIG. C-2: Convention for Unit Normals.
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FIG. C-3: Geometry for Jump Condition.
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and R = Ig -X OI is the distance between the integration point x and the
observation point x o’ the unit normal % is directed from the shell or plasma
into the surrounding free space (Fig. C-1). The superscript e on 2 -_Ee
denotes the exterior value of the normal component. If 1. _E_li represents the

interior value, then on the plasma boundary S_, we have the continuity con-

2 2
ditions .

A E°-NR.E, (c.3)

where N is the local index of refraction of the plasma sheath.
If S is the complete surface enclosing the plasma, i.e. S = 82 + Sl' where

SI is the concave portion of the conical surface, and V is the volume enclosed

by S, it can be shown that for x o not in V,

f (kf - E §av —f{ op RaH+ BaBI AV ¢+ (ﬁ-El)VQ}dS
v S
2 2, 2 . . . :
where kl =Nk~ . Employing this relation, Eq. (C. 1) can be placed in the form

0 1 2 .2 1 A _¢© -2
E(}_{o)-E (§O)+4Wf(kl-k)2¢dv+4ﬂfn'I_E(l-N )V@dS +
v S9

+Zl7;";{iw#oﬁh(ﬂ-- H) §+2-(E™-E) v@}ds ,
! (c.4

where use has been made of relation (C.3). The notation H and _}_I+refers to the
values of H on the concave and convex portions of Sl’ respectively. It can be
shown that Eq. (C.4) is valid also for Ko in V. As a check, it is seen that when
S, vanishes, i.e. only the conical sheath is present, Eq. (C.4) reduces to the

1
integral equation of Barrar and Dolph (1954).
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By taking the curl of Eq. (C.4), it can be deduced that

i 2 A -
H(z ) = f_I°(>_<0) - 4ﬂ;uof(k1-k2) v QAEdV+ i;f A i»[n A(H -g+)]ds,
\

5

(C.5)

where Vo.operates on X..

We shall consider the case of an overdense penetrable sheath, i.e.
INI >>1, but |k6N| <<'1 where 6 is the thickness of the sheath. The process
shall be accomplished by taking the limits ké -+ 0, N -» o, such that the factor

2
n=N" ké (C.6)
remains constant. For such a situation, it is shown in section C.2 that for the
portion of the plasma sheath not bounded by the conductor Sl’ jump conditions

upon the tangential magnetic field will prevail, namely

AF A -]= __T)[ ]
Z[n AH +naH 5 tan —ta (C.7)

where ﬁ+ and i~ are the normal unit vectors directed out of the plasma sheath
(see Fig. C-2). In addition, there is little change in the tangential component

of the electric field intensity, i.e.
E ~E . (C.9)

When the sheath is bounded on one side by a perfect conductor, the tan-
gential fields on the free side can be expressed in terms of an impedance
boundary condition. Since the permeability is the same as in free space, the

tangential fields approximate those for a perfect conductor, i.e. E tanN 0.
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By employing Egs. (C.4) and (C.8), or Egs. (C.1) and (C.7) for the

unbounded portion of the sheath, it can be shown that

o L - +] k
E(s) = B ) +— SnA[E '] §as+ L | nEy, das
2

T
21

+;11—f ﬁ.[g‘-§+]v4>ds : (c.9)
5.+S

The representation for the magnetic field becomes

0 1 - _*+ iy
Bix)=H ()‘{'o)+41rj; Voé/wé/\(ﬂ -H )}dS _41rj; T Voé"gtan as .
1 2

(C.10)

To develop the integral equation we first set

J= {‘m[g'- §+] . (C.11)

It can be shown that

- - - (9
ive B [g - _E_+]=':‘1. [VAI;I-VAI_I+]= v.[ﬁ AH -?mf] = -v.

ley

(*)

Note. For a curvilinear surface formed by the coordinate u_=constant of an
orthogonal coordinate system (ul, U, u3), the relation should be
Vh,-J

hq

A - +
n-[VAI_i - VaH ]= -V.d+

where h3 is the metric coefficient normal to the surface.
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Equation (C.9) then reduces to the form

iwu .
Y 0 o1
EGg)=E@&)+ - [3das . f(v.g)véds
S °Js

where S = Sl+S2 . Let the point X, approach the surface S, We then obtain

the following integral equation

iwu .
A A (0] 0 A 1 A
E(x ) =0 AE +—=2 - .
T Bl =B )+ f (np"l)@dS ar weof(v l)np"V(I)ds’
S

S (C.12)

AI_E(}_(p)=O, for )_:p on Sl‘

Ad, forx on S (C.13)

p p 2°

Equation (C. 12) is thus the fundamental integral equation, For Rayleigh scatter-
ing, this equation can be simplified by replacing @ with 1/R.

C.2 The Jump Condition

We shall derive the jump conditions associated with the magnetic field for
a plane wave incident upon an overdense plasma slab whose thickness is less than
the skin depth, i.e, a penetrable slab,

The geometry is given in Fig. C-3 with the plane of incidence being the
y-z plane, The angle of incidence is given by 6, the thickness of the slab by
o , and the index of refraction by N. The two cases of polarization will be

treated separately,

152



1) Polarization Perpendicular to the Plane of Incidence

In this case we have

E= 2 u(z) eikysin 0 .
. _ou ikysin 6
1wuo Hy 3z e

where u(z) will have the following form

u=Te-laoZ, for z<0 ,
=T [cos @2 -ipsin apz] , for0<z<54é,
-ia (z-6 ia (z-
=e 1a/o(Z )+ Rewo(z %) , forz>6 .

The parameters ao, p, and ap are defined as follows

[\

a =k2c0326 s

N O

a = (N2—sin26)k2 ,

]

P =a/ )
The transmission coefficient T is given by the relation
il 1
= -—=(-4 i
T =|cos §f 2(p p) sin ¢ ,
where §f = ap6 » and the reflection coefficient R satisfies the relations
1+R=T[cos¢-ipsin¢] ,

R-l=-§[isin¢—pcos¢] .
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ikysin 6

By omitting the factor e , we have

__1 |8u, ou
Z [Hy(é)-Hy(O)] =- [(az )‘S (8z)o]

e

o

[iao(R—l) +iTao] = (R+T-1)cos6=Tcos [1 i ;in - cos ]
~ T[i¢ 2_sin% + O (¢zcos 6)] ,
1 1 T N 2
5 [EX(6)+ EX(O)] =3 [1+R+T] =3 [1+cos¢ - ipsin ¢]~T [1+0(p¢)+0(¢ )] .
From these two relations we have the jump condition for |Nk5l<< 1:
Z [H; - H;’]M% N2k [E'; + E;] (C.14)

In addition we have

2
+ -
E -E =1+R- TAII‘[cos (#-ipsin ¢—1]~T [— % —ip¢]~-ip g—>0.
(C.15)

2) Polarization in the Plane of Incidence

Here we have

7 =3 u(z) V0

and
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The function u(z) has the form

-iafoz
u=Te s for z <0,
=T [cos (apz)—iqsin (apz)] ’ for 0<z <6,
—iao(z-é ) iao(z -5)
=e + Re s for6 <z ,

where

q-= N2p~N cos 0 .

The transmission coefficient T is given by

-1
i 1, .
= - + —
T [cos ¢ 5 (@ q) sin ¢]
and the reflection coefficient R satisfies the relations
1+R =R[cos¢ - iqsin¢] ,

R-1=%[isin¢—qcos ¢] .

By omitting the factor e1kys1n 6, we have

7 [H; - H;]= 1+R-T=T [cos ¢ - iqsin ¢ - 1] =T [—iq¢-o (¢2)]

and

11+ - i . ] cos 0
— + P - - - -
5 [Ey Ey]= ok [+1a0( 1+R) iaoT 5 (T+1-R)

cos 6T [1 -lziﬂ cos ¢]~T [cos 6 - -15 k6] .

N |
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Thus we have

+ o=l 12 + -
Z[HX-HX]- 5 N k6[Ey+ Ey] . (C.16)

In addition, it can be shown that

+ - .
E - Ex.vvcos 6 (-T+1-R) =T cos 6 [—1 - %ﬁ + cos ¢]

~Tcos9[—%2-il]~-igcose [1+1¢_

q 9 q] T~O (k8) . (C.17)

By using (C. 14) and (C. 16), we see that the jump condition can be expressed
in the vector form:

+ :
A i + -
= -= +
Z[n/\_f_l]_ 2N2k6 [g 0 Etan]‘

which is relation (C.7)., Furthermore, it follows from (C.15) and (C,17) that
E is continuous, i.e,
—tan

Etan ~ Eta.n ?

which is relation (C. 8).
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