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ABSTRACT

From known exact results in acoustics and electromagnetic theory for
the prolate spheroid, one predicts that the length of the resonance region
depends on the length-to-width ratio of the scatterer, It is found that
phyeical optics formulas previously used by us for thin cones are not applicable
to large length-to-width ratio cones, New approximate formulas are derived
for cones and cone-cylinder combinations, It is found that in the cases
where the wavelength is large with respect to the dimensions of the object,
for bodies of revolution with the incident Poynting vector on the axis of
symmetry, the back scattering cross-section can be approximated roughly by
% v, where k is %:‘.,and V 1s the volume, For all prolate spheroids, the
rough formula given above yields results correct within 12 percent, For a
flat body a correction factor is called for, and this is presented. It is
found that for all spheroids this correction factor yields the exact Rayleigh
result within 1 percent. New conclusions are drawn about the resonance region,
but they are too complicated to swmmarize in this abstract,

The analysis reported here was done under several contracts. However,
its applications to the CAL project PLATO became obvious, and as a result the
analysis was pushed towards conclusions affecting the CAL study. The work
of Brysk, Crispin, and Kleinman was performed under AF OL(645)-33,while the
work of Goodrich was performed under Purchase Order L 265165-F31 with the

Hughes Aircraft Company,
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THE RADAR CROSS-SECTION OF CONICAL BODIES OF REVOLUTION

In examining the radar reflection characteristics of a perfectly con-
ducting finite body of revolution it is convenient to distinguish between
three wavelength regions: ‘ _

(1) the Rayleigh region, where the wavelength of the radiation is

large compared with all characteristic dimensions of the body;

(2) the physical optics region, where the wavelength of the radia-

tion is small compared with almost all characteristic
dimensions of the body; *

(3) the resonance region, intermediate between the other two,

Tn the first two regions good approximations to the cross-section can
be obtained without recourse to the exact solution of the electromagnetic
theory boundary value problem, This solution is unavailable for all
finite bodies except the spheroid, in which case electronic computations
are required, Such cbmputations have been carried out in a very few
cases. In the Rayleigh region, we develop from Rayleigh's results for
spheroids a procedure for approximating the cross-sections of other bodies
of revolution, and illustrate the method for several of the more common
shapes, Ir the physical optics region, the cross-sections of a number of
bodies of revolution have previously been given (Ref, 1); we present here
several new results. In the resonance region, we indicate how a qualitative

description of the cross-section can be obtained in the absence of a direct
# A noteworthy exception is a conical point,

1
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solution by combining our knowledge of the cross-section in the other two
regions with the results of cgrtain physical arguments; in same cases the
cross-section in the resonance region can thus be pretty well delineated,
Explicitly, we find for the Rayleigh region that the backscattering
cross-section of an elongated body of revolution for incidence along the

axis of symmetry is given by

(.%Q‘vz

where k is the wave mumber, and V the volume of the body. For bodies that
cannot be considered elongated (along the axis of symmetry) a correction
factor must be applied to the above expression to obtain more accuracy. We

alter V to VF where
Fel+le7
wy

and the elongation factor y is the ratio of the characteristic dimension
along the axis of symmetry to the characteristic dimension perpendicular

to the axis of symmetry, For geometrical configurations that allow this
transformation, y is determined by contracting the body to a disc and
requiring that it assume the correct cross-section in the limit; this is
illustrated for several of the more common shapes, For scattering in other
directions, the Rayleigh cross-section is obtained by approximating the body
by the equivalent spheroid - i.e,, replacing it by a spheroid with the same
axis of symmetry, volume, and elongation factor., The Rayleigh cross-section
of a spheroid for slant incidence is derived, Details will be found in

Appendix A,
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To determine radar cross-sections using physical optics, certain .
simplifying assumptions are made about the nature of the incident wave and
\ the scattering body., One of these assumptions restricts the possible bodies
to those whose normals vary continuously over the surface. In practice, 1
however, failure to satisfy this requirement has proven to be no bar to
succeasful» application of the method. It is not the intent here to explain
why the optics approximation can be successfully applied in a wider range
of cases than is indicated by its derivation, but merely to present same
heuristic criteria for determining the validity of the physical optics
results, whether or not the continuity requirement is met, with particular
enphasis on the finite cof_xe.

Those bodies with point discontinuities or sharp edges that have been
treated as scatterers using physical optics include cones (finite and semi-
infinite), ogives, wedges, cylinders, and flat plates and discs, The semi-
infinite cone and the thick ogive, considering just the tip result, are
the most outstanding ex,ulplas of the successful application of physical
optics to bodies outside the purported range of validity. As for the other
bodies, it was expeéteci and has indeed been verified that in spite of the
existence of a sharp edge, the physical optics' approximation is a good one
fwhen the normal to the surface is parallel to the direction of incidence,
This condition is nearly present for very thick cones,* Indeed, in the
limit as \the cone approaches a disc, the phyaical optics cone result

approaches the physical optics disc result, Thus, at least for thick cones,

#* The de?ignations "thick"and "thin" are, of course, quite arbitrary, For
the present, a cone half-angle of 15° will be taken to delimit "thick"and
"thin" cones.
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it is expected that the physical optics approximation will yield good

results, In the case of thin cones viewed nose-on, however, the situation
) is one where the incident and surface normal directions are considerably
separated, This is an example in which one should improve upon the results
predicted by physical optics. The physical optics result for the finite
cone, generalized to include incidence at small angles off nose-on, is
derived in Appendix B, In view of the comments above, specifying that the
wavelength be small is not sufficient to assure the validity of the optics
approximation and, therefore, these results should be used with caution,
Reasoning from known exact solutions one can predict where one would
expect pitfalls in using physical optics. If one considers the source and
observer near one of the plane faces of a wedge but far from the wedge
edge one finds the return from the wedge edge is considerable, This is not
predicted by physical optics! One then realizes that as finite cones become
longer and thinner, the same pitfall can be expected to exhibit itself,
This, in fact, occurs,as can be observed from all known experimental results.
We now present a method which enables one to obtain good theoretical
estimates of the cross-sections of cones for such a situation. The
advantage of this method lies in that it is a more accurate representation
of the physical situation and is readily extended into the small wavelength
or "optics" side of the resonance region, It is expected that due to the
behavior of surface currents in the neighborhood of cormers and edges, the
dominant contribution to the cross-section of thin cones at nose-on aspects

should come from the ring singularity at the base, (The tip contribution

L
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is known to be small from the exact solution of the semi-infinite cone
problem.) Thus an adequate treatment of the base of the cone should pro-
. vide a good approximation to the behavior of the entire cone, In essence,
the procedure is to approximate the base by an array of straight segments,
find the scattered field due to each segment (neglecting end effects),

and integrate around the base, (This is similar to defining a circle as
a polygon whose number of sides increases without limit.) This has been
done by treating each segment as a thin wire (Appendix C) and also by
treating each segment as a wedge (Appendix D). The small wavelength
restriction still must be met,

For the resonance region (aside from the very few cases in which the
exact solutions of the Maxwell equations and the boundary conditions are
available), we achieve a qualitative -- in some cases near-quantitative --
description by extending the results obtained in the Rayleigh and physical
optics regionsby means of some assumptions based on experience as to the
behavior of the cross-section as the resonance region is approached from
either end, and also from the general ideas about, and models of, the
resonance region proper., The extent of the resonance region is determined
by the range of wavelengths for which the wavelength is neither very large
nor very small compared with all the characteristic dimensions of the body.
If the characteristic dimensions are comparable, the resonance region is
small; if they differ considerably from each other, it may be large. The

ratio of characteristic dimensions also determines the general character of

SECREr
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the variation of the cross-section with wavelength,® It is conveniert

to use the concept of a major maximum - defined as a maximum whose
amplitude equals or exceeds that of the first maximum on the Rayleigh side,
The first maximum 6n the Rayleigh side is thus always a major maximum,

The cross-section of an elongated body can be expected to have several
major maxima, and thus to be difficult to approximate; the cross-section of
a sufficiently flatter body should have only one, and it should be possible
to bound it fairly narrowly. For instance (see Fig. 1), the exact theory
solution for the 10:1 prolate spheroid shows several major maxima, while
the sphere and the disc have only one, There is then some critical

spheroid whose dimensions are such that all spheroids with greater_g.
(ratio of semi-major to semi-minor axis) have more than one major maximum

and all spheroids with smaller ,:. have only one major maximum, In
acoustics the situation is reversed. The sphere curve has several major
maxima while the 10:1 spheroid has only one (see Fig. 2). In this case,
there will be a critical spheroid such that all spheroids with greater%
ratios will have only one major maximum and all spheroids with smaller %
ratios will have several major maxima,

On the Rayleigh side of the resonance region, the Rayleigh cross-
section is expected to provide a good upper bound to the actual cross-
section, which falls gradually and monotonically below the Rayleigh result
until the first maximum is reached, The initial behavior of this deviation

can be obtained by Stevenson's method (Ref, 2) (an éxpansion of the Maxwell

# In this discussion, we assume that the radar cross-section divided by
either the geometric optics cross-sectign or the physical optics result
is plotted as a function of kd where k _7{1 and d is some dimension of the

scatterer,

6
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equations in a power series in k, and solution of the resultant coupled
equations for the coefficients) but this approach fails before the first
maximum is reached, On the Rayleigh side of the resonance region, the
cross-section is expected to depend on the major large linear character-
istic dimensions of the body and not upon fine details of structure; this
is in contrast to the dependence in the Rayleigh region where the depend-
ence is on the volume of the body, A thin elongated body will behave like
an antenmna , i.e,, its cross-section will have maxima whenever its length
is equal to an integral number of half-wavelengths,

Assuming that the base is still the dominant feature of a thin finite
cone as the resonance region is entered from the physical optics side, the
resonance maximum of the ring singularity-would approximate, in both
position and amplitude, the last large maxiﬁum of the cone, Since in any
physically realizable situation, the edge of the base of a cone will have a
non-zero radius of curvature, b, (b<< X)', the only difference between it

and a wire loop (wire radius << A) relative to incident electromagnetic
energy is that currents can exist "inside" the loop but not "inside" the

base of the cone,
When one looks at the axially symmetric cross-section of a ring as a .

function of wavelength one finds that there are no minima, This, then,
allows one to predict that the contribution of the inner edge is

negligible in comparison to the outer edge when the wavelength is equal to
the order of the loop radius but greater than the wire radius. (If there
were non-negligible contributions from both the outer and inner edges, then
at some wavelengths they would add in phase and at some wavelengths they

would add out of phase, But there are no noticeable minima in this region!)

9
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Thus the cross-section of a loop here looks like a Rayleigh side-type

answer, depending only on the loop radius but not on the wire radius, This,
. then, gives added justification for using an analogy between the conical

base and the wire loop, Kouyoumjian's variational results (Ref, L) for

wire loops in the resonance region, can then be utilized, His results

(as a function of wire radius and loop radius) indicate that the resonant

peak is fairly insensitive to changes in wire radius but éhat as the

wavelength decreases the wire radius becomes important, In the region

of small wavelengths, the wire loop result can be used to furnish an upper

bound on the cone result, since bounding the loop result will, in general,

bound the cone result, (The small wavelength wire loop result is derived

There is another cone result in the small wavelength region that is
obtained by treating the base of the cone, locally, as a wedge, Using
physical optics to compute the fields due to the local wedges, and
integrating, one obtains precisely the usual physical optics cone result
(see Appendix D), Thus, even though physical optics is of dubious
applicability, the two physical optics approximations yield consistent
results, The wedge-type approximation is then carried out using for the
scattered fields expressions generally more exact than physical optics,
The resulting wedge-type cone answer is meant to apply only to thin cones
and does not compete with the physical optics approximation for thick cones,
Thisresult, like the physical optics result,is independent of both polari-

zation and wavelength; however, the two answers differ considerably for

SE=EC
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thin cones, as we expected. Since Kouyoumjian has computed the wire loop
cross-section in the resonance region,numerical values are available to
match the "wedge" result for thin cones in the small wavelength region with
the wire loop result in the resonance region, This yields an estimate of the
section from the last large maximum out to the zero wavelength limit,
Consolidating all these considerations, we obtain an approximate des-
cription of the cross-section of the finite cone, covering the complete

range of wavelengths for nose-on incidence, In the Rayleigh region, the

cross-section is given by

2
1 ..’-9‘ b2 (k)b ( 1+ _}Vr o~ (W/lir) ) h = height, and
my/ar , r = radus of
base,

For a thin cone, the second term is negligible, In the resonance region,
a thick cone should behave like a disc, which has a single major maximum,
A thin cone can be expected to have more than one major maximum, The last
large maximum on the optics side will be given by the wire loop, For all
cones, subsidiary maxima may occur on the optics side of the wire loop

(or disc) maximum,

) In the optics region the cross-section for a thick cone is
2
g- = D tan« %. + ikh _2?_121_1 ’ -('%.cone angle,

which for )\ very small in respect to both r and h becomes

0 = nrl tan? o .

1
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The cross-section for a thin cone is
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APPENDIX A

RAYLEIGH CROSS=-SECTION OF BODIES OF REVOLUTION

Rayleigh scattering (Ref, 5) describes the scattering of electro=-

. magnetic radiation by a body whose dimensions are much smaller than the
wavelength of the radiation, Thus the Rayleigh limit describes the
scattered field due to an incident plane wave approximated at a large
distance from the body by the field of radiating electric and magnetic
dipoles located at the scatterer (the magnetic dipole contribution is come-
parable to that of the electric dipole only for a perfect conductor), To
evaluate the electric (magnetic) dipole moment, the static electric
(magnetic) field on the body due to a constant parallel incident field must
be known, In other words, the electrodynamic boundary-value problem has
been reduced to a corresponding static problem,

Although the solution of the Laplace Equation is in principle simpler
than the solution of the Maxwell Equations, there are very few geametrical
cases for which even the former is manageable, The question, therefore,
‘arises whether any approximate information can be obtained as to the
Rayleigh cross-section when a solution of the Laplace Equation is not avail-
able, That this should be possible is heuristically plausible, When the
wavelength is much longer than the dimensions of a body, one cannot
discern details of the structure of the body - the observed effect depends
more on the size of the body than on its shape, Thus, knowledge of the

size of the body, modified by a rough indication of shape, should suffice

13
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for a good approximation to the Rayleigh cross-section.

of the present discussion to explore this possibility,

examine backscattering of a plane wave incident along the axis of symmetry.
(Thus, the direction of incidence will be denoted by z, the incident

electric vector direction by x, and the length of the body along the

symmetry axis by L.) The electric dipole moment P is given by

7= wTds
pe f w

where @ is the charge density, T the position vector, and S is the surface

of the body, The boundary condition yields

w-e'ﬁ-ﬁ- €E

where € = dielectric constant, % = outward normal to the surface, and

E= electric field strength,

Using cylindrical coordinates,
48 = pdf dz

where o is a function of z but not of §, so that

L 2n
D= 6[10/ ET dfdz .
[o JN(0

THE UNIVERSITY OF MICHIGAN

For simplicity, consider the scatterer to be a body of revolution, and
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From uniqueness and symmetry considerations, we can write

E= s a(z) cosnf . (A.5)
n=0
Then Py = 0, as it should, p, does not concern us as it cannot contribute

to the radiation (being along the direction of propagation), and

Px* € }dz/ﬂz ?d¢cos¢ i a (z) cos n §f

() () n=o (A.6)

v 2
= € [ iz vp a(z) .
o
Apart from the factor a.l(z) , the integral is just the volume of the body,
V. In fact, the whole determination of the electric dipole moment resolves

jitself into the determination of the factor a(z) in

E = a(z) cos § . (A7)
since the other terms in the series do not contribute, If the body is
elongated along the axis of symmetry (i.e., if L>>p), a(z) will be a
alowly varying function of 2z and can be removed from the integral and
replaced by a mean value (or actually by an estimate of its value), To
estimate a(z), we resort to an analogy with reflection from a plane. In
the latter case, the amplitude of the total field is twice that of the
incident field, Thus we choose a = 2E° (phase differences in the incident
field at various points on the body can be neglected) to obtain

T=% 2€E V . (A.8)

S=LRET
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The far-zone electric field due to the electric dipole is (Ref. 6)

2
-ln k Vo) A A ei(kR -wt)
Es - z x(zx A,
i For a conductor, analogous treatment of the magnetic dipole yields an
equal contribution in phase, Altogether, we have in the far-zone
a2 KB gy oR-01) (A.10)
u o R :

The cross-section is given by

w2 (a.11)

- 42
0 = hnR2 lf_( -
E,

alE

This, then, is the value of the cross-section to be expected for an
elongated body of revolution.# As the flatness of the scatterer increases,
the approximation is expected to get worse, in fact an infinitely flat
body (infinite radii of curvature) has a non-zero cross-section,

Let us now compare this pseudo-derivation with the exact answer for
the special case we do know, the spheroid (Ref, 5)., Let us define for con-
venience the quantity ‘

PR 'EEJ _ (4.13)
0

.% Tt should be noted that for the acoustic case the treatment would be
equivalent except that instead of the two components (electric and mag-
netic) there would be only one, and thus the cross-section would be

i v (A.12)

T =

2l

16
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F = ] yields the magnitude of E given by Equation A,10, Modifying

Rayleigh's notation slightly,
« 11 1 - 1 '
TG ) = B

where, for a prolate spheroid, (Ref. 5),

L'(-lvz - _1_;; log T__l'::) (A.15)
e 2

where e = eccentricity -- i,e,, the semi-axes are a, a, _._‘_2_.. .
l-e

For an elongated spheroid (e—1), L —1 and F—1, checking the approxi-

mation, |
Next, let us inquire into the shape correction by first examining its

form for the spheroid, We already know the prolate result; for the oblate

spheroid,

L = (J_l_biz_ sinle - -1-'-',21-2-) , (Ref, 5) (A.16)

where the semi-axes are now a, a, a V1- %, As these expressions are

quite complicated, it is profitable to examine their limiting values,

Consider a sphere (e = o): From (,15)

log %—f___: - 2(e+%: 93+...) (A.17)
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R B Bt e L e
r:(% (2- 2) )'1 - (;.‘3.‘.)'1 -3 . (A,19)

It is easily demonstrated that F is monotone decreasing as we progress
from a sphere to an elongated prolate spheroid. Hence, it ranges from %
to 1 -~ very nearly constant, of the form 1 + decaying term,

Examine the disc limit (e+1 for oblate spheroid):

Let
e=sinx ., (4,20)
Then L = cos x csc? x (x csc x=cos x) . (A.21)
Let
y= .g_ -X . (3.22)
. 2 - ‘
Then L = siny sec’ y [(.E - ¥) sec y-sin y] . (A, 23)

Expand near y = 0 (equivalent to e —1):

LzY[(g-Y)-YI - g!- 2y2-gy(l-%y) ~(A.2h)
. 1 lasbhyery) . (25
F ngy(l-hy) (2-ny)zv( *iye gy

n
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Combine the information about F. In the oblate case, F is again
monotone, increasing toward the dise limit., The prolate spheroid dis-
cussion indicates that we should split off from F a unity term, and that

the remaining term should decay as y = .:.-o oo, Thus,

1 ll L ~ 1 1 -y
Fel+=— | 1+ |2 + - 21+l (Q-yg)=1+ e .
) +"Y[ C L ")y] "y 7 ny

(A.26)
We postulate, thent hat for all spheroids (with semi-axes a, a, b), the

shape correction factor is approximately
Fals+l o7 (4.26)
my

where y = % o Numerical comparison indicates that the approximation is valid

to within one percent, The Rayleigh cross=-section of a spheroid for back-

scattering along the axis of symmetry is

-\
0“.% khvz (1+%y ey) (A.27)

The cross-section cf the spheroid depends on its volume and on a correc-

tion factor involving y = -;3 . Except for very flat oblate spheroids, the
shape correction factor can be neglected, Where it is not neglected, the
shape correction factor is a simple function of y, which is a measure of the

elongation,
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The natural extension of the discussion is to postulate that for all
bodies of revolution the Rayleigh cross-section for backscattering along

the axis of symmetry can be expressed as

o= % P (1+i_37 eY)? (A.27)

where y is a measure of the elongation (characteristic dimension along the
axis of symmetry) /(characteristic dimension in the perpendicular direction).
For elongated bodies, the term in y drops out and there is no ambiguity.

For flattened bodies, the answer is sensitive to the choice of character-
istic dimensions, but a good approximation should still be attainable, The
ambiguity can be eliminated in a number of cases by imposing a restriction
.on the choice of characteristic dimensions: in the limit of extreme
flattening, the cross-section must tend to the value for the appropriate
disc,

Tllustration I+ Finite Cone

Consider a right circular cone of altitude h and radius of base r,
As h—0, the cross-section of the cone must go into the cross-section of a

disc of radius r --- i,e,, we must have

VF'%-ﬂl‘zh (l+%_y fy)"’;%1 - -g- S (A.28)

Thus, the appropriate ratio of characteristic dimensions to be used in
Equation A.27 is
i (A.29)
" Hence, the cone has the same cross-section as a spheroid of equal volume

whose semi-axes are (r, r, h/),

SECRET
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Illustration IIs Lens

Consider a symmetrical convex lens of radius of curvature R (the
body of revolution obtained by rotating the shaded area in Figure Ael
about the | -axis). In the disc limit ( d constant, ¢ - 0):

VF-».’F}. -% d3 (A.30)

Hence, we take for the lens

3v
y. 3v =

A3l
L LnR3 sind @ (.31

The volume of ‘the lens is
V=21 B3 (1-cos 8) (l-cos 6 + sinze) . (A.32)

T

As O»g (sphere limit), we reproduce the previous spheroid result,
as expected,
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Illustration III: Elliptic Ogive

argument from the disc limit connot be applied to it directly.
Instead, we consider the elliptic ogive obtained by rotating the

shaded area of Figure A-2 (a portion of an ellipse) about the n -axis

limit (d constant, ¢ —=0):

Vet « b 3
y

FIG A-2

From the equation for the ellipse,

which suggests use of the parameter 6:

sin @ =

mio
.

Inasmuch as the circular ogive is more elongated than a sphere, the

(which is taken parallel to the minor axis), For this body, in the disc

(A.33)

(A.3L)

(A.35)
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Then
y=3 = 3 , (£.36)

hnd>  bmt’ (1-cos 8)°

The volume of the elliptic ogive is

V = 2nab® (sin © - @ cos © - %‘. sin3 @) : (A.37)

As 9-;%', , we reproduce the previous spheroid result, as expected.

Special Case: Circular Ogive, To obtain the cross-section of the

circular ogive, we now merely take the special case of the elliptic give
with a = b, This leads to the body obtained by rotating the shaded area
of Figure A=l about the f - axis, Now

8in © - @ cos © - 1 sin30
y= ) - 3 ¢
7 (1-cos 8)3 (A.38)

Nlustration IV: Spindle

Consider the body of revolution obtained by rotating the shaded
ares of Figure A-3 (bounded by a parabola and a straight line perpendicular
to the axis of the parabola) about the ¥) -axis, Using the disc limit |

exactly as before, we have

v L%(% (A.39)
where the volume is |
Ve ‘%g " ed? (A.L0)
so that
r-3% - (AL2)
23
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X

Figure A-3

Tllustration V¢ Finite Cylinder

Consider a cylinder of radius r and height h. From the disc limit,

EL 2 | (A.l2)

T

To evaluate the Rayleigh cross-section of a body of revolution
(for any transmitter and receiver directions) the body is approximated

by the equivalent spheroid. The equivalent spheroid is a spheroid

with the same axis of symmetry, the same volume, and the same elongation
factor, y, as the body. The simplification found for the backscattering
along the symmetry axis provides a reasonable way to arrive at an elon-

gation factor for many bodies.
Rayleigh quotes the far-zone scattered field for an ellipsoid for

jncidence along one principal axis (with coefficients evaluated for the

special case of a spheroid) (Ref. 5). A simple permutation of coordinates

2l
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leads to the far-zone scattered field of a spheroid for incidence along

are removed,

any principal axis,

The extension to slant incidence is not difficult, but

requires a little more care.

To take the polarization into account correctly]

it is necessary to treat the contributions to the far-zone scattered field
from the electric and magnetic incident fields separately, Using Rayleigh's
results and appropriate rotations (with some slight changes of notation),
the contributions to the far-zone scattered field from t he various com-

ponents of the incident field ares

2 i(kr-wt) EV 2 2 (A.13)
EO-&EQ .E. -k e ° (- r2 X, E)
2nR Le B2 g2 R
% .t 2 12 ol (kKR-wt) gy ( 5 X2+ 3% %)
= * - B 9 -
o] 0 2mR L R R JyA
y
2 1(iR-wt 2
-E.oan ] E- -k e ( )EQV (_n;. y 2 ,-E__Lﬁ)
° 2nR L, \ R R R2

i(kR=wt)
H = &ech t E= -k2° EgV (O,-.E ,%)
2nR 2=L
x
s 4 - el (KR-9t) gy (z 0. - x)
- ® . - ] b
o = T €% 2R 2.1 \R )i
y
2 4 - ket (KB-wt) gy X .0
H =2€cE ¢t E= « (— %’R’ )
o 2mR 2-Lz

25

7
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If the z-axis is the axis of symmetry of the spheroid, we can take g=0

without loss of generality. Then

x = R sin @ y=0 z = R cos © (A.LL)

The L's have been evaluated by Rayleigh., For our geometry,’

I - Ly =L (A.LS)

where L is the quantity given by Equations A.15 and A.16 ., The

expressiors for L, can be written in terms of those for L; the relation is
1, = 2 (-L) (A.LS6)

Consider now an incident plane wave travelling toward the origin in the
direction 8p. For arbitrary polarization, it can be expressed as a linear
combination of the following two cases:

a) fo in the plane defined by the Poynting vector and the axis of symmetry -

i.e.,

£ £ q = “ []
Epp ™ (=X cos 8p + £ sin G,r)Eo , Hog =Ye€cE, . (A.L:7a)

b) Eo perpendicular to this plane - i.e.

Ty =75 f, = (Rcos 6y - fsinepeck, . (ALi7b)

]
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incident electric and magnetic fields that are present.
of observation 6p the results for the two cases are

cos ORcos : °T

+ +
2-L L

sin @psin OT)

-Eb - kz Eov ei(kR-“) ( 1
2=2L

. 2nR

and
Eb . K2 EoV ei(kR-ut)( 1, cos 8p cos 6p . sin Ogsin eT)
2uR 1 2-L 2L ,
x(0, 1, 0)

If we again write

r-%khvznz

we now have

r 1(1 +coaeacoae,r
2" T \7x L

, 8in Gpsin °'r)

2=2L

sin GRsin 9‘1‘

cos OR cos OT
- 2L

2-L

In each case, the far-zone scattered field is obtained by adding up the
contributions (as given by Equation A,43) due to the components of the

In the direction

x(- cos 8p, 0, sin °R)
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As an example, Figure A-L exhibits F as a function of aspect angle for

backscattering by a 10 : 1 prolate spheroid, for both polarizations,

3.0

2,0 /

1.0 j/

0 10 20 30 Lo 50 60 70 80 %0

ASPECT ANGLE, 6 (DEGREES)

FIG, A=k

Similarly, though more simply, Rayleigh's results for the scattering
of a plane scalar wave by a spheroid (Ref. 5) can be generalized to
arbitrary incidence, Thus, for a wave of unit amplitude incident along the
x = axis, Rayleigh obtains for the Neumann problem (vanishing normal

derivative at the body) a scattered wave

28
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v. W2y ol (KR ~wt) (1“}_ 2 .
T LR R 2-1L,

For a direction of incidence denoted by (QT ’ ¢T) and a direction of

observation d enoted by (OR , ¢R) , this becomes

i cos
i(kR -Wt) 1. 2 sin @, sin eT cos ¢R ¢T

Y_ _k2Ve
LR 2-L

+

2 sin @, sin @ sin ¢R sin ¢T \ 2 cos 6y cos ¢T).

2 - LY 2 - Lz
Using (A.45) and (A.46) , there results.a cross-section

0"-_‘2.:‘3( 1+ 2 sin 6y sin 6y cos (Bp=fp) . cos Oﬁios O )2
L 2 -1 L

(A.51)

(A.52)

(A.53)

29
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APPENDIX B

PHYSICAL OPTICS RADAR CROSS-SECTION OF A FINITE CONE FOR NEAR

NOSE-ON ASPECTS

To obtain the monostatic physical optics corss-section of a finite
cone for incidence at a small angle, € , to the axis of symmetry of the

cone, we proceed as follows,

FIG. B-1

Utilizing the physical optics expression for the radar cross-section as

given in Reference 1, we obtain

Sl=C ==
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- A 4 2
¢ - bn R AP (B.1)
2 o .
)\ i .
g region
where
' AA A A
k = n = cosé iz + sin€ 1 (unit vectors to origin from receiver
and transmitter),
a = radius of the base of the cone,
A
= -sing i, + cosd cos g ’ix + cos « sin ¢‘i (normal to cone),
y
k =21 |
A
- A A A
T =21, + 2z tan e cos f§ i + 2z tansin g#i_ (vector from origin to
any point on cone),
oA = %. cone angle,
@ = angular variable in x-y plane
and

4s = 2 _tan« dddz,
cos&

Because of symmetry, ﬁo and ﬁ can be chosen in the y-z plane with

N -h
positive components, From the definjtions of k, ﬁo, A, and T we have

ﬁo . N==cosE sina + cos« sin€ sin #
and

T. (ﬁo + k) = 2z(cos& + tan sin€ sin #).

Substituting in Bquation B.,1 and restricting € so that £<«,we obtain
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2n Zq ( g 2
«2ikz(cos&+tangsingsi
r-ig [ ’ %.%"5<cousimsin f-costs in«)e e )dm, .
00

(B.2)
Setting b = 2 sing taneland ¢ = 2 cosE , we get

2
2 Z -
O = .2*_'.'.2 ,/ﬂ tane (sing sin @-tane cos€) Soz e fkz(c + b sin mdzdﬁ!'
A
0
0

(B.3)

The integration with respect to z can be performed exactly, yielding

-ikz (b sin g+ c) -ikz,(b sind +c)

2n
O = l‘i’. f tan«(sinésin P-tanicose)| & s 1200
1% (b sin f+ )2  k(bsin g+ c)
1 2
- ag .
?(b sin @ + c)z)
(B.L)
For £= 0,(B,l) becomes
o 2ik 2ikz 2
L 2« (g- 2o izoe- ° 1 )
a= an + - ag (B.5)
X J e 2k L2
or upon integrating
2
2ikz
. wtanle( |1 - 0
o 11?__ '.2. + ikz - 8 5 ‘ (B.6)

SECIRET
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which is the complete nose-on physical optics cross-section, Neglecting
terms of order one in respect to kzo, Equation 3,6 becomes,
= zo2 tan & = nal tan? el (B.7)
the well-known nose-on optics approximation,
Returning to the off-nose case, we find that neglecting terms in kb and
ke with respect to terms in (kb)? and (kc)2 and (ke)? and k2 bc Equation B.L
becomes
(B. 8)
7 (b sin § + ¢) 2
0“2% ]zo tand (sin€ sin § - \‘.ana(cose)e-ikzo sin gt o
A 0 k(b sin f§ + ¢)
Factoring out 20 and remembering that
b = 2 sin€ tan, and
c =2 cos&,
we can rewrite Equation B, as followst
2
-ikzo(b sin § + ¢)
O-JN___ c sec ) e d.¢ (Bo9)
b sin + ¢
or, since |e =]
2n 2
2 2 -ikzo b sin §
LR 1.8 5¢e e 0 af (B.10)
- L 0 b sinﬁ +c
33
— N [ M) (=
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It remains to evaluate the integrals

The first integral is immediately recognizable as a Bessel

Section 5, paragraph D

E\

2=

2[;88-1-T

. 2w
and f
0

~ikz,b sin @
e ° a .

bsinf+ ¢

function,

which can also be written

2n
/ e-ikzo b sin ¢ d¢ - 2"Jo(k 2, b) . (B.11)
0
Thus, -
L2 2n -ikz, b sin #
0= e 2nd (k z,b) - [ SBec K e ag (B.12)
n bsinf + ¢
0
or
r
P 1 2 [ oikZo b cOS g
- > J (k 2, b) - CSe¢ e dag (B.13)
na?  tan’A " c-bcosf

z,singtan«d
For values of =2 ne

2
7y Linz sinetandcos
A
.1 J (huzosinatano( \ cosgsecA | e ag
72 tanx A / - cosé -singtan«cos P
(B.1h)

evaluated by the method of stationary phase, yielding

>1, the integral in Equation B,8 can be

Uy

3k
=CIR




UNCLASSIFIED vhen
Appendices E and F

Declassified IAW E.O. 11652
dated 8March72
Section 5, paragraph D

are removed, =)

I \\

— fl—ﬂ

(=

.——J)

THE UNIVERSITY OF MICHIGAN
21, 88-1-T
i

[
l

—

A g tan Lnzysine tane

A

2

an‘«cos -0

[
L

B,
2w sing(sin tan¥-cos%€)° ) (B.15)

2 2 '
, Bln£cos € gin2fLnzoSiné tank ﬂ)
cos o A I

which we observe is the asymptotic form of

y
E hﬂzoSinitam’(j+ 2 [ l[hnzosinitane( ):r
- bans 5 . (8.16)

sin 1 € cos 6
(sinzetan A - cos28)2

mjltoc

:

It is noted that while the nose-on physical optics cross-section is
independent of wavelength, the stationary phase result indicates that the

near nose-on cross-section varies linearly with wavelength, However, it

mst be remembered that for small values of €, Xand -x‘-’- (€< &, < 10°,
% < 10) the integrand in Equation B,8 or B,14 does not oscillate rapidly
enough for valid application of stationary phase, The integral in Equation
B.1li was therefare evaluated on an analog computer for various values of
oy E, and zo/\. The results are compared with the results computed from
Equations B,15 and B,16 in the Figures B=2 through B-7.

The figures indicate that the modified form of the stationary phase
result, Equation B, 16., is a better approximation than the stationary

phase result itself, Equation B,15. The figures also indicate that the

requirement
br z, 8in€ tand
»1
can be relaxed considerably.
35
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AFPENDIX C

THE RADAR CROSS-SECTION OF A THIN WIRE LOOP FOR SMALL WAVELENGTHS

The radar cross-section of a thin wire loop is derived, for wave-
lengths which are small compared with the radius of the loop and large cam-
pared with the radius of the wire, using an expression due to Chu (Ref. 3)
for straight wires,

Chu's expression, for incidence normal to the wire becomes

n 12 cost [

- (c.1)
(3)"* (108 325)

g =

where
L = length of wire,

# = angle between electric vector and the plane of the wire and
the incident direction,

Y = Euler's constant ~1,78 and

b = radius of wire,

E |2 -
Since 0= lmr? ‘ i sWe can obtain an expression for E, except for

phase from (G)) assuming 'iil = 1 and Huygen's principle holds.

>

E. then has the form
2 _ $Lcos?f olkr

VAT

where § is a unit vector in an arbitrary direction,

L2

SRR
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Setting L = adf (where a is the radius of the loop) and integrating

around the loop we obtain

[ 2n
Es a3 € r2 a - ! c°s2¢d¢
2
2r {(.g.) + (log ?%, } 0
Bna kT

2 2]1/2
n A
Zri(z) + (1og &) }
The cross-section of the loop'can‘ then be written
2> |2
2 E
g = Lnr S
‘ g \

B
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APPENDIX D

CIRCULAR WEDGE APPROXTMATION TO RADAR CROSS-SECTION OF THIN FINITE CONES

i The radar cross-gection of a thin finite cone is determined by cone
sidering only the contribution from the base which is approximated by a
circular wedge shape. That this approximation retains the essential
scattering characteristics of the cone is indicated by first computing the
cross-section of the approximating wedge shape using physical optics. It
is seen that the result thus obtained and the physical optics thin cone
result (Equation B,7) agree exactly.

The circular wedge cross-section is then computed using a method
suggested by C, E, Schensted (Ref. 7)., Expressions for the field due to
a straight wedge, which are in general more exact than physical optics,
are employed,

Proceeding as outlined, using the physical optics expressions in
Reference 1, we obtain the following expressions for the scattered magnetic
field from a semi-infinite wedge of length L with incidence perpendicular

to the back face as shown in Figure li)-.-lt

where

illuminated area

1
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H, = unit incident field = 3,

(o]

>
g d

A
= iz s
n = normal to wedge = gx sin¥y - ’:\L,5 cos ¥,

¥ = included wedge angle,

and ds = dydx
cosvr
2
x
|
|
|
!
|
|
|
1 [
y
s
¥
FIG D-1
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- A N A
Hence r-ixx-riyy'riz( x tan¥) ,
) ,n\.-n.o--cosx [

and T, (My+k)= 2xtan¥y .

Thus, -00 L
?w?"J I cldctan oy
c O
00
- L[ e+i2kxtan dx
0

s + 1L e
i2ktan?

+12kxtan ¥ }oo
0

Associating the edge contribution with the value at the lower limit

@ust as in the infinite cone case we obtain the "tip" contribution) we

have finally
BLFe
12ktan¥
and .
T e+ LT o !

s Lrtan¥ R!

Now letting L = ad/S ,where a = radius of base,and integrating around

the base (a = constant vector),we obtain

L6

1\
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ad/S -

tan? ¥

¥= 1
But 3

tand= tan ( ,"; -¥)

= cot¥V

and finally

0"-na2tan2¢( ’

physical optics,
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A
aae
CTm—————

2R! tan¥

- (see Fig, D-2) whereo{is half the cone angle; thus,

which is precisely the nose-on result obtained for the cone directly with

Lhﬂ%_';;

OF MICHIGAN

-1kR!




Declassified IAW E.O. 11652
UNCLASSIFIED when dated 8March72
Appendices E and F Section 5, paragraph D

are removed, b_-— 3 ﬂi:‘r

THE UNIVERSITY OF MICHIGAN
2h88=1-T

Now instead of using the physical optics field for a wedge,we use the
generally more exact expression as presented in Reference 7, and proceed
exactly as before, For linear polarisation the scattered field for a wedge

of length L is

%L g o [n(-)ﬁ-s(n)ﬁ . BB+ n(b)ﬁ} , (@)
¥, 26, A B

o

where

E(a) = component of the incident field perpendicular to the edge of the
wedge ,

E(b) = component of the incident field parallel to the edge of the wedge,
A = cos 1€ 4 cos "2

R
2

B=1lacosX
7,

¢° = yedge angle (see Fig, D-3) where in terms of the half cone angle

o= 3 &

® = angle of incidence, and

Diregtion FIG D-3
o
Incidence

L8
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a and ?c are unit vectors perpendicular and parallel, respectively, to the

edge of wedge (or circumference of the cone base) (see Fig, D-li)

N
k
x
Figure D=l
A A A
The quantities 8 and k are related to i, and iy as follows:
A A A A A A
= -i,cosd -1 sing iy = =f cos + k sind (D.2)
k= 'ixsin/@ -'iycos/ ?“y - sing - k cos/

Since the incident electric vector lies in the x-y plane and since the base

of the cone is symmetric about the origin in the x-y plane,we may choose

> A
lsi.nciden‘l'. to lie along ix'

Thus,

A A n A
B =1 = Becosp + koinp = E(a)f + BOIR . (D.3)
To obtain the total scattered field we compute the field for a wedge of

length L = ad3 where a is the radius of the base of the cone, and integrate

around the base,

L9
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Thus, we have froam (D,1) and (D.3)

2w
- ikr 2 A A A A
E = _13 :‘O sin 0" | -cosf @ =~ sinBk _ =-cosB@+sinfk
J Iho cosn9+co"2 1 - cos *
0 %o 78, 28,

Using Equations (D.2) we get

2nr,

- 2 ) ?
E' . Z a1;1.- sin ?f iy cosgﬁ + i}' sin2a3 - iy d(‘
r 2
° ° cos M@ + cos n 1 - cos _nt
A 7,
A
- o aﬂﬁikr sin ﬂ2 ix
2r ¢° 2¢0 1l - cos ﬂT
200
The effective radar cross-section is defined by
- Al
2 Es « P A
= lim Lmr ' where p = receiver polarization vector

r —5 00 fi

In the case being considered,ﬁ = ?. andlfil = 1, Thus,

2 12,2
0" =1lm Lmr 'E’I .
r—-o

-l
Substituting for Eg, we get

50
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ros sin m
2
¢02 (1 - cos ....."?.
2¢o

or, in terms of the half cone angle, o,

2 2
g - L <:r:'c.2 L A (D.L)
el (v 4 oY ( ) . .
(—E + ‘2_) In + 24

This result is compared with the physical optics result in Figure D-7.
This method can be applied to any body with aring singularity. Consider,

for example, a cone-cylinder combination (Fig. D-5) viewed nose=-on,
' /

— -

Yy Direction
A i‘- - < of
a
Incidence
P

yem -0, < Figure D=5

The expression derived for the cross-gsection

2
o - ol 1 (D.5)
L A
sl

il

= 1
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In terms of the half cone angle,o(, we have

e

it

(Fig., D-6)

Vamwr- ¢°

"2 cot2( "2 )
+;§ 2(w +«)

Similarly, for the contribution from any ring singularity, Equation D,5
holds where @, is the supplement of half of the included wedge angle

/
|

D

Figare D=6

Equations D.L, D.5, and D.6 are plotted in Figure D=8,
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APPENDIX E

MINIMAL CROSS-SECTION SHAPES

For many years the author has advocated that missile design should be
conducted from a radar cross-section point of view. The objective would be to
design an offensive missile whose cross-section is minimal for any set of
Coefficients of Drag and Lift vs. Mach Number and Reynolds Number given as
restrictions which the geometry must obey. It was pointed out that the
minimum cross-section one could expect a missile made of a conducting
material to equal or approach was (for small wavelengths) the radar cross-
section of an infinite cone. It was believed that infinite cones would
give the same results as smoothly terminated bodies for which the cone was
the tangent surface.

This belief was verified theoretically for small wavelengths by
Schiff (Ref. E1) for the ogive, and experimentally for thick ogives by
Sletten (Ref. E2). The question remained as to how sharp one could ter-
minate the conical body and still obtain a nose-on answer which was of the
same order of magnitude as the cross-section of an infinite cone,

o = Az t&n“d
167

For thick bodies is was found that the termination could involve much
smaller radii of curvature than for thin bodies. In fact for thin ogives
the Fock reasoning (discussed below) is only valid for fnry small 7\[&
ratios, where R is the radius of curvature in the plane of Poynting's

vector at the shadow boundary (the curve on the body which separates the

\ This d contoins Information affecting the national

| | m— I ' 3 — Mmdmumdlmvammmdm;
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1it region of the body from the shadow region). This has been indicated
by recent experiments conducted at The Ohio State University (Ref. E3),
which give nose-on cross-sections for thin ogives much.different from the
infinite cone answer, and by recent Air Force Cambridge Research Center
experiments. Thus, the cross-sections of thin bodies for which A/R%0.1
are not predictable by physical opticse The cross-sections of such bodies
are expected to be larger on the average than those predicted by optics
formulas. Nevertheless such smooth terminations tend to reduce the cross-
section.

Here we shall consider the back-scattering cross-section of a finite
cone with various base terminations for illumination along the cone axis.
This cross-section will depend critically on the method of termination ‘at
the base of the cone. Hence, we attempt to isolate the contribution of the
cap of the cone from that of the tip. Quite generally we find that the
contribution of the base depends upon the rapidity of the transition from
light to shadow measured in terms of th; waveleﬁgth.

The finite cone itself has been discussed in the preceding appendices;
here we will examine a finite cone smoothly fitted with a spherical cap.
For a wavelength of the same order as the length of the cone we cannot
treat the contributions of the tip and the base as uncoupled. However, if
the waveleﬁgth is decreased so that the distance between the tip and the
shadow boundary is several wavelengths, we expect to be able to treat the
contributions as virtually uncoupled.

If the radius of curvature at the shadow boundary is large with res-

pect to the wavelength, the base contribution to the cross-section is found

57
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by Schiff (Ref. E1) to be of higher order in A\ than that from the tip.
As the radius of curvature of the shadow boundary decreases in terms of
wavelength, the base contribution becomes increasingly important until in
the 1imit of vanishing radius of curvature (i.e., an ordinary finite cone)
the dominant contribution to the cross-section comes from the base.

In applying the physical optics approximation to the finite cone,
it is found that there is one term that can be identified as the tip con-
tribution. There is also a term arising from the assumption that the cur-
rent on the body is discontinuous at the shadow boundary. This latter
term, the base contribution, is present even when the body is smoothly
terminated and the discontinuity in current is known to be nonexistent.
However, the tip contribution is still valid, Thus the cross-section of
smoothly terminated cones will consist of the physical opties tip con-
tribution plus a contribution arising from an adequate treatment of the
base. This base contribution, it will be recalled, increases in relation
to the complete cross-section as the radius of curvature of the shadow
boundary decreases.

One method of determining the base contribution, in the special case
when the cone has a spherical cap (see Fig, E-1) is obtained from a

consideration of the exact sphere solution,

S
direction

of
incidence

FIG E-1: A CONE CAPPED BY A SPHERE
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The sphere cross-section can be decomposed into a geometrical optics
term plus a diffraction term. This has been done by Franz, Deppermann,
and Imai (Refs. E4 and E5). The optics term comes from the region of
specular reflection and the diffraction term from the effects of the cur-
rents induced in the shadow and near the shadow boundﬁry. This considration
leads us to attempt to approximate the base contribution of the spherically
capped cone bycktenniﬁing the differences between the total field due to
the sphere and its geometric optics fields This approach was carried out -
by Pound recently at the Cornell Aeronautical Laboratory, Inc. (Ref. E6)
gnd here at The University of Michigan in l§5h (Refe E7)s These two esti-
metes are shown graphically in Figure E-2,

No such ready solutions to the problems posed by a smoothly fitted
» con§ex cap which is otherwise arbitrary are available. However, Fock
(Ref. E8) has developed a modification of geometric optics which arises
from a local analysis of the field in the shadow region and leads to a
smooth transition from light to shadow for the field induced 6% tﬁe surface.
From the work of both Franz and Fock we see that the-importantharameter
in determining the contribution of the,diffraction term is the radius of
curvature at the shadow boundary as compared with the wavelength.

An equivalent spherical cap is thus determined and its contribution
to-the cross-section can be found using the technique as outlined previously.
If the radius of curvature at the shadow boundary does not change rapidly
as the shadow region is entered, this approximation will yield good results.

Using the Maverage" expression for the contribution from the base as

59
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ma

Estimate Computed by Pound (Ref. E5)
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shown in Figure E-2, estimates of the nose-on cross-section of certain thin

cones smoothly terminated by spheres or near sphere-~like caps are deter-
mined in Appendix F and the results so obtained are compared with experi-
ment. In connection with those comparisons between theory and experiment
it will be noted from Figure E-2 that over the range of ka involved in the
computations, the estimates of Pound deviate from the Maverage® curve by
factors as large as 5 and thus differences of factors of 3 or 4 between
theory and experiment are not particularly unexpected. Due to the rapid
oscillation of this contribution as a function of ka, it is believed that
the Maverage™ curve is more appropriate for the purpose of the comparisons
given in Appendix F, since the cap placed upon the cone in these experi-

ments is not truly spherical.
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APPENDIX F

THE RADAR CROSS-SECTION OF FINITE CONES
WITH VARIOUS BASE TERMINATIONS
A COMPARISON EETWEEN THEORY AND EXPERIMENT

F.l. Introduction

This appendix gives an account of experimentally determined radar
cross-sections of finite cones with various base terminations. Wherever
possible, these experimental values are compared with theoretical esti-
mates determined by the methods discussed in the preceding portions of
this report. In Section F.2 three finite cones and three cones smoothly
capped in the rear (Mcarrots") are considered. In Section F.3 information
on the cross-sections of 7-0C type warheads is presenteds In Section F.,
experimental data on other conical shapes is considered. In Section F.5

conclusions are presented.

Fo2. The Radar Cross-Section of Carrots and Cones

The Microwave Radiation Company, Inc., performed experimental radar
cross-section measuremenﬁs for the Cornell Aeronautical Laboratory, Inc., on
the carrot and cone configurations shown in Figure F-1 (Ref. F1). The
results obtained in these experiments are summarized in Figures F-2 through
F-4. Estimates of the cross-sections of these configurations have been

computed using the techniques discussed previously in this report.
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Theoretical estimates of the nose-on cross-section of the three

finite cones are obtained, using the methods described previously in

U

SECIRET

this report for thin cones.

section vs a/)\, where a is the radius of the base, is constructed, using
the resonant loop answers computed by Kouyoumjian (Ref. F2) faired into
the theoretical estimate valid for small wavelengths (1ee4y wavelengths
for which A/a is small) developed in Appendix D, The results of these
computations are shown in Table F.l where the nose-on cross-sections of

these cones determined theoretically are compared with the experimental

data given in Reference F1,

That is, an estimate of the graph of cross-

1
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TABLE F.1 - THE NOSE-ON CROSS-SECTIONS

OF THE 2\, 4\ » AND 8A CONES (A= 3.2 cm)

dated 8March72
Section 5, paragraph D

BODY gﬁﬂﬂ%ﬂﬂz)
Exp.Data ExpeData Theoretical
VersPol. _ |HorsPol | VersPol, | Estimate™
2) cone 3.0 543 5.0 5.4
L\ cone 1.1 2.6 3.0 6.5
8 cone 546 13. 17, 23,

*Unpublished data obtained by Professor S. Silver
Dept of Electrical Engineering, University of
California.

**Reference Fl.

These theoretical values are also shown on
Figures F-2 through F-4.
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Theoretiéal estimates of the cross-sections of these cones at an

aspect 82.5° off nose have been computed, using the optics formula derived

in Refe F3
n (8713 tanbx )/(92 stndx )

where L is the altitude of the cone and X is the half«cone angle (<= 7,5°),
The theoretical values so obtained are shown on Figures F-2 through F-i.

It 'will be noted that the agreement between theory and experiment is
excellent at both aspects; this can be seen by reference either to Table F.l
or Figures F-2 through F-4 for the nose-on case and to the figures for the
82,5° aspect.

For the three carrots involved in these experiments the technique
described in Appendix E is employed to obtain estimates of the nose-on
cross-sections, That is, the cross-section is assumed.to be obtained from
a contribution from the tip and a contribution which creeps around the rear.
The contribution from the rear is estimated by using the theoretical sphere
answer in the resonance region with the contribution frpm the first Fresnel
zone removed. This results in the following estimate of the cross-section
contribution which creeps around the rear: |

03332 (A/a)}  (Rot.F4)
where a is the radius of the "hgmispherical"'stern.*

*As pointed out in Appendix E, the appropriate value of a is the radius of
curvature at the shadow boundary. However, since this radius of curvature is
approximately equal to one-half of the maximum thickness of the body for these
carrots and since, as can be seen by reference to Appendix E, we are using an
average estimate of this contribution, we can set a equal to one-half the
maximum thickness of the body.
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The estimates of the nose-on cross-sections of the three carrots
obtained in this manner are shown on Figure F-2 through F-4 and in
Table F.2. Table F.2, as well as the aforementioned figures, also

contains the experimental data from Reference Fl.

TABLE F.2 THE NOSE-ON CROSS-SECTION

OF THE 2\, 4N, AND 8\ CARROTS (A= 3.2 cm)

Body Cross-Section (in cm?)
Exp. Data (average Theoretical
of Hor. & Ver. Pol) Estimate
2\ Carrot 1.7 072
LA Carrot «53 o5l
8\ Carrot 2.2 .36

Reference to Table F.2 shows that the agreement between theory and

expériment is quite good.

F.3__The Radar Cross-Sections of 7-OC Type Warheads

Experimental data on the 7-0C warhead and modified versions of the
7-0C warhead were reported in Reference F4. These configurations are
similar to the carrot and cone shapes discussed above. Sketches of these
configurations appear in Figure F-5. Theoretical estimates of the nose-on -
cross-sections have been determined by the methods described in Section
F.2 - the finite cone methods for the 7-0C and the 7-0C with a flat stern,
and the formula for determining the contribution which creeps around the

rear of the body for the 7-0C with a hemispherical stern. The results so
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obtained are given in Table F.3;
figurations is included for comparison purposes.

the agreement between theory and experiment is very good.
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the experimental data for these con-

TABLE F.3 THE NOSE-ON CROSS-SECTIONS

OF THE 7-0C TYPE WARHEADS (REFERENCE Fh)*

MICHIGAN

It will be noted that

Declassified IAW E.O. 11652
dated 8March72
Section 5, paragraph D

Body Wave- Cross-Section (in cm<)
length
(in ecm) Experiment Theory
7-0C Warhead 30 12,000 - 15,000 10,000
7-0C Hemispherical Stern 30 60 - 100 140
7-0C Warhead 90 9,000 - 10,000 10,000
7-0C Hemispherical Stern 90 1,500 - 1,600 400
7-0C Warhead 133 4,000 - 9,000 10,000
7-0C Hemispherical Stern 133 250 - 1,800 900
7-0C Flat Stern 133 6,000 - 7,000 10,000
*The experiments are reported in Reference FL; they were performed
by The Microwave Radiation Company, Inc., and by the Evans Signal
Laboratory.

Fo4 Other Experimental Data on Cones

Fo4ol Data From the Federal Telecommunications Laboratories, Inc.

W. Sichak in Reference F5 has reported the results of experiments
conducted on three thin finite cones; these cones have half-cone angles
of 5.1° and 9.60. Sichak's data, together with the theoretical estimates

obtained by the procedure described in Section F.2, are presented in

Table F oho

S
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TABLE F.4, NOSE-ON CROSS-SECTIONS OF FINITE CONES
USED IN FEDERAL TELECOMMUNICATIONS LABORATORIES EXPERIMENTS

Half-Cone An§le Altitude of | Wavelength Cross-Section (in cmzl
s

(in degree Cone (in cm) (in cm) Experiment | Theory
9.6 15.25 1.25 L 13
5.1 15.25 1.25 0.6 3.6
9.6 7.63 1.25 0.9 3.4

Feb4e?2 Data From the Belmont Radio Corporation

The data from the Belmont Radio Corporation (Ref. F6) were obtained
from an experiment conducted on a thin cone having a half-angle of~10°,
The experiment was conducted at a wavelength of 1,26 cm and the radius
of the base of the cone was equal to 0.59 A . The exs;rimental value of
the nose-on cross-section of this cone is 0.87 em?, Applying the tech;
niques previously described in this Appendix, a theoretical estimate of

1.1 cm? is obtained.

Fe4e3 British riments on Cones Capped With Cylinders

On a recent trip to England the author was informed by J. S. Hey
of the Radar Research Establishment of recent British experiments on cones
faired into cylinders. From these experiments, which were conducted on
four different cones capped with cylinder; of varying length, average
values were obtaineds These values, together with theoretical estimates,
are given in Table F.5. The theoretical estimates were obtained by using

the expression derived in Appendix D (Equation 6 of Appendix D).

13
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TABLE F.5 NOSE-ON CROSS-SECTIONS OF FINITE CONES FAIRED INTO
CYLINDERS (UNPUBLISHED BRITISH EXPERIMENTAL DATA
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AND THEORETICAL ESTIMATES)

{' te— Variable —» }B

D v/2 Cross-Section (in )\2)
(in ) Experimental Theoretical
Average Estimate
1.8 10° 0.2 0.08
1.8 30° 0.3 0u
3'0 100 0’3 0.2
3.0 30° 0.5 1.0

Fohol Experimental Data on Thick Cones With Smoothly Rounded Bases

The work of C. J. Sletten (Ref. F7) has indicated that if the cone
angle is not too small and if ka >> 1, then the nose-on cross-section
of a smoothly rounded cone is adequately predicted by the physical optics
formula, thanho/lérr » where © is the half-cone angle. Sletten's

experimental data are compared with this physical optics expression in

Figure F-6.
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F.5 Conclusions

It has been observed in this appendix that the techniques employed
to obtain theoretical estimates of the nose-on cross-sections of finite
cones and finite cones which are smoothly terminated are in good agree-
ment with experimentally determined values.

In addition it has been noted that there is, in general, at most
one order of magnitude difference between the cross-sections of thin
finite cones, smoothly rounded or not, if the over-all length of the
configuration ranges from 2 to 8 wavelengths, especially for.aspects
out to 60° off nose. This is illustrated in Figure F-7. Thus, it is
seen from the experimental data that if the radius of the base is com~
parable to the wavelength, the nose-on cross-section of the Mcarrot" is
comparable to the nose-on cross-section of the comparable cone. If, on
the other hand, the wavelength is small in comparison to this base-
radius, the two nose-on cross-sections are considerably different. This

trend can be seen from the material presented in Section F.4.
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