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Preface

This is the fortieth in a series of reports growing out of the study
of radar cross sections at The Radiation Laboratory of The University of
Michigan. Titles of the reports already published or presently in process
of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement with experiment. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and
phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and cross
section problems not amenable to theoretical solution; (c) problems associated
with the design and development of microwave absorbers; and (d) low and
high density ionization phenomena.

K. M. Siegel
vii
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Foreword

This report is concerned with the effect of minor surface roughnesses
on the scattering cross sections of targets, and like Gaul it is divided into
three parts. In discussing these it is most convenient to consider them in
reverse order.

In Part III it is shown that when an electromagnetic field is incident
on a perfectly conducting surface having a random (but statistically uniform)
distribution of small geometrical irregularities, the boundary condition can
be replaced by a generalized impedance condition applied at a neighboring
mean surface. The surface impedanc= is, in general, a tensor function of
the direction at which the field is incident as well as of the statistical
properties of the irregularities, but in certain instances the tensor nature
either disappears or can be suppressed. In these cases, the impedance is
a scalar and the boundary condition then reduces to the standard form of the
Leontovich or impedance boundary condition. A condition of this type is
frequently employed at the (smooth) surface of a material of large but finite
refractive index, and is discussed in detail in Part II; its appearance in the
present work implies that to some extent a rough but perfectly conducting
surface behaves in the same manner as a smooth but imperfectly conducting
one, and enables us to trade roughness for conductivity.

Part 1 is primarily concerned with minor surface roughnesses as

they affect model scattering experiments. The boundary condition derived in
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Part III is here used to determine the scattering cross section of a large rough
sphere, and the results are then compared with experiment. It is found that
even for a sphere whose 'depth' of roughness is as large as 10_2)\, the
measured change in cross section is no more than about 0.1 db. This is
in good agreement with the theoretical prediction and goes some way to
confirm the usefulness of an approach whereby the roughness is incorporated
in the boundary condition.

As is true in so many fields of basic research, once results are
found they are applicable to many problems. In any investigation of modeling,
it is necessary to know the required tolerance on the surface finish of the
target, and it is desirable to study this first in the case of linear modeling
before proceeding to the more complex subject of non-linear modeling.
Likewise, the results have application to radar camouflage problems, since
the surface roughness of either the camouflage material or of the body to
which it is applied will affect the performance of the material. Roughness
considerations are also important in the field of target discrimination, as
they are in any detailed study of the radar scattering properties of large
(natural) bodies such as the earth or moon. And finally, it almost goes
without saying that the techniques developed in this report can be used to
investigate the behavior of rough surfaces in acoustics.

In consequence, it is felt that the results obtained here are significant
to a number of contracts held by the Radiation Laboratory, and we are happy
to acknowledge that the work was supported jointly by the Air Force Cambridge

X
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Research Center under Contracts AF 19(604)-5470 and AF 19(604)-4993, by
the Rome Air Development Center under Contracts AF 30(602)-1808 and
AF 30(602)-2099, and by the Autometric Corporation under Subcontract

33-5-101.
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PART 1

THE EFFECT OF SURFACE ROUGHNESS ON SCATTERING CROSS
SECTIONS

51. Introduction

During the last two years it has become apparent that a difference of
opinion exists as to the influence of surface imperfections in model scattering
experiments, On the one hand there are those who believe that an RMS surface
finish good to 107 A (approx. ) is required if the effects of surface roughness
are to be discounted, and that an increase in the roughness to 1074 ) could pro-
duce a detectable change (of order 1 db) in the scattering cross section. In
comparison with this, a tolerance of about 1073 X on the absolute dimensions of
the body is regarded as sufficient,

The above viewpoint is held by several experimentalists of considerable
reputation, and if the restrictions are indeed necessary it is questionable whether
the scattering cross section of any practical shape can be predicted satisfactorily
by means of model experiments, For example, individual rivets would then
become important,

On the other hand, there are many who do not accept the necessity for
these restrictions, and who feel that surface imperfections of as much as 1072 A
will seldom (if ever) affect the scattering cross section in any detectable manner.
The only exceptions are those cases where the return from the smooth (unperturbed)

body is either small in magnitude (as in backscattering from an infinite cone
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nose-on), or the result of a particular phase relationship which is seriously
disturbed by the presence of the roughness. This opinion is shared by the
authors, and as a contribution towards a better understanding of roughness
effects in general, some results obtained from a study of a particular type of
roughness are presented here,

The type of roughness considered here is one in which the surface
irregularities are distributed at random, but in a statistically uniform and iso-
tropic manner. The surface slopes are assumed small, and the minimum
(effective) radius of curvature (or dimension) of the mean (unperturbed) surface
is assumed large compared with the wavelength, The effects of the surface
roughness can then be discussed in terms of an impedance boundary condition
applied at the mean surface, and this approach is described briefly in §2.

As an illustration the method has been used to determine the back scattering
cross section of a rough sphere, and the results obtained appear in §3.
The details of the analysis are given in the Appendix to this Part.

In order to test the theoretical predictions a series of experiments has been
carried out in which the scattering cross section of a suitably chosen rough sphere
has been measured relative to the cross section of a smooth sphere of about the
same diameter, Three different frequencies were employed thereby simulating
three different scales of roughness. The results are presented in %5 and
confirm that even for a sphere whose roughness depth is as large as 1072 ) the
change in cross section is no more than about 0.1 db. This is in reasonable

agreement with the theory,
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§2. Approximate Boundary Conditions

Let us consider first an infinite perfectly conducting plane which is
perturbed in some manner so as to yield a type of rough surface. Let z= ¢(x,y)
be the amplitude of the perturbation measured from a mean surface which,
for convenience, is taken to be the plane z=0. Then if the perturbed surface
is defined in a statistical manner so that ¢ is effectively a random variable,
and if the statistical properties are uniform and isotropic, the boundary conditions
at the actual surface z=¢ can be written as relations connecting the tangential
components of the electric and magnetic fields at the mean surface z=0. The
only characteristics of the surface which enter into these equations are the
correlation function F (and its derivatives) and the standard deviation ¢, of the
amplitudes, It is assumed that F is a function of the distance p between neigh-
boring points on the surface, and falls rapidly to zero for p> >l, where»l can
be interpreted as the scale of the irregularities (or the size of a typical "hump"),
The details of the analysis are given in Part III, and it is there shown that
the above results are valid providing ¢ and its first derivatives are continuous and
the slope of the surface is everywhere small. In the practical case to be investigated
here we shall only be concerned with values of £ for which k[ <1,where k=27 / A,
and a sufficient condition upon the slope is then §o<<,e .

The boundary conditions on the mean surface are functions of the angle
at which the field in incident, and in any general application of the conditions this
variation is a severe handicap. For the present purposes, however, only the

approximate magnitude of the perturbation effect is required, and it seems
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reasonable to expect that the accuracy of the boundary condition will not be
seriously impaired if an average is taken over all directions of the incident

field, The boundary conditions which result from the averaging process are

EX = -nZ Hy (1)
Ey=n ZH, (2)
where Z=1/Y is the intrinsic impedance of free space and 7 is a parameter defined

in terms of the surface characteristics by the equation

(00)
iktf; 1 9 2 k oF i
_ — e+ - —— +k F ikp

g 4 ik g (P ap )< Jo (J— J'g' 9p I (f' ¢ ®

Equations (1) and (2) can be written as

N
E-(-E)i= nZojH , (4)

where :1\ is a unit vector normal in the outwards direction, and this will be recog-
nized as the usual impedance boundary condition for a material whose effective sur-
face impedance is 7.

A boundary condition of the form (4) is frequently applied at the surface of
a medium whose refractive index N is large compared with unity; n is then inter-
preted as a function of the electrical properties of the material and is proportional
to 1 / N. A rigorous derivation of the boundary condition as applied to such materials
is given in Part II, where it is shown that (4) is also valid for surfaces of vary-
ing curvature providing

'ImN kd>1

where d is the smallest radius of curvature (or dimension) of the surface, If the

permeability u is not large compared with y o » & sufficient restriction upon d is
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kd>>l Im p, | . (5)
Returning now to the boundary condition at a rough surface, this can be
generalized so as to apply to a mean surface which is curved by an analysis
similar in all respects to that given in Part II, providing the minimum radius
of curvature (or dimension) of the mean surface satisfies the inequality (5).
In addition, it is noted that the roughness parameter n enters into the problem
only via the boundary condition (4), and accordingly a rough (but perfectly con-
ducting) surface is equivalent to an imperfectly conducting (but smooth) surface
so far as its scattering properties are concerned, This enables us to associate
an effective conductivity s with the rough surface, In the particular case kZ <1,

equation (3) gives

T kel

and hence for small scale roughnesses,

2
s~it Y-—’%— mhos/m . (7)
T k¢

As an example, if k4= 1/5 and kg =1/100,

09
S~ __l)t mhos /m

and at X band this is comparable to the conductivity of ordinary metals, In this
instance at least it would not appear that the roughness can have any appreciable

effect.
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§ 3. Scattering by a Rough Sphere

The impedance condition (4) is an approximation to the exact boundary
conditions, and apart from any errors introduced by the averaging over the incident
field directions, (4) is correct to the first order in n. Accordingly, in any
solution obtained using this condition there is no physical justification for retaining
terms which are of a higher order in n; and in consequence, if the fields are
capable of expansionin series of ascending ( positive) powers of 71, the perfectly
smooth approximation (corresponding to 1 =0) can be inserted into the right-hand
side of (4). In general, such expansions will be valid and lead to solutions which
are essentially "perturbations" about the solutions for the surface without roughness.

We shall now use this fact to determine the backscattered field when a
plane wave is incident on a uniformly rough sphere for which ka >> 1, where a
is the mean radius. If the incident field is polarized with its electric vector in the

x direction, the scattered electric field at a distance R from the center of the

sphere is A
_ a ik(R -2a) 1 -2
E = - el Ay+ — +0(ka
K= { ot T O )} (®)
where
A = 1-2n (9)
A = -ﬁi)zz_(l-znn R (1-1yp (10)
(2R -a) 2R-a

-1
and this result is valid if | n I << (ka) /3 . The detailed analysis is given in the

Appendix to this Part.
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Equation (8) is of particular interest in showing the variation of the roughness
effect as a function of the distance R. The dominant contribution to the overall effect
is provided by the term A, and this is independent of R. The first contribution
which is a function of R comes from the term A; and is reduced in magnitude by
the (large) factor ka in the denominator. As R—c0, A;—- 21 (1+21i n)
but as the receiver approaches the sphere A; —2(1 - i) n. Since l n I is small
compared with unity, the ratio of these two terms is approximately 4(1 +i) n,
which implies a decrease in the effect of surface roughness as the receiver moves
into the near field. In practice, however, it is unlikely that such a change would
be detected in view of the factor ka by which the term A; is divided, and to a
first approximation A; and all subsequent terms can be neglected. The

magnitude of the scattered field is then

]
which only differs from the "smooth" result by at most a few percent for the type of
roughness being considered here. Moreover, for k{ £ £ 1, n is purely imaginary
and equation (11) shows that the cross section is increased by the presence of the
small roughness. As k1 increases, however, the approximate formula (6) ultimately
ceases to apply, and the impedance assumes a resistive part as indicated by equation
(3); the cross section of the sphere may then be either increased or decreased
depending on the relative magnitudes of the real and imaginary parts of n. This

is discussed at more length in Part II.

4. An Experiment

To test the above conclusions and, at the same time, to obtain some direct

measurements of the effect of roughness, an experiment was carried out in which
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the back scattering cross section of a rough sphere was measured against the cross
section of a smooth (standard sphere at a variety of different distances ranging
from 16 feet down to (about) 6 inches. Each sphere was case in aluminum, a
hemisphere at a time, and it was found that the casting process could be modified
so as to provide a suitable degree of roughness. The first sphere was left in

its rough initial state, while the second was machined to give a smooth sphere

of radius approximately equal to the mean radius of the other. The dimensions

(in cm) were found to be as follows:

Rough Sphere Smooth Sphere
a 12.857 X 0,013 12,697 £0.010
e 0.037  mem——-

0

Y 1) A —

where a is the mean radius (the variation is a consequence of slight asymmetries),
§0 is the RMS amplitude of the roughness, and/g is the scale, The measurement of
€ o and / was made using a vernier caliper and although there was some variation
from point to point on the sphere, the above values are typical of those obtained.

The two spheres are shown in Figure 1 and the close up photograph of the
rough sphere in Figure 2 gives some idea of both the type of surface and the degree
of roughness.

In order to simulate three different degrees of roughness, the cross sections
of the two spheres were measured at the frequencies 2. 87, 9.7 and 23 KMc, corre-
sponding to the wavelengths 10,5, 3.1 and 1,3 cm respectively, The measurements

were made in an indoor anechoic room 30 feet wide by 60 feet long using conventional
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10-inch Metal Spheres, Rough and Smooth Surface

Figure 1.



THE UNIVERSITY OF MICHIGAN
2500-2-T

10

Surface Condition of Rough 10-inch Sphere

Figure 2.
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equipment and technique, Particular care was taken to achieve the greatest
possible accuracy, and it is believed that the results for the relative cross sections
are good to about 0, 2 db,

A block diagram of the equipment is shown in Figure 3. At X band a cavity
stabilized oscillator was employed, and at the S and K band frequencies the sta-
bility was obtained from a crystal oscillator, The receiver was of the microwave
superheterodyne type using a separate mixer for each frequency band, The models
were supported on a styrofoam column resting on a pedestal which could be rotated
about its axis, and this in turn was mounted on a trolley to facilitate measurements
as a function of range. A photograph of the room and part of the equipment is given
in Figure 4.

The comparison between the cross sections of the spheres was carried out
In two different ways. In the first, the cross sections of the spheres were indi-
vidually recorded as each was rotated through 360°, This procedure proved
adequate at the lowest frequency where the roughness produced a negligible effect,
At the higher frequencies point by point data was taken in addition to the 360° plots.
In obtaining this further data eight points on the rough sphere were selected, four
on each hemisphere, in such a way that the plane of the junction between the two
hemispheres was never parallel or perpendicular to either the direction of the
illuminating beam or the electric vector, The antenna beam was then "directed'" suc-
cessively at each of these points, and the average signal recorded as the range was
varied through + ) /4. The contribution due to the background was thereby minimized,
The change in this contribution as a function of range could generally be kept to less

than one or two decibels, and much of the time it was no more than one,
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Interspersed between these eight readings, three readings were obtained
with the smooth sphere, and the difference in averages was then recorded or
plotted as one point (see, for example, Figure 7). Point by point data of this type
was obtained at both X and K bands, although at 23 KMc the number of readings
was further increased to 24 by rotating the sphere through  5° at each of the

above-mentioned eight points.

§5. Results

At all the frequencies at which the experimental work was carried out the
values of kZ are small compared with unity and since g’o << ,Z ‘equation (6) can be
used to calculate the effective surface impedance consequent 'upon the presence of

the roughness. Thus we have

A= 10.5cm , n= 0,001,
A= 3.lcm , n= 20,031 |,
A= L3cm , n=007i ,

Using now equation (8), the roughness is found to increase the back scattering cross
section of the sphere by an amount which increases from 2x1073 db at) = 10.5 cm s
through 2x 1072 db at A=3.1cmto 1071 db at A=1,3cm ., Inaddition, however,
there is the change in the cross section of the rough sphere over the smooth (standard)
sphere produced by its larger mean radius, At S band where the sphere is near the
upper end of the resonant region the change is - 0.1 db; for the X and K band
frequencies the change is 0.1 db. These changes plus the theory outlined in
§ 2 and § 3 then predict that the cross section of the rough sphere will exceed
the cross section of the smooth (standard) sphere by the following amounts:
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A = 10,5cm , -0,10db ,
A= 3.1lcm, 0.12db,
A= l3cm, 0.20db .,

Before going on to compare these with the values found experimentally,
it may be of interest to list the degrees of roughness appropriate to the frequen-
cies employed., If d denotes the total depth of the roughness (approximately 2 €o)
and w denotes the total width of a typical bump (rather than the width between

3 db points used in the specification of the scale /), the various parameters are:

Acm) ka d/a w/A
105 7.6 7x1073 3x1072
3.1 25, 4 2x1072 101
1.3 155 5x107% 2x1071
621X

In view of the large values of ka it is not to be expected that any change in the
relative cross sections as a function of distance will be detectable,

In Figure 5 the experimental results at 2,87 KMc are shown in the form
of 360° plots for three different ranges. Each plot contains four traces -- one
for the smooth sphere and one for each of the three orientations of the rough
sphere -- and in general the traces are more or less coincident with one another,
By inspection of these traces (and other similar traces not presented here),
it is concluded that there is no measurable effect due to the roughness at this

frequency. In passing it should be noted that the thickness of the
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traces in Figure 5 is of order 0.1 db , and accordingly a more detailed analysis
would be necessary if the predicted change due to the different sphere radii is to
be detected, Since this change is not truly a roughness effect, no such analysis
was performed.

The 360° plots at 9.7 KMc are shown in Figure 6, The effect of the surface
roughness is quite apparent here, but the peak deviations from the smooth sphere
return are limited to about 1 db , and the average difference in the returns is even
less, This is brought out more clearly in Figure 7 in which the point by point
measurements are shown as a function of the range R. For comparison with the
Rayleigh distance, the maximum range (R = 16 feet) is equivalent to R = 9,4 (aZ/ L),
where a is the sphere radius, and at the minimum range (R = 6 inches) R = 0, 29 (az/)t).

The results in Figure 7 show no statistically significant range dependence,
though there appears to be a tendency for the relative cross section to decrease with
decreasing range, This is in accordance with the theory., When all the points in
Figure 7 are averaged regardless of range, the cross section of the rough sphere
is found to be 0, 12 db above that for the smooth sphere, and whilst the standard
deviation of the experimental values is somewhat large (0. 40 db), the average is in
truly remarkable agreement with the theory, The extent of the agreement is, per-
haps, a little fortuitous, but does provide confirmation of the theoretical approach,

The final set of 360° plots are given in Figure 8 and are for 23 KMc, The
surface roughness now has a marked effect, and the peak deviations from the cross

section of the smooth sphere are as much as 4 do, The multiple traces shown

result from changing the range by * 1/4 and serve to indicate the effect of the
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background signal. Such traces as these were entirely reproducible, and pro-
viding sufficient care was taken the sphere could be removed from its pedestal
and then replaced, with the same traces obtained once again.

At this frequency the bumps on the sphere are about X /5 wide by /20 deep
and it seems probable that the bumps are here acting singly or in combination of
2 or 3 at a time to produce the individual features in the traces. The fine structure
in the traces is no more than 20 in width and corresponds to a displacement of the
sphere's surface of approximately 0.4 cm ., It can be seen from Figure 2 that this
is comparable to the width of the bumps, and under these circumstances a theory
based on the random addition of the returns from many small irregularities is
clearly inappropriate, It therefore comes as no surprise that the predicted change
in cross section differs from that observed.

Information on the average change in measured cross section was obtained
by the point by point method, Almost 800 readings were averaged regardless of
range and showed that the cross section of the rough sphere exceeded that of the
standard by 0.51 db . The standard deviation of the points was, however, 1,04 db .

In order to facilitate comparison of the returns at the three frequencies,
sample recordings of the rough sphere data are given in Figure 9, The way in

which the roughness effect increases with increasing frequency is clearly visible,

6. Theoretical Discussion

The theory outlined in §2 and 83 is based on an impedance boundary

condition derived in Part III. This condition is accurate to the first order
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Figure 9. Effect of Surface Roughness on Backscatter Pattern of
25 cm Metal Sphere. Average Bump Size About 0.7 mm
Deep by 3 mm Wide.
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in the roughness effect providing the inclination of the actual surface to a mean
surface is everywhere small, and providing the irregularities are distributed at
random but in a statistically uniform and isotropic manner, If these restrictions
are fulfilled, the main effect of the surface roughness is to slightly modify in phase
and amplitude the field scattered by each surface element of the smooth body.

If any of the above restrictions are relaxed, the boundary condition may
cease to hold, Thus, if the slopes of the irregularities are large there is the
possibility of scattering taking place from the sides of the individual humps, so
producing a field in a direction other than that for the smooth body and of a magni-
tude which is no longer negligible. If the surface of an infinite cone were roughened
in this manner, a contribution could be expected which was not from the tip,
Similarly, if the irregularities are not distributed at random, then in certain directions
the fields produced by the individual element may add up in phase, and here again
the boundary condition is not applicable. As an example of this, if small concentric
grooves are cut in the sides of an infinite cone, a first order modification to the
field may result, particularly for backscattering in a direction normal to the rings,

If the surface irregularities do not satisfy the above restrictions, alternative
methods must be employed for assessing the effect of the surface roughness, and
only for certain special types of irregularity are appropriate methods available,
Thus, for one or more isolated bumps whose dimensions are small compared with
the wavelength, the total scattered field can be obtained by using the Rayleigh
scattering formula for each individual bump and neglecting the interaction with the

field of the smooth body. Since the cross section in Rayleigh scattering is proportional
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to the sixth power of a linear dimension, the percentage change in the total
scattering cross section will be small unless the field of the unperturbed body
is itself small, or the number of bumps is large, If, on the other hand, the
surface perturbations are of a very regular kind and can be approximated by a
series of corrugations, the effect may be estimated by using the known solutions
for scattering by a corrugated sheet (Seniorl) or by a corrugated cylinder
(Clemmow and Westonz). In this case, the perturbation field may be

comparable to the field of the smooth body.

§7. Conclusions

In embarking on a study of surface roughness and its effect on radar scattering
cross sections, one of the objectives was to consider the degree of surface finish
which is necessary in model scattering experiments, As part of the experimental
program the back scattering cross section of a suitably chosen rough sphere has
been measured at S, X and K band frequencies and compared with the cross section
of a smooth sphere of approximately the same diameter, It was found that even with
a surface roughness which would normally be regarded as completely unacceptable
for model work the change in cross section due to roughness was relatively small,
Thus, at X band the sphere used had a roughness whose depth was 0,02 ), but still
the average change in cross section which could be attributed to the roughness was
less than 0,1 db, and at S band no change could be detected. As is to be expected,
the effect increases with increasing frequency, and at K band where the bumps were

0,05 ) in depth the scattering patterns were quite irregular,
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On the theoretical side an analysis of the general problem of roughness
has shown that geometrical irregularities characterized by small surface
gradients and random but statistically uniform properties can be handled by
the usual type of impedance boundary condition. This implies that the roughness
produces a comparable effect to a change in the conductivity of the unperturbed
surface. Results obtained with this approach are in good agreement with the
experimental data.

The authors wish to express their thanks to Theodore Hon for his

assistance with the experimental work.
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APPENDIX

Backscattering from a Large Rough Sphere

Following the theory outlined in Section 2 it is assumed that the surface
roughness produces an effective surface impedance n . The boundary condition

which is applied at the surface R = a is then

E-(-E)i=nzhH . (A1)

If the incident field is a plane wave travelling in the positive z direction with

an electric vector

Ei= ] elkz-lut
=emm2:m mtl [0 @4
n(n+1) [ —oln ~=eln
n=1
where m 1 and D, 2T€ the spherical vector wave functions defined by Stratton3
B oin n
the scattered field can be written as
s _ -iwt on 2n+1 G) ®)
Bt an+1) { Poin™ o Pern

n=1 '

and by application of the boundary condition (A1) the coefficients a, and bn are

found to be ,
pjn(p) - in[Pjn(P)]

a = _ y
n ph_(p) - in [phn(p)]

(A2)

=_@hmﬂ?mmMm

(A3)
n [Phn (p))"+in o1y (o)
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where p = ka and the primes denote differentiation with respect to the entire

argument. The back scattered field is then

os)

s __ A7

E =1X2
n=

/
N 1 . 1
1 (-i)" (-n"'z){a—nhn(kR)“'"lbn TR [thn(kR):) } . (A4)

To evaluate this expression for large ka it is convenient to separate out
the portion appropriate to a smooth sphere (n= 0). ¥ E(0) is the x component of
P
the electric vector in the back scattered field for this case, and if I_ES = iXE(n),

equation (A4) can be written in the form

0
B(n) = EO) +) | (-D" (+3) ( h (KR) [anm) - an(o>]
n=1

1 4 _
+il-{-§[thn(kR)J [oatm bn(O)J} , (85)

where the new coefficients are defined by the equations

-l
n _ d
an(n) a-n(O) = -‘-)h—n(p)—{phn(p) - m[phn(p)] j

by(m -b (0)= — 1 [Phn(p)]/ﬂnph (p) B
o . [phn(p)]’ o '

it ] is sufficiently small,

ap(n) - a (0)~n {phn(p)} A In] <<1 (A6)
/N2 -
b_(n) b (0w {[phnw)}} . Il << (A7)

and the coefficients will be replaced by these asymptotic values, This has the effect

of neglecting the residues produced by the first order poles of a,(n) - a,(0) and
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bn(n) = b, (0) when the series in (A5) is transformed by means of a Watson trans-
formation into a contour integral plus a residue series. Since these residues
correspond to the diffracted field, the approximation represented by equations (A6)
and (A7) is sufficient whenever the reflected field is dominant,

By using the relations

in (VR () = 37 (p) by () = ,;T

4 1
[pj_n(p):{ +{1 —%}L—)} pi(p) =0

equation (A5) can now be simplified to give

0
EM)= (1-in— ) E0)+n S (A8)
ap
where
00} /
1  n(n+1) |kRh (kR)
S = (‘i)n o+ > ) [ hn/ Z_I (A9)
kR {p[ ol (o]}
n=1
Taking first the portion corresponding to a smooth sphere, the analysis in Weston?
shows that
- A (0 0
BO0) = - 2 okR-22) |, A0 A00) (A10)
2R -a ka (ka)z
for large ka , where
Zi(R-a,)‘2
A(0) = - -— (Al11)
(2R -a)
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a(R -a)(2R% -4Ra +3a%)
(2R -a)4

(A12)

A(0) =

The remaining task is to sum the series S, and for this purpose the
Watson transform technique is used., I a contour C is drawn surrounding the

poles of cos v 7 on the positive real axis of the y plane, S can be written as

S=ﬁ i/t S eivﬂ/Zv(v2_1/4)[f1;§ Hu(kR)]/dv
T

2KkR p2 cos v n{ [ﬁo HV(p)J'} *

The contour C may now be deformed into a straight line path from -oo to +o0 and

passing through the origin at an angle B to the positive real vy axis, where

-m/2<B<0. The odd portion of the integrand then integrates to zero, so that

o exp (-iB)
S=/§ dim/4 ytanyr(v4-1/4) [,/kR Hv(kR)]/ 4
—_ 1
T kR : w2 f[/oty o] -

To evaluate this new integral it is convenient to break it into two parts

by setting
je v
cos ym

-i

tany T =

Taking first the integral S;corresponding to the first of these two terms, it is per-

missable to put B = 7/2 . Writing vy = -ip we then have

/
pp2+1/4) &P Uk—R Htp(kRJ a

2 ei1r/4
7 KR p? oshrp ¢ 7P/2 71*
p coshrp ¢ 7P/ {[/5' Hip(p)l}
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Since the dominant behavior of the integrand is provided by the factor e™P/cosh 7p ,

Sy may be approximated as

00

. _ -Tp
Sy~ __I_Z el(kR 2a) p(p? + 1/4) L dp
kR p cosh 7p

0

and although this integral can be easily evaluated, for present purposes it is only

necessary to note that

S~ ——_ kR -2a) X constant
Y kR(ka)?

The other integral S, is given by

ol /4 o exp (-ip) Ny !
Sz=/‘ kRZ v(ve-1/4) i[ka/ZHV (kr):, d:/ 5
e ([/p_ HV(PE| }

and is evaluated by replacing the Hankel functions by their asymptotic expansions

for ly, < /o (see Scott’). We then have

. 4
H ( { _ 1/2 v i.l/ 1_ _ L iy
&‘ p] fexp ip-(v-1/2)i T Z+ T SpM (v2 1/4)4p 7157 +. ..

and the integral can now be approximated as

o exp (-1B)
i(kR -2a) .2
AV vsexp{_w_ _1__1)} v
kR p 2 kR ka
0
_ 2 ik(R -2a) 140 (—)
KR(2- )
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Hence,

s=- 2 olk®-2a) ) 2R __ 5 1,
2R -a ka(2R - a) ka2

and the back scattered field for the rough sphere is therefore

M) = -—2  olk(R-2a) {Ao(n)‘*' ), A0
ka

2R-a (ka)2

where

AO(T))= 1-2n

(R - a)2
A = - 2MRZ27 a)z (1-27M) + ZZR

1o
(ZR-2) n(l-i) .

R-a

(A13)

} (A14)

This result holds for sufficiently large ka (such that the diffracted field is negligible)

and for sufficiently small |n| (i.e. |nl< < (ka)™L/3)
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PART II

IMPEDANCE BOUNDARY CONDITIONS FOR IMPERFECTLY
CONDUCTING SURFACES

Summary

It is shown how the exact electromagnetic boundary conditions at the
surface of a material of large refractive index can be approximated to yield
the usual impedance or Leontovich boundary conditions. These conditions re-
late the tangential components of the electric and magnetic fields (or the normal
components and their normal derivatives) via a surface impedance which is a
function only of the electromagnetic properties of the material. They are valid
for surfaces whose radii of curvature are large compared with the penetration
depth, and also for materials which are not homogeneous but whose properties
vary slowly from point to point. As the refractive index (or conductivity) in-
creases to infinity, the conditions go over uniformly to the conditions for perfect

conductivity.

gl. Introduction

In its most straightforward form an impedance boundary condition is one
which relates the tangential components of the electric and magnetic fields via
an impedance factor which is a function of the properties of the surface and,

possibly, of the field which is incident upon it. The concept of a surface
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impedance is, of course, not new, and has long been used in a variety of
engineering calculations. On the other hand, the idea of incorporating this
impedance into the initial formulation of a boundary value problem appears to

date only from the beginning of the last war.

During the early 1940's a considerable number of Russian papers were
published dealing with various aspects of propagation over the earth, and in
these an attempt was made to take into account the properties of actual ground
materials by specifying an impedance boundary condition at the surface. This
represented a departure from the (then accepted practice of studying in complete
detail certain problems of a very idealized nature, and paved the way for a dis-
cussion of propagation over an inhomogeneous, as well as a rough, earth. It
was shown that the impedance boundary condition is a valid approximation to
the exact condition when the refractive index of the ground is large compared
with unity, and the surface impedance can be expressed directly in terms of the
electromagnetic properties of the material. These boundary conditions are
usually attributed to Leontovich (see, for example, Fock6) and were described
by Leon’covich7 himself in 1948. They were first applied to a physical problem
by Alpert8 in 1940, and were used extensively in Russian work throughout the
war. A short summary of their application to propagation problems has been
given by Feinbergg.

Unfortunately, the proofs associated with these conditions are not readily
accessible. Although the conditions are frequently employed in modern electro-

magnetic theory, it would often appear that either their degree of generality or
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the restrictions which they require are not fully appreciated. It is the purpose
of the present paper to collect in one place some of the proofs associated with
these conditions as they apply to the surface of a material of large but finite re-
fractive index. This also serves to provide the necessary background for a
subsequent paper in which impedance boundary conditions are developed for a
surface which is perfectly conducting but geometrically rough.

In %2 the exact electromagnetic boundary conditions are briefly discussed.
The approximate conditions for a flat interface between a homogeneous isotropic
medium and free space are derived in § 3, and the flat interface is generalized
to a surface of large radius of curvature in §4. The necessary modifications

when the properties of the medium vary from point to point are given in § d.

§2. Exact Boundary Conditions
At the interface between two homogeneous isotropic media neither of
which is perfectly conducting, an electromagnetic field satisfies the boundary

conditions
=0 (1)

[2 4 ]

[A- D] =0 (2)
[f.H] =0 (3)
[A-8] =0 ()
where 1 is a unit vector normal and the square brackets denote the discontinuities

in the corresponding field components on crossing the boundary. In these equa-

tions Eand H are the electric and magnetic field vectors in terms of which
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B = uH
where u is the permeability, and
D = cE

where € is the complex permittivity *

A consequence of using a complex (rather than a real) permittivity is that no
surface charge distribution appears on the right-hand side of (2).

Equations (1) through (4) are not all independent and therefore constitute
a set of boundary conditions at the interface which are more than sufficient. I,
for example, the first two are selected, the use of Maxwell's equations shows
that (3) and (4) are satisfied automatically. Similarly if the conditions (3) and (4)
upon the magnetic field are selected; and indeed, a specification of all the tan-
gential components (E and H), or both normal components will suffice. On the
other hand, (1) and (4) or (2) and (3) do not constitute sufficient sets since, for
example, (1) is not independent of (4).

It should be emphasized that in spite of the so-called "proofs" presented
in many textbooks the boundary conditions (1) through (4) cannot be verified by
experiments carried out in a homogeneous medium, nor is the author aware of
any method by which they can be deduced from Maxwell's equations. In consequence,

it appears necessary to regard them as an essential postulate of electromagnetic

A time variation elwt is assumed in this Part alone.
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theory, and the consequent agreement between theory and experiment then
provides the evidence in favor of their validity.

It will be observed that the boundary conditions relate the field in the
first medium (which we shall henceforth regard as free space) to that in the
second medium, and in practice are not always easy to apply in the solution of
problems. When the second medium is perfectly conducting, however, the
fields therein are identically zero and the only fields to be considered are those
in free space. In this case equations (1) and (4) reduce to

A
n o,

It=
I
o
P
5
N

A
n-:

Lov]

i
o
C

but equations (2) and (3) are replaced by

= § (7)

A
n-

lw)

n,H = K , (8)

where & and K are surface distributions of charge and current respectively.
Since these are known only when the fields E and H have been determined,

(7) and (8) do not represent boundary conditions in the usual sense, and we are
therefore left with equations (5) and (6) from which to determine the fields in
free space. On the other hand, a further degeneracy now appears and whereas
two conditions were required when the medium was not perfectly conducting, a
single equation now suffices. Thus, for example, equation (5) alone™ specifies

the fields at all points, and equations (6), (7) and (8) can all be deduced therefrom.

3

'A‘Although a radiation condition (or its equivalent) must also be imposed if the
region is infinite in extent, and an edge condition if this is appropriate.
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When the refractive index N of the second medium relative to free space
is large compared with unity, boundary conditions can be derived which are
analogous to (5) and (6) in that the only fields which appear are those in free
space (medium 1), This permits a considerable simplification in the analysis
of any scattering or diffraction problem involving bodies which are not perfectly
conducting, since it avoids the need to calculate the fields within the body.
These new conditions are an approximation to (1) through (4), and their deri-
vation is based on the neglect of terms O(1/N?) in comparison with unity. We
shall first obtain the conditions for an infinite flat interface and later generalize

the results so as to apply to a more practical set of circumstances.

§3. Approximate Boundary Conditions for a Flat Interface

Consider a homogeneous isotropic medium whose permittivity, permeability
and conductivity are €', u and ¢ respectively. It is assumed that this medium
occupies the region z < 0 of a Cartesian coordinate system (x, y, z). The half-

space z > 0 is free space, the permittivity and permeability of which are €, and

Ko

Relative to free space the complex refractive index of the medium is

N=\/J4_<E'_+i_c_ ,
Ko\ &, We,

and boundary conditions at the interface z =0 will now be derived under the

assumption that |N| is large compared with unity. It will be appreciated that

this requirement is satisfied by a material whose dielectric constant £ s

%
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large, as well as by a material of high conductivity. For the purposes of the

analysis it is convenient to introduce the parameter n defined by n =K ;
u, N
thus

1
n = (9)

\/ﬁ_o € 40
u \% W€

(0]

and is zero for perfect conductivity.
Let us denote by (E, H) the electromagnetic field in z > 0, and by (E',H")
the fieldin z < 0. From the divergence condition we have

9Ex OEy N O,

= 0 10
0x ay 0z (10)
and similarly
9E! ' oE!
B, L 0By LB, 1)
0x oy 0z

At the interface z =0 the tangential components of the electric field are

continuous, so that

and hence, by tangential differentiation,

0Ey, _ 9Ey
ox ox

SE!
OE, _ OEy
oy dy

Equations (10) and (11) then give

aEZ — aE'Z . (12)
0z 0z
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In the medium, however,
o’E! 2E  OE
Z + Z

- zz+k2N2E' =0 (13)
9x? oy 0z Z

where k is the propagation constant in free space. If |N| >> 1, the field is
92 E!

rapidly varying in the z direction, leading to a large value of > ZZ , and by
zZ

comparison with this the x and y derivatives are small. This fact is, perhaps,
most clearly seen by considering a plane wave incident on the boundary from
the direction of free space. Because of the large value of lNI , application of
Snell's law shows that the transmitted field is deflected toward the normal.

For a fixed direction of incidence, the angle between the direction of the trans-

2 g 9% E!
mitted field and the normal is O(1/|N|), which implies that —% and > yzz
0x
2

a 1
are smaller than > zz by a factor of order |N|2 . Accordingly, in equation (13)
z

the first two derivatives can be neglected in comparison with the third, and the

equation then becomes

R

1

2
Z+k NE' =0 . (14)
2 Z
0z

The solution of this is

E'z = Ae + Be s (15)

where A and B are constants as yet undetermined. If N is defined to have
positive imaginary part, the fact that the medium is infinite in extent implies
that A must be zero, since the field E'z must correspond to propagation in the

negative z direction. Hence

E'Z = Be (16)
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from which we obtain
OE',
= -ikN E' . (17)
0z Z
But from equation (2) €,
E' = — E (18)
Z € Z

at the interface, and this can be combined with equation (17) to give

BE'Z €
0z = -lkN —6—0 E
z (19)
= -iknE
zZ
at z =0. Using equation (12) we now have
BEZ
. = —lknEZ (20)

and this is one of the required boundary conditions at the interface. Equation
(20) is accurate to the first order in n.

A similar analysis can be developed for the normal component of the
magnetic field. From the divergence condition we obtain

oH oH'
z _ __ %

0z 0z

(cf equation 12), and since we also have

oH'

—Z_ 1
o2 1kNHZ

(cf equation 17), it follows that

oH
—% = -ikNH' .
Z

oz
Ho
But at the boundary z=0, H' = — H
Z u Z
and hence SH N
L =- =5 . (21)
o0z ] Z
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This is the second of two boundary conditions at the interface, and is accurate
to order 1.

It will be observed that (21) differs from (20) in having 7 replaced by
1/n, and this is in accordance with the interpretation of n as an impedance
associated with the surface. The point will be elaborated upon in a moment,
but for the time being it is sufficient to note that equations (20) and (21) specify
the behavior of the normal components of both E and H at the interface, and
therefore represent a sufficient set of boundary conditions.

For some applications an alternative (but entirely equivalent) representation
of these boundary conditions proves more convenient. Taking first equation (20),

since 7
E=-=\/,H
" V

[u
where Z = % = -€—° is the intrinsic impedance of free space, and since
0

V * E =0, the boundary condition can be written as
-a—(E +nZH) = -2 (E -nZH) . (22)
ox | X y oy Y X
Similarly, the boundary condition (21) gives
_:; (EX+nZHy) =% (Ey-nZHX) (23)
and by eliminating E, + 1 ZHy and Ey -n ZHX successively between these

equations, we have
9 o
~ + —T(I’ =0 (24)
ox ay
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where § =E_+nZH or E, -nZH, . This equation can be solved by

y

assuming a separable form for ¢ . If

@ = él(x) @2(3’) H
then
e trh s

' d
> - a @2 = 0
9y

2, . .
where a is some separation constant, and the solutions are

iax -iax
A e + By e

0y
Qz = Az eay + Bz e—ay

where A; , By, Ay and B, are constants as yet undefined. If a is not purely

real, both A; and B; must be identically zero since otherwise @1 would become
exponentially large for large x (either positive or negative). In this case @ , and
hence {), is zero. If a is purely real, the same argument applied to the variable
y shows that ‘I)2 is zero, leading to the same conclusion as regards (I) Since
 is therefore zero,

Ex = -7 ZHy (25)

E, = nZH

; . (26)

and this is the alternative statement of the boundary conditions at the interface

z =0. In this form the conditions simply state that nZ is the effective impedance
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of the surface as seen by a field in free space. For comparison with this, the

impedance of a perfectly conducting surface is zero.

34. Extension to a Curved Interface

In order to generalize these conditions for application to surfaces which
are not flat, it is first necessary to express equations (20) and (21), (25) and
(26) in forms which do not explicitly involve the coordinate system. If E, and
Hn are the field components normal to the boundary, and if n is a coordinate
whose positive direction is outwards as regards the medium, equations (20) and

(21) can be written as

OE
0 = _iknE (27
on n
oH .
—n _ _ik
= - Hn . (28)

For the second pair of conditions a vector form is more convenient, and
following Leontovich7, equations (25) and (26) are combined to give

E-(@-Ef =nZf ,H . (29)
Of the three scalar equations contained herein, only two are independent.

We now turn to a consideration of the boundary conditions at a curved
interface between the medium and free space. As in the case of the flat inter-
face the object is to determine approximate boundary conditions in which only
the fields in free space appear. It is clear, however, that unless restrictions

are placed upon the shape of the boundary, these conditions will involve the
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geometrical properties of the surface as well as the electrical parameters of

the medium, and in consequence may vary from point to point on the surface.

Such conditions would be of little practical value. On the other hand, by restricting
the type of surface to be allowed, the curvature effects can be made negligible,

and the boundary conditions then reduce to those obtained for an infinite flat
surface.

A rigorous derivation of the restrictions which must be placed on the type
of surface in order that equations (27) through (29) be valid is beyond the scope
of this paper, and for details of the analysis reference is made to Rytovloand
Leontovich7. The actual limitations, however, can be arrived at by a semi-
intuitive argument.

It will be recalled that in the analysis of the flat boundary the assumption

was made that
IN|>> 1, (30)

and this is sufficient to ensure that within the medium the field is slowly varying
along the surface and behaves essentially as a plane wave propagating in the
direction of the inward normal. Let us now seek to apply equation (29) or (27)
and (28) to each point on a curved surface. In order that the field shall vary little
within a wavelength along the surface, a restriction must be placed upon the
radii of curvature, and a trivial analysis shows that the requirement is

IN| kp>>1 (31)
where p is the smallest radius of curvature at the point in question. If (31) is
satisfied, any correction to the boundary condition (29) consequent upon the
curvature is negligible (see Leontovich7).
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For a surface which is open (implying that the medium is infinite in
extent) and which has no inward normal intersecting the surface in a second
point, the restrictions (30) and (31) are sufficient to justify the application of
the flat surface conditions. For a closed surface, however, a difficulty arises
when the conduction current in the medium is negligible compared with the dis-
placement current. The inward travelling field then suffers little or no atten-
uation, and accordingly may appear as an outward travelling field on the farther
side of the surface. This is contrary to the assumption made in the derivation
of the flat surface condition. For this reason it is necessary for the field within
the medium to be attenuated at a rate such that the penetration depth § is small
compared with p, giving rise to the additional restriction

§<<p . (32)
Ifo >> w €', equation (32) can be written as

\/L g kp >> 1 ,
2WE
0

Ho

which in turn reduces to the inequality (31) if the conduction current dominates.
On the other hand, if the displacement current dominates, the inequality (32)
represents an additional restriction which is stronger than (31).

The difficulty which arises with a dielectric medium has been noted by
Leontovich7, who also points out that for a body made of this material the boundary
condition (29) can be justified only under very restricted circumstances. For a

body of general shape the boundary conditions are only applicable if the medium

is conducting and satisfies the inequality (32). The importance of this restriction,
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rather than (31), can be seen from a study of the few exact solutions which are
known for bodies which are not perfectly conducting. For example, if a plane
wave is incident on a sphere of radius p, the exact solution can be found as a
sum of vector wave functions whose coefficients are functions of N. If it is now
assumed that IN’ kp ») 1, these coefficients reduce to the forms which would
have been obtained by using the condition (29) apart from additional terms in-
volving tan Nkp. Such terms only disappear if tan Nkp can be replaced by -i to
the leading order in N, i.e. if ‘Im N| kp >> 1. Similarly, if a field is incident
upon an infinite slab of (uniform) thickness d, the exact solution contains an ex-

2iNkd corresponding to internal reflection from the lower sur-

ponential factor e
face, and the approximate boundary conditions would then be valid only if the
terms containing this factor can be taken zero. This in turn requires an atten-
uation of the inward travelling field subject to a restriction of the form (32) with
p replaced by d. It is of interest to note that (32) is here required even though
the surface is flat.

In summary, we now have that for a homogeneous isotropic body whose

refractive index N and smallest radius of curvature or dimension p are such

that .
[N] >> 1 (30)

|Im N|kp » 1, (33)
the boundary conditions at its surface can be written as

on

= -iknE/ (27)
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OHp _ _ky o (28)
on n-n
where 1 = ”“ These are equivalent to the single vector condition
)

nZn AH . (29)

E-@{-E)N

In some circumstances it may be possible to replace (33) by the weaker

restriction
IN| kp >>1 (31)

but such cases must be regarded as exceptional. In this connection it is of
interest to note that Fock6 in his discussion of these boundary conditions ignores
the distinction between dielectric and conducting media, and gives only the
restrictions (30) and (31).

Equations (27) through (29) are approximations to the exact boundary
conditions correct to the first order in 7, and accordingly in any solution ob-
tained using these conditions there is no (physical) justification for retaining
terms which are of a higher order in n. A consequence of this is that if the
fields are capable of expansion in series of ascending (positive) powers of 7, the
perfectly conducting approximation (corresponding to n = 0) can be inserted into
the right-hand sides of (27) and (29) and into the left-hand side of (28). In
general, such expansions will be vlaid, though a problem in which this is not
true is the incidence of an H-polarized plane wave on an imperfectly conducting

1, 12)

half-plane (Senior In this case, however, the failure may well be due to

the additional assumption of a "thin" body.* implicit in the problem.

%
The mathematical requirement here is d (¢ A, where d is the thickness of the half-
plane, and by assuming that the half-plane is tipped with a semi-circular cylinder
it can be shown that the boundary conditions are applicable if § << d << \.
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§5. An Inhomogeneous Medium

Let us now go on to consider the problem in which the medium is not
homogeneous, so that the refractive index varies from point to point. This
variation will be attributed to € alone and u will be regarded as spatially in-
variant. We shall again begin by assuming an infinite flat interface between the
medium and free space.

At any point (x, y, z) within the medium

V:(€E) =0 (34)
and since

V' (eE) =€V E' +E' Ve

equation (34) can be written as

9E! OE/ OF,
X ¢ ¥ =__2_1 p.ge . (35)

In free space, however,

V'E =0 (36)

and using the continuity of the tangential components across the interface, we

now have
1
OE, _ _%Ex _ 9By
0z 0x oy
OE) (37)

= +i}_3"Ve
0z €

at z =0. In terms of n, however,

€

E

e =
Ho

so that
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1Te=-2Tn,
n

and this can be inserted into equation (37) to give

oE oE)
Z Z _ _2_ E' .a_ﬂ + E! M + E! _E?_ﬂ (38)
oz 0z n X 9x y 9y Z 9z

at z =0. But at the interface

E' = E

X X

E! :E

y y

gr = X0 g
Z “ Z

and using these relations equation (38) becomes

B, - 3 _ 2 (g 2, 814 Lo g2y A1) (3
9z 9z n X 9x Yy oy H Z 9z

In arriving at this equation no approximations have been made, and the
second term on the right-hand side can be interpreted as a correction to the

boundary condition resulting from the variation of n throughout the medium. If

l kl—n % nl «1 (40)
which implies that the relative variation is small, Ex’ Ey and Ez will not differ
substantially from the values appropriate to a homogeneous medium. For such
a medium it was shown in § 3 that

E, Ey = o(m) , E, = 0(1)

and in equation (39) it is now seen that the lateral variation of 1 is more important

an
d
oy an 0z

than the normal variation. Indeed, if

8;) s on are all comparable with

9
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one another, the effect produced by the z variation of n is smaller by an order
of magnitude. The z variation can therefore be neglected and henceforth n will
be assumed to be a function of x and y only.

1

The next step is to obtain an expression for (:EZ in terms of the free
Z

space field. From the field equations

VHo % 7 g (41)

E' = - A =
ik €
,[u €
H' = 22 U, E (42)
iku
we have
1
E' = — VAVE' (43)
k° N2
and since

. 2
VALE' = VIV E) - T E
=-V(tEVe) -V,
€
the equation for the field within the medium can be written

Vzg'+k2N2§'+v<—€1—§"Ve) =0 . (44)

If €is now expressed in terms of the refractive index N using

2
e = Ho e N
u O

3

equation (44) becomes

Vv E! +k2N2§'+2V <% E'- N) =0 . (45)

and since the tangential derivatives of E' are again negligible in comparison

with the normal derivative, (45) reduces to
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2 E!

+ N E' + 2R7<i E' 'VN> =0 . (46)

oz% N

In particular,

o E! 5N
—2 4+ ¢ N g+ 22 i(E'—%-I‘I—+E' ——) =0. (47)
522 z oz ( N x 9x Ty 9y

In order to determine EZ' from (47) it is necessary to know the variation
of E)’( and E}’, in the z direction, and for this purpose the x and y components of
equation (46) are employed. To the first order the variation of N can be neglected,

and we then have

2
0 E!
X+ KN E =0
2 X
0z
the solution of which is
-ikNz
1 foed 1
Ex (EX) i e (48)

z=0
since the field in the medium must behave as a wave travelling in the negative

z direction. Moreover, at z =0

E' = E
X X
and hence
E! =E, g SNE (49)
Similarly,
E' = E e—1sz (50)
y y
and equation (47) can now be written as
0% E} 9 -ikNz
+kN2E;+ a e =0 (51)

0z
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where
@ = -2ik <E ON + g 31) . (52)
X ox y oy

a is, of course, independent of z.

The complete solution of equation (51) is obtained by adding a particular
. . -ikNz .
integral to the general solution A e , wWhere A is some constant. The

former can be taken as

o -ikNz
—ZZ ¢ ,
2ikN
giving
E} = o KNz (A+ @z ) : (53)
2ikN
Hence
-ikNz
a 1
5 = -ikNE'! + e
0z z 2ikN
and at z =0 this reduces to
oE/ o
L = -kNE' + ——
0z Z 2ikN

=-ikng_ + = (£ 2L+ E 93) (54)
z n ox Yay

by using the expression for «. If this is now inserted into equation (34) bearing

in mind that an . 0, a boundary condition is obtained in the form

0z
oE
Z — _jnE -+ (g @0 4+g 00 (55)
az Z n XaX yay

at the interface z =0. Apart from the presence of the tangential components
E, and Ey consequent upon the variation of € throughout the medium this equation
is the same as (20).
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A boundary condition for the normal component of the magnetic field
can be obtained by an analysis similar to the above. Since \/* H= \/* H' =0,
the continuity of the tangential components of H across the interface leads to
the equation

oH oH/!
Z — VA (56)

0z 0z

(cf equation 37) at z =0. Inside the medium the field equations give

€
H' = “OOVA (_]E-_ VAI;I'>

Mo € 1 1
) uokzo {? V,\VAE'+V?,\(VA§')}
= 1 (vzﬂw 2ikN —° Y E' VN)
k2 N2 B M - N
and hence
2 2 Ho
V H'+K N H' +2kN % YE ,V N . (57)

7

In particular, the z component of (57) is

9%H! "
2Z+k2N2H'+2ikN—9-Y (;{ﬂ_E' @.I;T_):O ’
0z Z M oy Yy ox

where the x and y derivatives have been neglected in comparison with the z,

and by using the expressions for E} and ES" given by equations (49) and (50)

respectively we arrive at the equation

2
8%H;

Z+ N H + B e
0z

-ikNz

Il
o

(58)
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(cf equation 51), where
B =2ithY <E N g QH—) (59)
u X 9y Yy ox

(cf equation 52). The solution of equation (58) is

-ikNz
H' =e <B+ Bz (60)
Z 2ikN

(cf equation 53), where B is some constant, and hence at z =0

oH! B
—Z = - jkNH' +
0z z 2ikN
= -ixN 2o g +£—°—Y g N _p 8N (61)
[T v X 9y y ox

{

ik Y on on
-=H,+= (g % _g 90
n z n ( y 8X EX ay )
If this is substituted into (56), the boundary condition on the normal component

of H at the interface is

oH i
Z = _ l_k Hz + l E _E)_TL -E ﬂ (62)
oz n n y ox X 9y

which is analogous to the condition (21). As with the condition (55), the variation
of nhas introduced the tangential components E, and Ey into a boundary condition
which is otherwise the same as for a homogeneous medium.

From equations (55) and (62) boundary conditions can be derived involving
only the tangential components of E and H. Using the equation V' E=0 and

the expression for E_in terms of H_and Hy, equation (55) becomes

aEX-_l_EQE+nza_H.‘L=__aEL_iE a_-nzaHX
0x N Xy 0x dy n Yoy dy
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which reduces to

E E
2 (_)i +ZH) =_.8_<—1 -ZH)
ox n y 9y \ 1 X

Similarly equation (62) can be written as

9 Ex ) 9 ( EL )

= Z+ == -ZH

dy n z Hy 9x n X
and by means of the analysis given in §3 (equation 24 et seq.) it now follows

E E
that (_nl + ZHy) and (—n& - ZHX) are both identically zero at the
interface. Hence,
E =-nZH (63)

X y

Ey =nZ HX (64)

which are of precisely the same form as the conditions (25) and (26) for a
homogeneous medium. In particular, the tangential derivatives of n do not
enter into these equations in spite of the fact that they appear in equations (55)
and (62). Thus, the conditions (63) and (64) are relatively insensitive to changes
in the medium, and any correction terms arising from the inhomogeneity must
be of higher order than those considered here. Indeed, if 1 is regarded as a

function of z as well as x and y, it can be shown that

E, = -nZH {1+o(i3_n>}
X y k oz

(see Rytovlo), and by virtue of equation (40) I{l— gﬂ- L.
zZ
In spite of the simplicity of equations (63) and (64), these boundary

conditions are of little practical value as they stand. Although the coordinates
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x and y do not occur explicitly in these equations, the material parameter 7
is itself a function of x and y, and accordingly the boundary conditions vary
with position on the interface. This is a source of difficulty in any attempt to
employ these conditions in the solution of an actual problem.

On the other hand, if it is assumed that the variations of n are random
but uniform in some statistical sense, the difficulty can be overcome in a
manner which is satisfactory for many practical applications. Such an assump-
tion is, of course, additional to the restriction (40) and implies that if a large
sample of the surface is chosen, the values of 1 within this sample are sub-
stantially the same independently of the portion of the surface from which the
sample is taken. Under these circumstances it is to be expected that the field
will (in general) be a function of the statistical properties of the surface, rather
than of individual features, and this leads us to consider an average field
satisfying an averaged boundary condition. Such an average is obtained either
by moving the transmitter and receiver whilst maintaining their positions relative
to the plane z =0 (so that different samples of surface appear beneath them), or
by replacing the given surface by others of a family whose statistical properties
are the same. The boundary conditions satisfied by the average field (E, H)
can be found by the simple process of averaging equations (63) and (64). Bearing
in mind that to the first order in 7, HX and Hy can be replaced by the components

H; and H; for a perfectly conducting surface, (63) and (64) give
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E =-7z H;
Ey =Nz Hi ,
which can be replaced by
E, =-1Z ﬁy (65)
Ey = NZH_ (66)

to the first order in n. Similarly, if the correction terms in (55) and (62)

are neglected, the averaged versions are

o _KFE (67)
Z

0z

M, _ ik (68)

oz n Zz

The above results are valid for statistically uniform surfaces whose

refractive index N = satisfies the restrictions (30) and (40). It will be

M

0
observed that the average fields are determined by the average value of 1, and
not by the average values of € or o. This is in accordance with the conclusion

reached by Feinberg13

under the same restrictions but by a somewhat circuitous
analysis.
These boundary conditions can be generalized so as to apply to a curved

surface in the manner described in §4. The restrictions under which this is

valid are the same as in % 4, and will not be repeated here.
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PART III

IMPEDANCE BOUNDARY CONDITIONS FOR STATISTICALLY
ROUGH SURFACES

Summary

It is shown that for an electromagnetic field incident on a perfectly
conducting surface having small geometrical irregularities which are dis-
tributed at random but in a statistically uniform and isotropic manner, the
boundary condition can be replaced by a generalized impedance condition
applied at a neighboring mean surface. The surface impedance is a tensor
function of the direction at which the field is incident as well as of the statis-
tical properties of the irregularities, but simplifies in certain particular
cases. Although the detailed analysis is carried out for a mean surface which
is flat, the boundary condition is applicable to a curved surface providing the
radii of curvature are large in comparison with the wavelength. It is believed
that this approach is of value in studying the effect of minor surface roughnesses

on the scattering of electromagnetic waves.

§1. Introduction
In recent years an increasing amount of attention has been devoted to

the effect of surface irregularities on the propagation and scattering of electro-
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magnetic waves. In the course of this work many types of irregularity have
been studied ranging from isolated bumps of simple mathematical form,
through specific (or even periodic) arrangements of particular protuberances,
to random distributions of general irregularities. Since the ultimate goal is
a knowledge of the scattered field, most analyses have aimed at the direct
calculation of this quantity, and this in turn has usually required that a
separate mathematical treatment be provided for every shape of background
surface on which the bumps are placed. In view of the complications associated
with anything but a flat surface, an infinite plane background surface has been
studied almost to the exclusion of any other shape.

The present paper is concerned only with the case of a surface having
small geometrical irregularities which are distributed in a random but
statistically uniform and isotropic manner, and is prompted by disagreements
which have arisen about the influence of minor surface roughnesses in model
scattering experiments. In order to achieve a degree of generality which is,
perhaps, not otherwise obtainable, attention is directed at the boundary condition
rather than at the scattered field. By taking the actual surface to be perfectly
conducting, it is shown that the boundary condition can be replaced by a form
of impedance boundary condition applied at a neighbouring (fictitious) mean
surface. The effective surface impedance is a tensor function of the
statistical properties of the irregularities and of the direction at which the
field is incident. The analysis is given in detail for a mean surface which
is flat, but the boundary condition is also applicable to a curved surface
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(and hence to a finite body) providing the radii of curvature ( and the minimum
dimensions) are all large in comparison with the wavelength.

In certain cases the surface impedance can be taken as a scalar, and
the boundary condition then reduces to one of the Leontovich type. This is
the standard impedance boundary condition for a surface of large but finite
conductivity (see, for example, Part II), and implies that the surface
roughness has the same effect as changing the conductivity of the surface.
Although this may seem strange at first sight, a direct consequence of the
roughness is that the tangential components of the electric field at a nearby
mean surface are related to the other field components through small parameters
characteristic of the surface imperfections. If a suitable averaging process
is applied, the conditions on the field at the mean surface reduce to a boundary
condition of the type discussed in Part II, and to this degree of approximation
the geometrical imperfections are therefore equivalent to a conductivity change.

A description of the surface which is considered is given in §2, and
the appropriate boundary condition is derived in §3 through §5 for the particular
case in which the mean surface is an infinite plane. The effective surface
impedance is obtained explicitly in 66 and §7, and some numerical values
are presented (§8). A general discussion which includes the application of

these conditions to a curved surface is given in §9.

§2. The Surface
The problem to be discussed is one in which an electromagnetic field
is incident upon a perfectly conducting surface which varies in a statistically
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uniform manner about some mean surface. To begin with it is assumed for
simplicity that the surface is infinite in extent and obtained by perturbation of
aplane. This allows the mean surface to be taken as the plane z =0 in a
Cartesian system of coordinates (x, y, z), and only later is the problem
generalized to the case of a mean surface which is curved.
The method which is used is based on one proposed by Feinberg13’ M
for a study of ground wave propagation over a rough earth. The equation of
the surface is taken as

z=T(x y), (1)
and the height and scale of the variation of { about its mean are denoted by
the length parameters § | and { respectively. The first stage in the analysis
is the expression of the boundary conditions on the actual surface as conditions
upon the field components at the (fictitious) mean surface. This is accomplished
by a Taylor expansion of the field about a point (x, y) on the mean surface, and
it is clear that the expansion will only be valid if the behavior of the field at
the mean surface differs but slightly from the behavior on the actual surface.
This immediately places a restriction upon the type of surface which can be
considered and also upon the location of the mean surface. In particular,
large gradients or abrupt changes in gradient cannot be allowed since such
perturbations may produce significant changes in the field in their immediate
vicinity.

In the course of the Taylor expansion it is found that { and its first

derivatives occur, and the typical (or root mean square) values of these make

up the three parameters of smallness which are present in the problem. For
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a surface which is statistically isotropic, the typical values of —= and
0x
-g-c. are equal (= KO, say), and only this case will be considered. The
y
number of small parameters is now reduced to two, and the restriction to
small surface gradients requires that
¥ <<1. (2)

Moreover, in the practical case to be investigated here, the scale length

will never exceed* the wavelength of the incident field, and if the mean

surface is drawn so that §ON L T,» equation (2) gives
§, << X (3)

which is a sufficient restriction on ¢ o I should be remarked, however,
that (3) is not a necessary condition, and Feinberg14 has shown that the higher

terms in the Taylor expansion can still be neglected if

k §0<4\[% . (4)

By choosing ,Q/ A large compared with unity it becomes possible to allow surface
imperfections which are not small in comparison with the wavelength providing

the slopes are small. Such cases, however, will not be discussed.

§3. First Order Boundary Conditions

Since the actual surface is perfectly conducting, the boundary condition

at z =¥ is
=0 (5)

A —

where 1§ is a unit vector normal, and from this we obtain

*It will usually be considerably less than this.
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Ey = - 9 E,, (6)
0x
E =- L E. (7)
y gy Z

The above equations specify relations which must be satisfied by the
field components at z = {, and once these conditions have been imposed the
surface can be removed without affecting the field in the region above. The
next task is to express equations (6) and (7) as conditions upon the field com-
ponents at a mean surface, and this is done by expanding the field components
in Taylor series. Since the field is finite and continuous everywhere throughout

the free space region except at the source, we have

5

2 552 Ey(x,y, 00 +....

E(x v, 8) =Exlx 3, 0+ == Exx,y, 0+

where the differentiation must be carried out before z is put equal to zero.

But if the incident field possesses a non-zero component E, (as will be assumed),
E, for the total field will be O(1), and since equation (6) then shows that E is of
the first order in small quantities (denoted collectively by £),

JE
EX(X’Y:§)=EX+§ -Sz_x + 0(83).

The field components on the right are evaluated at z =0. Similarly,

OE
Elx y,8) =E, + ¢ —L + o($3),
0z

y

oE

E,(x, y,8) =E,+ t =% + o(%?).
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Substituting into (6) and (7),
BEX 3EZ 3
By == 4B m0 — -tg —2 + 0(§°) (8)
OF SE 3
- e 2y z
E, ¢ E, -t — e 5+ ol §7) (9)

where §‘X = 9¢/dx, ete, and these are the equivalent boundary conditions at
the mean surface z = 0.
A little simplification can be achieved by using the fact that the divergence

relation

= - - Y (10)

holds at all points including those on the mean surface. If the expressions for

Ey and Ey on z =0 are inserted, it is seen that

OE
2 = off)

0z

and hence equations (12) and (13) can be written as

OE

— X 3
E,=- 0, E -0 5= + o(8°) (11)
oE 3
= - - -y
E,= - L E, -t —L+ off) (12)

for z =0. In combination with equation (10) we now have

oE

Z d aEx 9 aEy 83
— = — ({{ E, + }+— ¢ E, + +0(d")
9z 9x {x 2" oy | Y Z e

(13)
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which is identical to the equation obtained by Feinberg.
The significance of the above results becomes apparent on using the
field equation.*

E=1ikZH

AN— -_—

to eliminate the normal derivatives from equations (11) and (12), which then
become

. 3
E, = k2 H - %(§E2)+0(8) (14)

_ . 9 3
E,= - ikZ ¢ H - a—y(gEZ)+o(S) (15)

where Z =1/Y is the intrinsic impedance of free space. In this form the
equations differ from the Leontovich boundary condition only in the presence
of the terms involving E, on the right hand sides, and these terms apart,

the equations are the same as for an imperfectly conducting material having

a surface impedance -ik §. For a statistically rough surface, however, such
an interpretation is dependent on the choice of the mean surface. To order )
the field components for a smooth surface can be inserted into the right hand
sides of equations (14) and (15), and if the mean surface is chosen so that

t =0, where the bar denotes an average taken over the whole xy plane, the

boundary conditions satisfied by the average fields are

E, = E, =0+ 0(5%).

*M.k.s. units are employed with a time factor e ~lwt
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These are the conditions for a perfectly conducting smooth surface at z =0,

showing that the terms of order Sproduce no conductivity effect. This conclusion,

however, is a consequence of choosing a particular mean surface. If this does

not coincide with the ""average" surface, the roughness will produce a first

order effect, as is to be expected since the boundary conditions are then

being applied on a surface which is displaced even in the limit of zero roughness.
In the practical case of a surface having a statistical type of roughness,

it is natural to choose a mean surface which coincides with the average, and

if the resulting boundary conditions are to take this roughness into account,

it is necessary to retain the second order terms in, for example, (11) and (12).

0 OE
This in turn requires us to obtain expressions for E,, 3 X and a_X on
z z

the surface accurate to O(3), which expressions can be substituted into (11)

2
and (12) to make explicit the terms of order 9 .

§4. Second Order Boundary Conditions

At any point in space the electric and magnetic fields can be written as

integrals involving the field components on the surface. Thus, from Stra’cton3

we have

E(x,y,2) = 5 Ex+ = |Jikz(d, ) § +3,EV p+@- E)yprds  (16)

~

3
where the differentiation is with respect to the surface coordinates (x; ,y; , 2 )

and 1l is a unit vector normal to the mean surface S drawn inwards as regards
free space. The symbol 'EA denotes a surface integral over an infinite hemi-
sphere if the incident field is a plane wave, or over a small sphere surrounding
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the source if this is at a finite distance; E , is therefore a function of the
incident field alone and is independent of the characteristics of the surface

S. P is the free space Green's function

p - <2
P
with
= \/ (x-xl)2 +(y-n )2 +(z-2 )2 .
Taking the surface S to be the plane z =0, we have o =(0, 0, 1) and
hence

1 .
E(xy,z) = % E,(xyz2) + 4 S {mz (-H, H, 0) p

+(E—-Q- E—Q-E_Q _ﬁ)

X 9z Y oz X 9% By ay;
o9 of o
+E (Bxl’ay ) azl) dx dy; . (17)

In particular,
_ 1 1 )
EZ(X,Y,Z)——EAZ(X,Y,Z)'*'"ESX (_E _L -E —Q l)dxl dyl

2 X 8X1 y ayl Z aZl

and by applying partial integration to the first two terms of the integrand, the

OF OE
X, ¥ p
&S {(35& " oy, W+ E, le} & dyy

OE
1 1 . X Q

equation becomes

»>
N
=

Ez(x,y, z) = 5 Byt

If the observation point is now allowed to approach the surface S, the fact that
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lim E P dx; dy; = 27 E_(x,y, 0)
z 8Z1 Z
z—0

leads to the result

, . 1 OE,
E,(x,y,0) =E,,(xy,0) - P 57, P dax dy; . (18)

E
The final step is to use the expression for Z at a point on the mean

surface. From equation (13)

2

oE 2
z . ) k) 0 9
= jkZ —_— - — + 4+ —
92 ' I 0% €, Hy) oy € Hx)i (8x12 8}’12) 5 5

2 2

2 )
= ikZ ¢ H, -t H + (k"+ — + —)(¢ E)
{’ﬁ y ! X} ox, 2 8y12 1 Pz

which can be substituted into equation (18) to give

- .o i -
£, = EAz 2m 5 3 [lkz (cxl Hy §}’1 HX)

2, o 8 3
+ (k% + + E dx +0 19
e+ 52 Z)Jp , dy, +0(D)  (19)

at any point (x, y) on the surface z =0.

Turning now to the x component of equation (17) we have

1 a0 o . 8
Ex(x, y,z) = 5 EAx(x,y, z) + 4”38 (- ikZ Hyp +E_ +E, 3%

3z ) dx dy,

1 1 OF, o Ly o8 %k
= = + — + + -
5 Epdxyz) + - Sg (aX1 p +E, ox, E, o p) dx dy
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and since the first two terms of the integrand integrate to Zero,

oE
=1 1 o 9k,
EX(X’ Y, Z) = 5 EAX(X, Yy, Z) + —-471' g S (EX BZI aZI ¢) Xm dyl .

Hence,

j 2 oE

9 1 9 1 j 8@ X 8@
<. ,z) =2 9 LY, Z) - — E

0z EX(X’y 2) 2 0z EAX(X ¥ 2) 4r ( X )

aZl 2 321 BZI
and in the limit of an observation point on the mean surface,

9 _ 9 1 52
— Ex(x,y,0) = 9 g (5,0 - L lip SSE —gdxd
oz XY oz Ax™Y 2, 0 * ot 1T

=2 5 0 + L (1<2E+82EX + aZE");?)dxd
T oz CAxYs o X' ox2 By 1 S -

If the expression for E, given by (14) is substituted into thig integral, the

OBy ,
boundary valye of 5z s found to be

aEX 8EAx 1 2 82 32 .
= T o (k™ + 2t T 3)y-ikz ¢ H
9z 0z T Oxy ayy Ly

9 3
(3 EZ)H pax dy, + o §°) (20)

which can be combined with equations (14) ang (19) to give

EX= - chAZ— c o2 + 2_17F S\j\ PX¢ Xm dyl +0(g3) (21)

where
P = ikZ ( H ) 2, @° o’
= i - H )+ikZ (k" + +
. L’xtxl v rxrﬁ AR ( 8x12 ﬁayl )(gngy)
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2 2
9. 3 9 3
+ (k% + + ) ( + J(C,E). (22)
ax% 8y12 ox 0%y §‘§1 z

By an analysis similar in all respects to the above it can also be shown

that on the mean surface

oE OE 2 2
vy _ Ay 1 gg K2 + 9 9 .
= - — + ikZ
9z 9z o ( 2 7) $1Hy

0%y oy,

+ _aa_ (!lEz)ﬂ Pay dy, + (b (23)
Y1

and by using equations (15), (19) and (23) we have

oE 5
g Sy Fan 9z o y P dx dy of§)  (24)
where
P =ikzt,t, B - €8 ) -kzir 25 + 2 (eem)
y Yy x 'y x°y X BXIZ 8y12 1H
2 2
2 ) ) 9
+ + ¥
t 8x12 3y12 )(By 8y1) (€g, Ez) . (25)

These equations express the tangential components of the electric field
on the mean surface in a way which makes explicit the factors of order Sz. To
this order, it is sufficient to insert into the formulae for Px and Py the field
components for a perfectly conducting (smooth) surface at z =0, but before
doing so we shall consider the averaging processes which must be applied
to equations (21) and (25) if the actual surface is defined in a statistical

manner.
70



THE UNIVERSITY OF MICHIGAN
2500-2-T

§5 Averaged Boundary Conditions

In order to discuss the effect of roughness with any degree of generality,
it is necessary to assume that the surface is known only as regards its
statistical properties. Let us therefore consider a surface which is statistically
uniform and isotropic, but which is otherwise defined by its statistical parameters
alone. The field behavior near to the surface can now be determined only in
some average sense, leading to the concept of averaged boundary conditions.
Such conditions can be obtained from equations (21) and (25) by applying either
of two averaging processes. In the first of these the points (x,y), (x,y;) are
allowed to roam over a surface having the required statistical properties,
the relative positions of the two points being kept constant. At every point
the field is evaluated and the results are then averaged over all x and y. This
is essentially a "space average" applied to one particular surface.

The second type of average is obtained by keeping the points (x,y), (x;,y;)
fixed and introducing different samples of surface into the region between them.
All the surfaces are, of course, members of the same statistical family and,
in consequence, the averages are here "ensemble averages.'" Although the
two averaging processes are equivalent in most practical cases, the second
kind proves most convenient in the present work and will be used throughout
the subsequent analysis.

The surface parameters which appear in equations (22) and (25) are ¢,
€ ¢, and their derivatives. In specifying their average values we first observe
that € involves the location of the mean surface, and by choosing this such that

the departure of the actual surface is zero on the average, we have
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E=¢ =¢ =0, (26)

thereby justifying the description "mean'". For ¢ ¢, the average value
represents an effective correlation function, and since the surface is uniform

and isotropic, this will be defined as

Cy) Ly = L. Flp) )

where (O is the standard deviation (or root mean square departure from the
mean), and F(p) is real and a function only of the distance p separating the
two points (x,y) and (x,y; ). F(p) has a maximum value of unity at p =0 (at
which point 9F/9p = 0), and falls rapidly to zero for increasing p > L,
where ﬂ. is typical of the roughness scale. It is assumed that §c2) and
F(p) are known for the surface under consideration.

If the averaging process is now applied to equations (21) and (25), the

boundary conditions become

2
o = 3
E, = o S S PXp dx, dy; + O(% ) (28)
where
82F 82F
P =i H - H
Px k2 (Bxaxl y 9x0y; x)
2 2

2 0 0
+ ikZ (kK” + — * —2—)(FH)
8X1 8Y1 X
52 52

2 2 .2
+ (k™ + Txlz + a_ylz—) (3x * 3% ) (FE,),  (29)
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and similarly for E_. To the required order in %, the field components Hx’

y
H_and E, can be replaced by the corresponding components for a smooth
surface, and for this reason they have been excluded from the averaging

process.

Since F(p) is a function only of the variable p, it follows that

0 0
xt o) F T
and hence
2 2
OE 0"H 0" Hy
(2 + L)(FE)=F —2 =i L F(—L - —X),
ox axl z 3x1 k 8x1 8X1 ayl

which enables. P to be expressed as a function of the components Hy and Hy,

in the form

_ 2 9 2 9
P =iz |{2FE +pa+ & 2 =) pH - -2E Lo H | (30
5 5
X 9x0x, Kk ox2 J ¥ Loxdy k® 0x0y J X

with

2 2 2 2
M= ru2e &+ s BE L OE 4 5 BE 3 5 08 2 (3
8X1 3y1 aXl ayl 8X] axl 8y1 Byl
Similarly,

2 r‘ 9
P = ikZ {33F+— 9 } H-{ +f_'(1+ia—2}n (32)
y XaYl k2 3X1 8y1 y ayayl 1{2 X

and these results give rise to the following matrix equation
_ 41 92 - Z Hy

) = (33)
Q) 2y Z Hx
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where
2 2
, °F 1 9
a,, = -ik + 1+ - _ 34
11 {axaxl [Fas 5 aX12)} (34)
Qa2 T
2 2
9xdy, k2 9xdy,
. 92 F 1 52
a3y = -ik { + F 1+ —) + . (36)

Although the elements ay are differential operators, we note the interesting

fact that as written above the matrix is symmetric.

§6. The Surface Impedance Matrix

In order to evaluate the matrix representing the effective surface
impedance, it is necessary to integrate the elements ajj in the manner shown
in equation (28). This in turn requires us to insert into (28) the dependence

of the components HX and H,, on the surface coordinates x;, y; in a neighbour-

y
hood of the point (x, y).

Since the surface can be regarded as smooth as far as these components

are concerned, we can write

Hx(xl »91,0) = Hx(x, y,0) e : {]S!(xl x) + ky(3’1 “Y)}

i kolxy =x) + kyly; =y)
Hy(xl,y]_,O) = Hy(X,Y:O)e {x ' v }

where kX and ky can be assumed constant throughout the integration. If the

incident field is produced by a point source at a finite distance from the surface,
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k_ and k; are the direction cosines of the source relative to the point (x, y)
and are therefore functions of x and y. Equations (37) and (38) are then valid
unless the source is within a wavelength or so of the surface, and even in
this case the equations fail only for that portion of the surface which is in

the immediate vicinity of the source. If, on the other hand, the incident field
is a plane wave (corresponding to a source at infinity), k - and ky are the
tangential components of the propagation vector and are the same at all
points of the surface. For a plane wave incident in a direction making angles

@ and B with the positive x and negative z axes respectively,

k, = k cos a sin B (39)

ky = k sin & sin B, (40)

and we note in passing that

2 2 2
k -k -k F 0

except for grazing incidence (B =+ 7/ 2).

Using the above expressions for H,_and Hy, equations (34) through (36)

2 K2 }
. a_F X
a; = ik + (1 -
1 { 9x9%q ( k2 )r\

32, 8, = -ik Cr o luky F}

9xdy; 1%

become
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8% F K2
azzz'ik{ +<1——Y—)F}

9y9y; k2

with

2 2 .2 2 F 92 F . OF OF
=(k - -k)F + + + 21 (k2= + 9r),
[ Ty D2 dy# xTy Y 9y

and to the second order in %the boundary condition on the mean surface can now

Al 1> Al 2 "ZHy
(Ep Ep)= (41)

be written as

where
Ay = L 3j ei {kx<X1 it _Y)} pdx dy
27 J
(42)

The matrix (Aij) is, of course, symmetric, and equation (41) represents a
generalized form of the usual impedance boundary condition.
The integration in equation (42) is most easily carried out by introducing

the polar coordinates (p, ) where

X =x *+ pcosb

inm =y * psiné.

If, in addition, we place

-
I

7 cos «

k = osina

76



THE UNIVERSITY OF MICHIGAN
2500-2-T

with T =\/1gf + kyz , then

2
§2 @ 4 ip {k + T cos(6 -a)}
Aj = = a. e do
ij
0

27 ij d
0

and since F is only a function of p, the 6 integration can be carried out immediately

to give

Q@
2
2 ky 1 9%F , 1 OF
= ] - - - ___.+ _— —
Ay kg {(1 kz)B 2(8‘)2 p ap)JO('rp)
0

2
s (2°F 12
2

;pi- - _35—) cos2a Jy (7 p)} e do (43)

5 ®
k
Arg, Ay =1 =5 o g {B - (';1;')2 (2 2F L o, Jz('rp)}eikpdp
k p p 9p
0
(44)
® 2
2
1 ,0°F 1 OF
Ayy =-ik¢ g {(1-EY-)B-—( = )d
. ° 0 k2 2 3p2 P9 O(Tp)
1 °F 1 oF ikp
- ?(—pi - -;' —a;-) cos 2o Jz (TP)} e dP (45)
where
2
_J{o8°F , 1 8% 2 ,2 F
B_{a—pz— + P + (k -T)} Jo(Tp)-27'a_—J1(TP)
@ L2 @ (46)
> o 0P o
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These are the elements of the effective surface impedance matrix, and it is

seen that they depend on the direction of the incident field as specified by the

factors kx, ky and kZ = \} k2 - T 2

%7. A Study of Equation (41)

The properties of the boundary condition (41) are best described in
terms of the impedance condition which obtains at the (smooth) surface of a
material of large but finite refractive index. This condition is usually attributed

to Leontovich, and can be written as

E-@-En= nZn H (47)

A=’

where (E, H) is the field in the region outside the material (which region is
regarded as free space), and 1 is a unit vector normal in the outward
direction. The parameter 7 is proportional to the reciprocal of the complex

refractive and is defined by the equation

-1/2
n= | £o (£ 4 ———°> , (48)
M

€ W€,

where €, u and o are respectively the permittivity, permeability and conductivity
of the material; the suffix 'o' denotes the same quantities for free space.
Equation (47) is valid for surfaces of varying curvature as well as materials
whose refractive index differs from point to point providing the tangential
variation of the field is relatively slow, and with this restriction the boundary
condition is accurate to the first order in n. A full discussion is given in

Part II
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In recent years this type of boundary condition has been increasingly
used in the analysis of propagation and scattering problems. Because of the
restriction to small values of 7, it is natural to regard it as a means for
obtaining a perturbation about the solution for perfect conductivity, but in
addition solutions which are mathematically exact and subject only to the
(physical) approximation implied by equation (47) have been obtained for certain
simple shapes of body. Examples are the sphere, the circular cylinder, the
half plane and the wedge of arbitrary angle.

For the particular case in which the imperfectly conducting material

occupies the half space z < 0, so that the interface is an infinite plane, equation

n 0 -ZH
(E, E) = Y (49)
0 n ZHX

and this is the most elementary form of the impedance boundary condition. If

(47) reduces to

equations (41) and (49) are now compared, it is seen that the boundary condition
for the rough surface is only equivalent to a Leontovich condition if Aj; = Aj,
and A;, = Ay; = 0, and although this is true for selected angles of incidence,
it is not true in general.

The fact that the elements A;; are functions of the incidence angle is

J
a direct consequence of the nature of the surface and represents a fundamental
difference between imperfectly conducting and rough surfaces. This is in

spite of the roughness being small and isotropic. As long as the mean scattering

surface is a plane, the dependence is not a severe handicap, but it does mean
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that the tensor surface impedance is a variable function of position on the
surface unless the incident field is a plane wave. For this reason the boundary
condition will seldom permit an exact solution of the boundary value problem,
and the usefulness of the condition then rests on the degree to which it
facilitates a perturbation solution.
For certain angles of incidence the boundary condition (41) takes on

a simpler form, and to demonstrate this fact we shall consider the example of
a plane wave incident in a direction specified by the angles @ and 8 defined in
§6. If the incidence is normal to the mean surface (8 =0), then kX =ky =T=90

and equations (43) through (45) give

00}

i wd .

A A, = - X% O%F 1 _3F+2k2F}e] ? &

11> 22 2 0]
2 ap P Op

Ajp, Ay = 0.

In this case equation (41) becomes

. 0 —ZHy
(E,, E,) = (50)
0 n, ZH
where @
. @l 2 .
n o= - ik € S {ETF+£_3_F+2k2F}elkpdp, (51)
+ 2y 9p p Op
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and this is now the boundary condition for the surface z =0. The condition
is of the standard Leontovich type and is accurate to the first order in the
(small) parameter 7, , where n, is the effective surface impedance.
If the incidence is not normal, the true situation becomes apparent on

writing the expressions for the Aij as

2_1,2 @
2 ke - 2 2
A11 =jk§o L xl;y Q— {(l—ll—)B"'-l—'-('Q_g
2 k 2 k2 2 9p
1 JF ikp
+ > )JO(‘Tp)}e dpJ , (52)
k
A1z:A21—1k§2 _xli_;y_ Q , (53)
2 .2
ky-k ©
Ay = ke, [é —’;—2Y-Q-g {(1-17—2)13
0

where

and from these it is seen that the Leontovich form of impedance condition is

only obtained if kxky and (k)2( - k32,) are both zero (as in the case of normal
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incidence) or Q =0. It is a trivial matter to show that Q is not identically
zero nor, in general, is it small compared with the other terms common to
A;; and Ay,

Nevertheless, there is another situation in which the boundary condition
simplifies. In many problems involving rough surfaces it is sufficient if the
approximate magnitude of the roughness effect can be determined, and for
the purposes of such analyses it is only necessary that the boundary condition
employed reveal the main roughness effect. Under these circumstances it
seems probable that the dependence on the angle of incidence will not be of
prime importance, and can be suppressed without destroying the efficacy
of the boundary condition. One way in which the suppression can be achieved
is to average the condition over all angles of incidence.

To this end we recall that in the right hand side of (41) the field
components Hy and Hy can be replaced by the corresponding components for

a perfectly conducting surface at z =0, and accordingly

ek
H, = 2H,

Hy

i
2H_ ,
y
i .
where the affix 'i' denotes the incident field. I8 # =/2, H, and Hy1 can
be assigned values on z = 0 which are independent of one another, and which
are independent of o and S providing the strength and polarization of the

equivalent source are suitably adjusted. If equation (41) is now averaged
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over all @ and B with Hy and Hy kept constant, then since 0€ @ £ 27 and

0<B< 7/2,

av. k., ky’ kxky =0

av. k

lk.
2

|
I

av.

This process has the effect of making zero” the coefficients of the unwanted
terms in (52) through (54) and produces a boundary condition at z =0 of the

type shown in equation (49). The surface impedance is

(0 0]
A 2
v o= ko 9 1 9 2 kp
M= = {(352+ ; ap+2k}é‘Jo(\[2_>
0
k oF kp ikp
- Jp ( )}e dp (56)
Z %

and can be regarded as the average for a field incident at any angle. The
evaluation of the integral is described in §8.

Before leaving this discussion of equation (41), a few words should be
said about the exceptional case of grazing incidence (8 =m/2). This is the case
treated by Feinberg13’ 14 and its relevance to the present work is that it leads to
a ""bastard' form of the Leontovich condition if the coordinate system is

suitably chosen. When (3 =7r/ 2, Hxl and Hyi cannot be assigned values on the

* Note that equations (52) through (54) only involve even powers of 7.
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surface independently of one another and, indeed,
k,HL, = -k H (57)

which introduces an apparent ambiguity into equation (41) as long as HX and
Hy are given the values of the incident field components.

The difficulty, however, can be overcome by considering separately
fields which propagate in the x and y directions. If the propagation is in the

i
x direction, ky =0 and equation (57) shows that HX is then zero. Since

k =7 = k,
X
®
ik 2 F 1 OF
0
Ay = - -5+ = —)J (k
11 9 {( 8p2 o 0 o p)
0
F 1 OF ikp
S EL - LB g )t P
9p p0p
A21 = 0
and equation (41) gives
E, = - n" ZHy (58)
Ey =0
with X ©
ik €, { 2F 1 oF
= —s t —)J, (k
{l 2 Cop2 ap ) o (k°)

()
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2 .
_(8°F _ 1 9F } tkp
(8p2 0 ap)Jz (kp) e dp . (60)

Equations (58) and (59) are consistent with a Leontovich boundary condition

for a field having H, = 0. Similarly, ifk, = 0
E =0 (61)

Ey =, ZHx (62)

on z =0 where n“is again* given by (60), and this value for the surface
impedance is equivalent to the one obtained by Feinberg who likewise assumed
propagation in the direction of a coordinate axis. But if neither k, nor ky is
zero, the impedance reverts to a tensor form and no reduction of (41) is then

possible.

§8. Values for the Surface Impedance

We shall now examine in rather more detail the integral expressions

for n, , n' and (briefly) UM Although the precise form of F(p) is left

unspecified to begin with, it should be noted that F(0) =1 and —8—£> =0
p=0

ap
by virtue of the type of rough surface under consideration.
If integration by parts is applied to equation (51), it is found that

) © .
n, = - ) [ik+g (-1_£+k2F)e‘kpdp]
2 P
0

*
The fact that the impedances are the same in both cases is a consequence
of the isotropy of the surface.
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and similarly

(0.0]
ik g2 . { 1 2 ko
! = - k + (—— — + k ) FJ ( )
! 4 [1 S P 9p ° 2

0

.k OF J(-lfp—)} oIkP dp : (63)
vz % O \Z

For roughnesses whose scale is such that k{ < < 1, these equations further

reduce to

®
ik £ 1 9F ikp d
ng = - - e
+ 2 P Op
0
(o9)
-
lk .
po= - —s | L oF ke, (64)
4 p 9
0
which may be compared with the value
(o)
ik ¢2 -
0

deduced from equation (60) under the same restriction. Hence, for small k%,

n, = 20 = My (65)

To proceed further with the evaluation of these integrals it is necessary
to insert an expression for the function F(p). In practice, this expression should
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be determined by a study of the actual surface, but for small scale roughness at
least it is unlikely that the impedance will depend critically on the choice of F.
One of the simplest cases to consider is a Gaussian function, and for convenience
thisis assumed throughout the subsequent analysis. It is believed that the
results obtained are typical.

If F(p) is defined as

42 12
F(p) = e ' (66)

where L is interpreted as the scale of roughness, then

and equation (64) now gives
VT k&g
N~ i —2— i (67)

The corresponding value for m (see equation 65) is in agreement with Feinberg's
result for small scale roughness.

If desired, the surface impedance can be associated with an equivalent
conductivity by using equation (48) and attributing the non-zero value of nto a
conductivity ¢ rather than to a permittivity €. Providing the conductivity term

is dominant,
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where, for simplicity, u has been put equal to u o» and by inserting the above

expression for n' we arrive at the equivalent conductivity

2
ot =i 4 v Q4 mhos/ m . (68)
T k§o

Taking, for example, kY = 1/5 and kg = 1/100,

105

o'| A B mhos/ m

and at x band frequencies this is similar to the conductivity of ordinary metals.
For larger values of k{ (but still not large compared with unity), the
approximations made in going from equation (63) to (64) are no longer valid,
and it becomes necessary to employ the full expression for n' given in equation
(63). And similarly for n, and My - Aslongaskl is less than (about) 2.5,
however, an analytic evaluation is still possible, and has been used to compute

the formula for n'. For this purpose, equation (63) is written as

2
k
7= (E2) i -

2
where L and M are real and functions only of the parameter u = <k70'> .
The expressions for L and M are

(0 0]

L=1 - \/% & {(1—%u)Jo(x)+%uJ2 (x)

0

942
- 2x g, (x)} — [u sin (x \2) dx
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[0 0)

M=\[Tz— {(l-:l?’—u)Jo(x)+—‘ll—uJ2(x)

_22/
-2xJ; (x)} e 1Y cos (x V2) dx

and if the series expansions for the Bessel functions are inserted, each integral
can be reduced to a sum of Fresnel integrals. These in turn can be replaced
by their expansions for small argument, leading to the expression of L and M
as series in ascending powers of u, which series are convergent for u less

than (about) 1.5. Based on these formulae, numerical values of L and M have
been computed for roughness scales up to 0.39 A, and are plotted in Figure 1.

It is seen that the imaginary part of n' does not depart significantly from the
value indicated by equation (67) until k{ exceeds 0.8, by which time the real
part of n is also becoming important. The real and imaginary parts are equal

for kL =2.06 (approx).

§9. General Discussion

In the preceding sections it has been shown that for a perfectly conducting
plane which is perturbed, or roughened, in a random sort of manner, the boundary
condition can be expressed as a form of impedance condition at a neighbouring
mean surface. This is valid for a wide variety of small and statistically uniform
perturbations, and if the higher order effects are ignored, the boundary condition
is as shown in equation (41). The result will be regarded as exact for the
purposes of the following remarks.
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If the boundary condition were only applicable to a flat mean surface
it would be of little practical value, and we shall now consider how it can be
generalized to a mean surface which is curved. By means of a local analysis
it is not difficult to see that under certain circumstances the boundary condition
can be taken over as it stands. Although a rigorous proof of this fact is
difficult, the extension can be justified in part by the semi-intuitive argument
which appears in Part I, and this indicates that a sufficient restriction
on the type of surface is for the radii of curvature (and, if the surface is
closed, dimensions of the body) to be large in comparison with the wavelength.

The requirement is therefore taken to be
R>> A,

where R is the smallest length parameter associated with the mean surface,
and if this is satisfied the curvature enters into the boundary condition only
in the higher order terms. We observe in passing that for the roughness scales
considered here the restriction also ensures that R > > 4.

In equation (41) the elements of the impedance matrix (Aij) are functions
of the direction of the incident field relative to the surface, and although this
is not a serious drawback to the use of this condition for analysing the scattering
of a plane wave by an infinite perturbed plane, it does mean that when the same
condition is applied to a mean surface which is curved, or to a flat surface
under point source illumination, the effective surface impedance becomes a
function of position on the surface. This complication is additional to the one

posed by the tensor nature of the impedance. Few (if any) mathematical
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techniques are available for treating problems with boundary conditions of this
type, and consequently there is little hope of using the condition (41) to obtain
exact solutions for scattering by rough bodies.

On the other hand, the boundary condition (41) is well suited to the
method of successive approximations. Knowing the field of the smooth body at
all points in space and, in particular, on the mean surface itself, the boundary
values of the tangential magnetic field can be inserted into the right hand side
of (41), thereby specifying the components of the tangential electric field at
the mean surface. These in turn can be fed into the radiation integral to give
the field of the rough body at all points.

In the above method the values of ky and ky are obtained from the
direction of the incident field, and consequently ky and ky will, in general,
vary over the surface. A difficulty arises, however, if a portion of the body
is in shadow, since it is then unlikely that the phase behaviour of the field over
the dark portion of the body will be determined to a sufficient degree of approxi-
mation by the incident field alone. In this case it may be necessary to also
calculate k, and ky from the smooth body solution and, in effect, regard
equation (28), and the corresponding equation for Ey’ as the fundamental
equations representing the boundary condition.

In many instances, however, the accuracy provided by these boundary
conditions may not be fully required, and a simpler form of condition may then
prove sufficient. If, for example, the body and all its radii of curvature are

very large in comparison with the wavelength, the field in the shadow region
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is unlikely to exert a profound effect on the return at angles less than (say)
60° from back scattering, which suggests that a precise statement of the
phase dependence of the smooth body field on the unilluminated side may
be unnecessary. The parameters k, and ky can then be found from the
incident field alone.

A further, and more striking, simplification is possible if the bulk
of the return is provided by either a surface at constant inclination to the
incident field, or by a relatively small portion of the whole surface. The
latter case is one in which the smooth body has a specular point, and
here it may be sufficient to use equation (41) with the incident field
direction appropriate to this point. The same condition would then be
applied regardless of position on the body, and this is particularly valuable
in back scattering since the surface impedance reduces to a scalar at normal
incidence.

With all these simplifications, however, approximations are introduced
additional to those inherent in the boundary condition itself, and each body
must therefore be considered on its merits to see which approximations (if any)
are warranted.

From the above remarks it will be appreciated that a rigorous discussion
of scattering by even the simplest rough body remains a problem of considerable
complexity in spite of the assistance provided by the boundary condition (41).

On the other hand, if the aim of the analysis is only to determine the approximate
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magnitude of the roughness effect, it may be sufficient to average (41) over
all directions of the incident field, and this produces a tremendous simplification.
The boundary condition is now the one shown in equation (49), and is seen to
be of the standard Leontovich type with a surface impedance 7' given by
equation (63). This condition has been used with some success to calculate
the effects of minor surface roughnesses on the back scattering cross section
of a large sphere. The results obtained are in reasonable agreement with
experiment and are described in Part I.
A normalized form of the surface impedance n' is plotted as a
function of k{ in Figure 10, and changes from being purely reactive for small
kd to part resistive and part reactive for values of kl near to unity. Since
this impedance can be interpreted in terms of the physical properties associated
with the equivalent scattering surface, it may be of interest to examine in more
detail the variation with k L . In the first place, a pure imaginary n' corre-
sponds to a displacement of the surface parallel to itself, the displacement
being in the outwards direction when the imaginary part is positive. The fact
that the imaginary part is always positive in the present case is a direct
consequence of the random nature of the irregularities and the chosen
location of the mean surface, the ensemble averaging having removed the
first order displacement (which may be either positive or negative) leaving
a positive second order effect. In general, such a displacement can be
expected to increase the scattered field, and this is clearly seen in the case
of scattering by a large sphere. As distinct from this a portion of both the
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real and imaginary parts of n' can be attributed to a true surface resistivity,
and if the conduction current is large compared with the displacement current
the corresponding impedance has argument -m/4. This portion of n' is
associated with a dissipation (or storage) of energy by the surface, and may
be expected to decrease the scattered field in the direction of observation.
From Figure 10 it is now seen that for roughnesses of very small scale
the dominant effect is a straightforward displacement of the surface which
will usually lead to an increase in the scattering, but as the scale increases
the resistivity increases and introduces an opposing trend. With any given
value of k.l , the question as to whether the scattering cross section is
increased or decreased depends upon the associated amplitude of the rough-
ness, and this is apparent from the formula for the back scattering cross
section of a rough sphere (see Part I). For this body at least the resistivity
will often outweigh the effect of surface displacement as the roughness increases
in scale, and the back scattered field will then be less than that of a smooth

sphere of radius equal to the radius of the mean surface.

510. Conclusions

The method by which the features of surface roughness are incorporated
in the boundary conditions would appear to have advantages not only where
precise solutions are required for particular types of body, but also in those
cases where the desire is merely to estimate the approximate magnitude of the

surface roughness effects.
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