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ABSTRACT

The electromagnetic scattering behavior of a metallic sphere loaded with a
circumferential slot arbitrarily placed with respect to the direction of incidence is
studied. Under the assumption that the slot is of small but nonzero width with a con+
stant electric field across it, the analysis for the external fields is exact. Expres-
sions for the scattered far field components, as well as for the total surface field
components, are derived and then used to investigate the extent to which the scatter-
ing behavior can be controlled by varying the loading admittance and the slot posi-
tion. An explicit formula for the loading of the zeroth mode to annul the back scat-
tering cross section is derived, and from this the desired loading is obtained by
means of a lumped load at the center of a radial cavity backing the slot. In particu-
lar, emphasis is placed on the case where the slot is in the plane of incidence and
normal to the direction of the incident electric vector.

The numerical study is limited to the frequency range 0 <ka < 3.0, where
a is the radius of the sphere, and results are presented primarily for back scatter-
ing. To verify some of these results, a comparison is made with experimental data
obtained using a metallic sphere with an equatorial slot backed by a radial cavity of

adjustable depth.
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INTRODIUC TION

In the recent investigation by Liepa and Senior (1964, 1966) of impedance
loading applied to a perfectly conducting sphere, the narrow circumferential slot
used to provide the loading was restricted to lie in the plane perpendicular to the
direction of incidence. Analytically at least this leads to a considerable simplifica-
tion since only the tesseral harmonics of the first order then appear, but it does
create difficulties in any attempt to achieve the required loading. Thus, to control
the scattering cross section over a specified bandwidth, it would seem that the load-
ing must be synthemized either by a distributed network (or nonuniform transmis-
sion line) or by a large number of lumped two-port networks distributed around the
sphere, and the sophistication of both methods does produce some difficulty in the
practical realization of the loading.

The analytically simple case discussed above is, in fact, the most compli-
cated one from the loading point of view, and in the hope of reducing the loading dif-
ficulties, we shall here extend the analysis to the general case of arbitrary inci-
dence. The circumferential slot will now be located arbitrarily with respect to the
direction of incidence and, in addition, the polarization will also be assumed arbi-
trary with respect to the plane of the slot. The analysis parallels in large measure
that provided by Liepa and Senior (1964, 1966), the only major difference being the
occurrence of doubly-infinite sets of modes. Analytical expressions for the field
components and for the loading necessary to produce any desired form of cross sec-
tion control are presented, and it is shown that if there exists a zeroth order mode
excitation across the slot, the cross section control can be achieved by a lumped
load at the center of a radial cavity.

For the particular case in which the incident electric vector is perpendicular

to the plane of the slot, the expression for the loading required to give zero back
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scattering is obtained and computed. To check the theoretically predicted behavior,
the back scattered field was measured using a sphere with an equatorial slot backed
by a radial cavity of adjustable depth. The measured cross section as a function of

depth is in excellent agreement with the predicted values.
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THEORE TICALI;‘ORMULATION

Consider a perfectly conducting sphere of radius a whose center is located
at the origin of a Cartesian coordinate system (x, y, z) and loaded with a narrow cir-
cumferential slot symmetrically placed with respect to the z-axis as shown in Fig.
2-1. The sphere is illuminated by a linearly-polarized plane electromagnetic wave
incident in the direction of the negative z'-axis whose spherical angular coordinates
with respect to the unprimed Cartesian coordinate system are Gi and ¢i' If we
assume that the incident electric field vector is oriented at an angle  to the x'-axis,
where the primed Cartesian coordinate system (x',y', z') is obtained by a rotational
transformation of the unprimed, namely by rotating through an angle ¢i with respect
to the z-axis and then through an angle Oi with respect to the y-axis, so that in

matrix form

x' | [coso. 0 -sing | cosf, sinf. 0] x

i i 1 1
yy | 0 1 0 -sinf, cosf, 0| y ;
z! sin (9i 0 cos Gi_ 0 0 1l z

then the incident field can be written as

!

. 'k
E_l = (X' cosB + §' sinB)e1 2 (2.1a)
i A A ikz'

H =-iY(-x'sinf + y'cosp) e , (2.1b)
where k is the propagation constant and Y the intrinsic admittance of free space.
For convenience, the amplitude of the electric vector has been taken to be unity and
the time factor ewt suppressed.

The scattered field in any direction can be obtained by superposition of the

field diffracted by an unloaded sphere and that radiated from an excited slot at the
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FIG. 2-1: COORDINATE SYSTEMS AND SPHERE GEOMETRY
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position of the load. The radiation amplitude and phase are determined by the load-
ing characteristics of the slot, and by controlling these a wide degree of scattering
control can be exercised.

2.1 Diffraction by an Unloaded Sphere

To study the diffraction of a plane wave by a spherical object we must first

find an expansion of the incident wave in terms of the spherical wave functions
Me , N, .
—émn’ =&mn

For the field given by the equations (2. 1) the representation in terms of

spherical vector wave functions is (see Appendix A):

E {E}osﬁ Ag - sinf B :] 531)
= mn —emn
n= 1 m=0
-i ljsmBA + cosBB ] (1) (2.2a)
—emn ’
(o)
_ (l)
= -Z_z O{|:COSBA - sinf3 Be 11—_] Bemn
—i[si.nBA + cosBB ] ut) (2. 2b)
emn emn_| —Cmn ’
) 0 0
where
€ (2n+1)n-m)! mP (cos6))
A - .T.in m sin mg n i (2.32)
Smn n(n+1)(n+m)! cos 'j sinE)i )
€ (2n+1)n-m)! 8Pm(cose)
- in m cos m¢ n i (2.3b)
emn n(n+1)(n+m)! sin ~ 'i aei )
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with
1, m=0
E =
m 2, m=1,2,.
and
¥ (kR) .
(1) _ . m ’n m si A
Mgmn = *omo Kk’ a9, mpé
m
) wn(kR) 8Pn (cos ) cos ¢A
kR 90 sin ™9
¥ (kR) A
_I\_Igl) = n(n+1) = P (cos0) > mpR
omn (kR)2 n sin
wg(kR) aP:l(cos ) cos A m m sin
* kR 00 sin m¢9+-s~i-ﬁPn(cos6)cosm¢ﬁ )

Here, ¢n(kR) = kR jn(kR) where jn(kR) is the spherical Bessel function of order n,

and the prime denotes differentiation with respect to the entire argument. P:l(cos o)

is the Legendre function of degree n and order m as defined, for example, by

Stratton (1941).

For the scattered field (_ES,ES), the requirement that it take the form of an

outgoing wave at infinity, leads us to postulate the representation

[09] n
- ) (o v vin, N
—7 4 omn omn &mn=—8mn
O n
_}_IS=iY§ , (c, N tip, ud
n=1 m=0 o&=R oM™t MM

(2.4a)

) . (2.4b)




THE UNIVERSITY OF MICHIGAN
5548-6-T

(4) and N(4) differ from the M(l) and N(l) in having (//n(kR) re-

h:lz)(kR), where hiz)(kR) is the spherical Hankel function of

in which the M

placed by §n(kR) = kR

the second kind. Application of the boundary condition
Rx@E'+E% =0

at R=a then gives

¢n< ka)

= A, -singB 2.5

- [coss gmn~ % Bernn | T (i) (2.52)
;l(ka)

D = [sinBA + cosf3B , (2.5b)
mn €mn €mn §1’1(ka)

and by substitution of (2.5) into (2. 4) the scattered field is determined.
2.1.1 Surface Fields
The total field is the sum of (El, Lll ) and (E_S,LIS), and the only nonzero

components at the surface of the sphere are ER’ HO and H¢ Since the last two are

related to the surface current density J via the equation

N
J =RxH,

HG and H¢ are of direct concern to us. They are written, for convenience, in a

notation similar to that of Kazarinoff and Senior (1962) as

®
J¢ = He(a, 6,§) =Y ; {}osB sinm(¢—¢i)T1m(9, Gi)

- sinB cos m(f - ¢i)Tim(9’ Big (2.6a)
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00
-3, = H¢(a, 0,9 =Y ; {cos B cos m(ff - ¢i)T2m(6, 6)

+ sinf sinm(f - ¢i)T'2m(9, 98 (2.6b)
+
where
0 m m
+ - 1
T (00) - 1 Z il em(2n 1)Yn-m)! ) aPn (cosei) mPn(cose)
Im ’°i ka ¢ n(n+1)(n+m)’ ¢' (ka) 00, sin @
n=m+6 n i
i mPIIIn(cosei) 8PII:1(cos6)
Tt (@ s, 50 o (2.7a)
n i
© m m
+ -m)!
o 60) - 1 Z in+1 em(Zn 1)Xn m).J’ ) mPn(cosei) mPn(cose)
Im ° i ka n=m+6m n(n+1)(n+m)! Lgl'l(ka) smGi sinf
E)Prim(cosei) apf(cose)
+ §n(ka) aei % , (2.7b)

= e (2n+1)(n-m) 9P™(cos 6.) 9P (cos 6)
T (6.0)= 1 E in+1 m 1 n i n
2m' i ka n(n+1)}(n+m)’ §1'1(ka) aei o6

um(cos Gi) um(cos 0)
+ a z , (2.7¢)

¢ (ka) sin@, sin®
n i

© _n
+
Note that the order of double summation has been changed from Z Z to

i i n=0 m=0

m=0 n=mtd
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o ' m m
1 Z il em(2n+1)(n-m). { { mPn (cosei) apn (cos 6)
9

T'Zm(e’ei) " ka - n(n+1)(n+m)! '(ka) sinf, 00
n—m+<$m n i
i 8an(cos6i) mP;n(cos 0)
k) o8, Sind » o (2.79)
n i
with

1, m=0
5 =
m 0, m=1,23,...

In the special case Gi =0, the fact that

0 , m#l
n(n+1)
2 )

e T m me -

BP;m(cos 0) um(cos 0) {
6—0 6—0

m=1

implies

0 , m#1
T, (6,00 =T; (6,0)= {
m m T, m=1

{O , m#1
T, (6,0)=T! (6,0) =
2m 2m T2(9) , m=1

where Tl(e) and T2(6) are identical to the current components employed by Liepa
and Senior (1964).
2.1.2 Scattered Far Fields

In the far zone the expressions for the scattered field can be obtained by re-
placing §n(kR) and CI'I(kR) by the leading terms of their asymptotic expansions for
large kR, viz.
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-
Cn(kR) ~ in 1e ikR ,

¢ (kR) ~ P IR

The transverse components of the scattered electric field in the far zone then be-

come
-1kR
E; Z{cosﬁcosm({b ¢)S (9 6 )+s1nB sinm(f - ¢)S' (9 6{}
(2.8a)
S —1kR
E¢ =—1——— {cosBsmm(;é ¢)S (9 6) sinB cos m(f} - ¢)S' (9 9& ,
(2.8b)
where
€ (2n+1)(n-m)! | ¥'(ka) oP™(cos6.) oP (cosh)
(6 6) _ Z (<)t 2 n n i n
n(n+1)(n+m)! ¢'(ka) 90 90
n= m+6 n i

¥ (ka) um(cose.) um(cose)
n n i n (2.9a)
§n(ka) sin@i sin6 ’

e (2n+1)n-m)! [ (ka) mP (cosB,) P (cosh)
(9 6 ) - Z ( 1) m { n n 1 n

n m+6 n(n+1)(n+m)! C;l(ka) sint9i 90
¥ (ka) aPm(cose.) um(cos 0)
n n i n (2.9b)
fn(ka) 891 sin6 ’

10
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€ (2n+1)(n-m)' (' (ka) aPm(cose.) mP(cos 6)
(e 6,) = Z (-1 2 — {2 — 1.1
nemb n(n+1)n+m)! ¢ (ka) 06, sin6

¥ (ka) um(cose.) aPm(cose)
_‘n n i n (2.9¢)
§n(ka) sinOi 9 ’

€ (2n+1)(n m)! | ¢'(ka) um(cose,) um(cose)
<96>—Z<1> {  (0086)) WP

n(n+1}m+m)' | ¢'(ka) sinf. sin@
m+6 n i

¥ (ka) 9P™(cosB.) 9P™(cos6)
n n 1 n (2. gd)

Cn(ka) aei 96

In the back (f = ¢ 6=6) and forward (§ = 7 +¢ 6 =7-6,) directions it can be
shown that

00} Q
Zsf (6.,6.) = Zss (6,,6)) = 87(0) (2.10a)
m 1 1 m 1
m=0 m=0
and
Q0 Q0
m _s _ m.s S
;(-1) S1m("'ei’ 91)";(‘” Szm(” 0. 91) sl(w),
(2.10b)
where
& y'(ka) 8P'(cos8) y (ka) P(cos6)
$56) _Z(_l)n (2n+1) ) "n n _n O
1 “n=1 n(n+1) §I'1(ka) 9 Cn(ka) sin6

is the far field amplitude defined by Liepa and Senior (1964). The component cross

sections are therefore

11
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)Lz S 2
06(91’ ¢i) = IcosB Sl(O)‘ (2.11a)
)\2 S 2
o¢(9i, ¢i) = |sinB Sl(O)I (2.11b)
for back scattering, and
)xz S 2
ce(n-ei, 7r+¢i) == COSBSl(ﬂ') (2.12a)
)Lz S 2
- + = — i
0¢(7r 6, ¢i) - sinB S (7) (2.12b)

for forward scattering.

2.2 Radiation by the Slot

Let us now consider the separate but related problem of a perfectly conduct-
ing sphere with a narrow zonal slot situated at 6 =90 as illustrated in Fig. 2-1.
The slot occupies the region 90—% £0< 60+§2- and its angular width 6 is assumed
very small (such that kas << 1). Without any loss of generality, the direction of the
incident field propagation can be assumed to lie in the x-z plane (¢i =0).

Since the 6-component of the unperturbed current density at the surface can
be represented as a summation of cosine and sine harmonics of  (see equation

(2.6b)), the following expressions for the tangential components of the electric field

at the surface are assumed:

1S s B
- 52 /-—:-6’ VpCOSBCOSp¢+V£)smB Smpp} s le_eol< 5
Ee(a, 6,9 = p
0o, otherwise (2.13a)
E¢(a, 6, ¢) = 0 o (2.13b)

12
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VpcosB and Vl')sin B are the amplitudes of the gap voltage due to the pth mode con-
tribution corresponding to the cosine and sine variations, respectively, and they
will be determined later.

Let the field radiated by the slot be

os)
EY =ZZ ( —(e4) +1iGg _(4) > (2.14a)

n=1 m=0 gmn—gmn omn

@ _n
Ty E E N Y

fen = -0 < emn—emn emn—emn ) (2.14b)

n=1 m=0 0
where the coefficients F and G are to be determined from the above boun-

Smn (e)mn

dary conditions. From the 6 component of the electric field we have, at R=a,

2,2 (ka) mP (cose) ¢! (ka) 9P (cos6)
ZZ - p smm¢+ G, n n cosm¢
+*"emn ka sinG cos émn ka 00 sin

_L i {V cos 3 cos ¢+V'sinﬁsinp¢} |9-9 |<é
6a o0 p P p ? ol "2

0, otherwise (2.15a)

and from the ) component

© Zn ¢ (ka) 9P™(cos6) ¢ (ka) mP™(cosh) .
E -F n n COSm¢ - iG n n Ssin m¢
émn ka 00 sin + émn ka i cos

5 sin6

=90, (2.15b)

But

13
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T " ap:}(cos 6) ap:l(cose)
Pn (cos ) ————— + P::(cos ) —— >do =0

00 00
0
and
4 8P:1(cos6) 8P$(cose) 2 o
50 Y + 5 Pn(cose)Pn,(cose) sinf do
0 sin 6
0, n#n'
2n(n+1)(n+m)! .
(n+1)n-m) °* 70
(Bailin and Silver, 1956). Hence
s
p ot _Gntln-m _k VinSinB D (0) (2. 162)
e - - + + 1 .
Smn 2n(n+1)(n+m)! Cn(ka) V cosp nm o
m
6. = {2ntD@-m) ik <Vm°°sB ®) (2. 16b)
e = 1P .
omn  2n(n+1)(n+m)! fn(ka) V' sinf nm o
m
where
0
+—
1 90 2 ale(cosB)
Cnm(eo) = '('5‘ . % sin6do , (2.17a)
9% 2
o +2
1 ° m
D (6)=~= mP (cos6)dd , (2.17b)
nm o s n
9% 2

tnd the required expressions for the components of the radiated field now follow from

quations (2.14) upon inserting the above coefficients.

14 -
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2.2.1 Surface Fields
At the surface R = a the components of the radiated magnetic field can be

written in forms analogous to those in equation (2.6), viz.

0

H; = Y; {YmcosBsinmjﬂ-V;nsinB cosm¢} Tim(e, 00) (2.18a)
@

H; =Y Z:_; {VmcosB cos m¢+V;nsinB sinm?{} T;m(e, 90) (2.18b)

where
© m
Tr (9 ) ) — _1_ Z (2n+1)(n—m)'. c (9 ) Cn(ka) mPD. (COSG)
Im "’ o 22 ¢4 n(n+1)n+m)! | ‘nm' o ¢'(ka)  sinf
n-m+6m n
¢! (ka) 8Pllln(cos 6)
- Dnm(eo) _C;(Tci) % , (2.19a)

(9 0)= i i (2n+1)(n-m)! { C(ka) 8P;m(cos9)
2 n=m+6mn(n+1)(n+m)! nm C(ka) 5
¢ (ka) mP_ cos 6)
¢ (ka) s1n9 }

-D ( ) (2.19p)
For 6 =0 the above series expressions for T (6 6 ) and sz(e 90) are conver-
gent, albeit slowly, with their nth terms for n >>m bemg O(n °) and O(n_ )
respectively. The terms in the series alternate in sign in groups of 27 [ terms,
and therefore the series may be treated as an alternating series.

2.2.2 Radiated Far Fields

In the far zone, expressions for the radiated field components can be ob-

tained from the equations (2. 14) by replacing §n(kR) and CI'I(kR) by the leading

15
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terms of their asymptotic expansion for large kR:

kR <O
r_.e E L r
E,=i5g £ {/’mcosB cos mf+ V! sinfsin m¢} slm(e, 60) (2.20a)

kR
r_ _.¢e . T r
E¢ i3 m§=0 {VmcosB sinmf VmsmB cos myi} szm(e, 00) (2.20b)

where the mth mode radiated far field amplitudes are given by

@ m
s (go)=X A+l (2n+1)(n- m)! Com@,) 9P (coso)
im"’ 2 = n(n+1)(n+m)! grvl(ka) %
m
Dnm(eo) mP:l (cos 0)
1 §n(ka) sin 6 ; (2.21a)
© m
S (o,0)= % > Catla-m): C_.(6) mP’(coso)
2m ? [0) 2n=m+6 n(n+]_)(n+m)[ C;l(ka) Sino
m
Dnm(eo) 3P:1(cos6)
i ¢ (ka) o0 (2.21h)

2.3 Radiation Admittances

It is customary to define the admittance as the ratio of the current to the
voltage for each given mode. This definition, however, is not well suited for our
purpose since we have a nonuniform current density across the slot that does not
permit a unique specification of the admittance.

We shall therefore use an alternative but equally acceptable definition of ad-
mittance, namely, twice the ratio of the complex power flow across the aperture to

the square of the applied voltage.

16
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From equations (2.13) and (2.18) the mth mode power radiated per unit

length of the slot is

6
v 2 (%73 S
.Y V' sin R &
m Y VmcosBcos mf VpsmB smm¢} 5 sz(e, Go)de
o -—
o 2

where ~ denotes the complex conjugate. The mth mode radiation admittance den-
sity is therefore

_ 2W
T {Vmcos Bcos m¢+V£)sinB sin m¢}2

y

6
60+ 2 r
sz(G, 00)d6 , (2.22)

i
1

o |

0 -
(o)

[\CR <3

and the total mth mode radiation admittance is

27
Yrm - yrma sin 90 %
0
(03]
¢ (ka)
o (2n+1)(n- m)! =
=-iY¥Ynm s1n6° n:é;ém n(n+1)(n+m)! {Cnm(eo)Enm(eo §l'1(ka)
§I'1(ka)
_ Dnm(eo)an(eo) Cn(ka) , (2.23)

where

17
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6
+_
6o 2 8Pm(cos6)
E (0)=13 L
nm o 6 5 00 ?
9% 2
6
+_-
) 60 2 mP:In(cose)
F (6)=~= — @ .
nm o 6 p sinf
92

The above expressions simplify somewhat if we assume € <0 < 7-€ with
0

€ >> 6, allowing us to neglect the variation of sin@ over the slot. We then have

C (eo)
Enm(eo) = sinG0 ’
Dnm(Go)
an(eo) = sin@o ’
which lead to
(o)
2 ¢ (ka) 2 ¢'(ka)
L (2n+1)(n-m)! a__ -
Y % -y Z o+ Dnsm): {[Cnm(eo) €' (ka) D (6, C(ka)} :
n=mts n n
(2.24)

2.4 Complete Problem

For the complete problem in which the plane wave given in equations (2.1) is
incident on the slotted sphere, the total field scattered in any direction can be ob-
tained by superposition of the field diffracted by an unloaded sphere and the field

radiated by an excited slot. If we assume that the same voltage

®
_ E 4V sinB si
\Y £ {Efmcos B cos mf V! sinBsin m@

18
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is excited across the slot by the currents induced by the incident field, the trans-

verse components of the total electric field in the far zone are the sums of those

given in equations (2. 8) and (2.20) and are

, o
o KR E s r
EG =15 _ l:élm(e’ Gi)+Vmslm(6,90;_} cos 3 cos mf
m=0
+|5:° (6,0)+V' S¥ (6,0 ﬂsmﬁsmm;b (2.25a)
1m i m lm o
o KR . s r
_ & + .
E¢ S mE _ [szm(e, Gi) Vmszm(e, 602__] cos 3 sin mp

- Eé;(e, Oi) + v;ns;m(e, Goﬂ sin 3 cos m;} . (2.25b)

The components cross sections are therefore

@
2
A
oy(6.9) = = Z { Esfm(e, 6)+V_S (6, eoﬂ cos 3 cos mf
m=0 [_
2
ls ! r i 1
+ [slm(e, Gi) + Vmslm(e, Ooi] sinf sin m@ ,
: (2.26a)
9 | 2
_ A s r .
0¢(9, §) = 7{ ; {l:szm(e, ei)+vm82m(6’ eozl cosf sinmf
s r . 2
- [éém(e, Gi) +V;nSzm(6, Goﬂ sinf cos mf
(2.26Db)

The Vm and V;n can now be related to the loading admittance of the slot for
the corresponding mode. To derive these in terms of the loading admittance, we

require the expression for the mth mode loading admittance density, y m’ Applying]

19




THE UNIVERSITY OF MICHIGAN
5548-6-T

the same technique as used above, we have

o +2
o 2.
Y, = T L [H1+HS+Hr a0
£ +V! si i
m 6LVmcosBcosm¢ VmsmBsmmﬁ:’ - (/I Rea
o 2
which can be written as
o +2&
v o 2
= - + —
ylm yrm 5V T2m(6, Gi)dG (2.27a)
m 0 _g
o 2
or
o +2
v o 2
= - + — '
ylm yrm 5V T2m(9, Oi)dG (2.27b)
m 6
9 -—
o 2

by using equations (2.6b) and (2.22) and, in addition, the relation

Vm T2m(6, Oi)
V! = T! (9, 6.) . (2.28)
m 2m i

This last can be obtained from the linear property that the excited voltage is pro-
portional to the current induced by the incident field.
Since the variations of T, (6,60.) and T. (6,0.) across the slot can be
2m i 2m i
neglected if § is sufficiently small, equations (2.27) can be approximated as

Y
= - + —
ylm Yim Vm T2m(eo’ ei)

or
Y
—_- + —— !
Yim ™~ Yrm T WV T2m(eo’ 6i) )
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The total loading admittance for the mth mode is therefore

Y
= - 4 —— i
Yllm Y Vm 21ras1n60T2m(60, Gi) (2.29a)
or
Y =-Y +——'Y 2rasin® T! (6 ,6) (2.29Db)
Im ™m Vl'n 0 2m o’ i

from which we have

Y .
Vm =¥ 3y 21rasm0o sz(eo,ei) (2.30a)
im rm

or

Y
! = ——— : 1
A 27rasm6o sz(eo, Gi) . (2.30b)
im “rm

When the above equations are substituted into equations (2.26), the explicit expres-
sions for the component cross sections are obtained as functions of ka, 6, 90, Gi
and Yﬂm' Thus we expect some degree of scattering control—especially the reduc-
tion of the cross section which is of main interest to us—by varying the loading ad-
mittance.

To make the 6-component cross section zero in the direction 6 =6' and

§=9' it is required that
(03]
E s° (6',0)+ ———u 27asind T, (0 ,0)S. (6,0 ) cos 3 cos mf)’
— Im™’7i Y +Y 0 2m o i Im ’’o
m=0 fm Trm

s Y r
+ 1 1 + — ]'n 1 [} in : m ] =
’Slm(e’ei) Y +Y é7es 6oTZm(eo’ei)Slmw’eo){ 8infsin ¢} 0
m “rm
(2.31)
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It is readily seen that for the left-hand side of equation (2.31), each mth term of
the series may be made zero individually by choosing the proper value of the loading
admittance for the corresponding mode if the loading for each mode is independently
available. Unfortunately, this is almost a non-realizable case since all the mode
admittances are, in general,dependent upon each other. If there exists only one
mode excitation such that equation (2.31) is independent of all the other mode loading
admittances, it is, of course, always possible to satisfy equation (2.31) by the
proper loading of this mode.

On the other hand, if there is at least one mode whose loading admittance
can be arbitrarily chosen without producing any significant change in the sum of all
the other mode terms in equation (2.31), it is possible to select the loading admit-
tance for that particular mode in such a way as to cancel out the effect of all the
other mode loading admittances unless, in equation (2.31), the sum of the terms
involving Y/(Y lm+ Yrm) for that particular mode vanishes. This can be achieved
by means of a radial cavity (see Appendix B) with a load, Y. at the inner radius b

b

when kb is very small (kb << 1). Here, Y Io alone can be controlled by varying

Yb without creating any significant change in the loading admittance of the higher

order modes.
If we assume that

r
cosf TZO(GO, ei)Slo(G', 90) 40, (2.32)

then, by solving equation (2.31) for the zeroth mode loading admittance, we have
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{Ylo} - _Yro
o)

. r !
27aYsin Oocos B T20(60, Gi)Sl 0(0 , 00)

®
S 1 1
n; slm(e , Gi)cos Bcos mf

®
r ! ! S ! ] r ' . o
+ :}L:'[ {VmSIm(G , Go)cosB cos mf +[Sim(6 , ei)-i-VmSlm(e , ei)]smﬁ sin m¢}

(2.33)

If the condition (2.32) is not satisfied, 09 cannot be controlled using Y o The
obvious example of this is the case when the direction of the incident wave is per-
pendicular to the plane of the slot so that there is no zeroth mode excitation (in fact ,
only the first mode excitation exists).

Similarly, if we assume that

3 ' r 1
sinB Ty (6 ,6)5,(6,6 ) 0, (2.34)

to make the f-component of the cross section zero in the same direction (6=6" and

§ = @#"), we have from equation (2.26b)
{Ylo} - _Yro
0

. . ro.,
2 aYsmGosm B T'20(90, 61)820(6 , 60)

(0.0)

1 1 3 !
E_ 8, (6 ,Oi)smB cos mf
m=
r ) r
+ ! 1 3 ! - ! 3
E: {V 82 (6 ,Oo)smB cos mff [Sz (6 ,Gi)+V S2 (9',90)’cosBs1nm¢’} .

(2.35)

Of course, the 6-component and the -component cross sections cannot be reduced

to zero simultaneously unless equations (2.33) and (2. 35) vield the same value of

{7},
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For the case of back scattering (6 =Gi and §= ¢i =0) the equations (2.26)

become
7\2 s . r 2
= — + S
o= T |8]0+ £, VS 0y 6,)
m=0
2 Q0 2
A s r
o, = — S(O)+§ V'S, (6.,0)
g |71 — "m 2m i’ o
m=0
and by using the relations
r (ka)?
aSlO(Gi, 60) = s1n90 TZO(eo’ Gi) ,
r (ka)2
aSZO(ei’ 60) == s1n90 T:'ZO(GO, Gi) ,

valid for € < 60 S 7T-€, € >>¢6, it follows that under the essential assumption that

Tyl0.,0.) #0
the zeroth mode loading required to make o o Zero is
. 2
{ 0_} ) ﬂY[ka smGOTzo(GO,Giﬂ
Y t=-Y -
! 0 o s <
5,(0)+ )V
m=1

st (6.,0)
mlm i’ o

and it also follows that under the assumption
1
Tyo(0,,0,) # 0

the zeroth mode loading required to make 0¢ zero is

THE UNIVERSITY OF MICHIGAN

coszﬁ

sinZB

(2.36a)

(2.36D)

(2.37a)

(2.37p)

(2.38a)
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wYEcasmGT (6, e)]2

{Ylo}o - ro S r ' (2.38b)
+ 1
s7(0) nZ;lvmslm(ei, 0.)

Again, the total back scattering cross section cannot be reduced to zero except in
certain selected cases. When the incident magnetic field is parallel to the plane of
the slot (B = 0), o¢ becomes zero regardless of the loading, and zero back scatter-
ing can be achieved by the loading given in equation (2.38a) if Tzo(eo, ei) #0. Sim-
ilarly, when the incident electric field is parallel to the plane of the slot (8= 7/2),
it can be achieved by the loading given in equation (2. 38b) if T (6 6 ) #0.

2.5 Low Frequency Approximations

The low frequency characteristics of the above formulae can be obtained by
expanding each expression in a series of increasing positive powers of ka. If we
consider only the case when 6i = 60 =7 / 2, ¢i =0, and $=0, then from equation
(2.38a) the expansion for the zeroth mode loading admittance required for zero back

scattering is
+
{Y } ~—1Y7r{!:2 gn 1 02 (7r/2)_J ka
n=3 n“(n+1) ™

09)

2
_{Z 3 2n+1 01210(”/2) _ 1_g—lj| (ka)g} +Y7 %(ka)4 + O[(ka)5] ,

n=l n (n+1)2n-1)

(2.39)
and for the corresponding loading admittance Yb at r=b we have, from (B.12),
Y7r('52 4 5
Re {¥, } ~ ¥ (1a)*+0[(ka)’] (2.402)
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(03]

Im{Yb} ~ [Z -—23-‘33’—1— 01210(”/2)1 Yrka +o[(ka)2] : (2.40b)

n=3 n (n+1)

Furthermore, when the sphere is loaded to give zero back scattering, the

equations (2.26) can be reduced to

2

0,09 ~ 2= (@)’ (sin - cos )’ (2.41a)
)L2 6 2 2
0¢(6, §) ~ 7. (ka) " cos™0 sin ) (2.41b)

and hence the total cross section is

2
o(6,9) = 0¢(9, ¢)+G¢(9, ) ~ % (ka)6 Esin@ - cos ¢)2+cos29 sin2¢jl . (2.42a)

If we now express this in terms of the primed coordinate by transformation, we have

2
ol0", 9 ~ 2= (ka) (1 - cost)” (2.42b)

or, by normalizing with respect to the back scattering cross section o, of an un-

loaded sphere,

o6 p) é(l—cos@')z (2.42¢)

Comparison with the results given by Liepa and Senior (1966) shows that the scatter-
ing pattern is the same as when the slot is positioned in the plane perpendicular to

the direction of incidence apart from a reduction in amplitude by a factor 4.
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NUMERICAL CHOIMPUTATIONS

A computer program was written to calculate either the loading impedances,
Zb (=1/ Yb), required for zero back scattering, or the relative back scattering
cross section, o{0)/ oo, for a given value of the loading impedance when the slot is
in the plane of the incident propagation vector and normal to the incident electric
field vector (9=Oi=90=900, ¢=¢i=¢=0 and B =0).

In the formulas for computation, the functions Y ’ Yrm’ Si(o),
T20(1r/2, 7 [2), Vm and S;'m(w/2, 7/2) are involved through equations (2.30a),
(2.36a), (2.38a), (B.10) and (B.12). In all cases the infinite series were approxi-
mated by neglecting all the terms for m and n greater than M and N respectively,
with the numbers M and N chosen sufficiently large for four digit accuracy. In
practice the computation was restricted to the frequency range corresponding to
0 <ka 3.0, where the maximum value of N was 35 for ST(O) and T20(7r/2, 7/2),
100 for Y_(m#0), V_ and Sim(w /2, 7/2), and 1080 for Y_; and throughout
the computation the value of M was 5. The coefficients Cnm(n /2) and Dnm(ﬂ/ 2)
in the expressions for Y and Si‘m(ﬂ/ 2, 7/2) were approximated by using equa-
tions (C.7) and (C. 8) for n < 15 and by equation (C.9) and (C.10) for n >15. To

see how fast the series

[e0)
;vmsfm(n /2, 7/2)

converges, some typical values of V_, S:m(ﬂ /2, 7/2) and Vmsfm(r/2, 7[2) were
computed and these are shown in Table 3-1. It is seen that the summation of the
terms only through m =5 gives a good approximation to the infinite series in this
case. More terms are, however, required for ka > 3.0.

If Fig. 3-1, the real and imaginary parts of Yrm/ Y are plotted as functions

of ka, 0<ka 3.0 for m=0to 5. The real parts are zero for ka = 0, and rise
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through positive values with a small but regular oscillation as ka increases. On
the other hand, the imaginary parts are O(ka) for m=0 and OBka)_ 1J for m#0
when ka is small, and also increase with a small regular oscillation as ka in-
creases while their signs change from negative to positive at a value of ka near
0.95m for the mth mode excitation.
In Table 3-2 the numerical values of Yrm for ka = 2.0 with 6 =0.0349

(approximately 20) and 60 = 90° are given for comparison with the results obtained
by Mushiake and Webster (1957). Their values for m >0 have been multiplied by a
factor 2 to account for a difference in the definition of admittance and are shown in
parentheses. Although the real parts are very close to each other, the imaginary
parts differ by as much as 10 percent. It is believed that the present values are
much closer to the exact ones, and that the discrepancies in Mushiake and Webster's
data are attributable to their retention of an insufficient number of terms in the

slowly converging series for Im [Yrm]

The real and imaginary parts of the optimum loading impedance, Zbo’ at
R =Db for zero back scattering, are shown in Figs. 3-2a and 3-2b, respectively, as
function of ka for the range 0 <ka <3.0. The real part is zero for ka=0 and
increases slowly with ka up to ka=1.6 (approx.). Above ka=1,6 the curve for
the real part is quite irregular in structure. It crosses the zero axis at
ka=1.685, 1.710 and 1.907, and as ka increases further above ka=1.907, it
decreases through negative values out to at least ka =3.0. In the region where
Re I:Zbo] <0 it is apparent that zero back scattering is achievable only by using an

active load. The curve for the imaginary part of Z o has a singularity of order

(ka)_l at ka=0, and decreases rapidly as ka increk;ses, crossing the zero axis
at ka =0.845, This curve is somewhat similar to that obtained by negatively in-
verting the impedance of an L-C parallel circuit or transmission line.

Finally, the relative back scattering cross sections were computed for a

certain range of Z, within which a complete suppression of the back scattering

b
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TABLE 3-2: RADIATION ADMI'I(‘)TANCES FOR ka =2.0,
6=2°AND60=90

m Re l?rn]ow Im [?'m;lxlO—3

0 16.60434 43, 88532
(16.601) (38.629)

1 17.96643 - 37. 42239
(17.9600) (34.310)

2 5.55220 4,74812
(5.5502) (5.080)

3 1.58845 -44,52784
(1.5876) (-39.516)

4 0.20727 -103.57280
(0.2072) (-93.082)

5 0.01362 -147.56936
(0.0136) (-134.756)

(): Values given by Mushiake and Webster (1957).
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field occurs. The curves are plotted in Figs. 3-3 and 3-4 for ka=1.0 and ka=1.5,

respectively, as functions of the imaginary parts of Z_ while the real parts are

b
fixed. The cross sections are so sensitive to the loading that only a one or two per-

cent deviation of the loading impedance from the optimupm, is sufficient to

Z
bo’

decrease the cross section reduction to only 20db. Figure 3-3 shows that for

ka = 1.0 neglecting Re[Zbo—_] = 0.0129, which is about 0.8 percent of IZbol,

little effect. On the other hand, for the case ka = 1.5, only a 5db reduction would

has

be possible (see Fig. 3-4) if a purely reactive loading were used; that is, neglecting

Re[zbo] = 0.1263, which is about 2 percent of lzbo] :
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EXPERIMENT
To confirm the theoretical predictions, the back scattering cross sections
were measured using the model constructed for the earlier experiments (Liepa and
Senior, 1966). The model consists of two identical solid aluminum caps joined to-
gether by means of a partially threaded shaft at the center, but spaced 1/16 inch
apart to form a radial cavity of the same width. The cavity is shorted at the center
and the diameter of this short (2b) can be varied from 0.1253 inches to 3.133 inches
(the diameter, 2a, of the sphere) by changing the size of disc employed.
The measurements were carried out using conventional cw equipment in an
anechoic room. The distance from the antenna to the support pedestal was 24 feet
and the model was placed on the pedestal with the plane of the slot perpendicular to
the incident electric field (which was horizontally polarized).

The back scattering cross section was measured for a series of shorting
discs at a frequency 2.2873 GHz, corresponding to ka = 1.9074, and the results,
normalized relative to the cross section of the unloaded sphere,are given in Table
4-1. A comparison with the theoretical values, computed from equation (2. 35) for
Gi =90 =90° and B=0 is shown in Fig. 4-1 and it will be observed that the agree-
ment is excellent.

By using the above described model, shorted at the center of the cavity,
Ylm is always purely susceptive and consequently it is not, in general, possible to
obtain a complete cross section reduction at any frequency. For the experimental
verification, however, it appeared reasonable to choose frequencies at which the
back scattering could be made quite small using only susceptive loading even though
perfect cancellation was not attainable. From Fig, 3-2a, b it is seen that four such
choices of frequency are 1.0133, 2.0206, 2,0506 and 2.2873 GHz, corresponding to
ka = 0.845, 1.685, 1,710 and 1.9074, respectively. At ka = 0. 845 the imaginary
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TABLE 4-1: EXPERIMENTAL DATA, BACK SCATTERING
CROSS SECTION NORMALIZED WITH RESPECT
TO THE UNSLOTTED SPHERE. (2a = 3.133",
ka =1.9074, f = 2,2873 GHz)

2b, inches b/a 0(0)/06(0L db

0.1253 0.0399 -8.1
0.3125 0.0991 -10.3
0.445 0.1420 -15.3
0.500 0.1596 -13.0
0.657 0.2097 +2.8
0.750 0.2394 +7.1
0.875 0.2793 +6.4
1.000 0.3192 +5.5
1.125 0.3591 +5.5
1.250 0.3990 -4.3
1.370 0.4389 -0.7
1.500 0.4788 +0.1
1.625 0.5187 +0.5
1.750 0.5586 +0.5
2.000 0.6384 +0.3
2.250 0.7182 +0.3
2.500 0.7980 +0.2
2.874 0.9177 +0.2
3.133 1.000 0

38




THE UNIVERSITY OF MICHIGAN

5548-6-T

o 1 "66€0°0 = ¢ puE
006 = 6 ="6 $L06'T="®1 'SHLIAA ALIAVD SNOIYVA HLIM SNOLLDES SSOUD

DNIYALLVOS SIOVE TALLVTIHY (o e o) TV.INANITAIXT ANV (—) TVOLLAYOTHL :T1-% DILI
0°1 8°0 9°0 e/q ¥°0 z'0 0
| 1 ] 1 1 1 | 1 | L
| g1~
. OH'
qp ur
(o]
o/(0)0
- nhal [ap]
0
O———— O O—




THE UNIVERSITY OF MICHIGAN
5548-6-T

part of Zbo crosses the zero axis and the real part is very close to zero, while at

ka=1.685, 1.710 or 1.9074 Z_ is purely reactive and there is a possibility that

bo
Z _can be made zero (or almost zero) by choosing the cavity depth appropriately.

Si}:():e the preferred frequencies for the available experimental facilities were above
2GHz, the frequency f= 2.2873 GHz was selected for the experiment, although the
minimum cross section obtainable at this frequency was only 15.2 db below that of
the unslotted sphere. To achieve this requires b/a = 0,1420, as shown in Fig. 4-1.
The incomplete cancellation of the cross section that then results is attributable to
the fact that when the cavity depth increases in the region b/a > 0.05, not only Y!Zo

changes, but also Y, , m >0,
Im
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CONCIYUSIONS

This report has been devoted to the study of the scattering behavior of a
metallic sphere loaded with a narrow circumferential slot arbitrarily placed with
respect to the direction of incidence. General expressions for the scattered far
field components, the total surface field components and the scattered cross section
components were derived as functions of the loading admittances and the position of
the slot, and it was shown that the modification of the scattering behavior, primarily]
for zero back scattering, can be achieved by means of a lumped load at the center of
a radial cavity backing the slot. For simplicity, emphasis has been placed on the
case where the direction of the incident wave is such that its electric vector is per-
pendicular to an equatorial slot backed by a radial cavity, and the numerical compu-
tations have been limited to the frequency range corresponding to 0 <ka <3.0.

To confirm the theoretical predictions, the back scattering cross sections
were measured using a metallic sphere with an equatorial slot backed by a radial
cavity of adjustable depth. When the measured data were compared with the numer-
ical data, excellent agreement was found. Unfortunately, complete reduction in
cross section was not possible using this model since the optimum loading impedancq

ance, Z at the center of the cavity for zero back scattering is, in general,

complexf)owhile the model was shorted there. The minimum cross section obtained
with the model was, however, about 15db below that of the unloaded sphere.

In the realization of the required loading for zero back scattering over a cer-
tain frequency band, it is clear that simple passive loading alone will not suffice,
and that more sophisticated loading techniques must be developed. The loading im-
pedance required tends to have an imaginary part whose behavior as a funttion of
frequency is more or less the reverse of what we would expect from a passive im-

pedance, while its real parts are very small in comparison with its imaginary parts

(see Fig. 3-2a,b). This suggests the use of active loading using negative impedance
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converters (NIC's). Another variational method would be to use an appropriate
frequency-dependent medium in the cavity so as to modify the frequency-dependent
characteristics of the optimum loading, and, hopefully, make them similar to those
of a passive impedance. Some materials composed of dipolar molecules have their
dielectric constant decreasing as the frequency increases in the region we are
interested in (Smyth, 1955; M.I.T., 1945). The use of this kind of material medi-
um would make the propagation constant (k=w\fue) not directly proportional to the
frequency, but less dependent on it. Although it is obvious that the realization of the|
required loading by means of NIC's or by a material medium will be rather difficult,

these approaches appear to have sufficient promise to warrent further investigation.
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APPENDIX A
EXPANSION OF A VECTOR PLANE WAVE
IN TERMS OF SPHERICAL VECTOR WAVE FUNCTIONS

Consider a plane wave represented by

i

__E_: 'elkZ' (A.l)

Il
">

H tha! (A.2)

-§'Ye

where a time factor elwt has been suppressed and the coordinate system is as shown
in Fig. 2-1, (We assume B=0 for the time being.) Since the field must be finite at
the origin, the expression for the above vector plane wave can be written in terms of|

(1) (1)

the spherical vector functions of the first kind Me ', Ne

o’ —smn
0 n
E.l:E E Qe _Mgl) -iB, gfal)> (A.3)
ool m=0 \ emn= mn Smn=rmn
® n
_}_Il=iY§ E <Ae &Y g, wi) (A.4)
nol moo \ oln—gmn omn=—gmn
(1) (1) L .
where M, and N, are given in Section 2.1.
—émn —€mn

To determine the coefficients ASmn and Bgmn we multiply equation (A. 3)
by Mgm'n' and Egm'n" respectively and integrate over the surface R = constant.
By expressing equation (A.1) in terms of the spherical polar coordinates (R, 6, §)
(Stratton, 1941):
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_F:l_l = {cos GisinG cos(f - ¢i) - 8inf.cos 6 R

+ |cos 6,cos 6 cos(f - ¢.)+sin6.sin6] 6

- cos9 sm(¢ g. )] } {Zl (2n+1)j (kR) [Pn(cos Gi)Pn(cos 6)

+2mz_::2+m;' P (osG)P cos §) cos m(f - ¢)j} (A.5)

and by using the orthogonality relations for the trigonometric and Legendre functions)

followed by the recurrence relations for the latter, we obtain

T 2T

i .

E .Mgm'n' sin6 dfide
0 Yo
(cose)
_.n'

=3i 47r sm9i m'p. - [] (kR)] (A.6)

T 2T

E 'Egm'n' sin 6 dfdo

!
9P (cos®.)

2
_.n n icos 4 _ 1 , .
=1 an 8, sin ™' 2n‘+1{(n+1)[]n'—1(kRﬂ
2
sl R (A

On the other hand, from the right hand side of equation (A.3), by using the orthogonalﬂ

relations of M, N functions, we have
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T N2T @ n
E : v i, &P om sin 6 dgde
emn--—emn §mn—=gmn/ —em'n'
n=1 m=0 0
0
27(n'+m')! n'+1)!| i (kR_)]2 (A.8)
=Agm'n'(H-60)(2n’+1)(n'—m')!n(n )[]n’ .
TO2T
Z Z <emn—gmn Bgmnﬁgmn> .Egm'n' s1n9d¢ d6
0 m=
27(n'+m')! 2 . 2
=Bg ,(1+6) 5 a1 L+ D[§ R)] +oefj, kR)]
o ® (2n'+1)%(n' - m):
(A.9)
where
0, m#0
6 =
° 1, m=0
By equating equations (A.6) and (A.8), and (A.7) and (A.9), we then have
n em(2n+1)(n—m)! sin mPI;m(cos ei)
=ti A.10
Agmn ! n(n+1)n+m)! cosm¢i siné)i ’ (A.10)
€ (2n+1)}n-m)! 8Pm(cos6,)
{4 m cosm¢ n i (A.11)
emn n(n+1)(n+m)! sin 'i 00 ’ ’

o i

1, m=0
6 —
m 2 m#O

Now, for an arbitrarily polarized plane wave whose electric field vector

where

makes an angle § with respect to the x'-axis, its field can be expressed as
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. 2 ]
_El = (%' cos B+ sinB)elkz , (A.12)
. 3 1
I_{l = -iY(-X' sin g +§' cosB)elkz . (A.13)

Hence, using the relations given in equations (A.1) through (A.4), we finally obtain

® n
i -_>: E
E = {EOSBAemn—SmB BemJ "M(e]_';'_:ln
n=1 m=0 0 0 )
[ (1)
-i|sinBA_, +cosfB N , (A.14)
€mn €mn _[—Smn
0 0 0
o n
l{l =iy E {E}OSBA n-sinBBe ]ﬁ?&m
n=1 m=0 gm o476
i|{sinfA + B Y (A.15)
-i|sinf emn cosf3 Smn_‘Mgmn . .
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APPENDIX B
THE INPUT ADMITTANCE OF A RADIAL CAVITY

Consider a radial transmission line with input at its outer radius (r=a)
V= Vmcos mp , (m integer) (B.1)
and with load admittance at its inner radius (r =b) where the load admittance is

assumed uniformly distributed about the circumference as shown in Fig. B-1. If we

assume kd <1 and d << a, the field components are

H=E =E,=0
p

VA r
and
Ez(r, ) = {AJm(kr)+BNm(kr9 cos mf (B.2)
Hyr,f) = -1 {AJ;n(kr)+BN;n(kr)} cos mf (B.3)
H (r,§) = R i {AJ (kr)+BN (kr)} sinmf (B.4)
r’ kr m m )

(Ramo and Whinnery, 1944) where Jm(kr) and Nm(kr) are cylindrical Bessel func-
tions of the first and second kinds respectively.

To determine the constants A and B, the boundary conditions at the inner
and outer surfaces must be considered.

1. Inner Boundary Condition:

By using the same definition of the admittance as given in section 2.3, the

load admittance density at r=a is expressed as
o~ H
2Wb _ ¢[ r=b

- E,(b)]z - dEz|r=b ’

¥, (B.5)

where
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FIG. B-1: GEOMETRY OF A RADIAL CAVITY.
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d/2
-1 A
Wb =-5 (ExH) ‘Tdz .
-d/2
and
V(b) = -d EZ s
r=b
from which we have
[Y J (kb)+BJ’ (kb):l A+ E{ N_(kb)+B8N! (ka,B =0 (B.6)
b m m b m m

where Yb = 27rbyb is the total load admittance at r=b, and

., 2Th
B =iY d

2. Outer Boundary Condition:

At the outer radius, r = a, equation (B.1) gives

E = E_cosmf
z a
r=a

where

Ea=-vmﬁL

Hence, from equation (B.2),

AJ (ka)+BN (ka) = E (B.7)
m m a

After determining the coefficients A and B from equations (B.6) and (B."7), sub-

stitution into equations (B.2) and (B. 3) gives
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3 _(kr) [YbNm( kb)+BN! kb)] - N_(r) [Yme(kb) +B3 ( kb)]
E = E_cosmf,
5 () [Y,N_(b)+BN! (kb)]-N_(ka)[¥,3_(kb)+p! (k)] (B.8)

- 31 (ko) [T, N_(kb)+BN! (kb)] - ! (kn)[¥, J_(kb)+B3" (kb)]  cooms
! ! a '
J_()[¥,N_(kb)+N' (kb)] - N_(ka)[¥,J_(kb)+53" (kb)) (B.9)

Analogously to equation (B.5), the input admittance density at r=a is

and thus the total input admittance is

3! (ka) [YbNm( kb)+ BN]'m(kbﬂ -N! (ka) E(me(kb) + BJin(kbi]

Y = 27ray£m = -a

Im ' [
J_(a)[¥,N_(kb)+BN' (kb)] - N_(ka)[Y,J_(kb)+ /3Jm(klo¥|B o
where
a= iY‘z—g3

When kb is very small the asymptotic expression for Y tm is as follows:

G N P 1 LT v
@ J (ka) "o 3 (ka) katn(kb) | J (ka) 2 n(kh) ~ kd Y, ¢n(kb) ’

for m=0
Yllm’: ﬁ
kbY, +i27rmY
1 b 1 2
S {Iin(ka)”z/ ka) ? WY, izrmy 2 m} ‘
L m ml_z_m-l)zl b
for m >1
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The above expression shows that when kb approaches zero, the term in-
2
volving Yb approaches zero as [:l/lnkb]2 and (kb) ™ for m=0 and m >1 respec-
tively.* Therefore the proper choice of kb would make it possible to change Y o
within some range by varying Yb without changing significantly the higher mode
admittance values. Moreover, if kb is sufficiently small, we may consider the
loading admittance Yb at r=b as a lumped one.
Solving equation (B. 10) for Yb in terms of Y L obtain
' + ! -In + t
_ N (b)Y, T (ka) + a3 (ka)] - I (kb)Y N_(ka) +aN (k] o
b \ ’
N (b)Y, J (ka)+aJ!(ka)]| - I (kb)[¥, N (ka) + N (ka)]

and in particular, for kb small,

o YloNo(ka) +aN£)(ka)
& Y —— +
Yb Y kd £n(kd) 1 2 In(kb) YloJo(ka)-l-aJé)(ka) (B.13)
while the higher mode input admittances are given by
J; (ka)
Vi & @ T (@) (B.14)

To see the feasibility of the above approximations when kb is small, the in-
put admittances for several modes have been computed using the exact formula
(B.10) for (b/a) = 0.05(0.05)0.95 with ka = 1.9074, Y/Yb= ig;i
6 = 0.0399,and are plotted in Fig. B-2. It will be observed that the higher the modal

+i0 and

* Note that (1 /lnkb)2 approaches zero more slowly than kb;

lim 2 = lim 2x=0.
x—>0 (1/nx) x—0
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number, the slower the variation of the admittance as a function of b/a. In partic-
ular, for b/a near 0.05, Ylo changes rapidly while the others remain almost con-
stant, and when the cavity depth approaches zero (b/a — 1.0) Y,  approaches
-ioo for all m, as expected.

If the cavity were filled with a medium of refractive index n, the expres-
sions for the corresponding Ylm and Yb would follow immediately from the above
equations on replacing k by nk and Y by the intrinsic admittance of the medium.
Thus, for real n, numerical values can be obtained by scaling those for an air-

filled cavity.
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APPENDIX C
EVALUATIONOF C (8 ) ANDD (6)
nm o nm o

From equation (2. 17a) we have

6
+-—
90 2 8P:l(cose)
Cnm(eo) = sinf —85__ do . (C.1)
9 -

0

N o

If we limit the position of the slot to be such that € < 90\< T-€, with € >>§, an

adequate approximation to the above is

sin6

_ % m &7 om 8
c_(6)=— {pn Eos(90+ ﬂ-pn cos(@o-zﬂ} ) (C.2)

For the case in which n >>m, each Legendre function can then be replaced by the

leading term of its asymptotic expansion, viz.

m m 2 1 T mm
", - - __+__
Pn (cos@) ~ (-n) /mrs' 5 cos (n+2)6 PR ,

m 2nsin6 1 - sin-r-lz-(2
C_(0) ~ ~(-n)"|——= sinf|(n+3)0 ——+——j| —_ . (C.3)
nm o m 270 4 2 né

to give

2

Similarly, from equation (2.17b),
0
+—

1 90 2 m

D (6)=-—- mP (cos 6)dd , (C.4)

nm o 6 5 n

%2
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but unfortunately an approximation analogous to that given for Cnm(eo) in equation
(C.2) is not possible here. There are, however, the following asymptotic approxi-

mationsto D (6 ):
nm' o
D (6) ~ mP™cos6 ) (C.5)
nm o n 0 )

valid for n6 <<=, and

né

m 2 1 T, m7 sin3
P %) ~ (i cos [wr 0,1+ 5] 55 (e
2

valid for n >>m, and these are quite effective for most numerical purposes. In-

deed, for n<15, the maximum error in using equation (C.5) is only about one per-
cent, and this is true also for equation (C.6) when n > 15 with m <5. Not surpris-
ingly, the error is greatest in the crossover region.

In the particular case 90 = 7/2 equations (C.2) and (C.5) reduce to

0 , (n-m) even
C_(n/2) = (C.7)
nm

2 ml: T é]
6Pn cos(2+2) , (n-m)odd, n6<<r

0 , (n-m) odd

Dnm(w/Z) = (C.8)
n-m

(1) 2 lotm-ntm-3)...3.1
(n-m)n-m-2).,.4.2 °’

(n-m) even, n§ <7

respectively, and equations (C.3) and (C.6) reduce to
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0 , (n-m) even
C_(7/2) = — Lo (C.9)
2
(-1) 2 ™ \[—n 2 , (n-m) odd, n>m
T Dnd
2
0 , (n-m) odd
Dnm(n/Z) ~ em  ns (C.10)
2 m [2 4%
(-1) mn [— , (n-m)even, n>m
nT  né
2
respectively.
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