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ABSTRACT

A preliminary study of the scattering behavior of a spherical shell with a
circular aperture is presented. The shell is assumed to be perfectly conducting
and infinitesimally thin, and is illuminated by a plane electromagnetic wave
symmetrically incident upon the aperture. Several different approaches to the
solution of this problem are discussed, and the most promising one, the meth-
od of least square error, is described in detail. A numerical approach based
on this scheme is devised, and values for the surface and back scattered far
fields are given. In effect, the aperture and cavity provide a reactive load
which modifies the scattering behavior of the complete shell (or sphere), and
an example shows the cross section reduction achievable in this manner. Ex-

perimental confirmation was obtained, and the study is continuing.
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I
INTRODUCTION

In the general area of electromagnetic scattering, impedance loading has
received much attention as one of the more promising techniques for radar
cross section control, especially for the reduction of cross sections in the
resonance region. In recent years a number of studies have been made of
impedance loading applied to simple bodies such as the sphere (Liepa and
Senior, 1964, 1966; Chang and Senior, 1967) and cylinder (Chen and Liepa,
1964a, 1964b; Chen, 1965a, 1965b; Sletten et al, 1964)., From all of these
studies, it would appear that the realization of the loading required to give (for
example) zero backscattering cross section over a significant frequency range
is very difficult to attain due to the peculiar frequency characteristics of the
required loading.

The present work is directed at the problem of an infinitely thin spherical
shell with a circular aperture of arbitrary size cut into the shell. In effect, there-
fore, we have a sphere loaded with a spherical cavity coupled through a circular
aperture. By loading with such a cavity, it seems not unreasonable to expect
that the bandwidth characteristics will be broader than in the cases studied by
Liepa and Senior (1964, 1966) or Chang and Senior (1967) where the sphere was
loaded with a narrow circumferential slot, which has an inherently narrow
bandwidth, Moreover, it is felt that the loading with a spherical cavity is
particularly appropriate to the present problem since the fields inside and out-
side the spherical shell are separable with the same spherical coordinate
system, and hence the reasonance characteristics of the cavity and sphere are
somewhat similar to each other.

The problem of a perfectly conducting spherical shell with a conical hole,
which degenerates to our case when the shell thickness approaches zero, has

already been rigorously formulated by Uslenghi and Zich (1965). However, the
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scattering amplitude coefficients were not evaluated and, in addition, the ex-
pected difficulties in truncating the infinite series representation for these coef-
ficients, were not discussed. In the case when the spherical shell is less than
a hemisphere, Blore and Musal (1965) and Raybin (1965) used a high frequency
approximation by adding the edge-diffracted term to the physical optics value of
the specular contribution, and it was shown that the results were reasonably
close to those measured. To the author's knowledge, however, the electro-
magnetic problem of a spherical shell which is larger than a hemisphere has
not been treated in the literature in either an exact or approximate sense as
far as concrete answers are concerned. For the acoustic problem, Sommerfeld
(1949) has used the method of least square error to obtain a system of linear
equations for the diffraction coefficients; and more recently Thomas (1962)
obtained a low frequency solution using an iteration method developed by
Williams (1962).

In Section II we discuss three possible approaches to solving the given
boundary value problem when the plane electromagnetic wave is incident sym-
metrically on the aperture. The first method is similar to that used by
Uslenghi and Zich (1965), whereas in the second the boundary value problem
is reduced to a system of two integral equations. The third is the method
of least square error, and at the end of the section the system of linear
equations resulting from this approach is solved by the Gauss-Seidel iterative
technique. The following section presents some of the numerical results so
far obtained using the least square method for different numbers of terms
retained in the approximation, and experimental data is also presented for

comparison with the results of the computations.
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Section IV contains a brief discussion and summary of the results and
concludes with an indication of the further work that is scheduled. In this con-
nection it should be emphasized that the present report is preliminary inasmuch
as the study has not yet been completed, and it is not necessarily felt that the
behavior observed in the cases which have so far been treated, either experi-
mentally or numerically, is typical of what can be obtained with a loading de-
vice of the type discussed here, especially when the cavity is filled with di-

electric or magnetic material.
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II
THEORETICAL FORMULATION

2.1 Geometry and Field Expressions

Let us consider an infinitely thin, perfectly conducting spherical shell
with its center at the origin and the spherical segment given by R = a, 90 <
6 <7 as shown in Fig. 2-1. Assuming a plane electromagnetic wave is in-
cident in the direction of the negative z-axis with its electric vector parallel
to the x-axis, the incident field becomes
i_ 4 eikz ,

_,}\, Y eikz

o]

i (2.1)
H

where k is the propagation constant, Y is the intrinsic admittance of free
iw
space, and a time factor e1 t has been suppressed.
The incident field of Eq. (2.1) can be expressed in terms of spherical

vector wave functions as follows:

. o (2.2)
(1) (1)

where M " and N are the spherical wave functions (Stratton, 1941):

ll/n(kR) an(cos 6)

(l) T sin n
=+
'Me ™ Tk sin 6 cos p o
mn
o
i Wn(kR) Kl Pm(cos 5) cos m¢ 6
kKR 9 " n sin ’
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Circular Aperture

//1I(R, 6, #)

Region II

(eo. uo)

Infinitely Thin,
Perfectly Conducting
x v Spherical Shell

FIG. 2-1: COORDINATE SYSTEM
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¥ _(kR)
1) n m cos A
= +
ﬁ(e n(n + 1) R P, (cos 6) sin m@ R
mn
o
4 wh (kR) 9 Pm( 6) cos é\ I
kR ® n cos sin m
_ Y' (kR) p™ (cos ) .
T m n n sin m¢ a
kR sin 6 cos ’

with

d/n(kR) = kR jn (kR)

jn(kR) is the spherical Bessel function of order n, and the prime denotes dif-
ferentiation with respect to the entire argument.

The total field due to the presence of the spherical cavity can now be
expressed in forms similar to those for the incident field, but with unknown

amplitude coefficients.

Ii[A

Thus, in region I (R < a):

(1)
Bn Eeln:j ’

(1)

E = M -
- n—oln
n=1
(2.3)
@
| (1 (1 | .
B=1Y Z [}nﬁoln ) anMeln ’
n=1
and in region II (R > a):
EH=_]§1+ES , §H=_Ijl+_I:IS , (2.4)

where
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o}
]

®
s (4) . (4)
Z lE:n Moln -1 Dn'lgelnjl ’

. (2.5)
s _ . 4 . (4)
Py Z l}nEoln -an-M-eln] )

(4) (4)

Here, the superscript s designates the scattered field, and M and N

differ from _M_(l) and g(l) in having wn(kR) replaced by Cn(kR) = thilz)(kR),

where h:lz)(kR) is the spherical Hankel function of the second kind. The coef-

I
1

ficients An’ Bn’ Cn’ and Dn are to be determined from the boundary conditions.

2.2 Boundary Conditions

The continuity of the tangential electric field through the aperture and the
condition of zero tangential electric field at the surface of the perfectly con-

ducting sphere segment require that

_ N 2n + 1
Cn Cn(ka) = [An - i _—_n(n n 1):| l//n (ka) , (2.6)
. _ N 2n+1 .
Dn §n (ka) = [Bn - Tne D 1)} wn(ka) , (2.7)
and, for 60 <6 <m,
1
o I Pn(cos 0) 5 1
nzl _Cn fn(ka) o | Dn §’I'1 (ka) Y Pn (cos 0)| = GI(Q)’
(2.8)
- 1
© 5 1 ‘ Pn(cos )]
nzzll _Cn Cn(ka) 30 Pn(cos 9) - i Dn §n(ka) “ema | GZ(O), (2.9)
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where

e

1
P (cos 0)
Gl(e) in 2n+1 [‘//n (ka) n _

o] n(n + 1) sin 6
- i (p;l(ka) % P111 (cos 9):, s (2. 10)
S 0 2n+l 5 1
GZ(G) = - ; i m li(//n(ka) -a—e-Pn (cos 8) -
Prll(cos 6)
-i (//;l (ka) —m e . (2.11)

Also, together with Egs. (2.6) and (2.7), the continuity of the tangential mag-
netic field through the aperture requires that for 0 < 4 <90:

1
® P (cos 0)
Z c —i— —a-Prll(cos 9)-ip —— D :,=o, (2. 12)

=i n wn(ka) 00 n g[/'n(ka) sin 6

1
o I P (cos 6)
E L = . p —L 9,1 )
- Cn v (ka) sing ' D, ' (ka) & Pn(COS 9)—J =0. (2.13)
n=1 | n n

There seem to be various ways of approaching this kind of boundary value
problem. Some of the possible ways, starting from Eqs. (2.8) through (2. 13),
are presented in the following.

2.3 Direct Conversion to Alebraic Equations

The first method yeilds an infinite set of linear equations by applying

straightforward conversion techniques to Egs. (2.8), (2.9), (2.12) and (2.13).
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9
Multiplying Eqs. (2.8) and (2.9) by P (cos ) and — P (cos 6) respectively,

00
adding both equations together, and integrating with respect to 6 over 90 to 7,

we have

2m + 1 mn

(00} 2 2
S {C ¢ (ka) [—z—m—(—w—a L (6]+iD§'(ka)S )5,
n:1 nn mn 0 nn mn o

m

Pm(cos 0) 5 1
, Gl(e) e 8 + GZ(G)EO- Pm(cos 0) | sin 6.d6, (2. 14)

where the following abbreviations have been introduced:

90 8
Lmn(Go) = Y P (cos 0) —P (cos 8 +
0
1 1
Pm(cos 9) Pn(cos )]
sin 0 S B sin 9 d6 (2. 15)
90 Plln(cos 9) 5 .
“mn %) * R
0
1
Pn(cos 9) 1
+ “sin o 90 P (cos f) | sin 9 do . (2. 16)

Hence, by making use of the orthogonal relations of the Legendre functions,

T 3 Plln(cos )] Plll(cos 9)
— P 0) — i
Y: (cos ) P (cos 6) + Sin 0 sin B sin 6 d6
6

©o. 2w (m“)zs L (6)
2m + 1 mn mn o ’
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1 1
P~ (cos 0) P (cos 6)
m 0 _1 n 0 1 .
[ prm Y, P (cos 0) + Sin 0 98 P (cos 0) | sin 6 dO

Likewise, multiplying Eqs. (2.8) and (2.9) by 5 GP (cos 6) and P (cos 6)

respectively, and integrating with respect to 6 over 8 to 7, we have

i -C ¢ (ka)S_ (9 )-iD '(ka)ma -L_(6)
= n'n mn o n§n 2m +1 mn mn o

Vo

nT

Pm(cos 0)
= [Gl(e)a——P (cos 0) + G (9) g | S0 6do (2-17)
v o
0
(m=1, 2, 3...)
Similarly, from Eqgs. (2.12) and (2.13),
— -
~ 1 1
;:1 c_ ) L_(6)-iD_ i s (90)~ =0, (2.18)

—

1 ) 1
i Lc][1 wn<ka) smn(eo) -i Dn L (6) 0

o7 ) Lo Co (2.19)
n p—

]

(m=1,2,3...)

Equations (2.14), (2.17), (2.18) and (2.19), together with Egs. (2.2)
through (2.7) and (2. 10) and (2. 11)

, represent the formal solution of the pro-
blem.

For a numerical solution, the scattering amplitude coefficients, C

10
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and Dn’ (n=1,2, ..., 2M) can be approximated by solving the linear equations
(2.14), (2.17), (2.18) and (2.19) retaining only the first 2M terms of the in-
finite series. We then have to solve the following set of 4M simultaneous

equations:

2M 2 2
C, (ka) [M 6 -L_ (6 ):l +iD ¢'(ka)S (6 )
’ n mn o n’n mn o

2m + 1 m
n=1

™

_ P (cos 6) 5
- G.(6) = G(e)—p Lcos 0)| singdo,  (2.20)
5 1 si

n 6 26
0
2M 2 2
. 2m (m + 1)
- - 1 S N S _
o ¢ C (ka) s n(eo) angn(ka)[ 2m + 1 6mn Lmn(eo):l
1
4 5 1 Pm(cos 6)
= —_— + ———— .
Gl(G)ae Pm(cos 6) G2(9) o sin 6 dO , (2.21)
6
0
2M ) 1
2 o e L (8)-iD ) s_(6)]=0, (2.22)
2M 1 1
C S (6)-iD —— L (8) |=0 , (2.23)
= [n l//n(ka) mn o n wn(ka) mn o
form=1, 2,3 ... M.

In order to ensure that the values of the coefficients obtained from Egs. (2.20)
through (2.23) are reasonably accurate, it is necessary that M be as large as

possible.

11
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2.4 Integral Equations

In the second approach, we write the tangential components of the electric

field in the aperture as follows:

EIGI(a, 6, @) = ;1; F.(6) cos ¢, 0<6<o (2.24)

E;I(a, 6, §) = - L F.(6) sin g, 0<6< R (2.25)

ka
where F l((9) and F2(9) are unknown functions. We then seek to find Fl(G) and
F2(0) by solving the integral equations arising from Egs. (2.8) through (2. 13)
and (2.24) and (2.25). Combining Egs. (2. 8), (2.9), (2.24) and (2.25), we

obtain

® Pi(cos )] 5 1
Z Cntn(ka) “emg ! Dn §"n(ka)5P (cos 0)

n=1 n

<6<
G(6) +F (6) 0<6<0

= ? (20 26)
Gl(e) s 60 <6 <7
1
[00) 5 1 Pn(cos 6)]
nZ; Cn §’n(ka)5 Pn(cos 0) -i an'n(ka) T ein 8
G,(0) + B (0) 0<6 <6
; . (2.27
G,(6) , 6 <6 <m

By making use of the orthogonality of the Legendre functions, we have

12




THE UNIVERSITY OF MICHIGAN
5548-7-T

0 1
1 on + 1 0 Pn (cos )
Cn } ¢ (ka) 2 2 F1(9) sin 6 *
n 2n (n+ 1) 0

1 2
+ F2(6) é% Pn (cos 9):' sin 9 do - i" (n ::-_ 1) z// (ka) ,, (2.28)

6
0
1 2n +1 9 1
-iD = F(8) =P (cos 6) +
no glka) ) o 20412 So[l 9 "n

P (cos 6)
n ntl 2n+1
+ F2(9) in 0 :] sin 6d0 +i Y —— z//I‘I(ka) , (2,29

and substitution into Egs. (2.12) and (2. 13) then gives

% 6 1
n=1 2n2(n + 1)2 g Fl(e) I:‘l/ (ka)t (ka) % : (COS 7 sin ' i
0

1 P (cos 0) )
¥ ¥' (ka) €' (ka) sing 20 (COS 6')| sin 6' do' +
n n

6
+ OF(Q') L aP(cos@)—p( 0"
2 Yy (ka)f (ka) 06 55 Py (C0S 60+
0

1 P_ (cos 6) Pn(cos 6")
+ .
y! (ka)¢ ! (ka) sin 6 sin ' sin 6' do'

_ i n 2n+1 1 9 P 1 Plll(cos 6)
= i Mot D §n(ka) %0 (cos o) - ,

] .
n=1 f n(ka) sin 6

(2.30)

13
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ZOO 2n +1 ° P (9 ) 1 Pn(COS 6) Pn(cos 6")
2 : :
n=1 2n2(n +1) 0 v, (ka )§ (ka)  sin 6 sin 6'

1 9 1 .
y! (ka)¢' (ka) 96 F (COS 6) 59. P_(cos 9')] sin 6' do' +
60 1 Pi(cos 6) 5 1
+ ! 9
Fyl8 U (kak (ka) sin0 20 Tn(c080) ¥
n " "n
0
a 1 Pl(COS 9')
1 n .
Y1 (ka)¢ ‘(ka) 3 Ppleos O — ] sin 6' do'
Q Pl( os 0)
- in 2n+l 1 n N 1 a 35 ( 6)
§ nntl)| ¢ (ka)  sin @ g’v (ka) 86 " n'°°®

(2.31)
for 0<06< 86
=729%

If we were to interchange the order of integration and summation in Egs. (2. 30)
and (2,31), we could reduce them to two Fredholm integral equations. Un-
fortunately, however, the kernels represented by the infinite series diverge as
O(1) or O(n), and the interchange of the orders of integration and summation
is not therefore permissible.

Nevertheless, as in Section 2.3, Egs. (2.30) and (2.31) can be converted
to an infinite set of algebraic equations if we express FI(B) and FZ(G) as con-

vergent infinite series of functions orthogonal in the interval 0 < 6 < 90, for

example
[00)
mm 0
Fl(O)—Zamcos 5 , 026<6
m=0 o

14
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> m7 6
= — <6<
F2(9) Z bm cos , 0<6<86
m=0 o

where the coefficients am, bm are to be determined.

When in the course of computation each infinite series is approximated
by a finite series, the final (approximated) results depend on the choice of the
orthogonal functions used for the series expansions of F1(6) and F2(6). For a
good approximation a proper function with an unknown constant may be intro-
duced to represent each unknown function F1(9) or F2(6), in addition to the
series of the proper orthogonal functions; and by appropriate choice, it would
appear that the resulting series could be made to converge very rapidly. It
is, however, not easy to find the optimum proper functions even though the
method of trial and error might lead to ones which are adequate.

2.5 Method of Least Square Error

We here seek to find the scattering amplitude coefficients, Cn and Dn’ by
using the method of least squares. Two arbitrary weighting factors will be intro-
duced and will later be replaced by quantities specifying the relative weights to be
attached to the two boundary conditions - one for the tangential components of
the electric field on the conducting surface and the other for the tangential
components of the magnetic field through the aperture.

By introducing weighting factors W 1(>O) in Eqs. (2.8) and (2.9), and
W2(>O) in Egs. (2.12) and (2.13), and by retaining only the first M terms in
the infinite series, the total square error, ZM can be written as

4 Pl(cos 9)
[C ¢ (ka) —— -
n°n si

£V G,(0) -

[V]z

= n 6

15
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2 T

0o 1
-3 [} —_ : -
1Dn §n(ka) 50 Pn(cos G)J sin6dg +w G2(9)

1

0
0

M Pn(cos 0)
- Z[Cnfn(ka)a— P (cos f) -iD §" (ka)—l—-— sinf dg +

e} sin 0

o M 5
W, Zl:n(//(ka) aep(‘”se) i

n=

1 2 0
] Pn(cose):, ol M

! Dn zpl'l(ka) sin

sin6do + W
2
0 n=1

2
P (cos Bﬂ sin6dé.

. 1 Prll(cos ) . ]
nwn(ka) smo Dy xp'(ka) 90

(2.32)

In order to arrive at weighting factors W ) and W_ having some physical

2
significance, let us consider the following square error functions (by letting
Cn = Dn = 0 for all n > M), normalized with respect to the corresponding in-
cident field component. For the tangential electric field on the conducting

surface (R = a, 90 <6< 7))

‘E+ES| a® sin 640 dg

ME 21 T (2.33)

16
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and for the tangential magnetic field through the aperture (R = a, 0< 4 < 90):

P2 0
°r 1 ;2 2
H -H l a  sin 6 do df
-t R=a
A _J0 0
MH 21 (6 ' (2.34)
o, . 2 9
lgz | a sin 6 d6 d¢
Jo 0 R=a
Since
i _ 1 _ ika cos 6
EolRea = " %a 08 ) GI(G) = cos O cos e (2. 35)
i _ 1 . _ . ika cos 6
E¢ Rea ° Ta sin ¢ G2(9) =-sinfe (2. 36)
we have
2T W7 9 . 1 ;
IEII sin6d9d¢=7r(—+cos(9 + = cos 6) ;(2.37)
=t R=a 3 o 3 o
0 0
0
and also, from Eq. (2.5) with Cn = Dn = 0 for all n > M, we have
2T a7 . 2 T
lE1+ESl sin§ dod@ == G.(6) -
=t -t (ka)2 1
0 Jo 6
0 0
M Plll(cose) 5 1 2
- ; Cnfn(ka)——sin ' 1Dn§l'1(ka)?9 Pn(cos Oﬂ sin 6do +

17
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! M 0o 1

+ - —— -
G,(6) > C_¢ (ka)35 P (cos 0)
n=1
6
0
Prll(cos ) 2

-i and (ka) ~in sin 6 d6 ) . (2.38)

Hence, from Eq. (2.33),

T
1 1
g = G.(0) -
2
ME (ka) (é + cos 90+lc03360) 1

3 3 7]
0
M Plll(cos 6) 3 1 2
- I;[Cng’n(ka) i -1Dn§r'l(ka)8—6 Pn(cos Gﬂ sin6do +
! M 0.1
+|ey0- 2 lc ¢ (kakZP (cos o) -
n=1
0
0
Prll(cos )] 2
. \ _n_ ,
i Dn§ n(ka) o sin 6 do , (2.39)

and similarly, from Eq. (2.34),

Z o1

90

1 S
MH 2 4 1 3
(ka) (3-cos60—3005 60)

Pl(cose 2 90 M Pl(cos 0)
_ip —— B singdg + | [Y_IC L o
ngbl'l(ka) sin 6 = 1L nwn(ka) sin 0
2
-iD 1 9 P1 (cos 6) sin 6 d6@ (2.40)
n y'(ka) 96 n ) ’
n

18
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It is clear that the smaller the quantities ZME and ZMH become, the more
accurate the solution. However, ZME and ZMH cannot be minimised at the
same time. If we let (& ME + ZMH) be the total error which we would like

to minimise, then, from Egs. (2.32), (2.39) and (2.40) by letting

v = Cup t G (2.41)
we have

1 1

W, = (2.42)

1 2 (4 1 3
(ka) (3 +cos 8+ cos 90]

1 1

" _(k )2 (é—cosé) -2 036) - @49
2 3 o 3% %

It is convenient to use the above weighting factors since we are dealing with a
normalized error function and only a single constant need be given to deter-
mine the number of modes, M, regardless of the values of ka and 90, for the
same degree of error criterion.

Returning to Egs. (2.32), for least square error we require that

o]

—Z—M = 0 and —aﬁ/{ =0 (m=1, 2, 3 M) (2. 44)

0C oD P Ty e ’ ‘
m m

from which we obtain

M
2m (m+ 1) 2
Z 2m + 1 I:wm(ka)] 6mn - [wn(ka)wm(ka) -

n=1

19
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W T ¢ (ka) M

2 1 n
- ———— |L _(6))———C +i Y'(ka)y (ka) -
w1 ¢ (ka)e (ka). mn o wn(ka) n ;llin m

n m

W2 1 ] C'(ka) n 2n+1
w S (9) ( 2) n ¢/ (k) n(n+1)

1 §'(ka)§’ (ka) | =1

2m (2m+1)

2 +1 6mn_Lmn(eoEIer'l(ka)Smn(eo) » (2.45)

% ( ),// ( 1 ] fn(ka)

kal, ka)' S _(8) C

n=1 11 W1 C(ka)§' (ka) mn o ¢n(ka)
U 2m (m + 1)

w C"(ka)

2 1 n2n+l

- T ()~ D =Y (ka) X
W fl'l(ka) E;n(ka)] mno Y, (k) Z n(n+1)

_2m2(m + 1)2
X wn(ka)smn( 90) H%(ka\ 2m+1 6mn - Lmn(eo) (2.46)

m=1,2, 3, ... M

where the asterisk denotes the complex conjugate. The 2M unknown scattering
amplitude coefficients, Cn and Dn(n =1, 2, ... M) can now be approximated
in the least square sense by solving the above 2M linear algebraic equations
obtained by imposing the boundary conditions and letting Cn = Dn = 0 for all

n > M. It is clearthat this approximation converges to the exact solution as

M approaches infinity.
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All the above three approaches to the solution of the scattering problem
involve infinite systems of linear equations. In actual computation the number
of linear equations to be solved must be large enough to give sufficient accu-
racy, but small enough to keep the computation time reasonable. It is well
known that in solving large systems of linear equations, matrix iterative meth-
ods have distinct advantages, most notably with respect to the speed of execu-
tion, over conventional matrix inversion methods provided the corresponding
iterative matrix has a reasonable rate of convergence, In the following, the
application of the Gauss-Seidel iterative method (Varga, 1962; Cole, 1967) to Eqs.
(2.45) and (2.46) will be considered. Besides its physical significance, the
method of least square error guarantees that the Gauss-Seidel iteration will
always converge if 0 + 0.

2.6 Gauss-Seidel Iteration Method

After some re-arrangement, Eqs. (2.45) and (2.46) can be written in

matrix form as

[aqu xq} = pr , (M q=1,2, ..., 2M) (2.47)

where the following notations have been introduced;

_ 2m (m+1)
fom-1,2n-1"  2m+1 &” (k } 6 n-[wn(ka)wm(ka) -

- W2 L } L (6) (2.48)
Vi e ) | T

2m 2n 2m +1

_2m (m+1) EV (ka )J ["[/ﬁ(kawr‘n(ka) -

Wy 1

W sk L (6 ) g (2.49)
WV, ¢ (ka) &1 (ka) } mn o
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| =

1
a, = - |y (ka)y (ka) - ” j’ S (6) (2.50)
2m-1,2n {:n m W1 C;l(ka) Cm(ka) mn o

[ W 1
a = -1y (ka)y! (ka) - = J s_(6) , (2.51)
2m, 2n-1 n n W1 C;l(ka) e (ka) mn o
m

¢ (ka)
Xon-1 ~ gbn(ka) Cn ’ (2.52)

§'(ka)

= D s (2.53)

Xon ~ W (ka) n

2
_ n2n+1 2m (m+1)
= Y (ka) Z (n+1) Y (ka )[ 2m +1 On

- Lmn(eo)} +1 w;l(ka) smn(eo) , (2.54)
. n 2n+1
= w (ka) E +1){¢n(ka)smn(eo) +
2 2
. 2m (m + 1)
* 1¢n(ka) lj 2m+1 6mn ) Lmn(eo)J ’ (2.55)

It is interesting to observe that after some manipulation the coefficients f2m—1

and f2m given in Egs. (2.54) and (2.55) respectively can be expressed in
terms of finite series as follows:
= i . +

i wm(ka) m(m + 1) 8 (60) (2.56)

f2m—l

\ m(m+1)
-1(0 (ka) = it 1 2m+ 1 [(m+1)gm+1(60)+mgm_1(90):]

(2.57)
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where

o) ka aXr

X =cos 8
lkax = ir o 0
g (0) = (=) — P_(x . (2.58)
m m
r=0 _
It should be noted that for the special case in which ([/ (ka) = 0, Eq. (2.6)
gives C = 0 and the expressim [t’ (ka) /w (ka) C must be replaced by

.r 2r+1
[Ar -1 r(r + l)]

Similarly, if z,[/;‘(ka) = 0, we have Dr = 0, and [C;(ka)/wl'l(kail Dr must be re-
placed by

r 2r +1
[Br_l r(r + 1)

In order to solve iteratively the matrix Eq. (2.47), we express the ma-

trix A = [aqu as the matrix sum
A=D-1IL -T (2.59)

where ID = diag {all’ Bggs +vns aZM,ZM} , and IL and W are respec-
tively strictly lower and upper triangular 2M x 2M matrices, whose entries

are the negatives of the entries of A respectively below and above the main
diagonal of AA.

Using the notation

X £
Xg £

X = and IF = ) (2. 60)
XoM | fonm_]
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Equation (2.47) can be written as

(D-L)X=UX+ F (2.61)

+
which leads to the Gauss-Seidel iterative method

(r +1) (

(D - L)X R L r>0 (2.62)

which can be written in termsof components as

-1 2M
(r+1) 2 (r +1) (r)
a = - a X - Z a x ' +f,r>0 (2.63)
pp’p ; paq o P p
where (r)

(r)
Xy

x\ = - , r>0 . (2. 64)
(r)
Xom

(o)

X" is an arbitrary, initial complex matrix approximation of the solution
matrix X of Eq. (2.47). If X(o)
X(r) is successively defined by Eq. (2.62) or (2.63).

For a given Hermitian matrix IH = Elpq:l in the matrix equation HX =¥,

is given, a sequence of matrix iterates

the necessary and sufficient condition for the Gauss-Seidel iterative method to
lim

be convergent, i.e. o ® X(r) =X , is that the matrix TH be positive de-

+Strictly speaking, the method is the point Gauss-Seidel iterative one.
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finite (Varga, 1962). From Egs. (2.48) through (2.51) it is readily seen that
= ap:; , and the positive definiteness of the matrix A can be proved by

Pq

showing that for any given matrix Y] =y ] forp=1,2, ..., 2M,

7T

L M P (COS 0)
yp[apq]yq]= W I;E'h k) —Gg +
6
.o
- 2 TFr M
. 3 .
+ yznwn(ka) %8 Pn(cos 9)] sin 9d9+W1 nZ=1
o

P (cos 0)
X [Yz A (ka)—-P (cos 9)+y A (ka)T sin6do +
Q. o M 5 )
Wy nZ Yon-17T (ka) aeP(°°S )+ Yo ¢ (ka) $

Pil(cos 6) 90 M 1 Pil(cos )]
X sin 6 8in 648 + W2 Z[YZn—l fn(ka) sin 6 +
0

2
y 1 2 Pl(cos 6) sin 6 d (2.65)
2n g’l'l(ka) 26 " n ’ .

and whose right hand side is always greater than zero for 60 > 0 unless

Yy =Yy = = Yoy * 0 (See Appendix B).

(Since the matrix A is positive definte, the lower triangular matrix (D -

1) in Eq. (2.62) is non-singular. We can therefore write

oot vx® s (- ! F,r>0. (2.66)
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-x, r>0 (2.67)
then from Eq. (2.66) we obtain
AV AV @AY s (2. 68)

where the matrix G, which is called the Gauss-Seidel matrix associated with

matrix A, is defined as

-m-mt o . (2.69)

(r)

The matrix G is of course convergent (to zero) since Il.ifooX =X, How-
ever, the rate of convergence is a function of ka, 90 and M, and due to its
complicated expression, it is difficult to see its behavior until some actual
results of the numerical computation are available. As we can see from
Eq. (2.68), the error matrix for r iterations depends not only on the matrix
G but also on the initial error matrix A(o), which is unknown. Equation (2. 68)
is not therefore convenient for determining the number of iterations to give a
reasonably good approximation to the solution of Eq. (2.47).

To determine the number of iterations desired for a certain error cri-
terion, we consider the total square error fM By using the same notation

as in Eq. (2.47), Eq. (2.32) can be manipulated to give

2M
Z =W {(ka) (z+cos @ +3cos 9) ; X

2M
X Re[)(;(Zf qZ - q]} . (2.170)
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th | .
When the solution of Eq. (2.47) is approximated by the r iterative solution,

the corresponding square error 5( r) follows from Eq. (2.70) on replacing the

X, byxl())s, and is

p's
2M "
Zg\z) = Wl{ (ka)z(%+cos 60 +-; cos3 60) - I; Rel}l()r)ﬁ (2 fp

oM e
d ] } . (2.71)
= ®pq Xq

We are now able to specify the number of iterations by applying an error cri-

terion to E ;Z). Thus, for example, we might allow

((r) ;(r+1))/ (r) o, (2.72)

where o is a given small quantity by which the accuracy of the computed re-
sults can be decided.

The number M can be determined according to the accuracy we require.
If, for a given small positive quantity a,, we require the total error ;M to
be less than oz2, we start with M = M', a relatively small number (10 ~ 20)
and keep increasing M by a certain increment until the condition ZM < o, is
satisfied. In the process, when M is changed by an increment, it would seem
attractive to use the previously approximated solution as the initial approxi-
mation to begin the iterative procedure for the increased M.

Finally, it should be noted that if the matrix Eq. (2.47) is partitioned

in the form
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A11 ‘/A12 ‘ ) ‘ AIN Xl IF1
Ay A, . .. A | X ¥,
- (2.73)
ANl ANZ ... ANN XNJ lFN
L I —

where the diagonal submatrices App’ 1 <p <N, are square, the associated

partitioned Gauss-Seidel iterative method

(c+1)_ & (1) < r) ¥
o5 = Zl A X Zquyf tE L (2.7

is also convergent (Varga, 1962). If each diagonal submatrix App isalxl
matrix, Eq. (2.74) reduces to Eq. (2.63). Each different partitioning of the
matrix A gives rise to a different rate of convergence, and we are therefore
interested in finding the optimum partitioning of the matrix A for which the
rate of convergence is fastest. At present, however, it is difficult (if not im-

possible) to find the optimum partitioning.

+
We assume that matrix equations Aprp = ]Fp can be solved directly.
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III

PRELIMINARY RESULTS

In the first attempt to compute the scattering amplitude coefficients Cn
and Dn’ Eqgs. (2.47) through (2.55) were programmed in a single precission
mode for the IBM 7090 digital computer. It was found that the amplitudes of
the matrix coefficients, a , are rapidly decreasing functions of p and ¢, and
exceeded the machine capacity (10_37) for p and q > 20, For the time being,
the number M was therefore limited to M < 10,

In order to examine the accuracy of the solution obtained by the method
of least square error, the tangential components of the total electric field,
EIBI and E;}I , were computed from the approximate scattering amplitude coef-
ficients C_and D_(n =1, 2, ... M) for M = 8,9 and 10 with 6= 30°
and ka = 1,0, Their magnitudes are plotted in Figs. 3-1 and 3-2. Knowing
that the exact tangential components of the total electric field must vanish at
the conducting surface R = a and 30o <6< 1800, we see that the results for
M = 10 give a better approximation than those for M = 8. In addition, we also
know that the field EII at the edge, 0 = 300, of the shell has a singularity of

6
-1/2
1/ , Where p is the distance from the edge. For M = 8, such a

order p
singularity is not evident but for M = 10 there are signs of its emergence.
However, the error is still significant and much larger values of M (at least
20 or 30, say) may be required to attain a reasonable approximation. The

M
8, 9 and 10 are as follows:

error & and the normalized backscattering cross section o(o)/co for M =
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TABLE II-1
ZS = 0. 052900 a(°)/c:0 = 0.35 db
M=8
£, = 0.038767 /s = 0.43 db
9 0
M=9
%, , = 0.033010 0(0)/00 = 0,47 db
M=10

(ka = 1.0, §_=30°)
Here, o{o) is the backscattering cross section of a spherical shell with 90 = 30(:I
and , is that of a solid sphere with the same radius as the spherical shell.

To compare with the numerical results and to obtain some insight into the
scattering behavior of a spherical shell, the backscattering cross sections were
measured using a spherical shell model. The spherical shell was made by
joining two steel hemispheres (cold drawn from thin steel sheet) and then
cutting a hole of appropriate size (90 = 30°) in the top of one of the hemi-
spheres. The diameter of the resulting model was 3.09 inches and the shell
thickness about 0.030 inches.

The backscatter measurements were carried out using conventional CW
equipment in an anechoic room. The distance from the antenna to the sup-
porting pedestal was 9 feet and the model was placed so that the plane of the
aperture was parallel to the axis of the supporting pedestal. The backscattering
cross section was measured as a function of 0 in the E-plane for a series of
L- and S-band frequencies corresponding to ka = 0.9 to 1.4 and ka = 2,0 to

+
3.3 respectively.  When the aperture of the model was directed at the antenna

+
Measurements in the range ka = 1.4~2,0 were not possible because the corres-

ponding frequencies were not available.
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(6 = 0), the measured backscattering cross sections, o(o), were as shown in
Figs. 3-3a and 3-3b.

Four complete cross section patterns for ka = 1.0, 2.0, 2.75 and 3.0
are given in Fig, 3-4, and it is interesting to observe that for ka = 1.0 the
spherical shell model has almost the same cross section as a solid sphere of
the same size. As ka increases, however, the effect of the aperture becomes
more apparent and, as seen from Figs. 3-3a and 3-3b, the relative cross
section is in general enhanced except in the region near ka = 2.75, where it
is reduced to about - 14 db.

At ka = 2,75 the diameter of the aperture is 2b = 2a sin 00 =0,4377.
This suggests that the cross section reduction at ka = 2,75 is mainly due to
a resonance effect of the aperture since the resonance of a disc (or a hole in
a screen) occurs when the disc diameter is approximately this size. On the
other hand, the lowest resonant mode in the spherical cavity occurs at the
first root of wi(ka) = 0, which also corresponds to ka = 2,75, Hence, the
cross section reduction obtained near ka = 2,75 may also be attributable to a
cavity resonance. In retrospect, the choice of aperture size was undoubtedly
an unfortunate one as far as pin pointing the physical phenonema is concerned,
but it is expected that the numerical program, when completed, will serve to
separate these two effects. So far we have been able to compare the mea-
sured values with computed ones only for backscattering with ka = 1.0, There
the measured value of the ratio a(o)/crO was 0.1 db, compared with the com-

puted value (Table III-1 with M = 10) of 0.47 db.
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Iv
AN ALTERNATIVE APPROACH

As pointed out in Section III, the range of magnitudes of the matrix ele-
ments apq exceeds that available on the IBM 7090 computer when p and g
are large. Because of this, the computations that we have described were
obtained by applying the least squares method to a maximum of 10 terms (or
modes) in the field expansions, and even for ka as small as 1.0, this is not
sufficient to provide a reasonable approximation to the fields in the aperture
and on the surface of the shell,

The reason for the underflow is evident on examining the expressions for
the matrix elements given in Egs. (2.48) through (2.51). These involve pro-

ducts of Bessel or Hankel functions, and their derivatives, and since for large

n,
» (ka)n + 1
wn(ka) @n+1)@2n-1...5-3-1 ’
ey (n + 1)(ka)"
wn(ka) (2n+ 1{2n -1)... 5+ 31 ’
n
1 o (ka)

Cn(ka) _i(2n-1)...5-3.1 ’

1 ' (ka)n+1
¢ (k) 7 n[@-1. .. 531 ,

the underflow is unavoidable with the present scheme. Nevertheless, the

difficulty can be overcome by a reformulation of the problem.
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Consider the following diagonal matrix T .

T = diag{gl(ka),g"l(ka),fz(ka). §"2(ka), §’7(ka),§!7(ka),¢/8(k K

ch(ka) Eo(ka) t(ka) ¢y (ka) §'M(ka)} “n
Volka) v lka) pylia)* **** g (ka) * ¢t (ka) | ° '

If we now define
(4.2)

[:b}E]B AT
P

q
yq]s Y = T-IX , (=12, ..., 2M) (4.3)
Eq. (2.47) becomes
2M) (4.4)

b =f| , (=12 ...
IR

in which b and y_can be written as
pq q

2 2
_ 2m (m +1)
dxn(ka) 2m + 1 wm(ka)fm(ka) 5mn

b2m—1,2n-1 B
AW
2 1
J L (90) , (4.5)

- [ (ka) € (ka) - — —;
I:m n Wl Cm(ka) wn(ka)

b —v(k)z_mi(_rﬁl_)fv(k)v(k)
2n_wn a 2m +1 djm a§,m a 5mn

2m,
W
2 1
———-————J Lmn(eo) ,  (4.6)

- |y (ka) g (ka) -
{m n Wy ¢ (kay (ka)

38




THE UNIVERSITY OF MICHIGAN
9948-7-T

W2 1
H(ka) (Y, (ka)¢! (ka) - == —

s (6), (4.1
1¢_(ka)y! (ka) o

Pom-1,20" ¥

=

2 1

b =y (ka){y! (ka)t (ka) -
2m, 2n-1 n m n 1 g,;n (ka)wn(ka)

}smn(eo) , (4.8)

=|

y2n—1 ) §‘n(ka) X2n-1 ’ (4.9)
Yon = r'n(ka) Xop (4.10)

for n <7; and

2 2
_ J)2m (m + 1)
b2m-1,2n-1 - 2m + 1 wm(ka) §m(ka) 6 mn [(//m(ka) tn(ka) -

w

2 1
- L _(8) (4.11)
v Cm(ka)://n(ka)] mn - o

2 2
= MLI)_ ' ' R 1
b wm(ka)t m(ka) 6 n wm(ka)fn(ka) -

2m, 2n 2m + 1

W2 .
- = J L_(0) %, (4.12)
1 C'm(ka)wr'l(ka)

W
= ' _ L 1
b2m-1,2n = - [[/m(ka)f 1 (ka) W, ———_—gfﬂ (Kaly? (ka):l S n(6)» (4.13)

[\

2 1

b = - | ¥ (ka) § (ka) - = ﬁ——-JS (6), (4.14)
2m, 2n-1 [m n W1 f'l;(ka) l//n(ka) mn o
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Cn(ka)
Yon-1 ~ y (ka) Xopn-1 , (4.15)
Gka) 4
Yon ~ (I/I'l(ka) X2n ! (4.16)

for n > 7. For the most part, each Hankel or Bessel function now occurs in
product form with a corresponding Bessel or Hankel function, and when n and
m are large, the magnitudes of the functions are such as to compensate each
other, leading to matrix elements, bpq’ whose magnitudes span only a rea-
sonable range. The differing expressions for the elements when n < T and
when n > 7 stem from the imposed requirement that the transformation matrix
T and its inverse 'I[‘_1 be non-singular to the range 0 < ka < 10. It can be
verified (see the NBS Tables, 1962) that neither 1//n(ka) nor g[/r'l(ka) has zeros
in this range if n > 7, and can also be shown that §n(ka) and §I'1(ka) have no
real zeros. Hence, neither T nor T_l is singular for 0 < ka < 10,

It is interesting to note that the Gauss-Seidel method still converges after

the transformation., In place of Eq. (2.62), we now have

Y -G Y+T (D -1 F (4.17)

where

¢ =Tlagr (T non-singular)

and the Gauss-Seidel matrix G' associated with the matrix B has the same
eigenvalues as the matrix G. Thus, the spectral radius (maximum absolute
value of the eigenvalues) of the matrix G' is less than unity, and the approach

+
indicated in Eq. (4.17) converges.

The Gauss-Seidel method converges if and only if the spectral radius of its

associated matrix is less than unity (see Varga, 1962).
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\'
CONCLUSIONS

This report has been devoted to a preliminary study of the scattering
behavior of a spherical shell with a circular hole. Having postulated expan-
sions of the field components in terms of spherical modes, it is necessary to
satisfy the boundary conditions in the aperture and on the surface of the shell,
and three numerical schemes for doing so have been discussed. Of the three,
the method of least square error appears most promising, and this is the one
that was used for the derivation of the numerical results.

In order to verify some of the theoretical findings, an experimental
model was constructed consisting of a 3 inch diameter spherical shell with a
30° (half angle) hole cut in it. Backscattering measurements were made at
frequencies corresponding to ka = 0.9 to 3.3. For ka = 1.0, the cut shell
has almost the same return as a complete shell (or solid sphere) of the same
size, but as the frequency is increased, the effect of the aperture becomes
apparent, and for ka near 2.75, the relative cross section experiences a sharp
reduction of (about) 14 db.

The study of this particular geometry is still continuing and when an
adequate selection of numerical and experimental data has been produced, it is
our intention to extend the treatment to more complex structures such as those
obtained by filling the cavity with a dielectric material or by inserting a con-
centric inner core. The prime objective in so doing is to transfer the main

effect of the aperture and cavity to the vicinity of ka = 1,0.
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EVALUATION OF L_ (6 ) AND S_ (6 ).
mn' o mn' o

From Egs. (2.15) and (2. 16) we have

O <apr:1 api Pnll Prl1
Lmn(eo) ) 006 00 * sinf sing,/ S 9 d6 (A'D
0
00 (Prln api Pll1 aP;[1
Smn(eo) ) sinf 06 * sin 6 86) Sin 6 d9 (A.2)
0
which ,on integrating by parts, become
| 9P, % 1.1
- o __n + .
Lmn(eo) sin 6 Pm ) n(n+1) PmPnsm 6 do (A. 3)
6=0 0
0
s (6)=p!pl (A.4)
mn o n m
6=0
)
The integral in Eq. (A.3) can be written as (Tsu, 1961)
sin 6 8P1 E)P1
0 P1 m P1 n
(n-m)(ntm+1) | "n 86 m 96 9-0
0
7]
° . for m # n (A.5a)
P P sinfdo = <
m o 1 1 |
i 0
0 sin Go (<'9P>t ?n - Pl _8_ (8pk)l
(2n+1) JAox / _ a6 I N [
0
form = n (A. 5b)
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and in the second of these the derivatives with respect to order, namely
1 1
0 0
a 2
oA A=n B %6 A=n

can be evaluated in closed form by using the recurrence relations for the

Legendre functions, starting with (Tsu, 1961)

0 2
— P_ (cos 0] = In (cos )
[ax X \ =0

oD

and
2 P. (cos 9) = cos O ln(cosz Q) + 1:) -1,
oL A A= 1 2

However, in the following it is shown that a more direct and convenient recur-
rence relation for the integral itself can be found without evaluating the deriv-
atives of the Legendre functions with respect to order.

Let us define

0
2 °ru 2
In(BO) = [Pn(cos 6):] sin 6 d6 (A.6)

0
(n)'e = 0’ 1’ 2’ LR ] ﬁ S n) )

Ji
and seek a recurrence relation for the In(Go). If we also define a function

’ ’ ‘

ap oP 9P

0 < x) n_ 4|38 x)

Q0 = sin 04\ 6 " 'n [ax <39J AT
A=n A=n
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then

L .1 2
In(eo) T on+1 Qn(eo) (A.8)

and from the well known recurrence relation (Stratton, 1941)

BPI
n

. _ i J
sin 6 30 —ncosGPn-(n + 1) Pn—l (A.9)

by differentiating with respect to the order n, we obtain

Y {
sin 6| = \ 55 =(cos 6P - P . )+n cos 3)&
A=n n
!
-(n+D<——> . (A.10)
oA
n-1
Substitution of Eqs. (A.9) and (A.10) into (A.7) now gives
{ {
oP oP
0, 2 /% 1 X
Q6) = (n+4) [Pn< aa> Po-1 ( ax) ]
n-1 n
2
yi {
- cos 6 [P :I +P Pl . (A.11)
n n n-1

Similarly, starting with the recurrence relation

8P£
n

. ) 2 2
sin 6 20 —(n-£+1)Pn_|_1-(n+1)cos9Pn

2

we have
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oP oP
] _ 2 A) 2 )y _
Qn-l(e)_(n_l)[Pn<8)\ 'Pn-1<ax>]
n-1 n
2 2 . 2
- P P +cos 6 |P (A. 12)
n-1n n-

and hence, from Egs. (A.11) and (A.12) with (A.8) the following recurrence

relation for Ifl(eo) results:

4 1 2 _
In(eo) " (2n + )(n -2 {(2n AL In - 1(90)

~ cos 6 &n e P+ - 1)(1:1)2} P P } (A.13)
n-1 n n-1n

for n > 1

When £ = 1, Eq. (A.13) becomes

1. 1 1
In(eo) T (2n + 1)(n-1) { (2n - in +1) In—l (Go)
- cos 6[(n F 1@ ) +(n-1) (pl)zj +onpl P! } (A. 14a)
n-1 n n-1"n
forn > 1,

or, using Eq. (A.4),

1
2n+ 1)n - 1)

1 1
1(6) = {(2n )+ DI ,(6)

- cos 6 {(n+ 1) Sn—l,n-—l + (n -l)Sn’n:| + ZnSn,n-l } (A. 14b)

forn > 1.
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Since

1, 3
I1 (90) = 1/3(2 - 3 cos 90 + cos 00) (A. 15)

1
by direct integration of Eq. (A.6), In(Go) can be evaluated for all n from the

recurrence relation (A, 14),

In summary, therefore, Lmn(Go) can be written as follows:

1) When m # n

sin 90 1 BPIIn
Lmn(eo) ) (n-m)n +m + 1) n(n + 1) Pn 00
1 BP1
- m(m + 1) P 1 (A. 16)
m 06
6=6
0
2) When m = n
1 apxll 1
L (8) =|singpPp +n(n + 1) I (6) (A.17)
mn o n 06 0-=0 n o
0

where Ii(@o) is given by Eqgs. (A.14) and (A. 15).
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APPENDIX B
PROOF OF POSITIVE DEFINITENESS OF THE MATRIX A

Tn order to show that the right-hand side of Eq. (2.65) is always positive
for 60 # 0and Y = {yl, Vs «oes y2M} # 0, it is sufficient to show that

it becomes zero only if Yy 7Yy C = 0, since it is never negative.

" YoM
Therefore, we shall here show that for 90 #0,

y1:y2=...:y2M:O

is the only solution of the equations:

M P (cos 6)
Z [yz Yy (ka sin 0 Yon¥n (ka) i P (cos 6ﬂ= 0, (B. 1)
6 <6 <rm,
0
M 9 P](cos 6)
;E,Zn-lwn(ka) 06 P (cos 6) Yon ll/'(ka) sin 6 :l =0 (B.2)
f <6 <7,
0
1
M 18 1 Pn(cos 6)
r; y2n 1¢ (ka) 90 P (COS 9)+y2 C'(ka) sin 6 =0, (B.3)
0< 6 <0,
0o
1
M Pn(cos 0) L8
;[YZ“ 1¢ (ka) sin6 "Yon ¢! (ka) 50 ¥ (°°S 9)] (B.4)

0<6 <6 ,
0

which are the necessary and sufficient condtions for Eq. (2.65) to be zero.
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By adding Eqgs. (B.1) to (B.2), and (B.3) to (B.4), we have

M P (cos 6) I :’
! 0 B.5
2Py tle) + 3yt | B + 2 pleos )| < 0, (8.5)
0 <6 <m,
0
1
M P (cos 6)
Z[Y l ty : ] - +iP1(cost9) =0, (B.6)
2n-1¢ (ka) 2n ¢'(ka)| | sin @ 960 "n
n=1 n n
0<6<6 ,
o
respectively.
Let
1
Pn(cos 6) 1
¢n(9) ) sin§ * 26 Pn(COS o)
All ¢ (6) n=1,2, ... are continuous everywhere and their derivatives of all

orders, 8 5 ¢ (), (8 /892)¢ (6), ..., exist and are also continuous. Hence
each of the left-hand sides of Eqs. (B.5) and (B.6), which is a finite sum of
¢n(9)'s, has the same properties as the ¢n(9)’s. Consequently, Egs. (B.5) and
(B.6) must be satisfied not only in each of the given intervals, but also
throughout the entire domain of 6, Furthermore, {¢1(9), ¢2(6), s, ¢M(6)} is
a set of orthogonal, linear independent functions.

Therefore, we must have that each of the coefficients in Egs. (B.5) and

(B.6) vanishes. Thus, we have

Yon-1 Y ka) + yo¥! (ka) = 0 (B.7)
Yon-1 ¢ (ka) ¥ Yon ¢! (ka) :
forn=1,2, ..., M.
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Similarly, by subtracting (B.2) from (B.1), and (B.3) from (B.4), we obtain

M Plll(cos 0) 5 1
I;l:y%—lwn(ka) - y2n h(kaﬂ _an_é_ - £Pn(cos 0| =0, (B.9)
b <6 <7 ,
)
1
M Pn(cos 0) 5 1
- ! _ = =
Iz--;‘l:yZn—lwn(ka) y2n¢n(kai’ sin 0 20 Pn(cos 0) 0, (B. 10)
0<6 <O ,
0
from which we must have
- 1 =
Yoy Vpka) - vy ¥ (ka) =0 (B.11)
1 L 0, (B.12)

Yon-1¢ (ka) ~ Y2n ¢'(ka)
n n
forn=1, 2, ..., M.,

It is clear from Egs. (B.8) and (B.12) that y =Yy ® = 0 is the

.=y
2M
only solution for any finite value of ka. However, it should be noted that when
90 = 0, Egs. (B.3) and (B.4) are deleted, and hence we have only Egs. (B.7)
and (B.11). Obviously the solution of these two equations is not unique when

(//n(ka) = 0 or (//;l(ka) = 0, and there now exists a non-zero solution.
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