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ABSTRACT

The differential equations for number densities, mean velocities,
temperatures, stresses, and heat fluxes of the electrons and ions, obtained
by taking velocity moments of the Boltzmann equations, are closed out by
utilizing Grad 13-moment approximations for the distribution functions.
These equations, coupled with Maxwell's equations, constitute a closed set.
The approximate distribution function, for a given type particle, is such
that the first term is Maxwellian in a coordinate system moving with the
mean velocity of those particles; the higher order terms are nonsymmetric
in velocity space and have for coefficients the non-hydrostatic (traceless)
stress tensor and the heat flux vector defined relative to the same mean velocity.
The range of validity of the resulting magnetohydrodynamicv equations is antici-
pated to extend to systems in which the difference in flow velocity of plasma
constituents is not negligible relative to the thermal velocity of the electrons.
By limiting attention to systems with slowly varying flows, it is found possible
to exhibit transport properties to third order in the ratio of the difference in
constituent flow velocity to the electron thermal velocity. Transport properties

may also be exhibited for systems in which the above ratio is large.
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I. INTRODUCTION

Accepting the Boltzmann equation as providing an adequate description
for the behavior of gas constituents, continuum equations for macroscopic
properties of gases have been developed by many authors, The Chapman-
Enskog method has been developed in detail in the classical treatise by Chapman
and Cowling, "The Mathematical Theory of Non-Uniform Gases"(l). A different
method, which utilizes a Hermite polynomial expansion for the distribution
function, has been developed for a one constituent gas by Grad(z’ 3), and gen-

(4)

eralized to include gas mixtures by Kolodner These methods have been
found successful in providing descriptions for systems of neutral particle gases
close to equilibrium,

With the Increased Interest, in recent years, in plasma systems, attempts
have been made to generalize these developments to include systems in which the

gas constituents are ions and electrons 6,6,7,8) .

Although these developments
provide closed sets of equations for macroscopic properties for systems close
to equiltbrium, their value is questionable for systems away from equilibrium.
Of particular interest are systems in which the difference In flow velocity of the
constituents is appreciable relative to the random (thermal) velocity of electrons.
(See, for example, comments by Tuck, Allis, Burgers, and others (9)).

In the Marshall development, which utilizes the Chapman-Enskog method,
attention is restricted to systems in which collision effects and external magnetic

field effects dominate the behavior of the plasma, giving rise to a first order

velocity space solution, for each constituent which is Maxwellian relative to the



plasma flow velocity. To this order, the difference in flow velocity of the
constituents is zero. With the second order velocity space solution, a first
approximation for this difference can be obtained, however, it is not anticipated
to be adequate for systems in which this difference is appreciable(lo?

With the realization that a Maxwellian distribution, relative to the plasma
flow velocity, is not an adequate first approximation for systems in which the
difference in constituent flow velocity is appreciable, an attempt was made to
modify the Chapman-Enskog approach in such a way that the resulting distri-
bution functions would be appropriate for this wider class of systems., In this
attempt, only like-particle collisions and magnetic field effects were taken to
be of first order, giving rise to a first order solution, for each constituent,
Maxwelllan relative to the constituent flow velocity, Since like-particle collisions
are more important than unlike-particle collisions for transfer of ion momentum
and energy, and electron energy, the unlike-particle collisions were taken to be
of second order., The second order velocity space solutions were obtained, the
moment equations closed out, and transport properties exhibited, However, one
shortcoming was in evidence, With regard to collision transfer of momentum,
the important coupling with heat flux did not enter until third order; and unfor-
tunately the third order solution is very difficult to obtain as a result of
mathematical complexities. The above difficulty is a result of the fact that,
for momentum transfer of electrons, unlike-particle colllisions are of the same
order of importance as like-particle collisions. As a result of this difficulty,
and for reasons of lesser importance, attention was diverted to an adaptation of

the Grad 13-moment method,



The Grad 13-moment method has been utilized for plasma systems

by Kolodner(G) and by Burge rs<7).

In these developments, the distribution
functions assumed are based on Hermite polynomial velocity space expansions.
As in the Marshall distributions, the first term, for each constituent, Is
Maxwellian relative to the plasma flow velocity. The non-symmetric higher
order terms have for coefficients the constituent flow velocity, stresses, and
heat flux, Closed sets of equations for macroscopic properties have been
exhibited, as well as transport coefficients to first order in the ratio of the
difference in constituent flow velocity to the random electron velocity.

In the method developed herein, the Grad method is modified such
that the results are expected to have validity over the extended range of systems
In which the above ratio is not small. The Hermite polynomial velocity space
expansion is utilized; however, the independent variable is taken to be the
particle velocity relative to the flow velocity of the constituent, The first
term of the expansion is then Maxwelllan relative to the constituent flow
velocity, and the non-symmetric higher order terms have for coefficients
the stresses and heat flux defined relative to the constituent flow velocity,

With regard to the Boltzmann equation, which is assumed to provide
an adequate description for plasma systems, the point of view is taken that the
binary collision model is appropriate for collisions with impact parameter less
than the Debye shielding distance, and that distant encounters (those with impact
parameter greater than the Debye shielding distance) are accounted for by the

(4, 5)

use of the inhomogeneous Maxwell's equations .



In the next section the basis of the general theory is outlined and
the method of approach presented. The method of computing the collision
transfer terms is given in section III, followed in section IV by a presentation
of the resulting set of magnetohydrodynamic equations, which coupled with
Maxwell's field equations, constitutes a closed set, In section V, attention
is restricted to systems with slowly varying flows, The equations are
simplified and transport parameters are exhibited to third order in the ratio
of the difference in component flow velocity to the random electron velocity.
Comparison is made with the results obtained from the Kolodner method, as

exhibited by Herdan and Liley(g).

Attention is also given to systems in which
the ratio of the difference in component flow velocity to the random electron
velocity is very large, Here again, the equations are reduced and transport
coefficients exhibited, Finally In section VI, a general discussion is given

on the method of development and the results obtained,

Gaussian units are used throughout, and all symbols are defined where

they first appear.



II. GENERAL THEORY AND METHOD OF APPROACH

The Boltzmann equation for the distribution function of particles of

type @ may be written,

o

jfa”i f_ + %;(Ei+ g v % Z @) (1-1)
i B

where ea and m® are respectively the charge and mass of the a-type particle,

I(fa fB ) expresses the change in £ per unit time due to binary collisions of

the a-type particles with B-type particles, These collision terms are considered

in detail in section III, The electric and magn etic fields are governed by Maxwell's

field equations,
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with appropriate boundary conditions to account for externally applied fields,

The current density and charge density, Jk and q, are defined by

(a) Jk=niZewll{—neew§
(I1-3)
(b) q=ane-nee.



o o . I a .
The number densities n and the constituent flow velocities Wy are velocity

moments of the distribution function fa, that is,

(@ n= / £ ady

o (11-4)
0 W= G /f v v,

n

Transport equations for these and higher order moments of the
distribution functions (temperatures, stresses, heat fluxes, etc.) are obtained
by taking velocity moments of Boltzmann's equations (II-1), For this purpose
it is convenient to transform independent variables in equation (II-1) from the
actual particle velocity v; to the random velocity u; = v; - w‘ilY . With these

transformations, equations (II-1) become,
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On multiplication of equation (II-5) by an arbitrary function \}’(uk), and

integrating over the infinite space of u, , we obtain,

k)
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where,

<q/> =;—a /fa y au . (11-8)
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Taking Wequal tol, m uk, 5 m u, m uk uj , amd2 m u uk, transport

equations are obtained for the number densities, flow velocities, temperatures,

non-hydrostatic (traceless) stress tensors, and heat fluxes ot the plasma

constituents. o o
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a, . a _a % o .
p is the mass density, Si , R, Lrs and Mr are the collision transfer of

momentum, energy, traceless stress, and heat flux respectively; that is,

(a) Si = Z/(ma ur) I(ta fB) d3u
B
b) R%= Z f (é m%?) 1@ (I-10)
B
(c) i‘;‘s: Z / (m u?w ) 16 Py %
B
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A circle above a second rank tensor is used to designate a traceless tensor,

and a double bar is used to designate a symmetrized tensor. That is,

(11-11)



The temperature, stress, and heat flow of a given constituent are defined

relative to the flow velocity of that constituent:

o
a 2 m 2
@ T =5~ (v )
(24 04 a
(b) P =0 (mou us> (II-12)
a
a _ o /IL 2
@ Q= \gwu)

n kT =7 P s (I1-13)

o o

p =n kKT = P (1II-14)

defines the hydrostatic pressure of the o constituent relative to the constituent
flow velocity.

The set of equations (II-9) coupled with Maxwell's equations may be closed
out if a representation of the distribution functions % can be found in terms of the

O

) a « o a frrs s
macroscopic properties, n , Wk s T, Prs’ and Qr ; permitting the determination

/ \ )
Ole, wu > , <u2u, u ), ¥, R 17, and M¥ in terms of these properties.
ir's ir r rs r
A representation of 8 meeting these requirements is the Grad 13-moment
o (2,3) : : e S :
approximation , obtained by expanding the distribution functions in three
dimensional Hermite polynomials and retaining terms up to and including a
contraction of the third rank polynomial.

(3)

The three dimensional Hermite polynomials are defined ~,
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An arbitrary scalar function g(¢ ) mav be represented by the expansion,

®
g(@) =u'/? § M ™
Pty gy, (11-17)
n=0
L . —_ . 1/2_,(n)
and the coefficients determined by multiplying both sides of (II-17) by w p/i L
112...1,

and integrating over the infinite space of ck. That is

X 1 / 12 #(n) e, K 1)
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. - a, a
Letting ¢, = ym [T U, » the distribution functions may be represented

by the expansions
100)
w—]/Z & wl /2 afn). . ('n). (11-19)
=0 1112...1n 1112...in
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Terminating the expansions with a contraction of }{S}i (i.e. 2 i ,L,,/(i?:{ = czck—Sck),

and evaluating coefficients, we obtain,

§a12 Baz 3
_Hour
a 3/2 0 B a4, 2 5
= + — _— - -
0" (B 2m)%e {1 e B wu, + - Q (u- 7@ w)y , (1-20)
(o4
where 87 = -2
kT ¥

It may be noted that, for each constituent, the coefficient of the polynomial
of rank n involves the nth velocity moment of the distribution function; hence, the
use of these solutions implies a restriction to systems in which moments of the
distribution functions higher than those which define the heat fluxes are small
relative to the traceless pressure tensors and heat fluxes. To my knowledge, no
velocity moments beyond the heat flux have been found to be ot physical importance
in hydrodynamics or in magnetohydrodynamics, hence it is anticipated that the
solutions have validity over a wide range of systems. More detailed arguments
in behalf of these solutions are given by Grad(z).

As pointed out previously, the approximate velocity space solutions (II-20)

2 ) o
make it possible to determine <u.uou > s <u u.u > s Sa s Ra, La and Ma in
irs ir r rs r

terms of na s wloé s Ta, lgis , and Qi . Then the transport equations (II-20)
coupled with Maxwell's equations (II-2) constitute a closed set.

The next section is devoted to the determination of the collision transfer
of momentum, energy, stress, and heat flux. In section IV, the expressions for

\
<uiu§ us) and <u2uiur§ are given, and the resulting closed set ot equations

exhibited explicitly.



III. COLLISION TRANSFER
The collision transfer terms may be written in the conventional form,

(see, for example, chapter 3 of reference 1),

fw“ 6% )a u%= —ftafy((//a—z//a’)vrbdb af S . (II-1)

The prime is used to designate post collision variables. The range of integration
on the azimuthal angle ¢ is from O to 2 7, and on the impact parameter b, from
0 to the Debye shielding distance h. Also, V. T l'\\fa— _?731 , the relative velocity
between interacting particles. The Greek symbols @ and ¥ can correspond to

either electrons or ions. For example, if o corresponds to electrons, Y to

e 2
u® uJ? , expression (III-1) is the transfer of electron

o e
ions, andy toy = 9
heat flow resulting from electron-ion collisions. Similarly, if o corresponds to ions,
. a i i i i . . .
Y toions, andy toy =m u uS , expression (III-1) is the transfer of ion
stress resulting from ion-ion collisions

For the Coulomb interactions involved in a fully ionized plasma, the

collision cross section is given by the well-known Rutherford formula,

o, )= = e’’ )2 1 (III-2)
% "4\ m%¥ 4 4 ;( ’ B
vV Sin

where X is the angle through which v, is deflected, and

a ¥
Y mm
m :T'—y' . (III"S)

m +tm

12



13

Hence,
- R \2 1 d(sin 22& ) d¢
b db df= odL = ¢ sinX d X df =( 2 (y/ I 3 X . (OI-4)
m Vr sin '2—'
/ 2
The limits on sin - are from 1 to 1/ [ oy -
e limits on sin 5" are from 1 to / eare7__ which correspond

to the limits on the impact parameter b from 0 to the Debye distance h.
1
To facilitate the integration over scattering angles, (l[/a—llxa ) are exp-
ressed in terms of a collision invariant vector ci and the relative velocity

between interacting particles which rotates through the angle X on collision.

To simplify the notation we let

(04
(a) M = —2
m +mi
J
(b) L.
R
m +m
(03
(c) g%= ma (111-5)
k T
(@ B = +p
a )
(e) B| ____.@__5__.
g7+’
() BO - _&eﬁ_i
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Utilizing the relations for conservation of energy and momentum, it is

easily shown that,

o « Y
(a) u, = 0 +M Vrk
(II1-6)
o' a Y,
=c +
(b) W=, M Yo

a
The vector C is equal to the velocity of the center of mass minus the mean

flow velocity for particles of type o . Then, for l//a = maul‘: ; maulo{(uoé ;

a '
%l—uazulc{l ; the expressions for ((//a—;//a ) may be written

a a o\  ay, '
(a) m (uk—u.k )=m (vrk—v L )
qaa oo, ol o .. ad J 1o
(b) m (uku -, u y )=2m ck(vr[ -Vrl) +m M (vrk vy ["Vrkvr 1) (I11-7)
a al 9 ald
m Za o o _m o 1 m jz 9 1
(c) 5 (u weuw )= i c (vrk-vrk) + . M v. (vrk—v rk)

ad a «a ' aY. Y o o

+m ¢ cy(ve-v.)*m M’ c,(v. v. -v. v. )

k AV noT T,
Perhaps it should be pointed out that the collision exhange term in which

wa= ma ui uC} contains the information required for both the energy balance

equation (II-9, c) and the traceless stress equation (II-9, d) since,



(111-8)

It is now possible to carry out the integrations over angles of scatter.
On substitution of expressions (III-7) and (III-4) into (III-1), we see that only
two types of integrals are involved. These have been carried out in Appendix

A, where itis found that,

X

d(sin ) (1)

(a) rk rk _s1—r;3—:Z°_d¢ 4 vrkﬂ, v N
d(sin zl) (2)

(b) | ( =yl v} ) ———— df = 12 v, ,

f"r rjvr Y sin3 = p=127 v, Vf
where,
a¥ \?
@NO=1f, +(m h) 4
o) 2 eQ/Y T .

© ] (I1I-10)

~

Inasmuch as the value that should be used for the upper limit of the impact
parameter is not fixed precisely, and the results are not very sensitive to the
relative velocity, we replace vi by an approximate average obtained by assuming
the distribution functions of the interacting particles to be given by the

Maxwellian parts only of distributions (II-20). This approximate average
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is found to be,

2 1 2 01/2 o ¥
= — + e - |
VT g (3+€&%), where £: |wk W |-
a =
m h 2 __
Also, o7 vr >71, so we take,
4 J 3
(1) _f aymym™ " h
= + —_—
(a)ﬂaa( nz(B £%) B Tl
/
ald
) () Pbnl(aeeny m b | L
a ! B e e

The collision integrals (III-1) may now be written in the form,

r

a ) 2 (1)
_ 4mlee )ﬂax R i Se &8
m< ¥ v3 uar u), ’
r

(II-11)

(II1-12)

(I1-13)

a
where, for momentum transfer, stress transfer, and heat flux transfer, \y

is equal respectively to,

(a) v

Y
(b) 2 ¢, v. +3M

2 ﬂ/(2)
1 1. 3% o o « YY Yo
(c) 5 C vrk+‘2' M v, vrk+ck ¢y va +3M —0) Y

Y

(m1-14)
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To facilitate the integrations over velocity spaces, we define new dimensionless

variables, & and Gk’ by the relations
(a) o “=p{a"G+g-E)
A B wEba Grg-fy
(II-15)
Moy vy a
b B uzh ia kak-sk}’
where 1/
a2
(a) aa’;‘(gg>
1,
a_ _@‘7 2
b b :(
(b) 8
v Y, (II-16)
(c) a?f = -( ;Lq )
Y
i[5 >2
d b= -
(d) z ( 8
and
a _ 01/2 o Y
£, = B (wk -wk) (I1-17)
With this change of variables, it may be shown that:
o1
(a) vy = _6772— Bk
A . (I11-18)
a_ 1 ﬁ_) o B~ .«
(b) c, —;"17'2— < 5 Gk'“( g 3 €k ,

so that the expressions (III-14) for @a may be written, in terms of the new

variables,
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(a) ;ﬂz—- g
Lo (@) —
(b) _—B' idw kg} W, g8 dw Gkg)} (II-19)

1\ Q) (2) (4) 2 (3)
(c) g ) ihkr gr+hkrs gr s k hkrst ngsGt
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where
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v o e o a
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(c) h.f{zr)s=e2 g %+ (3)0‘\ £&

a) ks r a? rs k
@ 02 ® (ly g S
hkrst al 2 kr ~st ks " rt
(e) h.f:i)s (6) 6 * cf d4 e&
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(g) ay = -2 g
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(2) IV iy o
(h)  d7 =3M —= +2X (111-20)
a) A/\‘(l)
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(I-20)
(cont'd)
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0

k v I11-20)
0 =Lk gty ‘

a y (cont'd)
(m +m’ )
Making the change of variables (III-15) in the approximate distribution
functions (II-20), it may be shown after considerable manipulation that
- S 97
e, @-g)
a ¥ 2 2 e
ST j

2" @y - — i 1+ /. PAA B

(27) v=a,y 0 N U

+ Z Q:(C'i/+ D].j)]dgg a°G , (II1-21)

v =a,? !
where
)
v 2 ° ° e a @
= G + + -
(a) Ag=a G G +g g+E £j 2 g€, (I1-22)
0 0

® B .=24a"(Gg -G EY)
ij iy i

v a a a o o2
C=2a%2 (GPg+2G Gg -G£ 229G G £ -50 45 £ - +E -€ €
(c) ;= 8, (G126, i €26, § 708 ?nggi g€, g i

(04 o o [0}
-2¢& +2 -5g+45 ¢
88728 € e E )

vV 3,2 a a a
D = G“‘G.-HG )+ G 2G - G -2G g & -2G ¢
(@ D, =a (G°G-5C )a (£'G,12Gig g2 g € G, -2G.8,5 2C.E g,

12 c+2G6e%e?50)
i jjoi i



21

oy y?
P, b
@ pre i (I11-22)
ij 2 (cont'd)
) BV3/2 Qii/bv
"o
(f) Q = J
2p

In taking the product of the approximate distribution functions, terms involving
the products of pressure tensors and heat fluxes have been assumed negligible.
(The integrals involving the larger of these product terms were carried out and
found to be less than five percent of the terms retained.)

As may be seen by substituting expressions (III-18, a; III-19; II-21,
and III-22) into (III-13), hundreds of terms are involved in the collision transfer

expressions. However, all the velocity space integrals are of the form,

_ [gj+<’g-z‘>2]
2 2 G, G, ...G, g: ...8:
1 o > 1ngjl 32 |

41r(21r)3/2 g3

m d3Gd3g,

(I11-23)

which may be carried out exaétly. The method used in carrying out these
integrations is outlined and the results tabulated in Appendix B.
Finally, after considerable manipulation, the collision transfer of

momentum, energy, traceless stress, and heat flux may be expressed as,
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(1) o () ’ (3) (I1-24)
=7 ) 35
@ M =7 e oy €5 7 w2, e (cont'd)

+7)Z(6a'Z P 5 { € L& +777(7)’Qk 772013/

_QY

+772((19;V2=; Q m(w)zf sz+772 11);;/(91;'5?5;:

Whereas in the notation used for the individual collision transfer integrals, the
Greek symbols o and Y could independently correspond to either electrons or
ions; in the above expressions (III-24) the symbols a and ¢ are to correspond
to particles of different type, that is, if @ corresponds to electrons, then ¥

corresponds to ions and vice versa.  The coefficients in (IlI-24) are given by;

N A )
(@ W e 7 (II1-25)
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. visy 4 (I1-27)
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(I11-28)
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(111-29)
| £ (cont'd)

The above collision transfer expressions are obviously extremely
complicated. Considerable simplification has, however, been found possible
4
for systems in which £< 1 (terms of order £ negligible), and for systems

2
in which £3»1. These reduced expressions are exhibited in section V .



IV. GENERALIZED MAGNETOHYDRODYNAMIC EQUATIONS

Utilizing the approximate distribution (II-20), it may be shown that,

o
(a) ’/uuA :A—Q—E(g é +9 é +9O 5 )
ar (Y rs> 5 @ ks ki %rs ks “ri
) . (Iv-1)
;2 \ 5 Ou
(b) {uuu ; = — é P
/ rs a
\ r s/ Ba BCY 0 rs
On substitution of these expressions into the transport equations (II-9), we
obtain N o
Dan o 8w1
(a) Dt +n or =0
i
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Alternate forms of the equations for conservation of particles (IV-2, a),
and conservation of momentum (IV-2,b), are of interest. These alternate
forms express conservation of the properties of the mixture, as opposed to
conservation ot properties of the constituents, that is, equations for total mass
density p, total charge density q, total momentum density p WIZ , and a generalized

Ohm's law for the conduction current density jk' The latter macroscopic properties

of the plasma are defined by:
(a) p-= p1 + pe = n'm +n°m®

(b) q=ql+qe=nlz e-1n e
(Iv-3)

o_i i e e
(c) pw =P wk+p Wy

ool o1 e e o _ . _ o

On multiplying (IV-2, a) by m” and adding the ion equation to that of electrons, the

total mass conservation equation is obtained, namely,

op )
—— + —_— =
ot Bri p W 0

(Iv-4)

Multiplication by ea and addition of the constituent equations leads to the charge

conservation equation:

é—t_ + -51‘_1 =0 . (IV-5)

Similarly, the equation for conservation of total momentum and the generalized

Ohm's law equation are obtained using the multiplicative factors pa and ma/ ea,
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These equations may be written,

DOWOI 0 e i me 1 Io) 1
=- —(P,+P. +=53 jj)taE+=E += £
(@) p - o Py plij weeZ dyf) T AT E g W H W E
m® Doj, 3w;) awi° 5 . e
-9l —_— 4 - _m ..
) -5 (o URP) i r ) e or (Pij+ .2 3133) (IV-6

1 o 1 1
= & oL : L
FEAHT S Vi By ) e Saidie T e

where

o __“ +W12 0 ) (Iv-7)

In obtaining the equations for total momentum and current, use has been made of

the relations,

(a) mi >> 7 m®

(b) nimi /> n°m®

() nemi >> Zznime ,
which are, of course, valid for most systems of interest.

Equations (IV-4), (IV-5), (IV-6),(IV-2,c), (IV-2,d), and (IV-2, e); with
expressions (I1I-24) for the collision transfer terms, SOi[ , Ra, %O;S , and Mi ;
constitute a generalized set of magnetohydrodynamic equations. The electric

a nd magnetic fields which appear are governed by Maxwell's equations (II-2).
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Since the magnetohydrodynamic equations exhibited by Spitzer, "Physics
of Fully Ionized Gases"(ll) have received wide attention; it is worthy of note that,
making allowance for the difference in notation, the Spitzer equations for particle
conservation (2-14) and (2-15), total momentum conservation (2-11) and the current
equation (2-12) with definition (2-13) , are the same as the set of equations con-
sisting of ; the ion conservation equation (IV-2, a) above with o corresponding
to ions; the equation for electron number density obtained by eliminating the ion
flow velocity from equations (IV-3, ¢) and (IV-3, d) and substituting the resul ting
expression for electron flow velocity into (IV-2, a) with @ corresponding to
dectrons; and the reduced forms of (IV-6, a, b) obtained by using the approximations
specified by Spitzer on page 20 ot ""Physics of Fully Ionized Gases."

The need herein for the equations for traceless stress and heat flux is a
result of the dependence of the momentum transfer on these properties [expression
(111-24, a)] . Under certain limiting conditions, the momentum transfer may be
expressed independent of heat flux and traceless stress as indicated by Spitzer

in section 5.4 of "Physics ot Fully Ionized Gases''.



V. REDUCED MAGNETOHYDRODYNAMIC EQUATIONS AND TRANSPORT
PROPERTIES.

The magnetohydrodynamic equations in their general form are seen to
be extremely complicated. Fortunately, however, considerable simplification
is possible. For systems with slowly varying flows in which £< 1, the collision
transfer terms (III-24) are reduced to a manageable form by expanding the
€ -dependent functions /O/ and /7 in powers of £ and retaining terms to order 83.

(Recall from section I that

o 01/2a Y 0 BeBi o m"
£ =B (w _-w?); = - = o
k B Yk wk B Be + Bl g kTa
2
-& /2 £ 275
5=|8§1 ; }/% ; and r7=i3 e-X/x2dx.)
€
)

On the other hand, for slowly varying systems in which Ez >71, the expansion

is made in inverse powers of £ and only the highest order terms are retained.
Further, the slowly varying flow restriction is such that the differential equations
for pressure tensors and heat fluxes reduce to algebraic transport relations for
these properties.

A. Plasma Systems in which&£< 1,

To obtain reduced forms of the collisiontransfer terms, use is made of

the assumptions,

(a) Be << Bi i (V-1)
0 e (€ i
Bk - (T"-T)

B K" ey 0TI e <<

33
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which are anticipated to be valid for most systems. Further , for order of

magnitude purposes, it 17 assumed that,

21 Q
(a) Q'e = ————k—— ~ e
k e ~ k
2p
Ige
(b) P;_— ——ije—%fiéj
2p
(V-2)
. 03/2 i ‘
1 _ - <L
(c) Qp 5 Q,
0
e P.
LB i o
(d) Pij T 20t K Pij

The validity of these latter assumptions may be verified in retrospect. Repre-

senting the collision transfer terms in powers of & , ignoring terms of higher
3

order than £ , and utilizing the above assumptions; it may be shown that the

collision transfer terms may be put in the form

(a)Se=— iz_i (l_é_z)ée_g Pe'ée+(_1+£_2_)ch+Q'e£e£e
k%{Bele 3710 %k "5 Pk & 7 ) QtE &y
(]
(b) R =- cu-£4q%¢9 S
Be3/2)te K-S+ ¢)-5+Q,¢
(V-3)
e 1 Be 52 Be 'e e}
i__ e E e .e ro < all
(C)R—W-K(l-bﬂ“QiEi)-Bi 3 +BiQi 51)
B A
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cont,

0.

ei 'e e e
-2t T, €€

k 5 5 :(1.) i itk

€l

; .3/2 (2)
21 e
! 'Qii i

- )
32 n®* m e3/2 ‘O’g) Q

In the above relations and those to follow, it has been found convenient to intro-

duce the electron mean free path Xe, and collision time Te , defined by

e2
e (kT)
(a) N = . 5 2 o)
4/2r n'Z e Qe‘
! (V-4)
1/2
b 7= 28°

3
With the exception of ion heat flux transfer, terms have been retained to order ¢ .
The ion heat flux is sufficiently small relative to electron heat flux that inclusion

of terms of order 83 is unnecessary. To within the limits imposed by (IV-8, a, b)
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J1/2

B

e
and (V-1,a), £ KT e jk ; hence, the collision transfer terms could
ne

equally as well be expressed in terms of the conduction current instead of EE.

With regard to the momentum transfer term Sz , it is of interest to

1
note that, in addition to the usual heat flux coupling (—qg ), (see, for example,

reference 6), there is higher order heat flux coupling ( 5—; Qi' + Q;e 5; 5; ), and
pressure tensor coupling (- % PE;, 13 ;3 ). Attention will be given to the influence
of this coupling on conductivity later in this section.

To obtain transport relations for the traceless stress and heat flux of

electrons, attention is restricted to systems in which space and time variations

are small. Explicitly, it is required that

e e e e o
(a)'%“‘<< £2<1; T:’ <K 1; ‘T: << 1;
t A A
(V-5)
e
A~
r

where Te and )\e are the electron collision time and mean free path respectively;
andt and r are respectively the characteristic time and characteristic distance
for macroscopic changes in the system.
i 12 15 , 3
For electron densities in the range 10 to 10"~ particles/cm” and a tem-
5

perature of 10 OK (i.e. 8.6 ev), the mean free path ranges from 8 x 103 to 8 cm.,
and the electron collision time ranges from 6 x 10-5 to 6 x 10_8 seconds. The
limitation on characteristic distance is seen to be too severe for many laboratory

plasmas.
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With these restrictions, the differential equations for electron traceless
stress and heat flux (IV-2, d, e) reduce to coupled algebraic equations. These
equations may be decoupled, however, since the traceless stress to second order
requires the heat flux to first order only in £, and the latter is independent of the
stress. Hence, the procedure is to solve for the heat flux to first order in £.
The first order heat flux is then substituted into the traceless stress equation
and the traceless stress determined to second order in £ . Finally, the second
order stress is substituted into the heat flux equation, and the heat flux determined
to third order in £. The relations which result are exhibited below.

The heat flux, to first order in £, is given by

e
e_ e e _e )
Qr_ 3/2 ga/riei (V-6)
&
where
1
e 15
= = . (V-7)
P
(1+ - )
137 70 p_(g

With the choice of a local coordinate system in which the magnetic field is in the

z-direction,
7((1) 1(2) 0
(a) aii= - 7(\2) ’Iél) 0 (v-8)
0 0 1
o Y - .
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e €
.
@ @ Y o)
¢ X - 9 2 .
€~ 4L
1+w J (1) (V‘8)
cont.
7‘?1) is the collision time for electron heat flux transfer, and !welis the
cyclotron frequency for electrons:
e e e
a) T = 2 T
@ Ty 5
(V-9)
eH
e
b)) w =-
m®e
Representation of the above expression for heat flux in the local coordinate
system specified does not imply that the direction of the magnetic field is
known.
The traceless stress, to second order in £, is given by
Oe P e A  e_e
Prs "2 3.(2) £rmn Pms Hn p f Trs (v-10)

A
where Hn is a unit vector in the direction of the magnetic field, and 7?2) is the

collision time for electron stress transfer given by,

e _ 9 e _
Ty 5 P 7° (V-11)

The dimensionless quantities ¢e and Trs are given by,

(a) ¢°-= L (V-12)
n(z.) e ﬂ(z)

( el + n : ee )

Qq) ngzn1 ,ﬁg)

el
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0
(1) (2) e e e
b) T o= @ o va" a ) £7E (V-12)
cont.
where
(2)
@ VS e
: 3 Q(l)
ei (V-13)
1(2)
6 -‘ei e
b a¥= 1ty —gy )5
AL,
ei

With the choice of a local coordinate system in which the magnetic field is in
the z-direction and Ek in the x-z plane, the traceless stress components may

be written,

(o)
@ 8, =" b ey v e ey

X X

%  p°¢° (3).e e (4 .e . e
b) P ‘LLz—T{b € b ezez}

e €
1+4w T(Z)
e e (V-14)
(0 B = —PFy 2 [ ¢ g2 4p g2 e |
1+4we Te(z)
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(v-14)

e e N '
(f) %e _%e = _R‘L—z‘ {b(s) 525‘;} cont.

where,

(a) b "=

(b) b=

2 2
e (2) (2) e e
)(L+w T(Z) )-a W 3’(2)

2 2

)1+ 40° 255 ) (V-15)

2 2

(1), (2)_() e” _e (2) (2) 9P
+a TN -2w 7(2)) x (2)

0 b8 ooy g 10,0

2

@ 13-2 @D, @0

W, @

(e) b =

1 (2) (2) e, e

(g) b 5 & K wT(z)

41
T2
(8)_ [a(l) % (2)( X(l)+1)] W 7?2)"% (2 7((2)

1) [, (W] -

(h) b

For the class of systems considered here, there does not appear to be a
reliable expression for the electron stress tensor with which this result could be
compared. With regard to the result exhibited by Herdan and Liley, the

restrictions are in one respect less severe in that the influence of space variations
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of plasma flow velocity is retained and the stress tensor is then a function of
this variation. On the other hand, the influence of the space variation of heat
flux has been ignored, which implies that the difference between electron flow
velocity and the ion flow velocity is much less than the plasma flow velocity.
(The latter assertion may be verified by substituting the relation which they
obtain for electron heat flux into their equations for electron stress). In view
of the difference in the classes of systems considered, a comparison of results
is not meaningful.

If, in the reduction of the transport equations, we were to relieve the
restriction on space variations, that is, take ke/; to be of the order of £; an
expression for the electron stress could be exhibited which would reflect the
influence of both the space variation of electron flow velocity and the space
variation of electron heat flux. However, this relation would be very complex
by virtue of the tensorial coefficient in the expression for heat flux.

The heat flux, to third order in &, is given by

e (]

e _ _p e e.e _e 9T e' .e, ¢ e%
U7 a9y {g & o YR & rij 2 (V-16)
Be 1
where
e ke
(a) 1°=5 £ &=
T Ne Ko
e _e 43, 8 ei 2 33 4 "ei, e _ee
(k) 5 =% [(‘ 30" 15 0 )€+ (535 O )§ aijgiej]
€l el (V—17)
(2) Qe Qe L (2)
)F [ 4 ‘tei )Ii_j__g e Pik R B g \ eézaﬂ
(e =5 N 55 b 0725 §E oy

ei - ei
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Expressed in the notation used here, Herdan and Liley obtain,

€

e
e _ P e { ece e
Qr e3/2 ari L§ 6i Y

B i

Hence, the latter two terms in (V-16) constitute a correction to the Herdan

3
and Liley result. It may be noted that these terms are of order &£ . The

thermal conductivity is given by,

e.e
1
e ekn)t

Bel/z

(V-19)

Attention is now directed to the current equation (generalized Ohm's law).

To third order in &, the equation may be written,

e
op
1 1 o 1
= — B+ & W H)-—— &
nee 8rk k ¢ "kfm { m neec kaJme
e e
£ e o kT 3 e
= - = o + 0@, -2 e )i
€ ki ari 1 ki 5 kg "L (V-20)
o}, 3 .2 3 .e e e e 3 e 3 ,e 2 e
+[Y\ ?(—108+5§ &, & )Skfz (-5 & wge)akg
O¢
P e
3 kg 3.0
5 e Skarmﬂ}JQ]
where
m®
rl°= T o2 (v-21)

3 Tenee
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The use of b(}th Ei and jk is a matter of convenience. As pointed out previously,
1/2

e
~ _ i £ =|f
EkN nee Jk: and - lckl,

With the exception of the terms inside the bracket this relation is the
same as that exhibited by Herdan and Liley. The terms inside the bracket
constitute correction terms of third order in € .

To first order in £, the resistivity is, of course, the same as that given
by Herdan and Liley. To exhibit an explicit relationship for the resistivity, to
third order in £, in the presence of a magnetic field, is a formidable task as a
result of the complex coupling with the electron stress tensor. However, in the
absence of a magnetic field, considerable simplification results. For this

special case, the current equation reduces to,

1 ape N 5 ok T B
e or, e or, i
ne 1 1

2
o 3 .© 3,3 _e 201 e 4 .e 6 ,e_e
IR 23S o - T s S
(v-22)

2 3
22 e e 4 e e 2.
+§7?,§¢+1g§¢>£]31-

It may be noted that the coefficient of the current vector is a function of the
current. The resistivity (assuming this nomenclature appropriate) is given by

9
0 3. e, 3,36 e 20 .6 4, 6 e

=1 [(1'5§)+('10+25§'25o§ AR
(v-23)

2 3
22 e e 4 e e -2
*375 ¢+125§¢)E]
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By comparison, Herdan and Liley obtain,

-3 (V-24)

(11)

whereas Chen ', who has approximated the distribution functions by using
only the symmetric parts of the distribution functions used herein (i.e. the

Maxwellian portion), obtains

=01 - %22). (V-25)

For a numerical comparison for the cases where Z =1 and where Z is large

we find,
Herdan and Liley Chen Results Herein
z=1 1°(.53) Y?o‘l’1§o €3 0%.53-.44 )
z (large)  1°(.3) - 5ED ea-126h) (g

The Chen result differs from the result herein by a factor of from two
to three (depending on Z), even for systems in which 5,2<< 1. The sour ce of this
difference is the use of the Maxwellian part only of the distribution functions. As
may be seen herein, the heat flux coupling in the momentum transfer, which gives
rise to the term (- % §e Y]o jk) in (V-22), is very significant even to first order in
£ .

As pointed out previously, to third order in £, additional heat flux coupling
and stress coupling becomes evident. This coupling accounts for the corrections
of order &£ 3 to the results exhibited by Herdan and Liley. If for example, 62= 1/3,
the correction ranges from 13 per cent for large Z to 27 per cent for Z =1. The

correction is such that the resistance is reduced.
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2
B. Plasma Systems in which = >>1.

To reduce the general magnetohydrodynamic equations of Section IV to
2
a manageable form for systems in which & >>1, we again restrict attention
to systems with slowly varying flows. Explicitly, it is required that

i e e
(a) {(’m—e 2 B ll T

. ewi e
{(i)2 (i)?’/2 1—} ! << 1; Z Lw << 1 (V-27)
m® g 7° T T
i e Te 7_e
<b>{<£>2<ﬁ—.>3/2 iz} ST KLz, <<
m® Bl 7 .r_Blwl T B W

[Since relativistic effects have not been accounted for, a limitation is imposed
on the difference in constituent flow velocity. If, for example, we require that,

| wli - vsiz l < c/ 5, where c is the velocity of light; then for kTe =100 ev.,
1/2

e -/ v -l |<p® Sis]

The € dependent functions in the collision transfer expressions (III-24)
are expanded in inverse powers of £, and only the highest order terms in the

collision transfer expressions are retained.

After considerable manipulation the traceless stress equation for particles

of type o reduces to the form, 0

%a a .o °Poz A a 9 w:
rs 2w 7(3) é:rmn ms Hn =-2u arr (v-29)
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where T‘é) is the collision time for traceless stress transfer, for particles of

type a given by,

2

o

m
Ty = 2 Z 3/2 (V-29)
3 ., ) B
T

and ua is the viscosity coefficient for o type particles, given by,

ua i} poz Ta (V-30)

(3)
Again choosing a coordinate system in which the magnetic field is in the
Z-direction, the components of I%is may be written,
a
(a) %Zz =-2u Uzz

a

0, 2u i 1 012 az a_«a
(b) Pix =- T35 3 iUXX+§(UXX+U ) 4w T(3)+Ux2w T }
1+40% 32 vy Yo @)
(3)
a
o/ 2 1 012 a2 a_o
(C) P[;y == az az {Uyy‘*'i (UXX+ Uyy)4w 7(3) "nyzh) 3‘(3)}
1440 7
(3)
o (v-31)
2u
B 1 _ a o
(d) (I)’Zy —Pyx 2 2 {ny+2 (Uyy UXX)Zw J(3)}
+4w 7‘(3)
a
o O 2u a _a
(e) PXZ:PZX: - ——_2 ) {sz‘i'b) T(B) Uzy }

a .«
1+w J(3)
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o .
Oy O 2u a o b
(f) sz = p;Z = - 53 iUzy - W 7(3) sz \1 (v-31)
1+ 7 77 J cont,
(3)
Where, :7:_._?__&
awi
U, = (V-32)
ij Bri

The transport relation for heat flux for particles of type o reduces

to the form,
(04
Q: “"ii {-v"‘ %}—R (V-33)
i
where waTa
(: 1 (4) 1
, o2 o2 W2 o2
/ 1+ +
JooTre Ty Pron Ty
}_,
i
/
QNQ‘ 1
PO 1
i~ | W2 g2 W2 42
' 1+ T 1+
't v Ty 0 T g
%
|
\
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in a local coordinate system in which the z direction is taken to be along the

(03
T(a)

particles, and 2/ is the thermal conductivity:

magnetic field H is the collision time for heat transfer of the o type

K"

2 2
a m®

@ e @ a Ba ~(2)

(V-35)

(b) V = T

B o
m (4)

N [on

The generalized Ohm's law equation for conduction current reduces to,

, 0 0
me DOJk g awi . Bwk 1 9 {Pe . me
. = "€ . — 5 )
nee2 Dt k ari i ari ne Bri ik neez i'k
(V-36)
1 o 1
+(@& +=€  woH)-— ¢ i, H_ -
k ¢ kifm 4 m e k{m¥ m Y(
e ),
where the resistivity q is given by,
i 9 3/2
@ _,, n ze g s 1 a7
UG e B ‘Qei)gg : (V-37)

It may be noted that the expressions for stress and heat flux have the same
form as would be obtained for a one constituent gas. (See, for example, sections
2
18. 43 and 18. 44 of Reference 1). That is, for systems in which £ >>1, the unlike

particle collisions are ineffective relative to like particle collisions in changing
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either the stress or the heat flux. This decoupling of the plasma constituents
results from the decrease in the unlike-particle interaction cross section as
the difference in constituent velocity, and hence the relative velocity of inter-
acting particles, becomes large.

With regard to momentum transfer, the like particle collisions have
no influence. Hence, although small , the influence of unlike particle collisions
must be retained. The resistivity which reflects the influence of unlike particle
collisions is seen to be proportional to 1/ 83.

Although the above expressions for stress and heat flux constitute new
(13)

results! the expression for resistivity has been previously obtained by Driecer

7
and by Burgers( )



VI. SUMMARY

Grad 13-moment approximation distribution functions (expressions II-12)
have been assumed to provide adequate velocity space solutions for the Boltzmann
equations of the plasma constituents. These solutions are anticipated to have
validity over a wide class of systems which includes those in which the difference
in constituent flow velocity is appreciable relative to the electron thermal velocity,
in addition to those close to equilibrium.

With the use of these distribution functions it has been found possible to
derive generalized magnetohydrodynamic equations, which coupled with Maxwell's
equations, constitute a closed set [Equations (Iv-4,5,6,2¢c, 2d, 2e) and (H—Z)] .

In their general form, these equations are so extremely complicated that
their usefulness is obscure. Hence, to demonstrate their usefulness, transport
relations [(V—14) and (V—16)] to third order in & (ratio of the difference in
constituent flow velocity to random electron velocity) have been exhibited for the
electron heat flux and stress, for systems with slowly varying flows in which £
is less than one, [restrictions (V—S)J . For this class of systems, the generalized
Ohm's law is also exhibited |equation (V-20)] and the resistivity is determined
to third order in € for systems in which the magnetic field is zero [relation (V—23)] .
With the exception of the relation for electron stress, the results are found to be in
agreement with those of Herdan and Liley(s) to order £ , giving corrections to
order 83. With regard to electron stress, there does not appear to be a reliable
expression for the class of systems under consideration, with which to compare.

The numerical comparison of the resistivity for the case where the magnetic

o1
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field is zero [—(V-ZG)] indicates that, for systems in which & 2@\: 1/3, the
resistivity is less than that exhibited by Herdan and Liley by from 13 per cent
to 27 per cent, depending on Z. Further, the inadequacy of the Maxwellian
part only of distribution (II-12), which has been used by some authors (see,
for example, references (12) and (13)), has been made evident.

Simplified transport relations [(V—Bl), (V-33), and (V-36)] have also
been exhibited for systems with slowly varying flows in which 52 >>1 [restrictions
(V—27)] . The expressions for heat flux and stress are found to have the same form
as those for a one constituent gas. The resistivity |relation (V-37 )-lis seen to vary

(7)

inversely with the current cubed as previously noted by Driecer(lz) and Burgers .
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Hence, integral (A-1,a) becomes,

X
d (sin=) al )
2 N
dr v /_‘_ =21 v %{H (———ma ;1)2 v (A-4)
k sing Tk ee r

!
The tensor (v. v. -v' v_ ) may be represented by,
o Tk

-

2 .2 2 2 .2 . 2 .
-v__sin"x cos ¢ -v,. sin"x cos ¢ sin @ -V €0s X sin X cos )
2 .2 . 2 .2 .2 2 . .
-v_8in"x cos @ sin @ -v,. sin"x sin ) -V, €0s X sin x sin )
2 . 2 . . 2 2
-V, €08 X sin X cos ) -V, c0s x sin X sin ) v, (I - cos'x)
(A-5)
which on integration over d § becomes,
- ~
—v2 sin2x 0 0
r
0 ~v2 gin’x 0 (A-6)
T r
0 0 3 v2 sinzx - v2 sin x
B r r

In index notation, with the direction of vr unspecified, (A-6) may be written

S S1q
37 sinzx(v V. -0 v2 ) =127 sin2 x cos2 2v v - k v2 ). (A-T)
r T 3 r 2 2'r, r 3 r

k k L
Hence, expression (A-1,b) may be written,
S o [ 3
2r (v.v._ - — Vv d(sin7 ). (A-8)
rr 3 r . X 2
k 4 sin
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Finally, on integration over the range from 1 to - on
a
i m h2 4
sin = we obtain, ' \J1+( a y ) Y
2 ee
(mo”/h)z 4
S ay a Y r
k{ 2 ee
rtv_ v -—b?) ol (mhy2 g0 (4-9)
r r, 3 r a Y r aY
k 4 ee J 1+ m h )
a Y Ve
ee



APPENDIX A

INTEGRATIONS OVER ANGLES OF SCATTER.

The integrals over angles of scatter were found in section II to be of

the form,
p d (sin 5)
(a) / (Vr - V;_ ) —3x dg (A-1)
k k sin =
2
and

d(sing- )
(b) /(v v -v. v) —— d¢
"« 1 Tk 3

1

The limits of integration are from 0 to 27 on § ; and 1 to

[o]
\[H( 3524
e

. X
on sin _ . I‘
e

2
Choosing a coordinate system in which vr is in the z-direction, the
k

vector (v, - v. ) may be represented by
I‘k I‘k

4 \
- v sin x cos )

- v, sinx sin ) (A-2)
v, (1 - cos x) ,
\
which on integration over df becomes,
. 2X
2rv. (1 -cosx)=4r v sin = . (A-3)
Ty . 2

53



APPENDIX B
INTEGRATION OVER VELOCITY SPACES
All terms in the collision transport expressions were found in

section II to involve integrals of the form,

1 2 2 4 Gy Gy G888y 3 g
__T/Z—— e 23 d Gd g.
47 (27)

(B-1)

Before proceeding to evaluate the required integrals, it is found
convenient to introduce a special notation. The third order tensor {cf £iijk
is formed by taking the sum of all distinct products of the Kronecker delta and
the vector E.r which arise on permutation of the subscripts, each term occuring

once. That is,
£ . (B-2)
Similarly,

EEY . =4 & E,4+d. EE+SE £+ E&, +g £ E+S 46 £
)"Egﬁkz Opijkx O(i‘kj/Q % ; £k dﬂjk‘i./f %0 T GG

(B-3)

. . . IR \‘CS‘ 65
Other tensorial expressions of this type, icd }ijk X ) £ Sijk fm’ ete.,
are formed in an analogous manner.
Turning attention to integrals (B-1), the G-space integrations have been

2
carried out by Grad ’ 3 . Those required are tabulated below.

o6
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-G%/2
1 3
(a) (277)3/2 (e d"G=1
1 -G?/2 3.
(b) (2”)3/2 f e Gido G=o¢

(21)3/2 k
-G2/2
(e) 13 72 e GzGiGj d3
(27)
-G%/2
(f) 13/2 fe ¢t d3 G= 15
(27)

_G? |
(d) L fe & GGG G d3G=f§5X
i ] {

G=5d
1

ijkA

.

J

To facilitate the g-space integrations, we define,

(g-5)2
(a) Lo, ?
a g. 8. ...8. ’-:-_—" e
11 12 1I> 47
£z
(b) =L e- 2 Tt Bk 4
Y ; —;3 g

and observe that,

3
8i,8ig- - -gind g

3

( B-3)

(B -4)
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S §

(gllglz .. g1n> =e

That is, all of the g-space integrals of interest may be expressed in terms
of derivatives of the integral lk with respect to the vector £ -

To evaluate Ik’ a change of variables is made from gk to xk=gk- £ 1’

which transforms Ik to the form

g2 [ -¥/2  (x +€.)
=L . e kTR g3, (B-6)

4r | +2 13

Choosing a coordinate system in which the vector &, is in the z-direction, and

k
noting that the components perpendicular to Ek are zero, we write,
2 2
L - 1 e£ 2 . 2 (x cos §+£)x% sinf dv d dx (f_lg_) (B-1)
4r ’

(x*+2x € cos 6+£2)3/2

where (x,8,v) are spherical coordinate variables. Integrating over v from

0 to 27, and letting u = -cos 8, we obtain,

2 2 ¢

1 e /2 x/2X2 (xut+é&) "k

Ik = '2' e e 312 du dx Z

(x?-2xEu+e?) -
o (™ \ 1 (B-8)

&, &1 LN Y ! ;
= 2—,2 e dx e S . /9 H
(P-2x£ute?)

0 -1
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Expressing the integrand in terms of associated Legendre polynomials, the

u integration is easily carried out as follows,

, ]
? ( <7 \p XI ) B
1 % W o dus g X< E
1 -1 i
( 7, du= (B-9)
/ (x2-2x£ute?) 1
( AL
- =77 & 2
:Z | {7_1 wp(u) I+1 dIJ:; s X>E .
- X
-1
The integral I.k may now be written,
£
g ez [ R
L= 3¢ X2 e dx . (B-10)
€

As expressed by relation (B-5), the required g-space integrations may be obtained
by differentiations of Ik with respect to the vector £y . The operations are
straightforward, though lengthy, hence it will suffice to simply tabulate the

required expressions. Defining,

3 -
1 "y (B-11)
(a) :7"/ =3 ] e %2 dx
€% %

.2
(b) ‘/7 - e e'/2

I
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(B-11)
9 45 105, .
2(1-,_2'*' )‘ 'l‘(l—"—+—“zg .

(cont'd)
4 1 1 315 12 90 420 5, L

Fral
(® ’&(5:1. (3+£2)}H—1+252+54) =
N &1 * +F‘2)/+(— g3eteeh S

the g-space integrals required are given by,

(a)

(B-12)
b (gg)=TO, W

(d  (ggy=0 G0, 4@ o

—
()
~~

(sgmey A dS] o

+L 5 £,
ijk{ 1Jk1 ék j

(0 g g,y =6 042 )\ K72 Y
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(B-12)
(cont'd)

_ u(2), 3) ; A ¢ ,--
<g1ngkg£ =71 058 )13kim+y( o et gijkf(ém
+,2j 51 f] & o
o 2, (3), 43), o9 .
(h) {gzgigjgk> (1 ¥+ e 2 19 93 kO~ ¢ 68

i) < g4gi\7 = (35&1(2)+ 14 52,@(3) +54¢"(4)) éi

() <g4g.gk> "‘Sd +'~‘*(6)<£‘i &



APPENDIX C

COMMENTS WITH REGARD TO DEFINITIONS OF TEMPERATURE, STRESSES,
AND HEAT FLUXES IN PLASMA SYSTEMS.

Definitions of constituent temperature, stress, and heat flux relative to
the plasma flow velocity, and definitions relative to the constituent flow velocity,
are both in common usage. Hence, some comments with regard to the relationships
between these definitions seem appropriate.

We let,

(a) v, = wote =wl %+ u, = W+ (particle velocity in
k 'k 'k 'k 'k k .
laboratory coqrdinate
system

a
(b) wl(z = Qp— wﬁ (plasma flow velocity)

(C-1)

(c) wﬁ = l_a / 8 Vi d3v (constituent flow velocity)

(d) ¢, = —la- / £ c\ d3c (constituent flow velocity relative to
plasma flow velocity).

In the development herein, the constituent temperature, stress, and heat

flux are defined relative to the constituent flow velocity. That is,

(a) 3 nakTa,:% ma/‘/-fau2 d3u

® P*- m"‘/f"‘ui u u (C-2)
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These definitions, brought forward from section I, are consistent with those

of Spitzer(ll).

1
By contrast, Chapman and Cowling( ) and Herdan and Liley(g) define
these properties relative to the plasma flow velocity. That is,

(@) = k1% % ma/fa & d’
v

9 n

=
—
1

(b) P,a_" =ma/fa c.c, dgc (Cc-3)
ij ij
(c) Q;a = % ma/ia ccde

It may easily be shown that definitions (C-5) and definitions (C-6) are

related by
' _2
(a)§nakTa =§ akTa +l namac
2 2 2
]
®) P =p% +n" m* @ ® (C-4)
1) 1] 1 ]

a' a 1 o a-.2 3 o, o — a —
(c) Qr Qr 5 0 m c? Car (= n kT )cr Prs c"S

For systems in which 82 = Be ( wf; - vi)(wli - w;{ )<< 1, these relations

reduce to

1

@) T%=1%
]

® P> =P (C-5)
1) 1]
o _a 5 a-

(c) Qr —Qr +2 P c(r{
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