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S ABSTRACT

This paper presents a unified development of kinetic equations describing
particle and photon transport In plasmas subjccted to non-constant and non—uniform
external fields, It is found that the equations for the particle distributions are a
generalization to the plasma of the cquations postulated by Uehling and Uhlenbeck”
for neutral quantum gases. As the equations describing photon transport have been
developed and discussed previously, only a bricf discussion Is incorporated here for
completencss. It Is then shown that the present description of the plasma is

sufficiently complete and consistently developed that an H-theorem is demonstrable,

+ E.A. Uehling and G. E. Uhlenbeck, Phys. Rev, 43, 552(1933).
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INTRODUCTION

The purpose of this report is to present - from one particular point of view -
a summary of somc preliminary investigations of particle and photon transport in
fully ionized gases, [1,2,3]. The emphasis on a particular point of view is not
intended to suggest that it is necessarily the best vantage puint from which to inspect
the subject, but rather that it Is a seemingly simplifying and clarlfy;lng - and yet so
far somewhat unexploited - vantage point, Furthermore, mention of this emphasis
serves to warn that no attempt shall be made herein to review the many interesting
and different approaches to this problem that have been developed in the past few
years, [4]

Because recourse to experiment to test semi-intuitive models of the plasma:
is not often feasible, it scems necessary at the present time to investigate the
validity (or range of approximate validity) of such models from strictly theorctical
considerations, The accomplishment of such an objective requires firstly a com-
prehensive axiomatic statement of the problem (the axioms being reasonably widely
agreed upon, of course). followed secondly by a deduction of descriptions of the
plasma to which the various models purportedlv correspond. Ncedless to say, no

such ambltious program has v.t been achieved,
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-The present discussion is restricted to the delineation of an approach to the
problem of determining the validity of Boltzmann type equations for the description
of particle and photon balance in the fully ionized plasma. It Is admitted at the outset
that this a;;proach essentially fails with respect to both of the main points indicated
above. In the first place the selection of axioms is hardly universally agreed upon -
and in the second place the deduction of consequences from the chosen axioms Is far
less rigorous than is desirable, Nevertheless the results seem suggestive and
represent somcewhat of a generalization of those usually discussed in the context of
the present problem. Furthermore, though the deductions herein proceed via many
approximations (none of which have been investigated in detail), the steps required
for their testing are usually discernible.

The discussion will be divided into several sections. Section I wlill incorpor-
ate a statement of the axioms and some discussion thereof. Section II will be devoted
to an approximate deduction ,f a balance relation for the particles in the plasma and
some conslderation of Maxwell's equations. Scction I will present a similar devel-
opment of a transport equation for photons., In Section IV some of the 'melicati?ns of
these balance relations tor the thermodvnamic state of the plasma Will be -examIned,

In particular,an H-thcorem tor the particle photon system will be sketched,
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THE AXIOMS

The axioms required for the description of systems of the type prescntly
under consideration are usually considered to be of two kinds, The first of these
is for the purpose of specifying the dynamics of the interactions between the_particles
that comprise the plasma, whereas the sccond is for the purpose -of introducing
statistical concepts into a description of a system characterized by a huge number
of degrees of freedom. The dynamical axiom is conveniently expressed in terms of
a Hamiltonian for the system; from which, according to the canonical equations
whether classically or quantum mechanically interpreted, all information may be
deduced, Since we are here concerned with electrodynamics, we may expect that
the dynamical axiom will be reasonably firm and non controversial; at least within
certain sclf evident limitations such as, for example, non-relativistic treatment of
the particles.

The statistical axlom is usually introduced via the concept of ensembles of
systems in terms of which the probability of finding the given system in a given
state at a given Instant can be meaningfully formulated. Though usually considered
nccessary (whether the system be dealt with in classical or quantum terms), we shall
avold the explicit Introductlon of such concepts into the prescnt discussion, It is for

this reason that our axiomatization of the system may be considered controversial
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to say ﬁémléast. Instead we shall treat the svstem quantum mechanically and
apparently rely solely upon the statistical concepts inherent in such a treatment.
The equivocation Is a recognition of the possiblilty that rustification of some of the
approximations to be Invoked subsequently may require the ensemble concept - but
such a necessity s not cvident at the moment, We will note that all of the results
of the conventional statistical treatments of systems ~imiia:r to the one considered
here are forthcoming from the present analysis.

The dynamical axiom will be stated in the form of an energy density for fields
of interacting charged particles and photons, and the Schroedinger equation for the
wave function which characterizes the states of such a system. The field theoretic
formalism Is dictated by the desire to deal with photon transport on the same footing
as one dvals wlth particle transport, and so far there has been no indication that this
i~ feasible in the classical, or semi-classical context [5 ] . It has the slight,
further, formal advantage that the singlet densities whose equations we .seek can be
defined in terms of expectation values. In non-degenerate plasmas it is not expected
that quantum effects will play a significant role in the description of particle trans-

port, In view of these remarks we have [6]

oy
= —_—, 1
H‘P in 5t (1)

H = / i 0 dx, (2)

where
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e(7 e(r e’ 2.2
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In equation (3), gUU is a wave operator for a field of particles of the oth kind, ée and
¢ are the vector and scalnar potentials of the "external fields", and A and P are the
“transverse' magnetic and electric operators for the photon field, The external

ficlds are presumed known and hence are unquantized, whereas the "internal" fields

are described by operators which satisty the commutation relations,
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[Aj(.‘_(), P, (_x})] _TAKP &)
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47 'x—x

all other quantities commuting, The particlos sutistv anti commutation or commu-
tation rules depending upon whether they are fermlons or bosons, This distinction is
of no Importance for the non-degenerate plasma, but will be maintained throughout
the carly stages of the analysis, for the sake of generality. The assertion of the

transversality of the field operators Is rendered formally precise by the statements

(Y“é)=(2‘_l_’) = 0, (5)
The energy density, equation (3), may be rewritten variously by regrouping
terms or by transforming coordinates. Expression of the energy density In various
ways is desirable since some calculations proceed most naturally from one form of
equation (3) whereas others require other ways of writing it. For this reason we
expend a little eff‘ort here upon the rewriting of (3) in two different ways - one most
suitable for the dlscussion of particle transport while the other simplifies the treat-

ment of photon transport. Both ways of exhibiting (3) are, of course, equivalent.

For the purpose of dealing with particle transport it is convenient first of all to
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decomposo the vector potential, A, Into two parts, i.c

A=AS+AT (6)

where AS refers to the ""slowly varying" part of A, while _}}f denotes the "rapidly
varying" part of A . The distinction between "slow" and “rapid" variation will be
determined only in the context of a given situation and hence will not be discussed
further at this point. We then Introduce the notation,
e S
R=A +A, (7)
i.e., R represents the superposition of the known, externally applied ficld and the

"slowly varying' part of the Internal field, Glven this decomposition of the internally

induced electromagnetic field, it Is convenient to rewrite equation (3) as,

(continued)
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For convenient treatment of photon transport, it is useful to employ a differ -

ent regrouping of the terms in equation (3). Introducing the operator,

©

I =-in V- AT (9)

wce express the energy density as,

W= [2re "+ L (T 4)2}
IR P A T
+2 -y’ )
o o
. + + 0
) =ty ray, s ay, 'y
o

+
e e 3 s o o o'~
+ o d x' l ,
X'Xl
1+§ X-X

0'0" qgo
cz
o 4 2 +
. A+ e , (10)
Dt ) ey,
o o o o
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For some calculational purposes It I8 convenient to transform to momentum space,
| ]

Accordingly we introduce the fourier analyses,

\J 2zhc T kex +

g‘]Tf’ .[x L

A
e

h -ik- x -
P= i ‘ ? Jke = (k (11)
- 8rcV {)‘ X
K\

1
= — [K'
%’ W ” a_ (K)e ™ =

In the relations (11), V represents the volume of quantization, It Is the volume with
respect to which the quantities A, P, and \P obey perlodic boundary conditions,
o

+
The operators, ( \ (k) , are glvenbhy

+
- +
[k(lsh B )€ (k) + aBE (K, (12)

where the gk(lg are the unit polarizatlon vectors of the photon field, The Indlces
A take on two values corresponding to the two states of polarization for the photons.
The sums over k and K are the usual sums over the Integers permitted by the re-

quirament that A, P, and (}/w be periodic on the boundaries of the volume V. The




THE UNIVERSITY OF MICHIGAN
2764-8-T

qua;f—fties aI (k) and “x“i) are the creation and destructlon operators for photons
+
of momentum h k and polarization X\ while aU(K) and a (K) are the creation and
K K Rt

destruction operators for particles of kind ¢ and momentum h K . The commu-

tation rules governing the creation and destruction operators are,

SNV gu, Sk-x),

and

[uU(K), a{;, (K") JI» = émr' 5(}_{_ - K'). (13)

Note that in equation (13) the functions 5 (k - k') and 8(}( - K'y represent Kronecker
delta's since the arguments take on discrete values, whereas the function S(y’g')
appearing in equation (4) Is a Dirac delta function. We shall continue to use the same
notation for the two kinds of delta functions, letting the context reveal which inter-

pretation of the symbol is appropriate in a given case.

10




THE UNIVERSITY OF MICHIGAN
2764-8-T

Il
BALANCE RELATIONS FOR THE PARTICLES

(ur prime concern in this section shall be for the deduction of a Boltzmann-
type equation for a singlet particle density. Thus our initial task must be the iden-
tification of a quantity which, in some sense, may be interpreted as the expected
number of particles to be found in a small element of volume in phase space. Since
we have formulated the problem in quantum mechanical terms, it is evident that
some difficulty will be encountered here, as it is impossible to localize particles
with arbitrary precision in phase space. A way out (aind the one chosen here as it
has been many times clsewhere) is simply to give up the notion of “tinc ruinca
meaningfulness'" of the singlet density. Alternatively (and equivalently) we may
solely require of the singlet density that it be a proper weight function for the cal-
culation of obs_ervable averages.

With these remarks in mind, we define a singlet density for particles of
kind o by
(K0 g [ @l B L@ Y o0 g (2 §)

(14)

AT g oo

Q

The density defined by (14) is not everywhere positive but assumes negative values
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as well because of the impossibility of simultaneously specifying the (x , K) coordi-
nates of a particle within arbitrarily small ranges. Nevertheless, it is convenient
(when meaningful) to interpret fO as the expected number of particles of kind ¢ to

be found at the point (x , K) per unit volume in configuration spacc . Force is

given to this interpretation by the observations that

f(x.0= zhf(x.}\t f'lp(\ 01{/), (15)

A SR N + o ‘
£ (K,0=]d xth,b,t)-({/,aou_oao(b)}b), (16)

e., that f0(§ ,t) and fG(L( ,t) are indeed the expected particle densities or particle
numbers in cither configuration space or momentum space separatcly. Further
reinforcement follows from the observation to be made ~ubscqueiily that fo(gg. K, t)
is persumably truly interpretable as a particle density in the classical limit. It
should be noted in passing that the density defined by equation (14) is simply the

field theoretic cquivalent of the Wigner distribution function [7, 8] , and has been

employed for purposes similar to those that concern us here many times previously.

+ Note that { is not a density in K -space (momentum space). This is a direct con-
sequence of gaving defined the Fourier transforms (11) one of which connects the two
expressions for f; given in equation (14) in a finite volume in configuration space.
However, in spite of the fact that the variable, K(and k for photons), is discretely
distributed, we shall assume that the operation of differentiation of functions of K
with respect to K is meaningful.

12
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Some more notation will prove useful. Define the operators
(x, 2) (,V+( ) Sl/ (x +z)
) Z) = X -7
(0 X, 2 o P g X E ’
and

+ .
p(K.Q)=a (K+Q)a (K-Q) (17)

Then equation (14) may also be written as

f('Kl):§ ez LD
SuE 00 e rofx,z
8 -2ix -
ZGZG ix-Q Tr pO(I_(.Q) D (18)
Q

where Tr AB means take the trace of the product of the matrices A and B, and D

is the density matrix for the svstem in the Schroedinger representation. Because of
the invariance of traces to unitar n‘;ﬁnsformations, the forms (18) for 1'0(5. Il t)

will prove most useful {or calculational purposes.-

Now recall the cxpression for the energy density given in equation (18) and

write the total energy as

- [ o x g =0+ P PP , (19)

13 —
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where

= sz /d X (11‘1 V- ) W ][(11’1 V+€-_R)J ‘PG]
2 /dxww
' Z' €g e fd xdx&P(x‘P (x") W(x)w (x") u(x, x") (19)

g,o'

/dB [27rczP2+8—17r“(VxA ] , ) (20a)

o 3 F +[, o
= - Zch/d X Aj QPG (lﬁ g+ T B)‘\PO']

Jny- 2 g) vl xpo} , (20b)

j

PP g ¢ . .
H Z1 ,f; dxdx'p(xw )P ¢ (x)

og'

X S(x) S(x") (20c)

|x-x'|

14
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where

ulx, g):[s@ 5(x1) +8(x) s(3) + () s(x)] — = . 1)

The step functions S and s require definition, and the breakup of the coulomb
energy according to the parts appearing in equations (20a) and (20¢) requires some
explanation. We are envisaging the selection within the system of a sub-volume, V,
whose size, shape, and location will remain largely unspeciftied for the moment.
We may hope that under some practical circumstances V can he choscﬁ small com-
pared to regions over which macroscopic spatial variations are significant. We
have then defined step functions according to

S(x) =1, x £V,

=0, otherwise

and
s(x) =0, xé€V,

=1, otherwise (22)
and decomposed the coulomb energy of the system into two parts. The part incor-
porated into HO, equation (20a), corresponds to the interaction energy hetween all
particles not both in V, whereas the other part. pr-, is the remainder, i.¢., the
energy of interaction between particles both in V. The utility and validity of this
breakup of the coulomb encrgy will be manifested and investigated as we go along.

We now transform to an interaction representation by

15
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LY:U?, U+:U_1, (23)

so that % satisfics the equation,

(5P «u™ ) =in 0@ . (25)

ot
Because U is a unitary transformation. we may rewrite the expressions for the par-

ticle singlet density, equation (18), as

3 -2K. gz . _ ~2ix - _ -
=8 e 205 (L oD §2 T D k0D, (20)
oV o~ \% Q o~

where
_ + _ +
D=U DU and p=U pU . (27)

It then follows that p and D satisfy the equations

O . i]|_ 0 - oa,
ot x [H , pOJ , (28a)
and

oD _ i [“ —~pd = pp ]
— = = D, H + H .
. ot 5 , (28b)
Thus by means of the transformation (23) we have invested P with an explicit time

dependence resulting from the interaction of particles of the o'th kind with the exter-

nally applied electromagnetic fields, (i\c and §), with the "slowly varying" part of

16
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the transverse internal field, (és), and with the coulomb ficlds of other particles
outside of a volume V surrounding the point x at which f(7 is to be evaluated.
Conversely, the same transformation implies that the time dependence of the den-
sity matrix D results irom the interactions of particles with the "rapidly varying"
part of the internal transverse field and between particles in the sub-volume V. We
may anticipate that it is essentially the time dependence of 50 that describes the
influence of external and self-consistent internal ficlds upon the temporal variation
of fc' whereas the time dependence of I_) will contribute the effects of coulomb
"collisions'" and particle-photon collisions to the temporal variation of f(I .

To realize the content of these remiarks. consider

-2iK- 9 -21X -
g -8 d“w A Tr i DY 2 e . Tr p b (29)
ot v] 7! wovey Pt =

where the different contributions to the time derivative of f(7 have been expresscd in
different coordinate systems for calculational convenience. Noting that
850 = i —0 | (o]
T—D=Tr—~[H _]D:——T[H, ]D .
T et 1 ' Po nor ol 2 (30)

one finds after tedious but wholly straightforward manipulations, including the

transition to the continuum in K-space, that equation (24) may be written as

17
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e - - —
\2 '
260 Yx. Yl\' o 2 Y\ vl\'

+ — K Tr Rsin| ————mm ,—‘ p D- ——, TrR._ sin ‘ r p D
mc j j 2 Kz "o +Hm c° i 2 o
o} o Kz

v 8 “2ix Y 9D
= — = § > o (K -
(2”)3 v e TN NS t) "
Q (31)

where , for further compression of notation, we have introduced the svmbol I_;
Z

for the Fourier operator, i.e

-2iK- z

s [ 3 ‘
= = fdze :
f:{z o KR . (32)

Transcendental operators are defined by their power series representations.
Equation (31) is exact, but almost contentless as it stands, as it is no more
[than a relation between the time derivative of fo and diverse functionals not obviously

Lrelated to fa . To reduce (31) to recognizable and usable. torm, numerous

18
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approxjm:;iions must be invoked. Our attitude at this point will be to introduce the
approximations with operational precision, but to expend little effort in attempts to
evaluate or justity them  We first note that i K is particle momentum (and

| Kj/m0 vy the j'th component of the velocity of the o'th particle) and hence that
the trigonometric functions of the operator YK have a natural representation as
power series in h. Since the left-hand-side of cquation (31) describes the influence
on f0 of explicit time variation, transport. and the interactions of the particles rep-
resented by fo with external and "slowly varving ' mternal electromagnetic fields,

it is not expected that specifically quantum ctiects will be significant. Thus we
retain only the explicit, lowest order dependence upon h in these terms.  We are

then led immediately to

Yo B % % 0 M op-c @ “,
ot m ij m c jd Kz o o axj i
€5 , —2iK- 2z + .
- ' 7 @ - ' + '
2 7.3 dx'dze (kf) k})a(ﬁ 2) t)VU'(x)Lng(h z) k}JO(\)‘f’)
o—_l

19



THE UNIVERSITY OF MICHIGAN
‘ |2764-8-T]

To simplify further, the left-hand-side of (33) requires a more serious and subtle

sort of approximation. First consider the terms of the form

T R D, :
PR [ e (34)
where [(B) stands for appropriate operator functionals of the portion of the electro-

magnetic field represented by R, Note that if R stood solely for the external (given)

field, (34) could be written as

[(R)Tr E{Zpa D= [R)1 (35)

g

i.e., all such terms as (34) could be written as explicit functionals of fO - the
singlet density for which we are attempting to deduce a halance relation. In
actuality, of course, R is dependent in part upon a portion of the internal vector
potential (_és), and conscquently the replacement of (34) by (39 involves the approxi-
mation of replacing averages of products by the product of averages, i.e., instead
of (35) we have

Tr fF(R) (L, ».D ::[Tr [wn] [ [ b D] - [Tr Z(B)D] £

(36)

Introducing the notation <B>= Tr R D, and making the replacements (36) in (33)

20
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—— +
as well as the replacement

+ +
(@ Y2 ¢ )P (xr2) @ (x) )
(37)

~ (?. ‘/";(é-z) L/JO(@g) P) (‘{/ , L}J;(_\;') w’)";\g,f | |

which is facilitated by the nature of the potential u(x,x'), i.e., the replacement
of doublet densities by products of singlet densities is presumably the more

justified the farther apart the space points upon which they depend, we obtain

af0 ___’i_]_ e, Ofg 0 ()I'I afG %) 3
— 4 _ < > PN oo, 9 N “xtulx. x )
ot m m oo Rj )E)x, ¢k p, e op. Ox. § e, d ‘(U(y))fov(ﬁ,t)
O—'
X'
2
. d . 2 “ .

% i (;<Rl> B _ 4 8<Rj> or

m ¢ j axj Bp’( 2m002 axj ;;Iil
Vv 8 *~1§-9T = (K.G .1 D -,
" (21 h)3 VZ ¢ HE L LT , i

Q

where we have also approximated
2 2
R. > =CR, , (39)
(x5 =G

and employed the notation of ¢quation (15). Now define a total, longitudinal electric

+
For consistency with later analysis which explicitly incorporates exchange effects

in the representation of collisions, the exchange contributions to the replacements
(37) should be retained here. For a discussion of this matter, sce Oldwig von Roos,
Phys. Rev., 119, 1174 (1960).

21
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field by

J

L__ B_E 3 rulx kN (x!
E’ =- ox. " ox L eo'/d xu(g,g)fo,(ﬁ,t)
J Y
x' |

= _él - -a—— 2 d3X' S(X') f_oifg_l(.x:i)_ ) ) . (40)
ox, ox, = ] )
) J
where we make explicit use of the nature of the function u(x, x'), equation (21),
and of the fact that the point x is in V. Evidently the second term in (40) is the
coulomb field at the point x due to all charged particles in the system outside of the

volume V about x . We then may write equation (38) as
2
of e 9 e? oCR ;
5t <> +e E-+ 2 D <I}> o <!> ofg
ot j mc ¥ ox, 2mc? ox op

o J Y J

-2ix - Q p
.V 8 § - = oD
“ornd v 2 e Tr po(l_(.Q,t) o (41)

The left-hand-side of equation\(41) has now assumed the conventional form of the rate

equation for a singlet density in configuration and momentum (instead of velocity)

space without collisions and ivith self-consistent fields. The fact that the fields,
L . . . : .

E and<I_{> , satisfy appropriate Maxwell's equations with sources in the plasma

is not necessarily obvious and will be discussed in some detail later. At the mom-

ent we turnour attention to the right-hand-side of (41) which should, in some sense,

22
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deseribe how close encounters between particles and the interaction of particles with
the "high frequency'’ part of the electromagnetic field influences the temporal vari-
ation of f .
o
We assume that we may so choose the volume V about x that the left.—hand-
side of (41) does not vary appreciably within it. We then integratc (41) over the

volume V obtaining (employing the notation LafO for the left-hand-side),

~ v _
/d3xL0f0=VL0f - CTrp(K.o0 Y (42)

g o 3 (0 at
eV (27 1)

This integrating, or averaging, is often referred to as spatial course-graining,
and is a procedure resorted to elsewhere in similar contexts [9] . Apparently the
bulk of the task remaining to us is the estimation of the trace in (42) as some func-
tional of fc' This we shall accomplish by a cavalier recourse to approximations
which, though r‘easonably well -defined, we shall make no attempt to justify herein.

Recalling equations (17) and (27), we write (42) as

8D
ot

- D _+
@r ) KU UT (@3)
o} at

L% =27 1) 1r UTp (K)U
(o) g
We now approximate
Dyt = U(t)[-D('ﬁ:—)—M] vt - i[U(t)LT+(t+s)D(t+s)U(t+s)U+(t) -m)], (44)

where s is some small but finite time interval which is long compared to collision

time but short compared to intervals over which macroscopic quantities -vary———

23
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appreciably, e.g., the external fields. By virtue of the latter of these restrictions

on s, we have | Hos/h

U(t+s) = e u(t) (45)

so that (44) may be further approximated as

Do+ 1 % /h -in%s/n :
vz v ’:g e D(t+s)e -D(t) . (46)

The "coarsening" of the time derivative explicit in (44) is also a procedure that has
been employed before [10] and has essentially the same cffect as the usual temporal
coarse-graining [11] . Inserting (46) into (43) leads us to
, iHs 1% /A

Lof = (27rh)_3 S_I[TI‘ p (K)e BRIy -Trp (l\')I)(L)] (47

o o 0~
Recall that HO has been so defined as to include the kinetic energies of the particles
and photons ‘inside the box of quantization (T), the Kinetic energies of particles and
photons outside the ,ox plus tueir interaction energics with other particles outside
the box and with the external fields (”c) . and the energy of interaction between the
particles in the box and the external and ''sclf-consistent' internal ficlds (Ilie) --
the latter generated by particles outside the box. Throughout the remainder of the
|[discussion in this section, we shall neglcct Hie compared to T and IIC . This
|lapproximation in the present context corresponds to the assumption that when two
Jparticles are sufficiently closely associated that their interaction may be described

in collision terms they may be regarded as effectively decoupled from their
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environment. Then noting that both T and H® commute with po(Ij) (the number

operator for particles in the box), we find that equation (47) becomes

L% & @rn 7 s™ [Tro (K)Dlt+s)-Trp (K)DXD]
g ag ag

) iHs/h -iHs/h
= (27h) 3s‘l[Tre po(l_()c I)(t)—TrpG(_K)D(t)] . (48)

lagain for appropriately small s. According to the above remarks, the Hamiltonian

may be written as

N . " )' 1
HeT+H S HPPHPY o e PP PY , (49)

le

' e
where we have redefined H and so that the portion of pr describing the inter-

jactions of particles and photons outside of V has been added to H® yiclding H® , the

1
remainder of pr being designated pr . As previously agreed, we shall ignore the

fcoupling between particles inside and outside of V implied by H and will assume

P Y’)

' \J

the effective commutivity of (T+pr+H with H© . Then since H' also commutes

[with p0(1_<) (the interactions between particles outside of V cannot change the number
Df\particlvs in a civen state within V), we find for equation (48),

g, ~ -3 -1
Lt =(27h) “s~'|-Tr A (K)D(1)

AT+ P s i EPPP e ]
+Trp (Ke D(t)e
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To continue from here it is useful to employ a specific representation for the
explicit calculation of matrix elements. It will be convenient to choose a represen-
tation for the system which is in part the number representation for both particles

and photons in the volume V and which has the following properties among others:

a:(_lﬂ)ao(lf) lnq .,> : ”:;KI nn a> :

a;(h)a)\(lg)lm’] a> = Y]Mj’ nm a/>,

and
<n' Y}'a'l ny) a>= Srm' gYM' gw . (52)

[he  genlabels (n " } are the usual sets of numbers required for the specification of
océupancy_ ol momentum states by particles and photons in V. The labels « are a
sufficient set to complete the specification ot the states of the whole system. The
density matrix has, of course, been defined for the whole system and must therefore
depend upon the labels o . Nevertheless we shall suppress the dependence of all

'
quantities upon these lahels, as haotl pj(l_\i) and e [—i(THlppHIp’ ) s/h] are diagonal

with respect to this part of our representation. In view of these remarks we find

e D(t)e

nqnq
(ma PP, PY’ :
3 § (e-l(T+H +H )s/h) Dn' ! ()
nyln'Yl' v‘ '}
n'r"

Hterms proportional to off-diagonal elements of D). - (53)

(t)
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We ;vﬁrf{;}o;é.t—l—me contribution of the off-diagonal elements of D to the relation (53),

It is convenient to introduce the notation

Vi |

27 1) 3 | (e—i(T+pr+n"

wn Y]nl Y]’
so that equation (50) becomes

. ~ § , N -3 _ ?
= -(2 D
L fU n’)h W (t)-(271h) s n kD,

oy qnq "
nqn'q' nr) -

!

e

nf\n"\'

(@]
(&3]
~

nvol_‘:_nGE] Wn\'\n'q' an nr](t) ’ (

where the prime on the summation means that the term in the sum for which n=n'
a.ndY]= V]' is not to be included. Some manipulatién is required in the development
of equation (55), hinging primarily on the symmetry of W and the fact that
‘ -3 1 -
%Y . =(27h) " s . (56)
nqn
nl r]l
The explicit evaluation of the transition probabilities, W, is facilitated
(at least perturbation-wise) by re-expressing the exponential operators in equation

(54) as AT i/

e =e (1+Q) (57)

where I is the identity operator. Recalling equation (54), we sec that now
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2 -3

-3 =274) s

—(© J -1
qun'q,—(.Znh) S

Q 1!
nan]

(58)

-iTs/h
(e {HQ}) nnn'n'

because the kinetic energy operator T is diagonal in the number representation.

The operator Q may be computed to various orders of approximation from the for-

mula,
. 8 S,
o, . \J j-1 _ oy oy - oY
Q(s) =Z(-T—1\ / . / ds; ...dsj( HPP+ P 2’ (PP P )S ,
Py 1 :
=1 $1=0 sj=0 J
(59)
'where
o iTs/h -iTs/h
(”pp+Hp7()S: e 1P+ P . (60)

A straightforward but tedious calculation reveals that through terms of fourth degree

+
in the interactions, QQ may be expressed as

\kM“ ™ l' ' 2 r ’
Q oF =z 4 sipt 1T s oy !
m',n'ﬂ' n'"'nm  h- (wnq - wn"l'). L ny]n'r]
PP+ Y Q(pr+Hpi) . | ~,
| A ]
ma nY\ maoa

where we have introduced hwm] = En'l . The complete disregard of the interactions
ﬁn HC while calculating the effects of interactions between particles (or between

jparticles and photons) in the volume V is equivalent to the assertion that the particles
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in V are decoupled from the environment created by other particles outside of V.

A little reflection reveals that

2

2 2
+

p

(pr p
nﬂn'q'

pX)
nY]nqu

szl
nqnlqv

+H H , (62)

since the matrix elements of HPP are non-zero only if the photon number does not ‘

change while those of Hp‘¥ are non-vanishing only if the photon number changes. In

pp

fact, as we shall sce, the matiiv elements of 1" describe particle-particle

v
scattering, whereas the elements of “pY --containing terms both linear and bilinear
in the creation and destruction operators for photons -- describe either radiative
particle transitions or particle-photon scattering. Since we are not in a position
here to discuss particle transport in systems in which particle transitions to, from,
or between bound states are of much importance; and since free particles cannot
emit or absorb a single photon, it follows that only photon scattering will be con-
2
. . . pY
sidered in the evaluation of |H \ 'l .
nyn i
As it is our intention to consider the influence of bremsstrahlung and inverse-

bremsstrahlung on photon balance, we should here consider first order (one photon)

radiative particle-particle scattering. Such processcs are accounted for by the

HPP Pt P

if we employ plane wave states for the description of the radiating particles, or by
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the terms
HpX

: (64)
ny] nlnl

if we employ positive energy coulomb states. It is, in fact, the latter that we employ
in the discussion of thermodynamics later.

Utilizing equation (58) we may rewrite (55) as

'

[0} 3 E
T R | [ -
L f - (Zﬂh) S [ n{ ”nKJ

nnn'n’

2

Yqund Paqng

(65)

2
Then the calculation of the quantities |Q| proceeds straightforwardly from the
formula (61) and our knowledge of the Hamiltonian for the system. One finds after

considerable manipulation that equation (65) becomes

4
E oK, 0'}\'3
L% - C [n on atn yata )
oK,
m

g O"KII’ KJ OKll ("Kz O"Kz GK O"Ks
K, Ak
+ + ’ +
-n.n o (1In  )N1In ,)J D +Z S .§ n oM, (en 040, )
' }\ " "t
oK 0'K, oK, 0'K, nr]nr, KU KA k! 1A 'K ""1[ ok, Ak oK Ak

t M1+ H6
‘“oxy’xk“‘"gk,)“ '?/\'k')]Dny‘nq (66)

where the quantities C and S are essentially the transition probabilitics per unit time
for elastic charged particle scattering and for the scattering of particles by photons
respectively. Here we are ignoring the contributions to the particle balance relation
due to radiétive coulomb scattering. We return to this question when we consider

the thermodynamics of the system in Section IV, The transition probablilities
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represented by C and 8§ arc¢ symmetric, e, g.,

oK, (7'!\’3 oK, o'k,
C = C . (67)
oK, o'Ky- oK. 0'K4

The choice of sign in the factors (1%n depends upon whether the particles whose
number is represented by n are bosons or fermions. These factors appear in our
balance relation because of the dependence of reaction rates upon the densities of
particles or photons in the final states. In particular, if the particles are fermions
(e.g.. electrons) so that the factors are of(the form (1-n) and the only allowed values
of n are Oand 1, we see that transitions to occupied states are forbidden as
must be the case because of the exclusion principle. | However, as indicated earlier,
we should not expect this dependence of reaction rates upon the density of particles
in final states to be significant in the non—degenefate plasma (a system in which the
number of available states greatly exceeds the number of particles). ‘
The direct, formal evaluation of the occupation number sums appcariﬁg in
(66) leads to the introduction of higher order densities (higher order than the
singlet density, e.g., doublet, triplet, and quﬁrtet densities) into the balance
relation. To circumvent this complication at this point, we resort again to the
approximation of replacing averages of products by products of averages -- bearing

in mind that the average of an oK (or an Y’Ak) with respect to the density matrix

D is just the singlet density for particles of kind ¢ having momntum K
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(or for photons of polarization X and momentum # k) multiplied by the volume of

quantization, V. Thus we find that (66) may be expressed as -

3 .3 .-3
Lf 2 , d pdp,dp C(opl,opz.op a'py )[f (pl ,(22){(27r‘h)

o-'

P.P2.pP

-3 -3 -3
jfo(g)} {mm ifo,(g,)} -1 (D) () {mm £ (p,) {(zn) tfo,(32>}]

/d prdkd dk'd 0L'S (p A 'k':pA k)[ (p)Fy (k) {(27rh)'3

P,k k'

Ml’

Hf (p)}{kz(zvr) +F (k)} - (p)F, (k) {(zm) *f b )}{k' (27) 4F (k)}]

(68)

The F)x ’s represent the photon singlet densities -- to be discussed in Part II.  The

transition probabilities are exhibitable as

(21rh)

C(ogl,o'gz;c_p, o' pg) = o(L 0)8 -b(‘)g(p+p’ -P,"P, ), (69a)

oo'
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2

and, 2y 0
it = 6.4 o ¢ 3. NN
8 (b \'kph )=2r) b ( ) o0 IEAU;) RN E )

m ¢
g

x§p Ak p-fk), (69b)

where /uov’ is the reduced mass of the scattering pair, and Ecand @ are the
energy of the scattering pair and the scattering angle in the center of mass coordinate

system. We have introduced the symhol O{EC, @ ) to represent the coulomb cross

section, i.e.,

2 2

(S & , B
o(EC.@){»-"M“—) sin™4 @ 1+g , Lcos® : (70)

4EC 2 go' l+cos@®

The factor modifying the usual formula for coulomb scattering which differs from
unity only when the scattering particles are identical arises because of exchange,
i.e., because of the indistinguishability of targcts from projectiles.  Analogously
equation (69b) contains the Thomson scattering cross section (as would be expected
since we are dealing solely with non-relativistic particles) as is readily demon-
strated by averaging over photon polarization states.

Recalling the definition of the operator L’ . equation (41), we re-express
our densities in position and velocity space rather than position and momentum

space, obtaining
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6

afc ch e0 afa eo 8f0 .
+ +—E +—— (vxH).—= 2 I
ot j oxg (ex Iy 0 ‘

j omg Javj mge = T 9y, o

3

33
v d vyd V3C(081’082;08'083)

3 3

mo ma' Mg 3
x[£r (ol |4 (-—- b L - ) E (v )
nh/ 21h | 2rh
mV
.9

S 3 m 3
+l (] + . (Y Vk' 11, ’ . o
zm)" e (v2) }fi vidkd QLdk'd S,k ,gx};)[f,(\_})px,@{( \)

2rh

| K v ¥ { K F. (k') Z (71)
- + '
tfd'(!)J (2m) A fo'(!)Fk(}i) (‘)‘” h tfq(zl) (2r)° Y _! .

The velocity variable was here imtroducod accoramg 1o the taen:ieaton.

¢
g
v=(p- —C—<Ij>)/m(I ;
and we have employed the notation

E<E -3 (R | (72a)
and

H- Vx(R) (72b)
Recalling equations (7) and (40), we sce that Eand H are interpretable as the super-
position of the externally applied and a portion of the internally generated electric
and magnetic fieJds. Thus if we ignore the scattering of particles by photons and

take the classical limit of the terms describing the scattering of particles by
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partxclgs‘vvefl}ld that equation (71) is just the conventional Boltzmann equation with
self-consistent fields: except tor the implication of some restriction upon the inter-
pretation of the selt-consistent tields as well as upon the strength and variation of the
permissible applied ficlds.

The nature of these restrictions deserves a little attention at this point. In
the present context they stem at least partially from the seeming necessity for the
operations of spatial and temporal coarse-graining.  lhe spatial coarse-graining
required that the distribution functions for the particles and the fields E and H be
essentially constant over an appropriately choscen volume V. Thus given V, this

puts an obvious limitation on the space rates of change of the fields, whereas given
the inhomogeneities of the ficlds a lower bound on the dimensions of V is immediately
indicated. Furthermore the distribution functions are expected to represent the
average numbe'r of particles in the volume V -- hence the particles must be pre-
sumed to be localized within V -- thus the least linear dimension of this volume
must be large compared to the DeBroglic wavelength of the majority of particles of
interest. It should be noted that the collision description of the interuction of closely
lassociated particles also requires that their DeBroglic wa - fengths octually their
relative DeBroglie wavelengths) be small compared te s e ar neasure of V.

Thus rapid field variations require a fine-grained average, whercas systems of low-

Pnean—energy—particles require a coarse-grained average and in some systems these
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opposmg demands may not be met, This s unlikely however in the fully ionized
plasma. A serious complication is introduced by the presence of strong magnetic
fields, even if homogeneous. Evidently, in such a circumstance, it is required
that the dimensions of the quantization volume must be small compared-to the radius
of gyration of the lightest particle of interest in the system. Otherwise, the employ-
ment of the plane wave representation for the particles in V would be unsuitable.
Finally, the assumption of the localizability of photons in the volume of quantization
implies that its least linear dimension be large compz:tred to the wavelengths of

such photons.

The equations governing the behavior of E and H remain to be developed in
the present context. As they represent superpositions of internally generated and
externally applied field, and as the external fields are presumed known, it suffices
to consider only the portions of E and H which arise from charges and currents
within the plasma. If we designate these portions by L_r and )f respectively, then
by equation (40) we have

f(x

f xt)—-“—Z /dxs(x)~"] ) (73)

for the longitudinal part of the self-consistent electric field. For the transverse

part of this field we have
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T ,._1_29 _ :
£ (x0= -G g Tr A;f‘(é) D(t) . (74)
whereas for the self-consistent magnetic field we have

0= Tef Vxa® | . (75)
) j
It is immediately evident that )_{ is divergenccless, for
V-¥-Y Tr{yxgs Z[)-"l"r{z-yxészD=0 . (76)

L
It is perhaps also equally obvious that & is the solution to Maxwell's equation

v-Eh- 41rZeo,f0(.§. v, (77)

a

giving the longitudinal part of the clectric field at x due to charges outside of the
volume V about x . Recalling equation (74), it is seen that

Yx§T=-é'”[Zxés}b : | © (78)

which, according to equation (75), leads to

T

Uxf =-> % M (79)

N

Thus three of Maxwell's equations are established almost trivially as descriptive of
the ""slowly varying' part of the internally generated electric and magnetic fields.
But not so, apparently, for the fourth equation relating the fields to the currents in

the system. The difficulty here seems to stem from the necessity of calculating
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explimtly operators representing the time derivatives of A .e., of calculating
commutators of és with the Hamiltonian. But such calculations have here been com-
plicated by the fact that és represents only the "low frequency’ part of the vector
potential generated by charges and currents in the plasma. A semi intultive cir-
ﬁcumvention of this difficulty is accomplished by considering an equation satisfied by
the exact fields in the plasma. i.c¢., the fields which have not been decomposed into
parts of the "fast' and "'slow' variation. Labeling these "complete" ficlds by E'

1
and )_/' one finds (as shown elsewhere) that they satisfy the equation:

Vx¥ - (at _5'“—-TrJ D, (80)

iwhere

JOpZI;: {( Yy -yl vy - mc—‘i” VR BN

g
This is the anticipated relation between the exact fields and the exact currents in the
plasma. However, it is desirable to translate the above description of the current to

the conventional macroscopic description of plasma currents, i.e¢.,

J =£ e/vf djv . (82)
= macro > of — o

This is readily accomplished, for
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ag

where here of course, Ais interpreted as the total vector potential in the plasma.

A little calculation reveals that the first term on the right-hand-side of equation (83)
is the same as the average of the first term on the right-hand-side of equation (81):
so that

Tr i op D E<£ Op> i Q macro

) ket v e o)

Entering this relation into equation (80), and decomposing £ ' and X' into parts of

"fast' and "slow' variation we obtain

F ( F
9 E-MJ +Vx# —l < E,
ot — ¢ —macro — — ¢ ot —

Vx#-

o |

C

P RS R

F
Note that A~ only enters into the "correlation term' in (85). since we have already
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employed assumptions equivalent to the statement that

A LY 5= 4 S0 (56

It is at least intuitively reasonable to argue at this point that the macroscopic cur-
rent J N contributes only to the slowly varying fields _f__ and $¢ , whereas
the "correlation current' contributes only to the rapidly varying component of the
internal fields. The latter however, have already presumably.been adequately

accounted for in terms of photon distributions, hence the only relevant part of

equation (85) is
4

1 0 ¢ 47
YxH-- - &7 1 . (87)

¢ ~— macro
We now assert that equations (76), (77), (79), and (87) provide an appropriate des-

cription of the sclf-consistent fields appearing in the particle transport equations (71).
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S I

THE BALANCE RELATION FOR THE PHOTON DISTRIBUTIONS

In order to complete our description of the plasma, we require the equations

governing the photon distributions, F)C The deduction of a set of such equations

has been described in considerabl~ detail elsewhere [Z ] , hence only the high-
lights of that deduction will be sketehed here,
We definc a photon singlet density in close analogy to the deflnition (14) of

the particle singlct density, i.c.,

5 —2l xeq +
Fy(x K U = v E e ~(?'QX(E+9)QK<E—E)@ )
g

(" tre e q)D, (88)
Xy A -

where we have introduced the notation

8 -ol Xt (i
-8 e (89)
X4V
q

for the fourier sum operator, and

Al )= e (+a) gli-g) o
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for Eh—o phot.o—ns Mglet denslity operator. To tlluminate the sensé in which (88) defines

an appropriate photon singlet density, we first integrate F, over the volume, V;

A
ohtaining,
F (k, t) & F(x, k, t)
’ = X X: »
A A
\,7
= Iral (k) a(k)D (91)
a B D

Thus Fx(li:t) Is just the expected number of photons of polarization X having mom-

entum hk to be found in the volume V at time t - suggesting the interpretation of
3

FA,(—‘S’ }‘ ’ v d

that

3
x as the corresponding expected number in d x. Next we observe

3 E
d x ek Fy(x, k.t

Ak

(92)
2

T 2
3 (E ) HH) 1
- ax g — §r-1D nex
| v

v

T
where we have made use of the relation E~ = - 4x ¢ P. The second term on the

right-hand-side of (92) is just the zer o-point energy implicit in the first term on

»
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actual photons in the volume V. This suggests that, In some sense, we might

&

ldentlfyl

€D+ @)°
1 4 ck
~(‘{', 87 ‘{))—Zz v (93)

kX

and hence - since % c k Is the energy per photon of momcntum h k - further

interpret Z FX(§ , k , t) as the expected number of photons per unit volume
Ak
at the point x . Of course, the identification (93) Is not quantitative, since the

functions identified actually differ by quantities whosc Integral over V vanish
Evidently, the concept of the spatial luocalization of photons {s somewhat more
obscure than s the case for particles.

In this Instance also it I8 convenient to select an appropriate interactio;x
representation in which to calculate the time rate of change of FA. To identify
the transformation leading to a useful interaction representation, it s desirable

first to regroup terms in the Hamlltonian (10) after introducing the fourier analysis

(11) of the vector potential A, One finds that —
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*H-= (hck)/2+ (‘fl0k)57+(k)0(k)
3 oo

1=
>

Ly ZZZ‘iwe %/ 4’ y_ Z‘_/d?: 11<r (ll‘f‘p)

e . .
v |2rhe 3 HRXf o ok g+ v o
Dl [ g o))

T ok )
\
3 +
+ay (k) ax(k)] + 1}/ dx§ oy
' + +
The’ _X(]i). g)t'(_“) 3 -ix-(kk') 4
+ dxe \PU v, - (94)
; m cV fk?
kakvk'
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The prime on the last sum Implles that the terms for which X = X' and k = k'
are not to be included in the sum. They appear explicitly in the terms immediately
preceding and In the second set of terms which are proportional to the photon number

operator, a{(}i) Qk(]i) The first sum on the right-hand-side of (94) is simply the

zero-point energy of the radiation field. Now definc u “free photon' Hamiltonian
by
H - 2 (hek al (k) a(k
= c )ak(*') @, (k)
kX
47 eZ 1 3 +
1 § ol §q°s (95)
xqb+ 2 2m_V W" q)"
(ck) . v

and an "Interaction" Hamlltonian HI by

H=H°+nu! (96)

The transformation to the desired Interaction representation is now accomplished

according to

Y-uvd, (97)

where
U= e(-i Hot/h ). (98)

In the new representation the expression for the photon density becomes
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Fh(i’ k, t) = [:l Tr pk(,k,, g, t) D, (99)
where
ad 5 -0 -
= £ [Ho, pl] , {1uDa)
ot h
and
8D i - _I
R [D, HJ | (100b)
dat o

From here on the calculation of the time rate of change of F)t proceeds ln' a manner
formally identicai to the corresponding calculations for the particle densities
described in Section II. (It should be noted in passing that a more elaborate and
more subtle treatment of photon transport in dispersive mediu is readily accessible
here,  However, as such Investigations are only in progress and not complete, dis-
cussion of them will be deferred). Thus we shall dispense with further discussion

of deductive detall and go immedlately to the final results which are embodicd in

the equation

oF

A +v -Q- YFX

ot 8

3 3
= d vd vldk'dﬂ' S(pl).'lg';plli)
s Y
o'

(c ontinued)
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A Kk A
)+ L] -ad (®F (K. 101
+£®[g®+(3] @ (k) F, () (101)

We have here introduced the symbol vg to represent the group speed of the photons ‘
In the medlum, and have neglected higher order space derivatives of F)x than the
first, To the cxtent that we may replace averages of products by products of
averages, wc find for vg in this case (becausce of our chuice of Hd, equation (Y95),

which Is the prime conslderation in the determination of the manner in which photons

propagate between Interactions with the particles of the plasma),

2
9 47 Ns€s .
v £ T [ck+ — ) _ (102)
g Jd k 2¢ck m .

2

where N; is the average density of particles of kind ¢ In the volume V . Since only

the electrons will contribute appreciably to the sum in (102), we note that

v, = o -uwlf2cks, (103)

g

1§
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2 2 2 2, 22
where W = 4z N e /me. Thus photons of momentum hk such that we/Zc k >1
do not propagate In the medium as Is expected. Evidently the energy of the "free"

photons In the medium Is given by

2 2
Ek =t wk)=hck(l+ we/Zczk ). (104)
The vector -Q- [s just the unit vector In the direction of propagation of the photons,

l.e., Q. =k/k. The scattering frequency, S_, is the same as the ope encountered

U,
earlier (69b) (n the equations governing particle transport, The quantities ek(li)
and a)‘(li) are the transition probabilities per unit time for the emission or absorption
of photons of polarization X and propagation vector k. Of course, these transition

probabllities are space and tlme dependent as are the distributions Fk, They may .

be explicitly evaluated In the sense of first order perturbation theory from the

formulas,
A'k)" K ¢ 1
€ k)= _;_ To’l{(ui)?o'(g) {lino_ (K , (105a)
KK'e ,
Ay K’ =
N TT'KM)fc(_xg){l;vfa(r_( I (105b)
KK'e
where *
' | _2r cikex v 2 e
T(lr{K(kk)"<K! J—c_f_—e gk(l'(') ey |__>l 8(EK'k EK)
(106)
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Because the particle transition accompanying photon emission or absorption may be
between, to, or from discrete states, it Is not generally feasible to convert the sums
in (105a, b) Into Integrals, Thus the K's [n these formulas are simply to be
Interpreted as a sufficient set of labels for the complete specification of particle
elgenstates, The velocity operator appearing in equatto;n (106) is to be represented

e

as v'= (p - —c! ée)/mr The detalls of some calculations of €X and oA for specific

mechanisms of emission and absorption have been presented elsewhere [2] , and

therefore wl'll not be entered Into here.

49



'.FHE UNIVERSITY OF MICHIGAN
|2764-8-T] -

——— v

THERMODYNAMICS OF THE FULLY IONIZED PLASMA

The present description of the plasma is complete and Irreversible (in the
sense of the many and varled approximations that have been introduced into its
development). It is complete in the sense that we have as many equations as we
have unknown functions described by them, and these equations Involve functional
parameters (scattering frequencles, emission and absorption transition probabil-
ities etc,) whose analytical representations have been specified. It is irreversible

in the sense that the whole set is not invarlant under the transformation

(v, k, H, y == (-v, -k, -H, -t).

Thus this description of the plasma should contain the important implication that,
under certaln circﬁmstances at least, the system progresses Irreversibly to a
unique state referred to as the thermodynamic state; and that in that state the system
varlables assume specified forms, Thus it [s of same interest to explore these Im-
plicatiohs here, as this has not hitherto been iccompllshed from the present point
of view for the plasma.

However, In order that such an Implication be realizable it is also necessar.y
that our description be consistent. That Is, the equations must explicitly describe

the full effect of any given Interaction upon all distributions concerned to the same
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level of approximation. But this has not yet been done here, for although due account]
has been taken of the effect of emission and absorption processes on the photon dis-
tributions (as Is obviously essential), the effect of these same phenomena upon the
tlme. rate of change of the particle distributions has so far been neglected. It was
pointed out earlier that for the sake of consistency Inelastic corrections to scattering
should Indeed be retained In the equations for the particle distributions, (71), but
that thelr retention Implied only a small correction to the scattering cross section
and hence would be Ignored. Thus their quantitative importance to the description

of the fully lonized plasma Is most probably negligible. But to achieve a proper
qualitative appreclation of the approach to equilibrium, the influence of these mech-
anisms of Interaction between particles and photons on the particle distributions®
cannot be Ignored, Since the description of the effects that concern us here (to the
present level of approximation, i.c., firstorder perturbation theory) would simply
enter additively into equation (71), we merely sketch at thls point the calculation of
these requlsite extra terms,

According to equation (65), we should compute

4, z (o' YWor o p | (107)
= n -n ‘o .
8t | ea Lot KK b L B L
nvln q

where Wza [s appropriately chosen to represent particle Interactions involving

n' '

single photon emission or absorption. Since the transition probabilities for these
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procesAsesware Inversely proportional to the masses of the emitting and absorbing
particles, It Is evident that we need to evaluate (107) for the clectrons in the plasma
only, Furthermore, for the discussion of the particle distributions at least, we are
restricted to fully ionized systems. Also, as we are solely concerned with the
~approach to the thermodh namic state in thls section, we shall presume that our sys-
tem [s not exposed tu external flelds uf any kind.  Thus the only events that concern
us here are the electronic "free-free' transitions executed In ionic coulomb fields,
In order to keep the manipulations to a minimum and the bring the results smoothly
Into line with the formalism of equations (101), (105a,b) and (106) for the photons,we
éhall calculate the desired transition probabilities by first order perturbation theory
assuming positive energy coulomb wave-functions for the represcntation of the

clectronic states., Accordingly, the quantity to be calculated is

W oW
n mo
sin M’
Wea 4 ( m 3 2
T a2 ‘27h 2
nnyn'nN’ h s , -
n S((»mq wn'v)')

2
, (108)

">

Agaln, after tedious but straight forward manipulations, we find for (107),

><1<"'1 [y emy,
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3 .
-f (v) ( Te ) 'fe(!') Fk(lj) . (109)
eT I rh

!

In this expression, TK(k k ) Is the same as Is glven In equation (106),
\
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WL no; ﬁndertake the task of proving an H-theorem for systems that are not
“exposed to external fields, that have already become spatially homogeneous, that
exhibit no Internal electric currents, but that are still ten.porally . arying. By
virtue of these assumptions we may presume the absence of self conslstent fields

and may take for our system equations:

of 3 3 3
g = dvldvgdvli"'(”’} o’pl;o'g,(r'gB)

U.V

X [pgffq(y} [p‘,' (v )J [ paifc(zl)J [pv, (v, )J

fcr(il ) f(r'(z‘)- ) f,(v) fo_v(Z3)
Pt iclvi)  ppr E vy p HE (V) Py TE ,(v3)
3
+ z dvldkdndk'dﬂ' S, (P; A K" 5 pAk)
Ml

1

X [Po Ly )} {pk + Fk(l_g)] inU + fa(vl)] [p.k, + FK'(B")}

i
|
P!

' F. (k'
X v.fo'('\l‘l) - -..__i_(i__ - fo(y-) &) + Sf_e )
Pt ) pg tELK)  p t1 () ptRE) | O /e
.
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and
o F §
A dvdv dk' dQl's (py XK' ;p Ak)

o'

y £y (v B Fy (k) ] f(v) Fy (&)
3 d3 " l ‘f ~ . ' 7, !
+ dvdyv Vl \A K ka + bk(l:)J [pe : tc(\; )j [pe-fe(\ )]
f (v i
, h}(\ ) ] oW Fk(}i) (111)
Py ~ L.V P, ¥ k)

These equations follow directly from (71) and (101), with due regard for (105 a, b)
and (106), by an obvious regrouping of tcrms, the Introduction of the symbols

3 3
Py = (m(r /27 1) and pk = kZ/(Zw) ,and by a converslon of the sums In (105a, b)
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to Integrals on t;he assumption that the particle states between which emission and
absorption transitions occur are sufficiently densely distributed, We now define a

function S according to

ey LW {p 0 )}]
_ KZfdk df [Fk(li_),ﬁn, Fy(k) + pkﬁ,.,pk
X

- {p;(+Fk(l'(')}’& {Dk+F).(1_(_ )}] . (112)

It is then readily shown that

f(v)

3 v .
L‘iz-}{z dv i g b
dt Pyt I (v)
o

F, (k)
-K /dk YA A Fx' (113)
\ .t (k)
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Substltﬁfl“r{g (.1V10) and (111) for the derlvatives of the distributions In (113) and per-
forming the usual manipulations on the variables of integration while noting the

symmetries cxpllclt In the scattering frequencies C and SU, one finds that

33 3 3
ds % tp. '
,,-d_t_f_){ /dvdvldvzdv3 C(af)l,crg_,,crg,cgy
oo’

. Y g
) (v2) o 21,0 {op = £0(v3)]
el
P tf V) e Bt e HE) et (vg)

3 3
- % /dvdvldkdﬂdk'd_ﬂ_'S(plX'l_*:'; Ak )
0 — —

o'

(continued)
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[ 2ht0) [act ] [pq £ 1] [P+ By )]

fcr(!) F)L(li) {po, jL-fcr (Zl)} {pk' * F)L'(}—(' )}

x In
E(vi) Fy (k) ip(, ifa(»_')] {pk +F(k )}
R Puk) L) Fy (k)
Prlvy)  pgt R g tD () g+ F ()

f (v) fe(g') Fk(b)
X < -~ ) (114)
pe ) fe,(\ ) pe B fe(y—') pl\ * Fk(};) .
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in equation (114) are everywhere negative or zero,

THE UNIVERSITY OF

MICHIGAN

Since fo_n/‘p»a‘ é 1 for all fermlons (because the number of fermions in V must

never cxceed the number of available states) it is seen that all of the integrands

Thus it follows that

(m_/27h )
f(v)= ol

of the relations (116) imply that

3

2

E 6
Bae (V)/

+

Fy

59

(k) =

kz/(21r)3

ds
= o, (115)
dt
and vanishes only when
f (v f (
fg(ﬂ ) f02) L V3
Py tigv) o+ () Py v " Py 21 (V3)
fo'(‘_l_l ) F)UGS) f(v) FAQ()
Pt (Vi) P+ Fy (KD pptf (v)  p +F k)
t(v) £ (") B k)
= (116)
- f - .1
Pe e(x) Py fe(x_) o+ F)\(]i)

By virtue of the conservation of energy implied In C, S, and T, it follows that all

€ (k)/6

e -

Pl

(117)
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where E(\)= ‘;1—\;2/2, Ek)=hck [1 + wz /Zczkz] and B‘I is a no#mallzatlon con-
stant for the particle distributions to be determined by requlrements of conservation
of particles. The particle distributions are recognized to be thosg appropriate for
Bosons or Fermions as the case may be, while that for the photons Is a modified
Planck distribution - the modification disappearing in the vacuum since there we
vanishes, The fact that S s an always Increasing function of the time as the system|
. nanges state with time suggests Its identification as the system entropy; and, hence,
the further identification of the distributions (117) as those appropriate to the tI;ermo-
dvnamic state. Of coursc, these identifications are not complete until the so far
arbitrary constants K (equation (112) ) and 6 (equation (117) ) have been specified.
The fact that 6 [s the only parameter common to all of the distributions, and the
fact that temperature Is defined to be the property of systems In equilibrium which
is the same for all systems, suggests that 6 Is a function of temperature, Appeal

to experiment Is required for the explicit Identification, 6= A T.
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