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A THEORY OF PHOTON TRANSPORT IN DISPERSIVE MEDIA

Edward Harris Klevans

ABSTRACT

A systematic, self-contained development of an equation des-
cribing photon transport in a dispersive, nonrelativistic medium is given.
The postulate-deduction procedure has been developed along lines similar
to those used by Ono in his quantum-statistical theory of neutral gas trans-
port phenomena, The photon balance equation is exhibited as a time rate

of change of a coarse-grained photon distribution function. The photons
helk|

described have an energy—mbfnentum relation fw = —“—’ where u is
the index of refraction. Transport of these photons is characterized by a
photon speed which is different from the speed of light. Transition
probabilities for scattering, emission and absorption processes are com-
puted to the lowest nonvanishing order.

The development of the transport equation is self-contained in
the sense that the transverse dispersion relations for different systems of
interest are determined within the context of the analysis. With respect
to these calculations, a method employed by Mead in his discussion of the
neutral gas has been employed. Whenever comparison is possible the
dispersion relations are found to be in agreement with those computed by
other methods. Except for propagation parallel to the magnetic field, the

method is not applicable to the plasma in an external magnetic field.

Radiation from a plane plasma layer is studied and reasonably



ABSTRACT (Continued)

good agreement with experiment is obtained, although the radiative trans-
fer equation for the dispersive medium is not found to be in agreement with
the more conventional equation which is developed by phenomenological
balance considerations.

Emission and absorption coefficients are modified as a result
of the dispersive medium. For bremsstrahlung in a fully ionized gas, for
instance, as the photon frequency approaches the plasma frequency the
emission is reduced and absorption enhanced. The possibility of Cerenkov
radiation for a plasma in an external magnetic field is also indicated.

Photon transport through an Einstein model crystal is considered.
The scattering cross section developed in x-ray scattering theory is obtained.
In the limit of the infinite homogeneous crystal, the Bragg scattering con-
dition emerges.

The transport equation developed here is expected to be valid
when (a) the medium is isotropic; (b) spatial variation of particle and
photon distributions is slow over regions characterized by a length many
times larger than the maximum wavelength of photons under consideration;
(c) the frequency should be sufficiently above resonance regions (or the
plasma frequency for the fully ionized gas) that radiation damping effects
can be ignored. These conditions are only intended to be sufficient for the

validity of the equation, but may not be necessary.



I. INTRODUCTION

The problem of radiant energy transport is of fundamental importance in
the study of astrophysics, in the shielding of a nuclear reactor, and in attempting
to maintain thermonuclear reactions in a controlled nuclear fusion device., Gamma
ray transport associated with fission reactors is discussed by Goldstein (1). The
photons under consideration are very high energy, (>0.5 Mev) and the most
important interaction processes are pair production, Compton scattering and the
photo-electric ionization, Furthermore, the photons are far from equilibrium,

For radiation transport in stars and laboratory plasmas, we are usually
concerned with low energy systems. Pair creation and annihilation are negligible
and scattering is characterized by the Thomson cross section rather than the
Compton cross section. For stellar systems the Thomson scattering may be
important, but for laboratory plasmas it is usually negligible because of the
small cross section. Depending upon the mean energy of the system, brems-
strahlung (and its inverse), ionization and recombination, and excitation and de-
excitation can be important radiation processes. If a magnetic field is present,
cyclotron radiation may also be important.

We will be concerned in this thesis with a description of low energy photon
systems., The equation of radiative transfer is usually developed by phenomenological
consideration. In a medium in which the index refraction is unity the equation is

written as (2, 3)



o
= = S)\ - a1 (I-1)

where the intensity of radiation I)& (x, w, Q, t? i; defined so that Idedet

is the energy of polarization A passing througgi/ a surface dS located at the position
X going in the direction {2 in solid angle d2 and with 2 ori?ntedy normal to the
surface dS of frequency w in dw in the time interval dt. The absorption coef-
ficient a (x, w, 2) is the probability per unit path traveled that energy of
polarization A radiated with frequency w and going in direction §2 is absorbed,

and the source term S, is defined so that S)x (x, w, 2) d3x dw d2 dt is the

A

energy of polarization A radiated in time dt in the volume d3x about x with

frequency w in dw going in direction 2 in d§2. The operation -dgs— means

differentiation along the path, i.e.

d =dx1 8 _ g 0
ds ds  ax, i ox,

(1-2)

When the me dium is characterized by a spatially varying index of refrac-
tion u(x), equation’{I-1) is modified. According to the derivation of Woolley (4),

one obtains

d Iw Sw Iw
a.:r(—z‘) = Ty Ty T - (-3)
“w “w “(:.J

As seen from equation (I-3), we do not have the simple conservation

equation given by equation (I-1). The intensity is changing from point to point,



not only from creation and destruction, but from a convergence or divergence

of the pencils of rays resulting from a change in the properties ot the medium.,
Turning again to equation (I-1), we observe that in equilibrium,

S(‘J = BL§ T), where Bw (T) is the intensity of black body radiation of fre-

quency w of temperature T. It will be shown later that Bw (T) is the Planck

black body distribution function. The relation

W

= B (T)
w

is known as Kirchoff's law. When M # 1, we obtain

2
=4 B . (1-4)

We can obtain greater insight into the emission and absorption terms in
equation (I-1) by considering the microscopic processes. There are two types
of source terms, spontaneous emission and induced emission, the latter being
proportional to the intensity of the radiation present.

Consider a simple two level system, with state 1 as the normal state and
state 2 as an excited state (2,3). The radiative transfer equation can be derived

by use of the Einstein coefficients B._, A_. and le, where B._ I is the prob~

122 21 12 v

ability per unit time that an atom exposed to isotropic radiation of intensity

IV dv will absorb the quantum hv making a transition to the state 2; A21 is the

probability per unit time that an atom will decay by spontaneous emission from

the state 2 to the state 1 and emit a photon of energy hv; and le Iv is the



probability per unit time that an atom, exposed to isotropic radiation Iv will
make a transition from the state 2 to the state 1. When % and q, are the statis-

tical weights of the states 1 and 2, the Einstein coefficients are related by

= ; = (I-5)

where c is the speed of light., The coefficient B12 is related to the atomic

absorption coefficient. Let n (v) dv be the number of atoms in the state n
capable of absorbing radiation of frequency v in dv., The number of such

absorptions per second and per unit volume is I (v) dv B12 Iy. The incident

isotropic radiation is given by 4w Iv dv. Thus, the absorption coefficient per

atom o (v) is

o) - nl(v)dVB12Ivhy ] Blzhvnl(v)

4
47 Iydvn1 7fn1

Recalling that / o W dv = o, and assuming o (v) is small except in the

vicinity of Vs

Bl b7,
~ A = — -
/o Wdv > o (vo) v, e (1-6)
I Ay dQdS
We now consider - photons impinging upon a surface dS

of a slab of thickness ds. Then, counting gains and losses

a1
v _ hy
& A = [mp @yt By - myBy L] &




for isotropic emission and absorption. From the relations between the Einstein

coefficients, we find

3
dIV = —-—ql n 2hv o - (n.l - —ql n)o I (1-8)
ds P 2 c2 v dy 2
94 2hp°
Clearly, S = n o accounts for spontaneous emission and
q 2 2 1%
2 c
9
a = (n.1 -—— n,) o is the effective absorption coefficient (absorption minus
v 4, 2" v

induced emission). This result can be rewritten as

v - - — —
ds av l:Iv Bv] (1-9)

where
9 2hy°
2
B = —B 2 ¢ . (1-10)
v 9
hoT _qg B
hy
R T
If the particles are in equilibrium, -n—l- = —q—— e and equation (I-10)
1
reduces to
W’ hw/kT
B (T) = 2 5 /(e -1 (1-11)
c

which is the Planck distribution, We see then that in kinetic equilibrium, where

the particles are in equilibrium although the radiation isn't,



S = a B (I-12)

and

dI
ds

-al +a B . (I-13)
vy vov

This is the equation for local thermodynamic equilibrium used in astro~
physics, When we are no longer in local thermodynamic equilibrium it is seen
from equation (I-10) that we need to know the distribution of o and n,.

With this derivation we have progressed to a higher level of sophistica~
tion and insight than was achieved previously, Nonetheless, there are still
some very important questions which this analysis does not answer, First,
there is no obvious way to generalize this procedure to include an index of
refraction, and second, the derivation does not exhibit in a clear cut manner,
the approximations and limitations involved.

To pursue the implications of the last comment, consider the analogous
equation in neutral particle gas transport, the Boltzmann equation, This equa-
tion was obtained by Boltzmann by phenomenological balance arguments similar
to those used to obtain equation (I-1). For instance, the Boltzmann equation does
not reveal the relationship of the one-particle distribution to the two-particle or
three~-particle distribution functions. It does not indicate what, if any, modifica-
tions to the collision cross section might be necessary for different types of systems,
e.g. the plasma, Also, we note that the Boltzmann equation is irreversible, i.e.

it is not variant under the transformation t—>~t, v — - v whereas the



Liouville equation, the fundamental equation of statistical mechanics, is invariant
under this transformation. The relationship of these equations is not revealed by
Boltzmann's phenomenological derivation. A considerable effort (5, 6, 7, 8) has
been expended in the past twenty years in an attempt to achieve greater insight
into the Boltzmann equation and to understand some of its limitations.

A derivation of a radiation transport equation from fundamental considera-
tions was made recently by Osborn and Klevans (9), who introduced a photon
distribution function in analogy with the quantum mechanical Wigner distribution
function for particles. A photon transport equation was developed for nonrelativ-
istic systems and this equation was reduced to the conventional radiative transfer
equation (I-1), A set of conditions was specified within which this equation would
be expected to be valid. Further discussion of these points will be given in
Chapter II, |

The extension of these fundamental considerations to dispersive media was
begun in Section V of reference (9), where it was shown that certain aspects of
collective particle behavior could be introduced quite na”'curally‘intq the descrip-
tion of photon transport in a homogeneogs, fully ionized gas. We present in
this thesis a further extension and reformulation of reference (9) so that greater
detail of collective particle pheno;nena can be incorporated into the analysis from
the beginning. A general framework is thereby p’rovided within which we can
discuss modifications of emission and absorption coefficients, as well as of
transport of photons in dispersive media,

In reference (9), the photon balance equation was developed ‘for photons with

an energy-momentum relation fw = hck. This is equivalent to saying that the



dispersion relation for transverse electromagnetic waves is given by w(k) = ck

k
or that the index of refraction of the medium u is given by u = u(;(k) = 1, For
the dispersive medium we can write w = <k . In Chapter II we discuss
v 3
k
photons which have an energy-momentum relation ;] w)\ = =< where the

W
subscript A specifies the polarization. These photons are referred to (10, 11) as

"dressed" photons, and they contain the effect of the collective particle phenomena.

Y which is different from c. A systematic, self-

They propagate with a speed v
contained development of a transport equation for these photons is presented in
Chapter II. The procedure is deductive, i.e. it is based upon clearly stated
postulates,  Nonetheless, it will be necessary to introduce many approxima-
tions in order to obtain the photon balance equation, These approximations will
be made without exploring the corrections although it would be possible, in
principle, to do so. Particular attention is given to the transport term. It is
shown that, for a medium which is inhomogeneous, i.e. one which has spatial
variation in the particle density or temperature, the procedure used in this
chapter leads to an ambiguous result. The various interaction processes -
emission, absorption and scattering - are computed to a convenient low order.
In Chapter III, the dispersion relations for various systems are computed
by the method suggested in Chapter II, For the fully ionized gas with no external
fields, we find the transverse dispersion relation previously obtained by Bohm
and Pines (12). For the fully ionized plasma in a constant, uniform magnetic
field, we obtain, for propagation along the magnetic field, two circularly polar-

ized waves, the ordinary and extraordinary waves. The zero temperature limit



is in agreement with Spitzer (13), and our first order temperature correction
has been given previously by Pradhan (14). For propagation perpendicular to the
magnetic field, we have a wave polarized parallel to the magnetic field and one
polarized perpendicular to the magnetic field. For the former wave, there is
no coupling with the longitudinal mode and our results are in agreement with
those obtained by the procedure employed by Bernstein (15). For the other wave,
however, there is coupling between the longitudinal and transverse modes and
our analysis is applicable only at frequencies sufficiently high that decoupling
results, Lastly, we apply our technique to a neutral gas of one species and
obtain the Kramers~Heisenberg dispersion formula (10),

Because of the ambiguities which arose in the transport term in Chapter
II, a new derivation of the photon balance equation is given in Chapter IV. The
transport term is developed unambiguously, although it involves certain approx-
imations. The photon speed is found to be different than the photon speed
obtained in Chapter II. However, for the frequency region where the equation
is expected to be valid, the two photon speeds are essentially the same.
Additional terms which did not appear in the earlier derivation are present.
They account for processes for which both emission and transport are involved.
A condition is specified which enables us to ignore these terms,

In Chapter V a brief discussion of the thermodynamics of particles and
dressed photons is presented. An H-theorem is indicated, and a black body

energy density spectrum in the dispersive medium is obtained. This spectrum,
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which differs from the Planck distribution by a factor yi c/ v/ where v = -g—;j—
is in agreement with the result presented by Landau and Lifshitz (16).

In Chapter VI, the photon balance relation is reduced to a radiative transfer
equation which is a balance equation for the radiation intensity. This equation
differs from equation (I-3), although it is difficult to evaluate the differences
directly from the equations, In order to compare them, the radiation from a
plane slab of plasma is computed from both equations. After the solution of
equation (I-3) is modified to account for internal reflection, the solution of our
equation is in qualitative agreement with that found from the phenomenological
equation, Both solutions give reasonably good agreement with the experimental
results of Bekefi and Brown (17),

In Chapter VII, modifications to absorption and emission terms as a result
of dispersion are indicated. In the fully ionized gas, for instance, emission of
bremsstrahlung is strongly reduced as we approach the plasma frequency, where-
as absorption is strongly enhanced.

It is also shown in Chapter VII that Cerenkov radiation is possible for the
plasma in a magnetic field, The calculation is severely limited, however,
because the anisotropic nature of the medium is not considered.

The problem of photon transport in an Einstein model crystal is discussed
in Chapter VIII. The cross section for x-ray scattering is obtained and the
Debye-Waller factor emerges naturally from the analysis. In the limit of the

infinite, homogeneous crystal, the Bragg scattering condition will be found, An

analogy with the low energy neutron scattering in a moderator is suggested.
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Finally, in Chapter IX, we present the conclusions of our analysis.

It should be emphasized that a primary goal of this thesis is the delineation
of difficulties inherent in the development of a momentum-configuration space
transport equation for photons in a nonrelativistic, dispersive medium, Ques-
tions will be raised which will not be answered and approximations will be invoked
without investigation of corrections. But by pinpointing the difficult and obscure
aspects of the development of such a theory, we hope to focus attention upon areas

in need of further investigation,



II. DEVELOPMENT OF THE PHOTON BALANCE RELATION

The deductive development of the photon transport equation presented
in this chapter is based upon two types of fundamental postulates, the dynamical
postulate and tne statistical postulate.

The dynamical postulate characterizes the dynamics of the inter-
actions between the particles and between particles and photons. It consists of
specification of the hamiltonian of the system, and the Schroedinger equation

o ¥

ih 2= - H ¥ (TI-1)

for the wave function } which specifies the state of the system. For the non-
relativistic systems of interest this postulate can be considered to be on a
reasonably firm foundation.

The statistical postulate is introduced for the purpose of describing
the behavior of a system with a large number of degrees of freeqon: It is
presented in a formal manner and consists of specifying a distribution function
for paotons. Tais specification is not unique and we do not wish to claim that
the particular distribution function chosen in this chapter provides one with the
oest methed of development, It does appear to be quite adequate for systems
homogeneous in the particle distribution, although for inhomogeneous systems,
an ambiguity arises in the study of the transport term. For this reason an
alternative derivation of the transport equation based upon a different photon

distribution function wiil be presented in Chapter IV,

12
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Both derivations are being presented because we feel that the
development of a photon balance equation for a dispersive medium from a
postulate-deduction approach is quite complicated. At this stage of the develop-
ment it seems desirable to look at it from various viewpoints. Each derivation
presented here illuminates different aspects of the problem and each has dif-
ferent shortcomings.

The Hamiltonian for a system of nonrelativistic charged particles

interacting with a radiation field can be written as(la)

P Pe Pyl Pye Py2

H=T +T +H +V+HVM+H5®4+H (1I-2)
where

TV =/d3x |i27r02P2 + —8'1'1}— (¢ x_é)zil (II-3a)
o2 2

P _ D S

™ - B . . > 2 7 (II-3b)

g o (0} g

e e '

v o= 2 oo (I-3c)

Pe iﬁec e eczr e2
H = . .
Z A"y + " A (11-3d)

ifie
BN D — A SZG:] (1I-3e)

e
e - 2. — A% AKD) (11-3f)
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2
e
gFY? . Z o - éz . (-3¢)
(o] 2moc

In equations (II-3), ée is the divergenceless vector potential for the
external magnetic field and A and P are canonically conjugate transverse wave

operators for the photon field. They satisfy the commutation relations

[A ), (x)] 0P, &) - 7, &) A @

=it 611 §&x-x)-ih axja ai'y | <47r‘§1_§' |) . (I-4)
The index o refers to the oth particle, and the sum over o and o' is to be
interpreted in the following sense: If o0 and ¢' are the same kind of particle,
take o' < o; if they are different kinds of particles, the sums are performed
without restrictions.

The various terms in equation (II-2) can be interpreted as follows:
TY represents the energy of the photon (or electromagnetic) field; TP specifies
the kinetic energy of the particles; HPe is the interaction energy for particles
with the external magnetic field; V is the Coulomb interaction between particles;
HP'Y'1 and HP‘Y2 are particle-photon interactions, with HP'Y1 representing
one photon processes .- emission and absorption - and HP'Y2 being respon-

sible for photon scattering from particles; and HPYe is the interaction energy

for particles, photons and the external magnetic field.
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The particles in the medium generate fields covering a wide spectrum

(19)

of possible frequencies. Following Osborn , wWe separate the vector potential
into two parts AS and AF,where the former is associated with the "slowly
varying" part of the field and the latter describes a "rapidly varying' part. The
"'slowly varying" field is of importance in developing a particle transport equa-
tion, and Maxwell's equations are used in the discussion of this part of the field
(19). The "rapidly varying" field is employed in the study of photons.

It is convenient for the development of a photon balance relation to
regroup the terms in the Hamiltonian. This is accomplished by selecting from

the system a cubical subvolume V (x), located about the point x with respect

to some coordinate system, whose size will be unspecified for the moment, Then

= + + -
H Hc I-LR HcR (I-5)

where Hc represents the energy of the particles and photons in the cell, H.R
represents the energy of the system outside the cell, and HCR is the interaction
energy.

The "rapidly varying" field in the cell constitutes the photons within
the cell. The "slowly varying" transverse field within the cell is treated as an
additional external field within which the particles move. Interactions between
particles in different cells via long range Coulomb forces constitute a small
effect upon photon-particle interactions within the cell and we may expect that
neglect of this effect produces negligible error. Coulomb interactions within the
cell are retained, however, and will be of importance in the discussion of brems-

strahlung.
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Within the cell we expand the transverse wave operators into a

fourier series with coefficients which are creation and destruction operators,

i.e.
f 2 -ik-x
My
T Z -ikex -
P = i e = ¢ (k (11-6b)
srcdy  am VO r
where

+ +
G0 = £ ®e, 0 E N e (B

+
The operators o (k) and a (k) are creation and destruction operators for
photons of momentum ¥k and polarization X (\ =1,2), and E. X (k) is a unit
polarization vector of the photon field. The creation and destruction operators

satisfy the commutation relations

[o ®, 0] = 6, 6&- k). (I-7)

(We will not be particularly careful to make a distinction between Dirac and
Kronecker deltas, letting the context reveal which is appropriate.) The volume
V in equations (II-6) is the quantization volume and is presumed the same as

the cell volume.
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The use of an arbitrary oscillation frequency in the expansions of A
and P is somewhat unconventional. It was first used by Bohm and Pines (,12) in
their discussion of collective transverse oscillations in an electron gas. The
condition for specifying w);k as a function of k will appear later and will yield
the desired dispersion relations, The creation and destruction operators create
and destroy photons of frequency e They are different from the free space
operators, although they become the same for w=ck . If Ez; and 5>\ are

the creation and destruction operators in free space, Mead(.lo) showed that

w, \1/2
o = 3a) " () fw - (- ) ] e

A

1/2
- 2) [(1-55) i+ (1+2) 3 @] (o

A
- I S 1/2 1/2 +
o (k) = 5 ( k)l/z (Ck*'wl) ay () + (ck-w )" "a, (k) | (O-8c)
KX

& W = —27—1—172— [ck +wx)l/ % (1) + (ck- wl)l/ zo‘x('kﬂ . (I-8d)
wxck)

The Hamiltonian within the cell can be written as

B = i+ 8P + 59 - g+ o (1I-9a)

where

T + gM (I1-9b)

=]
I
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B - of o+ 1Y 4 v (TI-9c)
g o P, P (11-9d)
5@ . (H(I:V2 + o 4 (Hf'yz + T +H§72 (1I-e)
+
T - Z ho, o & o @ (II-102)
AkA =)
Ak
M Z 1 G .0 eoecr' g o
H™ = o 4 I+ p S, x ) (11-10b)
o (o] 0,0’ |x -X

(1) °s orh e—i'IS ")50 + o
HY = -~ v _§>‘ (k) - II (I-10c)
o, k

2
E dre
ge2 . 1 _12'1_ Z O'V
e Lo Mo
2.2 2 -
c k -
+
+ e 1 a &) a (k) (I-10d)
e A A

2
dre
H1P72+T72=% Z [Z —
Ak o

mcr w)xk v

2.2 2
c k -
+ Tw‘&] [a;: () aI(»l_c) + o, (9 (K] (II-10e)
k
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2 o
t -1 =~y .
Py2 Z 1r'ﬁe0 e ik-k) - x
H =
ork moV (W, w )1/2
N “ak ke
+ +
o =I! -
(x) ﬁk & - ¢ X (-k" (I1-10f)
g eo e ecr S
where I = ~-ih V -— A -— A
- —0 c = c =

!

1 !
and S @0, _:go) = 1 if both go and x’ are in the box V, and § (50, _x_G) =0
if they are not, The sum over o is now restricted to particles within the box,

but the conditions on the double sum over ¢ and o' still apply.

We introduce the statistical axiom by defining the singlet photon

distribution function

G ok ) = o % X (I, 4, € @) (-1

The function G>L (%, k, t) , known as the fine-grained distribution
function, can be interpreted, at least partially, through two of its properties.

First,

/ 0 G &,k 0 = (k@ © e @F) (T-12)
V(x)
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represents the expected number of photons of momentum ‘hl_{ and polarization A

in the cell; and second,

/ &y Z G@',_l_{,t)'hwhk

V(x) M

= Z Ry, (I,a; (k) o, (o) (O-13)
Ak

can be interpreted as the total photon energy in the cell, assuming + W) 1 is
the energy of a photon in the medium. The sense in which this assumption is
valid is shown later in this section.

A quantity of more direct physical interpretation is the coarse~
grained distribution function

3

F, & k t) = dx' G &, k, t) (1-14)

1
\%
V()

which is the expected number of photons per unit volume of momentum Tll_g
and polarization A located in the volume V (x) about the point x.

The equation of motion for G>L (x, k, t) can be written

G &kt - % e E S e (F, [1% 0 5 9] F)

- & Zg: eHE S e (F, [ 06 9] ) ¢ @)
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The second term on the left hand side represents photon transport

and will be designated éT. By straightforward manipulation, we find

. 9
o = 2 z 21X 4 g . z(ﬁ (SE,% p, (&, 9F)

+ {Terms of Q(ﬁz) } . (II-16)

Assuming that terms of 9‘(52) give negligible contribution to trans-

port, and writing
o
k
F 2 60T
5 —_

= v (L, 0, & 9F),

equation (II-16) becomes

. T 'Y
~J . -
L 2V Y G (II-17)
0% 9 “\k . s Y :
where v’ = T From equation (II-16) it is seen that v’ in equation (II-17)

does not appear to the right of the divergence, However, from the expansions
of A and P - equations (II-6) - it is clear that e cannot be a function of x
within the cell. Since the development of this term was carried out within the

cell, it is equally valid to write



22

= ) Y
G?L = Q-Vv G?t'

Of course, this does not prohibit either w or VY from varying from cell to cell,

[
Integrating GT over the cell, we find, for the coarse-grained transport

A
term
T 1 3., T,
o=y d’x' G, x"
V(x)
-va. -/ & vae w (1I-18)
— V — A‘\\_

where we have again observed that within the cell the photon speed is constant.
The difficulty we face is the interpretation of equation (II-18) in terms
of the quantity V F which is defined, in the one dimensional model shown in Fig, 1
as
dF (X)) F(X)-F x)

dx = T . (11-19)

Observe that for the inhomogeneous medium, i,e. a medium in which v and w

change from cell to cell, the definition (II-19) clearly distinguishes between the

7
dv'F vy dF
quantities ix and v dx

This distinction is not possible from equa-
tion (II-18), which is defined within the cell, It is because of this that the relation
of equation (II-18) to a transport term expressed in terms of F is ambiguous in

the inhomogeneous medium,
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Figure 1. Two Cells of a One-Dimensional Model
of The System
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To pursue this point, let us again consider the one-dimensional model of
of our system. (See Fig. 1). The quantity r’ represents the fine-grained distribu-
tion function for the whole system and G1 and G2 are the fine-grained distribution
functions of the different cells, They are Fourier representations of K within
each cell and are expected to represent [ quite well, except near the boundaries
of the cells, The bars across the cells indicate the histogram approximation

which characterizes the coarse-grained distribution function.

From equation (II-18) we would write

L
, Xto 4G
FLo= Y 1 dx' A
A L X dx! ‘
L
X3

Because of periodic boundary conditions, G (X + -%") = G (X-Ié';) so that
evaluation of the integral at the end points would not give a meaningful result,
However, as noted in Fig, 1, if we move a small distance € away from the

boundary, we expect G to approximately represent [ , So that

L
+=-
X+ -¢ Mx+Ly - [ x-L
1 o 4G 5 5
L L dx! L
X--§+e

For I_' slowly varying we might expect that this expression is a
reasonably good approximation of equation (II-19). Thus, for the homogeneous
medium, we are able to relate equation (II-18) in an approximate, but unambi-

guous manner to obtain
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However, for the inhomogeneous medium it is simply not clear whether we

should have

= A va PR LA
= Q Vv Fy or F>t viQ ZFA.

In Chapter IV we will present an alternative derivation of the trans-
port equation in which the cell procedure will be treated more carefully. It is
found in that derivation that the transport term should appear as
T

A

Foo= Q-vv F, . (I1-20)

The photon speed V'Y is slightly different in Chapter IV, but, as will be shown, it

is approximately the same as the one presented here for systems for which our
transport equation is expected to be valid.

The right hand side of equation (II-15) represents the rate of change
of G through interactions, Integrating over equation (II-15) we find, with the

aid of equation (II-20), that

- —‘1,- (;ﬁi—) &, [HI, b, (& 0):’£). (TI-21)

’

We have not, as yet, discussed the limitations on the size of the
cell. The left hand side of equation (II-21) provides an upper limit for the cell
size, for if we wish to associate the behavior of the photons within the cell with

the point x, then Gx (%, k, t) must be slowly varying in space within the cell.
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A lower limit of the cell size is partially indicated by the interaction

term. An emitting particle localized within the box has an uncertainty in its

change of momentum, dictated by A Kf i> -lf . This uncertainty appears as

1
a similar uncertainty in the photon momentum, i.e. &Kf ?Ak > - If we
td
Kmax
L

wish Ak—k & 1 we must certainly require that <<1 where xmax is
the maximum wavelength of the radiation to be considered.

We now assume the existence of a complete and orthonormal set of

eigenfunctions{l nnR >} such that

I-LRInnR> = Egp|anR> (I-22a)
B + T [anR > = E,+€) | mnR> . (1-22b)

The eigenlabel n specifies the eigenstate for particles within the cell, while the
label n refers to the set of numbers needed for specification of the occupancy
of photon momentum states within the cell, The label R is attached to the eigen-

‘

state used to complete the specification of a state of the whole system.

Expanding
J_& = z b nmR >
nnR nnR I
and defining
%
Dnan'n'R’ - bn'n’R' bnnR )

the interaction term can be written
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'{l,- (%‘_) <_:E9 [HI’ PK (E-’ Oﬂ§)

L ' © (T1-23)

; D
Vv nR \ k nnRnmR

where we have noted that

k,0 =

( o
PAoiqgRinR = Nk 6n“n'R'nnR

and

[D” H<j nnR, nR = 0.

Substituting equation {([1-23} into (II-21), we obtain

o v ) 1 Z o
° 8 F - -
1N t 2. Vv'E v M DnannR . (II-24)
nn -
The succeeding steps in the study of DnannR are similar to those

presented by Van Hovemo)in deriving the Pauli equation. We begin by applying a

temporal coairsemgraining(zuwhereby

D {t+s) - D (t)
it =t nmRnnR nnRnnR (I1-25)

Dn 4‘Rn~R

in which s is a time interval short compared to the lifetime 7 of a state, but
long compared to the period of oscillation of the emitted, absorbed, or scattered
photon, (These conditions are to be considered as sufficient for our purposes,

although they may not be necessary.)
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From the Schroedinger equation

—Ir(t+s) = e_iHs/hI(t)
(¢}
e-i(HR +H)s/h } ©

e'iHRS/ﬁ Us) tt) . (II-26)

where U(s) = e-lH S/ﬁ and where we have assumed the commutivity of HR

and Hc. Noting that U(s) is diagonal with respect to the R part of the repre-

sentation

DnannR (t+s) = |< nnR] I(t+s)>’2

- 2. D o @B )

nlan' nlantnnnnRu nann nRn
nnnan
-iHR s/'ﬁ
(X) (e U (S) )nanlnqu
= E * . -7
n'n' Dn'n'Rn"n"R (t) UnannnnéS)Unanlan (S) (H 2 )
nnnn

For the remainder of the discussion, we will suppress the label R.

If an average is performed over the phases of the expansion coef-
ficients bnn (t) at the time t, and we invoke the postulate of a random a

priori phases, we find from equation (II-27)
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2
Doy @480 = Do @) = § [Dn'n'n’n' (t) lUnnn'n' )|

-p__®|u,, (s>|2]. (1-28)
nnnn n'n'nn

y(22, 23,24) is employed to

The method of radiation damping theor
calculate the matrix elements of U(s) . Restricting ourselves to those tran-

sition and scattering processes which are accounted for by the lowest power of

HI, we find1

n'nln nlnlnn
+iom
. pe ezs/‘h
&) 2wi dz ih
+ie +— +i +=
Yy-io (z lenn 2 l—'nnnn(z)) (2 1€n'n' 2 n'n'n'y (2))
(11-29)
where, to second order in the interaction strength e,
HI
1 . . I . 2 1oal 1.1
r dal-’n @ = LH - () Z “”‘;’jri:”nﬂ . (11-30)
il Kl n'n'fon n'n'

The integral in equation (II-29) can be performed when the poles of
the integrand are known, We wish to show that all of these poles are on the

imaginary axis. Suppressing the index n, we define

1. See Appendix A.
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1
K (z) =
i ‘z +i€n+%ﬁ‘r’nn(z)
1 . .
Wn(z) =2—11irnn(z)—1H:m

The poles of Kn (z) occur at the zeros of KIII (z),

1(z) = z+ie +iHI + W (z),
n nn n

Let z = x+iy . Then

H o

nn' n'n

Wk+iy) = Z I R
+i

n'fn x 1(y-l-en')

and

=xz Hlnn'Hi'n s Z :(y+en,)

n'#fn x + y+ en,)2 n'#n X2 + y+ en,)2

Then

I

K;l(x+iy) 1+Z ]

n'#n x° +(y+e )

i [y+€ +HI)— Z —-—n——y+€'

2
n'fn x“+(y+ en,)

HI,
nn

nn'

n'n

n'n ’
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-1 )
The first term in brackets is positive definite, so that Kn cannot vanish unless

x = 0. We see then that

lim K;I (x+iy) = 0 if and only if
x=>0

y:_e_HI+ZM

n nn +€ (-3
n'én Y7 S
Assuming the last two terms are small compared to € , we can write
Hllrm' H:l'n
y &-c - H +Z—————. (1-32)
n nn ; -€ te,
n'#n n n

The choice of y given by equation (II-32) is equivalent to evaluating
the integral in equation (II-29) using

,—n' -~ (z) = lim + r’nnnn (x-i enn) .

Corrections to this are discussed elsewheref24£ but are not of importance for

the processes considered here.

Define B. and S by
n nn

B =Re lim i || (x-ie )
nnon nn

(I-33a)
x—-'}0+

and S =Im lim i I-' x-ie ). (II-33Db)
nn x—lO+ 2 nynnn nn
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where Re and Im mean the real and imaginary parts. From equation (II-30) we

find
B = 2_;" Z I n i ' 2 S(wn -0, ) (II-34a)
nn ‘h n' y#nn n'on n n

I I

H 1t H 1.t
s = |H + ), p-—lmn oo (II-34b)
nn nnon ! enn - en‘n'

where P indicates that a principle value should be taken,
The quantity Bnn is referred to as the level broadening, while
Snn is called the level shift for bound state problems, although it also exists

for continuum states. A physical interpretation of these quantities is obtained

s - . 3 . Ty - = +S ,
from equation (II-29) by assuming Bnn Bn'n' Then writing Enn enn -
equation (II-29) becomes

. Z(Gnn - en'n' )
(1,) ()|2 = . ,2 By = — 2 53 - . (I-35)
n'n'nn n n'nn -
h (€ m~ En )/

) (s)| 2 is the probability that the system will make a tran-

Recall that lU
sition from the state lnn > to the state I n'n' > during the time interval s,
Of course, the probability of being in the state I nﬁ > is decreasing with time
as the result of transitions out of the state. The factor e-BnnS accounts for
the depopulation of the state l nn >, and suggests that Bnn is interpretable as

the total transition probability per unit time for transitions out of the state nn >,

and that Bnn’-‘-" ;%: where + is the lifetime of the state. If we limit s such that
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-B s

N ~

sip-<<1, weseethat e " =2 1. This is equivalent to taking lim Bnn—> 0
in the integrand of equation (II-29) before performing the integral.

The quantity Snn is associated with a shift of the energy level €nn
Note from equation (II-34b) that when no photons are present, SnO is nonvanish-

ing and represents the self energy of the medium, It will be shown in Chapter

III that

i ™ Sho T 2 e B0y 8 )

nn n Ak
where g (ka) is a function of W and includes sums over particle momenta.

Recalling equations (II-9b), (II-10a), and (II-22b), We write

where
¢ - LE nM_KT&,ka [“g(‘*’xk)]- (1I-36)

We. have discarded the infinite self enefgy which could have been removed at
an earlier stage by a mass renormalization, It is not of any particular interest
to us,

In a representation in which w = ck, the additional term would give
a finite energy level shift from the unperturbed eigeﬁvalues. This additional
energy results from the virtual interactions of the photons with the medium.
Tidman(mrefers to this energy as the polarization energy of the medium, while

25
Van Hove( a in discussing systems with continuous eigenvalues, refers to this as
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the persistent effect of the medium.
It is now possible to appreciate the advantage of the arbitrary e -

By choosing sothat g (whk) = 0, we will be working in a representation in

Nk
which the polarization energy of the medium is included in the photons from the
beginning. 2 These photons, which have a dispersion relation different from

w = ck, are the "dressed'" photons mentioned in Chapter I. The unperturbed

photon eigenvalues are given by

with W e chosen so that g (ka) = 0 or, equivalently, Snn - SnO = 0, For
simplicity we drop the bar in the eigenvalue notation.
Equation (II-25) can now be expressed in the form of the Pauli
equation
Dy ® = ; W e [Dmm- Dnnnn:l (I1-37)
1

where Wnnma , the transition probability per unit time for a transition from the

state ‘ ma > to the state |nn >, is related to equation (II-35) by

IU(I) Iz

1

wfn:mﬂa lim nnsma - 2; lHlll ma| 2 S(wn —wma)(n-ss)
S H N n

2. The idea of incorporating the level shift into the photons was borrowed from
Meadq.O)'By modifying the radiation damping theory of Heit1e1‘23) and otherd?2, 24)
we have adapted Mead's calculation to the photon transport problem,
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with W = € - /R . The limit s—w reflects the condition sw >>1
n

discussed earlier. The transition probability thmoz has the symmetry property

W .
nn mo monn

To proceed further, we note that

IHinma ,2 EUHIflrimal ’ * I(Hg'y 2)nnmoz, z:l'

No cross terms appear because H(l) is linear in creation or destruction

2
operators and Hg T2 s bilinear; thus, a matrix element of both terms cannot
be simultaneously nonvanishing.

Py2

The transitions described by H2

are photon-particle scattering,
while those accomplished by H1(111)qma include: (a) electron transitions between
two magnetic states, resulting in emission or absorption of cyclotron radiation;
(b) free~bound and bound-free electron transitions, producing recombination
radiation or photoelectric absorption, respectively; (c) transitions giving excita~
tion absorption or de-excitation emission; and (d) free-free electron transitions,
where the electron is under the influence of a Coulomb potential. These latter
transitions account for bremsstrahlung and inverse bremsstrahlung. It will also
be shown in Chapter VII, in connection with cyclotron radiation calculations, that
Cerenkov radiation is possible for a plasma in a magnetic field.

Because of the inverse mass dependence of the matrix elements,
only electrons need to be considered for both scattering and radiative transitions.
We will specify the particle state according to the process and medium under
consideration, The subject of x-ray scattering in a crystal will receive special

attention in Chapter VIII.
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For other cases discussed here, we will treat the system as a
collection of spinless particles. It will be assumed that the Hamiltonian of the
medium H’M can be written as a sum of terms, each representing either an
electron (for the fully ionized gas) or a molecule (for the neutral gas), This
allows us to employ appropriate product wave functions for the system under
consideration. For example, for the fully ionized gas, product wave functions
for the electrons will be chosen. Relevant aspects of completeness of the particle
states have been discussed in reference (9).

For specific calculations, the following approximations will be
employed:

(a) Emission and absorption of cyclotron radiation - Ignore interactions
between particles and take the particle states as electron magnetic states.
Cerenkov radiation will appear as transitions in which the component of the
particle momenta along the magnetic field changes.

{b) Recombination radiation and photoelectric absorption - The bound state
is chosen as the state of an appropriate central potential, e.g. the hydrogen atom
state of a Coulomb potential, Plane waves are used for the free particle state.

(c) De-excitation radiation and excitation absorption - Use Coulomb wave
functions without any external fields for both bound states.

(d) Bremsstrahlung and inverse bremsstrahlung - Use positive energy
Coulomb wave functions for both initial and final particle state. Expand the wave

functions in a perturbation series(26) and keep only the first nonvanishing matrix

element,

From equations (II-25) and (II-37) we write (with a little manipulation)
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w? |
nnn'n' - 1 -
2 = Dnnnn [nlk n)\k] . (II-39)

nnnlnl

In order to simplify the remaining calculations in this section, we will neglect

photon scattering. Then, from equation (II-38)

O O P

1 2

— Sw ~-w. ).
1.q! | PN |

V nnn'y. th nmn'yn

nm n'n'

0

The expression for Hn ntn! is found from equation (II-10c) to be

(1) _ orh .
fomert ak,x , V Enla >

o
W [dTy gtk x £,0 - 1y,
. L. O
+ <T?|a'>L (k) ' n' >/dtlﬂ; ok X é)\ (k) - II_G‘//H.] (T1-40)

where dT ;nl- dx .

The relation between the decomposition of (b (x, x . EN) into

=1 2

appropriately symmetrized product wave and the second quantized formalism

used by Osborn and Klevans (0) is given by Landau and Lifshitz @0 for both

bosons and fermions. We obtain
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g

% —ikex’ o
Z/dtwne EX g0 1y,

- \/(11 ) i x v b XL @ bW @4

where the positive sign indicates bosons and the negative sign fermions. The
labels K and I_il appended to the one particle wave functions represent a sufficient
set of labels to specify the one particle state.

Then we have

K
1 o Z 1
- W = T, (k) l+n,)
A% nyn'n' g g VI
+ 2
@ |<n|e @] > (II-42a)
akK
or = Z T ! (k) n (1+n_K) I<n,a & [n* > 2 (11-42b)
B, K, K fg T KK AT
depending upon whether we have emission or absorption. The quantities
K aK
T 1 1

8 and TBK are given by
K
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REL I £, - _I_I_'_Ig >| (I-43a)

NN l§>|2. (1-43b)

The index B refers to the various emission and absorption processes.

For the emission term ﬂik = i~ 1 and for the absorption term

:qik = Ty +1. Equation (II-37) can therefore be written

K
3 i 1
Fo= E D_ T, Mn, {tng) by +1)
BurKK, iy l: A K 1M
K1 ¥ (II-44)
- T BK (k) . 1+ nKl) e | - II-

It will be seen in Chapter III that Ok is dependent upon the particle
occupation numbers so that T is dependent upon particle occupation numbers.
Replacing the averages of products of particle and photon occupation numbers

by products of averages, and employing the symmetry property
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K
0w = TF Qp
we obtain
Pl Z ele(;\k) [:{VF (k)+1} Vi (K) {1+ Vi (Kl)}
BKKl BK = A= o - - o=
- VF, (g)VfU (151) 1+ VE (I_{_)}] (I1-45)
where
K K
’f‘l()tk)" ZD TI(M_<)
BK nn BK
2 2 2
47 ¢ e 1 -
= £ 2 (mc) o 6<lek—wK)
- 2
(x) <K1| ok x {i)‘(_lg)-g,§> . (11-46)

We have used the approximation in equation (II-46) (and it will be

used throughout) that

>, D AW = A®
o

where A (») is some function of w, and where

wos Z Dnnnn ka'

nn
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Finally, proceeding along entirely similar lines, the contribution of

photon scattering can be computed. We obtain for the photon balance relation

K
fﬁ Q- Vv F, = Z 71 [{VF (_l§)+1}Vf(I§)
8 )
BRK 'K

(x){lin(Igl)} - VF, (_l_{)Vf(Iﬁl) {li Vf(IS)}:I
=K\k '
* Z Sk k! [VFK'(E){VFK(E)+1}Vf(K-I) {lin(I_g)}

Kth'k' 1
-V F)L k) <V F)U (k") + 1} Vf (I_(_){l_-l; Vf (gl)}] (I1-47)
where
2 \2 3 4 2
=KAk e 8w C
St ( ) _c £ 0 £ &)
Kl’ L'k ch V3 ka ka, A !

® HK+K-k-K § B - ) . (L-48)

Dkt



III. DISPERSION RELATIONS

A. General Considerations

In Chapter II, it was pointed out that the unperturbed photon eigen-

values are given by

where w) i is chosen such that 8, ,, - 8, = 0. In this chapter, we will investi-
gate this condition.

The quantity Snn was given in Chapter II as

I HrImrc Hi-ann
Sun = | Hypyt > P : (1I-34b)

rc €. -€
nn ro

It is readily established that

2
HI :(Hp'}’ +T"Yl) |
nnnn o nnnn
c2k2 + ir_o? 2 ng- 2
S IR ST B
) Mk ¥k ) '
Ak Wrk
(I11-1a)
and I I
. .
Z p Hnnrcr Hrcnr) _ Z % (_e_)2 2 (ltﬁ‘K)nKl
“A'm’ VT g
ro el'ln - €ro h.kKKl wlk

Mk II)\k(I_Slll_()lz (n)\k+ 1) | Lk (I_i_ll_i_l)| 2
(x) + (III-1b)
L Ex Fh‘*’xk Bg, "B -1 Wyk

42
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where

Ik(I_(lll_{)E<I_(1|e g, (k) I|K> (I11-2)

and where we now employ a prime to indicate the exclusion from the sum terms
for which a denominator vanishes.
By straightforward manipulations we find (except for the self
energy of the medium)
Spn © ;L—k,‘ n B 0, 1 8y (111-3)

where

V%e 9. 9 5

g(whk 7Lk L\ ZIS: ng + ¢k -, o

2
4ar €2 lIhk K| K)|
+( ) { - } . (I1-4)
Vm2 Z nK nK1

KK, Eg -EKl 'h“xk

As discussed in Chapter II, we choose Wy c 5O that g(wkk) vanishes. The obvious

non-trivial choice is

In accordance with remarks in the last chapter, averages of func-

tions of w will be replaced by functions of the average of w.
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Throughout our discussion we will find it convenient to apply various approxi-

mations with respect to the averaging of wy . In particular, we will use

2 o~ (5 )2
whk (whk)
1 \~ 1
— )_ -_—
Yxk Wk
1 o 1
( ) & ——
Uy kY k! Wk “nk

Although these approximations are employed in a rather cavalier manner, it
should be remembered that, at least in principle, it would be possible to investi-
gate the errors involved.

Applying an average to equation (III-5), we now find

=~ + - -
Wy = © k wp ll -p)\k] (111-6)

where w}z) = 47rne2/m

2
I, (K; | K) : :
oL D ] (&, - F(K)
Ak m - 1 =1 2
KKy By -Ey -,

) 2
B I (K |K) L. (K|Kq)
F) Tk &g [K)| +Ikk | |1
EK'EKl't‘*’Ak EK-EK].Hiw)tk
(Im1-17)

and T (K) = = f (K) . From equation (III-6), the index of refraction uy can be

written
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2 -
ck W
‘—‘2 = (— Pe1- _2p Ll- pMJ . (111-8)
A O Whk

Because we will only be interested in & and u throughout the remainder of the
thesis, we will drop the bar and use w and u as the averaged quantities.

In order to compute Ikk(l_gll K), it is necessary to specify the
particle eigenfunctions. Three special systems will be considered, and the
eigenfunctions will be chosen accordingly. They include: the fully ionized
plasma with no external magnetic field; the fully ionized plasma in a constant

homogeneous magnetic field; and the neutral gas of one species ,

B. Fully Ionized Gas With No External Fields

For the fully ionized gas without external fields, we use plane
wave states for the particles. After going to the continuum in velocity space,

we obtain
—

(é)\(li) ’ 1)2 k2

2
(y - k)2 =-(h21;‘n—)2

w2 = 02k2 +w§ 1+Pgd3vf(v)

Vo,

= (111-9)

A quantum correction to the classical result is in evidence in the integrand.

If the particle distribution function is isotropic in velocity space, the frequency
Wy k is independent of which polarization is chosen if linear polarization is used.
(12)

This is the same result obtained by Bohm and Pines . In the zero tempera-

ture limit, equation (III-9) reduces to the Langmuir dispersion relation

w2 =c2k2+w2 .
p
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Dropping the quantum corrections and assuming a symmetric
velocity distribution, equation (III-9) can be written, by straightforward manipu-
lation, in the form

£

W = 2K + wul Pgds S {\/ (II1-10)

b
(w-k+ v)

This transverse dispersion relation for the fully ionized gas was obtained by

(15) by solving the linearized set of equations consisting of Vlassov's

Bernstein
equation and Maxwell's equations. Our dispersion relation (with no external

fields) is obtained from his equation (32) when his Laplace variable s is set

equal to - iw.

C. Fully Ionized Gas in A Constant, Uniform External Magnetic Field

When an external magnetic field H is present, the medium becomes
anisotropic. In general, this will introduce coupling between the transverse and
longitudinal modes. Radiation then propagates in a direction different from the
normal to the wave front. The concept of the photon does not enter naturally

“(or, perhaps, even legitimately) in this context.

Nonetheless, under certain circumstances the different modes
decouple and el = ylz, where €T ig the transverse dielectric constant for pho-
tons of polarization X. One such case is propagation parallel to the magnetic
field. For convenience the magnetic field is chosen along the z axis. For

(28)

particle eigenstates we choose the magnetic states of Johnson and Lippmann

When circular polarization is employed, the waves propagate independently and
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we obtain 3
vz kg
2 2,2, 2 W ay (1 - Yt )
W, =c k +wp P dvzf(vz) :’z K, (I11-11)
- (Wt w) (1 - ——)
- wij: W,

eH o . . .
where wg = = The positive sign is associated with a wave whose electric

(13)

vector rotates in the same direction as the electrons gyrate. This is called
the "extraordinary'" wave. The negative sign refers to the "ordinary" wave, for
which the electric vector rotates in the opposite sense.

In the zero temperature limit equation (III-11) reduces to

2
W

2= il

z 1+

oo (II-12)

o
The apparent difference between this result and that given by Spitzer(13) is
accounted for by our associating a sign with the charge e, while Spitzer uses

|e| = - e for electrons.

A first order temperature correction can be obtained from equation

v,k 1 .
(II1-11) by expansion of < - i z , assuming we are not near a resonance.
Wy T W,
We find 2
o P
5 wy (W + W)
[T 5 7 (I11-13)
1 - AD Y

e lwg £ ‘*’+)2

3, Appendix B
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1/2
where Ap = (ﬁ) is the Debye shielding distance. This is the same
(14)

result as obtained by Pradhan for the ordinary wave. He does not give a
result for the extraordinary wave.

The inadequacies of the present method for anisotropic media have
been mentioned. Nevertheless, it is of some interest to consider propagation
of radiation at some angle 6 with respect to the magnetic fiéld and compare
the results achieved through our perturbation procedure with those obtained by

(15)

the more conventional approach For simplicity we consider propagation
perpendicular to the magnetic field along the y axis in a left-handed coordinate

system. The polarization vectors are chosen as §z and &x. For polarization

parallel to the magnetic field, there is no longitudinal-transverse coupling and

we ﬁnd4
2 W
wi = wi = c2k2 - w2 L I 0 (1I1-14)
PyTTo B Twy n
where
°°d - v, ck 72
In = ) v, (VJ_) En (—-c— _“I) . (10-15)

For polarization perpendicular to the magnetic field, we obtain
Wy =W, =ck -w2 (—) —_ X (I11-16)
P k

where

ko = Boltzmann's constant

4, Appendix C
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X = _Jay tlv)v) ‘;Jr'l (= —CE)J (I11-17)
For comparison, consider the sclution of the linearized set of equa-
tions containing the Vlassov equation and Maxwell's equation(IS). Bernstein
does not exhibit the transverse dispersion relations in a form which is easily
compared with our results. However, by performing the ¢ and v, integra-
tions in his equation (21), we can, from his equations (21), (23), and (27) ob-
tain these dispersion relations. We find first that equation (III—14); which
represents a wave whose polarization vector is parallel to the magnetic field,
exhibits no coupling and is in agreement with Bernstein without further approxima-
tion; and second that, because of longitudinal-transverse coupling, equation
(LI-16) is in agreement only for ck >> wc and ck >> wp. At these fre-

quencies the coupling is negligible.

D. The Neutral, Single Species Gas

As a final application of our method of determining dispersion

relations, we consider the neutral gas of one species. The particle eigen-

(@) (@)

states are the eigenfunctions of H « where H is the unperturbed
mol mol
()

‘ M
Hamiltonian for the oth molecule, and where we have written H =Z Hmol .
a

For the dipole approximation we find

b
2.2 2 2 =
c k™ = 1-w E f(K.) S S U (I11-18)
Ak R —— U2 2
| Ak KK1
where b , the oscillator strength is given by
KKl J
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(Im-19)
with
KKy €, w- -’5>KK1

n

- £ - <k | x| x>

1

If £ (51) = SK 0 (all molecules in the ground state), we obtain

1
2.2 b
¢k 0
el - c1-2 ), —20 (111-20)
2 b B2l 2
K0

which is the Sellmeyer-Drude formula for the dielectric constant of a medium
of undamped oscillators with frequency U o When equation (III-20) is written

in the form

) 81 e? N 5 o] (0 x)

KO
uy -l o= 5
v K 'h(wIz{O —w)\)

(Im1-21)

we have the Kramers-Heisenberg dispersion relation. With respect to this

10)

result our procedure is equivalent to the calculation of Mead( .



IV. A MODIFIED DERIVATION OF THE PHOTON TRANSPORT EQUATION

In the derivation of the transport equation presented in Chapter II,
a certain ambiguity arose in connection with specifying the coa;‘se—grained trans-
port term in an inhomogeneous medium, i.e. a medium in which the photon
speed vYand the frequency w are functions of position. In this c'hapter we
will present an alternative derivation of the photon balance equation in an effort
to shed more light on the question of photon transport.

A coarse-grained distribution function will be introduced at the

(29)

outset, and a formal cell procedure developed This will be in contrast to
Chapter II, where the decomposition of the Hamiltonian was carried out on a
somewhat intuitive basis. Other aspects of this derivation will also be of inter-

Y
s
est. For instance, it will be shown that the condition LA << 1, where s is

L
the time employed in connection with coarse-graining and L3 is the cell volume,
is necessary to eliminate terms describing combinations of interaction and
transport.

The statistical postulate for the present development is introduced

by defining

1
Fh@. k, t) = _;3 Tr D(t) N (X, k) (Iv-1)

3 of momentum k in the cell of

as the expected number of photons per cm
volume L3 located atX_. The density matrix D is again defined as

Dpnnrny = b* 'y bnn where b is an expansion coefficient of the expansion

U= ann' nn >
nn

ol
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and {| nn >} is a set of orthonormal base vectors presumed to be complete.
The meaning of the labels n and n will be given later.

The singlei density cell operator is given by
P (E K= @ (X ke, (X k) (1v-2)

where the cell creation and destruction operators obey the commutation rela-

tions

[aka_c, K, o, (X, IJ‘] -6 .8 Sk @
3] .X, X '

The equation of motion for F)t is

F =-l;7- -%—) Trp [:D, H] = (%—)(%—) Tr D [H p] (IV-4)

where the Hamiltonian is the same as equations (II-3) except that the second

quantized formalism will be used for the particles(

In order to accomplish the averaging of [H, p:l we expand

-ik" x
Alx) = 2“3"2 ), ——EElE
L X. koA (o, X, k] A
(Iv-5a)
+ , -ik - x _
P(x) - I — ), la@ne E(X x) §(X, K
8t c“L ;k )y
=32y
(IV-5b)
_ 2 Z
Us (x) —W £ a (X, K) uolﬁ(é) E(X, x) (IvV-5¢)

where
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wy (X2, k) is the oscillation frequency associated with the cell located at X_;

_f UK (x) |_are a complete set of particle eigenstates that will be chosen later
L o2

in accordance with the radiation mechanism under discussion; and a (X, K)

anda_ (X, K) are creation and destruction operators for particles of type o

and momenta h K in the cell located at X, They have commutation relations

E(x K), a (x' jjt gao,%_mg SK-K)  (IV-6)

where the plus and minus signs refer to fermions and bosons respectively. The

step function E(X, x) can be written

E(X, x) = E(X |, x)) E(X,, ) E(Xp, x,) (IV-1)
where
E(X, X.)=]. fOI'X_ -.I"_ < X. <x.+£
7 2 j i 9
- L
- 2 (Iv-8)
o
2

0 otherwise.

Two properties of E which are of special interest are

1) E(X x)E(x', x)-E(x, x) 51 x (IV-9a)
dE(X, ) ]
2) P L Sk o+ By L Sk ox - Ly, (IV-9b)
dx. J ] 2 J J 2

J

The cell procedure, as introduced here, has some unconventional

aspects. It is seen, for instance, that



o4

_1k

2
E@L‘E_._ \ | §+>L(‘ - k) VE(X,
3 ~
L x,lgwwk(x,m

1<
>

which vanishes within the cell, but not on the boundary. In a similar manner,

the (Vx é)2 term in the Hamiltonian will result in the appearance of new terms
which we will call HT. It must be kept in mind that the cell procedure was intro-
duced to perform the operation Tr D EI, pﬂ , 50 that the effect of these additional
terms should be judged with respect to the equation for F)L rather than on some
intermediate stage where it may appear unconventional. In fact, the terms in

HT will lead to photon transport, as well as other meaningful effects which will
be discussed later.

After a considerable amount of straightforward calculation we can

write the Hamiltonian as

1 PT ceC
g+ A+ 1w T+ 5 T 5Ty (IV-10a)
where
g - T‘}:o + HM
aM =P 4 P4 v (Iv-10¢)
(1 1
gD _gPrt, gPe (IV-10d)
' 1 P
g2 =(H§”’2+T7 )+ (H, 72+T72)+H§72 (IV-10e)
YT __ 4T YT (Tv-101)

(1)

M I 2
The terms H° , H and H =H ' + H( ) are the same as those discussed in

Chapter II. They refer to photon and particle energies and photon-particle
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interactions within cells, and can be written

O+ g+ gl = 2 LI_{O (;LC)+HM (X)+HI(]_CU .
X
YT . PT . .
The terms H = have already been mentioned. The term H™ ~ is associated
with particle transport and HIT will describe an interaction in which a parti-
cle moves from one cell to another during an emission or absorption of a
photon. Lastly, the term v°® is the Coulomb interaction for particles in
different cells. All of the terms are shown in Appendix D.

The Schroedinger equation can now be written

oy
ih — =@°+nl+yg?T+gPT+ T

ot

+v°o . (Iv-11)
The set of eigenfunctions {!n n >_ mentioned earlier are chosen such that

HO | nn> - z E @+ € (X) |nn>.
x " -
The eigenlabels nn specify the number of particles and photons of all possible
momenta (and of different kinds of particles and different photon polarization)

within every cell; i.e.

|nn>= n eose N .3 oo IN 0oy

eeod N oe ey N
k 9 3
Xk X K X,k

Expanding ¢ = zbnn(t)l nn > , we observe that the diagonal elements of
nn

: . 2
the density matrix Dnnnn = | bnn ' give the probability of finding the
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entire system in the state | nn > .
It will be convenient for further calculations to transform to an

interaction representation. Let

7=ud (Iv-12)

-1 +HY Dy

where U = e satisfies the equation

ik % @+ U . (IV-13)

Because U is unitary, we can write

F - L TrpD, (Iv-14)
AV
where
=+ ~ +
D=U DU andp =U pU. (Iv-15)
Then
F = T |5 D+5 i'):l (IV-16)
VY SNl i

It follows from equation (IV-13) that
5 i "o _~T -
p = (‘lli_) [H +y'T > Py (X, lf_ﬂ. (Iv-17)

The term Tr 5 D leads to photon transport and will be designated F;f . From

equation (IV-17), and noting that

(5% 0, (%, B)]-0,

we find
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« T 1 Y
F, = — TrD|H , p (X, k)
\ v @yl )]
(Iv-18)
1 <
1 YT
= _ - s x:
> \ nL' Pann'n [: ! )]n n'nn
n'n'
By straightforward calculation, we find
, F(X, k, t)
&{'lr py (X, Eﬂf‘ itk A
v (k, +k!) E (k") &, (k)
2 1 1'S=" ==
+ih & 3 § (lg-k) §lky-k1)
A'k! Jw (X, k)
h —
+
. 8 ah' (:;I: li')
(x) JL"‘A (X, k)
axl wk' (X, k')
0 ayy (X’ E')
+ a/; (X, k A
0K Ju, (X, )
+ cyclic permutatior] s (Iv-19)
where the operation operating on a function h is defined by
3 h(E) h(X; + L, X, X3) -h(X)
—_—= (Iv-20)
X L

Equation (IV-19) is not exact. Letting h( X j) be each of the above functions

which follow a differentiation, we have approximated
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oh(X.- L) 5h(X.) h(X )
il P j

)
IX 9X, X"
j

IR

oh(X.)
by ———a-i-]——— , neglecting all higher derivatives. This implies, for instance,
j
that X must be slowly varying, and partially specifies the upper bound on the
W

cell size.
Assuming the off-diagonal elements of the density matrix in equa-
T . .
tion (IV-18) give negligible contribution, we find that only Hy is of importance,

and then only the first term. Thus

F{ 2 U (X,KF, (X, k, t) (Iv-21)
where
2y
vie & X =cu (X,Kk).
v, (X ,K) A

Equation (IV-21) indicates that v" should be operated on by the divergence.
Note that for the nondispersive medium we obtain the expected result V'Y = c.

The photon speed obtained in} Chapter II was given by vi= Vg *© %:-—
whereas in equation (IV-21) we find v = cy >tCg , k). In order to determine
the difference in these results, let us consider two isotropic dispersive media,
the fully ionized gas and the neutral, one species gas.

The dispersion relation for the fully ionized gas was given by

equation (III-10) as

f(v)
W = czk'2 —ww2 gd3 vV — (II1-10)
p (0-
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We find, with a few manipulations, that

- . )
1+ -2 b By -———2-5 =
2¢c M -k*'v
v :..a_w_ :c“ 2 4("0?-_; (IV—22)
W, .
& 8k T de Vi) =
2¢ H w-k-v)* |

where I{_\ is the unit vector in the direction k. It is seen, then, that if the index
of refraction y is not appreciably different from one, (w >> wp),thenlvgdvy-'—cu.
In the zero temperature limit, Vg = Ch is exact. As we will see in Chapter VII,
“when y - 0 the absorption coefficient gets very large and the present analysis
| becomes of questionable validity, so that the frequency region for which i does
not differ greatly from one is the region where our development is expected to

have greatest validity.

For the monomolecular gas, we found in Chapter III that

2 87 Ne2 WK 0 l (éh(li)' Xko ?
peé-1 = ———— . (1m1-21)

h. 2
V 2 -
K fl ((:.JKO () )

If w)t >> uKO’ this becomes

2
Iy BrNe KO (g, 10 x)
wi w% \% H =A™= =TKO
so that, multiplying by wi , we obtain
ow
h‘ = =
po” Vg T CHy -

The frequencies for which Wy >> Wi are above the resonance region.

For m)L << w, . we are below the resonance region where, from

KO

equation (III-21), it is found that Vg # vie u . However, we haveno assurance
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from either derivation of the transport term that it is valid to pass through
the resonance region where, because of strong absorption, the transport equa-
tion is not expected to be appropriate.

We see then that in the frequency region where the present analysis
is expected to be valid, the photon speed given in Chapter II and the one obtained
in this chapter are approximately the same and it is not obvious, from the point
of view of measurement, which is more appropriate.

The second term in equation (IV-16) accounts for interactions, and
we will write
#' oL 5D, (IV-23)
AV A
The time coarse-graining will be employed in a manner similar to that already

used in Chapter II. Thus

D (i+ s) - D(t)

b

5 (IV-24)
S

We will again require that sw>> 1 and s/f’< <1, where w is the frequency of
the photon which was emitted, absorbed or scattered, and 7 is the lifetime of a
state.

Equation (IV-23) now becomes

Fi o —V}; Trp E)(Hs)—f)(t)]

- L (Tr p. Dit+s) - Tr phD(t)J : (Iv-25)
Vs A

Recall that

Dit+s) = Ut (t+8) Dt+s) Ult+s)
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so that
Tr 5x D(t+s) = Tr U(t+s) U+(t) Py U(t) U+(t+s) D(t+s)
= Tr U(s) py U' (s) D(t+s) . (1v-26)
But
D(t+s) = U(s) D(t) T (s) (Iv-27)
where
o) - e RN (IV-28)

Utilizing the Feynmann calculus(30) , We write

U(s) = U(s) (1+ Q) (IV-29)

where

® , Pj-1 I —_—
I _ _ iy I IT I IT
Q = E ( ﬁ) S dsl....g d:sj (H'+H )1... (H'+H )j

=0 (IV+30)
and
. --0 T P o R
—_— i(H +Hy)s -i(H +H,)s
(HI+HIT)1= e 1)syfh («HI+HIT)e ( l)l/ﬁ.
(Iv-31)
PT

The terms H® - and V¢ have been dropped from the discussion
because they do not account for any photon processes. With the aid of equa-

tion (IV-29), equation (IV-26) becomes

- - +
Tr 5, D(t+s) = Tr p, (1+Ql) p(1+qQ!) (Iv-32)

so that
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Tr [5 Dit+s) - p D(tﬂ

+ +
+QIDQI]

"

Tr [QID+DQI

n?’r]?

AN 1 2
n Z D, [P Q 1t
o EMS. (:nnnn ' nnn'n l

-D n | erl'T)'nT? \ 2 + ﬁerms proportional to the off -
diagonal elements of the density
matrix} (IV-33)
These latter terms will be assumed to give negligible contribution.
We turn now to a calculation of Qfmn'n‘ . There are two contri-
butions to this matrix element, one from H! and the other from HIT. I order

1 1T

to indicate the relative importance of these terms, we calculate H™ and H

using plane wave states for the particles and find,

HIT ~ 1

Bl KL

This quantity is much smaller than one for all cell sizes of interest. Thus,

we may expect that HIT will give a negligible contribution and it will be dropped
henceforth.
1
The interaction processes of interest are contained in QI("), where
S i@ +H)s/f i +HD s/
1) L 1 -
Q) = ) ) ds; (e H' e
e 0 nnn'y’
(Iv-34)
Writing

-i(H0+H',JI‘)S1 A -’ SI/Jﬁ
e - = = e - (I + QT(Sl>) (]ijg))
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with
8y s ' .
(89 j-1 iH s /ﬁ iH s
T, \_ i,j . /7T 1
Q (s)= (-) g S ds'.... ds @ H
' J=Zl h 0 s' 1 ) 1
j=0
it s!/h ~iH° s,
®) ... G‘H s/ H'lr e Jﬁ‘> | (1v-36)
the expression (IV-34) can be written
i in_rlllﬂl'_ sin “nnn'n®
21, 1 2 3\ 2
QIn(rln)a'n' =5 By (@ Ty
/ “nnn'n'
where (Iv-37)
; + + T
- 1 T 0 .10 0t 1,0
Jnnn'n"("{) go dsg [Q (s) U HU + U HUQ (s))
Tt +
+q  (s,) % B u0qTs) 1. (IV-38)
1
1 nnn'n'

The first term is the usual interaction term for photons within a cell. The
remaining terms describe processes in which both transport and interactions
take place, e.g. creation in the cell X - L and transport to the cell X. Let

us examine the first of these "correction" terms. To lowest order

. S 11191 1S
(1) i T(1)* T 't ntn'Sy
J = (-—) ds Q (sq) H e
nn'n' nzn So Danneyr L L at ot
(Iv-39)
where
+ * 71 -
T(1) T (1) i T S 1(wnn_wn"rl" )8y
(sq) = =(-—=)H
ann"ﬁ' l) Qn"nﬂ an (sl) ( .H ) ln"T" nn dSZ e .
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The exponent of the exponential contains the factor s(wnn— anunn),
where Wy is the frequency of the photon in the cell X* and Wyre e is the
frequency of this photon in an adjacent cell. This change of frequency reflects
the condition that in an inhomogeneous medium, a photon of a given k will have
a different energy in each cell. Further discussion of this point will be given

in Chapter VI. If we restrict our systems of interest to be those for which

ow

00X

L <<1
W

we may expect that Wy a Wyt e and, consequently

n

s(wnn - wn"n") <<1.

Using this condition we obtain

* -is
T(1) v 1, T V-
Qnun'v nn o) = k ) Hln"T)" nn ° (Iv-40)

The magnitude of this term (as seen from Appendix D) is indi-
81 2k 81 VY
cated by the quantity = where v7is the photon speed. If now
wL L S V‘-Y

we require the cell to be of such size that

<<1 then QT will be very
small and the terms J can be neglected. The implication of this condition is
that s should be small compared to the time for a photon to cross a cell. This
restriction was also used by Ono(zg) in a similar context.

svi _ sw o

Note that — = ——
L

L ,» so that for u not appreciably different

1
from one, sw <<kL. But sw>>1, so that _IEE << 1. This implies that the

wavelength of the photon must be much smaller than the cell size.



From equation (IV-25), {IV-33) and (IV-37), we obtain, finally

(1)
A\
1, LT N —ann'n'_
S L) = D
Fk(g) k__,.71> L nXAlﬁ 4_’ nvnq n'ni V
nn = nn
with
-D n‘n'nn (Iv-41)
nnnn A )
where
W, —W
4 1 p  sin? =yl
Wl = lim — ' |
nmn'n - k2 | owno'n o =)
s -3 @ S“wnn wn”’)'
2 1 2 ..
“{2”‘ Hnnn'nv ‘ B(wnn - Uy n') . (Iv-42)

The quantity Fi indicates the rate of change of the number of photons
in the cell X by interactions. It would appear, from equation (IV-33), however,
that the sum over n'n' implies we are summing over the interactions in all
cells. Except for the cell X7, ihe sum over nn can be taken to the right of
gy 20d all of the terms will cancel. Thus the states |nn> and |n'n' >
can be considered the same except for photon and particle numbers in the cell
X.

Lastly, it should be noted that the procedure used here does not
provide us with a condition for determining Wy (X, k). This was not because
of any fundamental difficulty in developing such a procedure, but rather because
of expediency. The present procedure took us quickly to a discussion of QT

and of the relative importance of the interaction terms. The alternative pro-

cedure, in which a level shift analysis is introduced, is quite lengthy for
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considering the additional terms arising from a combination of interactions and
transport. It leads to the same final result, however, and the condition for
determining Wy (X, k) is the same one discussed in Chapter II

The final reduction to a photon balance equation is the same as we
have already shown in Chapter II, and will not be repeated here. Our final

result is the same as equation (II-47).



V. THERMODYNAMICS

The deduction of equilibrium properties for our system is conveniently
achieved by first obtaining an H-theorem to describe the irreversible nature of
the approach to equilibrium. The development of such a theorem for the system
of particles and photons is not possible from equation (II-47) since this equation
does not describe the rate of change of particles. An additional equation would
be required. This procedure has been employed by Osborn (19) to obtain an
H-theorem for the complete system.

Our deduction will follow the argument presented in reference (9)

which is based upon the use of the Pauli equation,

L J

D = [D -D ’J (11-37)
nnnn — nmme | momo nnn

Defining

H = E D In D (V-1)
nnnn nnnn
nn ,
it is easily shown by use of equation (II-37) that

dH

the equality holding when

D .
nnnn momo

Since Dnnnn (t) = P(nn, t) is the probability of finding the system

in the state Inn > at time t, the H-theorem suggests the identity

s 67
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S= - koH
where k,is the Boltzmann constant and where S, the entropy, obeys
ds
-— > 0
d -

with S a maximum for the equilibrium state.

By standard thermodynamic argument {44), it is readily

established that
1
= = —— T e
R® =) n, Pl B, (v-3a)
n .
e
1
t® = ) n P - A, (V-3b)
8 Be +1
where B = 1/KT, and where the (+) in equation (V-3b) indicates fermions and

bosons, respectively.
The equilibrium radiation law is obtained by converting to the

continuum in photon momentum space, i.e.

Fip
2. F, (0 = EdkdQk) - ALK qkao

ked3k » v
where
0 - \" k2
k @ )3

is the density of states. Defining the energy density U)L (k) by Ul(alg) ;.‘liw>L F;C
W

and transforming to 1,')\ space (1/>L = T ), we find, after integrating over
T
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Q, that
dy v, v
47h 0 Ao
N (V)L) dVA = ~3 3y o~ dv, (V-4)
c A A
(e -1
where v, o= —gl;— . This is the same result obtained by Landau and Lifshitz

(16) for black body radiation in a transparent medium, Letting v

N = vo and

summing over polarization, we obtain the usual black body radiation spectrum

y3
87rh

o
3 ehuo/k;r ]

U (1/0) ’ (V-5)

1

In radiation transfer problems, the quantity IA = vg U (vx) is

of more direct interest, It is seen from equation (V-4) that

47 h Vi ui
I?\dvk * TkT d1/>t (V-6)
A 2
(e -De
_ ck . . 2 ..
where By = —::; is the index of refraction, Note that I}‘ /“X is independ-

ent of the medium.



VI. THE RADIATIVE TRANSFER EQUATION

A. Reduction of the Photon Balance Equation

The photon balance equation (II-47) describes the rate of change of the

expected nurﬁber of photons in the cell located at the positionX, with wave num-
ber k in dk, going into direction  ind . As pointed out in Chapter I, the
quantity usually studied in astrophysics is the radiation intensity IA(§, w, 2,t).
In this chapter, equation (II-47) will be reduced to an equation for the intensity
I}C The resultant equation will differ in appearance from the phenomenological
equation (I-3). In order to compare them, we will calculate the radiation from
a plé.ne slab of plasma and compare the results.

It will be assumed that the number of occupied particle states in a
given energy range is small compared to the number of states available, so the
degenerate particle systems are excluded and Boltzmann statistics apply. Re-

calling equations (II-46), (II-47) and (II-48), we define

A= vaKl 0k ) f(K) (VI-1a)
N A 2
K
YQEZ V2 TB; (M_<)f<1_<1) (VI-Ib)
KK
5 e
dg = . Vi Tge 0K) [f(I_(l)-f(I_{ )] (VI-1c)
1
- 3,3, o, o3 K o 0 :
s, = [i: dKdKd' dQ' Vv le,xk' Fy, (k) (K)) (VI-1d)
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Py,
1 ' F ! f()
- /deKlddeV Sl)\'k' (kHV K

!
KKl,k

where F;(g) s Py and fo(I_{) are defined by

_ 0
Z R (k) = F, dk ds(k)

ked'k
Vk dk dQ(k)
; : (1) =p, dk dQAk) = ———5—
Pk (27r)3
ked k
(0] 3
z ; £(K) = £2(K) d°K..
Ke d3K

Then equation (II-47), the photon balance relation, can be written

o) . Y .0,
Fh(_lg)+_s_'l Vv F (k)

)y
€hp
= Z[—B—k -a"(g)F;’(gﬂ

g -V g

5i P
v

+

o
- (s, - 5) Fy (k).

(VI-le)

(VI-2a)

(VI-2b)

(VI-2¢)

(VI-3)

For nonrelativistic plasma systems, the scattering rate is usually

small in comparison with at least one of the absorption and emission processes.

Even with free electron densities of the order 1018electrons per cm, the mean

free path is of order 106 cm. For large stellar systems, scattering can still

become important and a considerable body of literature exists treating this case

(2,3)
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For laboratory-size systems the effect of scattering is expected to be negligible,
and for the remainder of our discussion, the scattering process will not be given
further consideration.

The radiation transport equation is usually exhibited as a function of
frequency rather than k. If the medium is spatially homogeneous with respect

to particle distributions, w, vY

and H are independent of position. When the
medium is inhomogeneous, however, w, for a given k, will be different at differ-
ent places in the medium. It was seen in Chapter IV that k rather than w, was

the natural variable for our description, for the assumption was made that only
terms in transport for which k remains unchanged as we move across the boundary
are important. Modifications to this are possible in principle, but rather im-
practicable. It was also pointed out in Chapter IV, in connection with terms for
which we have photon creation in cell X-L and transport to X (or the inverse)

that w, for a given k, could change only by a small amount from one cell to the
next.

The physical origin of the change of w from one cell to the next was
given in Chapter II where the method for choosing w was developed. The radiation
present induces collective particle behavior which can be associated with the
polarization of the medium. The ""dressed'' photons being considered have been
defined so that the collective effects are included in the photons. In the inhomo-
geneous medium, the ""dressing" is changing from cell to cell.

Consider the low temperature plasma, for instance. where, to a good

approximation, the dispersion relations for transverse oscillations is given by
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0i(x) = kP + wlz)(zg).

Photons which in free space have energy w =ck are now modified as above and
w varies slowly in space as a result of the space dependence of wp. Thus, although

we have total energy conservation for the system, the energy of the photons changes

from cell to cell.

Consider the transformation from the variables x, k, @, ttox', w, ' t'

where
x'=x
w=w(x, k)
Q=0
t'=t.
Thus
oL 8, <8w > 5
8Xj axJ! 8xj W

where (ow/ 8xj) is independent of x' . Defining

Al o @ ) dx do do “F(x k 2,1) d’x dk dQ (VI-4)

we obtain

o)

atY

+ Q'Y V'Y(§', w)¢x+s_2' “(V w) jaa-o' vyﬂ)t

)t(' )2 ' ) 2
i €B§,wu)\(§,wmx oic \
—E o -aB(g,w)yﬁ)\

5 02 (2 71)3

(VI-5)
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The intensity of radiation is given by

I)\(z, W R,t)= Tlukv'y ¢7\(§, w, R, t) (VI-6)
so that (dropping the prime)
Y 5 (&
1 _A . R I S
v ot +o g Y'Ix+wgl&o<w>
\'
(VI-T)
_ A -
‘ZEﬁ(&,w, D-0, (x,w, QH}\J
B
B
where
‘Y=(Y w)
)Y — B
= y VI-8
gl M= T g < & > (VI-8a)
a?x
DY _ %
a (x,0 Q)= (VI-8b)
B Y

For the homogeneous, stationary state system, 'yj =0 and

9V 1= BZ UAERY (V1-9)

which is of the same form as equation (I-3) when the index of refraction u is not
a function of position. In thermodynamic equilibrium, with a Maxwellian

particle distribution, we have, after integrating over Q,
A=A _ 9
= B -
j B/aB uy By (w) (VI-10a)
where 3

((.d) = 2 v (VI—].Ob)
%t db.s" eh(“%’/koT_ 1 4 7T3C
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The quantity ui BA is the same equilibrium distribution obtained in Chapter V from
a somewhat different approach.

B. Radiation From a Plane Slab of Plasma

For the stationary state, equation (VI-7) can be written

%*%(d@ aik<§>:Zﬁ[jg@»w:9>-a>é(§_,w,Q)I)J (VI-11)

where, employing the summation convention,

R N M
ds ds ox, j ox

The comparison of equation (VI-11) with the phenomenological equation

dI 21  dy .
ds ~ u ds =j-el (I-3)

is not easily accomplished without a knowledge of the intensity.

Rather than attempting to compare these equations as they stand, we
will calculate the radiation from a plane slab of plasma and compare the results.
Instead of equation (VI-11), however, we will solve equation (VI-3) (without
scattering) and then transform to frequency space after obtaining the solution.

In order that this be done unambiguously, we will subdivide the slab
into two regions A and B. (See Figure 2a). In region A, of thickness Ll’ the
absorption and emission coefficients are assumed constant. In region B, of
thickness L2, the density of the particles decreases monatonically from the
density in region A to zero. Thus, at the point P, where the radiation emerges

going in direction © in d2, we are in free space. In the end we will take the

limit L2 —0,
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Figure 2a. Plane Two-Region Plasma Slab

Figure 2b. Plane One-Region Plasma Slab
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In the plasma with no external fields, the frequency and the emission
and absorption coefficients are independent of the choice of polarization (for

linear polarization). Assuming random polarization of the photons, we take

F; =% Fo and obtain, for the stationary state,
2p, €
d 1o kK 57 §° (VI-12)
ds Vv

where we have dropped the label A from the emission and absorption coefficients.
We have also assumed that bremsstrahlung was the only radiation mechanism.
Calculation of these coefficients for bremsstrahlung will be given in Chapter
VI, but will not be necessary for our purposes here.

The path of integration for the solution of equation (VI-12) is shown
in Figure 2a. The length S is related to L by

S=L/cos 6

where cos 6 =0l - © and ﬁ is the outward unit normal to the slab surface at

P. The boundary condition FO(O, k, ©) =0 seems appropriate for the present

problem,
Assuming a uniform temperature, the solution of equation (VI-12)
can now be written as P
P - / ds'@ (s')
2€p
o k S
cF (P, k, 6)= ds e
A%
0 P
-/ dsa, (s)
_ b
%€, Px [ ‘aasl] M
= - e
vVa P
- 17 !
20, 4 ds b(s )
+ — ds eb(s) e .
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To perform the remaining integrations, we assume the space dependence

Ea(S)
ab(S) = (P -s)
Sz
€a
eb(s) S (P- s).
2
The result is given as
2p € -a S, - l&? S
cFoP,k6) s —-B | 1-¢ 21 2 32]. (VI-14)
a Vv
a
Finally, taking Sz—> 0 and sl-—-rs we obtain
2 —
o k™ dk €, - aaS
F (P, k,0) dk = 3 l1-e X (VI-15)
dr @ ¢
a
At the point P, we still use free space conditions, so we can write
2 € -a S
FOP, k,0) dk = (P,w, 0) dw = do —2— | —= E-e a].
3 3 o
471 ¢ a
Assuming kinetic equilibrium for the particles, it can be shown that
7
€a B Va_
a ehw/ko'r "
so that
VZ -a S
I(P,w,0) =chw f(P,w, ) =B(w)<c—> [1 -e 2| (VI-16)
For vz = cu we have

I(P,w,0) =pu B(w) [1 -e J . (VI-17)
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Assuming that the dispersion relation for the plasma is given with

sufficient accuracy by

it is seen that

Thus, as we approach the plasma frequency (where, in fact, 'a7a gets large) the
radiation appearing outside the plasma is strongly reduced and approaches
Zero.

Before giving further discussion to our results, let us consider the
solution of equation (I-3) for the same problem. This time, however, it will

not be necessary to consider two regions. (See Figure 2b). The boundary

(2)

condition at P is
P, w, 6"

2

Ha

+
(P, w, 9)-=

where the plus and minus signs indicate that we are approaching the boundary
from the right (free space) and left (plasma) respectively. The angles 6 and '
are related by Snell's law

™ sin 0' =sin 6.

Note that the path length S' = L/cos 6' is different from S. The boundary
condition at the other boundary will be taken as I(0, w, 6') =0.
For the same conditions discussed for the previous problem, it is a

straightforward calculation to show that

1P", w, 0) =B(w) [1 -e ¢ S’] ) (VI-18)
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Equations (VI-17) and (VI-18) are quite different and would predict
entirely different results as we approached the plasma frequency. However,

(17), equation (VI-18) must be modified to

as pointed out by Bekefi and Brown
account for internal reflection at the boundaries. When this is done equation

(VI-18) becomes, to a good approximation,

- S'
1P, w, 0)=(1-") B [1 e J (VI-19)
where [ is the reflection coefficient. As a reasonable low order approxi-
mation, we take(31)
p=1 |2
- e+ 1

With this expression for r‘ , equations (VI-19) and (VI-17) are in
qualitative agreement, although they can differ by as much as a factor of
four. Nonetheless, both of them give reasonably good agreement with the
experimental results of Bekefi and Brown(]'7), and over the range where our
equation would be expected to be valid, they are essentially in agreement. The
experimental results do not suggest a clear preference for either equation
(VI-17) or (VI-19).

As a consequence of the analysis presented here, we feel that the
validity of equation (I-3) is still open to question. The limitations of the phen-
omenological equation are not obvious and we have not been able to obtain this
equation from the postulate-deduction method described in Chapters II and IV.
On the other hand, we have obtained an equation by this method which is to

represent the transport of photons in a dispersive medium. Many approximations
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and assumptions have been invoked, but we have attempted at each stage of the
development, to point these out and to suggest the limitations within which we
expect this equation to be valid. The experimental work carried out to this
time does not demonstrate which result, the one obtained from the phenom-

enological equation or the one we have developed, is better.



VII. EMISSION AND ABSORPTION

A. General Considerations

In this chapter we will discuss the modifications to the emission and
absorption coefficients resulting from collective particle behavior. Recall that,

for the Sth type of process

‘Eekpiws
]g (0,Q2) = 2—&'—; (VI-8a)
vy (27)

-\ o1 2
o W, Q) = K KZ \ TBK (M_g)Ef (151)-f(_1g)_'| (VI-8b)
5
K
& o D Vol o) (VI-1a)
g T o= ek
1
K 2 2
2 1 471 c e 1
VT Qk) = =3 e ™ 5(“’1111{'“1{)
(x) | < I__{_ll gk X £ ® -g|_1g >|2. (II-46)

Aside from changes which may appear in e)\ as a result of the medium behavior,

B .

s A '
it is seen that j 8 differs from the ''free space" result by a factor

, which

v

Y

for v°' = cuk, gives
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\ h ex wi \
oo (=22, (VII-1)
B M\ T3 3

¢ (27)

In the fully ionized gas with no external fields, the index of refrac-
tion u is always less than one. Consequently, as we approach the plasma
frequency, where u— 0, we may expect the emission inside the body to be
strongly reduced. Furthermore, since v7~—$- 0 as w—-,\wp and c_zg

Y

proportional to v *, we anticipate that the absorption coefficient would get very

is inversely

large. However, this analysis is not appropriate to investigate these coefficients
in the vicinity of the plasma frequency.

B. Bremsstrahlung

The content of these remarks can be illustrated by consideration of
the bremsstrahlung process. Taking positive energy Coulomb states for the

particles and going to the continuum for the particle momenta distribution, it

can be shown® that

87r(34r2 e222 3
= 3 d” K f(K)

“\

w™ >

£, ® K -& ©- K|

3
(x) / d K1 S (EKlk - EK) I 7 (VII-2)
K - K|
e2
where r, " 3 and n is the number density of ions. Averaging over
me

polarization and integrating over E.K1 , we find

Appendix E
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1/2

5
1S - 2.2 ac m
EB-Z g)t e -2\/ 7rn_IrZ 3

W

(x) / dEdQdQ,f € YE-hw & (& 6, 0, 6,5 ¢1) (VII-3)

where

E (E’ 0’ ¢’ 61’ ¢].)

E sin2 6 + (E - fw) sin2 61- 2\/ E (E - hw) sin 0 sin 91 cos (f - ¢1)

{:E+(E-ﬁw)-2uo ,/E(E-le)J2
2
e 1

W, = cos 6 cos 0, sin 0 sin 6, cos (¢-¢l)’ €= 3T ~ 7

Define the quantity op dw dQ1 as the cross section for emission of

a photon of frequency w in dw in which an electron with initial energy E and

direction §2 has a final state in which the electron is going into Q. in d,. The

1 1
source term |
2 2
T = L Z g dw e, ZYH 440 (VII-4a)
2 B 3 2
)} @r)" v

is related to the cross section by

- . 3 ~4b)
J:Bdw dwneI)T‘f'lw/vfedfgolng,GBdQ1 (VIL
E,Q 1

where n, is the number density of electrons and fe is the electron

tribution normalized to unity. From equations (VII-3), (VII-4s)and (VII- 4b)

find that
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2
dwdQl r Z 3 2
0 mc u E - ho .
L = — -5
ogdfpde 2 13T~ S TE (VIL-5)
2T VoW ¥

This differs from the corresponding result obtained in reference (9) by the
2
factor % which is just the factor suggested by equation (VI-8a) and
'

discussed earlier. Note that as a function of frequency, €_ is not altered by

B

collective particle behavior of the medium.

C. Cyclotron Radiation ~

It was pointed out in Chapter III that a plasma in a constant, uniform
magnetic field is highly anisotropic and that our procedure is not sufficiently
general to treat this case properly. Nonetheless it is both qualitatively and
quantitatively interesting to consider this system. For instance, we will
observe the possible appearance of Cerenkov radiation. Also, we will indicate
how the results of this analysis differ from those presented previously (9).

K
For magnetic transitions, V2 Tmi( (A k) can be written

2 K1 411202 e 2 1
v TmK (MS) ) h (mc) ) S(ka L*)K)
Ak 1
G 1GUK, |iLK) (VI-6)
where

TR ) : = <R ~ik - x o] i S
[GeK |i4K) = < 2K |e £, &I |j £K
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and the eigenfunctions '] ¥ KZ > are given in Appendix B. Transitions for which
j'#j are associated with the emission and absorption of cyclotron radiation.
Relevent matrix elements for the transitions are given in Appendix C. From

equations (C-T7), (C-8), (VI-8b) and (VII-6) we obtain

2
-9 . ~ wp7r m 3 = 2
o (w Q) = . d vif(v) vy
AR A
' My V_ cos 0
2
(X) EI;I(V-L'\/¢SHIG)] 5E)¢-nw0_w¢ _LZC_____

(VII-Ta)

u¢'hw¢cos26 }

(x) d3 f (v) co’c@—v—Z “9w9> sin 0 ’ J (v sin 6) ’
X v c nwc n _!,_79

2 2
— /u gV cos 6 ue'l’lwecos 0
x) § toe “nW, - Wyt : - 5 ) (VII-Tb)
. 2me
o)
where " T ew and where the initial and final particle distributions

have been taken as Maxwellian, The 6 and @ polarizations are associated
with the polarization vectors which have been chosen as the spherical base

vectors in the polar and azimuthal directions.
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In the limit V’Y-—) ¢ and u)\ — 1 we find the results given in reference
(9). The absorption coefficient for this case has received a great deal of atten-
tion (32, 33, 34) in the past few years because of the importance of cyclotron radia-
tion as an energy loss mechanism for laboratory thermonuclear systems. Numeri-
cal calculations of the absorption coefficients (34) have indicated that only 52

is of importance for systems where cyclotron radiation is important and then

T
only for propagation nearly perpendicular to the magnetic field. For 6 = 5

afm,gz):(%) 2(—%]d3vf(v) v,

[T
Vo2 ¢°¢
(X) Jn 6..0 wC

It is seen from this equation that the deviation from u =1 is reflected

we T
P
c

>5K%'n%)° (VII-8)

in the factor < and in the argument of the Bessel function.
\

D. Cerenkov Radiation

Cerenkov radiation results from the matrix element

This element was not considered in the calculations of Osborn and Klevans (9)
because when u = 1, it is not possible to simultaneously conserve energy and
momentum and the term must vanish. For a plasma in a magnetic field, how-
ever, it is possible for u > 1 and th.is implies the possibility of simultaneously
conserving energy and momentum. Thus, the radiation associated with this

matrix element should now be included in the discussion.
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Since our analysis can at best give qualitative results we will consider the
simple case of a single particle moving along the magnetic ‘field. Then, taking k
propagating in the y - z plane (using a left handed coordinate system), we need
only calculate 1(0 £K! | 00 K ). The index £ refers to the position of the
orbit.6 Because the photon is emitfed at some angle 6 with respect to the z
axis, it is necessary for momentum conservation that the particle make some
movement in the x - y plane. Such motion is accomplished by a transition to a
different £ state.

We then find
2

10LK | 00K) =§(K! +k -K) ﬂ—(—“——) e 2(831‘11{)
Z Z z z zZ 2 A7z

\/2!
(VII-9)

1/2
where o = k(ﬁ{) sin 6. Substituting equation (VII-9)into equation

(I1-46), we obtain
V2 T K (Xk) ) 47r2c2 e 2 1 (azf —az
ce K "~ i mce J\ 2 ©

1

“A

2
(x) (&i hk) & <wK1k -w) 6 Ky +k -K ). (VII-10)

Combining energy and momentum conservation, we find

6  The position coordinates of the center of the orbit do not commute and
cannot be simultaneously specified (28). The center of the orbit is quantized

with eigenvalues —e% 2L+1).
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) ] “kvz cos O ) ﬁwx A
Ykk T YK ~ c 2 A\
1 2me

~’ MoV cos 0
~ <____z__ e <o (VII-11)
c A ?

where 6 is the angle between k and the z axis. Since w # 0, equation (VII-11)

is simply the Cerenkov condition

Y = cos 6. (VII-12)

From equations (VI-la), (VII-10) and (VII-11), we obtain, after carrying out the

sum over £,

A _<4wzcz><e)2 (—E-zz——pg)z _—aZ—_
W

€ =
ce h me \

My V, COS 6

x| —— -1 . (VI-13)

c
_0!_2
2

Noting that e © 221 , substitution of equation (VII-13) into (VI-8a) gives

2 2

B, W e 3 9 [/M,V cosb

A A A

e @2) =-2—7—(6sz) 5< . . -1). (VII-14)
c 2w v

A A :
Using the spherical base vectors 6 and § as polarization vectors, we have

3
89 = sin 6 andig = 0. Thus
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2
/.tewevZ c2

' = ' -—2 - . (VII-15

j 4 dw/dme(w,g) . -5 | dw. (VI-I5)

ve

With v/ = ¢ 7 o this gives the classical result for Cerenkov radiation (18).

It must again be emphasized, however, that the applicability ot this
result is limited since we cannot obtain u 0 within the context of this analysis,
except for frequencies sufficiently high that the index of refraction is nearly
equal to one.

E. De-excitation Radiation

For de-excitation radiation from an impurity in a highly ionized gas,
frequencies are too high and densities too low for the present discussion to be
of much interest. The results presented by Osborn and Klevans (9) are
sufficiently accurate, and for completeness will be included here.

For a dipole approximation

K 2 2 2
2 71 _4m ¢ e 1
VT 0k =% < me/ W Ad(lek - wg)
(X) |< lﬁ, g, ®)-p IIS >] ’ (VII-16)

From the commutation relations

[xj, pi :l = ih Sjk p, and [’XJ.. V(x)_:' = 0

we obtain



' 2 m 2
éx k) - < 51!‘3|15 >| '%(k) (3 )<k [ HNNK>\
m’ I 21k, | W x K>
=— |(E_-E_) =1 =) =
2 R
so that
2 2 2 2
2. Ky _4rc" [ e
\4 TdK()\k) ¥ (—(:2—> L~J)\I<I§1 x |K>| cos Bé(lek-wK)
(VII-17)

where 0 is the angle between the direction of polarization and the vector x.
A

From equation (VII-17) we can obtain the source term j or the absorption

coefficient &X. Or we can relate it to the rate of spontaneous de-excitation

vd§) presented by Heitler (35) by

2 3
e
vdQ = iz V2R (k) = LI Q‘< K, |x |§>I2 cos 6 .
\' dk  ~ 3
K 2rhc

(VII-18)

Further calculations with this quantity are presented by Berman (36).

F. Recombination Radiation

Lastly, we consider recombination radiation, which is important for
hydrogen plasma systems with kinetic temperature from 3 ev. to 200 ev. We

choose the electron and atomic wave functions as

e s K, > = ¢ (VII-19)
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where n represents a sufficient set of labels to completely specify an atomic
state.
After converting to the continuum for the electron's initial momenta, the

" emission coefficient for recombination radiation can be written

“2 2 3
e>t S 7r2 n © he 1 Z d3Kf(K)
r 0% I 2 m W

v A n

mc

2
@ (K 6 o = by EXC) (VII-20)

where

v, @ = /wn (x) TIE Py

and PE = k- K. As a result of the electron normalization, the ion density is

given by n = LV The frequency oi such radiation is very high, and

w2 >> wlz) . ;)ispersive effects would be expected to be negligible and deviation
from o} = 1 should be small, Additional calculations concerning
recombin‘;tion radiation are given in reference (36).




VIII. TRANSPORT IN CRYSTALS

The last subject to be discussed is radiation transport through crys-
tals. It is of interest, not only because we obtain the anticipated x-ray scatter-
ing cross sections as a natural consequence of the analysis, but also because of
the analogy that can be made with the problem of low energy neutron transport
through moderators or filters. Since a quantum mechanical transport equation
for cold neutrons has yet to bg given, such an analogy is perhaps worth pursuing.

As mentioned in Chapter II, we will employ the relatively simple
Einstein model of the crystal. In this model, the atoms (nuclei surrounded by
electrons) execute independent isotropic oscillations about fixed equilibrium
positions. The force constant of the Hooke's Law restoring force is iden-
tical for all nuclei.

In accordance with these remarks, and with the appropriate quan-

tities shown on Figure 3, the Hamiltonian for the systemcan be written

N n
# 1L Q| tVELE, ) (VII-1)
J .

(o} _
where H0 is the Hamiltonian for the oth nucleus, and HZ is the Hamiltonian

93
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Figure 3. Location of the jth Particle of the oth Atom
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for the electrons surrounding this nucleus. The natural oscillation frequency
is given by wo. The nucleus has an equilibrium position 13_0, and an in-
stantaneous displacement L The instantaneous position of the jth electron
of the oth nucleus is Z((;, displaced by §j from the position of the nucleus.

We have assumed a complete, orthonormal set of medium eigen-

states {I m >} such that

g
lm >=Ty  (u)f (&) (VIII-2)
g ag
where
HM lm >=E Im > (VIII-3a)
m
g (o)
HO wm (1_10) = Em (pm (1_10) (VIII-3b)
o) o) o
(0) | ag (0}
H_ ¢n (£7) = € ¢n (£7) (VIII-3c)
o o (o)

() g (o)
and 8% = fe7, 87, ..., g“;} From equations (VIII-1) and (VIII-2), it
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is seen that wm (1_10) is a harmonic oscillator wave function. For notational

convenience, we denote

v (u) = |m_> (VIII-4a)
m-ao '“o

- ] |
¢no(§0) = |5, >. (VIII-4b)

We will only be concerned her e with scattering of radiation from electrons, and
absorption will be neglected. For the high frequencies under consideration, it
is also anticipated that we may assume an index of refraction of unity with little

-

error. In accordance with these remarks we take

2
H = H +H
2
where
e
) ¢ e
= <mc>[k kvjllz f (k g (-k") 2__16
A gj
k k' SR
" (VII-5)
with K = k-k'. Charge and mass are not subscripted with the index o

~

since only photon-electron interactions are considered. The derivation of the
transport equation will be assumed valid. For some scattering problems, the

spatial coarse-graining might become controversial, but we will not concern
ourselves with this possibility.

Writing

(e - CE)
S (6 - >=—1-f dtelt(gn ot By El
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and defining

1e! 3 2 2
N () laweg )
V k!
o V-1l EG
o -ik- (R +E)Y = %
Q = e A
J
. (H +H ) t/k i(H +H ) t/h
Q(t) = e Q e
€ =€
- n a

it can be shown from equations (II-24), (II-37), and (VIII-5) (after replacing

averages of products of photon occupation numbers and particle matrix elements

by products of averages) that

oF.
1 )‘”E’_‘_ N !kl
g 8t SZ )-l_{_ Z._J vkl (VF)US 1)
-}&'k'
-L, v ka( VF, o L )} (VIII-6)
where
k! k! /f — ot
D =A% 32 dt ol ZLP(m y<m |l @ |m >
go' m

(VIII-7a)



98

.I.A'k'-zAwk'— fdt e“*’tz_J P(m)<m|9(t)Q |m>.

Xk ;
(0J0) m

(VIII-Tb)

The quantityP(m) = Dmm is the probability of finding the particle system in

)\'k'_, =\ 'k! a' ol

the state | m > . Note that Iy 71y, since Q (t) and Q do not commute.

1
Assurning random polarization for the radiation, we take F, = 3 F.

A

Then, summing equation (VIII-8) over polarization and converting to the con-
tinuum in photon momentum space, we find

LoFlR) 4 g -9 M)
¢ 0T - -

SN 1+ ;ﬁk)j/dk' a2 Fk) o (k', 9 k, Q)
k

. /* VF?E)
- NF‘Q{)/ dk'd2' {1+ ) o(k, Q, k', S_Z') (VIII-8)
2pk,
where
k' Ok Q) 4 1wt1§" | 0+ g’ l
g 9 86, WL - T k'(2‘]{/J —N_JZIP(m)<1’nQ Q (t) m>
o0' m
(VIII-9a)
olk, Q:k'Q') = o k' i) /rdteia)t = ZP(m ) <m | o° (t) +.% m >
P=rT = T k \27/.
00'
(VIII-9b)
1 2 A A2
op = g T, 1k B
e2
ro " mec?

N = number of nuclei ,
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The quantity o(k', Q;kQ) dk' dQ' is a cross section,

For neutron transport, even near thermal equilibrium, the number

of occupied states is small compared to the number available for occupation,

Thus, scattering terms dependent upon the final state particle density could be

dropped. For a crystal at room temperature, this approximation is also valid

for x-ray scattering, since we are on the high frequency tail of the Planck

distribution where the above remarks on occupation of available states again

applies.

7
We can obtain, by a rather tedious calculation, the result

_ 2 . 2
olk', 2%k Q) = 0T06(5)\f\2 ¢k qu Q;e"'-( 1—“’\
voro (@ &R e 1 er?) 72|
oTc w) e \ Io - | f
. 2 ® M’ﬁw
+op RSP ZI(BK)e_ZE'I’é(mnw)
-MHhw,
+ e 2k T A(G-nw) (VIII-10)
where
Bwo
D = P coth (VIII-11a)
(0]
h hwo
B = AT csch STT (VIII-11b)
0

7.
Appendix F
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f = Z P 1 (VII-11c)
n

f__ = <H IZ Sl AT PN (VIII-11d)
J

and where In is the modified Bessel function of the first kind of order n. We
have made the approximation that there arc no transitions between electronic

. . : . (37)
states. The quantity fﬁﬁ is called the atomic scattering factor . It has

- 2
the meaning that if the electronic system is in the state |ii>, then lfﬁﬁ | O

gives the scattering from the electrons surrounding the nuclei. The cross
section O is the Thomson cross section for scattering from a free electron.

The first term of equation (VIII-10) represents interference scatter-
ing. (Note that such scattering is elastic.) The remainder of the terms com-
prise what is called direct scattering. In the second term no oscillator states
are changed during the scattering, while in the last term the oscillator state is
changed. The last term accounts for inelastic scattering.

It should be noted also that e—Dnz is the Debye-Waller factor and
I}\I_ |Z e_ilc "BY |2 will give rise to the Bragg scattering condition(37) in an

o
infinite homogeneous crystal.

Equation (VIII-10) reduces to the cross section for neutron scattering
from a monoisotropic crystal of spinless nuclei(38) if f—1 and GT—> a2,
the nuclear scattering length. A thorough discussion of this formula is given
(38)

in reference

It is perhaps worth a final observation that when inelastic scattering

can be neglected, we find that
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- Nfdsz' Flk, 29 5 (k Q Q')

-NFUk @) [ 40 § (k0 21 (VIIL-12)

where

at

>

10
H

2
GTe-Dm ﬂﬂz

offiZ ]

) L .
-1] + If |2 IO(BK‘?)}. (VIII-13)

Thus, within the context of the Einstein model (and the additional approxima-
tions we have made), elastic scattering terms which are dependent upon the

final state photon density cancel.



IX. CONCLUSIONS

In the foregoing, a transport description of electromagnetic phenomena in
terms of creation, destruction, scattering and flow of photons has been developed.
The usefulness of characterizing electromagnetic phenomena in such terms is
limited by several factors. First, it is limited in a practical sense to physical
problems for which one-photon processes give the only significant contribution
to the rate of change of the photon density. It is also restricted to those systems
for which spatial variation of particle and photon distributions is slow over regions
characterized by a length many times larger than the longest photon wavelength
under consideration. This geometric optics condition suggests that our descrip-
tion is applicable for investigating the energy balance of short wavelength radiation,
whereas the full set of Maxwell's equations is needed to describe electromagnetic
phenomena for which longer wavelengths are of interest.

There are additional conditions which tend to restrict the expected range
of validity of our transport equation. These conditions are intended only as
sufficiency conditions, however, and it is not claimed that they are necessary.
First, the medium should be isotropic. In the anisotropic medium, there is in
general a coupling between the various transverse and longitudinal modes and
our procedure is not appropriate to treat these systems. In a few special cases,
e.g. photon propagation in a plasma, parallel to a uniform external magnetic
field, the different modes decouple and our procedure can still be applied.

A second restriction is that the photon frequencies should be sufficiently

far above the resonance regions that level broadening effects can be neglected.
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It may also be possible to apply the equation between resonance regions or below
them, but it is not obvious from the derivation that it is legitimate to pass through
the resonance region, where the equation is not expected to be valid.

The radiation transport equation which we have obtained is not in agreement
with the equation obtained phenomenologically (equation (I-3)). However, when
the solution of equation (I-3) is modified to account for internal reflection, both
equations yielded solutions which were in reasonably good agreement with the
experimental results of Bekefi and Brown (17), Thus it does not yet appear possible
to reject either of the equations.

Because there have been many approximations employed without investiga~-
tion, and because there is an unresolved descrepancy for the inhomogeneous
medium between our transport equation and the more conventional phenomenological
equation, we suggest that further study in the development of a radiation transport
equation for the dispersive medium is in order. This thesis offers a beginning,
and it is hoped that further work can shed light on some of the difficulties

encountered in our derivation.



APPENDIX A

CALCULATION OF THE TRANSITION MATRIX ELEMENT Un,n,nn

We wish to apply radiation damping theory to the study of

U(s) = exp [—iH s/ﬁ].

Define
1

K(z) = Z_l_i(Hof}_HI) . (A-1)

Then we can write

y+ioo
1 zs/h

Un'n’mgS) Co2mi / dz e Kn'n'nn (2) (4-2)

Yy-ioo

From equation (A-1) we obtain (suppressing the index n for simplicity)

(z+ie ) K +iHI K +i E: H! k- 1 (A-3)
n nn nn nn nn' n'n
n'%n
) R | sl ) I
(z+ie. ) K +iH K +iH, K +i H K = 0.
n n'n n'n  nn rh' "n'n n'n" n'n'
nn#n,nv
(A-4)

Define Q (z) by

K
n'n n'n' Qn'nKnn n' #n (A-5a)

Q,, = 0 all o' | (A-5b)
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Define [_'(z) by

1 I
‘711‘1[1 (@= 18 +i g, HL
nn nn
Lol =
9 I‘B nn'(Z) =0 .
From equations (A-3) and (A-5) we see that

1. .
9 ih l_:m(z)Knn = 1-(Z+1€n) Knn'

Thus

1
K =
nn : 1 | '
z+1€n +§ lfl nm

From equations (A-4), (A-5), and (A-7) we obtain

oyl . e ]
Q. = ~iH, +(%1hr -iH ) K . Q

n'n' n'n' n'n' n'n

_1ZHI K Q

It 11t "
n"#n'nnn nn nn,
b

From equation (A-6) we see that equation(A-8) can be written

I I
- inlag
Qn’n ! » H K Q

K Q
n!nll anH n”n' nln' nln
nn%nv
A U |
-i Z, H K Q

mt thy 11 1"
n”#n ' nn nn nn,
td

(A-6a)

(A-6b)

(A-T)

(A-8)

(A-9)
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I
We note that Q first appears to first order in H , Wwhich is equivalent to
first order in the interaction strength. We wish to obtain Qn’n in an expan-

I
sion in powers of e in terms of H and K. To first order, we would have

- -ig. 4R
nn

Q)

nn

where R is the remainder and is assumed small compared with the first
term. R is still a function of Q. Substitution for Qn"n into equation (A-9)

would give

I I

. 22 N
Q 1 = "lHn'n'l‘(—l) 2_J n'n" n'm'

' (A-10)
nn#n, n'

Thus, we have exhibited Qn'n to second order in powers of HI, plus a
remainder. By similar substitution into equation (A-9) whenever a Q appears
on the right hand side, we can express Qn'n in terms of H ! and K up to any

desired order, plus a remainder.

By a similar procedure, we find, from equations (A-6a) and (A-9),

1 1 1 I
— 4 = . H + . -o
5 ih r‘nn(Z) i o i(-i) n?%,: Hnn' Kn'n' Hn‘n

roe? 20 81l ko x ul

n'#n nn' n’n' n'n” n"n” n”n
n"#n,n'
fRY (A-11)

-Except for the remainders R' and R", equations (A-10) and (A-11) are the

same as the first few terms of equations (16) and (15), respectively, of
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reference (24), except for differences in notation.
For the purposes of this paper we will need only the first term of
equation (A-10) and the first two terms of equation (A-11).

As a consequence of the above, equation (A-2) now becomes

v+
1 z s/h
s o K -
Un n nT] 2m f Knyntn!nl Qn|n|nn nnnn . (A 12)
Y-

Writing the first term in the expansion of U (s) as U(l) (s)
n'n'nn n'n'nn

and noting that all first order processes and scattering are contained in this term,

we have
W o= cpml
nnnn n'n'nn
Ttioo z s/h
1
(x) =— dz
2r ) Grie +B[ (z)><z+1e AP @)
Y-i 2 'n ' 2 n'n'n'n'



APPENDIX B

CALCULATION OF THE PLASMA DISPERSION RELATION FOR
PROPAGATION ALONG A CONSTANT EXTERNAL MAGNETIC FIELD

From Johnson and Lippmann(28) , we take the result
iKZz
K >=|jlK, >=u(pf) & (B-1)
[ > b myoh S
where
it \Y2 o cleEpG-d)
= (-’ b e
27!
(-0
R
(x) £ ,,tj (£) (B-2)
2 _ or -1z . .
and where b ; €= o PG ; L is the box normalization; ¢ is the azi-

muthal angle with respect to the y axis in a left-handed coordinate system; and

g7Vt 0y ity _
7 (85) e & (B-3)

;61;(5) =

is the associated Laguerre polynomial as defined in Magnus and Oberhettinger

It will be useful to employ the operators

n-- \T: [11“'1-1 IIX]

which have the properties:

11+| ilK, > =muw,b \]j+1 | j+1 ﬁKZ> (B-4)
o | j4K,>=mub{j |j-1]K,>. (B-5)
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We can now write, for kII H, i.e. k=kZ,
-ik, z
L UL K[, =<t Ky e £ ) H[30K, >

=§(K! +k -K) <{'0'| &, ) I |if>. (B-6)

Taking

where e 1 and e o are the unit vectors for the x and y axes, respectively, we

have

Thus

Il(jvvi'zljZKZ) =mwcb \]J_+_1 gj,,j+1 SM 5(1{*z +kZ-Kz) (B-Ta)
b
L' K} | §8K,) =mugb V] S].; - lsw S(Ky+k -K,). (B-T)

We will complete the calculation of equation (III-11) by use of equation

(II-7). In a spatially uniform, nondegenerate system, we find

il 2 SK!
. _ _ ‘IA(J |] )l (Kz H<z' Kz)
Ny Z:gdK'z gdKzf(KZ) £(3) , h2 k2 12 k2
i ('-hw Fo + - - =
c A 2m 2m

| 1, G 9)]? §K, +k, -K,)
K2 Ky? #k?
m 2m

. (B-8)

(j'-j)'hwc +T1wk+
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From the symmetry properties

LG D=5
I (') =1 G i

fk
and the assumption ﬁ_z << 1, it is straightforward to obtain the result
Z

vz Kz
2 = 22 + 2 £ 0 T (B-9)
wy = ¢ Wy, P dv, (vy) — -
W, + w) (- )
= c Wy T W,

where wl =w, andw, =w_.



APPENDIX C

CALCULATION OF THE PLASMA DISPERSION
RELATION FOR PROPAGATION PERPENDICULAR
TO A CONSTANT, EXTERNAL MAGNETIC FIELD

In order to obtain equation (IlI-14), we must calculate I(j 'I’K'Z |j£KZ).

Take £ = 0 (the well-centered-orbit approximation (40, 41)) and write

£ - I = 8;: o+ S;H+ +:S;°’L Iz

where 5’;:- = —\/—1—5—— EE{ + 15;‘{] . Then®

TG 4 KL|0K ) = €K § (K + K - K) I gt|0)
+ S(K'Z+kz—Kz)mwcb\/j+1 [gil(j' £'1j +1,0)

N —J—Jﬁ g{ 1 g |i-L0)] (C-1)

where
IGrer|jo = <j'ﬂ]e'1k¢p°°s¢|jo> :

It was shown by Judd, et. al, (42) that
L2

S I
IG'L |0 = [27,—] (- —2—) I('0]jo0)

where @ = kb sin 0, 0 being the angle between the z axis and the propagation

vector k, the latter being restricted to the y-z plane. Since

+
8. For the magnetic state vector and for properties of II” , see Appendix B.
We also use II” lilK, >=1 K, |idK,> .
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ol ¢ 1072 %0 (j-j')2 << 1,

we can take ¢J'=0.

2,.,2
Writing € =p~/2b", it is a straightforward calculation to obtain

/2 @ j..-Il
I(j0{; o>{—1—1 / dge 2Jn[a(25)1/2:, (Cc-2)

g
0
where n =j-j'.
Substituting
@ m 2m+n m+n/2
1/2 ('1) a S
Jn[a(zg) :\— m+2
m0 2 m! (m+n)!

into equation (C-2) and integrating, we find

1/2 0 (_1)m02m+n(j+m)!

I(j* 0| 0) {———1—} —yn . (C-3)

it m! (m+n)!
m=0 2 (

Using Stirling's approximation, and assuming j >>m, we have

(j+m) = jlj,

so that _1/2

(j-n)! 1 1/2
I(j' 01j 0)= 5 J_|al2] -
(' 03 0) { - } f n["“ i) } . (e

Again applying Stirling's approximation, and assuming j >>n, equation (C-4)

becomes

13 0[j0) =3 [a(Zj)l/zJ . (C-5)

Similarly /
G'0|j*1, 0~ g /2 _
G'oli*f1 0 nt [a(zj) . (C-6)
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Specifying the polarization vectors as the spherical base vectors §1 = §9 and
= é i
§2 _¢, we find

=}§ cos 6 ; 52=—sin9

1+ @I+

1 3 _ .
=4+ = ; =0,
Then, noting that Rj’ the radius of orbit of quantum number j, and Vj’ the

speed of an electron in that orbit are given by:'
£ \d fiw \%
R, = (2j)2 <——-—>/2 ; v.=(2j)1/2<—i
J mwc J m

we obtain, after using Bessel recursion formulas,

I’ 1] K i 0 = : 1 4 - ' i
gliro z'] K ) mwcb\fz—J S(K' +k -K ) I1(v; vy sin 0)

(C-7)
"OK! |j0K) = -hK si K4k - -
Ie(J ” |50 5 ) g Sin 6 S(K+k KZ)Jn(ije sin 6)

J (v,‘Yesin 6)
+mnw b 2] cos § S(K'+k -K ) —I 7 ___
c Z z Z Vj'y6 sin 6

(C-8)

> /.:' FK ) fGY) - F T
< / K, j K (f )60 -FR)ED]  (c-9)

Ly UK [iK) |2 ,

EK - EK1 -h ©) 1

(C-9)
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we find, by substitution of equation (C-7) into (C-9)

oy J _ :
f(K -k ) hwn/, 7
= dK f(K)f — e o -1
pGZZ[ z(z)(J)[f(K)
i=0 n=-o0 z
(C-10)
- g/nu, 2 2 7
. in 6
'K/ g| M <ck> @H(VJ g Sin 6)
® [cote——z <£—>sin6]
e A\nw, 1%k K KK
7z z
nhw -fw - +
c 6 m 2m

To obtain this, we have written

=
£3') — ‘hwcn koT
£(5)

a result which follows by taking an equilibrium distribution

- - huw W, j
B oo ooty %OT.

This distribution is obtained by conventiemal statistical mechanical methods
assuming the energy levels are the magnetic state levels and that -f-(j, KZ)
= (j) ;(Kz). Observing that

., _m 2
‘hwcj—zvj

it is seen that mv,
f(j) dj =1G) —L dv
o +

2
N mv, (va_/Z)/koT q
- e vy
ko T

= va ) dv,
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The upper limit of the sum over n can be extended to infinity since
the terms for j large give negligible contribution. Finally, for propagation

along the y axis, it is readily established that

nwc
pG:Z—— Y (C-11)
nw -w n
n c 6
where
©
Y - dv ;(V)[J(V 7):\2
n 4 + n <+ 7]
0

We can now write

2 22 2 S T Yy 2
= - —— + 1- Y _
wy = ¢ K Wy P wp( Zn Yn) (C-12)

nw -w
n c 0

But (04}
% 3% (x) =1
n
n=-ao
so that

?iYn:l
n
and

()
w3=02k2-w2 Z . Yn (C-13)
P n nw -w
c 0

the result shown as equation (III-14).

Equ tion (III-16) can be obtained by similar considerations with the use

of equation (C-T7).



APPENDIX D

THE HAMILTONIAN AFTER DIVIDING THE SYSTEM INTO CELLS

We present here the various terms in the Hamiltonian. Recall

equations (IV-10a) to (IV-10f).

g =50+ a0 + 5@+ 5T + 5P 4 gIT 4 oo (IV-10a)
B =1+ Y (IV-10b)
M - 1P+ uPe + v© (Iv-10c)
g(1) - gPYL 4 gPve (IV-10d)
H(z) (HP72 £ ) + (Hl + TYZ) + HEYZ (Iv-10e)

B =) +HT (Iv-10f)

Explicit calculation gives:

Y0 § 1 +
T = wh<§:k)ah(§,k_)ah(§,li) (D"l)

X, Ak

; D) Ay *
T + HPe = "'l_ ay (I_{.) ao' (I_(') "]:— d3X .I_Io U.* &,

(D-2)

' g“qu,o_c) EX x)
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+ +
ve- 2 a (X,K)a (X, K')a (X,K"a (X, K'')
0= ¢ = T g='= " o= =

gao' X:
.K’ I_{':IS": Enl
(D-3)
DFCICO T DI
® L [ xd’x B, YEEx) — -
' |x-x|
— 1/2
S0 E (27r‘hc > <ea > 1 o
oXk Y o? ka(X, k)
KK
(D-4)
-ik-x
0 Gnmng ot o
47 e2
R L % Z |:Z —— J(x, Ka (X K
Ik Lo ma@E Kk ° -
(D-5)
-z 0],
+ ax(g, k) a)\(_X_, k)
wx(g, k)
22 2
e CR R Z 47re<27 Ck—hk(&k)
;] FTU = 42 maE K T .
XAk o o= “’)\(g: k)
(D-6)

(x) [a; (X W (& & ta(X kb a(X, -_IQJ
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2
he
PY2 _ § T e, 1 PN
H 2 - m _g_k(§:l{) _g" (g: k)
Xoakvk' 9 J“k@’k) wx,(g,k')
l'lg'#hlﬁ
KK', K #K! (D-7)

x a+(X K)a (X K')—1 d x E(X, x) e_l(k—k') &u+ (x)u _ (x)
Cg="=""Tg=="YV oK™= oK'

% _1 7 B R I o ')
om %o (£,K)a (Z.K') /i x[ucg(g)(l_l E(Z, x)) E(X} x)II UK
o

OKK'ZX'

(D-8)

+E(Xx)(II ( ) IIE(' x) + (n"* X, x)- (LE(X'
u X) u X', x uKu g E(_,Zg_)-(g E(g,g){[

1/2

2
2rhc e
IT _ E . > < d > —— (K"

(x) a;(z',lg) a (X, K+ a:(z_c, K)a (X', K') J (D-9)

x) "'1‘}" / d3x E(X, x) u:K(gc) e‘ils-g u(ﬂg (?5)(1_10]5 (x, §))



X) L[d°
W2
L2 +
"lhc g kl_g)\(Z:l.S)

(X, k)

JwN(X1+L, X, X, k!

(x) k-

s’ E(X, DX, x)

XAE)' K

+
g, (X+LX,,
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+ +
2 , a (X,K)a (XK a (X,K"a (XK'
g - g = = o - g'— =

| e

+
Xgo k') £, (X-L, X, Xg, -k)

) s,

5 (&K

l us\(g, k)

CN(X1+LX X, k')

3’

+( -L, X ,X
E)t'xl ’e’

'
X, K')

!
5K

wa(x +1,X,, X

3’

k')

) J (X "L, X,,

'

Sy, Slkgtky)

(D-11)

cyclic
permutation

g(k2+k'2)§(k3+ k'3 )

(D-12)

cyclic
permutation



APPENDIX E

CALCULATION OF THE BREMSSTRAHLUNG
EMISSION COEFFICIENT e}’;

In order to calculate e)L , it is first necessary to consider

B
vl o 4’;2"2 e (R
(x) II(I_$1|I_<)|2 (11-34)
where
1(K{|K) = SdB x u;;l (x) e-ili. Z('(é)t &) pug - (E-1)
Writing
@) = (572 gd?’ Keo Sy (E-2)

equation (E-1) can be written
1Ky K) = -i‘hSdSK' KD UE + ) (Ey K. (E-3)

The eigenstates uy (x) are to satisfy the equation

(E—HO-V)u=O, (E-4)

(E-5)

Let u, be a plane wave eigenstate of H o with eigenvalue E. Then we can write9

u=uy+ X ; (E—Ho)uo=0 (E-6)

9. The procedure used here for obtaining uK(g) and ¢ (K ) was originally
developed by Lippmann and Schwinger(437. However, we will follow the
presentation of this method of Bethe and Salpeter(26).
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where X satisfies the equation

(E-H -V) X -Vu,=0 . (E-T)

(26)

It can be shown that ¢ has a cut on the real axis and therefore

represents two functions X +, which satisfy the relation
1
7(+ = — V(U-0+ X-I-) (E-8)
- E-H +ie -
Q-
where € is an infinitesimally small quantity. (This integral equation repre-

sentation of X N is not unique.) The eigenstates u can now be written

uy =u,+ Xy - (E-9)

(26)

It can be shown that there is one unique state u, (and u_) corresponding
to each eigenstate of u, of H,. We will choose the eigenstates uy for the

remainder of the discussion.

Define ¥, (K) as the Fourier transform of u;(x) i.e.
L3 S 3. K x
W+(1§) U(21r) d°xe u, (x). (E-10)
From equation (E-9)

1 1
¢/+(I_§) = S(I_g .-I_{q) W + ‘th'z _ ‘h2K2

2m 2m

+ i€

_'K.
(x) (—}-—-)3/2 g S xe =R V(x)u, (x) (E-11)
2 +

where uo was chosen as
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1 3/2 -iK!'
Uy = o~ ( 271r ) / 1B (E-12)
Substituting
iK"- x _
V(z) = (E]'_)B/z S d3 K" e - V (K")
1r .
into equation (E-11), we obtain
1
v (K)=— A'(IS -K)t ———
v (K" +i€)2-K>
(0 (22 \ @ Ky (&™) VK- K) (E-13)
X ¥2—- lﬂ_l_ ] 2N An-RK . -

In the first Born approximation we write
1
w (I_{H) = é—(gn -I_(')
+ W

and equation (E-13) becomes

K- — [J&-x)+ D . E-14
b v [— TE glg? e

Z e2
For the potential V = - ,
r
V(K| = - ze? U(K|) (E-15)
where
-iK*r
1 32 2L
u(lgl = (= %cﬁ il
2 r
3/2
= (27) . (E-186)

21r2 K2
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Substituting (E-14) and (E-15) into equation (E-3), we find

-ik
1K | K) = —;— & K (€, KN (K -K;) S +k-K)

) ,
om7Z e U(IK'+k -K|) U(K'-K;1)
- K' -K - + A(K' +k -K)
< 12 > E‘ &) K2- |K'+k |2 S+ K? -K'2 ]
(E-17)

The first term in brackets must vanish since K, + k- K= 0 is not compatible

with energy conservation. Thus

' 2 ‘K (€,- K)
1K, (B - 2RZE gy | —& -i)z = CEE)
b k2 gkl K2 -k

where g = gl t+k -K.
Assuming a nonrelativistic limit, we take k << Kl 2L K and,
substituting equation (E-18) into (II-46), obtain

81rnIc4 r(z) e2 72 S(Exlk- Eg)

K
V2T L (k)=
BK By

A
0 [@)t 51 —é)\. 5]2

4
q

(E-19)

el
2

1
where r, = and one factor of V has been associated with the ion

mc
density ny.

Converting to the continuum in particle momenta and observing that

21w - gdsKlp(§)=VSd3K1 ,

K

eB can now be written
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X 8w c4rg e2 72 ng 3 3
€ * - d’ Kf(K) \ &K, S(EKlk-EK)
" K
X
€, K- & k|
(x) 7 . (E-20)
Ky -]

1



APPENDIX F
CALCULATION OF THE CROSS SECTION FOR
PHOTON SCATTERING IN A CRYSTAL
We wish to reduce equation (VIII-9a)

s + 1
c(ku,_g;k,S_l)=cT%('z—l7r )/dt e””t—ll\?Zme) (m|e” Q" @[m) (F-1)
gg' m

to equation (VIII-10). Define

Y = Y% Xl =_11\I-Z Z P(m) <m | Qo+902t) ‘m>
o' m

+
1 o O
+ § ? P(m) (m| 7 2%t) |m) (F-2)
g m

and consider Y°. Expanding |m> into the product wave function and utilizing

orthogonality, we obtain

1&_“10'
v°- § P(® )P ) (T |e
g g g

mn
g0

DRSNS

1 i& ®-R) iK1 2
(x) X § e =| E P(m )<m Ie Gl'rﬁo> |f|
oo’ m
o
1 § 7 ik @-B)
(%) N e (F-3)
oo’
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where

]

-ik-E
T- Z P(R) <ﬁG|Zje ks |‘1TG> (F-4)

n
g

By use of the Corallory to Bloch's theorem,
2
L) 2w (m 1671 m)
§ P(m) <m| e |m> =g M (F-5)
m

where Q is a harmonic oscillator variable. We take the thermal distribution

for P(I?lo_) so that

bi! (AJO - 1
no, -ty
P(m ) =2 sinh —2 ¢ : (F-6)
2kT
From equations (F-3), (F-5) and (F-6) it is easily shown that
-iKe |2 DI
l § P(ma) <mo| e |mo> =e (F-17)
m
o
where
how
D= coth
2Muw 2kT

Finally, then, we have

2 . (o
-DK° E 7 iKR |2
Y%= e '—f,2 {—1\13 e - 1} (F-8)
o

1
Turning now to Y, we first rewrite it in the form

=—Z,Z ﬁ(en'—— P(n) n'lZ

._—l

o+
(x) Z P(m ) <ﬁ0|/\° /\°(t)| ﬁo> (F-9)
m
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where
-i é' EG

N=e

After a somewhat tedious calculation, we find
sin wot
-iK- [l_lccos wot + Bo o :l
Alt) =e o .

Hence, sinw t

. -ig [g cosw t+P Mw;) :\
(® A Aol gy =(Fle e &),
By use of the formula

A+B+ % [A, B]
=e

which holds as long as A and B commute with [A, B] , we find

i‘hK.zsinw t/ZMwo
Z () <m| At /\(t)l 1'f1> - °
m
sin wot
iﬁ-[(l-cos wot)g - TM o P
(x) P(m) <ﬁl e ’ﬁ} : (F-10)

Again utilizing equations (F-5) and (F-6), we obtain for equation (F-10), after

laborious computation,

0 4]
2
-DK’ 2 > 2
e [IO(BK H 1 I (BK)
n-=

ihw, ifiw,
(x) in(w t - PRT ) -1n(wot - 2kT ) (F-11)
e +e h)
where
yil Aw
B = csch ——
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Writing
i - —iK-
ﬁ(eﬁ' et . ik §JI_ 2
I= e P(n) <n e n>
A ]
/i _ _
] E TR P(H) |f |2 + el (F-12)
- e n ﬁlﬁ .
1,7

For scattering in which electronic states do not make any transitions, we
obtain

(F-13)

Substituting equations (F-11) and (F-13) into (F-9), equation (VIII-10) follows
directly from equations (F-1), (F-2), (F-8) and (F-9).
If we had also included electronic transitions, we would have

approximated

and employed

sothat J =2 1. The modification of equation (VIII-10) is to replace lfl by

unity.
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