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Preface

This is the thirty-eighth in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in
process of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement with experiment. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and phenomena
connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and cross
section problems not amenable to theoretical solution; (c) problems associated
with the design and development of microwave absorbers; and (d) low and high

density ionization phenomena.

K. M. Siegel
vii
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Non-Linear Modeling of Maxwell's Equations

Abstract

A basic stumbling block to carrying out many experiments in the
laboratory is the reliance which is placed on the theory of linear modeling.
In aerodynamics and electromagnetics one is seldom able to construct a
precise linear model; one must appeal to physical reasoning to show
that the linear model one is able to construct gives results in close agree-
ment with those which would have been obtained with a precise one. For
example, as long as good conductors are used, conductivity is not modeled.

Until recent years the limitation on indoor radar cross section
ranges involved the size of the model that could be handled, and the mag-
nitude of the frequency of the coherent source. Even now no precise
linear modeling experiments exist for bomber cross sections at very high
microwave frequencies.

With the growth of interest in I. C. B. M. programs it has become

desirable (as measured in dollars) to use modeling to determine the radar
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cross sections of ablating warheads, and to determine attenuation effects
and scattering effects in or by plasmas. Linear modeling is of very lim-
ited utility for such experiments. One must model a lossy dielectric at
high frequencies or not do the experiment in the laboratory. One must
model some plasma parameters, or risk missing crucial first order
effects.

Previous analysis predicted the feasibility of non-linear modeling.
The first such modeling results are given in Reference 1. In this paper
several non-linear models of equations of mathematical physics are
presented. Maxwell's equations are non-linearly modeled. Experiments

making use of non-linear models are discussed.
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Introduction

Just exactly what is meant by modeling is not at all simple to
define. By modeling we mean more than what the theorist implies when
he reasons by analogy with some known and believed "similar" physical
problem. If we are faced with finding a solution to a physical problem
which (1) cannot be solved analytically by known techniques, (2) could
be solved analytically but at too great a cost, or (3) would involve
measurements, in an experimental approach, which are either too
costly or too difficult to do on a full scale basis (at least initially),
we must turn to a model-experiment approach. Thus we see the
economic factor usually comes into the question of modeling. An aero-
dynamicist would not consider building a new aircraft until he had made
wind tunnel tests,or for that matter would he obtain financing without
such tests. We should also keep in mind that in this country it might
be, and probably would be, easier to "sell'" results based on "modeling"
experiments than it would be to "sell" results based on reasonable
approximations to exact analytic results. In the latter case most people
would require an experimental '"check',

When we discuss modeling we state one measurement system on
a small model will allow us to obtain results which we can relate to
the difficult or expensive full scale experimental results desired. The

way this relationship is usually made is via linear transformations. To

3
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clarify the meaning of linear modeling we will now go through a standard
textbook example (Ref. 2).
A fundamental example in fluid dynamics would be based on the
Navier-Stokes equation. Consider the equation of motion
8—g+(q-v)q=-V(1?—)+ V9% g (1)
ot~ P -
where g is the velocity, p the pressure, p the density, t the time and Y
the kinematic viscosity.
Now consider a scaled motion which differs only in the scales of
length and time. Let us denote the quantities describing the second mo-

tion with dashes.

oq' '
L 4@ g =- v E) v vla. (2)
at! - p —_

The motion is said to be "similar" if we can proceed from equation
(1) to equation (2) by multiplying every term in equation (1) by the same

constant factor . By hypothesis we consider only scaling length and time

r =ar', t=Kt'; (3)

for similarity we must have

2
q@ 49 9 ¢ » _,p
t' t ’ I" r ’ p'r' pr
2'd  avq
r'2 r2
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We note by division
q _r/t p pa? gy _ar g
PEAr T B e
4 r/t P pq Y

where R is the Reynolds number. This must be the same for the two
motions. Since the equation of continuity as well as the first two of

the above conditions is satisfied by (3), it follows that the equality of R
is both necessary and sufficient for the similarity of motions. In experi-
ments made with models in the wind tunnel the quantities q' and r' for
the tunnel and model are less than for the full scale case, while 2is

the same for both. This has led to the use of compressed air wind

tunnels where » = £ [u = coefficient of viscosity ] is decreased by

p
taking an increased value of p.

Now that we understand what similarity implies, and the methods
which are used in linear modeling, let us go on to non-linear modeling.
Let us first consider an elementary example, the simple harmonic
oscillator, to clarify the method of approach.

Consider the initial dynamic system as

m%=-k%x (4)

The modeling transformations are

x; =P =Z; aixi

ml=am (5)
kl =¥k
tl =Bt

5
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An unnecessary but nevertheless perhaps desirable requirement would
be that the experiment in the laboratory be governed by the same equation

of the motion. Thus we require

dle

dt2 =—k12x1. (6)
1
Now it is clear that if f(x) were equal to a constant times x we would
have linear modeling. Since there is nothing which a priori precludes
non-linear modeling we shall attempt it here, but first we will present
some ground rules. We pretend we cannot solve (4), and we perform
transformations (5) and attempt to determine the values of a; such that we
arrive at (6). We again pretend we cannot solve (6), and that the purpose
of all this is that the experiment given by (6) is more economical than
the experiment given by (4). Since we know the solutions to (4) and (6)
we are in a position to check the concepts of non-linear modeling but we

must not use this knowledge of the solutions to (4) and (6) in deriving the

2. Substituting relationships (5) into (6) we obtain

am % =—k2]b.

3‘232
If we let
22
187 2
a 3
then
p=-22ip
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By use of the chain rule, and of (4), this becomes

d 1,2
m ¢ +__1§.__X)_EQ. =-)L2k2¢. (7)
dx m
Differentiating (7) with respect to time we obtain
3 2 2 2. 2
. . d - - - 2
N PP A o O ST S
dx3 dx2 m m dx m dx2
(8)
o2 9
dx

Dividing through by %% % and collecting terms we obtain

-2 —3£ +3 —L x+-—£ —+)LZ—9- (9)
k2 dx dx?

We can eliminate 5(2 between (7) and (9) to obtain

ﬂ 3.ﬂ.x+(1_>tz)££
2 dx

3
dx dx
; + =0. (10a)
d 9 d
Azp -——¢ X
dx2 dx

Now (10a) may be written
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i 1
Lb
dx2
d |
2 d 2
P - f X 2 d-p X
L J dx?
dx dap < >L2 P
dx
so that if we let
a3
dx2
= V;
)L2¢ - _é@_ X
dx
(10b) may be written
1 d
= T s aow .
vV oodx
A first integral of this is
1 2. .2
- X" -c, “.
Substituting for v:
2
d
(x2-12)——§ g =0
dx dx

This equation possesses a general solution

(10b)
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p =c cos(reos T X )+ sin(Asint =) | . 1)
2 cl 3 cl

We note if A=1 we have linear modeling, since

g2t
(c;)

The condition A= 1 forces X2 Bz =a. This is the same type similarity
condition as we discussed for the Navier-Stokes equation.

Note that (11) defines an infinite set of non-linear modeling
functions. In the event that Ais an integer and g = 0 we see that §
is a Tschebyscheff polynomial of the first kind of order X. The
simplest example of this, that for A=2, is

x, =P(x) =c, [2 (X )2 lJ . (12a)
‘1

Let us use this to test the validity of our model. A solution of (4) is

X =A sin£+Bcos-—k-t— .

iy [m
From(12a) we have [ with ¢, =1]
2
2(Asin £ + B cos £ )
2
‘1

9
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Now we use (5) to see if this is really a solution of (6). Since

we let A=2 to obtain (12a), we must use this restriction on the modeling

constants:
232
LE -y (13)
o
Equation (6) has the form
2
dx
m —— =-k%x, (6)
17 1
dt,

which becomes upon the use of (12b)

2 2
d(Asin-lf-t—+Bcos )

kt
2 am /' ym'

2
2 9 2(A sin <L + B cos K1)

-% k Jm' /il -1((14)
2
|
and by use of (13)
.kt kt 2
—_— =2
m 4 okt Kt 2 . 2(As1n‘/E Bcosm)
— _(As1nF+Bc — )" =-2k -1,
(15)

Performing the indicated differentiation, and dividing through by

2
2k we obtain

10



THE UNIVERSITY Or MICHIGAN

2871-4-T
2 2

AL BT o (16)
2 2

° °l

Thus if 012 =A2 + B2 we see that (12b) is a solution to (6).

We have presented what we have called the simplest type of
non-linear modeling. It will be recalled that the equation of motion was
the same in both systems in this example. In the next section we shall
consider a case of non-linear modeling in which the two systems are

governed by different equations of motion.

Non-linear Modeling of the Non-linear Spring Equation.

The non-linear spring equation is

% +h(x?-1) x =0. (17)

In an attempt to model equation (17) non-linearly with respect to

displacement, we use the modeling transformations

x = f(x)
4 =bh
t1 =ct.

Let us assume that the model system is governed by
Xm2
— = -k X =0, (18)
dt, 2

11
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Substitution of the transformations into (18) yields

_L_d_(ip_.,-()_bhp:_l.z. _ﬂ 2+——.3< ~bh p =0.

(19)
Let ¥ =bcz; then (19) becomes
2
d o
AP 2, @i g -o. (20)
dx? dx
Now by (17) we obtain
dzp .2 df 2
— X - =L h(x“-1)x-¢np =0. (21)
dx dx

We differentiate (21) with respect to time obtaining

3 2 2
L[] L] o°” d [l
—M x3+—q—92xx— ¢ xh(xz-l)x
dx3 dx? dx®
- iﬁ h(xz-l))'( - —dp— h(2x x)x - ¥h Ep—- x =0,
dx dx dx
(22)

Dividing through by X, we obtain

3 2 2
adpae A g P2y A b 1) + 32 haxPryn 9.
(23)

12
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2

Eliminating x“ between (21) and(23), we obtain

3 2
d'f df [—2)’Z+h(x2-l)x:l+—d£ [h(x2—1)+h2x2+b‘h]
N 2 dx

2

4a7p

e Byt ’hp
dx

(24)

Since

2
a [‘_m_ h(x® - 1)x+ X‘hﬂ] sd—g h(x2 - 1)x+ g-x@ ¥h+ %%[h(xz—l)ﬂhxzjl ,

dx | dx dx
(25)
(24) becomes,

4% g
5

2
Ay P By - 1)xt g | - dx
A | g2 | & | & 2
—¢—h(x -1)x + ¥'hp
dx

(26)
Using the temporary change of variables
&
V= ax” , (27)
-Sﬁ— h(x? -1)x + # hf

equation (26) takes on the form

4 [lnv]=-v-25<'. (282)

dx

13
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We can rewrite (28a) in the form

Replacing v by the expression (27), (28¢c) becomes

4

2 dx?

Dividing through by h and letting ¢; = -}c;- we obtain

2
(5— —)(24-01)—(1—¢ +(x3—x)—dp—+lf¢ =0
dx

2 dX2

an ordinary linear equation with non-constant coefficients.

2
(EX— ~hx? +c) ap +(hx3—hx)gd-%— + ¢¥hp =0.

(28Db)

(28c)

(29)

(30)

In order to solve (30), we can take advantage of the fact that it may

f 4
easily be thrown into self-adjoint form: dividing it by —}iz- - x2 tcy we

obtain

14
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which can be put in the form

4 4
\/i- 4o, L \/X— “xte 9 +¥p =0.
2 1 dx 2 1 dx

If we define:
[ x4 2 d d
—_—-x +tC¢, — = — s
2 lax gy

then (32) becomes

2 iry
ng +b‘¢=0:¢=02e .

dy

The above definition of y implies that

15

(32)

(33a)
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: t
where ¢' =2 ¢, = ab, b+a =2, ands = \/—_— . Since the integral appearing
a

above is in the standard form of the elliptic integral of the first kind with

modulus \l—g— , expressed F ( J—%‘ , T_X— ), the modeling function we seek

a
is
2% a X
= e ti\y— F( \(—, — 33b
pi) =, xp[ Lol 2 )} (330)
If ¢' =1 we have the following simple special case.
3 1 ’ 1
+ +x
y:ﬁg dtz - /8 St 2 RN N )
; l-t V2 1-t V2 1-x
0
iy
1+x
Plx) =cy (—)
1-x

Now we are ready to discuss more general systems.

General Non-linear Oscillator

Consider as a prototype a system governed by the equation

d2x

— + f(x) =0, (34)
dt

which describes the free, undamped, non-linear vibrations of quite gen-

eral systems having one degree of freedom. If the model is required

16
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to satisfy the equation

2

2Y 4 ix(y) =0, (35)
9

ds

in which f* differs from f only by a linear change in parameters,
then it is desired to obtain the functional relation y = F(x) when
the independent variables are related by s =at. This last relation
permits one to write (35) in the form

d2y 2
dt

and by use of the chain rule this can be written as

2 2
y  dx
— (E)2+—dl dx +a2f*(y)=0. (37)
dx? dx g2
d2x
Substitution for — from (34) and use of the identity
dt
2
dx _1 d (dx 2
dt2 2 dx dt
permits one to write (37) in the form
2 2
d f(x) d a” £* (y)
Yo+ Y o Y -o (38)
2 dx
2 Sf(x) dx 2 gf(x)dx
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Equation (38) is the differential equation whose solution gives the desired
functional relationship between x andy. It does not seem possible to obtain
its solution for arbitrary f; however, the equation can be written in a

form more suitable for solution once f is prescribed. Setting

g(x) = \f S f(x) dx

(38) can be put in the form

2
d d a 9
g(x) — (g(x) L) - 2~ £* (y) =0, (39)
dx ( dx) 2
and by the change of variable
dm = s
g(x)
(39) is reduced to
dzy a2 -
—_— _E_ f'r (y) = 0. (40)
dm2
Equation (40) can be written in the form
dy .2 2
_q'._(_y_ - a f*(Y)ZO,
dy dm
which is solvable for m. Hence
m =L S ¥ (41)
a gx(y)
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where g* (y) = \/ Sf*(y) dy.

The definition of m together with (41) imply that

de =1 S &y (42)
g(x) a gx(y)

which is the desired functional relationship between x and y.
The non-linear spring equation (17) is of course a special

case of the results just presented. For if in (34) we let

f(x) =u (x3 - x), then f* (y) =u' (y3 -y), where u' =bu, and

(42) becomes

dx 1 dy

[ 3 a\b \/ 3
S(x - x) dx (y -y)dy

If the initial conditions are

. (43)

L::d =0 when x =x
dt
—(d;tz =0 when y =Yy

and if y = Yy when x =0, then (43) becomes
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<

(44)

By performing two of the integrals in (44), and defining

17 4_ o 2
A, B=1%F \/1+xo - 2x,

¢, D17 Vl+yt- 2y,%

we obtain the expression

S O KR 2 e JE__X;_ ra 2D g [£ =
D |C D JC B B /a

where F( , ) isthe elliptic integral of the first kind as defined above
in equation (33b). It should be noted that the above treatment of the non-
linear spring differs from that in the preceding section in that both model
and prototype satisfy equations of motion of the same form. One reason
for its inclusion was to show how easily boundary conditions may be hand-

led.
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Euler's Equation

Consider a hydrodynamic system governed by Euler's

equation

=-— Vp+G. (45)

In the event that this system is either an adiabatic or an isothermal
gas, p may be expressed as a function of p by an equation of state,

p = f(p), and (45) may be written
— =- — Vp+G (45")

If for this prototype we specify a model system obeying

dW - 1 vy q+ a!’ (46)
ds f*(q)

it is desired to obtain the functional relation p = F(q) which arises

when the other variables of the two systems are related by

W = av, s =bt, 7' =

and when f * differs from f only by some linear change of para-
meters.

These relations permit us to rewrite (46) as

dv 1

— —3& V p+eG. (47)
dt c fx(q P

2
b

21



THE UNIVERSITY OF MICHIGAN
2871-4-T

Solution of (47) for 6yields

be A oo f% (q) dp

and substitution of this result in (45) gives us

If the stipulation is made that a =be, the above reduces to

%k
dg ce £* (q) o )
dp (p)

since we may assume that \/p is not identically zero. The variables in
this equation are separable, so that if f(p) is specified then p = F(q) may
be found.
For example, in the event that the system is an ideal adiabatic gas,
then
szpr,

and (48) becomes 1/

This is immediately integrable to yield
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, | g
oy LA I
b = $(Y-1)  pK q ¥ +e.
| f(¥'-1) acK' |

Note that the modeling is linear if both model and prototype have

the same specific heat ratios (¥ = ¥').

Boltzmann Equation

Consider a statistical distribution of particles whose distribu-

tion function, F, satisfies the Boltzmann equation

O v YF+A-T FHIF) =0, (49)
\'

ot

where I(F) is the collision integral of the system. Now the first
three terms in (49) are simply the expanded form of the material

Hence (49) can be written in the form

derivative

DF +I(F) = 0. (50)
Dt

This form lends itself to modeling more rapidly than does (49).

Hence if the model is required to satisfy an equation of the form

G, I* (G) =0, (51)

Ds
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where I* differs from I only by a linear change in parameters, and if

S =at, then a simple manipulation permits (50) to be written in the form

a 1% (6) 4E - 1(p) =o. (52)

dG

The variables are separable in (52); hence it may presumably be solved
once I is prescribed.

For example, in the event that both systems are neutral or weakly
ionized gases, then I is given approximately by

F-F
0

KF) = T

where T is the characteristic time of the system, and F is its Maxwellian
0

distribution. Hence

G-G
1%(G) = ° .,
ft'
and the solution of (52) is
T'/aT
F=F +CG-G) s (53)
0 0

where C is a constant of integration. Inspection of (53) shows that the

modeling is non-linear except when ' =aT.
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Non-linear Modeling in Acoustics

Let us next consider the scalar wave equation

Vp+iP P =0, k=21/2 (54)
where A = wavelength. This equation we plan to non-linearly model

by means of an equation of the same form

T+ L2 =0 (55)
wherein we take x'=a X; and X =b X . If we find we cannot do an
economical experiment when b = a , then linear modeling is out of
the question, since two distances A and the X; are modeled differently.
In all cases known to the authors the experimentalists have used the
laws of linear modeling and have forced the model size to be in the
same ratio to the true size as the modeled wavelength is to the true
wavelength, However, since in our case we cannot do so, let us

find the non-linear modeling function

p=p(y) (56)
which allows a andXto be arbitrary. From (56) we obtain
Vo =p V¥,
V2P =p (VY)Y + Pty (57)
=g (N yy - L2y,
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where (V¢ ) means ¥ -y and use has been made of the fact

that Vz ¢=_{ 2 ¥ . Substitution of (57) into (54) gives

(Vsb)z pr —j¢2¢p'+k2p =0. (58)

To solve (58) one may proceed as follows: First, take the gradient of

(58) to obtain

(VYT 207 T Y TV L2 prpel-f2 Y = o
(59)

Next, divide (59) by I \V4 ‘)V I , on the assumption that V¥ # 0, to get

g (g9 feagn (VIR - £29pr Ao o421 A =0,

is the unit normal to any solution surface ¢ = constant.

where B = |g ;l

Introducing the unit dyadic II, one can write this last equation in the form

i:p'"(v¢)2 n+2p"V w-zz g 1+ (k2 - £?) P n] A =0, (60)

Now since the surface ¢ = const,, to which A is the normal, is quite

arbitrary it may be concluded from (60) that

pru(v ¢ 2 m+ 20" V vW—Lz ¢ pr 11+(k2-12)¢' Im=0. (61)
Next, take the divergence of (61) to get
; 2
PV Y) WY +4ap (YY) -V ¥ + (k2 —412)¢"V¢—2,2 pp7 Y =0.(62)
In obtaining (62) the following results have been used:
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(1) vV =0,
(ii) AI = K, for all K,
2 _ g2
(i) V(VVY) =V y)=-L°V .
(iv) V / Vis self-conjugate.
Of these results, (i), (ii), and (iv) follow directly from the properties
and definitions of the dyadics involved. The first part of (iii) follows
directly upon expansion of \7x (V7 x V%) =0, and the second part is
a consequence of (55). Next, from (58) one finds that
' 2
2 P - p
¢n

2 2 2
where X =k /£, and from (59) and (63) it follows that

(V)7 =4 ) (63)

pr[wpr +- AP -prwpr P
V¥.

z<vw>-vv=z2<
¢112

(64)

Substitution of (63) and (64) into (62) gives (after division by
2
£
iv
«’;—w-xzpniﬂ;[pw"+<1-12>¢'>—¢"'<¢¢'-xﬂ vy

+ {(XZ _4)¢n _‘yjpm V=0
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Now it has been assumed that \/ ¥# 0, hence this last result implies,

after some rearrangement, that

iv 1 m2
D g x oo BB 2 B 200 2-aprvp <o

p p pr

(65)

+
A first integral of (65) is

o (PP A2P) =(1-12) })E t3¥+2C, (66)

pnz

where 2C, is a constant of integration. Multiplication of (66) by §' and

a rearrangement of the result gives

pm ,‘Up"+(1"12)¢' ¢n
= 5 +(2cl+2’f) —
p Y -AP yor-xp
and if the substitution
"
u= __p__z— (67)
¥pr =X
is made, the previous equation becomes
d
— (L) =(2C; +2¥) u.
d¥
Integration of this equation gives
1 _ 9 2
v % v -rav o)

+
See Appendix
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where the constant of integration has been taken as —022. Equations

(67) and (68) now give
(c,2-p%-2cp)pr -pp +22p =0 (69)
2 1 )

Setting § =¥+ C; reduces (69) to

2
2 2. d 2
(m -87) f +(cl-s)—dﬂ + X7 P =0, (70)
2
ds ds
where m2 = Cl2 + 022. Equation (70) is similar in form to the

standard hypergeometric equation and under the change of independent

variable S = m(1l -2x), it becomes

2
NTRR N T S S ) 2% =0 (m)
dx? 2 om dx

The hypergeometric equation referred to is of the form

Ly d
x(l-x) — + {}(—(a+3+l)x] ¥ oo afBy =0, (72)
dx? dx

and comparison of (72) and (71) shows that @« =+, 8 =F X, and
¥=1 /2 - Cy /2m. The analysis from this point depends quite heavily
on the value of ¥ which in turn depends on the constants C1 and C2.

It is known that the hypergeometric equation has two linearly independent
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solutions regardless of the value of ¥, but when Y=0,+1,+2, ...,
one or both of these solutions possess singularities of various types.
Since the experimental parameters which make up § are under our
control, we may avoid these troublesome integral values, however.

The general solution of (72), valid for |x| <1, is
1-Y
y =A 2Fl(oz, B; ¥; x) + Bx 2F1 (@-¥+1, B Y+ 1; 2-Y%; x),

m-S
hence the general solution of (71), valid for \—-—-—-l <1, is
2m

1 Cy m-S
¢ 3 2F1(x -X; —; - ; )

2m 2m

1 C
-
- C C C -
+C (_M)Z 2m (X+.1_+__1_’ _‘)(+.1_+__1.; i.*._l_; m-s
4" om 21 2 2m 2 9m 2 2m 2m

m-'Cl—}V

2m
between P and ¥ becomes

< 1 then the desired functional relationship

Thus, if \

i L& m-C-¥
P =Cy F, @, -%; 5 — )
2m
1+Cl ¢,

m-C,-%\5 ' o C 3 C -Cq -
+C( 13’)2 2m F(X+ e 3 q+l +_1;__+_1_;m013"’
4 2m 2 2 2m’ 2 2m 2 2m 2m

(73)
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m-Cl -'30

2m
but since C1 is subject to our choice, we can produce a value such

The restriction ’ <1 may seem rather severe,

that the inequality is obeyed if we so desire. As a further remark,

attention is called to the fact that if C1 = 0, equation (69) becomes

(©2 -y -vp+ AP =0,

the general solution of which is

p = Cgcos ()(cos_1 Y )+cC, sin(Asint —1”—). (74)
Cy 4

Co

This is the same result obtained by us in the Introduction,
equation (11) which is the one-dimensional analogue of equation (54).

This suggests that for the usual three-dimensional cases ¢, # 0.

Maxwell's Equations

Following Stratton (Ref. 3), we will first go through the linear
modeling procedure for electromagnetic phenomena. Maxwell's

equations, which describe these phenomena, may be written

9H

VXE‘l‘u '-5?:0 (75)
VxH-E%tE——GE=O. (76)
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Suppose we construct a model system governed by

o' x E+p 2E =0 (77)
at'
and
JH'
' xH' - €' — -o!' E'=0. (78)
ot

whose variables and parameters are related to those of the system of (75)

- (76) by
E =aFE
H =8 H
€ =7€
po=ou (79)
o = alc‘
X, =a X
i 91
t =a_t
3
/
Substitution of (79) into (75) gives
ot' aga
k—‘v\/
I

Also, substitution into (76) gives
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! E!
—_ ' xH' - Jae i—— -a a0'E'=0 (81)
) 3 ot
Multiplying by az/ B:
Ja o . a aa
V'xH'-——————2 €' O .1 2 sip=0 (8
a,B ot B
— ——
I oI

I, II, III are the invariants of the linear modeling. We can

eliminate the common ratio o/ 8 among them to obtain

a 2
2
Y § = constant
a
3
(83)
azz
$a —— =constant
1 a
R

If the two quantities of (83) cannot be made invariant for a particular
modeling application, exact linear modeling is impossible. One such
case arises when one attempts to obtain the X-band radar cross section

of a B-70 aircraft, where object dimensions and wavelength cannot be scaled
in the same manner for a reasonable sized experiment, The method of
""approximately linear' models, which has been used in the past, is un-

desirable,
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However, non-linear modeling of Maxwell's equations is now possible
because of our results on the scalar wave equation,

It has been found by Schelkunoff (Ref, 4) among others, that the most
general electromagnetic field in a source-free region can be described in terms

of two scalar wave functions. By this method, if ¢1 and ¢2 are two scalar functions

satisfying

v2p +KPp=0 i=1,2 (84)

then the electric and magnetic vectors are given by

Ex=
otiwe 9x9z

E , B =

2 2 1 2
Y o+iwe 3ydz Z s+ive 9z

2 ) 2 2
1 ] ¢2’H - 1 9 pZ,sz_.l__ (_a__gll +k pz)_ (86)

i 2x9z Y iwu dyodz iy z

H =

Since both ¢1 and ¢2 are scalar wave functions they can be modeled as
was shown in the previous section, This leads us to believe that we may non-linearly
model electromagnetic systems in source-free regions, since ) 1 and ¢2 uniquely
represent such systems, The actual techniques which would have to be used to per-
form this modeling may be summarized as follows: The electric and magnetic
fields for the model system are measured, The associated potentials ¢1 and ¢Z are
then found using equations of the form (85), (86). The potentials of the full-scale
system may be determined from these by the scalar wave function modeling trans-

formations Y= \}’l(¢l) and Y= V,($,) given on page 30, The electric and magnetic
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fields of the full-scale system are found from these by using another set of
equations of the form (85), (86).

It should be noted that it is possible to represent an electromagnetic
field in terms of two scalar wave functions by other methods which are pre-
sumably different from the one described above, Readers are referred to
References 5 and 6, The relation of these different scalar wave functions
to each other, and to the Debye potentials will be discussed in a forthcoming
report,

This paper represents the sum total of our results in non-linear
modeling to date, During the next few months we plan to verify the results of
this section as was done with the simple harmonic oscillator result in the
introduction, 1If this is successful we plan to perform some experiments
using non-linear modeling, This experimental program will be under the

direction of Ralph E, Hiatt,

Conclusions

In this paper we have non-linearly modeled the simple harmonic
oscillator, the non-linear spring equation, Euler's equation, the Boltz-
mann equation, a general non-linear oscillator equation, and the scalar
wave equation. We have exhibited a method which shows how to non-
linearly model Maxwell's equations by utilizing the non-linear modeling
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of the scalar wave equation.

Despite the a priori expectation that non-linear modeling was
at best mathematically very complex, if not impossible, it now appears
that there is a possibility of non-linearly modeling more difficult equa-
tions, such as the coupled set consisting of Maxwell's equations and the
Boltzmann transport equation. Of course, if these non-linear models
can be made useful and if results remain general, or at least if the

physically interesting cases can be solved, then it appears that one

should be able to eliminate a great many expensive facilities which are
presently required. It also appears that certain experiments previously
considered beyond our present capabilities will now become feasible.

The authors would like to gratefully acknowledge the many help-
ful discussions which they had with Professors C. L. Dolph and R. K.

Ritt.
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Appendix
The analysis leading to the first integral, (66) of equation (65),
although lengthy, adds little to the main body of the section and is thus
included here for the interested reader.

Recall that equation (65) is

"t

"o o <0

1" "

b g A2pyra aH 2L 0
pn

2
"
If this equation is multiplied by - and the result slightly
v -Kop
rearranged, it becomes
2
. 9 ¢| ¢1n_¢112 3 pn?’ "up"‘l’(l—i )pt
y)nplv_l_(l_'x~ ) ¢n_ +¢n¢m _zpmz:().
2
Yo A9 yp AP Y-

Noting that the coefficient of " §"' in the fourth term of this equation
. e . In . 2 .
is the derivative, with respect to ¥, of f(¥/p' -X @), one obtains,
after solving the equation for this derivative, the result
2
¢m ﬂiV 3¢n p'pm_pnz
- +

-(1-%?)

pr g pvvv(¢¢:_fx2¢) ¢m(—y/¢y_7(_2¢).

d 2 2
Lty -12p)-
p” ypr-21"p)

Now the first two terms on the right side of this last equation are the
derivatives ofﬁn(p"z) and —%jb”' respectively; hence combining them
with the logarithm term on the left, one obtains
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(A-1)

y (¢"v(w'-xz¢>) 3pn? , P 2
b )

g - Oy o M—
dv pnz pm('wpv _'sz) (.wpq_xz¢)¢m

The last term on the right can be written as

a2 L
¢m(«’p¢|_ﬂ ¢) dvy ¢v

hence, introduction of this result into (A-1) followed by multiplication by

¢m(30¢1 _‘sz)
gives
¢nz

"t | - 2

N pr(ypr-A~9) 51D 1 d (_ﬂ

v g @/pn? ¥ g

-4 (3¥+2cC,)+( —7(2) 4 (—E—),
df,ﬂ 1 d’/l ¢n

where 2C; is a constant of integration. Equation (66) readily follows.
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