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ABSTRACT

_This report contains a collection of studies in the realm of
non-linear modeling performed during the year 1960. It includes
a discussion of the generality of non-linear modeling which displays that all
second order ordinary differential equations arising from a conservative
system can be locally modeled in a non-linear manner. Also included is
a discussion of the problem of modeling the scalar wave equation in
n-dimensions and a preliminary consideration of the effect of experimental
errors on the applicability of non-linear modeling.

The problem of modeling a scalar scattering problem for one
geometric configuration into a scalar scattering problem for a second
geometric configuration is begun. Two cases are considered; (1) that of
modeling a scalar scattering problem for an elliptical cylinder by one for a
circular cylinder, and (2) that of modeling prolate spheroid problems into

sphere problems.
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INTRODUCTION AND SUMMARY
(J. W. Crispin Jr.)

This contract, AF 19(604)-4993, started on 1 January 1959 and ends
on 31 December 1960 with the publication of this final report. The objective
of this contract was the investigation of the application of non-linear model-
ing to Maxwell's equations andto the Navier-Stokes equation with the ultimate
objective being to obtain an understanding of the phenomena of the interaction
of electromagnetic energy with plasmas.

During the first year of this contract attention was directed toward
the consideration of several non-linear models of equations of mathematical
physics; this effort was summarized in [1] . In addition, during the first
year, three studies, one on scattering from plasmas and two on basic electro-
magnetics were concluded with the publication of [:2, 3, and 4 :]

Another effort has also continued, resulting in the publication of
EB] . This effort has been made by Professor D. A. Darling and involves
the problem of obtaining diffraction and scattering solutions for bodies which
are formed by the intersection of separable bodies (e.g. the body formed
by the combination of a cone with either one or two spheres). To date the
effort has been restricted to the Laplace equation and to scalar scattering;

extension to the vector problem is clear,
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During the last five months the efforts of the Radiation Laboratory
in non-linear modeling have become split; the effort devoted to the study of
the interaction of electromagnetic fields with plasmas via non-linear modeling
techniques has become the subject matter of contract AF 19(604)-7428. The
non-linear efforts conducted under AF 19(604) 4993 have been somewhat diversi-
fied with consideration being given to several important problems. One goal
has become the solution of the ''low cross section shape'' problem via the pro-
cess of non-linearly modeling a ''low cross section shape problem'' into a
'"large cross section shape problem'’; the specific problem being considered
at the present time is that of a prolate spheroid into a sphere. This problem
has not been completely solved as yet but we feel we are well on the road to
putting this modeling process in a form which will be extremely valuable in
future laboratory studies. It is felt that the combination of this effort with
the results of the extended work of Professor Darling, referred to above,
will provide a strong tool for the study of low cross section missile shapes
without resorting to special laboratory techniques.

Due to the diversity of the efforts conducted during the past year on
this contract, this report is, in effect, a collection of papers on non-linear
modeling. We include in this report all contributions of significance which
have evolved since the publication of [1] with the exception of the work
of Professor Darling which, as stated above, is covered in [5]

In Section II we present a discussion of the generality of non-linear

modeling; this work (by Professor R. K. Ritt) proves that all second order

1-2



THE UNIVERSITY OF MICHIGAN
2871-6-F

ordinary differential equations arising from a conservative system can be locally
modeled in a non-linear manner.

Section III contains a discussion of the problem of modeling the scalar wave
equation in n-dimensions. This work was performed by O. G. Ruehr and we might
note that this is, in itself, of extreme importance in turbulence theory where
high-dimensional solutions to the scalar wave equation play an important role.

Section IV is devoted to the consideration of the effect of experimental
errors on the applicability of non-linear modeling. This analysis is devoted
to the scalar wave case and is intended as an illustrative example of this
effect. This question is of course of prime importance to the non-linear
modeling concept when we think of experimental applications.

The remainder of this report is devoted to the consideration of the
work which has been done during the past year on non-linear modeling
of low radar cross section problems. In Section V the item of concern
is the high-frequency forward scattering of a finite plasma disc; this
we consider as a first step along these lines. Section VI is devoted to
the consideration of the problem of scalar scattering by an elliptic
cylinder in which this problem is modeled into a similar one for a circular
cylinder. Sections VII and VIII are devoted to the consideration of modeling
prolate spheroid problems into sphere problems; in Section VII this problem
is considered as an extension of the work of Section VI (i.e. a pertur-
bation method approach) while in Section VIII this fundamental problem is

considered from a different point of view, that of using an expansion technique
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in which the expansions of the fields for the two bodies are related. This
approach has the advantage of being applicable to all spheroids directly while
the approach of Section VII is somewhat restricted by the magnitude of the

eccentricity of the spheroid.
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I

A NOTE ON THE THEORY OF MODELING

(R. K. Ritt)

1. Introduction

In {1] it was shown that if two physical systems could be
assigned trajectories in phase space of the form x = eAtxo , Where eAt isa
one-parameter semigroup, then, at least for small values of t, there existed
a one-one correspondence between the trajectories of the two systems, and that
this correspondence would be extended to the entire trajectories, subject to
restrictions imposed by the spectrum of the operators A; it is even possible
to change the time scale in one of the systems, without losing any generality.
When this correspondence is established, the systems are said to be models
of each other, and the restrictions mentioned are called the similitude conditions;
they are generalizations of the classical similitude conditions, which assume
that the correspondence between the phase spaces is a linear one, In
[Z], the extension of this theory to certain electromagnetic problems was accom-
plished, and it was shown that the modeling could be carried out in certain
systems whose equations of evolution were non-linear. In particular, for
systems involving one degree of freedom whose equation is of the form

2

d—zq— +£(g) =0
at

>

the correspondence was exhibited explicitly, in terms of quadrature.
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In the present note, the last of the above-mentioned results will be
rederived in the setting of general dynamical systems, and the possibility of
extending the result to systems with more than one degree of freedom will
be analyzed. The theory will be a local one, i.e. we shall discuss only the
initial part of the trajectory so that the question of similitude conditions will
be ignored. This is a question which, at the moment, appears to be quite

difficult to solve in the general case,

2, Systems with one degree of freedom.

Let (g, p) be the canonical coordinates of the system, which will be
assumed to be conservative, and let h(p, q) be its Hamiltonian, Let e be the
energy of the system, determined by the initial conditions. Then assume that
initially, ah/ op # 0, so that, at least for small values of t, the equation h(p, q) =e
can be solved for p, obtaining

p=ple,q . (1)

Then the equation of motion is of the form:

dq _ oh
at op °’ (2)

and replacing the p which may appear in the right member of (2), we obtain

dg .
m vl(e,aq , (3)

in which ¢ (e, q) is not zero for t sufficiently small. If a second system has
canonical coordinates (Q, P), and whose time scale, T, is givenas T = At,

and whose energy is E, an analogous discussion leads to
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49 =) Y Q (4)
dt
From (3) and (4), we obtain
A ¥ (E,Qdg- ¥ (e, q) dQ =0 (5)

which is a nonsingular differential equation which can be solved by quadrature,

This is essentially the result in [2] we have mentioned.

3. Systems with more than one degree of freedom.

Let there be two such systems, with canonical coordinates
(P Qi Prseees pn)and(Ql, vers Qi Pry.nn, Pn). If we were to admit,
among our admissible modeling functions, all those of the form
(4, p) =F@Q,P) , (6)
in which the parentheses represent points in the 2n dimensional phase space,
the question of existence would be trivial. Instead, what we shall investigate
is the existence of modeling functions of the form
9=F@Q . (7
In general, the contact transformations which provide solutions of (6) do not
separate to give solutions of the form (7); as we shall see the restrictions
are severe, but they have the virtue of being capable of an explicit formulation,
Let hj (p, q) and Hj (p, ), j =1,2,..., n be nindependent integrals
of the systems, which are presumed to be known; h; and H; are the hamil-
tonians of the systems. Let us assume that the initial conditions are such
that the Jacobians (with respect to p and P) of the equations:

h(p,q)=e , HI(P,Q =E (8)
j j j

i
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do not vanish initially, Then the two sets of equations (8) can be solved
for p and q, giving
szpj(e’q) » PJ=P](E:Q) ’ j=1,...,n . (9)

If the time scales are as in § 2, the equations of motion are

__j_..=.-__ s -——j—=h-— R j=1,...,n ’ (10)
dt op. dt oP,

j J

and when the values (9) are substituted into the right members of (10), we

obtain;
dq, dQJ.
—1 = S R
o Yeds e .

From this equation is obtained the system of partial differential equations

aq, ¥ (e, q)
i i

Q. A, (E,Q

(12)

The existence of solutions for (12) is equivalent to the satisfaction of the

compatability conditions., Now

g, o, v
7 <aJ> e s I M . <1 > (13)
Y U X IIfk IFP r=1 % * 9Qy ¥

Because of the symmetry of the first term of the right member of (13), the

necessary and sufficient condition that equation (12) have solutions, is that

9 1 9 1
= » k4 =L..,n .
0Qy <1I/I > Q / <1Ifk> n (14)

4, Discussion of the result.

In general, the condition (14), does not hold. And of course, any
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attempt to test a particular system depends upon the knowledge of n independent
integrals; so that, practically, especially if n is large, the question of whether
a modeling function of the type (7) exists is a difficult one to settle. However,
an interesting theoretical result arises from the above discussion; namely,

that the existence of a modeling function of the type (7), depends only upon the

nature of the (Q, P) system.

REFERENCES

SECTION II

[1] Ritt, R. K. '"The Modeling of Physical Systems,' IRE Trans. on Antennas
and Propagation, Vol. AP -4, No. 3, July 1958.

[2] Belyea, J. E., Low R. D. and Siegel, K. M. ''Non-Linear Modeling of
Maxwell's Equations, " The University of Michigan Radiation Laboratory
Report 28714 -T, December 1959.
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o

MODELING OF THE HELMHOLTZ EQUATION IN N DIMENSIONS
(O. G. Ruehr)

Introduction

This chapter is concerned with the non-linear modeling of one
Helmholtz equation by another in a space of n dimensions. We speak of
modeling differential equations rather than physical systems since the equa-
tions together with boundary conditions can be considered as representatives
of the physical systems. In particular, we are interested here in determin-
ing what can be said about modeling functions and similitude conditions |:1J

from the differential equations themselves without bringing in boundary condi-

tions.,
.)
Suppose two functions of position f (x) and (//(;) satisfy Helmholtz
equations:
2 2
V P+ =0 (1)
2 2
V' U+K ¢ =0 (2)

We would like to model equation (1) by equation (2) with a modeling function
of the form yb = ¢ (). That is, given a value of § at a point we want to determine
P at that point as a function of ¢ only (and not of position). To put it another

way, we want to find all single-valued transformations § = ¢ () between the
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solutions of equations (1) and (2). Conditions on K1 and KZ for which such
modeling functions exist are called similitude conditions. It is clear that,
if Kl = K2 s {b = Ay, where A is constant, is such a transformation (linear
modeling). Let ¢ be a constant unit vector and let T be the n dimensional

radius vector. Then particular solutions of (1) and (2) are given by

3
iK, (T - )

p=ae (3)
) =pel¥? (r-2) @
Examination of these solutions shows that the following transformation is a
modeling function when it is single-valued, i.e. when E:— is an integer.
peatym' (5)
Here we have an example of non-linear modeling function in n-dimensions
with the similitude condition that K;/K, must be an integer. The objective
of this chapter is to characterize such modeling functions. It is clear that
by a similarity (change of scale) transformation, % =K, ¥, we can deal with
the following system:
K=Ky/K; (6)
7 p+K P =0 (7)
o Y+ =0 (8)

p=pw)
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. . . <
Here, the < operators refer, of course, to the new dimensionless coordinates, y.

Theorem I:

2
Suppose f and y satisfy equation (6), (7), and (8). Then (Vy) must

be a function of ¢ and the following linear ordinary differential equation is

satisfied by non-linear modeling functions @ (y):

2
dp  dP L la-
F ) — wdw +K §=0

v =1 0

Proof:

Operate on equation (8) with the gradient \/:

_dp
v dw-w

2 2

V=il oL g2y
dy iy

Substitute from equation (6) and (7) and rearrange:

2
v’ d—gl v -gl% +K4P=0
dy

Since all quantities appearing in (13) other than (V w)Z are functions of ¢ it

2
follows that (V(j/)z =f(y). Note that i«% # 0 by the assumption that we are

dy

dealing with non-linear modeling functions.

(9)

(10)

(11)

(12)

(13)
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This result was quoted in part by Belyea, Low, and Siegel EZ__]
although they did not utilize the fact that (V g{/)z =f(y) which we will find to
be very helpful. Clearly Theorem I allows us to concentrate on determin-
ing the form of £(y). To the extent that we can characterize f(y) from equa-
tions (7) and (10) we can determine @ (y). Before discussing the general case

we examine the problem in one and in two dimensions.
One Dimensional Case

This case has been treated completely by Siegel, Ritt, and others

[1] s [:2] . Here { and  are functions of one dimensionless variable x:

The assumption § = @ () using Theorem I yields
2
()™ = £(y)
dx

Differentiate (16) with respect to x:

diy d2¢/_df dy

2 =
dxdxz dy dx

From (15) and (17) we obtain (assuming y # 0):

af  _
A= gy
dy

3-4
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Thus we find that f(y) satisfies an ordinary differential equation.
This is to be expected, of course, in the unidimensional case since the
single independent variable x can be eliminated, in principle, between two

equations. Equation (18) can be integrated immediately:

f=cZ —wz , c arbitrary (19)
From theorem I we have:
2
2
(% -yB 48 _(p%g— +K =0 (20)

dwz

This is the equation obtained by Ritt. As pointed out by him, the
single-valued solutions of (20) when ¢ # 0 exist only when K is an integer.

These are the Tschebyscheff polynomials [3] :
) K ( . ) (21)
When ¢ = 0 we have the solutions

p=y" @2)
Here also we have the similitude condition, K = integer, necessary for single-
valuedness. Equation (22) corresponds to equation (18) for the
one dimensional case. Thus we have a complete characterization of the model -
ing functions in the one dimensional case. Indeed,‘ the results (21) and (22)
can be obtained simply by eliminating the independent variable between the
general solutions of (14) and (15) and then imposing the condition of single-

valuedness. This, of course, can not be done in higher dimensions since
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there we are dealing with partial differential equations. Some of the ideas

of this case do occur later however.

Two Dimensional Case
With the aid of Theorem I, the essential question in extending the
discussion to two dimensions is the following. Suppose ¥ (x, y) satisfies

the two dimensional Helmholtz equation:
Yty +y=0 (23)
XX ¥y
and suppose further that:
2 2
Yo+ = £(Y) (24)
x Yy

What conditions must f then satisfy as a function of ¢y? It will be shown in

this section that f must satisfy a second order non-linear ordinary differen-
tial equation. The solution of this differential equation as a result of Theorem I
will aid in determining modeling functions and similitude conditions.

Differentiate equation (24) with respect to x and to y:

oyt oy =121y (25)
X XX Yy yX X

=1/2 f! 26
Uy S 10 (26)

(primes denote differentiation with respect to ). Write equation (25) and (26)

as homogeneous algebraic equations for ¢/X and ¢ :
y

3-6
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ll/x (wxx ) T ) +¢/y¢/yx =0

bu + @ -i)=0
XXy y yy 2

Now suppose ¢ is not identically zero. Then not bothy andy can be zero
X y
since a non-zero constant is not a solution of (23). Hence the determinant

of the coefficients in the system (27), (28) must vanish:

I T
W - - ) U =0

Differentiate equations (23) and (25) with respect to x and (23) and (26) with

respect to y:

Vo TV T =0

XXX  yyX

i— +fl 0+ +2+
Ut S U SV U U U Y

XXX Xy 'y yxXX

v+ =0
XXy yyy ¥y

no2 ! 2
ST Yy Y e
y vy vy 'y Xy X xyy

Now add equations (31) and (33) using (23), (24), (30), and (32):

ff" f'_ 2 2 2
> v > -wxx+(//yy+zwxy—f

3-7
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Square equation (23) and expand equation (29).
vy +ilo=yf (35)
XX XX'yy VY

2 -(pz =0 (36)

fl fl
vy 5 yH(=)
XxX'yy 2 2 Xy
Substituting from (35) and (36) in the right side of (34) we have finally eliminated

all partial derivatives of ¢ with respect to x and y:

(R} 1 |2
it _lpf_ :wZ_f+wf'+ & (37)
2 2 2

After simplification and factoring the differential equation for f has the form:
£(f'"+2) =(f'+2¢) (f"+y) (38)
From Theorem I we have:
f¢"—¢/¢’+K2[b=0 (39)

Corresponding to the one-dimensional case we would like to know for what
numbers K (similitude conditions) are there single-valued solutions [D(w),
(modeling function), of (38) and (39). Because of the difficulty in finding a
simple expression for the general solution+ of (38) this question has not yet
been answered. However, using the parametric solution of (38) discussed in
appendix B, the problem can be seen to be equivalent to the following problem

in one dimension (modeling of ordinary differential equations). Let ¥ = y(t),

The equation has movable essential singularities, See Ince [:4:' .
3-8
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f=£(t) =y>. Then: .
¢+—‘f—+¢/=0 (40)
}z>'+4t’L +k4g=0 (41)

Cast in this form what remains is to find those values of K for which t can be
eliminated between the solutions of (40) and (41) to yield a single-valued func-
tion @ = (). In the next section we see that this reduction can be accomplished

in a general n-dimensional space.

n-Dimensional Case

Again with the aid of Theorem 1 our task here is first to determine
conditions of f(y). We find that in the general case, as in the one and two
dimensional cases, f must satisfy a non-linear ordinary differential equation.
The order of the equation is the dimension n. Again this result is obtained by
a process of chain rule differentiations; however, as the dimension increases
the expressions become very complicated. Theorem 2 below greatly facilitates
the elimination of independent variables by allowing the application of algebraic
results from the theory of matrices. For each point in n space the following

matrix is defined:

2
d
[ =vy" ooy “a

Denote the eigenvalues of [([/] by rK . It is well known that the trace of[(/]
is an algebraic invariant[5] . Moreover, from the canonical form it is

easily shown that the trace of the p'th power of[xla is also an invariant given

3-9
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by:

j=]

(43)

p n
ozp = trace [:([/:] = Z
K=1

The following theorem, which is proved in appendix A, provides the link between
f() and its derivatives and the invariants ap and rK . (Primes in all cases
denote derivatives with respect to .)
Theorem II:

Let ¢ be a non zero function of position in n-space satisfying the

following conditions and [z//J , ap , and rK be as defined above:

2
V ¢+ =0 (44)
2
(V) =£) (45)
Then one of the eigenvalues of [l[/] , say r 1’ is a function of ¢ only given by

1
H=%— (46)

Moreover, the invariants a/p are all functions of / only described in terms of

f and its derivatives in the following recursive manner:

a = -y 47)

2
@ =f |t il- +r. o £p<n 48)
P 1 1 p-l

Proof: See appendix A
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Now consider the defining equations (43) for a, in terms of the eigen-
values r K By eliminating the n-1 quantities rK for K> 1 from these n equations
we could obtain a single relation on ap and I But from equations (46), (47),
and (48) ozp and r 1 are known in terms of f and its derivatives. The relation

then becomes a differential equation for f. The discussion is simplified by

the introduction of the invariants ap .

p p
a =@ -r = r ,1<p<n (49)
p p 1 E:K P

Theorem III:

Under the hypothesis of Theorem II, f(J) is characterized by the

following system of algebraic and differential equations.

n
p
a =§ :r , 1€p<n (50)
p K P
K=2
fl
a =-i-— 51
1 ) (51)
fl a' 1
a = a -f-R=L | 2<p<n (52)

Note: We have 2n equations for the 2n quantities ap R rK, and f in terms of y.
Proof:

Equation (50) is already established (by definition). Equation (51)
follows from (46) and (47) and (49) for p =1. Equation (52) is obtained simply

by substituting for ozp from (49) into (48):

3-11
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] -2 -1
a +rp=f—£—- p=é f -E— (a +r. )+r a +rp (53)
p 1 2 1 p-1 dy p-1 p-
n -2 =2
a =r.a O S i rp -frp r (54)
p lp-1 p-1 p-1 2 1 1 1
1

Since, from (46), r = —fz— and ri = —22“— , the last two terms of (54) cancel

yielding (52).
Before proceeding to a solution of these equations let us examine them

in some simple cases. When n =1 we have from (50) and (51):
a=-y-— =0 55
> (55)

This agrees with the result in equation (46). Forn = 2 we have:

al = r2 (56)
_ 2
a2 = rZ (57)
a = —w —-f—l— (58)

1 2
N S S S GRS N U
2= {w 2} f{l > (59)

Combining these equations we obtain:

I U
(Tﬂp) === (5 +) +( > +1) (60)
f(£"+2)=(f"+2¢) (f'+y) (61)

3-12
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This is equation (57). For n = 3 the corresponding equation for f is:

21 5

-2 ff'f"-4wff"+—1§— v( )2+-§— (£)° ~ 41"+ 6Y2F" - 6wE+2¢° =0 (62)

Since we could not obtain an explicit solution for f(y) from equation (61) in

the two dimensional case we cannot expect to solve (62) and corresponding
equations in higher dimensions directly. It is important, however, to note
that such equations exist and can be found explicitly. Going back to Theorem
I, then, we can see that our original problem reduces to finding single-valued
solutions # =@(y) of systems of two simultaneous differential equations one is

of the type (55), (61), (62) etc. for f(y) and the other is:
£ P -y +KZg=0 (63)

Following the procedure used in the case n = 2 we seek to transform
the system to a pair of linear equations after finding a parametric representa-
tion for £(). Using the fact that for each n we must obtain all solutions for
previous cases the general solution for f(y) can be derived. We prefer to
dispense with a lengthy derivation and state the results in Theorem IV, which
is proved relatively easily.

Theorem IV:
A general parametric solution, f = £(t), ¥ =y (t) of the system of

equations described in Theorem III is given by:

3-13



THE UNIVERSITY OF MICHIGAN
2871-6-F

(dots are derivatives with respect to t)

£=9°
) i tants,
: - v ’ Cx arbitrary constan
t'CK K=2, ..., n
r =_]:._ i :(;b.
1 2 dy

where ¢ is a general solution of the linear equation;

“+¢. Eu_: t-lc =0

Note that we obtain n + 1 arbitrary constants, n-1 from (65) and 2 from (67).

This is one in excess of that expected for an n'th order differential equation;
however, a change of parameter 7 = t -c1 changes nothing and would remove
the excess constant,

Proof:

Equation (51) of Theorem III is checked directly

. n 1
Yy E | —— +y=0
-c
K=2 K
Thus (51) follows from (67). We now need only to substitute (50) into (52)

and check (52)

3-14
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! n -1 ] -1
§ rli:-i—- I‘% -——f—l— -E-i— E I‘II; (70)
p_

P ,_n p-1 ) d n ‘p-1
__L_p=¢,2 v _Y ‘[/—I_ (71)

=3 (t-cg) k=2 (t-c P p-lodt k=3 (t-cK)p-
n p-1 n *p-2 'p-1
v ; oy AP
VY [Z R ] 2
K=2 K K=2 K K

Hence equation (72) is an identity and the theorem follows., We now complete
the reduction of the modeling problem to one in linear ordinary differential
equations by introducing the parameter t into equation (63).
Theorem V:

A general parametric solution for §(y) is given by general solutions

for P and ¥ respectively of the following differential equations:

*e o n
¢+¢E t_lc +K =0 (73)
j=2 ]

n

o 1

¢+w§ :t_C- +=0 (74)
=2

Proof:

Introduce the parameter t of Theorem IV into equation (63)
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0 =1y, =i - %"g— 75)

2 L L,
fgr=y p'=p-Plyy (76)
From (63):

v

é)‘__L &;-.‘ﬁg_ +K2¢=0 (77

< ¢

v

Using (74) we obtain (73). Equation (74), of course, follows from Theorem IV.
It is interesting to note that by taking c, = we reduce to the n-1
dimensional case. The corresponding eigenvalue r becomes zero as it
should, Thus each case includes all the previous cases. To complete the
determination of modeling functions it is necessary to find those values of K
for which t can be eliminated between solutions of (73) and (74) so that ¢(¢)
is single-valued. We can, of course, refer our problem back to the original
coordinates (equations (52), (53), and (54) of Section I) by letting t=K, 7~ and

1
recalling that K=K2/ Kl . Equations (73) and (74) become

P 1 2
¢+¢Z Zoa TKP=0 (78)
=2

j

n

ve s 1
y+y

4 T-d,
j=2 j

+ Kf¢=o (79)

Here the dots denote derivatives with respect to 7 and new arbitrary constants are

dj = cJ-/K1 .
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APPENDIX A

Note: Subscripts on . denote derivatives with respect to x  using
i i
the summation convention with repeated indices. Subscripts on other quanti-

ties are not derivatives.

Proof of Theorem II

THEOREM II
Assume:;
VEY
2
v, =1
i
Y =0
ii
Denote:
r. = eigenvalues of: [x[/J =y
i 1)
i i
a = trace of =
seorfy] 12 3 )
k=1
Then;
a = -
) v
f'
r = —
1 2
1
i-2 il ai-l
a =f |r - + PeT
i [1 2 Tior | TRy PERE

(A-1)

(A-2)

(A-3)

(A4)

(A-5)

(A-6)

(A-T)

(A-8)
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PROOF

Equation (A-6) follows from (A-3) and (A-5):
Y =¢/ﬁ =trace [ zp] =) (A-9)

Equation (A-T7) is obtained from (A-2) by differentiation with respect

to x..
J

zwiwij = {' wj (A-10)
_f s- i}
wi [wij > ij 0 (A-11)

Since wi 0, it follows from (A-3) that not all zpi are zero, hence:

fl
d - — S =0 -
et [wij - ij] (A-12)

£ .
Thus ? is an eigenvalue of [x//} , say r1 .
To prove (A-8) we consider the case i = 2 separately. Differentiate

(A-10) with respect to xk , let k =j, and sum over j:

Zwik‘pij +2¢i¢ijk = f"(pj (//k+f' wjk (A-13a)

2 2
2y +2p .. =", iy, (A-13b)
wi]’ wlwl:u j ij

Interpret and simplify using (A-2) - (A-5):

2 2
wij = trace [pr =a, (A-14)
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vy, = () =-1 (A-15)
iijj 1 1
il f! " 1
=f(—+1) -y — =f(— - + A-16
ozzf(2+1)xpZ f(2 ozl)rla1 (A-16)
Equation (A-16) is (A-8) for i = 2. For 3 £ i £ n consider:
1_
a _ =trace |y =y Y el Y (A-17)
i-1 [ ] 8182 S,83 8151
Differentiate with respect to X, and multiply by lpr (summing over r):
1 2 .
ai_lz[/r = (1—l)zpS l//s v v, (A-18)

ST
15, 254 Siatt Tt

Substitute from (A13a) to remove triple subscript:

1 fll f'
f =(i-Dy — +— -
ai-l s )wslsz wsi-zsi-l' [2 wslwsi_l 2 "Dslsi_l lprsllprsi_l
A-19)
From (A-5):
!
fai __1 fll fl ( )
; = Y con /Y +=—o o (A-20
@-n 2 [SISZ 51251 71 S 2 L

lemma.

Equation (A-8) follows by transpositions subject only to the following
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LEMMA

Under the conditions of the theorem for 3 < i £n:

Vg oo Ug V. ¢ =fr (A-21)

S s
12 1-2i-1 i 1

PROOF OF LEMMA

For i = 3, multiply equation (A-10) by ;— Y. and sum:
J

RN . (A-22)
= —— = — =fr -
1% 2 Y2 1

With a change of indices (A-22) becomes (A-21) for i =3. We proceed
by finite induction., Assume (A-21) for i =n - 1. Substituting using equation
(A-10) for xps s ws using equation (A-10) we have:

i-27i-1 i-l

4 e ¥ ‘ps d’s =wss "‘ws s
S 5254 Sia 1 5% i-37i-2 © %2 1

The lemma follows by applying the induction hypothesis to the right

side of (A-23).
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APPENDIX B

SOLUTION OF THE DIFFERENTIAL EQUATION FOR f IN TWO
DIMENSIONS

From equations (38) and (39) we have the system:

£ - xpr + K2¢ =0

f(f"+2) = (f'+2x)(f'+x)

for @ and f as functions of the independent variable x. We will develop
a parametric solution § = @(t), f=f(t), x =x(t), for this system. (B-2)

can be written as

da In f'+2x| _ x
dx f Tof
Now we put (B-1) in self-adjoint form: Let

j‘l‘
u=e v
2

¢"+":1£¢+ :KTQ = 0

2 2
d , a8 Ku _
udx(udx)+ . g =0

Make the change of independent variable

d

-
dx dt

3-21
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From (B-3) and (B-4) we see that

+ —_—
L e
—=e = '—f—}—( (B-8)

[

Integration of (B-7) yields

Lol

1]
L/‘,
= |g

]

Inf+21n 1
u

(B-9)

Equation (B-6) becomes

v Kl = 0 (B-10)
at

To find an equation for x(t) we differentiate (B-7)

& _

dt

x| dxodw | d __m

dt2 dt dx dx f

2

d_2x + et = 0 (B-11)
dt

Solutions of (B-1) and (B-2) for @ = §(x) are given parametrically by the solutions
¢ = B(t) and x = x(t) of (B-10) and (B-11) respectively. The auxiliary function

f(x) is determined parametrically by (B-11) and (B-9) since:
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2
2t t 7dx
ft)=ue = e (dt)

Finally we put (B-10) and (B-11) in more recognizable form by introducing

the change of parameter

4e—t = 7'2

a _ ap a¥ _ a4 T

d dr a4  a¥ 2

&_de Y, v

2?4 4 4t
2 9 9 9
& 4, PP, T, K
2+Kze¢_4 2ot g ar”

dt d¥

2
.g_Q+l.(_lQ+K2¢=O

d I

Similarly (B-11) and (B-12) become

2
dx 1 dx
@2 Toar
2
_ [dx
57) (d?')

General solutions of (B-14) and (B-15) are given by

m_
g = a JO(KT‘) + blYo(K')‘)

(1)

X' '= azJo(?’) + szo(')')
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v

THE EFFECT OF EXPERIMENTAL ERRORS
IN THE NON LINEAR MODELING OF WAVE PHENOMENA

(J. E. Belyea)

It has been shown previously [1] that certain systems governed
by wave equations are related in a particular non-linear manner. If {b and ¢

are the scalar wave functions associated with two such systems, then

B

p= Cs, F (A, -A;1-B;z)+C,z L F (A+B, B-A;B+1;2) (1)

271

and C, are

In this expression z is a linear function of ), while A, B, C3 4

constants which depend on the nature of the systems. Relations of this type
would be quite useful to experimenters since they often wish to make measure-
ments on one system of this type and infer information about another. Before
relations of this type can be used with confidence for this purpose, however,
the following question must be answered: How seriously would an initial error
in determining z affect the value of § obtained from it? Absolute accuracy
in any experiment cannot be hoped for, so that any method which hopelessly
magnifies small experimental errors is obviously useless. In what follows
we shall consider relation (1) from this viewpoint; this might be termed an
initial step in the error analysis portion of the non-linear modeling study.
Suppose that the experimental error, § z, is sufficiently small that
terms of order ( é§ z)2 are truly negligible. The resulting error in ¢ may then

be found from the first few terms of its Taylor expansion;
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6¢=%§- sz . (2)

When (1) is substituted into (2) and use is made of the identity a—az— 2F1 (a,b;c;z)=

ab g
c

,F (a+l, b+l +l;z) [2] , the error in § is found to be

1(

2
C3A B-1
§p= §z -—(—1—_-]—3)— 2F1(A+1’ -A+1;2-B; z)+C4B / zFl(A+B’ B-A; BH;z)+

2
sc B -A) B p o ArBHl, B-A+LB+2;2)... (2a)
4 B+l 2’1

Since the values of the quantities A, B, and in fact z, are, to a certain extent,
subject to choice, it seems reasonable that the right side of (2a) might be made
quite small. A desirable requirement would be that it be sufficiently small

so that —:—i—g‘T ~1, This is equivalent to the requirement that small
experimental errors are not magnified at all.

In addition to the restrictions which E%:— ~1 places on the choice
of A, B, and z, further restrictions are introduced by the character of the
functions which appear in (1) and in (2a). It is known that the hypergeometric
function 2F1 (a, b; ¢;z) converges within and on the unit circle | z| =1if Re(a+b-¢c)< O,
so long as neither a, b, or ¢ are negative integers. Thus from (1) come the
;onditions

lz| € 1, Re(B-1) < 0

and from (2a)

*
1zl £ 1, ReB) < 0 . (1)

Note that these conditions are not as independent as theéy seem, since B and
z contain the same constants of integration.
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Since a term containing zB appears in expression (1), the further
stipulation that Re(B) 2 0 must be made to insure finiteness at z = 0. This
is in clear conflict with (I), and the only means by which this conflict can be
satisfactorily resolved is by requiring C 4" 0. As a result of this requirement

(1) and (2a) become

= A1 -R- !
p=c, F (4 -A1-Bj2) , ()
AZ
§p = — 1+A, 1-A; 2 -B; 2a’
p= sz (5 F0+A 1-A2-Bia)) (22"

in addition to which
lzl< 1, Re(BO.
It may be easily shown that so long as Re(a+b-¢) < 0, Re( |a| + |bl-1lcl) <O

and c is real and positive,

e Z . .
IZFl(a, b;c;z)| < 2Fl( lal , bl ; lel ;1)
§
for |z| & 1. Thus we may insure that % < ] for these values of z by
z
the requirement
| A2|

—'_1-:-_5’— 2Fl(I].-I-AI , Il-A| 3 '2-—B| ;1) =1

_ Il (c-a-b)
I (c-a)l (c-Db)

By use of the identity 2F1 (a, byc; 1) [2] , this becomes

|42 rlz-Bhr(z-Bl-ji+al - [1-A])

l1-B]  r(l2-Bl - n+al)F(12-B| - 1-A])

=1, (1)

with |]1+Aj +1-4] - |2—B|] & 0and Im(B) =0
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It has been shown that conditions (I) and (II) constitute sufficient
requirements to ensure that small errors of measurement are not magnified
by the modeling technique in the case considered. The necessity of these

requirements will not be investigated here.
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HIGH FREQUENCY ELECTROMAGNETIC SCATTERING

(D. M. Raybin)

In electromagnetic theory the scattering by a metallic body in the
high frequency limit is generally treated by considering the body to be
opaque and applying standard electromagnetic techniques to determine the
cross section. In this section we shall consider the question of what happens
when the frequency becomes so high as to make it possible for the incident
wave to penetrate the body. To illustrate why the usual optics cross section
cannot be correct, let us consider two rather similar problems.

First we consider the high frequency forward scattering by an opaque

body. By usual Kirchoff theory the differential cross section* is

K% A%

o (0) = — (1)
47
where A is the projected area and k is the wave number. On the other

hand, if we consider the quantum mechanical situation of a high frequency

wave incident on a potential, we have the usual Born result [l:]

b
The radar cross section is 47 times the differential cross section.
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. 0 2
1
o(g)= —— j r'sinKr' U(r')dr (2)
2
K
0
where K = —;— k sin -%— 6, and U (r') is some spherically symmetric potential.

A typical result using this is the square well potential defined by

V(r)=—Vo r <a

(3)
v(r)=0 r>a

The differential cross section is

2u V0 3.3 2 !
o (9)= — g(2kasin-é- 6) (4)
K

2
(sin x - x cos x)

<5

where

g (x) =

In the forward direction, 6 = 0, and g(x) — 1/9 as ka gets large, while for other
directions g (x) — 0. Thus we see that the electromagnetic answer diverges as
k gets large, while the quantum mechanic result approaches a constant in the
forward direction. This, of course, is impossible. Clearly there must be

some transition between these two results.
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In order to gain an understanding of this behavior, we shall consider
the problem of the forward scattering by a disc of finite thickness having
certain specified bulk properties. More specifically the body will be

assumed to have a complex propagation vector

ko =k(n+ia) (5)
where
n2 ~d=1-242
ne =x2a
where
2= = %%&
21 + a2

a = resistive constant

41rNe2

m

This is the simplest expression for the dielectric properties of an electron gas.
In using these dielectric properties, we are in effect considering the body to be
a homogeneous collection of electrons, each of which is subject to the following

forces:
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inertial myv
Lorentz e E;,
resistive -mwav
In order to relate these to an electromagnetic scattering problem, we
shall consider the problem of a plane wave incident in the +z direction on a

circular disc of area A, thickness d, characterized by a complex transmission

coefficient 7.

}z (x, y, 2)

Since we are interested in the case where k a >> 1 we can for simplicity
consider the scalar scattering given by an integral containing a Green's

function, namely
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1 0G
y(x, y, 2) =~ — v (', y', z')
47 on!

ds' (7

where the Green's function must be zero on the boundary of our surface. If we
choose the surface of integration to be the z' = 0 plane plus a hemisphere

extending to o in the +z direction, then the Green's function is

eikr 1 Ikr

G = — (8)
o )

where

2

? = x-x) (g -y (- )

2 2 2
- x) g -y et )

and on the surface z' = 0,

oG 2z eikr
= (ik) (9)

on' r r

where

r? = (x - x)% + (y - y)2 + (2).

As long as y satisfies the radiation condition, the integral over the hemisphere

vanishes and
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ikr

: 1 e Z
vx,y,2)=-— \y, y, 2 =0) (—) ds' (10)
ix « r r

Since we are interested in the leading term, we can neglect edge effects and

consider the field on the surface to be

lforp>h
y(x', y', z'=0)=1 (11)
7Tfor p<b
so the field is
[ b 2 0 o7
1 elkr 7 eikr PA
‘p (X,Y, Z) = —_ { 7 <_) dS’ + —— (—') dS’ >‘
ix by T r r
| o o b o ]

(12)
Putting r in cylindrical coordinates and evaluating in the forward
direction, we have
b (0 0] 2 )
o z ‘ eik \lp'2 + 72 eik\lp' + z
¥(0,0,2z) = — T\ ————— p'dp'+ pldp' ¢
i (p'2 + 22) (p'2 + 22)
0 b -
(13)

Now letting x =,,p’2 + 22 we have
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B ]
2 2
b +z ikx (0s) ikx
kz e e
i X X
L 7 b2 + Z2

_
i ]
e Vb2 + 22 " k(1 + 22
kz - e elKZ 1 e
w(o,o,z)=—i = — - - — 0
i ik b+ 2z Z ik b " +z
or ~ T
Ze11<J102+z2
w(o,o,z)=-eikzﬁ (7 -1) —— - 7( (15)
b +z

and putting in the form of incident wave plus scattered wave, we have

ik kb2 eikZ
0(0,0,z) =e 24 (1-T)i — +... (16)
2 Z
so that the differential cross section is
2
D) k A2
o (0) = ll—’fl (17)

where A is the area of the disc. For 7 = 0, this reduces to the standard electro-

magnetic theory result (equation 1).
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Now we are ready to evaluate the transmission coefficient 7. It is
at this point where we must take into account the properties of the body, or
plasma region. It is important to note that in the high frequency limit where
the waves penetrate the body, the forward scattering cross section is in fact
very strongly dependent on these bulk properties.
From [2J the transmission coefficient is
4(k2/k1) ei (kg d -kq d)

T = (18)

k k ,
(1+_2_)2_(1 __2_)2 e2 ikg d

k k

where k2 is the complex propagation vector in the body, and k1 is the real
propagation vector outside the body. Since we are interested in the high

frequency limit, we shall evaluate this for the special case of w>>w_. The

P
index of refraction is
, G - 25%) (1 - 2592 .
nfs— + N (19)
2 4

We will use only the '"+" root since n is the real part of the index. Therefore

. (1- 2x2) 4a2 x4
n¢ = ——— 1+ 1+ ~——————— (20)
2 1 - 222

and now evaluating for W << w, which implies 2 << 1, thus
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n=1—x2 + ...

ar=xza [1+x2+...i\ (21)

Now we shall evaluate the transmission coefficient 7. For simplicity

and

we let y = 1 - n so that both y and o are of order ®2. n addition we require
that y k d and @ k d be << 1. That this is the high frequency result follows

from the fact that y and o are proportional to 1/ k2.

i(n - l)kde—akd

4(n+ia)e
T = . =1+iykd-akd +...

(1+n+ i0)2 -1 -n - 1a)2 2 inkd e~ 2kda

(22)

so that

’1 —7’2 = (kd)2 (y2 + o)
or

!1 -’r|2 = (kd)2 [x4+x4 az] - kd? x*(1+2a?) (23)

so that the forward scattering cross section is

2

K4 A2

4“2

o (0) = (kd & (1+ 22)
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1 2
2 2% o
and since k = w/c and x° = this is
1+ a2
V2 1 w \*
o (0) = > ( P ) (24)
4z’ (1+a2) Mo

where V is the volume of the object. In terms of the density N this is

2
NV ez 1
o (0) = — (25)
mc2 1+ a2
or
9 1
o (0)= (nr) (26)
0 2
1+a

where now n = total number of electrons and r,, is the classical electron radius,
2
e

5 The Thomson cross section for forward scattering of a single electron
me

from [3] is in our notation

2
r

o (0) =
1+ a2 (27

so that our result is n2 times the Thomson cross section.

The reason for getting n2 rather than n, is that we are considering

forward scattering and the phase shift for each electron is independent of the

5-10



THE UNIVERSITY OF MICHIGAN

2871-6-F

position of the electron. In essence we have shown that when we consider the

scattering of a large body by sufficiently high frequency waves, the wave

penetrates the body and we get scattering from individual electrons. It is

still possible in principle at least to consider even higher frequencies in

which the wave length is about the same as the electron radius. On the other

hand waves of this frequency are well into the cosmic ray range.

The restrictions placed on these parameters can be expressed in many

ways. First the restriction (wp/ w)2 K1

Wl  k®  sNr? Nr
( Py .2 . ° .0
W 2 (27r)2 T
or
1
T 10 3/ cm
N « =
r, )Lz ?tz
The restriction ykd << 1, can be written
2, 2
W /W
1
y(kd) = kd = — -2 kd <<
2  1+a

or

1+a

N

r Ad
o
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and the restriction akd << 1 can be written

arkd=x2 akd < 1

or

1+ az

Aadr
0

Thus we see that all these restrictions essentially require that A = 0or
that frequency get very large.

This analysis has been restricted to the extreme high frequency limit.
It has been shown by classical theory, that the usual optics cross section for
an ionized gas has an upper limit of validity dependent on the collision frequency
and on the density. Above this limit the body no longer can be considered as an
opaque scatterer, but, in fact, must be assigned a complex index of refraction.
This latter problem has, in turn, a high frequency limit where the field is the
sum of the fields given by the Thomson cross sections of the electrons. This
high frequency limit is now independent of frequency, except for the frequency

dependence of the damping term.
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VI

MODELING OF AN OVAL CYLINDER BY A CIRCULAR ONE

(J. E. Belyea)

In much of the previous work done on the non-linear modeling of
wave scattering phenomena, the procedure used has been to concentrate on
the differential equation governing such phenomena,

vipritp=o (1
and to look for certain invariant transformations associated with it. This pro-
cedure was arrived at by direct analogy with classical methods for linearly
modeling (c.f. [1] , P. 488), and has led to solutions in a number of interest-
ing cases, However there are other cases, particularly those where the scatter-
ing surfaces are distorted under the modeling process, where the invariance
approach becomes unmanageable.

In this chapter an alternate method of attacking the problem, which
concentrates wholly on boundaries and boundary values, will be initiated.

This method will be presented by means of the detailed examination of a
specific example, but it is capable of widespread use.

Simply stated, the procedure will be to examine the scattering of a
given wave by a particular shape, on which stated boundary conditions are
obeyed; then diagnose certain other boundary conditions which, when imposed
at the surface of another, simpler, shape, give rise to the same far-zone field.

In a formal way this diagnostic process relies heavily on the very general

uniqueness proofs which exist for exterior scattering problems; its technical

6-1
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success or failure depends on one's ability to handle a certain integral equation
which arises in the course of the analysis.

6.1 Statement of the Problem

The particular example to which the boundary shift method of model-
ing, just described, will be applied, is the scattering of a plane wave by a
perfectly reflecting oval cylinder. The boundary of the model system, on
which equivalent conditions will be prescribed, will be a circular cylinder.
When a time-harmonic plane acoustic wave, incident along the ray
¢ = @, encounters a perfectly reflecting oval cylinder (the equation of whose

surface is f(p, #) =p = € coszy) +b), the boundary condition at the surface

gives that, if u is the scattered velocity potential

-V u=-f.9 {e-ikpcos(¢ —a)} @)
on the surface. Here 1 is the unit vector normal to the cylinder's surface.
In addition to (2), u obeys the scalar wave equation in the exterior region,
and the radiation condition at p = . These three conditions determine u
uniquely in the exterior region since f = const. is a smooth curve.

Consider now the model system. Let v be the velocity potential

scattered by a circular cylinder of (as yet) undetermined properties. That
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is, the explicit form of the boundary condition which v obeys on the surface is
left open. Let normal boundary conditions on v, %:—;— =1 (f), be prescribed
at the surface of the circular cylinder, p =a. v is known to obey the scalar
wave equation outside and the radiation condition at p = oo so it is uniquely
determined. In fact, since the ooordinates are separable, it is easy to

establish that

T ® H(l) (kp) eim (-2

2
v = f A (z) E it K dz . (3)
2r kH (ka)
0 m

m=-0

Suppose that a < b. Then, in view of the above, a sufficient condition for

u and v to be equal in that part of space where f(p, f) >b is that

{9yt Tus=-h.9 (o kecos(P-a)) @
on f(p, f) =b. Clearly condition (4) will not be met for just any X (9). 1t
will be the purpose of our modeling analysis to determine X so that (4) is
satisfied.
This may most conveniently be done by inserting (3) in the left side

of (4). The result of this is that

1 i -
. T ’ . H( )(kp) elm@ ?
_ﬁ.v(e—lkpcos (¢ "01)) = g Az)n- V m o dz (5)
5 T 21rka (ka)

2
atp=b+ €cos ¢ When the differential operations indicated in (5) are

performed and the result evaluated on the proper surface, a Fredholm integral
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equation (of the 1st kind!) for A is obtained:

2x
uip;e)= g A(z;€e) K (P, z;€)dz (6)

o]

6.2 Solution for the Parameter € Quite Small

If € is quite small, so that powers of it higher than the first may be

neglected, then it is easy to establish that

h=(1, —ﬁ— sin2 )

to first order in €, Furthermore, on the cylinder the gradient operator has

2
_ (.0 b-€cos P 9
v- (& ecestt 2)

to first order in €. Thus

components

)
- V= — +——— sin2¢———
ap b

-ikpcos (f-a) T2 -m im (f -a)
When the plane wave expansion e P Y i J (kpe *
z ; m
m_—

is used,

u(¢;e)=—ﬁ-\7§ i_me(kp)eim(p—a)

m=-0

6-4
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2
When p =b + € cos p is inserted in the argument of J;n and Jm and the proper

expansions made, it is found that

[0 0]
u(p;€)=- § ! T {kJ’ (kb) + ékzcossz"(kb)
m m

m=-00

+ ‘—;23& sin2pJ (kb)} M (f-a)

to first order in € . Similarly, to first order in €

) w g (kp) '™ (-2)
K (p: z;€)=n. 7 E i DE
B = 27k Hm (ka) f=b
(0.0) im (¢ - Z) 1 il
= '—e—(lT— [k Hg) (kb) + ¢ kz COS2 ¢ H(l) (kb)
Z_ 2rkH ' (ka) o
m=-00 m

€im (1)
+ ?— sin2 § H (kb)] .

Thus, to first order in € equation (6) of the last section becomes

@ .
- -2_ ‘ 7 Q{J' (kb) + EkzcosngJ” (kb)+eii sin2J (kb> elm(p -a)
m m 2 m

_ b
m=-00
27 [0 im ( - z) . "
= Ae) E ’ o T [kH(I) () + €kcos®PH . (kb)
) e 2krH  (ka) m m

+ eb;én— sin2 Hgl) (kb)J
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The assumption that A possesses a development
Mz; €) =2 (2)+ € Al(z)
splits (7) into 2 equations, the first of which is

W', im(p-2)
im(¢—a)= w_ 2T )Lo(z)Hm (kb) e

0 -m ]
- _2- 1 kJ (kb)e dz (8)
m

m = -0 fi==® o mh K

From (8) we can conclude that if A’: are the Fourier coefficients of )\0 , then
- 1! 1 3
-i mkH() (ka)J (kb) e 0%
A = m m

. g’ (kb)
m

The second equation obtained from (7) is

[0
- 7 (kzcoszjb J:n (kb) + im sinZ[Z)Jm (kb)> oim (p-a)

_ bZ .
m=-m
ar 2 3 cos” H(D&i{b)'h M inzgnld (kb) eim(¢—z)
_( A (2) m _bZ_ m
0 ° m*=" Zwkalll) (ka)
1’
am © H  (kb) o
= S kl (z) ___..____m(l)' elm([b z) dz ©)
0 T 27er (ka)

From (9) we can conclude that, if Bi are the Fourier coefficients of )gl(z),
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1 1
B H() (kb) .
imp _
o 7
T Hm (ka
®
2 " . 1
- {A k cos pH() kb) +A -l—m—sinzg)H()(kb)
m bz m
m=-0
-m+1
- 2 - : -
+1 "k cos 03" (kb)e e 1 = sin2pJ_(kb)e 1ma} eim{b
m bZ m

-isf
Multiplication by g

, followed by integration on [b over [O, 2r| gives,
2w

after some rearrangement

(1)
H (ka) 2 n 2 "
B =~ [k g (D) A + K () , (D)A
S g p) L2 4
2 o -2 B ()
+ X g (b) A, A
4 sz s-2
2 -s
_42) 4 (kb)A +1-‘-i-—— 3" (kb)e 15
2b2 2 s
2 -8 . 2. -8 ]
ki 5" (kb)e—l(s-Z)a_ ki (kb)e—1(s+2)oz
s-2 4 s+2
-s+3
(s-2)1 s* P (kb)e-i (s-2)a
sz s-2

e 5, e (S+2)°‘]
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To sum up, it has been shown that the equivalent boundary condition,

which will give rise the same scattered field,-is

where A and B are given above.
n n
Note that on the circular cylinder the value assumed by the normal

derivative of an incident plane wave is

Q0
ki ey P
m

m = -0
This plus A is a non-zero quantity, and in fact it is easy to see from physical
grounds that there must be a radiation from the circular cylinder's surface.
In the next section a method for obtaining the model scattered field,
without using a radiating surface, will be discussed. In the following one
an extension of the above perturbation analysis will be made, to the case
where higher powers of € are significant,

6.3 Conversion to a Scattering Scheme

In the preceding section it was shown that, for a plane wave incident,
one may replace a rigid oval cylinder scatterer by a radiating circular cylin-
der without altering the field. The value which the normal derivative of

the scattered field must assume on the circular cylinder was given there.

In the present section the conversion of that radiation scheme to a scattering

scheme will be effected,
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Let a plane wave oinC = o ko cos (P -a)

impinge on the rigid cylinder
p=b+ € cos2¢ . Replace this by another (rigid) cylinder p=a(a < b); in order
that the field be unaltered by this replacement, there must be a certain flux
of u through the cylinder wall, This was shown to be

m .
= (An+ € Bn) einp -ikcos (¢ -a) e1ka cos (¢ -a)

P2 =

ou

op

If we are prepared to abandon the incident plane wave, however,
and use instead an incident wave of more complicated character, it is clear

that a rigid, non-radiating circular cylinder can be used. In order to do this

we need only use an incident field e which satisfies the condition

inp _
+Z (An+ EBn)e =0 . (10)

p=a 1

It is highly undesirable that this incident field satisfy the radiation condition
at p = 00, since then the resulting total field would be identically zero. There-

fore we assume for it the expansion

€ E jaan(kp)einsb (11)

n=-0
where the coefficients a'n are to be determined. Expression (11) satisfies the
2
wave equation A u+k u=0 but not the radiation condition.

Inserting (11) in (10) gives
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Z k €3 (ka) elnf - Z (A + €B) elnf (12)
n

n

From this we conclude that
A+ €¢B
a =_1n n
B kI (ka)
n

Thus when an incident wave of the form

i f A +¢B ing
u ne = "'—n;T————— Jn (kp) e
kd (ka)

illuminates a rigid eircular cylinder p = a, the resultant scattered field is
2
the same as that produced by illuminating an oval cylinder p =b + ¢ cos )

with a plane wave u ¢ = o lkpcos ( -a)

. Note that the total fields are not
the same, however.

6.4 An Extension to Higher Order of the Perturbation Method

In section 6.1, the diffraction of a plane acoustic wave normally
incident on a rigid oval cylinder was considered. The aim of the investiga-
tion was to find what boundary conditions must obtain on a smaller, circular,
cylinder, in order for the same scattered field to result. This problem of
prescribing equivalent boundary conditions was there phrased in terms of
solving a rather formidable integral equation of the first Fredholm type:

2
up;e) = A(z; €) K (P, z;¢) dz (13)

o
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In (13), 4 and K are known™ functions, while € is a constant parameter,
(half the difference of the axes of the oval). ), the unknown function, is the
value which the normal derivative of the scattered field must assume on the
circular cylinder.

In section 6.2, A was obtained for the case where € was an infinitesi-
mal. In this section the iterative procedure initiated there will be extended,
in order to include cases where powers of € higher than the first are significant.
That is, if n is the highest significant power of €, a method will be presented

for finding all the coefficients a, (f) in the expansion
X (p; €) ~ao(¢)+a1 € +..... ta € . (14)

For our purposes it is important to remark that the equation

2T
f(x) = g g(y) K (x, y;00 dy '+ (15)

o

is readily solvable whenever f(x) is representable by a trigonometric series
on the interval [0, 27r] . This fact is demonstrated in appendix B. Our task
in this section will therefore be considered completed when we have shown
that all the coefficients a (@) are solutions of equations of the type (15).

The first step in the procedure is to insert the representations

u(p; €)= i ui (@) ¢! (16)

i=0

* For an explicit description of these functions, see appendix A.

+ K(x, y;0) is the kernel of (13), with € set equal to zero.

6-11
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and

K (g, z; ¢) = i Kj (@, z) éj ,

j=0

obtained in appendix A, in (13). When, in addition, the expansion for the

Mz: €) = i a (2) & (17)
k=

is inserted here, the result is

unknown function

o) i 27
z b €' g z i eIk 0, @ K0, ) . (18)
j=0 k=0

i=1 0

Here (17) may be thought of as the Maclaurin expansion of A, considered as

a function of €, and the unknown coefficients a.k(z) may be identified with

k(k) (z;0)
k! )

It is convenient to redefine the sums occurring on the right hand side

of (18). Let £ = j+k; then

. (0.0]

j=0 k=0 j=0  f=j

It is easy to see that when the order of summation in this is interchanged, the

result is

L
- E[af_j(Z) Kj(?: Z)-
-.0 ]-;;
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When this is inserted in (18), and the order of integration and summation

interchanged, one obtains

2T
z k(D) % 2&: . g) a“(zn( (9, z)dz. (19)

Since the powers of € are linearly independent of each other, it may be con-
cluded from (19) that a denumberable infinity of relations of the following form

hold:

af_j (z) Kj (9, z) dz , (20)

£
“f (¢)= ZE::
0

o>

[=0,1,2,

The nth equation of the set (20) may be rearranged to give

n_ 2 2r
un(¢) —Z (an 5 (z) Kj (P, z) dz = g dn(z) Ko (P, z)dz. (21)
j=1 o 0

Since K (¢, z) =K(P, z;0), and the coefficients a,, i<n, may be regarded
as known, it is clear that the coefficients of (17), and, a fortiori, those of

(14), are the solutions of equations of the type (15).
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APPENDIX A
The Functions u and K

Consider functions j(p, §) and h(p, §, z) which are defined, in sufficient

detail for our purposes, by the expressions

ilp, P) = E‘ A d. (kp) eirp (1A)

n=-00
+
h(p, 9, 2z) = g Bs(z) H(Sl) (kp) eis¢ (2A)
§=-00

The functions u and K are the derivatives, of j and h respectively, along the

direction normal to the cylindrical surface p =b + € cosz¢ . That is,
u=%7 j and K=n-Yh (34)

where 1 is the unit vector normal to the cylinder's surface, and the
expressions in (3A) are evaluated on that surface.

In order to obtain (3A) more explicitly, it is essential first to construct
the veetor 1. To do this, note that the field of unit vectors i\\Iwhich are all

orthogonal to the family of surfaces f(p, ¢) =p - € coszjb = const., is given by

N
N= /|t
: 0 1 9
The gradient vector ¥ in plane polar coordinates is (—m , — —2—) ,
9p p
-isz

+ T )
A, =1 while B, (z) =

2nkH_ D ca)
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so that
€
Vf= <1, —_ sin2¢>
p
and
2 1/2
€
IVfl = [}+T sin22¢j’ .
P
Thus
A .
N = (o, €sin2§) ' (44)

Vol + e “sin’2p

The vectors 1 are elements of the field ﬁ, and are obtained by inserting the

relation f = b in (4A). When this is done, the result is

(b+ ¢ cos2¢, ¢ sin2 §)
t/b—2+2becos2¢+ ez(cos4¢+sin22¢)

A
n-=

In order to expand the components of 0 in powers of €, it becomes convenient

to write the denominator as
2 1/2
4 .2
b [14.25 M{. 52 (SZLS_,@iSJILLQ):l
b bZ

-1/2
The reader will recall that [1 -2ux +x2:| is the generator of the

Legendre polynomials, That is,

-1/2
[l - 2ux+x2] = E Pn () x .
n -
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Using this fact,

2
A=(b+ ecoszp, € sin 2 ) P '4°°S ¢2
o= " os P+sin” 2§

—n/2
] bZ B
cos412)+sin2 2§ b

2
cos

n
Recalling that Pn(—u) = (-1) P (1), and setting ¢ (f) = s
Veos™ P+sin 2§

we write

(0] n -1n
ﬁ:(b‘f‘ Ecoszp' €Sin2.p) Z L:i)]'.)—‘ Pn(§(¢)) l)i(g»__ En. (5A).
e cos“

As a second step toward obtaining (3A) explicitly, consider the function

F(p, §), which for our purposes may be either j or h, and is defined

F(p, f) = E chr(kp) eir¢

r=-0m

The gradient of F is

i ' irg i ir irp
k k
Cr Zr (kpye ™ 7, Cr . Zr(kp)e

r=-00 T=-00
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Now ‘Zr is a solution of Bessel's equation, so that the relation

holds. When this is inserted in the second component of ¥V F, and the result

evaluated on the surface f=b, one obtains

F = E( kC z;(kb+kecos2¢)eir¢ ,
r

=-00

i ik irg 2 2
> Cre [zr—l (kb+k € cos 52))+Zr+1 (kb+k € cos ﬁ{}
T="

(6A)

When the Taylor expansions

, ) z. " (ib)
Zr (kb+k € cos ¢2)=: L l (kcos f) €
s=
and
2 Z(S) (kb) s s
Z (kb+ke cos f)= —gi—s-—,————— (kcos P) ¢
m !

are inserted in (6A), the result is

[00) s+l 25 y .
VF = E -k—;gr——— cos [bzis-")(kb) oItP (8 ,
n=-m 8= .

. SH .
g dk Cp coszs¢elr¢ [z(s) (kb) +2 ) (kb)] ¢
— 3 2(s!) ‘r-1 r+l

6-17
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kS+1 C. cos?'S ) e1r¢
Letting & (p) = in this, for the sake of simplification,
rs s

gives

oy

JF = E E (q>)z(s+1)(kb)es ,
r=-o s=0

i _,g, () (s) (kb)+Z()1(kbﬂ €s>

Thus the inner product of fl with ' F on f=b is given by

n -n
ﬁ-VF=(b+ecos2¢) E i & (tp)z(SH)(kb)_(ip (e(9)) Eﬂéil_ ets
Leg 570 & rs r b n cos“p

n -n
+esin2f g i 5 & ’: (kb)+z(S) (kbﬂ -%1—)— P_(¥e)) []RK%LJ s
T=-0 S*= cos (P

By a redefinition of the sums over n and s which is similar to that used in

Section 6.4, the details of which will not be repeated, we obtain

£ {-
n. Y F=(b+€cosf) £ (¢)Qn(¢)Zi o) (kb) €p
z ; ; Z : r, -n
r=-® X=0 n=
! .
+ €sin2f 2o 4 n§=0 > Er,i—n(an(m

-4
[z(nl ) kb +z(]rl ) (kb)J : (7A)

r-
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Here the simplification

Q, ()= LL P (¢(f) [—%?LT

cos“f

was made. A trivial rearrangement of this result gives

ﬁ-VF=E b& (;b)Q (¢)z (kb
r=-00

(£-n+2)
ZOZ; {bgr, [-n+l(¢)Qn(¢) Zr (kh)

n+2)

2 {-
reos' ey B,z T
+sin2¢—12— Er,f (¢)Q () [ n-{) (kb)+z(n ﬂ)(kb):,} £+
(84)

(8A) shows that both u and K may be written in the form

M=2 MQGI
) Ef
K-g Kf

where the coefficients u K KQ are known. One useful point is that the kernel
of equation (15) is
K(x, y;00 =K _(x,y)= E b’é‘r 0®Q, (X)H (kb)
T=-00
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-iry
e

2rH' (ka)
r

irx
where Er O(X) =kBr(y)e , Br(Y)=

and Q (y) =1/b . That is,

H (kb)ell &)
.0) = r :
K(x, y;0) i P Hr )

n=-0

This fact will be used in appendix B.
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APPENDIX B

The Solution of Equation (15)
It was seen in appendix A that the kernel of (15) is

o 7Y o) ,
K(x, y;0) = E nzl), M-y (1B)
m== 2T Hm (ka)

If f(x) possesses a Fourier representation, then, it is clear that g(y) does also,

and that their Fourier coefficients are each proportional. For, insertion

of (1B) in (15), multiplication by ¢ TIX , and integration on x over the interval

[o, 21r] gives
2r _inx H(l)l (kb) 2T )
f(x)e  dx = —Izl-)—,—— gly) e Wy
Hn (ka) 0

O

Thus 0k
1 Hn (ka) iny 2r inx
g (y) = — Y ¢ f(X) e dx. (ZB)
a fr= Y () )

Note that if a = b, then g(y) =£(y)! Thus it would be highly advantageous,

from a computational standpoint, to choose this value for a.
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VII

BOUNDARY SHIFT METHOD FOR A SPHEROID

(R.D. Low)

/—a X e

0 e <1

ikp cos6

2
Let the plane wave e be incident on the spheroid p =a(l-€ cos 6)

Then we seek the solution u(p, ) of the following problem, call it problem A:

V2u+k2u =0, p > a(l-e cos'?'e)-l/2 , 0£L 6 &7 (1)
-1
u(p,8 or %Ln =0, on p = a(l—ecosze) /2, 0£6g
(2)
S
ou .8 . .
-_— - 1ku> —— 0,  uniformly in 6 (3)
9p p—
where u° =q - elkp cosG.

Rather than solve A directly, we consider the following problem, call

it problem B:
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2 2
VY vtkv=0, p>a" , 0< o< (4)
v(a, 0) = VO(G) , 0<@9gm (5)
BVS s
s —_— . .
p 50 ikv r— 0 , uniformly in 6 (6)

where v =v - elkp cose. The idea then is to try to determine vO(B) so that

: . 2 -1/2
either v or 9v/dn will be zero on the surface p =a(l-e cos“6) , where, of
course, 9/9n denotes differentiation along the normal to the spheroid.

It is an easy job to obtain the solution of B in the form:

® n j, (a)
vip,0) = Z(Znﬂ)i [J'n(kp) "% (k) hn(kp) Pn(cose)
n=0 n
£ T
h_(kp)
+ ; 2n;-1 hz_(ka) Pn(cose) % vo(o) Pn(cosa) sino do (7)
0

where jn(ka) is the spherical Bessel function and hn(kp) is the spherical
Hankel function of the first kind.
. . 2 -1/2
Let us now consider the case where v(p,6) =0 on p =a(i-€ cos™ ) .
Hence we put p =a(l-€ 00829)-1/ 2 in (7), interchange the order of summation

and integration in the last term, and introduce the expressions

¥ There is no loss of generality (or practicality) in taking the sphere p =a rather
than the sphere p =b, b < a, as the relation between the solutions of two sphere
problems is quite easy to obtain.
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j (ka)
F(B;e) = (2n+1) i {] (kp) - h (kp) | P (cos6)
: h (ka) n n 5 )_1/2

p=a(l-ecos 6

(0}

E h_(kp)
K(8, 0:€) = __ 2r;+1 h:(ka) Pn(cose) Pn(coso) sing

p=a(l-€ cosze)—l/2

Then (7) may be written as

T

S K(6,0;€) V (0;€) do = F(6;€) (8)
0 0

where we have written Vo(cr ;€) in place of vo(a) since Vs being the solution

of the integral equation (8), will clearly depend on the parameter €. Thus the
problem has been reduced to the solution of the Fredholm integral equation of
the first kind (8). We proceed to solve this equation, in principle at least, by

expanding each expression in (8) in a power series in €. Hence we have

[00)
., .
K(6,0;€) = Z K ;?;0,0) &

n=0
= Vf)s)(o 0) ]

V (o;€) = } o1 € (9)
s=0

(n), .
F(6;¢€) = z , £ 18.0) n? Q o
n=0 ’
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where Q(n) means anQ/ 0 en and Q stands for K, Vo’ or F. If we insert (9)

into (8) there results

(s) ™

ZZK(BGOV (0;0) s d(,:ﬁF(n)e'O) N
n! s! ¢ — n! ¢
n_
or
® T n (n-s) ( ) @
K™ 7Y6,0;00V_"(c;0) (n),
E ien\Z o - r(g,0) n
n=0 0 s=0 s! (n-s)! n= o
which implies
T n
% ;_; (:) (n—s)(e o; O)V( )(o ;0)do = (n)(G;O)
0o %7

This last equation can be written in the form

T n-1
S [Z (n) kg, 5 ,O)V(S)(a;0)+ k%0,0.0) V(n)(a;o) d = ¥ (60
0 s=0 X

(10)

Now K X6, 030) = K(, o;0) is given by

®
+.
K(6,0;0) = E 2o+l P (cosf) P (cosg) sing
= 2 n n

and as a factor in an integrand this series behaves like § (6-c); thus (10) gives

vin)(e;o) - 7%g.0) Z (S K™% . O)V(S)(o :0) do . (11)
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In addition to equation (11) we have from the equation preceeding (10) when

n=0,
T
S KO(G,G;O)ViO)(a;O) do = 76;0)
0

or
T
S K(6,05;0)V (0;0) do = F(6;0)
0 0

or
T
S §(6-0)V (0;0) do = F(6;0)
0 )

)

VO(G;O) = F(6;0) .

Now from the definition of F(6; €), it follows that F(8;0) = 0; hence VO(G;O) =0.

1
Thus starting with V£)°)(9;0) =0, we can find recursively VE) )(9;0) , Vi)z)

(6;0), ...
from (11) and in this way determine V;)(G; €) from

(n)

2, v¥g0) .
VO(G;e) = g Lnf—e . (12)
n=0

The serious disadvantage of this procedure lies in the fact that for
€ =~ 1, which is the case when the spheroid is needle shaped, many terms
are required and so one may ask: Why not expand the quantities appearing in

(8) in a power series in 1- € ? If this is done, the equation to be solved is
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T _n
g Z (n> K(n_s)(& o;1) V(S)(osl)dcr = F(n)(Osl)
0 s=0 \s 0
and in this case the equation for n = 0 becomes
T

S K(6,0;1) Vo(c;l)do = F(6;1) . (13)
0

Now one sees from their definitions that K(6, o;1) and F(6;1) contain the
expressions jn(ka csch) and hn(ka csch) and it does not seem possible to

solve even (13) for the first term Vo(egl) needed in the expansion
00

V (6;¢) = (-1)
° n0

v®™(g.1)

Do (1o

However, if this can be done one has the advantage that only a few
terms will be required since now 1 - € ~ 0. Rather than weigh the merits
of either approach let us obtain at least the terms up to €2 in (12). Returning

to (11) we have

T
V(l)(G;O) = F(l)(G;O) - S K(l)(e,cr;O) V(o)(a;O) do
(0} 0 0
- 6,0
since
Vﬁ)")(e;o) =0 .

7-6



THE UNIVERSITY OF MICHIGAN
2871-6-F

Then
0

g
Va0 = 760 - 8 [K(Z)(e,o;O)vg”/(a;o>+K(”<e,a;0>vg”(o;0>] do

o

0
Vi

- ¥P6,0) - S M6, 5.0) FM(6:0) do
0

Now o

2 P (cosb)

(1) _ cos 6 ntl “n

F '(6;0) = __Zka }::0 (2n+1) i hn(ka) s

4 @ P (coso)
1
g - 250 Y ey D
n

=0
and

m 1
(1)(9 :0) = —kﬁ%—zﬁ—— 2o+l hn(ka) P (cos6) P (coso) sin
K 10,05 2 an0 2 bh(a) 'n p oS0} Sing .

Hence Vi)z)(e;O) is given by

™
4 P (cos6)
(2) ).y - cos B E .l T
Vo (6;0) 4ka = (2nt1)1 hn(ka)

=]

T (04} .
_ ka cos20 2n+1 hn(ka) P (cos6) P ( ) si
_— § 5 hn(ka) Lcos 0 cosg) sing
0

(eqn. is continued on next page)
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P (coso)
. cos Ccos g E (2n+1) i (ka) do

0
_ cos49 g (2n+1) in+1 Pn(cose)

4ka. n=0 hn(ka)
T

3 E E h (ka) q{cos Pn(coscr) sing
0 n=0 £=0

P, (coso)
2 A+
ccoso(2£+1)i —__-hl(ka) do

cos ; : P (cose)
= (2n+1) 1 m
(ka) 11

n -AL
cose § § :{(Zn—zlﬂ )(24+1) hn 1( h ) P (cose)}

T

S (coso) P (cosa) 00520 sing do
0 n -1

The integral here can be reduced to two integrals containing products
(2)

of three Legendre polynomials and can thus be evaluated. Hence V (6;0) is

""determined''. Then to the second order in €, we have
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2

(1) (90)__

(2)

VO(GG = V(90)+V (90)€+V

2

v (6:0) -

(90)e+v()

since VO(G;O) =0.
The second case, namely the determination of vo(e) so that on
- 2,\-1/2 .
p =a(l-€ cos ) , 0v/dn =0, can also be reduced to an integral equation

like (8). In fact the result is

T
g L(6,o-;e)V0(<r; )do =G (0, €) (14)
0
where
o (coso)
2ntl n .9
L(6,0; € Z b (ka) sing — - [hn(kp) Pn(cose)} "
n=0 ’ p=a(l-€cos 6)
®
j_(ka)
G(6;¢€) = Z (2n+1) i 2 {jn(kp) -hn(ka) hn(kp)} Pn(cose)
n=0 n 2 -1
p=a(l-€cos 0)
and

5 9 —1/2
0 € sin Gcos 9 € sinf cosé

9
— = |14 - .
, 0
on (1-€ cos’6)? ( aV 1- cos?6 6>
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Since the operator 0/0n appears both in L(6,0;€) and G(6; €) one may

]-1/2

62 sinze cos20
(1-€ c0s20)%

disregard the factor [1 + However, if the boundary

condition were 9v/dn =g(6) or v/on+ hv =0 then of course this factor would
remain. In principle, at least, one may proceed to solve (14) in exactly the
same way as (8) was treated. However, the details are quite messy, the main
reason being that now € enters because of its presence in the operator 8/ on

. . 2..-1/2 .
as well as in the equation, p =a(l- € cos”6) of the spheroid. Let us

illustrate the result at least for the first integral equation, namely:

T

S 1, 5:0) v
0

o (0;0) do = G(o)(G;O)

From their definition one finds that

09)

h! (ka)
L(O)(B,U;O) = K §=0 2121“ h:(ka) Pn(cose) Pn(c‘oso) sing

©
P (cosh)
(0 0.0y = 1 2 ol Tn T
G (6;0) = kaz (2n+1) i b (ka)
n
n=0

If these are inserted into the above integral equation one finds after a little

rearrangement that

T
©
h!' (ka)

§ " P (cos6) 2ntl g V(o)(o;O) P (coso) sing do

- h (ka) "n 2 0 n

n=0 n 0

(")
1 Z om) in+1 Pn(cose)
kza:2 n=0 hn(ka)
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which implies that
®
E P (coso)
(0) 1 ntl T n
» = —_— -+ —_—
v, (0;0) 27 50 (2n+1) i bt (ka)
a n

It is not too difficult to show that

o0

2 2 h'' (ka) .2

+

L<1)(9,o;0) ; E oantl | kacos @ n P (cos) + sin” 6 cosf P' (cos6)
—5 2 2 hn(ka) n a n

. Pn(cosa) sing

Then the next integral equation to be solved would be

(s

S l:L(l)(G,G;O) Vﬁ)o)(o; 0) + L(o)(G,cr;O) Vﬁ)l)(cr;O):, do = G(l)((), 0)
0
M,
where G (8;0) is given by
o)
2 P (cos6)
G(l)(G;O) = - cosz 0 z (2n+1)in+l ﬁm—
ka n=0 n
Thus we must solve the integral equation
T 104)
2 — P (cosb)
S 1%6,5;0) vio;0) do = - <=L ) () o n
0 2 h _(ka)
0 ka n
n=0
T
- S L(l)(e,a,'O) VE)O) (0;0) do
0
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where, of course, Vf)o)(o ;0) is now known. Whether or not this equation
can be solved in any reasonable manner (I have not tried to do so), it seems
clear that one can carry out the same type of iterative solution as was in-
dicated in the case in which v =0 on the spheroid. In this case, too, it
goes without saying that the number of terms required will be very large in
the event that € a2 1. Thus at best the above outlined procedures seem to
be impractical when € z 1. The other alternative of expanding in power
series in (1 - €) has the disadvantage that one cannot apparently solve easily

even the first integral equation.
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VIII

MODELING OF A SPHEROID BY A SPHERE

(THE SCALAR PROBLEM WITH ARBITRARY ECCENTRICITY)
(F.B. Sleator)

The continuous dependence of a solution of the exterior scattering
problem on the boundary values indicates that it should be possible to duplicate
the far-zone field of a given body by substituting a different (but topologically
equivalent) body with different boundary conditions. If the scattering proper-
ties of the given body are unknown, or unmeasurable, it may be possible to
determine them by calculating or measuring the field of the substituted body,
providing the proper boundary conditions can be determined or produced. The
determination of the boundary conditions on a sphere which would produce the
same scattered field as a hard or soft spheroid of arbitrary éccentricity is
the present concern.

A convenient tool for this job is the Helmholtz formula

- _:.l‘_ 1 .._Q... ! __a._ ! 1 !
V(P) = - S I:V(P) oo G(B.P') == = V(P')G(P,P)|dS' (1)
St

which relates the potential V(P) at the point P in space to its value at P' on the
scattering surface S'. Here G(P, P') is the Green's function of free space, i.e.
eikp/ p, where p is the distance from P' to P, and 8/ on' is the derivative in
the direction normal to the surface S'. If a term of the form eikz , Where z is

a space coordinate, is added to the r.h.s. of the equation, then V(P) represents
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the total field produced by a plane wave incident on the body in the z-direction.
If the quantity V(P) is assumed known, equation (1) is an integral equation in
the two unknowns V(P') and 8V(P')/dn' , which can be attacked by means of
the usual expansion procedures.

Accordingly, for a given scattering surface S', which we will assume

to be spherical, we introduce the following expansions:

V(P) = V(r,0) = Z auhu(kr) Pu(cose)

U
V(P') = V(') = Z b P (cosd)
TR

m

oV(P') _ av(e") _ > ¢ P (cosé)
on' on' [T
I
eikZ = eikr cosf =Ziu(2u+l)j (kr) P (cos#) (2)
” K K
0 B T
G(P,P") = ik &m Le (2n41) (oo cos [m(gb -;D)]
. P;n (cosb) P;n(cose') jn(kr')hn(kr) (r'¢ )

where the ju and h“ are spherical Bessel and Hankel functions, the P5 are
Legendre functions (P ) = Pz ), and aM ,bu , c“ are undetermined coefficients
depending on the geometry of the system, which is assumed axially symmetric,
so that the fields are independent of . Substitution of these in the Helmholtz

formula with included plane wave yields
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? ) Z.u . ik g Z’ .
auh“(kr)Pu(cose) = L i (2/.t+1)3“(kr)Pu(cose)+ o . buPH(cose)

M S

‘k ZL_.E (2n+1)( " ;: cos [m(jb'—yb)] P:l(cose')P;n(cose)-

cos [m(¢'—¢)] P;m(cose') P:l(cose)jn(kr')hn(kr) ds'

Zl (2u+1)3 (kr)P (cos6)+——— ZZZ (2n+1

(n+ )"

T 2T

hn(kr)PLn(cose) g S cos[m(¢'—¢)] P;n(cose’)P“(cose') :
0 0

. it 1y o 3 1 '2 3 9' d ! de'
[kban(kr) qun(kr )J r'“ sing' d

Orthogonality properties of the angular functions of §' and ' simplify the

right side of this equation to give

Zauhu(kr)Pu(cose) = Z i#(2u+1) ju(kr)P#(cose)+

+ ikr , hu(kr)P“(cose) [kbu]“(kr) cuju(kr )J

Although there are three sets of coefficients appearing in this equation,

it is clear that the bIJ and CIJ are not independent, since either set, along with
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the radiation condition, determines the solution uniquely, and the other should
therefore be expressible in terms of the first. The explicit relation between
b” and c“ for any u can be obtained easily for the case when S' is spherical
by letting the point P approach this surface. In this case r—;r' and

b#
TR b (i) °

The coefficients of P“(cose') can then be equated to give

= M ; 1 et 2 1 i1 1y - ; 1
b“ i (2;.t+1)]u(kr)+1kr h”(kr)[kbyju(kr) cuju(kr)J

Rearrangement and substitution of the Wronskian for spherical Bessel functions

leaves this in the simpler form

-b "kh'(kr')+c¢ h (kr') = — | (4)
TR b

This can be inserted in (3) to yield, after some manipulation

4
b Ll P (cos0)
Eu au -—Lh“(kr') Pu(cose) hu(kr) = Z i (2u+1) —L—h )

f M

. [j“(kr) n”(kr') - j” (kr') n“(kr)J (5)

where the n“ are spherical Neumann functions.
Up to now the point P(r, 8) has been restricted only to the exterior of
the sphere S8'. If we now require it to lie on another spherical surface, i.e.

fix r at some constant value greater than r', then the coefficients of P”(cose)
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in (5) can be matched and the resulting relation between a“ and b“ is

L i)

1 + 1
ko b Get) T b (b Gk

) [ju‘kr’“u‘k‘”"‘ju‘kr')nu‘kr’J G

If the exterior (hypothetical) surface is to be spheroidal, however,
then r depends on 6, and it is no longer possible to match the coefficients
directly. We can expect only to get a matrix relation which permits the

b
determination of the difference a,J -—E_ as the solution of an infinite

h”(kr')
linear algebraic system. One such system is obtained by multiplying both

sides of equation (5) by Pv(cose) jV(kr) #(6)d9 and integrating from 0 to 7,
2_
where r is now r(6) =a/ -§—-12—- , a is the semi-major axis of the spheroid,

E2cos?6
£ is the inverse of the eccentricity, (9) is some arbitrary weight function, and

v=0,1,2,... 0. With the definition
T

KHV = g P“(cose) hu<kr(9)) Py(cose) i, (kr(G)) f(6) do
0

the linear system is written as

+1
Z (ﬂ > ;.H/ ; hu(krt) [nu(kr' )Reluv J”(k’l‘ )Im )\HV] .

(7)
The first task one faces in the solution of this system is the evaluation
of the integral )L#V for arbitrary p and v. Since both the Bessel and Legendre

functions are expressible in finite series, it is clear that for any finite indices
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p and v the integral should be expressible as a finite combination of integrals
of some elliptic type; however, the labor involved in deriving a sufficient
number of cases appears to be prohibitive. The best alternative found as yet
is an expansion in spheroidal functions which is obtained as follows:

Consider the quantity

v = lim g g G(P,P'") P“(n)Py(n')deS' (8)
E'_-’S gt S

where G(P, P') is the Green's function of the points P(§,7n ,@) and P'(§', 7', §")
in spheroidal coordinates, PM and Pv are Legendre poiynomials, and the
integrations cover the two spheroids given by the coordinates £ and &' . If

the Green's function is represented as a Fourier integral (1]

00 >
1 elK' P =
G(P,P') = — -y 3 4K (9)
2 K -k
-0

— —t
where K is the vector (K ,K ,K ), dK=dK dK dK , and 7)‘ = (x-x',y-y', z-2")
x y oz Xy Z
then six of the seven integrations can be carried out in the manner described
in [2], and in the limit as §'—& the result is

utv+l d

~-167 1 k _ 3
P“V = 53 % P“(cosw )PV(cosw)h“(kp)Jy(kp)p siny dy
ab F 0

(10)
where a,b and F are respectively half of the major axis, minor axis and

focal length of the ellipse specified by the relations
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a

§ = )

1/ a2-b2 F

Alternatively we can expand the Green's function in (6) in series of
spheroidal functions [3]:

N 1 : e im(p-p")
G(P,P') = 2ik Zm:; A a1 Syl (£)h, (1) .

mn

Here /\'mn is the normalization constant for the angular spheroidal functions

S , and je

and h are radial functions of the first and third kinds.
mn €mn

mn
When this expression is inserted in (6), the integrations over @ and §'

yield immediately the factor 4772 gom’ and those over n and n' have the form

1
M-n
2i on
% Son(n)Pu(n)dn ® ou d n
-1 2

where d.Em is a spheroidal coefficient. Thus the resulting expression for
[_\ is
3%

r—' _ 321”+V+1k7rz Z’i'l)n ern
v | (2u+l)(2v+l) — A Yeon > e

on on
n(S) dl._t -n dV—n

o
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Equating the two expressions (10) and (11) for ’—'uv gives at once the
aforementioned expansion of the integral K/.w with the particular weight

function §(6) = p3sin6,

T
)\IJV = % PM(cosG)PV(cost‘))hM(kp)jV(kp)p3 sinf do
0

o FO £ (£2-1) Z -0t ©n (6 d® ™
(2u+1)(2v+1) n Aon Jeon eon % _1/5-_1_1 '
(12)

Existence of a solution to the linear system (7) which can be
approximated by the solution of the corresponding truncated (finite) system
remains to be demonstrated. This requires an examination of the series in
equation (12) based on known properties of the spheroidal functions and coef-
ficients. The constant terms of the linear system, given by the series on the
right in equation (7) must also be evaluated. One characteristic of the system
appears immediately on examination of (12). The parity about the point
6 =7 /2 of the functions appearing in the integral is such that this vanishes if
p +v is odd, with the result that the odd and even indices in the linear system
can be treated separately, and the labor involved in the solution is considerably
reduced.

Once the solution of (7) is obtained, the field and its normal derivative

on the sphere are known for any arbitrary distribution of the field on the
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hypothetical spheroid as specified by the coefficients au in the expansion
assumed. In particular, of course, the solution for the Dirichlet condition

V(P) =0 on the spheroid comes out at once. However the corresponding

solution for the case where the normal derivative of the field on the spheroid

is specified is not obtainable from the above expressions, and the derivation

of analogous ones which will furnish it presents considerable difficulty. The
principal problem involved is that the differentiation in a direction normal

to the spheroid expressed in spherical coordinates produces integrands which
are not easily amenable to the treatments described above. If a spheroidal
coordinate system is employed, an expression analogous to (4) is easily derived,
giving each coefficient of the field on the spheroid in terms of the corresponding
one for the normal derivative. However the reconciliation of the two expansions,
one in spherical coordinates and the other in spheroidal ones, is by no means
trivial.

Various possible means of resolving these difficulties are currently
being investigated. It is also projected to investigate the linear system (7) in
more detail in the light of certain methods which appear in the literature [4]
for the simplification of such systems. Finally, although it appears highly
improbable that any diagonal or essentially diagonal system relating the re-
quired coefficients could be obtained, it does seem possible that various forms
could be derived, and an investigation of these to determine which is optimum

seems in order.
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