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I
INTRODUCTION

This report presents a new approach to the solution of the problem of scalar
scattering by three-dimensional finite bodies. Specifically, a method is found, of
general applicability, whereby the solution of the static potential problem for a
Dirichlet boundary condition on a particular surface is transformed, by successive
operations, into the solution of the scalar Helmholtz equation satisfying the same
boundary conditions.

Lord Rayleigh (1897) considered the relationship between potential problems
(boundary value problems for the Laplace equation), and scattering problems (boun-
dary value problems for the Helmholtz equation). In a typically virtuoso perform-
ance, Rayleigh considered two as well as three dimensional problems in the electro-
magnetic (vector) as well as acoustic (scalar) case. In particular he showed that the
potential of an obstacle in a uniform field not only was the near field limit of the
solution of the corresponding scattering problem but also could yield the first term
of an expansion of the far field. He gave explicit results for a general ellipsoidal
scatterer including many limiting cases of interest such as the sphere, spheroid and
disc.

Since that time, considerable effort has been spent in deriving higher order
terms in the expansion of these as well as other shapes. Long sought in this work is
the development of a systematic procedure which will generate the solution of the

Helmholtz equation, satisfying a particular boundary condition, from the solution of
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Laplace's equation which satisfies the same boundary condition. It is toward the
achievement of this goal that the present work is directed.

The major drawback in most of the methods proposed heretofore is their in-
trinsic dependence on a particular geometry. That is, the techniques result from
the (often adroit) exploitatipn of the geometric properties of the surface on which the
boundary conditions are specified. Thus, restricting attention to three dimensional
scalar problems, we find a variety of methods for obtaining the low frequency expan-
sion for a disc (and an aperture in a plane screen); see Bouwkamp (1954) and Noble
(1962) for an extensive bibliography to which we may add Heins (1962), de Hoop (1954)
Senior (1960) and Williams (1962a). However, success in generalizing these tech-
niques has been limited to a class of axially symmetric problems, (Collins (1962),
Heins (to be published) and Williams (1962b)), and explicit results have been obtained
only for a spherical cap (Collins (1962) and Thomas (1963)). For those shapes where
the Helmholtz equation is separable, of course, the low frequency expansion may
always be obtained from the series solution provided sufficient knowledge of the
special functions invoived is available. A method for obtaining low frequency expan-
sions for bodies which are intersections of such "separable" shapes has been pro-
posed by Darling (1960) though as yet has been applied only to a spherically capped
cone (Darling and Senior, to be published).

Most low frequency techniques, however, have as their starting point the
formulation of scattering problems as integral equations using the Helmholtz repre-

sentation of the solution in terms of its properties on the boundary and the free space

2
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Green's function, e.g. Baker and Copson (1950). This formulation is also vital to
the proof of the existence of solutions for a general boundary given by Weyl (1952)
and Miiller (1952) as well as that of Werner (1962). Noble (1962) shows how this in-
tegral formulation may be used to obtain a representation of the solution of a scatter-
ing problem for a general boundary as a perturbation of the solution of the corre-
sponding potential problem. Each term in the low frequency expansion is the solution
of an integral equation which differs only in its inhomogeneous part from term to
term. However, this formulation does not yield an explicit representation for suc-
cessive terms in general except as the formal inverse of an operator.

The present work describes a method whereby the solution of the general
Dirichlet problem for the three dimensional Helmholtz equation is explicitly ex-
pressed in terms of the Green's function for the corresponding potential problem.

A new integral equation for the scattered field is derived whose kernel is the poten-
tial Green's function for the surface instead of the free space Green's function for the
Helmholtz equation. Despite the fact that the integral operates over all space, rather
than just the scattering surface, and is really an integro-differential operator, it is
still possible to solve the equation iteratively in a standard Neumann expansion which
has a nonzero radius of convergence and may be interpreted as a partial summation
of the low frequency expansion. The results are valid for complex as well as real
values of wave number, k, with no restriction on the sign of the imaginary part pro-

vided k is sufficiently small in absolute value. The present work also provides a
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constructive proof of the existence and uniqueness of solutions of the Dirichlet prob-
lem for the Helmholtz equation based on the existence and uniqueness of the potential
Green's function.

The results stem from an integral representation of functions which are reg-
ular at infinity in the sense of Kellog (1953). This representation, which is a direct
consequence of Green's theorem, is derived in Section 2. Wave functions, i.e. solu-
tions of the Helmholtz equation which satisfy a radiation condition, are not regular.
However it is possible, using an expansion theorem (Wilcox, 1956b), to modify them
so that the representation theorem applies. This is done in Section 3 where a new
integral equation for wave functions is derived. In Section 4 this equation is solved
iteratively as a Neumann series and the relation between this series and the Ray-
leigh expansion is given. As an illustration and a check, the method is applied to
the classic problem of scattering by a sphere in Section 5. This example serves not
only to corroborate the analysis but also provides further insight into the manner in
which the truncated Neumann series, i.e. the Nth iterate, approximates the solution.

A rigorous proof of the convergence of the Neumann series is given in the Appendix.
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II
A GENERAL REPRESENTATION THEOREM

We begin with a statement of Green's theorem or Green's second identity
(e.g. Stratton, 1941, p. 165) which states that if u and w are twice differentiable
functions of position everywhere in a closed region of space, V, bounded by a regu-

lar surface S then

Elvzw - wvzu] dv = El x_, Qg] ds, (2.1)
on on
\' S
where the normal derivative 8/8n is directed out of the volume V. We remark that the
conditions for the validity of (2.1) may be weakened but for present purposes we con-
sider only smooth regular surfaces, deferring consideration of bodies with edges.
We choose to consider the surface S as consisting of a small sphere, Sl’
with center at X» ¥q» %5 a0 arbitrary smooth surface, S2, not necessarily con-
nected, consisting perhaps of a finite number of closed smooth surfaces; and a large
sphere, SB’ containing S, and S_. Further, we erect a rectangular Cartesian co-

1 2

ordinate system with origin in S_, see Fig. 1.

2’
The usual procedure in formulating an integral equation for a wave function
then involves identifying one of the functions in (2. 1) with the free space Green's
. HkR,  + , . )
function, e /R, and the other with the field scattered by Sz. The integral over
S3 is shown to vanish by virtue of the radiation condition and the integral over S

1

evaluates the scattered field. The volume integral vanishes since both functions are

+
The sign ambiguity is removed with a particular choice of harmonic time factor.
5
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chosen to be solutions of the homogeneous Helmholtz equation yielding the well known

result

) e'l'ikR 5% 5 e‘l‘ikR
w(xl’yl’zl) = E R 5 -wgl-l < R ds. (2.2)

FIGURE 1

Here, however, we wish to employ, not the Green's function for the Helm-

holtz equation (though this is our final goal) but the Green's function for the potential
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(Laplace) equation. Thus we identify u in equation (2.1) with a function of the fol-
lowing form

1
=-— +
4 4rR M

2
where R = \Ax—x1)2+(}"y1)2+(z-z1)2 and V u, = 0 evenat R =0, i.e. u, is

regular everywhere in V in addition to the interior of S,. Equation (2.1) then be-

1
comes
1 2 1
-— = — — == —_
(41rR u>dev |:<47TR+ 1> on 3n< +“1>] ds
+S_+
v Sit83S, (2.3)

If w is assumed regular in the interior of Sl’ then the integral cver S1 may be

evaluated in the usual way; first integrating then letting the radius of S, approach

1
zero. Clearly the regular part,

ow
[18 -Ww i]dS—)O

Sl
- 2 __38
and, since on S1 on - "R’
T 2w
Hm ) g\ ap R%sine |—= 2 wlx,+R cosf sinf, y, +R sin P sin6, z,+R cos6)
R0 iR 3R co y,*Rsinfsin6, z +R cos
0 0
- wx_+ + + =
w(x Rsin6cos f, ¥, Rsinfsinf, 2, RcosG) 47rR>:l
= x5, 2) (2.4)
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Hence (2.3) becomes

_ 1 1 9w
w(xl,yl,z ) ( +u1>V wdVv - K41rR+u!,> ™
S.+S
- "'1—+ul>:] as (2.5)
47R )

273
Nowwefurtherspemfyu so that (——+u) = 0, that is -4—1'§+u1
1S

2

is the static Green's function of the first kind (Dirichlet condition) for the surface S2'

We shall denote this function hereafter as
G (pp) = - —=+u (2.6)
o ’"1 4R 1 )
where the dependence on two points is indicated. The notation is a shorthand for
G (p.p) = G (xy,2,%,¥,,2) = G_|r, 6,9, r, 1,¢J (2.7)

The volume or surface symbols V and S will be used as subscripts to indicate the

variables of integration. With this in mind, equation (2.5) may now be written

2
w(pl) = Go(pv, pl) v w(pv) dv + w(p

\' S2

S) G, (pg p,)ds

(o)
-\ e, g ) 209 - tp 6 oy p)] s

S
3 (2.8)
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Recall that thus far, w(p) is arbitrary except for differentiability require-
ments. On the other hand, Go(p, pl) is completely specified and one of its more im-
portant properties is the fact that it is ""regular at infinity" in the sense of Kellog
(1953, p. 217), i.e.

2 aGro

E3

lim r
r— o

lim

=0 < (2.9)

IrGo|<oo and

where r is the radial polar coordinate of the point p (see (2.7)).

Let us now consider the integral over S_. It is our aim to let the radius of

3
S3 increase so that the volume under consideration is all of 3-space exterior to the

surface Sz. If Go were a Green's function for the wave equation and w were a wave

function then the radiation condition would imply that the integral over 83 vanish,
However G0 is not a wave function and since we would still like the integral over

83 to vanish, we must determine the requirements on w which will accomplish this.

Since S3 is a sphere of radius r with center at the origin, _88; l =_i and we wish
S

or
to determine conditions on w so that 3
lim 2 2 )
r->wm l:Go(pS’ Py) 5p g - Wlpgd7 G (pg,p,)| dS
SS
27 T
_ lim 2 o 26 o] -
= e dp |\ dbr sind [Go(p, pl) or w(p) - w(p) oy Go(p,p )| =0 (2.10]
0 0
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21 T
lim 2 . 9 9 ]
> df \ dor sind E:‘ro(p, p;) 5y @ip) - wlp) - G (p,p))
0 0
27 T
lim ' 2 ) | l 2,.9
< — —
Y r—ow dp \ do {r Go(p, pl) or wlp)| + | ulp) or Gro(p’ pI)B (2.11)
0 0

and conditions sufficient to force this limit to vanish are

lim | 2 9 _
ro IF Go(p’ pl) or w(p)l =0
and (2.12)
lim l NS ' .
r—>olt wp) or Go(p’ pl) =0

Rewriting these equations slightly as follows,

lim 1 2 8Gro
= r —
or

r>mwr =0

lim 1 H 239 [ _
L wp)l = 0 and | r(p)|

r—=>m r
(2.13)
clearly indicates that requiring w(p) to satisfy the same regularity conditions at in-
finity as does Go(p, pl) (i.e. eq. (2.9)) is certainly sufficient to guarantee the valid-
ity of (2.10). Thus the contribution of the integral over the large sphere 83 is
nugatory provided w is regular at infinity. We note in passing that this condition on
w(p) may be weakened without invalidating the result but since the functions with

which we shall eventually be concerned satisfy the stronger condition, we defer con-

sideration of this refinement.

10
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We may summarize the results obtained thus far in the following theorem:
+
Let V be the volume exterior to S, the union of a finite number of smooth,
closed, bounded, disjoint surfaces, and let Go(p, pl) be the static Green's function

of the first kind for this surface (i.e.:

2 e o hH
a) VG (p,p) = s(|7-1,))

b) G (p,p,) =0
o pllpes

c) Go(p, pl) regular at infinity);

then any function w(p) which is twice differentiable everywhere in V and regular at

infinity satisfies the integral relation

_ 2 3
wip) = G (p, py) \Y wip,)dV + wlpg) 3= G (P, pg) dS (2.14)
A4 S

where the normal is directed out of V.

+
Having evaluated the integrals over S. and S_ we hereafter will denote the surface

as S rather than Sz. 1 3
The 6 function is normalized so that the free space static Green's function is
1
-3 .
47 lr—?ll

11
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m
APPLICATION OF THE REPRESENTATION THEOREM
TO A CLASS OF SCATTERING PROBLEMS

We now consider the time harmonic scattering problem for the surface S
with Dirichlet boundary conditions. This may be considered as determining the per-
turbation, uS, of an incident field, ui, due to the presence of the surface S. Spe-
cifically, for a given ui (plane wave, point source, or superposition of such sources)|

we seek a function of position u(p) such that

a) u(p) = ui(p) + us(p)
B (V2+kDu(p) = 0, peV = Ext S

c) ui(p) + us(p) =0
pesS

d) us(p) satisfies a radiation condition, lim r(i - ‘k) us = 0.
r—>o \or

In this formulation a time dependence e—lwt is assumed which gives rise to the radi-

ation condition given in (d) and implies that the free space Green's function is
ik |z-F, |
e ! +iwt
- -ZW_I-{?—I . The comparable expressions for a time dependence e are found
1

by replacing the k by -k throughout.
It is our intent to represent the scattered field with the integral relation
derived in the previous section; however, we cannot identify us(p) with the function

w(p) since us(p) is not regular at infinity in the required sense although it does satis-

ikr
fy the radiation condition. To be more specific, even though u® 9;— £(6, ) for
large r which implies that |rusl will be bounded, r2 % uS I will not be bounded,

12



THE UNIVERSITY OF MICHIGAN —
3648-1-T

hence u° will not be regular at infinity. It is possible, however, to find a function
closely related to the scattered field which does satisfy the regularity requirement.
This is evident from the expansion theorem for "scalar radiation functions' (see
Wilcox, 1956a,b; Atkinson, 1949; Sommerfeld, 1949) which may be stated for present]
purposes in the following form:

If S is a surface satisfying the requirements for the representation theorem,
and o is a function satisfying (a) - (d), then the unique expansion

. ®
R L un(e, )]

u = — , r>c (3.1)
r n
n=0 T

is uniformly and absolutely convergent for all r, 6, §§ provided r >c. It is not diffi-
cult to show that ¢ may be chosen as the radius of the smallest sphere entirely en-
closing the surface S. The question of whether this is the smallest ¢ for which (3.1)
remains valid is not without interest but is not our present concern. Now we are
interested in the behavior of u® at infinity and a glance at (3.1) reveals that while

u® is not regular in the sense of Kellog (eq. (2.9)) the function

@
. (6,)
-ikr s _ 1 “n
e u =7 _—>_ (3.2)

n
n=0 r

is regular in this sense. Thus we may identify the function w(p) of the representation
theorem, not with the scattered field, but with this related function, viz. s

w(p) = e-ikrus(p) . (3.3)

13
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With w defined in this way it is easily seen that

(V2+1D)d® = 0 = (VP4 i) X0 = 0

or, explicitly,

2 2 2
0 2 0 1 9 cotf 0 1 0 2} ikr
S to ot St =+t —+k'fe wp =0
{arz o 2202 060 220 0
(3.4)
Since
9 [ ikr _ o Jkr ikr 9
ox [Tt = ke Tulp) + o™ L uip)
and
82 ik 2 ikr ikr ow ikr 82
- [el rw(p)___] =-k e wp) +2ike T—+e — wlp
2 or 2
or or
it follows that
1 8 [ 2 0™ 2 ikr .. ikr 0w . ikr 9% 21k e
< |r /—/——|=-ke w+t2ike T +e w(p) + W
2 or or or 2 r
r or
+ 2elkr W
T or
2ikr  ikr 1 & (2 0w\ 2ikerT 8(rw)
=-ke w+te ;—é F (r a)+ - o - (3.5)
Making use of (3.5) in (3.4) leads to
. ., ikr
ST g, ke B =0 (3.6)
T or

14
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or finally,

Vi = 22k 2 ). (3.7)
r or

Now we make use of the representation theorem of the previous section which

with (3. 3) and (3. 7) enables us to write

-ikr G (p,,p,) O r )
w(pl) =e 1us(pl) = -2ik o V. 1 azw(pv dv +

r
v \'s \'

w(ps) 'aa—n Go(ps, pl)dS. (3.8)
S

Furthermore the boundary condition for the scattering problem states that

u(p) = ~u'(p) , peSs
which implies that on S,

-ikr i
u

wlp) = -e () . (3.9)

Making use of this in (3.8) yields the representation
Golbye Py 5 -lkr

o Si .9
wlp,) = -2ik T or., LIyPpylJdv - | e u(pg)yy G (P P, )dS
v v v S

(3.10)
We may summarize the results of the present section inthe following theorem:

If (1) V is the volume exterior to S, the union of a finite number of smooth,

1
closed, bounded disjoint surfaces, (2) G (p,p,) <= - ==+ u_(p, )) is the
0 "1 4 |r—r1] 1P Py

15
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static Green's function of the first kind for this surface (Go(p, pl) =0, peS), and
(3) ulp) = ul(p) + us(p) is the solution of the time harmonic (e—m) Dirichlet scatter-
ing problem for this same surface; then the scattered field satisfies the following

integral equation

fkr, G (py. P,

) -ikr
S — os d V s ]
u (pl) = -2ike - or E‘Ve u (pV) dv
v A% A%

ikr, ~ikrg i 9
-e e u (pS) on Go(ps, pl)dS
S
(3.11)

where the normal is directed out of V.

16
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THE ITERATION PROCEDURE

THE UNIVERSITY OF MICHIGAN

With the theorem of the previous section established, an iteration scheme is

s
clearly indicated. Here again it is convenient to work, not with u~, but the related

function

o) = e-1kr uS(p)

in terms of which the integral representation is given by equation (3. 10).

If we rewrite (3.10) in operator form

w=kOow+f{

(4.1)

where O denotes the volume integral and f the known surface integral, the form of

(4.1) suggests that a solution may be found using the Liouville-Neumann series of

Fredholm theory. That is, we rewrite (4.1) as

Ww = E-kO]_lof

and formally expand the inverse, obtaining

©
= E k"0 o f
n=0
: (N) A
Denoting by w ° the partial sums
N
(N) = : knOno f
n=0

it follows that

17

(4.2)

(4.3)

(4.4)
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w(o) ={

(N)

WD £, N30, (4.5)

kO e w
If, as is the present case, f is not independent of k but has a power series repre-

sentation

m=0
then, substituting in (4.3) and formally employing Cauchy's form for the product of

two series yields

®
W = § : E kn+mon° a (4.6)

n=0 m=0 m
Q m

= E § k"% a_ .
m=0 n=0

If we denote by wm the sum

m
w o= E 0o a (4.7)
m m-n

n=0
It follows that
w =a
0 o
m+l m
E n E n+1
W = O o3 = a + (0] ° a
- + -
m+l 0 m+l-n m+1 o m-n
= a +0ow , m20 (4.8)
m+i m

18
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We have thus formally produced two representations for the function w,

namely
_ lim (N
W= Ney oo ¥ (4.9)
where w(N) are defined in (4.4) and (4.5) and

[00)
W= 5 w KT (4.10)
. m

where W are defined in (4.8).
There is of course a relation between the two. Clearly the first N+1 terms

in the low frequency expansion of w are given by

N

E w K®

m=0 ™
whereas the Nth iterate, eq. (4.4), includes these as well as terms of all order in
k and may be considered as a partial summation of the low frequency series. Ex-

- (N) .

plicitly, v~ may be written, (4.4) and (4.6),

N @

w(N) _ Z Z:kn+mon° a,

n=0 m=0
or, adding and subtracting the same quantity

® ™ ®
w(N) _ E kn+m o ea - E E kn+m Moa
m m

n=0 m n=N+1 m=0

e

1]
o

19
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Using Cauchy's form of the product of two series to rewrite the first sum and adjust-

ing the index of the second enables us to write

m (00]
§ , Ko o - E
m—n

n=0 n=0

+N+1 _n+N+
kn+mN10nN1°a

aMs
N
B

m

Splitting the first sum and again adjusting the index of the second yield three terms

m Q0 m
E Ko o ot _E E KP0" 6 a
m-n

Mz

m=0 n=0 m=N+1 n=0
(o)) m
_ E km+N+1 On+N+1 o a
m-n
m=0 n=0

The first term is seen to be, with (4.7), the sum of the first N terms of the low fre-
quency expansion while the remaining terms may be combined by further reordering

to yield

N 00 m
§ Ko + E § k0% e a
m m-n

m=0 m=N+1 n=0
o m-N-1
+N+
i Z I N N
m=N+1 n=0
N (04) m m
= § KMo+ E {E K"0"oa_ - E kmonoam_n}
m=0 m m=N+1 n=0 m =N+1

and finally

20
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N ® N
o E w K+ E K" E 0%ea (4.11)
m=0 m m=N+1 n=0 mn

In what follows we shall assume that w may be expanded in a power series
in k satisfying sufficient convergence conditions to enable us to make explicit the
formal results obtained above. However, in the Appendix we show that no assump-
tions on the existence of a convergent low frequency expansion are necessary and in
fact these formal results are not only valid but constitute a constructive proof of the
existence of the low frequency expansion. '

For the present, however, let us assume a convergent expansion of w(p) in
the form

®
m
wp) = 5 w (pk (4.12)
m
m=0

and in addition assume that the related series

oS
Zo‘% [rwm(p)] K™ (4.13)
m=

converges absolutely and uniformly both for all points p in V and 0 <k < ko where
k0 is some finite radius of convergence. Then, since the spatial differentiability of
w(p) has been assumed, it follows that the order of summation and r-differentiation

may be interchanged (Whittaker and Watson, 1952, p. 79) yielding

o [00)
?a% Z [}wm(p)] K = Z% Ewm(p)] K" (4.14)
m=0 m=0

21
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Substituting (4.12) and (4.14) in (3.10) yields

- G (p;,, p,) < u
m_ .. \ o V7'l 9 m
m§=0 wm(pl)k = -2ik | - E B Ijvwm(pv) k dv

v A"/ m=0 "V

i .9
1€ U (pg) 5 G, (Pgy P;) 5.
S (4.15)

The incident field, whether plane wave or point source, is an entire function

of k as is e_lkr ul(p) which may therefore be expanded in a Taylor series

00
e ylp) = Z A_DK" (4.16)
m=0

where

o =

Hence (4.15) may be written

m 0
m=0
(4.17)
The convergence of (4.16) is uniform and absolute for any finite k and in par-

ticular for k < ko; hence,the order of summation and integration in the second (sur-

face) integral on the right hand side of (4.17) may be interchanged. Similarly, since

22
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the sum appearing in the volume integral in (4.17) has been assumed absolutely and

uniformly convergent, the order of summation and integration may again be inter-

changed. The justification of this interchange is slightly more involved since the

volume integral extends over
a finite range; however, in e
sion of the theorems of class

With this interchange

of like powers of k obtaining

an infinite range whereas the surface integral is over
ither case the result is contained in or a minor exten-
ical analysis (e.g. Apostol, 1957, p. 451).

of order of operation in (4.17), we equate coefficients

_ 9 ~
wo(pl) = - Ao(ps) on Go(ps, pl)dS
S
G (p;,, p,)
. o V'l 98
+1(p1) -2 T or. er(pV)] av
A" A"/
Vv
-\ A )G (pp.)ds =0,1,2
m+1' 'S’ 9n o Py P/ @, M =0 LA
S (4.18)
where
m
1 d -ikr i
A_p =L [ ]
k=0
peS

Equation (4.18) is the

explicit form of (4.8), the low frequency expansion.

The explicit form (4.5), the partial summation of the low frequency expansion is

given by
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—ikr
o, | _ Si .98
wip) =- | e ulpdy G (pg,p,)dS
S
S o Glry Py e o™ )] av
P = r ar.. UV Py
Vv Vv
\'
-ikr
S i |9
-\ e ulpd gy G (pgp,)dS
S

N=0,1,2,...

24
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\'
AN EXAMPLE: SCATTERING OF A PLANE WAVE BY A SPHERE

We now apply the methods derived in the previous section to the specific
problem of scattering of a plane wave by a sphere and compare the results of the
iteration process with the known exact result. We fix the origin of our coordinate
system at the center of a sphere of radius a and consider a plane wave of unit am-

plitude propagating down the z-axis (see Fig. 2). Thus

®
u = e_:lkZ = e-1krcosO = E :(-i)n(2n+1)jn(kr)Pn(cose) (5.1)
n=0
and the known expression for the scattered field such that u = (u1+ us) =0
r=a r=a

is (e.g. Morse and Feshbach, 1953, p. 1483)

S . n hn(kr)
u = - Z(—i) (2n+1) B (ka) jn(ka) Pn(cose) (5.2)
n=0 n

where Pn are Legendre polynomials and jn and hn are spherical Bessel functions
and spherical Hankel functions of the first kind respectively.
The static Green's function for this problem is also well known (Stratton,

1941, p. 201) and is given by

+ L = (5.3)

' T, \2
- 2rT,cosy 4m \/a2+ <Tl> - 2rr1cos v

Go(p: pl) = -

4T \/r2+ r

—Doff -

where cosy = cosfcosf, + sinesinelcos(ﬂ— ¢1).
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] /(r, 6, )
A1 /
// (r). 6,,0))

|
I
_AV

FIGURE 2

The expansion of the Green's function in spherical harmonics, which will

prove useful in the subsequent analysis, is

i < 1 a2n+1
= a— + ——
G (b, p,) = 4“ ( > Pn(cos N+ o —; P (cosv) (5.4)
> ‘90 > =0 (r1 )
where r>=r if r>r1 and r<=r if r<r1
=r1 if r1>r and =r1 if r1<r

First we shall calculate the first few terms in the low frequency expansion

of the function w = e_lkruS using equation (4.18). In the present case, the surface

. _ .. 09 _ 9
is the sphere r = a on which oo - " or and
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1 d° r-ikr i
A (p) = —= @ |-_e u(pﬂ

1
m: k=0
peS
)" m m
= ——— a (l+cos6)
Utilizing these facts in (4. 18) allows us to write
27 T
w(p) =\ dd | do a’sing 2 G (p, p,)
o1 or o "1 I
0 0
and
00 2
T 5  G(pp)
wm+1(p1) =-2i \ dr \ df \ dOr sing ——— - [ (p)]
a 0 0
2T T
+1
(-ia)™ m+l 9
+ d dé + -
) a®sino £12L__ Ty (1+cosf) ™~ - G (p,p,)
0 0 r=a

m=0,1,2,...

where Go(p, pl) is given in (5.3) and (5.4). Explicitly

L S
) = - e 1 (2n+ l)Pn(COS'Y)
r=a n=0 r1

8
e O(p, pl)

hence

27 T

1 Z a n+1
wo(pl) = T ar n=0 (1‘_1) (2n+1) dg desinePn(cos'y) .

0 0

(5.5)

(5.6)

(5.7)

(5.8)
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In this section we shall assume that all interchanges of summation and integration
are justifiable.
Recalling the definition of cosy (eq. (5.3)) and making use of the addition

theorem for Legendre polynomials (Magnus and Oberhettinger, 1949, p. 55), namely

+ sinBai )
Pn(cos'y) P |cos6cosd, + sinfsin6, cos(f pl):l (5.9)

P (cosO)P (cos,) +2 Z :n+m;' P (cosG)P (cos6 )cosm(¢ ¢ ),

it is clear that

27 T T
dp \ d6sindP (cosy)P_(cosf) = 2r P (cosf.) \ dOsinfP (cosO)P_(cosb)
n m n 1 n m
0 0 0
47 n=m
2m+1
= (5.10)
0 n#m
Since Po(cose) =1 it follows that
wo(pl) = - a/r1 . (5.11)
Proceeding now to the next term, since
9 | -9 _
2 o] == =0 (5.12)
we have
. 09) . ol 2r s
v (p,) = == E :(—) (2n+1) \ dp \ dosin&(1+cosO)P (cosy) . (5.13)
171 4r L—\r n
n=0 "1 0 0
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Since 1+cosf = Po(cose)+P1(cos0), this may be evaluated using the orthogonality
of Pn’ eq. (5.10), yielding
ia 2 2
= = 4+
wl(pl) r 1a<rl ) P (cosG ) . (5.14)

Proceeding to the next term, since

| 3
9 5 [ 2. ia
or r“’l(p):] = or I:la " P1(°°Se)]

. 3
ia
=-5 Pl(cose) , (5.15)
r
we have
o) T 2T
2 a 3
w2(p1) =-2i \ dr \ d0 \ df r"sin6 Go(p, Pl) [—1 (; )Pl(cosez__‘
a 0 0
2T T
a4 2 0
- = i + —_—
5 dp \ dosiné(1+cos6) or Go(p, pl) (5.16)
0 0 r=a

Substituting the explicit forms for Go(p, pl), (5.4) and (5.7), leads to

r1 (0]
- (2 Voo 2
w2(p1) = o dr d¢ d9r sinf P_(cos0) - P (cos'y)

a 1
(04} 27 T @ rn
1 2 a _1
+ — . —
-\ dr\ ap | dor s1n9<r P, (cos6) E — P (cosy)
T 0 0

1
(cont'd)
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®
1
-5, |\ dr d¢ dor sme( ) P, (cosf) E : Pn(cos'y)
a 0 n=0 (rr)
9 &2 . o+ 2r 7w .
- E (r_ > (2n+1) \ dp \ dbsin6(1+cosb) Pn(cos'y) . (5.17)
= 1
0 0

The angular integration is trivial using the orthogonality relation (5.10) and the fact

that
2 2 4
(1+cosh)” = = P_(cos0) + 2P_(cosOH = P (cosh). (5.18)
372 1 370
This results in
r
2 : 2> 2 ® a3r1
8) (pl) =3 ar & P (cosO )+ < dr -3 Pl(cosel)
1 r r
a 1
®
2 a 3 a3 a2 2 a S
3\ dr (; ) = Pl(cosel) + 5 {3 Pz(cosel) <;- )
a r1 1

a 2 4 a
= )+ == }
+ .‘ZPl(cosel)<r1 ) 3 3

The r integration is simply performed yielding
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3 @
2 a 2 3 1
= £ 2 _a)+ = - —
wz(pl) 3 2 Pl(cosel)(r1 a) 321 Pl(cosel) ( 5 ]
T 2r r=r
1 1
6 ® 2 3
2 a 1 a (a)
- - = + = (=
3 2 Pl(cose ) < 5 3 \7 P2(cosf)1)
T 2r r=a 1
1
2/a ¥ 22 a
+a (—) P (cosf,)+a = — (5.20)
r 1 1 3r
1 1
or
2 )2 a 2 a 2 1l a
=a" (= 2._= = )+ <2 P (cosh
wolpy) = 2" {3 P (cosh)) r, "3 P, (cosf)) (rl ) 3 1, ;(cos6,)

- %P (cos6 )( > P,(cosf,) (-) (r ) P (cos@ ) + %r_a} (5.21)

This may be further simplified as follows

3
2 )1 ( a > a a '
= = -+ — + = —
wy(p;) = a {3 P,(cos6, ) WA P, (cos6,) r} : (5.22) |

Collecting our results we have, with (5.11), (5.14) and (5.22)

w o

0

wlp,) = anwn(pl)

n=0

]

2 3
+ + +
wo kw1 Kk W, o(k")

2 3
A ika I:—a— + (i) P (COSGZI + (ka)2 1 P_(cosb,) (_a_)
r1 r1 r1 1 1 372 1 r1

—

w o

+2 P (cost)+ 22 L iond), (523
r1 1 1 r1
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and Oberhettinger, 1949, p. 22)
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We wish to compare this with the exact result, calculated from eq. (5.2) to

the same order in k. To calculate these terms we first observe that since (Magnus

32

n 1
ip -n-1 <™ (n+=,m)
hn(p) =2 1™ —%1—1- ; (5.24)
m=0 (2ip)
1
where (n+-§,0) =1
and
ek oo feorn-1] [ea+1?-3%].... [ea+1)’- (em-1)?]
2 2m
2 m!
Mn+m+1) :
[((n-m+1)m! m=123...
m
_ -1 (_n)m(n+1)m @) = Cz+l)
- m! ’ ) Mz
hn(krl)
the ratio b (ka) may be written
n
L g,m)
(-1)
ik(r, -a) £&— .M
hn(krl) _ae 1 m=0 (21kr1)
hn(ka) 1 : (n+% , m)
(-1 ——
m=0 (2ika)

or, reversing the order of summation and simplifying,
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n
m 1 ) m
h (kr,) n+l lk(rl_ a) Z;.(‘l) (n+3, n-m)(2ikr, )
h (ka) (") . (5.25)

Z( )™ (n+— n-m)(2ika)™

With equations (5.2) and (5.25), the exact form of w(pl) may be written

-ikr
1 s
w(pl) = e u (pl)

n

Z( 1™, n-m)(@ikr, )™
Z( 1) (n+ ,n-m)(2ika) "

(5.26)

®
. n+
= _e—1ka Z(-i)n(2n+1) (-ra—) (ka)P (cose )
n= 1

Note that the quotient of two polynomials in k with non-vanishing constant term is
expressible as a power series in k with non-vanishing constant term (see footnote

at the end of this section). Also, from the definition of jn(p), namely

n © 2m
i) = Emf’i— > el 3 (5.27)
2 m= mlF(m+n+§)

we see that jn(ka) may be written as a power series in ka whose lowest order term
3

is (ka)". Thus all terms in the series (5.26) for n >2 are of order k~ or greater,

and, since

-ika (ka)

e =1-ka- 5 +O(k ), (5.28)

we may write the exact result, (5.26), as
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w(p1 = - [1 ika - (k;) :' 3 (ka)-31(—) j (ka)P (cosO) :

(g, 1) - (- 0) 21kr

3 5 —) ]2(ka)P (cose ) -
(5, 1) - (- 0) 2ika
-

3 5 . 5 L2
(5,2 - 6. 1)(21kr1) +(5, 0)(21kr1)

2

5 5 . 5 o
('5, 2) - (5’ 1)(2ika) + (2, 0)(2ika)

Making use of the notational definition in (5.24) we have

3 o) = 3 4y -
(E:O)"l (2:1)'2

|
[y

5
(5,0) = (

nofon

5
and from the definition of jn’ (5.27), we see that

(ka)

jo(ka) =1- + O(k )
iy le) = 22+ 00)

. _ (ka)

Jz(ka) T +o(k ).

Substituting (5.30) and (5.31) in (5.29) we obtain

34
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ko)) = Elka'(k;):] a [ (ka):l

2 - 2ikr
+ 3i l:l-lka] (—) =P (cosel) WY kal
3 12-12ikr_ - 4(kr )2
+5 (ri (k_la;_ Pz(cosel) L 1 + O(k3)
1 12 - 12ika - 4(ka)
(5.32)

This may be further simplified noting that, to the required order,

1, 2
1-1kr1 - 3(krl)
2

= 1+0(k) .

l—ika-'%(ka)

Hence (5. 32) becomes

2 2 2
- _a o (ka) a (ka)”  .fa .
w(pl) = - r E-lka— 5 :,+ 3 5 + 1<r1> kaPl(cosel)(l—lkrl)

2 3
4 {ka) (3-> P_(cos@.) + O(k3). (5.33)
3 r 2 1
Collecting terms in like powers of k we find

2
wp,) = - & +ika i+<i)1>(cose) + (ka)? [gi+-iP(cos9)
1 r1 r1 r1 1 1 3r1 r1 1 1

3
l(a 3
+ 3 <r1> PZ(COSGIZ, +0(k") (5.34)
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Comparison of (5.23) with (5. 34) verifies the fact that to this order in k the
exact result and the low frequency iteration method are in complete agreement.

Next we consider the perhaps more important iteration method given in (4.19)
which represents, as was pointed out, a partial summation of the low frequency
series. Specializing the surface S to be the sphere of radius a and making use of
the incident field and Green's function representations given in (5.1), (5.4) and (5.7)

we rewrite equation (4.19) as follows:

2r N7 o+l
w(o)(pl) = - 4_17r. df \ dbsinb E (_g_) (2n+1)Pn(cos'y) e-1ka—1kacos9
n=0 1
0 0
Sk o
-~ E : E (r— 5 (2n+1)(2m+1)(-i) jm(ka)
n=0 m=0
2r (wr
dp \ dbsinb Pn(cos v) Pm(cose) (5.35)
0 0
g 2T T n-1
i 9
w(Nﬂ)kpl) =+ 2ll;. dr \ df d01°sin0 rn P (cosVp- ri )(p]
A 0 0 n=0 r
@ 2r AT © n
ik (N)
+ o7 dr \ d¢ Lo +2 [ ]
r 0 0
N © 2t AT ® azn+1 -
-5 | O dp d01°sin6 — P (cos’Y) rw (p)]
T 0 0 n=0 r(rr il
2 (0)

+w (pl) .
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With the orthogonality relation (5.10) we find that

(00)
. ntl
w(O)(p1> = e Z(2n+l)(—i)n (f—) j,(ka) P _(cos6) ) (5.36)
n=0 1

(1)

Now calculating w (pl) using (5.35) and (5.36) we have

@
. n+1
_88; rw(o)(p)___] = o lka Z(Znﬂ)n(-i)n(%) jn(ka) Pn(cose)
n=1

and
®_
1 o
w( )(p ) = -lke ika E § @m+1) m(-)™j _(ka) *
1 2w m
n=0 m=1
r
1 2r (T ) rn'l . m+l
dr \ df \ dOr sin6 T (-Ij) Pn(cos'y) Pm(cose)
a 0 0 1
@ 2 4 9 I'Il1 a m+1
+ ing —— (=
dr |\ d§ \ d6r"sin6 2 r) Pn(cos'y) Pm(cos 6)
r 0 0
© (21 7 . 20 (©)
- \dr \ d \ dor"sin6 w (;5“ Pn(cosv)Pm(cose) +w (pl).
a 0 0 1

(5.37)
Using the orthogonality relation (5.10) this becomes
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0] r1
. m+l1
w(l)(p ) = Zike_lka E : m(-i)mj (ka)P (cosb,) dr (i)
1 m m 1 by
m=1 A 1

© r;n am+1 © a3 m+2 (0)
* dr r2m+1 - dr m+1 r2m+1 Tw (pl)

r
r1 1

which, on carrying out the r-integration becomes
©
m+l
1 s
w( )(pl) = 2ike ika E :m(-i)mj (ka) P_ (cosé,) (3'—> (r,-a)
ot m m 1 r1 1

m+l m+2
+E2—_ -2 }+w(0)(p1). (5.38)

+
2mr11]Cl ml

2mr1

This may also be written
1) -ika Em | ik
w p,) = -e (-)™ (—;‘-) j,_(ka)P_(cos6,)(2m+ 1)(-iK)(r, - a)
m=1 1
x m+1
-ika S/ a .
-e mio (2m+1)(-i) <r_1> ]m(ka)Pm(cosel).

(5.39)

Continuing the iteration we have

®
9 (1) -ika A, ., mt+l ) -m+1
-a—r[;'w (p)] =-e ! ; (-1) Jm(ka)Pm(cose)(2m+1)(-1k)a {———rm

+ —%} + % rw(o)(pﬂ (5.40)
r
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and

00)
(p,) = ‘lk’ e Z( 975 _(ka)(zm+1) 2™ >

n=0

1 2T T

2 n—l -m+1
dr \ df \ dbr smB——P (cos VP (cosb) | — — + ma}
r

r m+l1
a Jo Yo 1 r

(0] 2T AT n
T

+ dr \ dg d612sind 1
r 0 0 r

P (cos'y)P (cos0) [ m*l mal]

m+
r

@ am o 2ntl

2 . a
-\ dr\ df \ dor"sind T
a Jo Jo S

Pn(cos v) Pm(cos 6)

ma (1)
+—rm J +w (pl). (5.41)

Using the orthogonality relation (5.10) this becomes

5

®
w(z)(pl) = Z(ik)ze-ika Z('i)mjm(ka)am+1Pm(cos91) dr [_____(-m+1)r

m+1
m=1 r
a 1

@ (-m+1)rm mar—
+ ma + da 1 + 1
m+1 2m 2m+1
r1 r r r
1
®
2m+1
_ dr 2 m (-m+1) , _ma +w(1)( )
m+1 2m 2m+1 Py
a 5 r r

(5.42)
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which, on carrying out the r-integration becomes

2
(2) ik m+1) [ F1 2
(Pl) 2(i k) Ta E :( )" J (ka)a™ *1p (co 9) {%—3(-2— - -32—>

1
m= r,
+ ma(rl— a) + (-m+1) 4 _ma (-m+1)a2 ma2 + (1)( )
m+1 m-1 m m+l m+1 WPy
r, (2m - l)r1 2mr1 (2m- 1)r1 2mr1

(5.43)

This may also be written

o
(2) 2 -ika m. ot
W (pl) = 2ik) e ;(-1) Jm(ka) (i) (2m+1)Pm(cos61)

(-m+1) , 2 2 . a (1)
2om-1) T2t r(rl_a] T (p).
(5.44)
With (5.39) we rewrite this as
L) -ika o+l (-m+1) 2
( - Z( )™ j (ka)(—) (2m+1)Pm(cos91) {"él—;—_—l— [___(krl)

-ika a

2
- (ka) ]+ka(kr -ka) - ikr +ika+1} -e
1 1 r1

jo(ka) . (5.45)

We could of course continue iterating but it will be seen that this is not necessary in
order to see the sense in which successive iterates approach the exact result. If we
re-examine the known exact result for w(pl) given in (5.26) we see that, separating

the n = 0 term, this may be written as follows,
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n+1
-ika a_ N a )
w(pl) = -e r j (k )-e n'S_:l (-i) (2n+1) (r—l) ]n(ka)Pn(cosel)sn

(5.46)

where

n
Z(-l)mm + 3, nem)2ikr )™
m=0

n
Z(-l)m(n+ % ,n-m)(2ika)"
m:

and the notation (n + 5, n-m) is defined in (5.24).

S

n

Since n >0 in (5.46), the quotient of the two polynomials, S |, may be written
n
E )@+ = n—m)(2ikr1)m

(n+ =,n)+ Z( 1) (n+ = n—m)(2ika)m

1
or, dividing numerator and denominator by (n + PL n)

s (5.47)

(n+— n-m)
1+ Z( 1" —=—— (2ika)™

+_
(n 2,n)

We may always choose ka small enough so that

(n+— n-m)
Z( N ——— @ika)™"| <1 (5.48)

n+§, n)
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+
and, with this restriction, then expand the denominator in (5.47) obtaining

n 1
n-m (n+=,n-m)
Z( H™ (21kr )" Z( nt Z % 21 — (2ika)"
(n+—, n) (n+=,n)
2 2
(5.49)

We now calculate the first few terms of Sn expanded in powers of k. Itisa

convenience, in this calculation, to note that

(n+%,n m) (—n)m
= . (5.50)
- !
(n+l,n) - 2n)mm.
2
(- n)m 1.m
A gross estimate of how small ka must be is found by noting that (—2n) £ (-5)
m

Using this fact we find, after substituting (5.50) in (5. 58), that

i (n+%,n-m) m i (- n)
(-1) —T—(Zika) = _ )™ m (2ika)™
m=1 (n+= 5 n) m=1

n ©
S dal® S dal
$ 27— < —— =e -l,

m=1 ’ m=1 )

hence requiring |ka| <log2 is sufficient to guarantee that

1
(n+<,n-m)
}J )2 —2——— (ika)™ <1.

m=1 (n+— n)
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With (5. 50) we fihd that

. _ E_ikr  _(n)en+) 4(kr1)2 . O(kﬂ [:1 +<ika o _(-0)-nt1) 4(ka)z>

n 1 (-2n)(-2n+1)2! (-2n)(-2n+1)2!
- (ka)2+ O(kﬂ
. . (-n+1) 2 2 3
= 1-1kr1+1ka+?n—_—1— ,Ekrl) - (ka):|+ka(kr1—ka)+0(k ). (5.51)

Substituting (5.51) in (5.46) we find that provided ka is small enough the exact result
may be written

- n+1
-ika . -ika . . .
w(pl) =-e! f; ]o(ka)-e 'n§=1:(_1)n(2n+ 1) (%) Jn(ka) Pn(cosel) li1-1kr1

. (-n+1) 2 2 3
+ 1ka+ka(kr1-ka) + (2n-1) Ekrl) - (ka) ]+ O(kzl . (5.52)

Comparing this form of the exact result with the expression obtained by our iteration
process, (5.45) shows that the two are in complete agreement to order k3 in an ex-

pansion of the quotient S .
n
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APPENDIX: CONVERGENCE OF THE NEUMANN SERIES
This appendix is devoted to the task of showing that the unique solution of the

operator equation

w=kOop+f (A.1)
where
G (p;,.p,)
0o =-2i | av2VL 2 [, (A.2)
rV arV A"/
Vv
and
-ikr
Si 0
f=-\e u (ps) ™ Go(ps, pl)dS (A.3)
S

is given by the Neumann series

00]
W= E K0 f . (A.4)

n=0
Specifically we shall show that the series (A.4) converges, establish the
sense in which it converges, and demonstrate that it converges to the solution of
(A.1). This will be accomplished by proving that f, w, and all the iterates w(N),
i.e. first N+1 terms of (A.4) are elements of a normed vector space which is
mapped into itself by the operator kO. Further we shall show that for Ik[ suffi-

ciently small, this operator has norm less than unity. The convergence of the Neu-

mann series, in this norm, then follows as does the uniqueness of the solution.
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First we record some properties of the spherical harmonics and known ex-
pansions of the static Green's function which will prove useful.

Denote by Y (6, ) an nth order spherical harmonic

n
Y (6,0) = Z PmnPrrln(cosG)eim¢ (A.5)

m=-n

and by 'Yn(e, p; 61, ¢1) a symmetric nth order spherical harmonic

n
Y (6,0:6,,6,) = ; AmnPgl(cose)P:ln(cosGl) cos m(f-f, ). (A.6)

These functions enjoy the orthogonality property

T 2T
de \ dp sinfY (6, )] Y (6, P; 6, pl)
0 Vo

0, m#n

Y (6,0), m=n. (A.7)

Here it must be kept in mind that Yn( 6,$) and Yn(el, ¢1) occurring in (A.7) are not
necessarily the same function but are elements of the same equivalence class. That
is, they both may be written in the form (A.5) but the constant coefficients Amn may
differ. Inwhat follows, it is often unnecessary to distinguish between spherical har-
monics of the same order thus we denote them all with the same symbol. This
should not be overlooked in any specific calculation of the coefficients where a more

precise specification is required.
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It is well known (e.g. Kellog, 1953, p. 143) that potential functions may be
expanded in spherical harmonics. In particular the static Green's function for the

surface S may be written

. Y (6,0)
G (pp)=-Tm——* Z , r>a (A.8)
o "1 47 R(p, pl) s I‘n+1
i Yn(el,fb )
= + r Za (A.g)
41rR(p, p) 45 r 1

®
Y(ey)e,sb)

= -3 R( + Z n 1 , T, >a (A.10)

4 p,pl n=0 (rr)

where the series are uniformly and absolutely convergent and may be differentiated
or integrated any number of times with respect to r, 6, or §; a = c+e, € >0; and
c is the radius of the sphere enclosing S. The reciprocity relation is explicitly

exhibited. It is useful to note that the source term may also be expanded in spherical

harmonics,
o0 n
_Z- r<
—_— cos6cos€ + s1n6s1n6 cos(f- ¢ ):] (A.11)
R(p, p,) = O
n=0 Iy

where r = max(r, rl), r = min(r, rl). Note that the expansion has the same con-
vergence properties as the series in (A.8) - (A.10) provided r # r-
In addition to the orthogonality of spherical harmonics, it will be useful to

define a related property.
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Definition. A function fn( 6, §) will be called a "pseudo-spherical harmonic of

order n" if
T 27
deo d¢sin9fn(6, ¢)Ym(9, ¢;91, ¢1) =0 , m<n
0 0
= Ym(01,¢1), m >n (A.12)

With the understanding that zero may be considered a spherical harmonic of any
order (all coefficients in (A.5) are zero) if follows that any spherical harmonic of
order n is also a pseudo-spherical harmonic of order n.

Now we are in a position to define a particular function space in which we will
establish the convergence of the iterations. Recalling that V is the volume exterior
to the surface S and a is the radius of a sphere entirely containing S in its interior

we define W as follows:

8 a) we cz(V)

L o E(6)
b) w= Z —Z- —— , T >a and the series is uniformly
n=0 r

and absolutely convergent, term by term differentiable,
with respect to r, 6, or § and the resulting series are
uniformly and absolutely convergent.

c) fn(e, ) are pseudo-spherical harmonics, i.e., satisfy

(A.12)
(A.13) |
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Further we specify the following norm, implied both by the pointwise conver-
gence of the series, (A.13b), and the fact that elements of W are twice differentiable

everywhere in V,

Wl = 0oy 1wl . (A.14)

It is clear that much more could be said of W than that it is a linear normed
vector space; however, rather than investigate this space in general, we confine our
attention to those properties necessary for our present purpose. These are estab-
lished in the following lemmas which are then used to prove the main result of the
report.

Lemma 1: feW

Proof: We complete the definition of f given in (A.3) by restricting ui to be either a
plane wave or a point source not on the surface S. Then, since the surface is finite
and Go(pS, pl) is infinitely differentiable with respect to coordinates of the point P
as long as this point does not lie on S, it follows that the order of integration and dif-
ferentiation may be interchanged and fe cz(V). In fact fec (V). Actually Kellog
(1953, p. 172) established that the potential due to a double layer, with twice differen-
tiable moment, of which f is an example, is also continuously differentiable for p on

S, i.e. fe cl(V). Furthermore when r >a we utilize (A.8) and (A.11) to obtain

A i Yn(e. )
= - + +
G (p. pg) p _S_ n+1 P_ [cosOcosf+ sinfsinf, scos(f-p ):]

n=0 r

(A.15)
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or since Pn is an nth order spherical harmonic

®
GO(P, PS Z e} Z Anm(ps) P:n(cose)eim’b . (A.16)

n=0 r m=-n
This series converges uniformly as does the derived series; therefore, we
may rewrite (A, 3) as

n

@ -ikrg
Z e, ZP (cosO)e imf e “(s)a_n m (p )dS

n=0 r m=-n
(A.17)

which is again of the form

Q0
Y (6, )
f= Z — (A.18)

Hence conditions (A.13b, ¢) are satisfied as well as (A.13a) and the lemma is proven.

Lemma 2; If we W then O owe W.

Proof: With the definition of O, eq. (A.2) we write

G (p,p,,)
o 0 VvV
Oow = -2i dv - ot rVw(pV
v Vv Vv

) (A.19)

We separate the volume over which the integration is performed into an infinite vol-
ume, Ve’ where ry >a and the expansion theorem (3.1) holds, and a finite volume,

Vi where it does not. Vi thus is the volume interior to the sphere of a radius a and

exterior to the surface S. Thus we define two functions
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G (p,p,)
. as 0 \%
we(p) = -2i dv " P [rvw(pv):l . (A.20)
i v \' \'
e

i
Clearly we(p) + wi(p) = 0 o w and if we can demonstrate that w and w, are ele-
ments of W then, since the space is linear, it follows that O ¢ w is also in W,
Consider first the finite volume. wi(p) is the potential of a volume distribu-
tion which Kellog (1953) has shown to be twice differentiable, for finite volume, pro-
vided the density is piecewise continuous (p. 156). This is certainly satisfied in the

present case since we W which implies that the density Lo r w(p )__J is con-
rV arv vV 1

tinuously differentiable. Therefore, wi(p)e cz(V). When r >a the expansion of the
Green's function (A.16) is valid, with pV replacing Py The uniform convergence
of the expansion and the fact that the integration is carried out over finite limits per-

mits interchange of order yielding

® n
) A (p.)
_ 1 m imp h_mn- V. 9
Wi(p) = ;——rnﬂ ZPn (cosh) e dv(-2i) o arv [rvw(pv)]

m=-n v
i
r>a
(A.21)
which is of the form
(04}
Z Y (6, )
wi(p) = = r>a (A.22)
n=0 r
hence
wi(p) ew. (A.23)
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Turning now to we(p) we see that if Ve is replaced by any large but finite
volume then the fact that w e cz(V) again follows from Kellog's work. It is only
necessary to show that v, remains well defined when Ve becomes infinite. Expli-
citly

o 2T T

. G (p )

_ lim . 2 . Pyl

we(p) = -2i drV d¢v dOV rvsm9V T arv rvw(pv)]
a 0 0

(A.24)

and it is sufficient to show that the integrand is O(1/ r‘2,) for large Iy Since

w(pV)e W it follows that

Q

£(6,,p.)

w(p,) = Z-E—n%-l-l , Ty >a (A.25)

n=0 r

A%

and therefore that
0
nt (6, ¢ )

w(pV Z (A.26)

n=1 r

Thus for large 'y B [rvw(pv)] o(1/ r ). Furthermore, the expansions of

Go(p, pl) given in (A.9) and (A.10) show that for r_, sufficiently large,

Vv
— . = o(1/ rV). Hence, despite the factor ry in the volume element, the

A%

integrand is indeed O(1/ r%,) and it makes sense to let the r_, integration extend to o,

\'

This calculation may be pursued more carefully to show that in addition, we(p)
satisfies the expansion properties required of elements of W. Thus we rewrite

(A.24) for r,r

V}a as
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® 27 T

1
= do in6 - ——
w (p) dry dpy, Ty Sin V{ TR o)

a 0 0 v

+iyme¢ev,¢}zf(e 8.

m=0 (rr )

(A.27)
where we have absorbed the factor 2in in the functions fn(ev, ¢V). Now consider
separately the integrals involving the regular and singular parts of the static Green's
function, treating the regular part, wzeg, first. In this case both series are uni-
formly convergent and the integral has been shown to exist, thus we may interchange

order of integration and summation and perform the integration using the pseudo-or-

thogonality condition (A.12) to obtain

® (21 o7 O &y (0,56, 81 (6, 0,)
reg , m
w_ (p) = drV d[bv dGVsmev Z Z m+1 ——
m=0 n=1 T T
a 0 0 A%

Sy P
= pr——r (A.28)
n)a r

Absorbing the constant factors in the spherical harmonics and renaming the second

summation index yields

(00) (0 0]
Y (6,9
reg, . _ +
woo(p) = E , on (A.29)
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Using Cauchy's formula to rearrange terms, which is allowed since the convergence

is absolute, we obtain

® n o (6, )
! S(p) = Z Z el (A.30)
€ n=0 m=0 r

While the coefficients in Yn +1(6 #) may depend on m, the summation over m is
still a spherical harmonic of order n+1 hence (A.30) is of the form

(0]

Y (6,f)
reg, \ _ nt+l
W (p) = n§=0 —————rn+2 . (A.31)

The analysis involving the singular part of the Green's function is slightly more in-

volved since the expansion of 1/R, (A.11), is not uniformly convergent at r = rl.

From (A.27) we see that

00} 27 T ®
sing £(6.,0.)
sing 1 \% n V'V
= - = do.,, —— —_— A.32
W (p) p drV de 9V Rip, pV) - E ( )
a 0 0

Since the series occurring in (A.32) is uniformly convergent and the infinite integral
has been shown to exist, we may interchange order of summation and integration, and

absorb the factor (-1/47) into fn, obtaining

sing X, (© 2m sinfy, £ (6,8,
1
- A.33
W (p) E dry; dybv déy, Rp, pv) " ( )
n=1 T
a 0 0 A%

Now we employ the expansion (A.11) to obtain
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(0] r 2T T (0] m
sing Z s1n6 Z I‘V
W) = ary | by \ a0, — 1B D =Ty (66,60
n=1 r m=0 r
a 0 0 A"
(60} 27 T . @
smGV Z rm
t dry | dfy | dey D £(0y Py e R Y (0.0 65.8)
r 0 0 A" Vv

(A.34)
Although the inner sum mation is singular at r = Iy 0= OV’ p.= GV’ itisa
straightforward matter to exclude a small neighborhood of (r, 6, ) from the integral
(in which case the interchange of summation and integration is legitimate)and then
show that the integral over the excluded neighborhood may be made as small as we

wish by making the neighborhood sufficiently small. Thus we find, again using the

+
pseudo-orthogonality property (A.12)

Sm w o Ym(G, ¢)(rm-n+1_am-n+1) Ym(e, ¢)
o () = Z Z — + - (A.35)
r

n=1 m=n (m-n+1) (n+m)r

Again absorbing the constants in the spherical harmonics we obtain

@ © ® @ o (6, ¢)
W S(p) = ZLD ZYm(e,;bH Z Z = (A.36)
n=l r m=n n=1 m=n

The second sum in (A. 36) is of precisely the same form as (A.29) hence the same

argument allows us to write

+
The justification for requiring this apparently artificial restriction on the space W
is found here since without this property, terms involving logr would occur.
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(04) (0] [00)
S SER) S S L
w_ o(p) = Ym(9,¢)+ — (A.37)
n=l r m=n n=0 r

and, with (A.31), we find that We(p) is also of this form, i.e.,

® ® © v )
_ _reg sing _ 1 n+l "’
w (B) = wE(p) + wSlB(p) = > - Zym<e,¢)+ Z—-——m

n=l r m=n n=0 r
(A.38)
or by a trivial change of notation
®
. Y (6,0)
w (p) = E — E Y (6,0)+ E (A.39)
€ n=0 r- +1 menfl n=1 rn+1
This is precisely the form required for we(p) tobein W, i.e.,
i £ (6,0)
We(p) = 1 r>a (A.40)
n=0 r
where ©
f = E Y (6,9
o m
m=1
(A.41)
®
f = E .Ym(e,yn), n>1
m=n

Having shown that we(p) satisfies (A.13b), it remains only to demonstrate that
fn(G, f) defined in (A.41) are pseudo-spherical harmonics. This follows immediately

from the orthogonality of spherical harmonics, (A.7), since
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T 2w
de \ df £ (6, ¢)Y£(0, p; 6, pl) sinf
0 0
(A.42)
T 2r
=\ do \ df E_ Ym(e, gb)YJZ (6, p;el, ¢1)sm0 =0, I<n
0 o M
=Y, (6,,#), £>n
Therefore we may conclude that
we(p) €W (A.43)

which, with (A.23) proves the lemma.
Lemma 3: O is bounded, i.e., 3Mrea1<oo P} ||O"\< M.
Proof: If we W then Oew € W by lemma 2. Therefore O ¢ w is twice differen-

tiable everywhere in V which guarantees that O o w has no singularities in V. Thus

3M3

w
lo owlsmw, peV (A.44)

and, recalling the definition of the norm (A.14),

lo o wl| M. (A.45)

Let M = sup M . This must exist or else for some we W, IO owl would
weW, “w” =1"w
be unbounded which would contradict lemma 2, the fact that Oewe W. Thus

sup

'The lemma then follows since, by definition,
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su
o) = yew Iﬁw” _ loew]. (A.47)

Lemma 4: Hko s> [ko| <1 if |k]| < k| -
Proof: Since O is linear it follows from the definition of norm that

ol = [k fof . (A.48)
With lemma 3 we obtain

ko]l < |x|Mm (A.49)
therefore by choosing |k|< 1/M or equivalently, letting |k0| =1/M, the lemma
follows.
Lemma 5: weW.
Proof: The definition of w in terms of us, W= e”lkr us, together with the fact that

e cz(V) imply that we cz(V). Furthermore, the expansion theorem (3.1) guaran-

tees that we may write

Q0
f (6,9)
wp) = Zo: in+1 , r>a. (A.50)
n=

It remains only to demonstrate that these fn( 6, ) are "pseudo+spherical harmonics".
To accomplish this we employ the well known expansion of wave functions in sphericali

harmonics, e.g., Sommerfeld (1949, p. 143),

Q
u*(p) = nzohn(kr) Y (6,4) r>a (A.51)

where hn(kr) are spherical Hankel functions of the first kind,
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n

ikr .-n-1 m
e i —_>: (n+m)! -1
hn(kr) - r —y (n-m)! m! <2ikr> ) (A.52)

With this expression together with (A.51) we find that

n-1
. Y (9 ¢)1 (n+m)!  .m
wip) = e—lkr us(p) z : Z (-1) (A.53)

10 m=0 r- (n-m)! m!' (2ik)m

or, upon rearranging terms and absorbing the multiplicative factors in the spherical

harmonics,

Y, (60)
w(p) = Z Z—"—E‘_Ijl—- (A.54)

This can be rewritten, with the obvious changes in notation so as to correspond to

(0 0]
£ (6,0
w(p) = Z nn+1
r

£=0

(A.50)

where

a0
fn(0,¢) = ZZO:Y"J“L (6,9 . (A.55)

The functions fn(e, #) thus obviously satisfy the pseudo-orthogonality condition, (A.12)
and the lemma is proven. Note that this proof essentially duplicates Sommerfeld's
derivation of the expansion theorem but that, as is clear from the above, his state-
ment (Sommerfeld, 1949, p. 191) that the fn(e, f) are finite sums of spherical har-

monics is in error.
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We now at last are in a position to prove that the Neumann series (A.4) con-
verges to the solution we seek, and that this solution is unique.

First we show that the series converges to the solution, that is, for any
€>0, 3N0 3 “w—w(N)'“ <e if N> No'

Lemmas 1, 2, and 5 establish that w, f, aﬁd all the iterates w(N) are in the
space W, hence it makes sense to write "w—w(N)“ for any N. With (A.1) and the

definition of the iterates it follows that

w-f = kO o w

oD = o-KkOo f-£ = KO o (-0) = K2O% e ©

w—w(z) = w-kO o w(l) -f = kO o (w-w(l)) = k303 o W

- = (WL (A.56)
hence

uw-w(N)'“ < IkoﬂN+1 lo]| - (A.57)

But lemma 4 states that |kO| <1 if |k|< |ko| and |Jw| is bounded since we W

(lemma 5) hence it is always possible to find N large enough so that

Il N ]l <€ . (A.58)

Specifically, since log IlkO“ <0, we find that (A.58) is satisfied if
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] _
log 0
N+1 > Tog[ko] ° (A.59)

We have thus established that for any € >0, "w-w(N)“ <e if N> N0 and |k| <lko,

log Z"
where N0 is the greatest integer in | ——

Tog _I;OT[ - 1:, and k0 exists by lemma 4.

To prove uniqueness we assume that existence of two solutions of (A, 1), wl

and w2 such that

W, = kO °w1+f' (A.60)
2 2
and | Jo,-w,] # 0. (A.61)
Then
W, -w, = kO o w, - kO ° 0, (A.62)
land taking norms we obtain
v, -0, < kol ﬂwl—wz | . (A.63)

By assumption [w, -w 0, hence we may divide obtaining
1 72

1< ko] (A.64)

ﬁvhich violates lemma 4.
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