THE UNIVERSITY OF MICHIGAN
4405-1-F

AFCRL-62-108 4405-1-F = RL-2113

STUDIES IN NON-LINEAR MODELING-IV:
FAR FIELD SCATTERING BY SIMPLE SHAPES AT LOW FREQUENCIES

by
R.E.Kleinman, R. D. Low and F. B. Sleator

February 1962

Project 4600
Task 46017

Final Report
Contract AF-19(604)-8030

Report No. 4405-1-F

Prepared For

Electronics Research Directorate
Air Force Cambridge Research Laboratories
Office of Aerospace Research
L. G. Hanscom Field
Bedford, Massachusetts




THE UNIVERSITY OF MICHIGAN
4405-1-F

Requests for additional copies by Agencies of the Department of Defense,
their contractors, and other Government agencies should be directed to:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services
or have their "need-to-know'" certified by the cognizant military agency of
their project or contract.

All other persons and organizations should apply to:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

ii



II

I

THE UNIVERSITY OF MICHIGAN
4405-1-F

TABLE OF CONTENTS

Introduction

A Boundary Value Problem Relating the Sphere
and the Prolate Spheroid

Non-linear Modeling of Scalar Scattering by a
Prolate Spheroid

An Alternate Modeling Procedure

A Numerical Example

Appendix A: An Identity Involving Spheroidal Function
Appendix B: Some Comments on the "Far Field"
Appendix C: Modeling in Quantum Theory

Reference s

iii

12

16

21

26

31

34







—— THE UNIVERSITY OF MICHIGAN
4405-1-F

I
INTRODUCTION

This is the final report on Contract AF-19(604)-8030 which was concerned
with the theoretical investigation of electromagnetic scattering problems. The
objectives of the contract were two-fold. One goal was to obtain the solution for
scattering by a body formed by the union or intersection of shapes for each of
which solutions were known. This solution was to avoid the problem of inverting
infinite matrices.

The second goal was the extension of the method of non-linear modeling to a
particular and practical problem, namely, modeling the solution for scattering from
a prolate spheroid by that for scattering from a sphere.

This work is an outgrowth of previous investigations carried out by the
Radiation Laboratory supported largely by the Air Force Cambridge Research
Laboratories under Contract AF-19(602)-4993.

The effort on the problem of scattering by complicated shapes is part of a
long range program, the ultimate goal of which is the theoretical determination of
the electromagnetic (and acoustic) scattering properties of an arbitrarily shaped
target to any desired degree of accuracy. Though this goal may never be fully
attained, considerable activity, both in the Radiation Laboratory and in the field
in general, has produced a variety of approximate techniques as well as exact
solutions, thus considerably enlarging the class of shapes whose scattering pro-
perties can be said to be known. Under the contract of which this is the final
report, one concern has been refining techniques applicable for low frequencies
(wavelength large with respect to scatterer) to extend their range of validity. This
effort has met with considerable success.

Darling (1960) developed a static approximation which employs probablistic

techniques for solving Laplace's equation with Dirichlet boundary conditions on a
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surface which is the intersection of two (or more) surfaces for which both the
Dirichlet and Neumann solutions are known. Under the present contract these
results have been extended to the scalar wave equation. In addition the Neumann
boundary condition is treated. These results together with extensions of the low
frequency expansions developed by Senior (1961) form the subject of an invited paper
at the URSI Symposium on Electromagnetic Theory and Antennas, June 1962, and
will appear in the proceedings of 11at meeting. In addition the work on Rayleigh
scattering from complex targe's described by Siegel (1958,1959) has been extended
to include higher order terms.

These low frequency approximations can be used to penetrate the resonance
region, which for the present purpose might be defined as that middle range of
frequency where both low and high frequency approximations are no longer valid.
This region of theoretical inadequacy is narrowed by extending the range of validity
of available approximations. In some cases, the resonance region can be elimina-
ted in the sense that the ranges of validity of the low and high frequency techniques
adjoin or overlap.

The results of these investigations are reported in the literature; Siegel
(1962), and Senior et.al.(1962), and it would appear redundant to further dwell on
them here.

Non-linear modeling as conceived by Ritt (1956) and developed by Belyea
et al (1959), (1960), and Chen et al (1961) can be characterized as an attempt to
transform by analytic methods a physical problem for which neither experimental nor
direct theoretical techniques is feasible into another problem more amenable
to either experiment or theory, or both. Under the present contract, two facets of
the problem have received attention. One effort consists of a systematic investi-
gation of the consequences of a basic assumption of non-linear modeling, i.e. there

exists a functional relation (modeling function) of the form f;=f;(f;) when f; and f; are
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solutions of the same partial differential equation for different parameter values.
That is, if Dy is the differential operator (in n dimensions) containing a parameter
k, and

Dkiofi(xl,xz,...xn)=0 i=lor2,

does the assumption that f; be a function of f; constitute a sensible restriction and
if so what can be said about the functional form? These questions have been thor-
oughly investigated for particular elliptic,parabolic and hyperbolic operators. The
results are highly dependent on the choice of operator. In the case of the hyperbolic
operator chosen, the time dependent wave equation, the assumption essentially did
not constitute a restriction. Whereas,in the case of the Helmholtz equation (the
elliptic operator chosen) not only is the restriction severe but explicit power series
representations of the modeling functions can be found. This work is the subject of
a separate technical report, Ruehr (1962).

In view of the considerable progress in these general theoretical treatments,
it was hoped that the techniques of non-linear modeling had developed sufficiently
so as to be applicable to the solution of specific practical problems. To this end
considerable effort was devoted to the modeling of the field scattered by a prolate
spheroid with that scattered by a sphere. Although the prolate spheroid is a shape
for which the theoretical treatment is known, numerical calculations are quite dif-
ficult and accurate experiments are quite expensive. The hope was to transform the
problem to one involving a spherical scatterer which is much more amenable to
theoretical treatment.

Sections II, III and IV present the results of three different methods of
attack. In Section II a precise formulation of the problem is given. With the help of
a representation of spheroidal functions in terms of spherical functions presented

in Appendix A, the problem is solved but unfortunately in an inappropriate form.
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In Section III, it is shown that non-linear modeling can be achieved after
relaxing one of the requirements,and the modeling function is explicitly derived. By
making a different assumption about the functional relationship between the sphere
and spheroid fields in Section IV, a different modeling function is derived which is
in fact linear. Since the coefficients in any expansion in spherical harmonics of the
far zone term of any field are precisely the coefficients in a multipole expansion of
that field, a result derived explicitly in Appendix B, this linear modeling function is
shown to be an extrapolation from that case when two terms of a multipole expansion
suffice to describe the spheroid field.

A numerical example is presented in Section V which compares the spheroid
field obtained from each of the two modeling functions with the exact result.

The comparison does not provide a criterion for preferring either modeling function
and suggests that their range of applicability is severely limited. Thus the pro-
mise of the more general results, another example of which (non-linear modeling
of quantum mechanical systems,written by J.E.Belyea) appears in Appendix C, has

not yet been completely fulfilled in the sphere-spheroid modeling problem.

II
A BOUNDARY VALUE PROBLEM RELATING THE SPHERE

AND THE PROLATE SPHEROID

In most previous work on non-linear modeling, problems were chosen to
illustrate the technique rather than out of inherent interest. Here we attempt to go
to the next stage of useful rather than illustrative application.

The particular problem we shall consider is that of finding the field scattered
by a rigid (Neumann boundary condition) prolate spheroid when a plane wave is

incident along the axis of symmetry. In an attempt to avoid the use of series of
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products of prolate-spheroidal wave functions, we shall try to solve an equivalent
problem exterior to a sphere.
Specifically, let S be a prolate spheroid of semi-major axis a, lying in

the polar axis of a spherical coordinate system (p, 6, ) (Figure 2.1) . Let Z be

¢ _eikpcos 6
inc — a - Z

FIGURE 2.1

kpe

i 6
the sphere p = a, and let the plane wave e Pe08 be incident on S. Let ((p, 6) be

the solution of the following boundary value problem:

2

Vg+K2g =0, exterior to S, (2-1)
__3_@ =0, on S, (2-2)
on
ol % -ik ) ——> 0, uniformly in 0 (2-3)

op S pw= ’
ik 0
where (g = ¢ _e"“PCOSY 1t is then required to find a function h(6) such that if ¢

satisfies (2-1),(2-2), and (2-3) above, then

—%%+h¢=o, onZ. (2-4)
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It was hoped that h(6) could be determined from (2-1) - (2-4) above without explicit
knowledge of @). That such an h(6) exists and is unique follows from the fact that

(2-1) - (2-3) define #(p, 6) uniquely everywhere exterior to S. So that one has only
o9,

50 p=a” the result being the desired h(6) as can be seen

to compute the ratio _(_(%
from (2-4).

By defining a function yAp, ) to be

Wp, 8)= ~Ind(p, 6) , (2-5)
then one has ¢p(a’ 6)
([/p(a, 6)- —W = h(e) . (2—6)

Thus if we can formulate and solve the boundary problem for y(p, 8), then (2-6) gives
the desired h(6). From (2-5), we see that @ = e_w and then (2-1) implies that ¥ be a

solution of
2

T y- G-k, (2-7)

2
where (V) means V¢ 'V . Theboundary conditions on ¢ follow from those on

¢, and we have

v . 0, on S (2-8)
on
and
-i 0 i in 6 2-9
v Fres ik pcos @, uniformly in . (2-9)

Unfortunatel y the only method that was found to solve this transformed problem
depended on the use of spheroidal functions and represented no improvement over
directly computing h(8) from (2-6) as a ratio of two infinite series. This
expression may be of interest in itself since, with the help of the expansion derived

in Appendir A, it is given in terms of spherical rather than spheroidal variables.
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Hence we include it here.

In terms of the spheroidal coordinates

z=cén,
V2?2 = ey (E2-1)(1-),
where 2c¢ = interfocal distance |,

the solution of the hard spheroid problem is, e.g. Flammer (1957),where the
notation is that of Morse and Feshbach (1953),
1kc’g° ) )
9 (6n] = 2 Z —— 05 (ghe_(&). (2-10)

on
on on ()

Now, as derived in Appendix A,

’

S (nhe (€)= Z i"d_(o,n)P_(cost)h_(kp) , (2-11)

on on m m m
m=o,1
where the summation includes only odd values of m for n odd and even values of
m for n even. Recognizing that
elchn - elkpcos6

and substituting (2-11) in (2-10) we obtain

| (00]

__ikpcost
#(p, 6)=e 2 . -/\Dnhe (E) Z 4 on)Pm(cose)hm(kp)

on "0 m=0,1

= =" d_(o,nje. (£ )
= Z (2m+1)i™ j (kp)-—21 kp Z A e’ (Sn) 0 Pm(cose).
m=0
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Hence, if one computes 8¢ /8p and forms the ratio(—¢p/¢)p=a, there results

o [ o L ]
' ' ' d (o,n)je (&)
g (2m+)i ' (ka)-2i h' (ka) E m oD 0 | p (cos0)
m m T
h(9)=—k m=0L n=o,1 'Abn heon(go) o
o [ 0 i
d (o,n)je (&)
.m, .m m on >0
§ ) (2m+)i ]m(ka)-21 hm(ka) E_ SR Pm(cose)
m=ol n=o0,1 ~on on o ]
(2-12)

The fact that we were unable to find h(6) without making use of the spheroid solution
suggests that the problem as formulated in this section represents too severe a
test of modeling techniques in their present state of development. By modifying
our demands, we are somewhat more successful in finding modeling functions
relating to the sphere and the spheroid. These efforts are discussed in the following

sections.

III

NON-LINEAR MODELING OF SCALAR SCATTERING BY A
PROLATE SPHEROID

In this section we make use of the known far field behavior of any scattered
field to explicitly derive a modeling function relating the sphere and spheroid fields.

Let us denote by ( s the field scattered by a prolate spheroid when a plane
wave is incident upon it along the axis of symmetry. Then the Helmholtz equation,
radiation condition and boundary condition on the spheroid serve to uniquely deter-

mine ¢s' Similarly let us denote by Yg the field scattered by a sphere where we

again defer specifying the boundary condition.
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Assuming that the wavelength of the incident field is the same in both cases,
then, exterior to both the sphere and the spheroid, both S and 1//5 satisfy the same

differential equation

1 9 0 1 0 0 9
-5 — — 6 — )+k*{u=0 -
[rza & o T TFam o 90 (Sinf 5o )tk (3-1)
where there is no angular variation in planes perpendicular to the axis of symmetry.
We now make the assumption that after specifying boundary conditions on
the sphere and spheroid (not necessarily the same condition on both) which uniquely
determine the fields, there exists a functional relation between the two scattered

fields, i.e.

g =0 (y) . (3-2)

. 1 . .
Denoting a¢s/a 1 s by ¢s it is clear that

o¢ oY op oy

s _ g s s g )
or ¢s or and 557 =0, 35 - (3-3)

Making use of (3-3) in the differential equation (3-1) satisfied by ¢s we have

19 (r?g’ al//S)+ L 2 (sin6 @' 0
r? or s or r? sinf 90 s

s -
50 )+k2¢s-o ) (3-4)

Upon further differentiation and rearrangement of terms, (3-4) becomes

3 Vg z:I oY 9y
1 11 0 2 S 1 o) 9
+0 |5 = + = =
[ sf + 2 Y59 ¢s[r2 ar T Br) 2.0 30 (sinb 59 }+k¢ 0.

(3-5)
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However, since ¢ S is also a solution of (3-1) this becomes

3y Y
(T G v o

S r S

Finding the coefficient of ¢s” as a function of ¥ S is the point of departure
for the exact analysis of Ruehr (1962). However, since the behavior ofy S for

large values of r is known, we can approximate this coefficient as follows:

eikr *
U ~ £~ 100) (3-7)

Hence to this order in % s

8(1/8
or ik ¢ S (3-8)
and
L %%
r 06 ?
thus
R oy
s, 1 S\2 2 _
(81‘)+r2(86) kz"[/s (3-9)
and (3-6) becomes
2 1 ,
ws¢s+ws¢s-¢s-o . (3-10)

The general solution of (3-10) is written immediately as
B
= A + - 3-
¢ Vot T (3-11)

S

sk _'wt
The time dependence e . is suppressed.
10
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where A and B are constants to be determined. Unless B = 0, this is indeed a
non-linear modeling function relating the spheroid field ¢s and the sphere field ws.

The question remains, exactly which sphere and spheroid fields are related,
or to put it more explicitly, what boundary conditions on the sphere and spheroid
validate the assumption that the scattered fields are functionally related ? Certainly
it is valid when we take the example of Section II , i.e. apply a Neumann condition
on the spheroid and the appropriate impedance type condition on the sphere so that
the fields are identical. Then, of course, the modeling function (3-11) reduces to
its simplest form since A =1 and B = 0, bearing in mind the results of the previous
section.

Now we wish to determine whether there are cases other than this one for
which the modeling function (3-11) is applicable. Although a simple argument
makes this appear unlikely the question remains open. This follows by substituting
(3-7) and a corresponding far field expression for ¢s ,

g = i g(6), (3-12)
S r

in (3-11) obtaining
-2ikr

e
(o)

g(6)=A (6)+ B r? (3-13)

From (3-13) it is clear that B must be zero or a function of r,hence not constant.
Itwouldbe erroneous however, to conclude that B must be zero and hence that
(3-11) only leads to the case mentioned above. By making the far field approxi-

mation we have essentially said that

eikr

7 =0, n>1 (3-14)
thus if 2ikr

B=B € 7

11
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we not only satisfy the requirement that B be zero, to the order in 1/r with which

we are concerned, but also obtain the non-linear modeling function
B

g(0)=A f6)+ (3-15)
relating the far field pattern factors. From (3-15) it is clear that by measuring or
computing two pairs of points in the polar diagrams of the sphere and spheroid far
fields, the constants A and B can be determined and thus the entire spheroid polar
diagram can be produced from the corresponding sphere data.

Just when (3-15) is valid is of course a crucial question. In Section V a
calculation is carried out where Dirichletboundary conditions are assumed on both
sphere and spheroid and the spheroid pattern factor predicted by (3-15) for a par-
ticular wavelength, sphere, and spheroid is compared with the exactresult. Theagree-
ment is quite good but this mightbe attributed to a fortuitous choice of parameters
rather than the efficacy of (3-15). Since the lengthy computations involving spheroi-
dal functions are precisely what we are striving to avoid, we still have the problem

of determining under which, if any, boundary conditions other than those of the

previous section the modeling function (3-15) provides significant results.

v
AN ALTERNATE MODELING PROCEDURE

The importance of knowing the far field behavior of scattered fields is clearly
illustrated in Appendix B. There we find that a knowledge of the far field essen-
tially determines the field everywhere. In the previous section we used the known
functional form of the far field to derive a modeling function relating the sphere and
spheroid fields. In this section we again make use of this knowledge to derive a

modeling function. This time we do not assume the functional relation between

12
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fields scattered by sphere and spheroid until after deleting the factor eikr/ r. What
results then is an assumption of functional dependence between the pattern factors.
A modeling function relating pattern factors is derived which in fact is linear.
Again denoting the sphere and spheroid fields by ws and ¢S where both
satisfy equation (3-1), we can write these fields as convergent series expansions

(see Sommerfeld (1949) ) in inverse powers of r as follows

Jikr @ £ (0) ke © g (6)
b Z o, 9= Z o (4-1)
n=o T n=o0 r

where fO(B) and go(O) are the pattern factors of Section III appearing here with sub-

scripts. For convenience we denote the sums as follows

(00}

f (6) g 6)
)iy, )y (4-2)

n=o T n=o

and derive the differential equation satisfied by ¢ and @ .
S cp s

ubstituting eikr

b=

into the scalar Helmholtz equation (3-1), we find, since

ikr ikr
1 8 e e o L, 00 o
= — - = — + -
r? Br(r r g) r (Br 21k8rk¢)’
that
2
A P N S RN [ (4-3)

9 r? dr r’sinf 96 06

Whereas in the previous section we assumed a functional relation between ¢y  and
S

¢s, now we assume that ¢ and @ are related. That is, assume

13



THE UNIVERSITY OF MICHIGAN
4405-1-F

¢ = ¢(y), and denote el by @'

oY
hence
_Q@_ '%’QQ—'M ﬂ—”a—‘b— v@.z.(l/_
or -V or an " g 0 and g =0 R e (4-4)

Substituting (4-4) in (4-3) we obtain

N ISR 1) Mo 1 W ] )
’ [(Br)+r2 } 4 [: or? * 2ik or rs1n9 86(Sln986 )| = 0. (4-5)

However, since ¥ satisfies the same differential equation as does ), namely (4-3),

the coefficient of ¢' vanishes and we have simply

LR 17
(21[(814)+r2 (ae)}-o, (4-6)

and §" or its coefficient must be zero. From (4-2), however, we find that

@ (00)
& L@t ) L ZOm(n-m>fm<e>fn_m<e)+f;n(e) £ @
n=o m=

and if this factor is to vanish the coefficient of 1/r™ must vanish for all n. In par-

ticular, for n=o , we see that

f(0)=0 or f(0) is constant.
) 0

But, as shown in Appendix B (equation (B-4) with no (-dependence) ,

of
o1 1 90 ~n
f41(0) = sik(nH) {sm@ Y [sm 0 =5 (6)} +n(n+1)fn(9) } (4-8)

14
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hence if fO(G) is constant, fn(6)= Oforn>0 .
We have thus established that if

2
(2L

T
or

1
+___-
r? ( 00

= 0, then ¥ is constant.

On the other hand (4-6) can be satisfied if "' = 0 which implies the linear relation
p=Ay+B, (4-9)

where A and B are constants. In the far zone this clearly becomes (compare
equation (3-15) ),
g () =Af(6)+B . (4-10)
0 )

Thus we have shown that the assumed functional relation between sphere and
spheroid pattern factors is a severe restriction and can be met byrequiring either
that the sphere fieldbe constant or that (4-10) be valid. Both choices can be shown to
be very unlikely (not to say impossible) unless the scatterers are very small by

examining expansions of the far fields in series of Legendre polynomials. Thus by

writing © o
f (6)= E a P (cosf) and g (6) = E b P (cosb) (4-11)
0 n n 0 n n
n=o n=o

we see that if fo(G) is constant then an=0, n> 0. Furthermore, if fo and go can be
approximated by the first two terms (rather than just one) of the series we have,

since PO=1 and Py(x) = x,

fo =a Po(cos9)+ a; P;(cos 6)
(4-12)
=a +a; cosf
o

15
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and
g =Db P (cosb)+b; Py(cosh)
o oo
= bo + b, cos 6 . (4-13)

We can immediately derive a linear relation between f0 and g, by eliminating
cos 0 in (4-12) and (4-13), obtaining
b b a-b;a

g, - ;}-fo-+ —9—251413 : (4-14)
Except for a different notation of the constants, this is precisely the same as (4-10).
These results strongly suggest that the assumed functional relation between sphere
and spheroid fields is valid only when the pattern factors can be approximated by
the first (one or two) terms of a Legendre function expansion. This effectively
limits the discussion to very low frequencies, the Rayleigh region, where other tech-
niques are available (Siegel, 1958,1959). Although it may be possible that for some
particular boundary conditions on sphere and spheroid, the linear relation (4-10)
can be used outside the very long wavelength region, no method for determining
these conditions has been found. In the next section a calculation is carried out
for a particular case using (4-10) and the results are compared with the exact

pattern as well as that predicted by the non-linear modeling function (3-15) .

A
A NUMERICAL EXAMPLE

In this section we carry out an explicit calculation of the pattern factor of a
prolate spheroid withlength-to-width ratio % =10 for ka = 1 where a is the semi-
major axis. For this example, Dirichlet boundary conditions are assumed on both
sphere and spheroid and the primary excitation is taken to be a plane wave incident

along the ¢ xis of symmetry. Both real and imaginary parts of the far field are

16
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calculated from the exact series as well as the modeling formulas developed in
Sections III and IV.

The constants in equations (3-15) and (4-10) are evaluated by using the exact
results for forward and backscattering. Thus the pattern factor g(6) for the spheroid

is calculated from the formulae:

B
g(6) = A £(6) + o) (5-1)
where
A= g(0)£(0)-g(m )f(r) 4B- f(O)f(7r)[f(O)g(ﬂ)—f(w)g(Oﬂ
"~ £2(0) - %) and == TE0) - £3(r) ’
g(6) =af(6) +b (5-2)
where
. g(0)-g(m) £(0)g(7)-£(7)g(0)
HOwm YT R0 ’
and
@ Son(c, -1) R((l)zl(c,'g"o)
g(0)= 21£ N (9 3 Son(c, cos 6) (5-3)
n=o on Ron (c, §O)

where the notation and tables of Flammer (1957) are employed. Equation (5-3) was
also used to calculate g(0) and g(7) of (5-1) and (5-2). The sphere pattern £(9) was

calculated from the formula

x j (ka)

f(6)=12 (-1)™2n+) 8) P (cos 8 , (5-4)
~ n
n=o hn (ka)

using the tables of Gumprecht and Sliepcevich (1951). The results of these cal-
culations are shown in Figures 5.1 and 5.2. It is seen that the linear relation (5-2)

yields better results for the imaginary part while the non-linear relation (5-1) is

17
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preferable when calculating the real part. Roughly speaking both (5-1) and (5-2)
produce values of the pattern factor which approximate the exact values equally well
and this approximation is reasonably good. The maximum deviation for the entire 0-
range of either real or imaginary parts is less than 25 percent of the exact values.
It may be argued however, that the value of ka chosen (ka = 1) is too small for this
agreement to be significant, Unfortunately a similar comparison for larger values
of ka would involve a significant increase in computational difficulty. The fact that
the non-linear modeling function does not appear significantly better than the linear
one and that the linear modeling function can be reasonably limited to small ka
values by the argument presented in Section IV make it appear doubtful that either

modeling function has more than limited application.
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APPENDIX A
AN IDENTITY INVOLVING SPHEROIDAL FUNCTIONS

A useful identity expressing products of spheroidal functions in terms of
spherical functions of spherical arguments is derived here. Specifically, it is

established that

S (n)heon(‘g" )=

i"™4 (o,nh (k)P (cosh) (A-1)
on m m m

51

27

where the spheroidal function notation of Morse and Feshbach (1953) is employed
(S is the angular function, he the radial function, £ and n are the radial and
angular variables, respectively, dm(o,n) are expansion coefficients defined re-
cursively in terms of the eigenvalues,hmis a spherical Hankel function of the first
kind, Prn a Legendre polynomial, and p, 9,¢ are spherical coordinates). The
relation (A-1) is given by Flammer (1953);however since his result apparently con-
tains a misprint some details of the derivation are presented.

We establish (A-1) by first considering the intermediate result
T/2-ic0

olkPCOS 1:Pn(cos t)sint dt = inhn(kp) ’ (42

To prove (A-2) let * = cos t and then the left side, call it F(p), becomes
1
ikpX
e1kp

F(p) = P(X)dx
n

i
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Now integrate by parts n times to obtain

1kp

i ( P
Flp) = Z P (™, 2™z e .
Now
Pﬁn)(1)= ZT(—I:;!%};)! , soone has
ikp ,
_e (ntm)! i \m
F(p) = ikp &= m(n-m)! 2kp)
= i" h (ko) .
n

Thus (A-2) is established.

We now show that if cos Y= cos8cos 6 +sin(-)sin8 cos ¢ , then

T/2-1 ®
I(p,0)= P (cos6h (kp) —nj d¢ j kp cosTp cos9 )sinGOdGO

(A-3)

It can be shown that if 7Y = o+ i then the infinite integral in (A-3) exists if

6 <a<m -0, and B <0. We give a formal derivation of (A-3) by showing that both
sides are solutions of (V2 + k?)I(p, 6) = 0, that both sides agree for 6 = 0, and that
the normal derivatives(at 6=0) of both sides are equal. That both sides agree for

6 = 0 is established by showing that
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2m T/2-i
i )
h (kp)= ng af_ g ¢S89 p (0050 )sing do
Ti . n 0 0 o
0 0
and that this is valid follows from (A-2) upon performing the integration with res-
pect to ¢O. The normal derivative of the left side is

9

1
> 96 [Pn(cose)hn(kp)_] s

and this is clearly zero at 8 = 0. The corresponding derivative of the right side

becomes
T/y i o

ikPCOSOO .. 2
x| € P (cosf )sin®0 df | cos ¢Od¢o

which is obviously zero. Finally the operator 72 + k% annihilates the left side

of (A-3) and when applied to the right side it gives

2m 7r/2 -io
S. d¢ j‘ [(VZ‘*'kZ)elkpCOSY} P (cosf )sinf do
n 0 0o o

27Tln

Now it is easy to show that

’Y .
(V 24)e ik pcos ‘:kzsm 5 sin2¢o+ ik sin fgcos QOJ elkpCOS'Y

E]

sin 6

0"

thus
2m 2m am
i’ . R .
(@2+12)e K PCOS 7d¢0=k251n2905 sin2¢oe1kpcos 7d¢0+ %{:ilfgo jcos¢oelkpcosyd¢
0 0 0 (A-4)
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From the known result

2m
e1tcos¢o dg =27 J (t),
0 0
0

one finds, without difficulty, that

2m
itcos "
5 sinije1 b dg = 27r[J (t)+J (t)]
0 (0} (0] (o}
and

2m
itcos( e
S‘ cos¢o e 0 d¢0- 271 d] t) .

0
Thus, if one lets t = kp sinf sinBO, it follows from (A-4) and the definition of
cos 7 that

27 ikpcosY ikpcosOcos 1
(V?Hid)e df =27k e sin®d | 3" (0+ I (4] (tﬂi 0.
0 0 o| o 0 0
Thus (A-3) is formally established.

Next, as stated by Flammer (1957)
7r/2 -io

Y
s, (nhe_(£)= L1 32d¢ KPCOSY o (050 )sing dO (A-5)
on 2 0 on 0 O o

and if we substitute the known expansion

S (cosh )= Z d (o,n)P (cosB )
on 0 m m 0

m=o,1
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into (A-5) and utilize (A-3) there results

@ !

Son(n)heon(‘é’): Ié 1 o dm(o,n)Pm(cose)hm(kp),

which is the expansion (A-1). The misprint mentioned above is the omission of

the factor im—n in Flammer's result.
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APPENDIX B
SOME COMMENTS ON THE "FAR FIELD"

An item of much concern in three-dimensional scalar diffraction problems is
the behavior of the scattered field in the far zone. This concept is more meaning-
ful when the scatterer is finite in extent since then the scatterer can be considered
as being concentrated at the center of a sphere for observation points exterior to
the sphere provided its radius is sufficiently large. Much is known about the
behavior of scattered fields in the far zone for a fairly general class of scatterers,
at least for all finite convex bodies. For these scatterers in the far field, a dif-
fracted field, ¢s’ can be represented mathematically in spherical coordinates as

ikr-iwt
e (X (B-1)

S

Actually (B-1) results from neglecting all but the first term in an asymptotic
expansion of ¢S. Nevertheless if f(8, #), the pattern factor, is known in any par-
ticular case then the field ¢S, is determined everywhere, not only in the far zone,
and an explicit representation can be given in terms of £(6, ).

The proof of this statement is implicit in all standard treatments of scalar
wave functions, e.g. Sommerfeld (1949), Stratton (1941), but a direct statement
of the fact is curiously missing. At the risk of belabouring the obvious, we
present here an outline of the proof and derive the representation alluded to.

What we shall do is essentially reverse the steps by which the far field is
obtained from an expansion of any three-dimensional scattered field in spherical
waves.

We know (Sommerfeld, 1949)that inany scalar scattering problem (Wilcox,
1956, also treats the vector case) the scattered field, ¢S, exterior to a sphere

containing all scattering bodies (here assumed to be finite in extent) can be
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written in the absolutely, uniformly convergent series

Jikr © £6,9)
g =— Z o . (B-2)

S r
n=o

-iwt ik
The time dependence e "™ is assumed so that e’ I'/ r represents an outgoing

spherical wave, Furthermore, since
(v2+k2)¢s= 0 (B-3)

we have the following differential recursion relation between the f's:

1 9., 1
—_— — + -
f (9 @)= 21kn S 50 (S1n9 20 )+ <in% Y n(n-1) fn_1(6,¢)
(B-4)
Using the abbreviation
1 9 9 1 02
= — —_ - — + - -
L™ e g6 S0 50" e pg m-D) (B-5)
we can iterate (B-4) to obtam fn in terms of f
Tr L f(6,0
) = -
fn( .0 ) (B-6)

(2ik)" n!

With (B-6) and (B-2) we see that if we have an explicit analytic representation of
the far zone field, fO(G, @), we can write down all the higher order terms in a
convergent representation. Wilcox (1956) establishes the fact that (B-2) is
absolutely and uniformly convergent.

A spherical wave expansion of the scattered field can be constructed from

fO(B, @) as follows. We expand the pattern factor in spherical harmonics,
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£ (6,9) Z Z A P (cos0) ™! (B-7)
7o s=-j ° 1
where
Ajs= 225} (]+z;: SA dé §d¢f (6, ¢)P (cosb)e ¢s1n6 : (B-8)
0 -

Substituting (B-17) in (B-6) we find that

n
TT o
m
m=1
fn(6,¢) = )
(2ik)" n!

Z A P (cosB)e isf (B-9)

gt

Since

L P.S(cose)eis¢ =[m(m-1)-j(j+1)] P,s(cose)eis¢ (B-10)
m j J

equation (B-9) can be rewritten as
® j

n s
9 h- (2i k)n ! jZ=(‘> Z Ajs ‘1[1[1 [m(m-l)—j(jﬂ)] Pjs(cose)e1S¢

S=-j

(B-11)

However
m(m—l)—j(j+1)=(m+j)(m—j -1)

from which we find that
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n n
T [mmd-640)= TT G-
m=1 m=1
- ()™ (j4n)!
(j-n)!

= G,

hence (B-11) becomes

Y ]
- RS s is¢
fn(9, @)= (20! éj‘; ; AjS(_J)n(J+l)nPj (cosB)e

Since (—j)n =0 if j <n (B-13) can also be written

® j :
f(e h)= (2i k)nn' Z Z A ('J (J+1 P(cos6)els¢

t_n

Substituting (B-14) in (B-2) we obtain

(‘j)n(j+1)npis(cos 0 i
js  n! (2ikr)D

Rearranging the terms, (B-15) can also be written

s
=e_r_ f )——, )—v A —n).(n+1).P (cos 6) eis¢

n=o0 j=o s=-n (21kr)J

ikr = (-n) .(n+1).
I T it R S5 hfll) ke) |

<+ =k
r & ikl
J=0
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(1)

n
Making use of B-17) in (B-16) we have

n
¢s = Z ?{Ans b hg) (kr) Prsl(COSO)eis¢, (B-18)

o0
n=o0 s=-n

where h' "' is a spherical Hankel function, e.g. Magnus and Oberhettinger (1954).

which is the usual expansion in spherical wave functions convergent for r > 0.
The coefficients Ans are defined in terms of the far field in (B-8).

We have thus explicitly demonstrated that it is always possible to recover
the near zone from the far zone. This inverted scattering problem is not without
interest since in many practical situations, it is possible to measure the far zone
field even though the precise nature of the scatterer is not known. Theoretically
it would be possible to then compute the coefficients Ans and even calculate level

surfaces of ¢s + thus determining the configuration of the scatterer

incident’

assuming Dirichlet boundary conditions. More complicated boundary conditions are

not so simply handled. Even if it is known that the scatterer (or scatterers)
could be characterized by Dirichlet conditions there is a question as to the prac-
ticality of this scheme since accurate measurements of the far field are often not
available over the full range of 6 and §. Still this procedure could certainly be
used as an approximation, by interpolating between measured values of the far

field.
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APPENDIX C
MODELING IN QUANTUM THEORY

Following the general treatment of Ritt (1956) we present another example
of the existence of models of a given system which evolves in some variable t,
according to
v(Q, )= exp Atv (Q) (C-1)
where A is an operator independent of t, v,(Q) is the given initial condition, and

exp At is to be interpreted as

©® an
A
exp At = _;_ t—n' (C-2)
n=o )

Q symbolizes the remaining variables required to describe the system.
In the Heisenberg picture of time-dependent quantum theory, the wave

function describing a quantum system evolves according to

UE, )= exp (L @ . (C-3)

Here, H is the Hamiltonian operator of the system, and the exponential operator is
to be interpreted as in (C-2). ([/O is the wave function describing the initial state of
the system.

Thus for quantum systems, the operator A of (C-1) is-iH/4 . It is possible
to say a great deal about this operator without specifying the system more com-
pletely than we have done already. Quantum systems are generally discussed (by
physicists, at any rate) in the manifold of L:: composed of "finite" functions, i.e.
functions non-zero only in some finite domain.t In this manifold, H is always self-

adjoint. As a result, the eigenvalues of H are all real, and its eigenvectors span

+
This has the effect of limiting consideration to the point spectrum.
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the manifold. Furthermore, the physical interpretation of the spectrum of H is
as the set of allowed values of the energy of the system.

An essential point to be gleaned from the above is that the spectrum of A is
purely imaginary. This introduces certain complications into the existence proof,
as was noted by Ritt (1956). For, if we consider a model quantum system governed
by a different Hamiltonian \ﬁ’ , then a necessary and sufficient condition for the

existence of a modeling function relating it to the original (H) system is that

exp () y () =y (D) (C-4)
implies
it
exp () ¢ () =) . (-5

The fact that the spectrum of H (and#) is real guarantees that (C-4) has a non-
zero solution o : the smallest number such that o E;, is an integer multiple of h
for all n. Then a modeling function exists if o 5n is also an integer multiple of
h for all n and the same o . Thus, whether or not a system may be used to model
another depends on the allowed energy values of both. This seems very reasonable
from a physical standpoint.

Actually constructing a modeling function, once we know it exists, is in
general a complicated problem. However, when both model and prototype are in

stationary states of the energy, it becomes quite simple. For, in that case,

- -i -iE
¢ (r, t)=exp (—%ﬂt) (po(r) =exp ( —liﬂ) zpo
while -'55'5

¢(?,t)=exp(——i,ﬁ‘;—+i)¢o(r)=exp( l,ﬁ )9

The existence condition

exp(—iEro/ﬁ) = exp(-i é’so/’ﬁ) =1
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is satisfied as long as Er/ & g 1s the ratio of two integers. The modeling function

relating the two systems is then clearly

(e, 1 /%
a o e | Ot
v (&, ) -wo(r)[%(?) ] : (C-6)

Suppose that both model and prototype systems are in mixed states of energy.
Let the representatives of x[xo in the H-representation be {an} and the represen-
tation of ¢o in the ‘?’/’—representation be {bn} . These are presumed to be given.
Then
-iE t
En Bk >
w(r,t)—Zan exp ( 7 ) u, (7)

while

n
0,0 =) by exp (S 3
n

Since {vn} is an orthonormal set,

S

t= +%)bnbi; g VZm §T, 1) dr

for all s. By substitution, then

sl E /6
U, t) = Z an[% S‘vn (T) ¢(?,t)¢FJ wen un('f) . (C-7)
n

n
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