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ABSTRACT

Variable polarization line sources are generally obtained from pillboxes
or narrow horns. In our extension of previous work we have designed an efficient
resonant array with a broadside beam and with an absence of grating lobes,
Experimental results confirm two theoretical designs that achieve these objectives,
A naive approach would suggest slot separations of one guide wavelength
in order to obtain a constant phase front along the array; This is objectionable
of course since it leads to grating lobes. The first solution for overcoming
this objection is to 'load the guide with dielectrics to reduce the slot separation
to less than Aj. Modifications are given to standard formulas for this case and a
curve is given for the change in resonant length as a fﬁnction of dielectric material.
An alternate solution utilizes the large resonant conductance and resistance
of the crossed slots. This technique employs slots that are alternately longer
and shorter than resonant length, thus obtaining decreased conductance or
resistance with large imaginary components, and at the same time introducing
nearly 180O phase shift between slots. By using half guide wavelength separation,
the radiated signal from each slot is then approximately in phase and one obtains

a good impedance match while at the same time eliminating grating lobes.



INTRODUCTION

This study deals with the technique for designing a slot array that is
capable of being simultaneously operated with two orthogonal polarizations
with a broadside pattern maximum, high efficiency, and large isolation
between polarizations. These techniques are an outgrowth of studies
leading to the modification of an antenna used in current measurements.

An alternative, which was easier, was the one finally selected for this
purpose; it is described in a recent report [1] This slot array design
was carried to the point of proving its feasibility not only as a backup
study for the modification mentioned above, but also because it seemed to
represent an important advance in the art of antenna design.

The organization of this report assumes no prior knowledge of slotted
waveguide design on the part of the reader. Those familiar with slot theory
may wish to omit the second section which deals with basic slot theory. Those
familiar with crossed slots in square waveguide might omit the third section,
which presents the concept of mode isolation using square waveguide. The
material in the fourth and fifth sections extends this previous work; it is
this which is believed to be new and a valuable contribution to the "state of
the art. "

Section six presents experimental verification of the new material. Since
no immediate need exists for the development of an elaborate array, the
experimental data is somewhat limited. Section seven offers several conclusions,

the main one being that theoretical and experimental agreement has been found.



4563-91-T

It is believed that this design approach may offer significant advantages in
certain applications requiring rigidity, light weight, or small volume., A

requirement of large bandwidth might be better met with reflectors.
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2

BASIC SINGLE SLOT THEORY (RECTANGULAR WAVEGUIDE)

The description of the performance of an antenna consisting
of slots cut in the wall of a waveguide is essentially a complicated
problem in field theory. A popular method of attacking the problem, however,
is to split it into two parts. The first step is the characterization of the
slotted waveguide as a transmission line loaded at discrete points with
T- or T~ sections which represent the effect of the slots upon the
voltage and current variables of the transmission line. The second step
is to consider these impedance sections as radiators driven with the
appropriate magnitude and phase of voltage or current, and to use this
concept in calculation of antenna patterns. The second step is more or
less a routine application of well-developed techniques for pattern
calculation, and will be only briefly mentioned in this report. Our
interest in this section is in the first step, obtaining the equivalent circuit
parameters of a waveguide slot. This theory is applied to multiple slot
arrays in following sections.

The circuit equivalent of a particular slot, for use in a transmission-
line representation, depends on the shape, size, position and orientation
of the slot. A resonant slot is one which is approximately a half wavelength.

long; its circuit equivalent is then a combination of resistances. Depending
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on the position and orientation of the slot, the slot may be represented as
a purely shunt element. or as a purely series element; in the general
case only a T- 0r7/1 section in the line adequately represents the effect
of the slot.

Obtaining expressions for the circuit equivalents of slots in rectangular
waveguide is of primary interest, There are two particularly useful
techniques. The first, which will be called Stevenson's method [2:]
yields an expression for the resistance or condmetance of a resomant-length
slot. . The second, to be called Oliserts method Ez] ‘.w” more detailed in-
formation, including values of both real and imaginary parts of series or
shunt impedances, not only for resonant slots but for nonresonant ones
as well,. Both techniques have their advantages; while Stevenson's
formulas are less powerful than Oliner's in that they give less information,
their derivation is more direct.

It seems of little purpose to repeat here all the formulas listed
in available references; we will confine our discussion to simple out-
lines of the methods of interest, including details only as they are
pertinent to discussions in this report.

Both methods involve calculations based on functions characterizing
the electromagnetic fields inside the waveguide, taking into account the effect
of the slot as a scattering element, The effect of the slot on the normal
mode of propagation is then interpreted as an equivalent load in the

transmission line representation.
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The Stevenson method, which is well presented by means of
a detailed example and several formulas in Silver's book [4] ,
assumes a resonant-length slot with a cosine field dis:ibution along its
length, The resistance of a series slot. or the cond.ctance of a shunt
slot, is found in terms of the reflection coefficient l" in the transmission
line equivalent of the TEmn wave (the dominant mode in this rectangular
guide). This coefficient I is then related to the amplitudes of the forward-
and backward-scattered waves. These amplitudes are evsluated by means of
an energy balance among incident, reflected, transmitted and radiated power.
The first three power terms are found in terms of the amplitudes of the
respective waves, while the radiated . power is characterized by a
radiation resistance. This resistance is obtained by using Babinet's - = ¢
principle in a form which relates the radiation impedance of a slot to that
of the geometrically inverse rectangular metal strip radiating into an
infinite half-space. The formulas obtained are quite simple and explicit:

For a centered broadwall series slot, (TE, . mode),

10

r =0, 523(-'&) cos? !4-2— , (2-1)

and for a longitudinal edge-wall shunt slot (TE moda)

sor =
[P@J
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where
r is the equivalent series resistance, R, normalized to the characteristic

. .. B
impedance, Zc’j, r=o=,
c
g is the equivalent shunt conductance, G, normalized to the characteristic

G
admittance, Yc, i g ?; ’

Ag is the guide wavelength and A the free-space wavelength,

a is the (broadwall) width and b the (narrow-wall) height, inside dimensions
of the waveguide. These formulas are from Equations (48b) and (50), respectively,
in reference [4] » Pp 292-293 or Equations (9-3) and (9-6) in Reference [5] .

This Stevenson technique is discussed further in Section 4 in considering
the modifications caused by dielectrically loading the waveguide.

Stevenson's method gives useful results for resonant-length slots. Oliner's
method, on the other hand, while employing more complicated expressions, provides
much more information. Expressions are available for the reactancescor susceptances,
as well as the resistances or conductances, of several types of broadwall slots;
both at and: .":; away from resonance. The pair of 1957 articles [ 3_] lists several
formulas in detail, as well as outlining their derivation and giving some experimental
data for comparison. This technique is also discussed in Section 4 in obtaining the

resonant length of slots in dielectrically loaded waveguides.



04563-91-T

3

THEORY FOR AN ARRAY OF CROSSED SLOTS IN SQUARE WAVEGUIDE

The use of multiple slots in a waveguide as a linear array to produce
directive beams has long been established. Broadside beams are often obtained
from resonant slotted sections [__4] ; a resonant section is one with integral numbers
of half guide wavelengths between slots and one which uses a short circuit as the
waveguide termination. In certain applications the capability may be desired of
transmitting and/or receiving two linear polarizations of signal independently (for
example, to detect separately the horizontally and vertically polarized radar echoes
of a horizontally polarized transmitted signal). This section presents the basic
principle of a design to do this. Sections 4 and 5 present two approaches toward
a practical implementation of the design.

The use of square waveguide with two sets of slots, as shown in Figs.
la and 1b, takes advantage of the orthogonality of the TE 10 and TE o1 modes in
the waveguide to provide an efficient antenna with two independent polarizations
and a broadside beam. For example, the mode denoted by the vector _EV‘
showing the direction of the electric field inside the guide, excites the slots V;
they appear as edge-wall shunt slots to this mode. The electric field excitation
of the slot is across the narrow dimension of the slot (vertical) and the slot
radiates vertical polarization; hence the designation V. Slots H are not
excited by the V mode in the waveguide (see treference 5, Section 2.3 for a

list of various slots in rectangular guide).

Similarly, the horizontal polarization, _EH’ excites slots H, which
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act as broadwall series slots and radiate horizontal polarization. Slots V
behave as (non-excited) centered, longitudinal broadwall slots in their Akok -
of response to the horizontal polarization, Eg.

The use of square guide with similar slot configurations for pro-
ducing an arbitrarily polarized beam has been reported by Hougardy and
Shanks [5] . Their crossed-slot design (somewhat like Fig, 1b) provided at
least 30 db isolation between modes. Theirs "is- an end-fire array, term-
inated in a load; the loss of power into such a load implies an inefficient
antenna,

In contrast, the designs presented in this report take advantage of
the high efficiency of a.. resonant array terminated in a short circuit, The
series slots are placed at current maxima and the shunt slots at voltage
maxima. Since the first current maximum is Ag/ 2 distant from a short
circuit and the first voltage maximum xg/ct from the short, the slots in a
"resonant’' design need not be crossed as suggested by Hougardy and Shanks [6]
and shown in Figure 15, but may be interspaced as in Figure la((the slots are
still orthogonal, and in that sense will still be called ''crossed')., The alter-
native choice of designing a short circuit that is capable of providing different
short positions for each polarization is more difficult, This second scheme
is shown in Figure 1b, using vertical pins to simulate a short circuit ;Ax/4
from the last slot only for the vertical polarization and an actual short xg/ 2
from the last pair of slots. This last approach may be of some advantage in

machining the slots,
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The set of shunt slots mav be designed independently of the series
slots. Each shunt slot may be characterized by a conductance, g, s and a
susceptance, bn (both normalized to the guide characteristic admittance); each
series slot by a resistance, r , and a reactance, X, (both normalized to
the guide- characteristic impedance), as outlined in Section 2, To obtain a
good impedance match at the input to the array, the usual procedure is to
design all of a set of slots alike and with such characteristics that the total
load 18 exactly the guide admittance (or impedance); that is, D8, *1and
an =0 (orz:rl,l =] und2xn = 0), There are other possibilities, however.
One is to design resonant slots without regard to the impedance match, and
then obtain a good match by use of an impedance transformer between the
array and the feed.

Consideration of the effects of mutual coupling among the slots
will be for the most part ignored in this report, aside from a few general
remarks, Indeed, one practical and often entirely satisfactory approach is
an empirical one; to test and evaluate a trial design and then adjust the
design parameters to compensate for the effects of mutual coupling, as well
as machining errors, roughness,and finite resistive losses in the waveguide,
all at once, Our approach is not quite so crude, however, There is evidence

['Z] to the effect that the mutual coupling effect will be small, if not negligible.

The series slots can be expected to have acopiplingoedéifficignt with their
nearest like neighbors of better than -20 db; the shunt elementgs,bbetier than
-30 db; and the coupling factor between a series element and the nearest shunt

element, on the order of -80 db,

10
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An important design objective is that, for each polarization, radiation
be normal to the array. This condition was not imposed by Hougardy and
Shanks [6] whose slots were spaced .525) 0/ 2 apart (approximately .4kg)
with a resultant beam deviation of about 45°. Usually resonant slot arrays
are designed with half guide wavelength separation between slots. With element
spacings greater than one free space wavelength, grating lobes (strong off-axis
beams) are possible, but they will not occur when A Bj 2 <X°. In the usual
array design, the half guide wuvolenygth separation is made possible by
alternating slot position or rotation angle. In the present study, this alterna-
tion is not possible, for inclination or displacement of either type of slot would
allow excitation by baoth types of waveguide xpodu.

This apparent difﬁcﬁlty can be solved in one of two ways: 1) spacing
slots at half guide wavelength intervals with alternating long and short centered
slots.,or 2) loading the waveguide with dielectric material in arder to obtain a
spacing d = .?t‘ < h.' . These two methods are discussed separately below in
Sections 4 and 5.

In summary, the design objectives are:
1) excitation of a single polarization by a single waveguide mode
2) good input impedance match (and reasonable bandwidth and efficienty)

3) a broadside beam with no grating lobes,

11
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4

THEORY OF APPROACH A — ALTERNATING SLOT LENGTHS

One way to meet the three criteria listed at the end of Section 3 is with
a design which uses altermately long and short slots. The first criterion, the
isolation of the two linear polarizations, is accomplished by the crossed slots.
Two methods of satisfying the other two criteria, a good impedance match and
a good antenna pattern, will be discussed here and in the next section.

The normalised resonant resistance of a centered series slot,or the
conductance of a lengitudinal shunt slot, is large. A slot longer or shorter
than the resonant length, however, has a smaller resistance (or conductance)
as shown in the experimental data of Section 6. For an array of N slots, fhe
lengths can be chosen to give a normalized value of I/N. The reactance or
susceptance will then be much larger than the real part ,But by alternating slot
lengths a good input match can be achieved. The phase of the radiation from
each slot will lag or lead according to the length and type of slot. In order to
achieve phase coherence (and thus a beam normal to the array) it is necessary
that the slots be spaced A g_/ 2 apart. The large lag and lead angles will then be
brought into approximate phase coherence by the 180° phase reversal every half
guide wavelength. The normalized resistances or conductances will sum to a
value of one, and the reactances or susceptances will approximately cancel,
presenting & matched load at the input to the array. It is estimated that the
phase difference between the two types of slots will be between 30° and 40° —
a value that should not seriously lower the gain or raise the sidelobes; it will

not broaden the beam, Also, with ZK spacing the pattern will not contain grating

12 5
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lobes, as long as k"o <2X (A the free-space wavelength).

The above discussion is schematically illustrated in Figure 2. A side
and an end view of the square guide, showing all four kinds of slots, long and short
series and shunt slots in the configuration of Figure lb, are shown im the cemter
of the figure. Schematic representations of the performance of the series slots
and of the shunt-siets are shows shove and below the eonter, rg;spoetiv‘ely.;
First above the central view is an indication of the variation in the electric and
magnetic field amplitudes, EYH and HXH' which excite the series slot.
Above this, the short slot is shown as having a positive reactance (inductive)
and the long slot a negative reactance (capacitive) in the series element trans-
mission line representation. At the top is an illustration of the phase relation-
ship of the contribution to the far field from each kind of slot. The field from
the short slot leads the current and the field from the long slot lags; the current
is 180° out of phase between elements, however, because of their Ag/2 spacing.
The components from the long and short slots add vectorially, as depicted. Below
the center of the figure, the corresponding story is illustrated for the shunt slots.
The magnitudes of their excitation are shown as EXV and HZV' The short slots
have positive susceptance (capacitive) and the long slots negativé susceptance
(inductive); the corresponding phase relations and vector addition for the far
field are depicted at the bottom of the figure.

A logical procedure for designing an array of non-resonant series and

shunt slots such as is discussed in this section consists of the following steps:

13
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1. Specify guide dimension, a, operating frequency, f, and desired
array length, L.

2. Determine guide wavelength, A , and from this the number of
slots, N22L/) ; since the p‘;centa.ge bandwidth will be about
25/N, a respecification of array length may be necessary to
achieve a given bandwidth.

3. Determine the desired normalized incremental resistance and
conductance, l/N, and the resonant values from equations
(2-1) and (2-2).

4, Using either the experimental curves of Jaslkleor 011ner[3] (or
possibly the theoretical curves of Oliner), estimate the amount
of shortening and lengthening that should be used to obtain the
incremental conductance 1/N from each slot. One must be
careful to use normalized values when entering these curves.

5. The actual lengths are obtained from the length ratios obtained
from step 4, and use of an experimental or theoretical resonant
length. For slots with round ends the resonant length for
centered slots is about . 485); with square ends, Oliner suggests
using values that are 29, lower.

6. Slot locations are specified according to the choice of crossed or

separated Blots.

Experimental data on a design using this approach appears in Section 6;

Section 5 presents the basis for the approach using a dielectric-filled waveguide.

15
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THEORY OF APPROACH B -- DIELECTRIC LOADING
5.1 Imtroduction |
This section presents theoretical formulas for the complete design of
slot arrays in dielectrically loaded waveguides, There are apparently no
prior studies of this topic; at least, communications with two leading authorities [B]
suggests hat Mim ien0.To repeat the background given in Section 3, this is a
necessary design approach to achieve uniform slot phasing without grating lobes ,
sinoe the preceding design only approximates uniform phase, The material in
this chapter, however, is quite general, since it is applicable to any type of
slot design in dielectrically loaded waveguides.
There are three groups of quantities that need to be determined in this

section for each type of slot:

a) values of resistance or conductance

b) values of reactance or susceptance

¢) resonant lengths of slots
The first group can be obtained fairly simply; it is given first, 4 The second
is more difficult and the third is obtained from the second. In our approach, we
obtain the resonant length from the complete formulas for the susceptance; a
few calculations suffice to present a complete curve. As discussed in Chapter 2,
there are two approaches to slot theory. In Bection 5.2 we give the resonance
formulas for both approaches; they are shown to be equivalent. This presentation
is followed by a discussion of the susceptance formulas, which can only be obtained

from the Oliner approach, It is likewise found that the modifications of his

16
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analysis br e case of dielectrically loaded guide are not difficult. The first

resonant lengths are then obtained as those lengths that give zero susceptance.

5.2 Resonant Resistance or Conductance

The first method to be discussed in obtaining the modifications to the
resonant resistance and conductance expressions (as in equations (2.1) and
(2.?)) is that of Stevenson. The Oliner approach is similar and is briefly
discussed next. Unfortunately, the Stevenson formulas are presented in cgs
units and it is therefore advantageous to combine his work with the summary
given by Silver. The basic approach is to equate the radiated power to the
difference between incident power and transmitted power. The Stevenson-
Silver results are limited to the case a'=2X o/ 2; the Oliner results reduce
to the Stevenson-Silver results in that special case.

Our modifications of the Stevenson-Silver results can begin with an
intermediate equation for the resonant conductance of the shunt slot when the

slot length is not Renktioted $d being whalimarnisugih lang and wdith any interior

dielectric: . 2
2 |8in6 cos (%sin 0)

4
A
G _ 1 30 2a'
T e @) &) 3 6.1
o dip o b o I'(T) sin26
g

This slight modification is appropriate because Silver's 'transformation ratio"

is easily changed when a' # A o/ 2 and because the characteristic admittance

can be expressed as

EO A.0
Yo= ;; . -)._g (5.2)

where

17
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1
V/AQ: (5.3)

In Equation (5. 1), Babinet's principle has been used exactly as it was byiSiiiver; the
justification for this step follows. The sipt has already been assumed ''resonant"
at this stage in order to adlew ths: simphifichtions thati followsftiosn ¢ '~ '~ ..
having a real reflection coefficient. The reader is referred to Silver for that
discuuhon+ 80 that the discussion here may be confined to the modifications
that follow from using an interior dielectric.

First, however, we examine the use of Babinet's principle, which in the
form we use expresses the relationship between the radiation impedances of a
slot in a metal plate, and of the geometrically inverse metal strip antenna

(as illustrated in Figure 3):

M

* 10
zr(slol:) zr(strip)- 4 < . (5.4)

If the metal strip is assumed to be resonant, Zr( strip) = R((np)‘ Zr(slot) 1s

also real (= Rsl ot)' and the resistance of the slot is:

o1 Ho
Rslot- T (5.5)
dip o

This is precisely the result used in Silver's work leading to his equivalent of

(5. 1) above.

+
An error that should be noted occurs in equation (51b) on page 293 of Reference [4]
which should read: ©)ab B10 2 "

S.~*Y k)

10 102(

18
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a) Slot b) Complementary Dipole
FIGURE 3: ILLUSTRATION OF BABINET'S PRINCIPLE

The main feature of the analysis of the slot by using Babinet's principle
is to analyze a dipole with complementary fields. The configuration and nomen-
clature is that used by Booker [H] ; it is apparent from a consideration of the
fields that one must use a dipole entirely in air in order to analyze the slot
radiating into a half-space even when the waveguide is filled with a dielectric.
The magnetic field of the dipole can only be the complement of the slot electric
field if the dielectric is ignored in the case of the dipole. Another way of
stating this is that the radiated power is determined by the slot voltage alone ;
thisi sot: vedtaige lis: notdifhuimodd-bycthe dielectric,

Onee we have determined that the resistance of a dipode in air should be
used in Equation (5. 5) for the resistance of the resonant slot in a dielectric-

loaded guide, we must next evaluate this resistance, R, for a length, a’,

dip
not equal to ko/ 2. It is obtained by the Poynting vector method. The far field

of a dipole can be written as:

19
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-iB,r
_. 60rx oo .,
E0~Jkr e sin 6. I, (5.6)
oo
where '
+a'2 , iB z' cosb 2L cos (B_= cos6)
rz' "o R ! 02
I= cos ——6e I dz'= I,
" a o . 2 9 9 o
(a_') - ﬁo cos 6
(5.7)

obtained from the variation of the principal-mode fields along the guide; the
dipole must have the-samecexeitation in ortier to previde complementgty e+
fields, as required by Babinet's principle.

Next, we obtain the radiated power as:

T 21’1 *] 2
P= =R [EH]r sin§ do af
olo 27 6P o

2
= -30 12 a2 ) cos2 (-'— a_cos@) sin6 d6,
ol 2 2 1
0 (1-9.1 cos 6)

where a, = fa'/r = 2a'/x . (5.8)
This can be integrated by using partial fractions and integration by

parts; from the expression P = L2

5 Io R dip’ one obtains:

2
(a, +1)
R 120 1

dip= a 3 [Cin Ql+a1)1> - Cin 61'31)9]

2
a a, - .
+ -2-1- cos’ "2{ 2, +<i8—-]> T [Si &(1 + al)t) - Bi (1-31)1] (5.9)

Whin s, = 23'/).0 =1, this reduces to R =30 Cin (2¢)=73.2,

This expression has been calculated and the plot of the calculated points can be

a'
X

[s)

approximated well for 0.35 < <0.5 by:

20
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2
_ a' 2  2a'
Rdip =79.75 (1-. 348()to )7) (lo ) (5.10)

for a'/)lo =1/2, Rdip =73.2 Q as given by Stevenson. It is also similar to the

admittance expression used by Oliner, Grj proportional to:

80(1-. 374 (-E'— 1 +.130 (-’-’-‘i'-)“) ' (5.11)

For future calculations, Oliner's values will be used because of the excellent
agreement,

The conclusion is that the Stevenson formulas need baimbdified aaly to
take account of the change in guide wavelength, input admittance and resonant slot
length. The Oliner formulas then result with the addition of the edge shimt slot

formula given above and repeated here in a slightly different form:

2&' 2 a[ 2 1] 4
3 E-(Tsine)]l}—.su(-i;) +.130(ax°-)}

R _8» (2 b ) g
]
Z0 3 Xik smz,a c052 (r a.X sinel
g g (5.12)

which looks much like the broadwall shunt slot expression given by Oliner in

his equation (20) of Part I. _._ .

5.3 Suspeptance or Reactance Calcula.tions for a Centered Series Slot

The basic Oliner approach [__3] is to obtain an equivalent circuit for the
slot as shown in Figure 4 TBRcradiating centered series slot is characterized
as an E-plane Tee junction (series susceptance Bj and transformer ratio
nj:l), a short section of small waveguide (characteristic admittance Y(')), and

a radiating junction (admittance Grj + jB:l;j).

21
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It is obvious that in thie eimenlifhe parameters associated with the
radiating junction (Figure 4a) are unsffected by properties internal to the
waveguide. This idea corresponds to the use in the preceding section of
Babinet's principle with a dipole radiating in free space rather than one
radiating at an air dielectric interface. Thus, the values of Brj and @ ¢
are assumed to be unchanged by the presence of the dielectric. Similarly,

| the section of transmission line characterized in Figure 4c by Y;) is assumed
to be unchanged. However, the parameters of the E-plane Tee Junction shown
in Figure 4b . must be carefully reevaluated to determine how they will be
altered. This method will give the results in the preceding section on
conductance as a by-product, but our main interest is in the effect on the
susceptance.

Oliner does not derive formulas for B, and B i in Roference[ 3], but
notes the results of an earlier study [lo]for which he was group leader. This
earlier report in turn draws upon still earlier material by Mareuvitz [11 and 12] .
In the following we shall attempt to describe how the analysis is obtained from
all of these sources and how it is modified by the presence of a dielectric.

Fortunately, this discussion can be limited to nj and B, only.

]
In reference [llﬂ , Oliner's slot derivations for the n, and B

j j
expressions are for an E-plane slot, but they draw heavily on prior material
for transverse radiating slots and E-plane Tees, which in turn are derived from
the results for transverse coupling apertures. In this study, for the above reasons,

we can limit surselves to the E-plane tee which is discussed in Reference [1@ on
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page 91-84 and page 125-127,

Before proceeding to describe the modifications in these derivations
due to dielectric loading, several assumptions must be described that greatly
simplify the wark. First, Oliﬁer [3] discusses on pages 17 and 20 the justi-
fication of ignoring the shunt elements in the usual pi equivalent circuit. This
is done in his theoretical work because the experimental results showed it to
be a valid approximation. With this simplification, it is not necessary to
consider the transformation to-an-iawrisnt-vepreseamtions- derimasions may-start
with this equivalent form shown in Figure 46. Also on page 20 of [llﬂ we
find that the usual Xc and X ” of the tee representation given by Marcuvitz
in his Waveguide Hmdiadok [12] (page 336) can be dropped. We therefore
shall assume that these same simplifications will hold in our case; for further
justification we shall only refer to the theoretical-experimmttal agresmsnt
discussed in the next chapter.

The derivation of n? as given by Oliner follows that of Marcuvitz [_-11]
on pages VI-14ff. The actual expression is equation (VI-35) on page VI-19,
Although Oliner uses this result, he is not using the same circuit. That is,
Marcuvitz uses Z22 = nzz1 1 (page 18) whereas Oliner would have Z 11'-112Z22.
Mareuwdiz gives an answer valid for the Oliner circuit rather g for his own -
for a step-down rather than a step-up transformer. It is our guess that the
explanation of nj2 followed the derivation and was put in incofrectly; in any
case, the result given i)y Marcuvitz is correct for the Oliner material.

When the main guide is filled with a dielectric, n2 does not change.

i
That this is so follows from the derivation wherein we now define:
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2 -
B 299721

80

ES nx E(x, y) - Bix,y) ax dy
‘P

n,= (5.13)
] gg 4 xBlx,y)  Bix,y) dx dy
ap

Here and in the rest of the formulas in this section, symbols will have the
same meanings as in the references, unless defined otherwise.
In the Oliner-Marcuvitz normalization scheme, we use (for the E-plane

tee shown in Figure 4b):

fi x E(x, y) =§o cos %],5- (5. 14)
> A l 2 X

h(x,y) = xo oY cos e (5.15)
== A , 2 TX

'h(x, y) = x, g cos F (5. 16)

When equations (5. 14) through (5. 16) are used with equation (5. 13), we obtain

\
the value given by Marcuvitz and Oliner:

1 ab r 1-(@ a)2 .
2 "an | & con(:a'?Za) (5.17)
which is independent of the guide dielectric as stated. above,

The value of Bj shown in Figure 4b was given by Oliner [3] as:

B B
-l _t .2 b 3.2
7.7 3 Tt 2+ o +50) (5. 18)

where
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2
3Jral . a2 14
_ﬁ(l‘)z cos 2‘ . 1 (aa) 1+(tb' )2 1 ‘ﬁ3
X A 7a' 14 3 T '
2l

g3 Lcos > 1-9(=) 2&3
(5.19)
with
y¥=1,781, and
A
). -
g3 l
N
1- (—2-a—-)

These forms were taken from reference [10] , where equation (5. 19) above was given
as equation 3. 129 (page 120)’

BR B B B B

b a a 1
)-ﬁ-'—z- vl (5.20)
o n

- t
A 2

) 0 0 0
with the eircnit - shown in Figure 5. Foriour case, as mentioned above and in
reference [lﬂi on pages 20 and 127, both Xmand Bs are zero, and ncs

reduces to the expression for n j given in equation(5. 3 as long as b' is small

and
7b'
—)
Jo( v )1 (5.21)
Bb Ba
The expression for T + v was given in equation 3. 122 of [11_] for our
0 o
range of parameters as:
B B B 2
b a t . 2b #b'  3,b
— onvn I emm— + — —— e | cvmmaen .
TR T e [m2+6b +2(Xg)] (5.22)

where a correction noted on the errata:sheet:has besniinseried. Corhbining

(5.21) and (5. 23) gives (5.18),
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