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ABSTRACT

The analysis of finite planar arrays of slots is developed. This analysis
includes as special cases the linear array of slots with weak coupling and the linear
array with strong coupling. This strong coupling case has not been available hereto-
fore in the literature. Likewise the analysis of the finite planar array is presented
for the first time in this report. The degenerate or special case of the linear array
with the weak coupling of slots is presented with experimental confirmation of results.
The experiments of others were used to verify the finite planar array analysis, A
complete and error free program has been written in Fortran IV language during
this study. This program will enable the sponsor to fully utilize the advanced methods
of calculation of array performance without the necessity of making expensive exper-
imental models of planar arrays. This type of early design calculation also makes
it possible to avoid "blind spots" in the projected array performance, The analysis
may be adapted to arrays using other than slot elements through the use of the same

basic approximation methods as well as with full use of reciproecity and symmetry.

The report also includes a detailed analysis of mutual coupling effects in linear
and planar finite phased arrays of rectangular slots in a perfectly conducting ground
plane. Internal TE and TM waveguide modes with unknown coefficients are assumed
inside the waveguide. The electromagnetic field outside is evaluated in terms of the
waveguide illuminations at the array aperture. The resulting infinite set of linear
equations relating the illumination to the incident amplitudes in the guides is then
truncated. The finite set of equations is further simplified by neglecting the contribu-
tion among modes not directly excited by waveguide feeds. This new approximation
greatly reduces the size of the resulting matrix and one is left with an augmented
matrix equation which directly relates the main mode illuminations to the main mode

excitations. The entries in this augmented matrix include the effects of unexecited
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modes implicitly. The importance of such a matrix in practical applications
cannot be overemphasized. Deep insight was given to the mechanism giving rise
to the so-called '"blind spot" phenomenon. Computer programs were developed
which accommodated linear as well as planar arrays of both rectangular grid
arrangement and isosceles triangular grid arrangement.

The study presented here, besides having the advantage of being adaptable
to finite arrays at reasonable costs, would give information related to the center
element as well as any other elements including edge elements. Another advantage
is that the matrix thus calculated is scan-independent. These features should be
contrasted to what is available for a study based upon the infinite array assumption
around a center element. Thus the matrix here represents information about the
physical dimensions of the array and the geometry of the array grid; such informa-
tion would be particularly useful in designing array feed networks and computer
controlled phased arrays. Although the basic analysis can accommodate non-
uniformly spaced arrays, great savings in the computations cost is realized with
uniformly spaced arrays. This includes nonuniformly filled arrays of uniform grids.

A means for '"blind spot" control is suggested, based on the suppression of
modes of different parity along the direction of scan from that of the excited mode.
Preliminary calculation did show the plausibility of this suggestion.

Studies of multi-terminal, multi-mode slot elements were made. It is shown
that a limited amount of scan in the H-plane can be obtained through the proper
proportioning of the amount of TE1 0 and TE2 0 excitation. A means is required fof
keeping the time phase between the two modes constant at 90°. To propagate
the higher mode a larger slot is required. Also the amount of scan possible is
extremely limited. Scanning in this manner is also characterized by the build-up
of a large unwanted side lobe which for large scan angles from broadside may
approach the same magnitude as the main lobe but is located on the opposite side.

It is possible to scan a slot even less effectively by varying the relative time phase
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of the two modes. It was concluded that scanning in the H-plane through the
use of additional modes is not justified within the objectives of the present
study. No great saving of space would be accomplished and much complica-
tion would be added. Mode scanning in the E-plane appears even less feasible.
However, it should be mentioned that the planar array analysis described can

be adapted to the slot excitation of more than one mode.
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PREFATORY MATERIAL

0.1 Introduction

This contract as amended 13 October 1972 involved three tasks (1) Fifteen-
Element Linear Array, (2) Fifteen by Fifteen-Element Planar Array, and (3) the
Use of Multi-Terminal/Multi-Mode Elements for Scanning. Each of the topics
listed is given some coverage in this report. However, most of the effort was
concentrated on the first two mentioned topics. The effort devoted to the study of
Multi-Terminal Elements was relatively small, perhaps 15 percent of the total
time.

0.2 Linear Arrays of Slots

In Task 1 on the Fifteen-Element Linear Array emphasis was placed upon
an adeqtiate formulation for the boundary value problem applicable to a linear array
of slots arranged in a weak coupling manner. That is the slots were in line
and were oriented so that the magnetic lines of one slot were colinear with the
magnetic lines of the next slot. The relatively low level of coupling enabled
some simplification to be made in the computational methods used for such an
array. Basically the problem in the Fifteen-Element Linear Array was to solve
a matrix equation where a matrix operator including elements which represented
Green's functions operated on a column vector which represented the illumina-
tions at each slot and this in turn yielded the required feed parameters for each
slot. It was necessary to have several modes represented for each slot in order
to achieve the needed accuracy. This was done and is fully described in Chapter
II. Chapter II includes numerous examples of computer studies which justify
the assumptions and approximations made in the analysis. Experimental results

on linear arrays are also given in Chapter I,
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0.3 Planar Arrays of Slots

In Task 2 a more difficult boundary problem was considered in the study of
planar arrays. Although this task calls for a 15 x 15 element planar array economics
dictated that smaller planar arrays would first be studied. For this purpose, then
a 7 x T triangular grid array and a 13 x 13 rectangular grid array were studied.
Actually the number of elements in an array is not truly representative of the
difficulties and length of the computer program necessary. It is extremely impor-
tant to consider the number of modes which must be represented for each slot in
the array. A major part of this task was the study and evaluation of the modes
which were required for an adequate representation of this problem. Significant
improvements and scientific contributions were made by a detailed study of the con-
tribution of various modes to the electromagnetic mutual coupling problem. I is
believed that some of the achievements in the simplification of the analysis represent
a very distinct and original contribution in the solution of such electromagnetic
problems. Chapters II and III of this report cover in detail the technical work done

on Task 2.

0.4 Single Slot Scanning

The last section or Task 3 of the amended work statement dealt with the Use
of Multi-Terminal/Multi-Mode Elements for Scanning. Both theoretical and experi-
mental studies were made in order to develop elements which would facilitiate
scanning in an array. An objective was to obtain some scanning by an individual
element and thereby reduce or simplify the overall scanning requirements of the
entire array. In this sense it means that one element would in effect take the place
of two or three elements. The multi-terminal elements which were used offered
a means of scanning in the H-plane. Such elements have been studied in consider-

able detail by other workers in the field. Some of the work in this report follows
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closely that given in the reference (29) by Kitsuregawa and Tachikawa. In other
instances information was utilized from a report (30) by Thiele, Wagner and
Walter. Actually the earlier reports on multi-mode or multi-terminal antennas
were sufficient to show the possibilities of scanning an individual slot. In the work
done on this project primary emphasis has been made on scanning a slot using the
TE1 0 and the TE2 0 modes. The use of multi-terminal or multi-mode slots is
somewhat attractive until full consideration of clectromagnetic coupling is invoked.
Then it appears that the larger size slots needed to support higher order modes,

adds additional complication in the electromagnetic boundary value problem. A

detailed discussion of the multi-mode slots work is given in Chapter V.

xiii






CHAPTERI
INTRODUCTION

The work described here has provided a successful analysis for the in-
put impedance of different slots in a finite phased array. The mechanism
which gives rise to coupling accumulation, causing ''blind spots', at scan
angles within the scan range has been disclosed. New means for avoiding
such effects are introduced. Also, some of the already existing suggestions
for "blind spot'' reduction are discussed.

This analysis is based upon the integral equation formulation of the
boundary value problem. The solution of the integral equation is approximated
by a solution of a truncated set of linear equations. To this end, the set of
internal TE and TM waveguide modes was used as a basis for field represen-
tation inside the radiating slots. This formulation in its raw form requires a
prohibitive computational effort. A new simplifying assumption is used which,
together with symmetry and reciprocity properties, reduces computational
costs to very reasonable limits. This assumption does not neglect the effect
of higher order modes, but rather it neglects the interactions among unexcited
modes.

Using the above approximation it has been possible for the first time to
generate a matrix that relates the main mode illuminations on the array face
to the incident components of that mode, where the effects of unexcited modes
are included in the matrix coefficients. A relationship beyond the usual
symmetry and reciprocity which relates normalized coupling coefficients
between the M N1 and M_N_ modes to the normalized coupling coefficient

1
between the M1N2 and MzN? or the M2N1 and M1N2 coupling coefficients
for similar elements was observed. M and N refer to modal indices.
Since a vast amount of work has been done on phased arrays in general
(1), only a brief survey of the work related to the problem of finite phased

arrays will be given.



1.1 Phased Arrays and Methods of Analysis

Arrays capable of high speed scanning and multi-target tracking and/or
simultaneous operation of multiple physical functions are in increasing de-
mand. Electronically controlled phased arrays can have such capabilities.
While large phased arrays of the narrow beam type have wide applications in
modern radar systems and radio astronomy, arrays of limited size are used
in a variety of applications. An example is collision avoidance radar for
automobiles.

Several approaches exist for the phased array analysis. Classical
array theory (which neglects mutual coupling) and approximate analytical
methods (which neglect the effects of higher order modes) are, in most
cases, incapable of explaining the behavior around anomalous nulls in the
radiation pattern as the beam is scanned off broadside. The design of phased
arrays, especially ones of large size, by experimental methods is expensive
and time consuming. Analysis based on an infinite array environment is
adequate for elements in the midst of a large array but not for elements close
to or at the edge of such arrays. Semi-infinite array analysis, which depends
on the solutions of the infinite array, can provide information on elements
near one edge of such large arrays. Hence, the need exists for an analysis of
finite arrays which have no limitation on array size, and can supply informa-
tion about all elements in such arrays.

This work concentrates on finite array analysis on a rigorous basis
and provides an understanding of the anomalous null or "blind spot" behavior
and means for '"blind spot' reduction. Emphasis has been placed on arrays
of open-ended rectangular waveguides; however, the same methods can be
utilized for other types of elements. While the pattern of an array of given
dimensions can be easily calculated from classical array theory, the input
impedances of the various elements require the consideration of the near
field situation at the array aperture. The analysis given here deals with

the input impedance as a function of the main beam direction for finite arrays.



At the present state of knowledge one would expect to formulate the
boundary value problem into an integral equation. An exact analytical solution
for such problems is not guaranteed, especially for finite arrays. Instead,
the integral equation is reduced to an infinite set of linear algebraic equations
which can then be truncated. Hence, the solution of the boundary value prob-
lem requires the evaluation of the coefficients involved in these equations by
solving the matrix equation. Reduction of the integral equation into an in-
finite set of algebraic equations is usually achieved by expressing the unknown
field quantities (and sometimes the kernel under the integration) as an infinite
series of a convenient set of basis functions with unknown coefficients. This
set of functions, of course, has to be complete over the intervals where the field
quantities are represented. The solution of the matrix equation yields the
unknown coefficients. The rate of convergence of the solution depends on
the choice of the basis of representation. In this work the orthogonal set of
waveguide TE and TM modes were chosen as a basis set. From the geo-
metry of the problem, this appears to be a natural choice. First, because
severe discontinuities in the span of the aperture do not exist; therefore,
relatively few components are required for adequate field representation.
Secondly, the results are readily interpretable from the engineering point of
view. Indeed, the results do show that a limited number of modes can predict
input impedance variation as a function of beam direction. It turns out that
coupling due to modes of different parity (odd or even) along the direction of
scan, especially those close to cut off, tends to add up near beam pointing

directions where blind spots are observed.

1.2 History of Developments

A large amount of work has been done on phased arrays in general.
Recently a book by Amitay, Galindo and Wu (1) was published on theory and
analysis of phased array antennas where a reasonably complete account of
work on infinite arrays is included.

The classical array theory which neglects the effects of higher order



modes, provides satisfactory information about array patterns, even for large
arrays at broadside. However, deep nulls in the power transmission pattern
were observed for scan angles well within the normal scan range of the array
(1=7). This phenomenon, termed '"blind spot', has since been the subject
of intensive research aimed at understanding and finding means to avoid the
problem. Knittel et al. (2), in 1968, differentiated between two basic types
of the so-called "blind spot" phenomenon, those supported by modes inside
the waveguides and those supported by modes outside the waveguides due to
external structures like fences. The internal waveguide higher order modes
at the slots are essential for realization of the first type. Such might not be
the case for the second type where contributions from external structures

are most likely.

Lechtreck (3), in 1965, obtained experimentally the first evidence of
'"blind spot" behavior using an array of circularly polarized coaxial horns
with hemispherical radomes on each element. This was designated as
external resonance by Oliner (4) in 1970. Farrell and Kuhn (5), in 1966,
analyzed the infinite triangular grid and expected a null in both the H-plane
scan and the E-plane scan for that grid. The null in the H-plane was con-
firmed experimentally on a 7x7 triangular grid array. Diamond (6), in
1967, analyzed the same grid and an infinite rectangular grid of square
waveguide slots. He was able to detect the H-plane null for the triangular
grid and E-plane null for the rectangular grid. Diamond also showed the
importance of the TEZO’ TEll’ TMll’ TE12 and TM12 modes on study-
ing the '"blind spot' phenomenon.

In 1968, Farrell and Kuhn (7) again studied mutual coupling in infinite
planar arrays of rectangular waveguide horns both for rectangular and tri-
angular grids. The convergence of the solution was studied and the numbers
of external free space and internal waveguide modes necessary for an ade-
quate representation were given. Comparison with experiments was made
for the rectangular grid 169-element array (see Fig. 1-1)) and the tri-

angular grid (95-element array (see Fig. 1-2)). The measured H-plane
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pattern for the triangular grid exhibited a 32 dB null well inside the grating
lobe onset position. This was in agreement with the computed results except
that the measured null was closer to broadside than the computed null. The
measurements did not detect an E-plane null as was expected from calculation.
For the rectangular grid, both theory and experiment show a null in E-plane
scan approximately at the grating lobe onset position. The variation from the
experiment was attributed to the limited size of the experimental array.

In the same year Borgiotti (8) obtained a new expression for the mutual
admittance between two identical radiating apertures in the form of a Fourier
transform of a function related to the power radiation pattern of the element.
Later the same author (9) obtained the driving-point admittance of a radiating
aperture in an infinite periodic planar phased array. Also, in 1968 Knittel
et al. (10) related the element pattern nulls in an infinite phased array to
waves guided by the array face (external modes effect). Galindo and Wu (11)
investigated the asymptotic decay of coupling for infinite phased arrays.

In 1969 Mailloux (12) studied the near field coupling between two col-
linear open-ended waveguide slots. He formulated the problem into an
integral equation which was then solved approximately by expanding the
aperture field into a Fourier series of LSE modes. The special case of
one isolated slot ina ground plane was solved first; then the case of two
collinear coupling waveguide slots was solved by the same numerical method
using the symmetry properties of the geometry. The same author (13) in
1969 treated a first order solution for the mutual coupling between waveguide
slots, which propagate two orthogonal modes. The waveguides ended in a
common ground plane and had parallel walls but the relative positions were
arbitrary. The first order analysis was based on the method of moments
and used a single-mode approximation to the aperture field for each polari-
zation. An improved first order analysis was also presented which used a
higher order mode solution for the self-admittance. In the first of these
studies Mailloux was motivated by the need for a finite array study based

upon individually coupled elements in order to directly compare theory with



experiment. Furthermore, the analysis may be extended quite naturally to
consider the edge behavior of small or large arrays. In addition to these
factors the second study was motivated by the existence of cross polarized
modes at the array surface when slots have walls of finite thickness.

Earlier, Lyon et al. (14) studied coupling between various radiating
structures including two open-ended waveguides in a common ground plane
with arbitrary orientation and spacing. The theoretical part of the study was
based on a single-mode approximation to the aperture field of the excited slot
and on the assumption that the waveguide-backed parasitic slot has a total
magnetic field equal to that which would exist if the slot were absent. In this
manner the solution of an integral equation was avoided.

In 1970 Wu (15) analyzed the coupling between parallel plate waveguides
in an infinite array environment with and without dielectric plugs. An analy-
sis of a finite parallel plate waveguide array was also presented by the same
author later in the year. The finite parallel plate waveguide array is a good
approximation to the semi-infinite rectangular waveguide array in the H-plane
scan. In a probabilistic study, Argwal and Lo (16), in 1972, showed that
coupling accumulation as a cause for ''blind spots'' was highly improbable
for a randomly spaced array.

Very recently, Wasylkiwskyj, 1973 (17) introduced an analysis of
mutual coupling effects in linear and planar uniformly spaced semi-infinite
arrays. The solutions for the active reflection coefficient as well as the
mutual coupling coefficient were expressed in terms of the active impedance
in a phased infinite array. Cha (18), in 1973, presented the advantages of

the basic formulation for finite arrays in a recent publication.

1.3 Finite Array Analysis

The need for an analysis that can predict the behavior of finite arrays
has been demonstrated by some authors (12, 18). Pattern information is
available from classical array theory assuming the illumination of each array

element. The driving point admittance cannot be predicted without considera-



tion of mutual effects. The reflected component of the field in any slot is the
sum of the reflection due to the abrupt change in the feeding guide geometry and
the coupling from other slots in the vicinity. Thus, the reflection coefficient
for individual elements is generally a function of scan angle. Furthermore,
these coupling coefficients are themselves dependent on the antenna array geo-
metry. As the main beam is scanned by adjusting the phases of different ele-
ments, the vector sum of these coupling components is going to change. This
makes the element input impedance a function of the steering phases or, in
other words, a function of the beam direction. The accumulation of these
couplings at some scan angle to a large reflected component, in any one
element, will cause a serious impedance mismatch at this particular angle.

If the array has a uniform grid, then by symmetry, the same phenomenon will
occur for most elements and will result in a null in the array transmission
power pattern or 'blind spot". The understanding of element input impedance
behavior can lead to different methods to avoid such an undesirable effect.

The finite array analysis here evaluates the coupling coefficients
between the illumination of different TE and TM modes in different aper-
tures and the incident or the reflected components of those modes in the
same or other apertures. This is a direct interpretation of the integral equa-
tion formulation. The result is a matrix equation that relates the column
vector whose entries represent illumination to the column vector whose
entries represent either the incident or reflected components as desired.
These two versions are suitable for the problem of a transmitting or a receiv-
ing array, respectively. In both cases, however, the matrix entries represent-
ing coupling, contain information about the dimensions and geometry of the
array and the frequency of operation. Since both the array geometry and the
modes inside the aperture are scan independent the whole matrix is scan in-
variant. Changes in the steering phases are accounted for by a complex
exponential factor in each of the entries of the illumination column. These
same viewpoints were shared by Cha (18).

However, at this stage the amount of computational cost involved is



extremely high. A simplifying assumption is introduced which, together with
the symmetry and reciprocity properties inherent in the problems, greatly
reduces the computational effort. The assumption does not neglect entirely
the effect of unexcited modes. The classes of coupling considered are these:
(1) coupling of an excited mode to an excited mode in the same or another
slot, (2) coupling of an excited mode to an unexcited mode and then the
coupling of this unexcited mode back to an excited mode. The neglected
effect on the excited modes would be that due to two or more consecutive
steps of unexcited mode coupling, e.g., coupling from an excited mode to an
unexcited mode and thence to the same or another unexcited mode before again
coupling to an excited mode. The use of this approximation allows generation
of the entries of an augmented matrix and greatly reduces the number of matrix
entries to be calculated. These entries represent the relations between the
illuminations of the excited mode or modes and either the incident or reflected
components of these modes. The coefficients of this augmented matrix include
the effects of unexcited modes as intermediate couplers between different main
mode illuminations. In this fashion the array environment is fully described.
The matrix thus obtained is very useful in array analysis and application.
In analysis the reflection coefficient and hence the input impedance can be cal-
culated for a given scan angle without the need to invert the matrix. For an
application requiring a certain scan angle the required incident component
can be calculated for all elements by a straightforward matrix multiplication.
Such a feature can be very useful in computer controlled phased arrays.
Finally, the role played by different modes internal to the slots is
revealed. A new method for avoiding such an effect based on suppression of
these modes at the apertures is studied, together with other means for the
same objective.
Chapter II contains the finite array formulation, symmetry and recipro-
city characteristics and the new approximation discussed above. Comparisons
of the results obtained using finite array analysis with experimental data for

one linear array and two planar arrays are included in Chapter III. The

10



relation between modes of different parity along the direction of scan and
the occurrence of 'blind spots' is explained in Chapter IV. Discussions and

conclusions are also included in Chapter IV.
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CHAPTER II
FINITE ARRAY FORMULATION

2.1 Preliminaries

The effects of coupling between waveguide slots as elements of an array
have been considered by many authors using the simplifying assumption of an
infinite (1, 5, 6, 11, 18) or a semi-infinite (17) array environment. The in-
finite array environment assumption makes use of the periodicity of the elec-
tromagnetic field on the array surface to focus the attention on a unit cell.

For the same reason the electromagnetic field beyond the array surface is
expanded in a series of Floquet modes. The results thus obtained predict the
behavior of the central elements of a large finite array. Because of compli-
cations the infinite array analysis is usually scalar and one-dimensional only.
It is therefore useful for special types of scanning such as H-plane or quasi
E-plane scans (1). The semi-infinite array study expresses the behavior of
edge elements explicitly in terms of the infinite array solution. The above-
mentioned studies are only valid for cases where the infinite array environ-
ment assumption is justified. Since Floquet modes are scan dependent, these
formulations are likewise.

The analysis presented here deals with the problem of the actual environ-
ment in any finite planar array of rectangular elements. The array consists of
a number of rectangular slots in an infinitely conducting ground plane of
infinite extent. Each slot is fed by a rectangular waveguide of the same cross
section as that of the slot. The assumption of infinite conductivity is well
justified. The finite array analysis presented in this chapter is capable of
predicting the input impedance of any element of a uniformly spaced finite
array of the type just described at any scan angle. A new simplifying assump-
tion which neglects the interactions among unexcited modes is introduced.

This assumption, together with symmetry and reciprocity properties of the

problem, made the solution amenable for computer handling.
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2.2 Formulation of the Boundary Value Problem

In the following paragraphs the formal presentation of the problem is
explained. The arrays considered consist of open-ended rectangular wave-
guides of arbitrary dimensions and arranged arbitrarily in an otherwise per-
fectly conducting infinite ground plane. However, considerable computational
efforts can be saved in the case of identical waveguide slot openings arranged
in either a rectangular pattern as shown in Fig. 2-1(a) or an isosceles tri-
angular pattern as shown in Fig. 2-1(b). Such lattice arrangements provide
a high degree of symmetry and this, together with the principle of reciprocity,
provides a major means of achieving a substantial savings in analytical and

computational effort.

2.2.1 General Procedures

The electromagnetic field above the plane of the array of elements can
conveniently be represented in terms of the tangential electric field at the
aperture plane using an integral expression. The fields inside each slot
aperture are expressed in a series of waveguide TE and TM modes of un-
known coefficients. The boundary condition is then applied for the continuity
of the tangential magnetic field. The normal electric flux across the apertures
automatically fulfills the same condition of continuity. The orthogonality
properties of waveguide modes are then used. There results an infinite set
of linear equations in an infinite number of unknown coefficients. The factors
multiplying these coefficients contain quadruple integrations. Using a simple
change of variables the kernel of the integration involved in computing these
factors can be rendered independent of two of the new integration variables
with respect to which the integration can be carried out explicitly and thereby
the quadruple integration is reduced to a double integration. The procedure
used as described above in reducing the quadruple integrals is very similar
to the procedure used by A. T. Adams (19). After an appropriate but neces-
sary truncation of the infinite equation set and the numerical evaluation of the

coefficients involving the double integration, the system is then reduced to a
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Fig. 2-1: Planar array of rectangular waveguide slots: (a) Rectangular
grid (b) Triangular grid.



finite set of linear equations in a finite number of unknown modal coefficients.

2.2.2 Mathematical Formulation

It is well known that the electromagnetic field in a source-free region
can be expressed in terms of the tangential components of the field over the
closed surface surrounding the region. The analysis presented here uses
Huygen's principle formulated in a vector form utilizing a vector Green's
function (20).

Let a vector F satisfy the homogeneous vector wave equation:

Vxfo-kZF=O (2.1)

where k is the propagation constant’ Let G be the vector Green's function

described by
G=Vx(ga) ,
and -]k R- f’l
| -T' l
where
Q is an arbitrary unit vector,

R is the position vector of the field point, and

T' is the position vector of the source point.
G clearly satisfies the homogeneous vector wave equation (2. 1) except at the
point where R =T'.

Then, in reference to Fig. 2-2, applying Green's second identity to F

and G, and taking the limit as the surface ¢ shrinks to zero (20):

(VxF)- a=ff(-éxVx-f('f')- F(F)xVxG). 0 ds' (2.2)

S

where S and ¢ bound the region of volume V and 3 is the outward normal to

*e]wt time convention is used throughout.
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Fig. 2-2: Region of Integration.

the surface bounding V.
Inasmuch as modifying the Green's function, by adding to it any vector
function satisfying the homogeneous vector wave equation throughout the volume
bounded by S, will not alter the result of equation (2.2), such a part can be
chosen to make:
AA
nxG, =0
1
or

A A
n x VxG2=O

where both 'c';l and 62 include the free space Green's function plus a homogeneous

part. Since both the electric and the magnetic fields (E and H respectively)

satisfy the vector wave equation,

E®R) 2= j%fff[anl (R, ') x 'ﬁ(i'—'ﬂ ‘3 ds! (2. 3a)
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= ff[&z(ﬁ, ?')xE(F')‘J-ﬁ ds' (2.3b)
H(R).7 = j;'—-luff[anl(_,i‘_')xf(f'ﬂ-ﬁ ds' (2.3c)
= ff[&z(ﬁ,?)xﬁ(?)]-ﬁ ds' . (2.3d)

Thus the electric or magnetic field intensity within a source free volume
is determined by the tangential component of either the electric or magnetic
field intensity alone on_the boundivng surface. An exception would be for the
cases of normal modes; e.g., resonant oscillations in closed cavities (20).

When applying the above to the problem of open-ended waveguides in
an otherwise infinite perfectly conducting ground plane equations (2. 3b) and
(2. 3c) are particularly suitable since n x E = 0 on the ground plane and one
is left only with integrations over the apertures. Equations (2.3b) and (2. 3c)

can now be rewritten as shown below:

E (R)= -zﬂE i 28 s (2.4a)
X X 0z

. (ﬁ)=-2ff1~: (7) 28 4gr (2. 4b)
y y 9z

E (R)= 2IIE: 28, (P)a—G] ds' (2. 4c)
VA X 9x y oy

i 2 2
— 9 - -
H (R)==L E_ (1) 0 G -E (r") LA G+k2G ds' (2.4d)
X Wi X ox 0y y 2
L Jx
=\ _2j | 82G 2 82G
H (R)= E (r') —5+k'G| - E_(r') ds' (2. 4e)
y Wkt Lx dy y 0x 9y
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2
= _____ = 9 G '
H (R) = ff E (T) Ey(r) axaz] ds . (2. 4f)

The above equations are the same as those in the paper by Tai (21) on
the MMF method. The equivalence between the Fourier transform method

and the MMF method is pointed out in the same reference.

2.3 Analysis of Uniformly Spaced Planar Array

Although the same type of formulation can accommodate non-uniform
dimensions, uniform array dimensions are utilized from here on to reduce
the complexity of the notation. The following notation will be adopted through-

out (see Fig. 2-3).

Fig. 2-3: Spacing between elements of the array.
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L, £ refer to the column positions of the field and source slots, res-
pectively,

I, i refer tothe row positions of the field and source slots, respec-
tively,

capitalized superscripts and subscripts refer to field quantities,

lower case superscripts and subscripts refer to source quantities,

M, m, N, n are modal indices for TE modes,

P, p, Q, q are modal indices for TM modes,

a, b are slot width and height, respectively,

Dx is the distance between two consecutive elements in the same row,

Dy is the distance between two consecutive rows.

Since the electromagnetic field inside the waveguides satisfy the vector

wave equation, they can be written as an infinite series of TE and TM modes.

mn
—11 llmn -jh fimn ]hz nw m7 . AT A
E E gL =z = +
(A BTE )[bcos(ax)sm(b y) X

mr _ mr nm o AL oA
5 s1n(ax)cos(by)y+0z.J+

pq
lipg -jh z p fipq ihz P [ oy pT . . gr A
22‘ Brm ) (h ) [(57) cos (57 x) sin (17 y) X+

amy . (BT LA
+(b)s1n(ax)cos(%y)y]—

Lipq ]hpq l1pq hzq pqz pT qr A
~(Agy € =By d ) (k) sin (BT x) sin (37 3) 2 (2.5)
- j 3
=Lyt (2.6)
WU :
l t o !- . mn
-.i J‘ZZ(A imn - _BTlEr:nneth )(jhmn) .
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[(%E') sin(méﬂ X) cos (n_;r y) R+ (n_gr) cos (.’_2_75 X) sin (%’T y) 9]+

m & _mn
fimn ~]hz +p imn e]hz

(ATE TE

mn mr o\ A
)(kc ) cos (= x)cos(by)z+

pPq
n tipq -j
IZ(A,II,%[qe Jh B,l;;)g th) &Qbi) sin (%x) cos (-qbly)Q -
P q
- 2T BT ) sin ()840 2
(a)cos(ax)sm(by)y+0 z]

where

is the incident mode amplitude (+z direction),

o >

is the reflected mode amplitude (-z direction),

t=1

is the electric field vector,
H is the rﬁagnetic field vector,
k=27/x,
A=

free space wavelength,

mn_ [ mr2 n72

K -J(a)+<b> ,
2

b, ,f<m>2+<91> :
a b

positive square root
and hpq \/ k kpq

(2.7)

(2. 8a)

(2. 8b)

(2.8c)

(2.8d)

(2. 8e)

Substitute equations (2. 5) and (2. 7) into equations (2. 4¢, d and e) and let z

approach the array surface where z =0. Then using the continuity of the

normal component of the electric flux (e Ez) and the tangential components

of the magnetic field (HX, Hy) across the boundary (array surface), the

following can be written:
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zz LalPe. LIPQ)(kLIPQ) sn[%”(x—m-lmx)]-
. |QT, i}
sin [b (y-(1 l)Dyﬂ
_ (llmn llmn T mT (1) D )
-222 22 (b)cos a x'-(L= D
L i ¥,
" oSy
sin (B2 (y'-(i-1) D) | 2B+ (B g [BT 111y p ) | -
b Y y ) ox a a X
cos [—(y (l‘l)D ]_—J + _LZZ(A pq+B!lm) ( htpo)

pT BT 1y . L G
Ea ) cos [:a (x'-(L 1)DX)_Jsm[b (y'-(i l)Dy)j] +

ax
(-qbi) sin [Pal (x'-(L=1) Dx)] cos [Qbﬂ (y'~(i-1) Dy{]%] dx' dy'
(2.9)

Hx=22(ALIMN LIMN ) (hLTMN M7r) sin [_(X_(L_l) x)]

cos [E%’r(y (I- 1)D] quZZ(ALIPQ LIPQ)(QL
s1nE—(x -(L-1)D ﬂcos [Qz(y-(I-I)D ;]=
X b y
-9 zszzzmhmn fimn [ (I-EI)COS EnTW(X'-(!-l)DXJ .
L n

s1n[:——(y (i-1)D a;xgy-(—)sm[—-(x’ (£-1) x]'
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cos [—"(y (i-1)D )] — tk G)] +_.L 2 Z(Allpq+Bllpq)( hllpq)

2
BL)COSEE‘(X' (£-1)D ﬂsm [—i}-—(y ~(i-1)D ) ilaxay (gb—)

2
sinPE(x'~(1=1) D ) | cos | L(y'~(i-1)D (L +126)| Vst (2. 10)
a X b y ax2 4
z z (App -Brg ) MY Mo s[:%’Hx-(L-nDj-
LIP PQ, P
sin l:yblr(y-(l-l)Dy{}ﬂwuz 2 (ATMQ-B,II,J;[Q)(‘;E) .

P Q

S [%I(x-(L—l)Dxﬂ sin E!b&(y—(l-l)])y)] = 222 ff {22
L i Sy m n
i

(A;i‘gm+Bfrigm)[ n];r cosE—'(x' (t-1)D ;}sinEl—g'(y'-(i—l)Dy;]'

5 2
(8(2?:+k G)—_Sm[_(x' ({-1)D ]cos[—"(y (i-1) D ) ]BG]'
—ay o 0x0y

as +-‘—z Z(A‘lpqﬂs“pq)(h‘lpq)[ [%(r-u-nnxq-

2
EL(Y (i-1)D )—]( +k2G) gzsinﬁ?(x'—(l-l)D)J-
3

cos EL(y -(i-1)D ) ] -]} dS’ . (2.11)
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Only two of the above three equations are linearly independent. Making use of the

orthogonality properties of trigonometric functions one can multiply Eq.(2.9) by:
i

in [%g(x-(L-l)Dx)j] sin [Qbﬂ (y-(I-—l)Dy , and equation (2. 10) by

et

2
sin E:ﬁr(x-(L-l)Dx‘)} cos [:gl (y-(I-1)D | , and integrate over the Lith aper-

-

ture. The integrals on the right hand side do exist (see Reference (22), p. 624).

9
Integrating by parts and using the identity -—af = - % , where X=X, yorz
i i

and x; =x', y' or z', one can eliminate the derivative of G under the integral

sign, e.g., for arbitrary A, B, A' and B';

Btb A+a B'tb A'+ta

f f [Pal(x- A;]sin [%ZT- (y-Bﬂ- cosE-%7I (x'-A';j .
A

B+b A+a B'tb A'+a

0
in [%:-r(y'-B'ﬂ-g% dx'dy'dxdy = - f X[ [ f (%r') cos %‘T(X-Aq'
B 'OA!
sin[%lr- (y—Bﬂcos Enal (x'-A';}sin E%(y'-B';}G dx' dy' dx dy (2.12)

Bib Ata B'tb A'ta

J ! ! sin -—(x-A sin [:Q— (y—B] . smE—(x'-A';}
Bib A+a B'th A'+a
Em (y' -B"}— dx'dy'dxdy = - J j (9‘—) sin [—— (x-A)]

cos [Q*(y-B;) sin [——(x'-A'g] cos E—(y -B")| G dx'dy'dxdy (2.13)

and
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and

B+b At+a B'tbh A'+ta

J ! J ! sin '—(x-A) cos [——(y—B)]cos [L(x'—A'ﬂ .
B+b A+a B'+b A'+a

sin [L(Y "B']_ dx'dy'dxdy = - ! (Mf)(gg) .
COS[MTW (x-A;} cos [%r'(y-Ba oS [% (x'—A';} cos (E]bl(y'-B';J G dx'dy'dxdy .

(2.14a)
In a like manner:
Btb Ata B'+b A'ta
J sm —(x-A)] cos [:——(y-B)]sm [——(x'-A';J
B+tb A+a B't+b A'+a
82G Mz, ,m7w
cos[znl(y'-B') — d&x'dy'dxdy = - =) (=) -
b a a
ax
Bl 1
co{% (x—A)}cos [EI\L—”(y-B)]cos lE'Ir';ll(x'—A';Jcos E%T(y'—B')]G dx'dy' dxdy ;
(2. 14b)
also:

Bib Ata B'tb A'ta

! J ! cos [%7[ (x-A;J sin E\Ibl (y—B;] cos [mT” (x'-A')] .
Al

Bib Ata B4b Al+ta

sin [_(y “B']_ dx!' dyl dxdy - J j Nﬂ' n7r

24



cos [M;E (x-Aﬂ cos E\SL (y-BJ cos [y-lf(xr_Av)} cos E%(yt_B')]G dx' dy' dxdy.

(2. 14c¢)
Finally

Bib A+a B'th A'ta

I I cos [Ma—w(x-Aﬂ sin [—l\;—”(y—Bﬂsin E—n-f (x'-A')] .

B B' A’

5 Bib A+a B'tb A'ta
M 1.R! 8 G 1 1 = - & M °
cos[b(y Bﬂaxaydxdydxdy (b)(a)
B

B' A

cos [Mf (x-—Aa cos l:_l%r_ (y—B{\ cos E—nf'(x'—A')]cos [n—bE (y'-B'ﬂG dx dy dx'dy' .

(2.14d)

Using identities (2. 12) and (2. 13) in connection with equation (2.9) one

gets

w33 ff [ (33

(Afrigmmfrigm) I:(“;’ )(P”) cos [——(x-(L-l)D )_Jsm l:Q‘-(y-(I-l)D]
cos EI;—W(X'-(I—I)DX]sin[% (y'=(i-1) Dy]— (%)(%l) sin [%:L(x—(L-l) Dxa'
cos (9‘&( -(I-1)D Z\sin M(x’—(l-l) D |cos M( '-(i-=1)D ) _}
b Y y a X b Y y
_J_ z z (Allpq !].pq) ( htlpq) EPW)(L) cos F(X_(L_l) DX] R

sin[Qb'J(y- (1-1) Dy)] cos [E%r(x'- (£-1) Dx] sin E%T'(y'-(i-l) Dy)]+ (%)(gbi) .
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o o

sin &E(x-(L-l)DX) cos [%z(y- (I-l)Dy)] sin[%(x'-(!—l)Dx)] .

-

- "
cos | (y'-(i-1)D ) || ) Gax'dydxdy . (2.15)
b y

Identities (2. 14a_), (2. 14b) and equation (2. 10) yield:

B

ab
TE a i Y ™ (p )| oy

ON

ST (3 3o
c
'i
M N
cos :;l (x=(L~1) Dx-)}cos [?W (y«1-1) Dy;} cos Enf- (x'=(L=1) ng .

r—~

cos%(yt-(i-l)D ﬂ K ( %) sin {:—(x-(L— )Dxﬂ cos [-I\tl)l(y-(l-lmyﬂ'
sin lEnTﬂ(x'—(l-l)D ﬂcos [—'(Y ~(i-1)D \‘\ L 2 2

4 tipq, . 2 (M
(Apar *Brpp) (07D K (A) sin [Tﬂ (x-(L-1) Dxﬂcos E%”w—ﬂ-l) Dyﬂ'

3 m 1 (- glr. | P 1 [ ‘
sin [a (x'-(L 1)Dxﬂ cos [b (y'=(i 1)Dy)]}G dx'dy'dxdy (2.16)

In a like manner identities (2. 14c), (2.14d) and equation (2, 11) yield:

LIMN _LIMN,,. MN M7, |
[EATE B y(pMN Mz o LIMN_ LIMN &)}

' LIMN _LIMN MN N7 LIMN _LIMN, Mz ‘ ab
- +3 - —)| =(1+ =
(ATE BTE )(jh ) Jou (ATM BTM A a ) 4 (1 6OM)

[Imn l1mn mn 2 M
L[z v
coSEN:l_7r (x‘(L-l)Dx)‘J c08 E}%r(y-(I-I)DYZl o0 EIIT#(XI—U-UDX;J .
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08 [:Ebi(y'-(i—l) Dy)] (—) cos ["— (x-(L-1)D ﬂsm[— (y-(1-1) y] .
cos E?(x'-(!—l)Dx)-} sin [Eg(y'-(i-l) Dyﬂi\ + w—-]e— 2 z
p q
lipq tipq Pq P FLYN an
(ATM B, )(Jh ) K ( ) cos [ (x-(L-1)D J sin [: (y-(1-1) Dyﬂ-

cos[%(x'—(t-l)DX]sin[%(y'-(i-l)Dy;‘\ G dx'dy'dxdy  (2.17)

1 for N=0,
where, 6. . =
ON 0 otherwise.

Multiplying equation (2.16) by (1+5, )(—-) (2.17) by (1+4 )(M)

and adding:
LIMN _ LIMN MN MN ab
+ +
(ATE “Bop ) (jh )(k ) (1 % )(1 §nn) =

oM

=2zz ffff{ z (Allmn !1mn {krcnn)z(kivm)z .

cos LM;T' (x=(L-1) Dx{l cos [% (y-(1-1) Dy]cos [mf (x'=(L~1) Dxﬂ .

oS n—bl(y'-(i—l)Da kz(Mw)( ) sin [——(x (L-l)D)j}
L y

—

cos E\Ibl(y- (I—l)DyJ sin [—I?(xt_(l—l) Dx)] cos [nf(yv—(i-l)DyJ -
kz(b;w)(nw) cos [—(x-(L—l) D ﬂ sin E\I?ﬂ(y‘“'l)DYJO

cos [ﬁa{ (x'-(L-1) DX)‘J sin EL—W (y' ‘(i'l)Dya] ¥ i-z 2

b q
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—

<A‘T‘§g+s‘lpq>< hPY) 2 (%’-)(%?) cos l:%ﬁ (x-(L-nDj :

=
sin E\Ibl (y-(I—l)Dyﬂcos fal(x'— (£-1) Dxﬂ sin E]bi(y'-(i—l) Dyﬂ-
(Mf)(gf) sin L-N%(x-(L-l)Dxﬂ cos EI—J-(y—(I—l) Dy)] .

SID[EL(X'—(I-I) {\cos [EL(y (1-1)D)‘J G dx'dy'dxdy . (2.18)

Equations (2. 15) and (2. 18) are linearly independent. Multiplying both sides

PQkZ
W 62

of equation (2. 15) by to realize symmetry with equation (2. 18) and

rewritting equation (2. 18) in a more compact form we get:

2 4
LIMN _LIMN,, . MN MN
1+ 1+ =
(Apg  ~Bpg 00k ) ( Sont’ (1 éon
LIMN
2 2
4 4 4 2
zz 22 imn 1mn) { mn (kMNkmn) +k2 &\/Imw +Nn7r +
1 c ¢ \ 2 2
i a b
LIMN 2 2 2
4 2
4+ pimn (kMNkmn) _k°(Mm7_ _ Noz )
2 c c 2 2
a b
LIMN 5 9 9
1-
4+ {imn (kMN 10 +k2 (me _ Nnz )]
3 c ¢ 2 2
a b
LIMN . 9 9
+ Il1mn (kMN ) —k2 (Mm7r + Noz
4 c ¢ 2 2
a b
LIMN LIMN 9 9
i lipg, ptipq, . pq 2| fipg _ lipg \|Mgr _Npr |,
e ZZ(ATM L e e
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LIMN LIMN
fipg _ lipg [Mng
! KR ab (2. 19)
Likewise, equation (2.15) becomes:
2
LIPQ LIPQ PQZab 2
(ATM )(j h ) . ) . 220__
LIPQ LIPQ )
5 2 :
zz zz(A B 22 (PR PR | (1P _ (1P >[P§ 2 ]
; —E—a QLb
LIPQ LIPQ . ,
lipg _ 1ipq I:P T 99,_]
- (I )| 2R _ N
2 2
a b
LIPQ LIPQ 2 )
4
¥ “LXZ‘A ot llmn) P | Himn _ flpq ) Q. r_Por |,
1 ab
LIPQ LIPQ) . ;
imn fimn’|Qmz° Png
U3 -1, )[ab * ab} , (2. 20)
2
2k
where zo_ >
W e

- + - + i- + £-1)D +
LIMN (Il)Dyb (L Dxa (i Dyb ( )Dxa

Illimn = dy dx dyl dxr

(I-l)Dy (L-1)D_ (i-1)Dy (&-1)p
cos E\I?ﬂ(y- (I-l)Dy)+ qu (y'-(i-1) Dy)] cos [:Mai (x=(L~1) DX) +

Ln;l(x'-(l-l)Dx;]G(x-x', y-y") (2.21a)
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LIMN (I-DD+b. (L=1)D+a (i-1)D+b ({=1) D +a
fLimn y X y X
12 * dy dx dy' dx'

(1= )Dy <L-1)DX (i-)Dy (l-l)DX

cos F};I(y-(l-l) Dy)+9bl(y'— (i-l)Dy;] cos [%T'(X- (L-1)D)-

%:r'(x'-(l—l)Dx-):}G(x-x’, y-y') (2.21b)

LIMN (i-1)D+b (L-=1)D+a (i=1)D+b (£&~1)D +a
Limn y x y X
I3 = dy dx dy' dx’

(1-1) D (L-1)D (i-1)D (£-1)D
y X y X
cos E\I&(y-(l-l) Dy) - le (y'-(i-1) Dyi\ COS [% (x-(L-1) Dx)+

%E(x'—(l—l)Dx)] G{x-x',y-y") (2.21c¢)

vy (-D+b (L-1)Dta (i-)D+b  (&-1)D +a

. y X y
Ifllmnz I dy f dx f dyl f dx!
(I-1)D (L-1)D (i-1)D (£-1)D
y X y X
cos E%E(y—(l—l) Dy)- n—t:r'(y'--(i-l) Dyﬂ cos E\—?(x— (L-l)Dx) -

%E(X'-(I-I)DX;}G(x-x', y-y') . (2.21d)

Since G in the equation specifying I1 through I 4 is only a function of

x-x' and y-y', a simple change of variable can be made after which G would

be a function of only two of the integration variables. Simple integration can

be performed with respect to the other pair of variables. That reduces the

quadruple integrals to double integrals. See Appendix A for details.

The set of equations (2. 19) and (2. 20) relate the sum of all modal
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components (A +B) or the illuminations of all modes at the apertures of all

slots to the difference component (A -B) of any mode at any aperture. Adding

D]
LIMN LIMN MN,, MN.” ab

+ 3 > —— 1+. +
TE BTE ) (jh )(1\c ) 2( aOM)(l 50N)

or subtracting a factor (A
to both sides of equation (2. 19) will yield a relation between the illumination
and the incident (A) or reflected (B) components, respectively. The first
form is suitable for the transmitting array problem and is used from here

on. The second can prove more useful for the receiving array problem after
adding suitable terms representing the incident wave. The evaluation of the
integrals involved is the same, only a minor addition or subtraction is re-
quired to obtain one form or the other. Naturally, a similar comment applies

in relation to equation (2. 20).

By careful inspection of equations (2. 19) and (2. 20), it is evident that

LIUV
l-
the coupling coefficient® C ' remains unchanged if the values of the
' lI.JIUV
source and field superscripts are interchanged. In that sense, C v can

be termed a normalized coupling coefficient since the matrix thus generated
is symmetric. Interesting properties of these coefficients and their relation

to symmetry and reciprocity properties will be the subject of the next section.

2.4 Properties of the Coupling Coefficients and Their Relation to Symmetry
and Reciprocity

LIUV

!-
The coupling coefficients C W (see equations (2. 19) and (2. 20)) con-
LIUV LIUV
Liuv Liuv
) through I 4
These numerical factors are functions of the modal indices but not the

sist of a numerical factor multiplying the integrals I

position indices. It is also important to notice that these factors are in-
sensitive to the interchange of U and V simultaneous with u and v. Study-

ing the equations for I, through I4 (equations (A.2), (A.4), (A.5), (A.7),

1

1,

“‘U, V, u, v can be any modal indices M, N, m,n or P, Q,p, q, respectively and
C h{[ll‘{V iuv LIUV_ BLIUV) .

4 £
is the coefficient y (A B™Y) in the expression for (A
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(A.8), (A.10)-(A.13) in Appendix A), the following rules can be established:

1. Interchanging the values of L and ! superscripts is equivalent to ex-
changing the relative horizontal positions (column numbers) of the two
slots under consideration. The values of the integrals I1 through I

4
before and after the exchange are related by

fIUV LIUV

. T
IL1uv= (-l)U u I!luv (2.22)
o a

where «a=1, 2, 3or4.

Evidently, for the slot arrangement in Fig. 2-4, the normalized coupling

N\ C N\

Fig. 2-4: Relation between the normalized coupling coefficients
when the horizontal positions are interchanged between
the source and field slots.

coefficient from one source mode in the right most slot to some field
mode in the center slot is related to the normalized coupling coefficient

from the same source mode in the left most slot to the same field mode

+
in the center slot by a factor of (—1)U 4

Interchanging the values of I and i superscripts is equivalent to exchanging
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the relative vertical positions (row numbers) of the two slots in question.

The values of the integrals Il through I 4 before and after the exchange

are related by

LiUV LIUV
t'
IlIuv - (_)V+v fHuv (2.23)
o a
where a=1, 2, 3, 4.

This asserts that the normalized coupling coefficient from the same mode

in the top or bottom slots in Fig. 2-5 to a mode in the center is related by

’
C

Fig. 2-5: Relation between the normalized coupling coefficients
when the vertical positions are interchanged between
the source and field slots.

e
)
N

the factor (—1)V+v.

3. Interchanging the values of U and u superscripts will similarly yield

the relation between the values of I through I

1 4
LIuVv LIUV
£ +u M 2.24
AUV (_)U u tiuv ( )
o o
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where a=1, 2, 3or4.

In this case, however, the normalized coupling coefficients are not related
by a simple sign relationship since the factors multiplying the integrals
are going to change. The same statement is true when V and v super-

scripts are interchanged, where the integrals are related by:

LIUv LIUV
IliuV - (_)V+v Iliuv (2.25)
o o

where a=1, 2, 3 ord4.

Evidently under simultaneous interchange of the values of U, V and u, v

supercripts, respectively, the integrals are related by:

Lluv LIUV
4 +utVHy M
IQIUV= (o) UV Iam" (2.26)

where a =1, 2, 3 or 4.

Thus the normalized coupling coefficients, when the source and field
slots remain unchanged but the source and field modes are interchanged,

+ut
are related by (-1)U u V+v.

The rules enunciated for the interchanging of slot positions either from
one vertical position to another vertical position or from one horizontal
position to another horizontal position as well as rules for changing the
indices associated with modes are all consistent with the reciprocity

requirement. This is illustrated in the following equation:

LIUV  fiuv

2.

iR (2.27)
a [0 4

This can be interpreted as stating that the normalized coupling coefficient

th

to the UV th mode in the first slot from the uv " mode in the second slot

is equal to the normalized coupling coefficient to the uv th mode in the
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second slot from the UV th mode in the first slot.

These basic relationships are essential to the understanding of the
"blind spot' phenomenon. In addition, a sizable savings in the computational
effort can be realized using these relations. For example, it is interesting
to note that the third rule in the above goes beyond the usual symmetry and
reciprocity relations to relate the integrals involved in evaluating the coupling
between the u,v, and u_v_, modes to those involved in evaluating the coupling

11 22
between the u.v_ and u_v. modes or the u_ v, and u v, modes. Also, the

integrals usedlir? evaluafinlg the coupling cojffilcients ;esend only on the in-
dices involved but not the type (TE or TM). This makes the same set of
integrals usable for a number of coupling coefficients.

The application of these facts plus other measures to reduce the

computational effort will be the subject of the next sections.

2.5 Matrix Description

Considering the transmitting array problem, the formulations described
in the previous section ultimately lead to the major problem of solving a matrix

equation of the form:
[c]E+B) -[c]a-7 . (2.28)

In this equation [C] is the matrix whose entries represent coupling between
different modes in different slots, Q is the column vector whose entries are
complex numbers representing normalized modal illuminations at the aper-
tures and A is the column vector of complex entries representing the normal-
ized incident component of different modes in different slots. Usually arrays
formed of open ended waveguides have only one propagating mode. Entries
corresponding to modes below cut off in the excitation column vector A can
then be zeroes if there is enough waveguide length directly behind the aper-
ture to isolate it from any discontinuity in the guide.

Theoretically the array pattern requirements dictate the illumination

6. The incident values can then be calculated from equation (2.28). The
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reverse problem requires the inversion of [C] Usually the array pattern is
calculated based on the dominant mode illuminations alone and the higher order
modal content is not specified. An approximation which will maké it possible
to reduce the problem to a matrix equation involving only the dominant mode
or modes including the effect of higher order modes will be discussed in the
next section.

First, a systematic method for filling the matrix and using the proper-
ties enunciated in the previous section will be described. Figure 2-6 shows

a diagramatic representation of the antenna array and the matrix structure.

Legend for Fig. 2-6

Symbol Meaning

LL Number of columns in the antenna array

II Number of rows in the antenna array

NOM Number of modes considered

UV Coupling coefficients from uv mode to UV mode

Ctl uv where the source slot is i-1 rows above the field
slot and £-1 columns to the right of the field slot.

S!i Coupling matrix between two slots where the source
slot is i-1 rows above the field slot and £-1 columns
to the right of the parasitic slot. Dimension of
matrix = NOM.

Ri Coupling matrix between two rows where the source
row is i-1 rows above the field row. Dimension of
modes = NOM x LL.

*1i

s Coupling matrix between two slots where the same
slot is i-1 rows above the field slot and £-1 columns
to the left of the field slot. Dimension of matrix =
NOM.

R*i Coupling matrix between two rows where the source

row is i-1 rows below the field row. Dimension of
matrix = NOMx LL.
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Fig. 2-6: Diagramatic sketch for
the antenna array and the
matrix representing the
array: (a) Matrix structure,
(b) Antenna array, (c) Sub-
matrix representing the
coupling between two rows,
(i-1) rows apart, (d) Sub-
matrix representing the
coupling between two slots
(i-1) rows apart and (£-1)
columns apart.



Based on relation number 5 in the previous section l'l{*i] can be de-
rived from &1*] by transposing. For rectangular grid [s*li-_] can be derived
from [511] . Also for isosceles triangular grid l:s*l 1:] can be derived from
[sl'l’i:] . Finally, only the elements in the upper triangle of the [sﬁ] matrix
are necessary to fill the whole [sﬁ] matrix. In this fashion considerable
simplification has been made. For an array of LL columns and II rows it
is necessary to have only the elements of the upper triangles of the top rows
of the [sﬁ] matrices in order to fill the entire matrix [C]. Hence, if NOM
is the number of modes considered in each slot, then the number of coeffi-

cients to be calculated becomes:
LL-II- [NOM+(NOM—1)+(NOM-2)... 1] = LL- II. (NOM+1). (NOM/2).

This is the actual number of coefficients relating all the modes in all of the

slots to all of the modes in the I=1, I=1 slot.

2.6  Approximation Leading to Matrix Reduction

In designing a phased array, the array size and illuminations are
implied by the pattern requirement. Usually, illuminations are calculated
on a one mode basis. However, in actual operation several other modes can
be excited at the array aperture. In the case of a transmitting array, for
example, these modes are excited at any slot by coupling from the excited
mode or modes in the same or surrounding slots. These modes couple
back to the excited modes as well as to other unexcited modes. So even if
the illumination by unexcited modes might not represent a large portion of
the total illumination, these modes can still act as couplers between excited
modes. Coupling accumulation at particular scan directions can lead to
severe mismatch (27) when the beam is steered to these directions. This
phenomenon was observed and is referred to as "blind spot'. It is not
associated with array pattern deterioration but rather with a severe mis-
match for some scan directions. This indeed supports the belief that

although the excited mode illuminations might still prevail, coupling accumu-
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lation via unexcited modes as well as direct coupling between the excited
modes in each slot gives rise to this unwanted effect. Studies made on the
basis of the excited TE1 0 mode alone did not reveal the 'blind spot'' behavior
(6, 7). One can then conclude that a major cause of this phenomenon is due
to coupling via unexcited modes.

For transmitting array design one of the main interests is to determine
the input impedance of different array elements as viewed by the unexcited
mode. Based on the above discussion a simplifying approximation can be
introduced. One can still take into account the existence of unexcited modes
at the apertures, but only as contributions from the excited mode illuminations
and neglecting further contributions from unexcited modes. This amounts to
neglecting only some third and higher order coupling contributions on any
excited mode. Third order means coupling from an excited mode to an un-
excited mode and then to an unexcited mode before coupling back to an excited
mode. The use of such an approximation leads to a tremendous savings of
computational effort involved and the generation of an augmented matrix that
relates the excited mode illuminations and excitations directly, where the
effect of unexcited modes appear only implicitly in the augmented matrix
entries.

Assuming one mode (TE_ ) excitation of a rectangular or an isosceles

10
triangular grid array of rectangular slots, then in reference to the matrix
description in Fig. 2-6d of the previous section, the use of the above-
mentioned assumption is equivalent to calculating only the top row of the

[s!i:] matrix. The first column can be obtained from the top row using the
rules in section 2.4. The rest of the entries would be contributions among
unexcited modes which can be set equal to zero based on the approximation
just discussed. This means that only the top row of entries of the [C] matrix
(see the end of the previous section) need to be calculated and the whole

matrix can then be considered filled. The number of coefficients one has to

calculate, if only one mode is excited, corresponds to:
LL x II x NOM
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This represents the number of coefficients relating the excited mode in the
L=1, I=1 slot to all modes in all slots. Using this assumption equation
(2.19) can be rewritten for M, N# 1, 0 as:

LIMN(;hMkalc“N) ab(l+<s J+e )=

E OM
N/ 2 ) 5 LIMN/ 9 2 5
410 l 10 410
zz g el L |l |l Ay L PP
c a 2 4 C a 2
a a
For M, N=1, 0:
LI10 LI1O, 10 (72 ab _
(ATE -Bop ) (jh )<a) 5 =
LIMN, 2 9 LIMN 2 2
1mn llmn nNe mn 2 mw_ Limn [(1\2. mn  2[m7
z k, “tk +1 o)k, k[
a T 4 c 2
a a a
9 LI10 17110
l- .
s _J_zz lipq inP 2(9_) fipa_ tipg (2.30)
ab 3 4
and (2. 20) as follows:
9 . }IPQ lLIPQ
Ealis kD »RCE ) IR

In the above equations, since the unexcited modes have no incident component,
the illumination is equal to the reflected component ( qLIUV= BLIUV). Also,
the fact that N=0 (for TE 10 the excited mode) results in 13= I, and I2= I 4
(see Appendix A).

Substituting equations (2. 29) and (2. 31) into (2. 30) and regrouping terms

involving the same ql,;,lEo, one can write:
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LI10 £'i'mn LI10 L'i'pq LILO

L ' 410 L 510 Ly
(A LIlO LIIO) zz 410 1102 2 (10 1mn+zF1 pL'i'pa

[t-t mn pq
(2.32)
where
LI10 LI10 4 9 LIL0 9
410 1 £i10 410
Fl - Il 7r_+k2m7r +I1 7r__k2m7r , (2.33)
2 3 4 2 4 4 2 y
10 (m\ ab a a a a
) al 2
£'i'mn 'i'm £'i'm
10 1 Lo ﬁ kr,f1nz+k2 mr’ L fAi10 o kmnz_kZ mr
2 3 2 2 4 2 2 ?
., on (, mn ab a a a a
) c) ab“- (2.34)
-
LIL0 LI10 LI10
Fl'i'mn= 1 f'i'mn ﬁ kmn2+k2 m7r2 +Il' i'10 7r_2 nz_kZ m7r2
L 10(7\2ab |3 2\ ¢ 2] 4 2\ ¢ ab ’
jh {7 = a a a
al 2 |
(2.35)
£'i'pg o [Li'Pa Li'pg
410 . jwe gr_\[.Lil0 410
1 Pa) ab
c 4
and
LI10 o LII0 1110
£ - 2 UL 0
F 1Pa b /we k (ql Iglpq_141pq . (2.37)
10(n\2ab \?
a2
1
The symbol 2 implies summation excluding the case m=1, n=0.
mn
10 0
Adding A’EE +B,i,';:1 to both sides of equation (2. 32) produces:
LI10 £'i'mn LI10 L'i'pq LILO
ALI10_ 122 410 410, 1410 _£'i'mn 2 410 _f'i'pg
+
T — Yo ZF F F F
i i\ mn pq
(2.38)
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Equation (2. 38) expresses the relation between the incident modes in an array
and the illuminations on the array face, including the effect of higher order
modes but neglecting interaction among them. This form is particularly
useful for application in computer controlled phased arrays since it repre-
sents the feed requirement for a given illumination. For the same reason

it would be very convenient for designing an array feed network. The reflec-
tion coefficient and the normalized input admittance, for an arbitrary scan

angle, can be expressed by:

LI10 LI10

R = d—_1 (2.39)
LI10
A

LI10 l-RLIlO

Y =710 - (2.40)
1+R

In the following chapter some study of the coupling between rectangular
slots in a ground plane is carried out. Also, some phased array cases
already studied theoretically and experimentally as reported in the literature
(5, 6, 7) are now solved by the method described above. This method is
shown to predict anomalous null or '"blind spot'" behavior. In the last
chapter the occurrence of '"blind spots' and the reasons for them will be

discussed.
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CHAPTER II
COMPUTATIONAL RESULTS AND COMPARISON WITH EXPERIMENT

3.0

Arrays chosen for detailed computational effort were a linear array of
seven slot elements arranged for weak coupling, a planar array of 49 elements
in a triangular grid and a rectangular grid array of 169 elements. In all cases
the elements were open-ended waveguides. Familiar standard rectangular
waveguides were used for the linear and the triangular grid array and square
waveguides for the rectangular grid array. Limited experimental measure-
ments were performed on the linear seven-element array. Aperture probing
as well as reflection coefficient magnitude were provided for a few positions
of the beam between broadside and 30° scan. The results for the planar
arrays were checked against previous work by Farrell and Kuhn (5, 7). In

the next section a short description of the computer program used is given.

3.1  Computer Program Description

Due to the large number of coefficients that had to be calculated and
the complex symmetry and reciprocity considerations involved, the program
was best divided into several parts. The overall goal, of course, was to
perform as small a number of calculations as possible, and secondly, to avoid
using extremely large core storage which can be both as expensive as the
calculation and may sometimes result in exceeding the storage capacity on
the available computer. On the IBM 360/67 computer, available at The
University of Michigan, the maximum size of one array of numbers that can
be accommodated is roughly one million bytes; this number corresponds to
125, 000 complex numbers. This is approximately the size of the basic
matrix of a 25-element antenna array with 14 modes considered.

Several versions of the program were written and optimized. The
final version is very compatible and has virtually no limitation on size due

to storage requirements (by changing dimension statements the limit has now
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become the number of modes per slot times the number of slots, NOM x NOS
< 125,000). The cost as a function of the physical size of the antenna array and
the number of modes represented is different for various parts of the program.
Specific reference will be made as each section is described.

The first program, when given the specifications from the physical
array (frequency, slot dimensions, grid type, grid dimensions and the number
of rows and columns) and the modes to be considered, would calculate the top
row of the basic matrix. The result together with the specifications are kept
in a file. Evidently the cost is almost linear with the product of the number of
TE modes times the number of slots. This corresponds physically to calcu-
lating the normalized coupling coefficients from all modes in all slots to the
excited mode in the first slot. This program calls upon a subroutine which

evaluates the integrals I1 through I,; this constitutes the major cost contribution

in this part. These integrals are ev‘%aluated numerically (within one percent)

for the near slots. Taylor's approximations for the distance between the field
and source points and its inverse are utilized for the slots which are relatively
far apart. In the following calculations the criterion used for slots being spaced
far apart was empirically taken as R > 4A, where R is the distance between
similar points on the slots and A is the slot width.

A separate subroutine was written which utilized the pertinent properties
from section 2. 4 to generate any desired row or column that is related to the
top row. Given a row number and a column number this subroutine actually
generates the corresponding row and column in the basic matrix representing
the physical array. It can do this for\rectangular as well as isosceles tri-
angular lattice arrangements. The parameter G specifies the grid type by
the designation G = 0 for a rectangular lattice.arrangement and G = 0.5 for
an isosceles triangular lattice arrangement.

The second part of the program calculates the reflection coefficient of
any slot as a function of the beam pointing direction. This part calls on the
above mentioned subroutine to generate the required rows and columns of the

basic matrix, from which the entries of the augmented matrix are computed.

44



This task represents the major cost constituent for this part. For this reason
only one row of the augmented matrix corresponding to the desired slot is gen-
erated. The entries in the augmented matrix are computed from the basic
matrix using the approximation introduced in section 2. 6. The program then
proceeds to calculate the illuminations required for a desired beam direction.
The incident component in the chosen slot is computed by a straightforward
summation of the product of each illumination times the corresponding row
entry. Using equation (2. 37) the complex reflection coefficient and the relative
power transmitted (1 - |R|2) are then computed. This is repeated throughout
the range of main beam directions specified. The element position (row and
column), the limits of the scan range (Gmax, Gmin, ¢max’ ¢min) and the
scan increments A0 and Af are the inputs for this part. 6 is the beam
angle from broadside and @ is the azimuth direction (see Fig. 3-1); A6

and AP are the respective increments.

H-plane § = 0°
E-plane §= 90°

plane of the
array

slot boundaries

Fig. 3~1: Specification of the main beam direction.
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In the arrangement described above the maximum mathematical array
size to be stored is the top row of the basic mathematical matrix which con-
tains number of slots times number of modes-elements. The limit on storage
is then the maximum number of elements in the basic matrix row and this
should be equal or less than the maximum allowable array size storable on
the computer in use (125,000 on The University of Michigan IBM 360/67
computer). One can also notice that it is sufficient to calculate one row of
the augmented matrix in order to study the scan characteristics of one of the
array elements in the synthesis problem. In this context the synthesis
problem is the one in which the aperture illumination is specified (from
pattern requirements) and the reflection coefficient is calculated for each of
the feeds to the antenna array. In this way there is a large cost advantage
since the cost for calculating the augmented matrix elements goes up as the
square of the number of elements times the number of modes. Another advan-

tage present in this type of formulation is that the matrix need not be inverted.

3.2 Experimental Results

As a preliminary check on computer calculations a small slot array of
seven elements was arranged with the slots oriented for weak coupling. This
antenna array was built and tested. The money and time available limited the
experimental studies on arrays to this one array. In comparison, construction
of a large planar array of slots closely spaced would be extremely complicated
and excessively costly. However, the method of computations was further
checked against the experimental results obtained on a 7x7 element array
having rectangular slots arranged in an isosceles triangular grid and a 13x 13
element array ha\}ing square slots arranged in a rectangular grid. Experi-
mental data as well as analytical data based on the infinite array assumption
on these arrays were reported in the literature by Farrell and Kuhn (5, 7).
Close agreement was observed between the finite array calculations and the
experimental results, both for the seven-element linear array tested in the

laboratory as well as in the experimental data cited in the literature.
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3.2.1 Linear Seven-Element Array

This array consists of seven open-ended X-band waveguides mounted
on a 4'x4' aluminum ground plane. Figures 3-2 to 3-6 show important
details of the linear seven-element slot array which was designed and con-

structed in the lgboratory. A feature of this array was that the slots were

1 L |

2.54 cm 2.28 cm 1. 0008

cm

1.27 em

Fig. 3-2: Aperture of the seven-element
linear array (X-Band).

formed from the open ends of X-band waveguides which were clamped with
appropriate spacers. The slots could be oriented either for weak coupling or
strong coupling. By loosening the clamps and inserting different spacers it
was possible to have a different spacing between every two slots. However,
for the experimental work done here only one spacing of slots was used.
Likewise, only one orientation of slots was used and that was the one corres-
ponding to the weak coupling from one slot to the other. The array was fed
by means of a power divider which was also designed and constructed in the
laboratory (see Fig. 3-7). The power divider was a nine-port network with
one input port and eight output ports. One of the output ports went into a
dummy load. The remaining seven output ports went into coaxial fittings

and from this into line stretchers. From the line stretchers individual
coaxial connections were made through appropriate coaxial fittings on each

of the waveguides of the array. The construction was such that a directional
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Fig. 3-4: Details of seven-element X-Band linear array behind the ground
plane, Notice the coaxial line stretchers in the rigid coaxial
lines between the power divider and the waveguide adapters.
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Fig. 3-5: Seven-element linear array as viewed from the top (above
ground plane) and the field (Hz) probe,

Fig. 3-6: A close-up of the normal magnetic field (HZ) probe. One
division = 0, 01 inch.
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Fig. 3=7: The power divider.
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coupler could be inserted in each of the feeds to the slots without changing the
electrical length of the feed to the slot. The waveguide sections were con-
structed to have equal electrical lengths. The bends in the waveguides were
used to allow physical clearance for the flanges, even for the minimum possible
spacing between the waveguides. The rigid coaxial lines were also cut to have
equal lengths. The line stretchers were used as a fine adjustment for the
phase between slots for the broadside position. They were also used to pro-
vide the required phase gradient between slots for main lobe directions other
than broadside. Since a single directional coupler was used the actual mea-
surement required the coupler to be inserted first in one direction and then
the other. In this manner a measurement can be obtained on the magnitude

of the reflection factor at each of the ports of the seven-element array. No
measurements were made of the phase of the reflection factor because of the
difficulties of measuring this phase with sufficient precision.

Figure 3-8 shows a schematic diagram of the experimental setup used.
The reflection coefficient for the central slot was measured at four different
directions of the main beam. These scan angles were between 0° or broad-
side position and 30° from broadside. In order to obtain a given scan angle
the illumination of each slot was adjusted to the appropriate phase as calcu-
lated for the desired scan angle. This measurement of phase was by means
of a measurement of HZ through the use of a small probe. The small probe
is shown in Fig. 3-6. The minute size of the probe resulted in only a slight
perturbation of the field.

In Figs. 3-9 through 3-12 several probing patterns are shown, corres-
ponding to the various scan angles studied. In each of these figures the top-
most part shows the amplitude of the field. Keeping in mind that HZ is
what is measured by the small probe, the sharp minimums in the upper
diagrams in each figure represent the zero which is to be expected for the
HZ component of the field of a slot with, of course, the dominant TE10 mode
prevailing. The lower part of each figure shows the probing of the phase

profile for each of the cases. The phase situation is somewhat complicated
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in going from one figure to another since each scan position requires a
different amount of stepping of the phase between slots. (Notice that the
limits of the phase measuring device are + 180° and - 180°.)
Table 3-1 shows the experimental results for the amplitudes of the
Table 3-1 Comparison between theory and experiment
for the reflection coefficient of the center

slot of the seven-element linear array.
Frequency = 10 GHz.

Phase Shift Experimental Finite Array Calculation
Between Elements Reflection Coeff. Mag.  Magnitude Phase
dB ratio
0° (broadside) -15.4 0.1698 0. 1563 -61.7
50° (7.9° scan) ~14.2 0.1950 0.1910 -61.6
100° (16° scan) -12.5 0.2371 0.2504 -67.23
150° (24.4° scan)  -11.5 0.2661 0.2820 ~76.5

reflection coefficients for the various scan angles used and also the calculated
amplitude and phase for the center slot of the seven slot linear array. Fig. 3-13
contains data showing the reflection coefficient versus scan angle as well as the
relative power transmitted versus scan angle as predicted by the finite array

analysis for this seven-element linear array.

3.2.2 49-Element Triangular Grid Planar Array

Isosceles triangular grid planar arrays are characterized by having
the minimum element density for a given scan range before the grating lobe
appears in the visible region. Accordingly, they represent the most econom-
ical array from this viewpoint. The elements in such an array are arranged
in a brick-layer fashion. The array chosen as a study case was treated
previously in the literature by Farrell and Kuhn (5) both experimentally and
analytically, based on an infinite grid approximation. This array consists
of seven rows of elements with seven elements per row. Alternate rows
are displaced by %& ; here Dx is the distance between two consecutive

slots in the same row. The elements are open-ended rectangular X-band
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waveguides flush-mounted in an otherwise infinitely conducting ground plane.

A schematic sketch of the physical array is shown in Fig. 3-14a.

y D_=1.008% A =0.905)
D, =0.5041 B =0.4)

Fig. 3~14a: Schematic sketch for the aperture of the 49-element
planar array with triangular grid.

Experimental results on the 49-element array were published in
reference (5) and are shown in Fig. 3-14b. It is interesting to note that
despite the small size of this array, the experimental pattern exhibits a
null of 30 dB only 27° from broadside in the H-plane scan. This null is
far inside the grating lobe circle which passes through H-plane scan about
60° from broadside. It is also worth mentioning that the same grid has
been further considered by Diamond (6) and again by Farrell and Kuhn (7).
Both analyses were again for infinite triangular grid arrangements. The
results were compared to a larger array (95-element) of the same grid.
The results by Diamond (Fig. 3~15) and those by Farrell and Kuhn (7)
(Fig. 1-2) are similar. The infinite array approach in both cases detected

a null; however, the measured null was somewhat closer to broadside than
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Fig. 3-14b: Experimental results for the 49-element triangular
grid array. (Farrell and Kuhn)

] Experiment
Grating Lobe _| —-—TE
Angle (60°) | 10

R :

~~----~-TE10 and TE20

~~~ Multimode

] Triangular Grid
1 D= 1.008x
: 0.504

Normalized Gain (dB)

Scan Angle (degrees)

Fig. 3-15: Comparison of theoretical and experimental H-plane
element patterns for 95-element triangular grid array.
(Diamond)
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that predicted by infinite array calculations. Farrell and Kuhn (7) also pre-
dicted a null in the E-plane pattern for the infinite triangular grid array. How-
ever, such a null was not detected experimentally on the 95~element experi-
mental array. Departure of the theory from experiment was attributed to the
limited size of the experimental array. |

In comparing the computational method included in this report it is im-
portant to emphasize that the method is validated by closely predicting the
position of the null. This is mainly because the finite array calculation deals
exclusively with the input impedance aspect. The experimental data cited give
the normalized gainorthe radiation pattern (main beam) at any scan direction
compared to that at broadside in decibels. These data include the effect of
the input impedance variation as a function of scan angle as well as changes
in the array pattern itself as a function of scan angle. This latter effect can
simply be predicted from classical array theory.

In the figures showing the results of computations for the center slot
of a finite 7x7 array (Figs. 3-16 through 3-24), it is to be noted that the
reflection coefficient magnitude and phase are given versus the scan angle
from the broadside position. Also the relative power transmitted is given
versus the scan angle. Each of these curves is for a different cut. The
meaning of cut corresponds to having for each selected value of § a
variation of the scan through the range of angle 6 from 0 to 900. In this
series of curves the array factor is not included. In other words, the data
presented here correspond to that for the input impedance for one slot.

Two sampling slots on the array are given. In these figures the location
of the slot involved is given by the coordinates, row number and column
number. In order to make the data obtained in this work conform to that
presented in the references, it is necessary to add up the results for all the
slots and include the effect of the radiation pattern change as a function of the
main beam direction.

Two sets of data are provided for the center slot. One uses only two

modes: TE10 and TE20. The results are shown in Figs. 3-16 and 3-17 for
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the H-plane and the E-plane, respectively. In the second set (Figs. 3-18 to
3-24) 17 modes were actually used in the analysis. These 17 modes included
all the TE and TM modes which had an index value of M as high as

MN MN _
3 and N as high as 2. Curves based upon TE, . and TE__ alone show a

null (a maximum for reflection coefficient) at :t?out the sjr(r)le position in the
H-plane scan (f = Oo) as the 17-mode solution. This leads one to believe that
the TE2 0 mode plays an important role in causing a "blind spot' in the H-
plane scan for this array. The fact that the analysis using TE1 0 and TE2 0
can predict a null was also evident in the infinite array analysis (5-7) (see
Figs. 1-2, 3-14b and 3-15).

It was observed in the curves for relative power transmitted that the
null for the center slot (4, 4) is sharper and the angular position measured
from broadside is smaller than what was indicated in the experimental data
of the references. On the other hand, a corner slot such as (1, 1) (Figs.
3~25 through 3-31) has a shallower null for the relative power transmitted
and this null occurs slightly farther out from the broadside position. The
position of the null from the experimental data is between its counterparts
for the center slot and the corner slot, but is closer to that of the corner
slot. This seems satisfactory since for such a small array, elements close
to the array periphery outnumber those that can be considered in the middle
of this array. If all slots were considered then the reflection factor applying
to the overall feed to all slots would have an angular position somewhere
between these two nulls, which correspond to the two slots selected. In
other words, it would be anticipated that a much better check on the experi-
mental location of the null could be had through the use of all slots of the
array. Obviously a reason for not pursuing this is the great increase in
cost for making the computations for all slots. The scan for just one slot
costs about $30.00. This cost factor has utilized many of the economies
described earlier. Nevertheless, at $30 per slot the cost of taking into
consideration the entire 49 slots of the antenna array approximates $1, 500,

which was not available for additional computation at the time of this research.
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It is to be noted with the data obtained from the computations for the 7 x 7 slot
array that the reflection factor coefficient has a negative phase corresponding
to the position of the null. This corresponds to a capacitive input impedance.
Notice that no null was predicted in the E-plane scan for this array.
This is in agreement with the experimental results and contrary to the infinite

array analysis.

3.2.3 169-Element Rectangular Grid Array

The rectangular grid represents the simplest arrangement of elements
for a planar array. The array considered here consists of 13 rows and each
row has 13 slots. The elements are open-ended square waveguides as shown
in the diagramatic sketch of the array in Fig. 3-32. The same array was
analyzed by Farrell and Kuhn (7) using the infinite array approach. The
analytical as well as the experimental results are shown in Fig. 1-2. Figures
3-33 to 3-36 show the reflection coefficient magnitude and phase and the rela-
tive power transmitted as obtained using the finite array analysis. These
data were obtained using seven modes. The seven modes are all the possible
TEMN and TMMN modes that have M as high as 1 and N as high as 2.

The modes used are the most relevant for the E-plane scan (see Chapter IV).
Experimentally, this array exhibited only an E-plane null (7).

Remarks similar to those mentioned for the 49-element array apply

to the interpretation of the results for this array.

3.3 Discussion of the Results Obtained Using Finite Array Analysis

So far the methods used for computation provide data which indicate
that a good check can be made on the input impedance behavior as a function
of beam direction for finite arrays. It is to be observed that the location of
the blind spot coincides with the maximum of the reflection coefficient mag-
nitude. In the operation of an array, to have a blind spot suddenly occur as
the beam is being scanned must be related to the unusual situation of no

power being radiated by the antenna array as a transmitter (or correspond-
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ingly no power being received by the array if the incident wave is from the

direction of the blind spot).

On the transmitting case the decrease in radiated

power is due to a large mismatch in impedance where most of the power is

reflected back to the generator.

Evidently, this can happen if the power
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Rectangular Grid - 7 modes
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Rectangular Grid - 7 modes
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coupled back into a typical element is nearly equal to the incident power to that
element. This can occur if the other elements in the vicinity have their res-
pective phases so adjusted that the coupled components add up to a large
reflected component. A discussion of the details of this mechanism regarding
the reasons for the transmission factor to become nearly zero is covered in
detail in the next chapter.

The results obtained above are in close agreement with the experimental
data available. Although the data on a complete array are not provided it is
reasonable to deduce that the behavior of the complete array has character-
istics somewhere between those for the center slot and a corner slot. Gen-
erally, the array characteristics would be closer to those of edge elements
for a relatively small array and approach the characteristics for the center
slot as the array becomes very large. Specific interpretations will depend
on the particular array geometry.

It is important to notice that using TE1 0 and TE2 0 alone for the
49-element triangular array one can detect the occurrence of a blind spot
in the H-plane scan. It is also important to notice that inclusion of TE

11°
T™ TE.. and TM__ modes in the case of the 169~element rectangular

gri; iwray Lzredicted tlllz E-plane null. The significance of these modes for
this latter scan was emphasized by Diamond (6).

The finite array analysis was able to provide information about any
individual element in the finite arrays considered. The results were in
closertagreement with the experiment than those obtained from the infinite
array analysis. This was demonstrated by the finite behavior of the null
and the accuracy of the position. It was also demonstrated in the case of
the 49-element triangular grid array where the infinite array analysis

predicted an E-plane null where such a null was not detected experimentally

on the finite array nor predicted using the finite array analysis.
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CHAPTER IV
DISCUSSIONS AND CONCLUSIONS

In this chapter an explanation of the 'blind spot'' phenomenon is pre-
sented. A comparative study of the method developed in this research with
the previously established methods of analysis is used to substantiate the
new method. The developed theoretical approximations and the computa-
tional methods are of a general nature and can be applied for other electro-

magnetic problems. Suggestions for future work in this area are presented.

4.1 Blind Spot

In order to gain an understanding of why '"blind spots'' occur, the
behavior of the coupling between various modes at the aperture of a wave-
guide slot in an array environment should be studied. The so-called "blind
spot" is characterized by the high reflection coefficient which occurs at a
particular scan angle. The phenomenon referred to here is known as internal
resonance (2). It corresponds to modes characterized by the dimensions of
the waveguide rather than to modes due to structures outside the array sur-
face, such as fences or dielectric layers. Lechtreck (27) has explained
"blind spots' as resulting from accumulation of many coupling contributions
at certain critical scan angles. This interpretation is pursued in more
detail. Modes that are not excited by direct feed can still originate at the
array surface by coupling from excited mode illuminations. These modes
in turn couple back to the excited mode. In effect these unexcited modes act
as additional couplers between excited modes.

Consider the problem of an array of rectangular waveguide slots
uniformly spaced in a metal ground plane. Let TE1 0 be the only mode
excited. The total reflected power in any one element is then the sum of
all the coupling contributions from all of the elements of the array including
the element itself. Thus one should be able to focus on the coupling from all

modes in all slots to the TE1 0 mode in the slot under consideration. For
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simplicity consider the presence of unexcited modes due only to coupling from
the TE1 0 mode in all slots (see section 2.6). Now, keeping in mind the sign
relationship discussed in section 2. 4, one notices that the direct coupling be-
tween TEl 0 mode in any two slots does not change sign if the horizontal or
the vertical positions of the two slots under consideration are interchanged.
Further examination will reveal that the same statement is true for the in-

direct coupling between the TE. . modes in any two slots even via an inter-

mediate mode in a third slot, iflghe third slot is also changed in position
adequately. In other words, if one considers the images around any of the
vertical or horizontal directions of any of the slots (source, field or inter-
mediate), then the coupling for the original arrangement is the same as the
coupling from the image arrangement. Hence for the slot in the middle of
the array the reflected power is approximately four times that due to slots

in one quadrant alone.

Consider the triangular grid arrangements of slots shown in Fig. 4-1.

Ll et s o] ] ]
| L2 s [

LIW[]I]M][W[1I1

x (H-plane)

( E-plane)

Fig. 4-1: Coupling accumulation in a triangular grid array
H-plane scan.
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At broadside the illuminations of all slots are in phase. The direct coupling
between the TEl 0 modes in slots 4 and 6 and the TElO mode in slot 1 add
up, since both coupling coefficients are equal. In fact, because of symmetry,

these couplings add up to double the value of just one of the slots. The same
statement is true for the indirect coupling between TE., = modes in slots 4

10

and 6 to the TE1 0 mode in slot 1 resulting via the TE2 0 modes in slots 2

and 3, respectively. This is also true for direct coupling between the TE1 0

modes in slots 2 and 3 and the TEl 0 mode in slot 1. Generally, direct and

indirect coupling from the TE. . mode in any two slots symmetrically

10
positioned with respect to slot 1, will behave similarly as long as symmetric

paths are considered. It is interesting to notice that the coupling from TE10

in slot 6 to TE1 0 in slot 1 via TE20 in slot 3 is neutralized by the coupling

of TE10 mode in slot 5 to the TE10 mode in slot 1 via TE20 mode in slot 3

since both of these coupling coefficients are equal and are of opposite sign.

Similarly, the coupling from TE1 0 in slot 4 to TE 10 in slot 1 via ’I‘E2 0 in

slot 2 is neutralized by the coupling from TE 10 in slot 5 to TE1 0 in slot 1

via T 90 in slot 2

Scanning the beam of the array in the H-plane requires progressive
phase shift in the x-direction. Consider, for example, the situation of
/2 (900) phase shift between consecutive elements in the same row. The

coupling of TEl 0 in slots 4 and 6 to TEl 0 in slot 1, both directly and in-

directly, is going to cancel. In the meantime, direct coupling from TE1 0

in slot 5 and indirect coupling through TE__ in slots 2 and 3 are going to

20
add up vectorially. The sum of the coupling from TE 10 in slots 2 and 3 to

TE1 0 in slot 1 will decrease to 0,707 its broadside value. Still a third

example is the interesting situation when the phase shift between the
illuminations of consecutive slots in the same row differs in phase by

T (1800). Direct and indirect coupling of TE,  in slots 4 and 6 are again

10
going to add up. Indirect coupling of TE10 in slot 5 to TE1 0 in slot 1 via

TE 90 in slots 2 and 3 are going to add up in phase with the indirect coupling

from TE 10 in slots 4 and 6 via TE2 0 in slots 2 and 3, respectively. How-
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ever, in this case coupling from TE10 in slots 2 and 3 to TE10 in slot 1

cancels out. Generally in the above discussion what is true for TE2 0 is true

for any mode with even index along the direction of scan (H-plane). Emphasis

has been directed to the TE__ mode because besides simplifying the descrip-

20
tion, the operating frequency for ordinary waveguides can frequently get very
close to the TE2 0 cutoff frequency. Since there is the factor of 1/ k2— ki

in the coupling coefficient normalization factor (see equations (2. 33) and (2. 34))
it should be evident that modes close to cutoff are especially important. Fig-
ure 4-2 shows the change in the coupling coefficient between TE. . in slots 5

10
and 6 and TE_  in slot 1 as the effect of higher order modes in these slots

and other slotioin between are considered.

Stating the above observations more compactly, the effects of modes
with different parity along the direction of scan from that of the excited
mode can become significantly large especially if these modes are close to
cutoff. In the case of the 7x7 antenna array with a triangular grid arrange-

ment of slots as analyzed in the previous chapter, Table 4~1 shows the values

Table 4-1 Coupling from TE__ illuminations in

various slots to inclzgdent TE10 in slot
1 in Fig. 4-1.
Coupling from TE Via TE
10 20 Magnitude Phase
in slot no. in slot No.
2 - .0772 209, 1°
3 - . 0772 209.1°
4 - . 0255 322.3°
4 2 . 068 30.5°
5 - . 0926 76.2°
5 2 . 068 210,5°
5 3 . 068 210.5°
6 - . 0255 322.3°
6 3 . 068 30.5°
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of coupling coefficients from TE_  in the slots of Fig. 4~1 to the TE = mode

0 10
in slot 1. Bear in mind that the iiata shown in Table 4-1 apply to this particu-
lar array with the waveguide slots of a given size and with the particular
spacings between slots used in this array. Also, of course, the data are
dependent upon the frequency used.

On this basis, while the TE__ is most significant for H-plane scanning

20

the TE 1 and TM,, would be more significant with E-plane scanning. This

is in aglreement wj:li the ordering of mode importance for different scan
directions as presented by Farrell and Kuhn (7),

Several studies have indicated, in general, that analysis based on
TE1 0 alone cannot predict blind spot behavior (5-7), and higher order modes
are necessary if the blind spot behavior is to be revealed. In some cases of
TE1 0 and TE2 0 alone (Diamond (6) and Farrell and Kuhn (5=7)) demonstrated
blind spot behavior. Here it has been shown that, in fact, modes of different
parity along the direction of scan contribute heavily to the occurrence of
these blind spots. Indeed, a maximum of the reflected components of the
excited mode occurs near scan angles where phasing between elements of the
antenna array is such that the resultant reflected amplitude of the main mode

due to all couplings in maximized.

4,2 Relation Between the Reflection Coefficient and Coupling Coefficients
for an Infinite Array

Define CJ!k to be the total coupling coefficient representing the coupling

between the TEl 0 illumination in one slot and reflected component of the same
mode in another slot including the direct and indirect coupling due to other
elements of the array. These slots are j+( 1-(-1)K)% Dx apart in the
x-direction, and kDy apart in the y-direction.

G is the grid parameter which equals 0.5 for isosceles triangular
grid and equals 0.0 for rectangular grid.

Dx and Dy are grid dimensions as defined before.

91



Let

40]'k
CJk (1+5 )(1+ak) (4.1)
where: 1 §=0 1 k=0
60.= and 6Ok= .
Y lo j#0 0 k%0

For a uniformly excited array one can express the TE 0 reflection coefficient

1
in any slot of an infinite array of a uniformly spaced isosceles triangular grid

as follows:

+ +
= [Coo 002 cos 2yy CO4cos4wy+...]+

r~

+ cosyy+C cos3¢y+Clscos5\1/y+... cos*w—x-+

11 13 2

cosg[/y+C33 cos 3x1/y+035c085(1/y+... cos% (4.2)

31 2

C
L
r
+
+ _CZO+ 022 cosyy 024 cosdyy+.. ‘} cosyx +
F
C

where

Yx is the steering phase in the x-direction or the phase shift
between two consecutive elements in the same row and equals

ka sin @ cos §,

Yy is the steering phase in the y-direction or the phase shift

between two consecutive rows and equals Dyk sin @ sin§,
or
0
R= 2 Z cos2ix0y'cos2!5%+
£=0 i=1 2, 2

+C cos(2i+1)yy cos(2£+1)%£ . (4.3)
20+1, 2i+1

Similarly, for uniformly spaced, uniformly excited infinite rectangular grid
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one can write:

® o
R=2 zcli cosiyy cos lyx . (4.4)
£=0 i=0

This means that the reflected power can be represented as a two-dimensional
Fourier series in the harmonics of steering phases. The inverse operator
yields the individual coupling coefficients between the excited TE1 0 mode
components in an array environment in terms of the reflection coefficient

as a function of the beam direction:

T 27
Cik:_l_z.jf R (yx, Uy) cosily cos(1-G) Lyxdyx dyy . (4.5)
4r
0

4.3 Advantages of Finite Array Analysis

The assumption of an infinite array has been frequently used to
simplify the analysis for an element in the midst of a large array. On the
basis of such an assumption all elements would behave similarly; hence,
periodicity conditions can be used, which greatly reduces the cost of the
calculations. Obviously, this type of analysis does not provide information
concerning elements on the edge of large arrays. Wasylkiwskyj (17) used an
extension of the Wiener~Hopf factorization procedure for solving an infinite
order difference equation for the analysis of a semi-infinite array. The
solution for mutual coupling coefficients as well as for active reflector co-
efficients in a phased semi-infinite array is expressed explicitly in terms of
the active impedance in a phased infinite array. As Cha (18) indicates, in
finite array analysis it is necessary to compute the interaction matrix and
its inverse only once; then the unknown reflection coefficients and higher
order modal coefficients for any scan angle can then be found. This is not
possible in infinite array calculations where a different interaction matrix

would have to be computed and inverted at each scan angle. This is true
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because the matrix entries for an infinite array calculation describe the inter-
action between internal waveguide modes and modes exterior to the waveguides.
Since the latter depend on the phase between elements the matrix elements in
this case are dependent on the scan angle. In the case of finite array analysis
the matrix entries represent coupling between internal modes in one slot to
internal modes in the same or other slots, which are independent of the scan
angle.

The assumption introduced in this work, which neglects the interaction
between unexcited modes to other unexcited modes, greatly reduces the number
of entries to be calculated. Moreover, it allows the generation of augmented
coefficients representing the coupling between excited modes only to other
excited modes, including direct coupling between those modes and indirect
coupling through other unexcited modes at the surface of the antenna array.

As in the examples solved in Chapter III, utilizing a matrix representing the
relation between incident or reflected amplitudes of the excited modes and
the illumination of those modes on the array surface the reflection coefficient
corresponding to any scan angle can be obtained for any slot without the need
to invert the matrix.

The finite array analysis has no restriction on the choice of the plane
of the scan. In the infinite array analysis only H-plane scans or quasi-E-
plane scans are considered if the problem is to be reduced to a scalar one-
dimensional problem. For a true E-plane scan, the problem is essentially
a two-dimensional vector one. No simplification is possible (1).

Finite array analysis is capable of describing the behavior of the
center element as well as an edge element. Such results should be very
useful in designing array feed networks. This type of analysis is essential
for limited size arrays where the infinite array assumption would lead to
intolerable errors. Finite array analysis also can be used economically for
predicting behavior of large arrays. One can establish a criterion for the
minimum array size around a centrally located element such that this element

and all others could be considered in an infinite array environment. Any
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array equal or larger than this minimum size array could be analyzed utilizing
the same range‘of coupling coefficients. Such a criterion will depend, of
course, on the shape and dimensions of the array elements and the lattice.
The method of finite array solution employed here can be extended to
non-uniformly spaced arrays, but, of course, at more expense depending
upon the amount of symmetry destroyed. On the other hand, non-uniformly
spaced arréys are not suitable for phase scanning because of the randomness
in element position. Instead non-uniformly filling or thinning of an otherwise
uniformly spaced array is an attractive way of obtaining the same desirable
characteristics of a non-uniformly spaced array. Such an array can easily
be accommodated in this method simply by removing entries corresponding
to thinned elements both in the matrix and column vectors. The effects of
mode traps at the apertures of different elements could be included in a

similar way.

4.4 Approximations and Computational Techniques

The main use of sparsity techniques is to reduce the size of the storage
needed in core memory storage. Under conditions of sparsity there is still
the problem of finding the most convenient way of solving the matrix equation
involved. In the general consideration of a matrix it is important to recognize
that it is possible to eliminate elements which are redundant within the
matrix. Often this redundancy is associated with the electromagnetic prob-
lem at hand. Application of the well known principle of reciprocity together
with geometric symmetry frequently is a useful means of ascertaining such
redundancy. Element storage is minimized by eliminating or reducing redun-
dancy. Such a procedure in many cases may prove a strong tool since it
achieves the same objective as sparsity from the storage point of view.

It was shown in Chapter III for the cases of a slot array of rectangular

grid or isosceles triangular grid arrangements that it was possible to reduce

2
2 +
the storage size from (NOS x NOM)” to just NOS (N—OM-Z,—N(M) where NOS
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is the number of slots and NOM is the number of modes. This reduced value
in the storage requirement represents coupling from all modes in all slots to
all modes in the corner slot of a uniformly spaced planar array. By neglect-
ing the contributions from unexcited modes to other unexcited modes and
assuming only one mode is excited it was possible to cut down the storage
size needed to only NOS x NOM. This number corresponds to coupling from
all modes in all slots to TE10 inthe corner slot.

By careful computer programming it is possible to avoid storing even
this reduced number of elements in the core all at one time. One way to do
this is by properly sectionalizing the computer program, and storing coupling
coefficients corresponding to one slot as soon as they are calculated. This
procedure then means that the maximum core storage per array of the
machine imposes a limit not on the product (NOM x NOS)2, but rather on
the number of modes used (NOM). A separate subroutine can be written
to generate any desired row or column of the original matrix.

Attention js now directed to the sign relations established in Section
2.4 for normalized coupling coefficients between modes. Besides the
normal reciprocity and symmetry relations which they express, they also
relate the integrals calculated for the normalized coupling coefficient between
the M.N. mode in slot A to M_N_ in slot B, to the normalized coupling co-

11 272
efficient between the Mle mode in slot A to the M1N2 mode in slot B. It
is also imperative to notice that the integrals calculated for the coupling from
one mode to a TEMN ora TMMN mode is the same as long as the modal
indices are the same; only the multiplying coefficients are different.

It is believed that the methods mentioned in this Section could be used

to advantage in many other electromagnetic problems.

4.5 Possible Means of Eliminating '"Blind Spot' Phenomenon

As discussed in Section 4.2 modes of different parity along the direction
of scan are shown to contribute heavily to the occurence of the so-called

"blind spots'". One method of elimination of 'blind spots' described here is
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based upon the suppression of certain modal components of unlike parity (com-
pared with TElO) from any slot illumination. For normal operation of open-
ended waveguides only the lowest order mode is excited, and the higher order
modes are excited only at the aperture due to coupling from dominant mode
illumination at the array face. It is believed that selective mode traps for
modes of different parity at the apertures can reduce the effects of those
modes on couplings between illuminations of the dominant mode. An example
of a simple scheme for such traps is one thin wire in the direction of the width
placed at one-half the height of the slot and bends to two wires in the direction
of the height placed at one-quarter of the width distance from each of the two
side walls as shown in Fig. 4-3 for rectangular guides. It is expected that

the voltage induced by the TE__ mode will circulate current in the loop formed

20
by the trap wire and the bottom side of the waveguide, while the voltage in-

duced by the TE, = mode will cancel out. The evaluation of the effects of

10

Fig. 4-3: Mode trap for TEZO'

these traps on the TE 10 mode performance and/or the construction of more
elaborate traps that would minimize the TE2 0 mode content without having
adverse effects on the TE1 0 mode is left for future research. The possibility

of extending this analysis to other types of apertures and arrays is also a good
prospect for future work.
Figures 4-4 to 4-10 show the performance of the 49~element triangular

grid array mentioned in Chapter III, if there were no TE__ mode present.

20
These results were obtained by setting equal to zero all the coefficients
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corresponding to TE_  in the basis matrix representing the arrays ,

20
Another method for "blind spot" reduction was discussed by Argwal
and Lo (16). The random spacing of the elements of an array can reduce
the null introduced at certain scan directions due to severe mismatch. How-
ever, the randomness in the element position is associated with a feeding
problem. Adjusting the phase of different elements for a given scan becomes
a tougher task due to the lack of symmetry. On the other hand, non uniform
filling of an otherwise uniformly spaced grid appears as an attractive means
of realizing some of the advantages of a non uniformly spaced array. The
finite array analysis can easily be used for non uniformly filled uniform
grids. The rows and columns corresponding to the thinned elements can
simply be removed from the basic matrix. Further investigation along these

lines is left for future work.

4.6 Summary

1) A formulation of the finite array problem has been presented.
Each mode in each slot of the physical array has been treated as a separate
port. The coupling coefficients between ports can be evaluated in terms of
double integrals. These double integrals contain a Green's function and can
be evaluated numerically. The advantages of the finite array formulation

over the infinite array formulation were discussed.

2) The infinite set of linear algebraic equations is then truncated to a
finite set. The limitation on the size of that finite set of linear equations
arises from the upper bound on the size of the largest array of numbers

storable on the computer in use.

3) The use of symmetry and reciprocity characteristics for that type
of formulation has been analyzed. A new relation beyond the usual symmetry
and reciprocity has also been discussed. This relation relates the integrals
involved in evaluating the coupling coefficient between the M. N. mode in one

11

slot and the M2N2 mode in another slot to the integrals involved in evaluating
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the coupling coefficient between the M1N2 mode and the M2N1 mode in the
same slots. A method to make use of the symmetry and reciprocity charac-
teristics and the relation mentioned to reduce the calculation effort and the

storage requirements has been described.

4) The use of symmetry and reciprocity characteristics reduced the
number of coefficients to be calculated and stored for uniformly spaced rec-
tangular or isosceles triangular grid arrays from (NOSx NOM)2 to

2
+ N
NOS . NOM2 NOM ,

where NOS is the number of the physical elements in the array,
NOM is the number of modes to be considered in each element.

This can still require the handling of a fairly large number of coefficients.

5) A new approximation has been introduced. This approximation
neglects the effect of coupling among unexcited modes in the calculation of
input impedance of the excited modes. The couplings from excited modes to
unexcited modes and thence back to excited modes are still included. The
use of approximation cut the number of coefficients to be handled down to
NOSzx NOM for non uniform grid arrays and to a mere NOSxNOM for
rectangular or isosceles triangular grid arrays. This type of approximation

is general in nature and can be extended to other electromagnetic problems.

6) The finite array analysis has been checked against experimental
data on a seven slot linear array of slots arranged for weak coupling, a
49-slot triangular grid array and a 169-slot square grid array. Close agree-

ment has been observed throughout.

7) The mechanism linking the modes of different parity along the
direction of scan to the 'blind spot" has been explained. A method for
"blind spot'" reduction has been suggested based on the suppression of such
modes. Preliminary calculations indeed show the effectiveness of the sup-

pression of such modes in reducing the "blind spot".
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CHAPTER V
SCANNING OF A SLOT BY MODE CONTROL

5.0 Preliminary

The use of multiply-fed slot apertures corresponds to using the aperture
with more than one mode. In the work of this group an experimental slot was
arranged in a large metal ground plane. This slot was fed from a short section
of waveguide having three coaxial inputs. One coaxial feed was used to provide

excitation of the dominant TElO mode and the other two were arranged at the

proper positions across the guide to excite the TE, . mode. The latter two

20
feeds were on the top side of the waveguide and were arranged to feed in 180°
phase opposition. This was necessary in order to establish the TE2 0 mode
with best utilization of the power to the feeds.

5.1 Magnitude Ratio and Phase Control

An antenna slot excited by the TEl 0 and TE2 0 modes has the interesting

properties that the radiation pattern can be controlled. Two ways of controlling
the radiation pattern are available. One method which was tried and which
proved most practical was to control the ratio of the magnitudes of the electric

field of the TE2 0 mode to that of the TE1 0 mode. A second method of control,

tried only briefly, was to utilize various phase differences between the TE20

and TE1 0 inputs. This phase control of the modes was utilized while keeping

the ratio of the amplitude of the TE_ . mode to the amplitude of the TE, . mode

20 10

constant.

In scanning a slot by either of these methods certain distortions of the
radiation pattern occur. For instance, with a slot in a large metal plane it
was found that in scanning from the mid-position in the H-plane by increasing
the relative amplitude of the TE20 mode over the TE1 0 the main beam would
move off the broadside position in the direction that was due to one lobe of

the TE_ = mode augmenting the field of the TE, . mode. When the main beam

20 10
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moved in this manner it was found that a minor lobe would occur in the other
direction. This minor lobe increased in size as the angle of scan from broad-
side increased. Figure 5-1 shows a slot aperture with the usual field dis-
tributions of the two modes to be considered. With field distributions as in
Figure 5-1 it is possible to predict the pattern to be produced in the scanning
of the beam of this slot as the TE_ . mode assumes various levels relative to

20

the TE1 0 mode. The parameter 7 is used to indicate the ratio of the am-

plitude of the E-field of the TE_ = mode to the amplitude of the E-field of the

20
TE, mode. It will be found that when 7 = 0 corresponding to no TE__ mode

10
present that the usual pattern corresponding to a magnetic dipole is oi)oserved.
It is to be recognized that a rectangular slot in a metal plane has a pattern
corresponding closely to that of a magnetic dipole provided the slot has a
height dimension which is very small compared to the width dimension of the
waveguide. Thus the magnetic dipole pattern is the most appropriate char-
acterization for slots which approach the configuration of slits (small in E-
direction).

Kitsuregawa and Tachikawa (29) showed that if the amplitude ratio 7=1
is maintained and the time phase angle, ¥, between the modes is varied
then the direction of the beam is almost invariant and only the phase pattern
changes significantly. The variation of the phase pattern means the position
of the phase center of the radiated wave varies. Such a control system with
7= 1 constant and ¥ varying could be used for a feed horn of a beam scanning
parabolic antenna. Since scanning with phase control was considered to be
outside of the scope of this research effort no additional time was expended
on this approach.

5.2 Analysis for Radiation Pattern

Using the general method of Kitsuregawa and Tachikawa (29) the follow-

ing analysis may be made. For a rectangular aperture "a' wide by "b'" high
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Fig. 5-1: Rectangular aperture with two lowest modes.
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as shown in Figure 5-1, the radiation intensity is given by:

do, p-s"9, (5.1)

where (P 0 is the radiation intensity of unit moment source and

2
(1+ cos 0)
0° 5 . (5.2)
960 7 X

See equation 4. 72 of reference by Wolff (30) for the above expression, S is

the designation for a space factor and is given by

a b
2
S=|Fl=f
a
=

where, A is the wavelength in surrounding space, k = %r = phase parameter

in surrounding space, and E (x,y) = electric field distribution over the slot

2

E (x,y)

b (5.3)
2

aperture. If only the TE1 0 and TE_ = modes in the aperture are to be con-

20
sidered then
v

T 2m
= — + 3 —_—
E (x,y) EO( cos —x+7e" sin~ X) (5.4)

where the ratio 7 is given by:

amplitude of TE2 0 mode electric field

T amplitude of TE1 0 mode electric field *

¥ 1is the phase difference and is given by: ¢ = phase difference between TE2 0

and TE1 0 modes at aperture. The factor F may now be written:
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. Th . . ra .
F-E, 2a sin ( sin 6 - sin ) | cos ( + sin 6 cos )

sin § - sin - (ka)2 sin” § cos’ )
sin (%@sin 6 - cos §)
-27 5 SR 5 siny - jcosy }|. (5.5)
(27)"~(ka)” sin” 8 cos” ¢

The power directivity function of the radiator is:

0
d (6, ¢) = —%J—) (5.6)
av
w
where (pav = ;, and (5.7)
1
w :_I]‘Z_ﬁ R (E . E*) d x dy = total radiated power, (5.8)
o
and n is the impedance of free space (n = e_)'
0
For the slot radiator having both TE1 0 and TE20 modes the gain function

in the H-plane (the x-z plane) is:
8 ab (1+c0s0)” - 2
d0) - a 2cos a { cos u - - gsmw[ sin u z]}
(1+7)7 X 1-(2u/m) 1-(u/m)
T sin u 2
t(gcosy | —— (5.9)
{2 [:1 —(u/ﬂ)2]}

where u = lri_a sin 6 . (5.10)

Introducing the normalized directivity function D A by:

_d(e, 9)
DA(9,¢)— N (5.11)
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where N = 32 ab s
T }\2

(5.12)

N is a normalizing factor for a rectangular horn. Then D A in the H-plane

(x - z plane) is given by:

(1+cos6)? { cos u T [: sin u 2
D,(0,0)= 50 - I siny | B2
PN TE L a2 . (u/ﬁ)z]

. sin u ]} 2
+{—2 cos | [1 ) (u/7r)2 (5.12)

The above expression simplifies if ¢ = + 900 as is desirable for amplitude ratio

0
control. With ¢ set equal to + 90 the expression for D, gives the directivity

A
for various ratios of modal excitation as shown in Figure 5-2. For every
chosen value of '"7' and with ¢ set at + 900 equation (5. 12) gives D A or the

relative power versus u.

5.3 Results

The curves shown in Figure 5-2 are theoretically based curves utilizing
the methods of Kitsuregawa, et al (1862) as used in the analysis of the previous
section. Experimental tests were made using a slot formed by S-band waveguide
terminated in an aperture in a large metal plane. Waveguide WR 284 (RG-48/u)

was used and in order for this waveguide to support the TE, . mode, it is, of

course, necessary to operate it at a frequency higher than g?band. The exper-
imental results obtained in the project were somewhat erratic but in general
confirmed the radiation pattern behavior as calculated for Figure 5-2. Much
difficulty was experienced in maintaining the desired phase between the TE 10

and TEZ 0 modes.
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Some study was made of the use of the TE30 mode combined with the

TE10 and also when combined with both the TE10 and TE20 modes. No
appreciable advantage could be observed in the utilization of this third mode.
Furthermore the use of still higher modes requires the use of still larger
waveguide.

The use of additional modes to scan in the E-plane direction appeared
to hold very little promise. The narrow dimension of the waveguide slot in
that direction makes it difficult from the array standpoint to consider increas-
ing the size of that dimension in order to accommodate the transmission of
the higher modes. In addition, the wider slots add significantly to the poten-
tial for cross polarization problems.

In using Figure 5-2 to relate to the actual scan angle, it is necessary
to consider the ratio a/A. For two mode operations this could be typically
1.2 for illustration purposes. Then if the TE,_ mode is set at the same

20

amplitude as the TE. . mode the main beam will be positioned approximately

10
24° from the broadside position. Furthermore the main beam in this scan

position will be very nearly 95 percent of the strength of the main beam

in the broadside position with only the TE 10 mode excited. If while main-
taining the phase angle ¢ = 90° the ratio of the amplitudes of the TE2 0 to
'I’E1 0 is increased to the ratio 2:1 the main beam will then be scanned still
further to approximately 30°. However, under this condition the power in
the main beam will be down to approximately 84 percent of the main beam at
broadside. Furthermore, the secondary beam which develops on the other
side of broadside will have increased to almost 23 percent ot the main beam
in relative power. It appears that for amplitude ratios greater than 7= 1
undesirable effects commence. Thus scanning from broadside position of

approximately 30° represents a reasonable limit for scanning of a single

slot in the H-plane direction through the use of the two modes TE1 0 and TE20.
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As can be observed from equation (5.12) and Figure 5-2 changing from
¢ o=+ 90° to == 90° results in the changing the signs of the abscissa
angles or alternately revolving the pattern about the ordinate axis. In
actual usage this means the scanning will occur in the opposite direction

from broadside.

5.4 Appraisal of Results

The use of the TE1 0 and TE2 0 modes as described in the previous
sections appears to have a very limited potential for obtaining the H-plane
scan in large arrays. A major disadvantage is the early occurrence of a
large side lobe as the beam is scanned off broadside. Also the dual mode of
operation greatly increases the impedance matching problems for the slots
together with the associated feed networks.

Additional modes can be used as shown in reference (31). However,
still greater slot width is then required. This latter reference considers
some of the effects of amplitude errors. Also some coverage is given there
to the details of feeding multimode slots. With the limitations observed
for modal slot scanning no attempts were made to incorporate the multi-

terminal slot into the study of planar arrays. However, the planar array

analysis as given in earlier chapters can accommodate such use.
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APPENDIX A

Since G is a function of x~x', and y~-y', a simple change of variable
will allow direct integration with respect to two of the four variables involved
where G is independent of the integration variables. Use of this simplification

permits one to find the integrals Il’ 12, I3 and I 40 28 introduced in Chapter

II.
Forany m, M, n, N

Lmn (g )D+b (L—~1)D+a (T D+b (t-1))D +a

Illmn dy [
-1 -1 -1 f
(1 )Dy (L- )D (i )Dy (

1

cos b (y-(I—l)Dy)+ b (y -(1-1)Dy)]

—

cos E%(x-(L-l)DXH -Hg'(x“(l-l) DXZ] G(x=x', y-y') (A.1)

using the substitutions: (refer to Figs. A-1 through A-3)
M, Fm= ).+(M+m)(L-1)D

etz 2 -t . K
X-X ZA+(L )])X % vE
_ 2 -M&)+ (MFm) (&-1) D
M (x~(L-1)D )Fm(x'-(£~1)D ) =2u x'= T T X
X x ¥ M¥m
b %v+n';'}o + (NH) (I-1) D
y-y' = -O'+(I-i)D = —
T y y NTn
- b %u-N%aHN?n)(i-l)D
N(Y"(I-l) D )+n(Y"'(i"1)D )'—' ;V y‘ = — Yy
y y N+n

The Jacobian for this transformation of coordinates is:
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-z == Fig. A-3
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7= ox, x', v, y') _
(A, u, o, V)

~mht

-noH{N+n)n 0

4

2
(M+m) (N+n)

cosv cosuG(")H(L l)D o*i-(I—i)Dyg

ma a 0
7(M+m) 7(M+m)
-Ma a 0 0
7(M+m) 7(M+m)
bn b
0 0 7(N+n) 7 (N+n)
1 -bN
0 0
7(N+n) 7(N+n)
oH N+n)7 M)H-(M+m)1r
dv
=T -m)\
M+m T

do cosvcosuG(—H(L -f)D » 20+(I—1)DY—J J

dv

T -mw

T -mx M+m)7r

S

M+m)7

du &:osv cosu G(%H(L-l) DX,% o HI-i) Dy)]

do cosl/cosuG(-H( L-0)D , ho-l-(I-i)Dﬂ J
X T y

-J[sinM)H(—)M smmgcosv G(">t+(L-l)D —o+(I-1)D )]
-nH N+n)
M+m | . a b .
+ [ do Nf dv (-) smM>d-smm)Jcosv G(;;H L-l)DX,;o*i-(I—l)Dy)]d)l
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T

+
- f [sinMH( -)M msinm;}cosu G(%H(L-I)DX, %o+(I—i)Dy;J dr )J

0
0 NoHN+n)7r ( =
+
f f [(:—)M msinMMsinm)Jcosv G(—%H(L—!)Dx,go-lﬂ—i)Dy)
[?mM/H( M sin mq cosv G (%H(L—!)D ,]'O'o+(I-i)D ) |dA
x'm y
-nH N+tn)7
+
f (—)M msianl—sinm;i]cosv G(-%HL—I)D ,1')‘0+(I-i)D )
X7 y
0 o

+ Ein m+(-) Msin m{l cosv G(— A+ (L-t) D b o+(I-—1) Dy)

We then treat the integral w.r.t. do, dv in an identical manner to get:

2

LIMN (—)
Illlmn (Mem) (o) f f M it s1nm)t] [( )" " sinNo +s1nno}

a b .
G (-;M(L—l) DX, —7{0+(I i) Dy)

+ B_)M‘Fmsin M\+ sin m)t] [sin No—+(_)N+nSin no]G ( —%XH L—I)DX, %oﬂl-i)Dy)

—

—

+ + -b
+lsindot (M P sinma | (9N nsinNo+sinng]G(%H(L-I)Dx,;ﬁ(l-i)ny)
-

—

p— —

+ +
sind+ (N Psinma || sinNo+ (<) nsinn%G(%lHL-l)Dx,%o+(I—i)Dy)d)tdo

L u

(A.2)
Similarly for: m # M:

LiMn (1) D+b L-l)Dfa (i- Db (-1 D +a
Illmn= Lf f
2

(L1 (i=1)D_  (&=1)D

(I-l)D
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Eos%(y-(l-l)DyH -nb—”(y-(i-l )Dyﬂcos%(x-(L—l)Dx- %qu-l)DxElG(X-Xl Y'Y'ﬂ

(A.3)
LIMN

ab)2
oy (5) g
0%o

a b .
¢ G(=20+(L-Y) D, —;o+(1—1)Dy) .

—

(M Msin- Sinm;‘}Ein No+(-)™ Psin no]G<—3a+(L-t> D, 2o+(-1p)-
N T X'w y

— A
- +
sinm-(—)M msinm/\ (-)N nsinNo+sinnc;}G(% A+(L-4)D , -t-)o+(I-i)D ).
¥ U X 7 y
r _ als )
sinM-(-)M ™ Pgip m| EinNo+(-)N Usin no]G(%M(L-t)Dx, %oi-(I-i)Dy) dydo .
- -

(A.4)

For m =M, use substitutions (refer to Fig, A-4)

A
X_x' = %A‘*‘ (L-“)DX

=2 4—(L-0)D
xtxi=—H (L-0) X

- a -
2x = (M+7L),,

2x' = %(/J-X)" 2(L_l) DX

For m=M:

Fig. A-4.

2
e () f
12lnrm = (;m) l [ (A~ 7) cosMX! E—)N-I-nsinNo-Fsinn({]G(“%’H’(L-l)Dx."%oﬂl_imy)
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+ | sinNo+ ()N nsinnc]G(—g)H(L-l)D Dt
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+|(-)" “sinNo+sinno |G(ZA+(L-)D , -=o¢+(I-i)D )
u T b S y
-

-

2
+
+ |sinNo+ (=) Psin no G(%H) 9D, bcr+(I-1) y) Mdo . (A.5)
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By going through a similar procedure for I and I we get:

Limn (I D+b (LglD +a (I- )D+b (=)D +a
llmn I f j .
(1 )D 1 )

&IOS Eb:)—w(y"(l-l)Dy)-n—g(y'-(i-l)Dyﬂcos (iN;—W(X-(Z-'l)DXH"n%(X'-(l-l)D;lG (x—x! y—y'ﬂ

(A.6)
For n % N:
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If n=N then:
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a b .
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L B T X T y
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greatly reduces the size of the resulting matrix and one is left with an augmented matrix equa-
{ tion which directly relates the main mode illuminations to the main mode excitations. The

( entries in this augmented matrix include the effects of unexcited modes implicitly. The impor-
} tance of such a matrix in practical applications cannot be overemphasized. Deep insight was

© given to the mechanism giving rise to the so-called ''blind spot" phenomenon. Computer pro-
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grid arrangement and isosceles triangular grid arrangement.
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independent. These features should be contrasted to what is available for a study based upon
the infinite array assumption around a center element. Thus the matrix here represents infor-
mation about the physical dimensions of the array and the geometry of the array grid; such in-
formation would be particularly useful in designing array feed networks and computer controlled
phased arrays. Although the basic analysis can accommodate non-uniformly spaced arrays,
great savings in the computations cost is realized with uniformly spaced arrays. This includes
nonuniformly filled arrays of uniform grids.

A means for ''blind spot" control is suggested, based on the suppression of modes of
different parity along the direction of scan from that of the excited mode. Preliminary calcula-
tion did show the plausibility of this suggestion.

Studies of multi-terminal, multi-mode slot elements were made. It is shown that a limited
amount of scan in the H-plane can be obtained through the proper proportioning of the amount
of TE, and TE,, excitation. A means is required for keeping the time phase between the two
modes constant at 90°, To propagate the higher mode a larger slot is required. Also the
amount of scan possible is extremely limited. Scanning in this manner is also characterized
by the build-up of a large unwanted side lobe which for large scan angles from broadside may
approach the same magnitude as the main lobe but is located on the opposite side. It is possible
to scan a slot even less effectively by varying the relative time phase of the two modes. It was
concluded that scanning in the H-plane through the use of additional modes is not justified
within the objectives of the present study. No great saving of space would be accomplished and
much complication would be auded. Mode scanning in the E-plane appears even less feasible.
However, it should be mentioned that the planar array analysis described can be adapted to
the slot excitation of more than one mode.
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