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ABSTRACT

Progress in the study of absorption by molecular bands and attenuation due
to fog is briefly reported. Attention is directed to another factor in infrared
propagation and detection; the emission of 'sky noise' by the upper atmosphere,
which is as yet incompletely understood.

The detection of a pulse or arbitrary group of samples of an optical wave
form by means of a photon counter is analyzed by the conventional procedure of
statistical decision theory. The relation between the likelihood ratio and a non-
linear correlation function is derived. The parameters which determine the
likelihood ratio and the error probabilities are discussed.

The laser amplifier is investigated theoretically. The relations between
input and output wave forms are derived. The fluctuations of the output are deter-
mined in terms of the fluctuations of the input and those added in the amplifier by

spontaneous emission,
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I INTRODUCTION

An outline of the problem areas subject to theoretical investigation under
this contract and the significant ranges of the various parameters involved in
each case, as well as a tentative strategy selecting particular problems for
detailed study was presented in the Introduction to the First Interim Report
(Barasch, et al 1964).

Some results of this work were given in detail in that report as well as in
the subsequent Second and Third Interim Reports (Hok et al, 1964, 1965). In one
problem area, designated as the third problem area of the contract, and concerned
with highly selective, preferably tunable filters for use with photon counting receivers,
the work was terminated with the Second Interim Report. The conclusion reached
was that such filters are theoretically feasible, but the available materials and
technological state of the art do not justify, at present, attempts to develop such
filters with losses, dimensions, operating voltages, etc., reasonable for use in
a satellite communication system.,

In the first problem area, which concerns propagation, scattering and absorption
of visible and infrared radiation between deep space and points on the earth, thos
theory of such attenuation or extinction by various constituents, permanent as
well as temporary, has been reviewed and various empirical as well as computed
data obtained from the literature tabulated in the Interim Reports. This work is
continued in the present report. Some attention has recently been directed to
another phenomenon of interest in this problem area referred to as 'sky noise' , a
random emission of infrared radiation of uncertain origin, which has been found
a limiting factor in certain infrared astronomical observations. It extends into
the wavelength range specified for this project and will require some future

attention,
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The second problem area is concerned with the operation of an optical communi-
cation channel under conditions of very low signal level at the receiver. In the
previous reports we discussed the quantum-mechanical extensions of statistical
communication theory, both in general and for specific applications within the
scope of this project. The detection of consecutive samples of a modulated wave
form may be considered a string of binary digits, which at low power level will
contain a large percentage of errors. The transmission of information without
errors then becomes a problem of choosing an appropriate code. The present
report discusses a preliminary approach to the coding problem: the reduction of
the error percentage by the simultaneous detection of a multi-sample pulse or
code group by means of a photon counter. Conventional statistical decision theory
is used. The discussion of the remaining coding problem is postponed to a future
report.

As an alternative to the simple photon-counter receiver we have, in
previous reports, suggested a receiver using a laser amplifier as its first
component and discussed some of the properties of such an amplifier. In the
present report the fundamental theory of a laser amplifier is derived from quantum
mechanics, giving the basic relationships between gain and noise output, on the
one hand, and the operating parameters of the laser on the other. The effectiveness
of the amplifier as a filter against a broad spectrum of background noise radiation

will be considered in a future report.
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II. FIRST PROBLEM AREA: OPTICAL COMMUNICATION UNDER ADVERSE

METEOROLOGICAL CONDITIONS.
2.1 Introduction

The influence of the atmosphere on electromagnetic radiation propagating through
it is of interest not only in the area of space communication but also in astronomy
because of the limitations imposed on observationa of radiation from astronomical
objects. In evaluating these limitations and in the choice of sites for optical,
infrared, and radio observatories, the astronomer faces some of the same problems
that are under investigation under this project. A recent memorandum (Augason
and Spinrad, 1965) which is of considerable interest, reported the results of a
survey undertaken for the Astronomy Subcommittee for NASA. One empirical
fact emphasized in this survey is the 'sky noise' observed in the infrared windows
between the wavelengths of 1y and 13u. The origin of this noise radiation appears
to be uncertain at the present time. We have not so far devoted any attertion to
to this sky noise, and we are not ready to do so in the present report. Observations
indicate, however, that it constitutes an important limiting factor for communication
in the infrared range; for this reason we hope to investigate and discuss this subject
in a future report.

In the present report we continue the discussion of the calculation of absorption
by molecular bands, particularly for more realistic conditions, where atmospheric
composition density, pressure and temperature vary widely along the path of propa-

gation. Progress in the computation of attenuation by fogs will also be reported.

2.2 Absorption by Molecular Bands

The simple Lambert-Beer exponential 1aw of attenuation is useful only for mono-
chromatic radiation and homogeneous propagation paths (i. e. paths of constant

atmospheric composition, pressure, density and temperature). For other situations
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it has been necessary, as many authors have realized recently, to develop more
convenient formulations in order to predict attenuation. We shall discuss some of
these approaches briefly here, and indicate the extent to which they promise to be
applicable to situations of interest under this contract. Since the indicated com-
putations are extremely lengthy, we have obtained no results as yet. After deciding
what situations are of most importance, we hope to have predictions for the Final
Report, or at least to quote results of other workers which may be pertinent.

It has proven fruitful to introduce the band model' and to deal with averaged
absorptances over a spectral interval larger than the width of a molecular absorption
band, thus eliminating the computation difficulties associated with the rapidly varying
absorption coefficient derived from considering individual lines of the band. In con-
junction with the band model approach, a method of introducing the variation of
atmospheri¢ properties over the propagation path is needed. Plass (1962) has
derived an 'equivalent path' concept. Using this concept and some band parameters
arising from the theory of molecular spectra he (Plass, 1963) has computed and
tabulated a set of transmittances. Since no intermediate steps in the computations
are reproduced or tabulated,tliese computations cannot easily be extended to situations
other than those for which hig results are tabulated. He d eals with the effects of

1

CO2 bands in the wave number range 500 - 10,000 cm™ and of water vapor bands

(using both wet and dry stratospheric distributions) in the range 1000 - 10, 000 cm—l,
tabulating transmittances averaged over 50 em~! regions for paths originating at
altitudes of 15, 25, 30 and 50 km, fraversing the entire atmospheric thickness at
initial angles with the horizontal from 0° to 90°.

Because of the paucity of intermediate tabulations, the results of Plass (1963)
cannot be applied to transmission over arbitrary slant paths wholly within the atmos-
phere. For ground-to-aerospace predictions, they require supplementation by a

method which treats the segment of the path between ground level and the initial
altitudes appearing in the tabulations.
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Such a method has been constructed by Zachor (1961) and is detailed in that
reference. He starts with band models which contain certain parameters. These
are evaluated for the bands important at each wavelength region, by fitting laboratory
data to the models. Zachor tabulates the appropriate model and parameters as
a function of wavelength, essentially from 1. 4u to 10. 8u, for both COy and HyO.

He invokes the Curtis-Godson approximation to for mulate his models in terms of
mean concentrations and pressures over the propagation path, supplying instructions
for obtaining these means associated with arbitrary slant paths (within some limits
of location, length, etc). Summer and winter distributions of water vapor both
enter the tabulations. Although much laborious computation would be involved, the
material of Zachor (1961) is a satisfactory source for a method of predicting COq

and water vapor attenuation over paths wholly within the atmosphere. It may, of
course, be used for the missing lower part to join with Plass' results in a prediction
for ground-to-aerospace applications .

All of this material deals only with CO2 and water vapor. It is suggested that
transmitter sites be chosen to avoid sources of atmospheric pollution, since
adequate predictions of attenuation due to them are not readily feasible. Alter-
natively, it will be advantageous to operate within spectral regions which, as far
as the spectra of these contaminants are concerned, lie in 'windows!'.

No quick or reliable estimate of attenuation due to minor but permanent con-

situents of the atmosphere is possible. This question requires more thought.

2.3 Attenuation by Fogs

We are in the process of deriving a new formulation, which should permit us
to predict this attenuation while avoiding the well-known computational difficulties
associated with Riccati-Bessel functions of large complex agruments. These dif-

ficulties would arise if the Mie theory were used to derive the extinction cross section

5
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of the fog droplets. Instead, we are attempting to adopt a suggestion of van de
Hulst in starting with an empirically fitted expression for the forward scattering
amplitude valid for real index of refraction. A process of analytic continuation

to complex indices is being performed; the resulting expression will be introduced
into the forward scattering-extinction theorem to yield a form for the extinction
cross section valid for larger droplets, and for the complex indices of refraction
corresponding to the infrared wavelengths in which we are interested. This form
should be amenable to computation of the extinction coefficient of the fog by
integrating the cross section over the size distribution of the droplets. Results

of either the derivation or the final computation will be reported when available.
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IIT. SECOND PROBLEM AREA: INFORMATION EFFICIENCY AND CHOICE

OF DETECTION SYSTEM
3.1 Introduction

The operation of an optical communication channel with an average signal
power at the receiving end which is smaller than one energy quantum per sample of
the modulated light wave depends, as far as the maximum rate of transmission of
information is concerned, on the choice of the system of coding and modulation at
the transmitter and on the successful detection and decoding at the receiver. In
previous reports on this problem area we have primarily been concerned with the
sample by sample detection and with the information and uncertainty, respectively,
connected with each output sample after detection. The question of whether or
not practically realizable coding-decoding schemes which can cope with the very
large frequency of errors at this signal level are likely to be found within a
reasonable time, has so far been left open.

In the next section we shall consider an approach to the coding problem in
two successive steps. Essential in all coding is the introduction of redundancy
into the signal; redundancy structured in such a way that the efrors can be filtered
out by a decoding process, When the errors are very numerous, say more than
500/0 of the digits, a very large redundancy is required. It is suggested that as a
first step redundancy is added in a rather unsophisticated manner in the signal
detection process itself, reducing the original number of independent samples to a
smaller number of output digits with a lower percentage of errors, This string of
digits will then be a more tractable input for an error correcting decoding process.
The first step is approached as a conventional problem in statistical decision theory,
modified for the quantum detector, A closed-form solution for the new error frequency
has not yet been found, but a discussion of the parameters on which the solution
depends leads to some interesting general conclusions,

In the light of these conclusions and the practical difficulties of designing narrow-

band optical filters, as previously reported, the high efficiency of a simple binary
photon counter channel suggested by Gordon (1962) looks more and more like an

illusion, The simplest way of reducing the relative error rate is to reduce the
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bandwidth (or increase the transmitter power); then the number of photons per
sample increases to the point where Gordon's analysis indicated that other types of
channels promise higher efficiency.

For reasons of this nature we are continuing the theoretical study of an alter-
native type of channel, where a laser amplifier serves as the first component in
the receiver, serving both as a narrow noise filter and for the purpose of raising
the signal power to a level that can be more efficiently detected. We feel that a
literal interpretation of Gordon's graphs of the channel efficiencies is biased in
favor of the photon-counter channel, because the noise factor of the subsequent
amplifier is not accounted for, while the laser amplifier noise is included. Because
of the difference in signal levels, the noise in the post detection amplifier will neces-
sarily affect the photon-counter channel, which will at least tend to even out the
relative efficiencies of the two alternatives.

In Section 3. 3 we present an additional contribution to the theoretical evaluation
of the performance of a laser amplifier, giving general relationships between input

and output signals as well as the noise fluctuations added by the amplifier,

3.2 Relations Between Detection and Coding in Optical Channels

In this section we shall examine the basic problems connected with the operation
of an optical communication channel with a very low received signal level, on the
average, less than one quantum per pair of samples.

In order to state the problem in simple idealized terms we shall assume a
photo-electric detector functioning as a quantum counter. Its quantum efficiency
may be taken as unity by a compensating increase in the predetection attenuation of
the total incident radiation,

As a first alternative the following straightforward approach may be considered,
Each radiation mode or pair of samples is detected consecutively; the result is a
sequence of binary digits with a large number of 'errors' caused by the quantum-
counter statistics. The optimization of the rate of transmission of information
for given average transmitter power and the elimination of errors requires first,

operation in a highly unsymmetric way, the 'on' digits being much less frequent than

8
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the 'off! digits. Secondly, the use of a highly redundant, very sophisticated code
which permits the recovery of the information content without errors,

This approach meets with at least two important practical difficulties, In a
physical transmitter not only the average power, but also the peak power is
restricted. The realization of the optimum pulse energy for given average power
may thus not be possible. The second consideration is that the design of error
correcting codes for highly unsymmetric channels with very high error frequency
is a largely unexplored field of considerable complexity.

Another alternative approach is to reduce the coding difficulties at the expense
of a more sophisticated detection process. Each digit or unit at the output of the
receiver and the input of the decoder may be obtained by processing collectively a
group of samples rather than a single pair in the receiver. In this way the relative
error frequency can be reduced, at the cost of a considerably reduced number of
independent code digits. Theoretically, this simple way of introducing redundancy
is wasteful of channel space and thus inferior to the first alternative, but this
sacrifice may be worth taking in order to make the coding problem more reasonable,

The question may then be asked whether or not the equivalent result could be
obtained simply by reducing the bandwidth of the signal and thus increasing the
energy per sample, In a corresponding classical case, the detection of a completely
specified signal in white Gaussian noise, the answer is affirmative. The statistical
detection theory shows that the performance, in terms of error probabilities, of
the ideal receiver depends on only one parameter - the energy of the signal divided
by the spectral density of the noise power. It is consequently independent of whether
the energy of the signal is concentrated in a narrow frequency band or has a wide
spread in frequency.

We shall in this section try to answer this question for a simple model of an
optical channel. The conventional procedure of statistical detection theory (Wald, 1950;
Peterson, et al 1954; Van Meter et al, 1954) will be followed as closely as possible
in the analysis of the detection of a completely specified signal (except for phase)

by a receiver using a pheton counter. The elementary task of the receiver is to



THE UNIVERSITY OF MICHIGAN
6515-4-T

make a decision whether or not a signal has been reaching the input terminals during
a specified time interval T. The signal, a single pulse or code group of samples,

is known to be an attenuated replica of one out of an ensemble of completely specified
classical signals emitted by a distant transmitter. In order to simplify the first
formulation of the problem we may temporarily consider this ensemble as having
one single member. Later on, the results obtained may be averaged over a more
realistic ensemble, taking into account fluctuations in the carrier wave generated

at the transmitter, variation in propagation characteristics, etc.

The signals from the distant transmitter with added background radiation produce
certain expectation values of the field variables at the receiver. These time-varying
functions in the time interval T form an ensemble which we shall refer to as
pre-observation space. This space is transformed into observation space by the
photon counter, which yields a classically observable stream of electrons. An
optimum decision rule built into the receiver projects the observation space into
decision space, which has only two elements; 'yes' and 'mo' . (See Fig. 3-1.) There
are at least four sources of noise and consequently output errors: 1) the background
radiation, represented by the noise ensemble 5N in the figure, 2) the uncertainty
connected with the observation of the field according to quantum mechanics, i.e.

into observation space &

P o’ 3)
dark current in the photo-cell, 4) amplifier noise. In the idealized model considered

the random projection of pre-observation space &

here we shall include only the first two, although the different statistics suggest that
accounting for (3) and (4) by an equivalent increase in (1) is not justified.

First the points P in * p and O in ‘io must be assigned appropriate probabilities.
If a point P is produced by thermal background radiation alone, each sample in
the time interval T may be assigned a Gaussian probability density (or a Gaussian
P-representation in Glauber's analogous quantum formulation) with zero mean and
the variance appropriate to the temperature of the background. In the presence
of the signal, the mean of the distribution of each sample is displaced by the expected

ol

value of the signal sample. In the projection of a point in ( p to a point in & each

0)

10
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pair of time samples of the former function changes into a time sample of the
latter according to a Poisson probability law.
Let P, be the value of the field variable at the ith sample and the number of
samples
2n = 2 (f,-£))T (3.1)

e., twice the bandwidth times the length of the observation interval. The corres-
ponding samples of the signal si are all known, The variables P, and s, are so
normalized that pi2 and si2 represent the instantaneous power of the respective
radiation incident on the photon counter. It is convenient for the following analysis
to reduce the number of sampling instants by one half and specify envelope and
phase at each time

=P + i = - <.< .
b iccoswt Pissmwt Picos (wt (ﬁi) 0<ign (3.2)

s. =8, coswt+S, sinwt = S.cos (wt-6.) 0<i<n . (3. 3)
i Tic is i i

This change of variables for the Gaussian distribution leads to the following
distribution in pre-observation space in the absence of a signal
Q P dP, p? |
i

n
dFg (P, 0) = TF — i

(= )
N eXP TN (3.4
where N is the noise variance.

In the presence of a signal, the Guassian variable of mean zero and variance
N is p-s; the corresponding distribution is, after the above transformation of
variables:

d

d@ Pi P, )
N Xp

dFs (P, §)= ” 5N

_Liip o)l
{ 2PiSicos((§i 2L

(3.5)



THE UNIVERSITY OF MICHIGAN
6515-4-T

The subscripts S and S1 refer to subsets in the signal space ~ ., the former

being the null set, noosignal, and the latter containing the completelir specified
single signal.

The operation of the photon counter depends only on the power, not the
phase of the incident radiation. The last two expressions may consequently be
integrated with respect to @i before the observation space distribution functions

are evaluated.

n f ( PidPi
dFSO(P = H exp ; ——ﬁ i N (3. 8)
i=0 (
(2
Cug) & | B PS Pdp
argy(P= e - = | ]| expé_ 51—\1% N/ % (3.9)
. o} i=0 )

where NO is the noise power per cycle bandwidth, i.e. the spectral density of the

noise. L(8) is the total energy of the signal, evaluated from the average of the

signal power

n T,

=1 <12 1 l ] L(S)

S=2 0,35 § / S(t)cos(wt- @) dt = (3.10)
i=1 0
n
L2k,
2 8, = (£, fl) L(S) . (3.11)

The symbol Io(x) denotes as usual the zero order Bessel function with imaginary
argument, i.e., Jo(jx) .
Each sample pair (i) may be considered as an independent travelling wave

mode of the radiation field. The expected value of the number of quanta in the

i 2
mode is 1 Piz'r Pi2 No Pi
mizimzﬁ.ﬂ)zz_ﬁ.u s (312)
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defining the new parameters u, average number of thermal photons per mode, and
7, the time between t and t, ny or the reciprocal of the bandwidth,

Let r, be the number of photons counted by the detector in the ith interval.
With the Poisson distribution for r, given m,, the observation space distributions
are obtained as follows:

(00} (00) I. T

dmi m; m 1 My o i
PSO(I‘)= dFSO(ml)' Pmi(l‘):ﬂ o exp (- s ). ?-:,L ‘e =] | T
i i i(14u)
0 0
(3.13)

a well known result for thermal radiation.

In the presence of a signal

(00) / 2 \ ,0
| 1 P S
5,(1)= dFsl(m)P (r)=]] I exp; - —ﬁ -1 (—)
0 {
( . +u; ml;i
exp{—m. — = (3.14)
A TTIRE
L b1
After the substitutions
m (I4+u) P,
NCIS SR SR (3. 15)
H 2N
2
Bz- . (3.16)
=Y T ON(1H) :
each integral in (3. 14) can be written
r rQ 2 r
2 [ -
\Q =4 _HK — L e X I (2Bx) 2r+1 “I‘+l F(r+1;l;32) , (3.17)
(1+u) J (lﬁz)

14
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where the function F(a, b, z) is the confluent hypergeometric function (see Watson,
1952, p. 395). For b = 1 this function may be expressed in elementary functions

and finite polynomials

r
1 d,r
F(r+l;1; 9)= = — (y ey)=Z ('y)e’Y ) (3.18)
r! r r
dy
Consequently we may write the distribution in the presence of a signal in

the form

MY, i
T 1
Py (m=[ e -z, (v) —F—

1 A (Hu)riﬂ (3.19)

The likelihood ratio for any point in observation space represented by a radius
vector T is accordingly
Pg (r
Sl( ) ‘: \

£(r) = PSO(r) = exp i—u >1 ‘Yi% TIT Zri('yi) . (3.20)

Here v; and u are known characteristics of signal and noise normalized with
respect to photon energy as specified by (3. 16) and (3. 12). The components of the
random vector occur only in the polynomial Zri('yi) .

For the purpose of changing the product into a sum we calculate the logarithm

of the likelihood ratio

log if_f(r)‘_' = - ‘ N 'yi+Z:' log Zri('yi): -Ata (3.21)
i i

The first term on the right is independent of r; it may also be written in
previous notation
G

.
N, L

(3.22)

15
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The second term

a =['{ ‘log Zp, () (3.23)
i
is clearly a monotone function of the likelihood ratio and can be used as a basis
for a decision whether or not the observed point in observation space indicates the
arrival of a signal. Unfortunately this function is rather difficult to manipulate
in mathematical operations. Its most important properties, however, are easily
stated. It is real, positive and monotone increasing for all finite, real and positive
values of r and 4. This follows from the fact that only positive exponents occur in
the polynomial, which has only positive terms; the first term is 'yr / r! and the
last two ry+1. It has the form of the Laguerre rth order polynomial of —7/2,
divided byff . In the limit of small signals o is simply the sum of r.Y and
represents the first order correlation between these two variables. In general, «
is evidently a certain nonlinear measure of such correlation between the vector r
and the a priori known signal envelope represented by the samples Si'
A very large class of decision rules including Bayes and Minimx rules

can be given in the form

0 =

r _ (3.24)
D {j(r)qc}- 0

where the threshold value of )‘c of the likelihood ratio may be selected by minimizing
a risk function of some kind. Since the last term of (3, 21) is a monotone fundtion of ),

an equivalent statement of the decision rule is

D _a>,acJ =1 , (3.25)
if
L(S) U
- =, B4
1 gXc N0 utl % (3.26)

16
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In the simple case of a classical detector of a signal in the white Gaussian
noise the variable corresponding to « is the linear correlation between the

receiver input and the known signal; then a matched filter constitutes a perfect
analog computer, producing at its output a current or voltage proportional to the
time integral of the product of the two. In the case of the quantum detector con-
sidered here, the analog computation of an acceptable variable on which to base the
decision is considerably more complicated.

By restricting the class of signals to be considered, the problem can be simplified.
Let us limit the choice to binary signals; each sample Si has only two possible

values; zero and S, , and let the duty factor

K
n=1n/n (3.27)

be the ratio of the number of non-zero samples n, to the total number of n samples

in the observation interval T. Disregarding the obvious practical obstacles we can

in principle obtain o from T in the following way. The receiver input (; ) is first

transformed by a nonlinear transducer without energy storage, designed to give an

output proportional to log Z,.(%.). Since all nonzero values of the signal are the

same, there is no need to compensate for the nonlinearity in S. The transducer

output is fed to a filter matched to the signal, in principle a tapped delay line, giving

a result proportional to . The final component of an automatic receiver is a

trigger circuit that checks the output of the filter at the end of the observation interval

T and produces a unit digit - itithis output exceeds the' value calibrated to.cor- ...

respond to the threshold value @, azero digit otherwise,

The performance of a receiver operating with the decision rule (3. 25) is
evaluated in terms of the relative frequencies of erroneous decisions, 'misses' as
well as 'false alarms' . To determine these quantities it is convenient to derive the
dstribution functions of {(r) or its counterpart ofr), from which the 'receiver
operating characteristic', the ROC-diagram can be plotted (Fig. 3-2). From this
diagram the error probabilities are easily obtained for any chosen value of the

threshold ratio AC .

17
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The task of deriving the distribution functions of « in the absence and presence
of a signal, respectively, has not been completed at the time of writing., Since
« is the sum of a number (nk) of independent random variables with identical distri-
butions, the method of characteristic functions offers a reasonable approach to

this problem,

o - { — "k
¢SO(T) - f%i exx>2‘3 7 logZ ( vk)}l’so(r)“l3 (3.28)

is the characteristic function in the ahsence of a signal; the corresponding expres-
sion with Pg 1(r) as weighting function yields the characteristic function when a signal
is present. The inverse transformations give the distribution in respective cases.
For reasonably large n another possible approach is to calculate the mean and
variance of @ by elementary methods and then to approximate the distributions by
Gaussian functions according to the eentral limit theorem,
The Gaussian approximations permit some general conclusions. Let the two

distributions have means m_ and m_ variances 02 and 02 respectively. Then

1 2 1 2
(ar—ml)2 (a/—mz)2 o
log /(r) = 5—- —5 —+lg— =a-A . (3.29)
201 202 02

Since the equality must hold for all values of o, we see immediately that

Q‘z C!z

% _ -9 (3.30)
2 2 2 2

91 49

2 2

o =0 . (3. 31)

Consequently, as long as « is chosen to be a linear function of log ﬂ(r) and nk
is large enough to make the distributions approximately Gaussian, the latter two

must have the same variance, Writing o = 0, = g, we obtain the additional equations

1 72
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20(my-m;) = 20%0 (3. 32)

2
mg -m? = 20°A (3. 33)

or

m1=A—%c72 , (3. 34)

a1 2
mz—A+§0 (3.35)

My and 02 must be calculated, before these

equations can determine the distributions. For instance,

One of the three quantities m

o r
m_ =Eq ()= v log Z_(v) ¢ . (3. 36)
S Lo k
1 7% nk -} T (1 )r+1

In the small-signal limit, where
log Z =1y , (3.37)

m1=n.ku'y=A. (3. 38)

and both distributions must degenerate to a §-function at unity likelihood ratio in
order to satisfy the equations (3. 34) and (3. 35). The distribution of «is under
these circumstances independent of whether a signal was present or not. Evidently
the nonlinear character of the correlation operation indicated by the right-hand side
of (3.23) is essential for the detection, Because the logarithm increases more
slowly than linearly with its argument, m, is at larger signal values depressed
below the value A and the difference between the abscissae of the peaks of the
probability densities my-my . permits detection by a decision function such as
(3.25).

Since the statistics of the likelihood ratio, represented by the characteristic
functions (3.28), means and variances (3. 34), (3.35) and (3. 36), have not been
evaluated in closed form or numerically at the time of writing, no complete

discussion of the error probabilities under various conditions can be given. It is
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only possible to point out the independent parameters on which the solution of the

detection process depends and make comparisons with the classical detection problem.
After the choice of binary signals only, the independent parameters reduce to

three, which may be taken as u, A and n,, as can be seen from (3. 20) to (3. 22)

and the later definition of n, (3.27)

NO
b= (3. 39)
_ _ L)
A=u ’Yk-nk-w (3. 40)
n, = nfy-f;)- T : (3.41)

In the classical case there is only one parameter, A, withAw omitted in the
denominator. Only the total signal energy and the spectral density of the noise
matter. Whether or not the signal energy is spread over a long time and wide
frequency band is of no consequence for the error frequency in the optimum
receiver,

The photo detector does not support corresponding statements. The spreading
of L(S) over a large number of samples affects the sample power Sk (i.e. 'yk)
which is one of the parameters in the nenlinear correlation operator (3.23). When
the available signal energy is low, it is advantageous to concentrate it in a few
samples in order to reach a more favorable operating range of the nonlinear
correlator,

Suppose that the maximum pulse energy L(S) as well as the average power
L(S) / T are given, so that T cannot be independently varied under optimum
conditions. Then it is clear from the analysis that the ratio of duty factor to
bandwidth which gives a certain oy is immaterial; it will net affect the error
frequency.
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In other words, in order to reduce the relative error frequency, it is equally
favorable to reduce the bandwidth as to use a wide-band system with a large number
of independent samples per pulse or unit code group.

These conclusions are arrived at under the assumption that a strictly binary
pulse code is used; for each consecutive non-overlapping interval T a yes-no
decision is made, giving a binary digit with a certain reasonably small probability
of error. The output of the correlator, however, contains potentially more in-
formation than one bit per pulse, minus the equivocation, because it is continuous
in time, and in a broadband case the times when its peaks occur may be well
enough defined to accommodate a pulse-position modulation rather than the simple
binary pulse-code modulation, Since a pulse-position-modulation would have
higher error frequencies again, this defeats the purpose under discussion; reduction
of an inherently too large error frequency. The higher error frequency follows
of course from the fact that the same data must serve as a basis for a decision
between an increased number of alternatives.

Returning to the binary channel, let us consider the choice of the threshold
condition )\C. If the transmitted signal is symmetric, P(1) =P(0)=1/2, also the
error probabilities should optimally be symmetric, i.e. the rate of misses equal
to the rate of false alarms, In the Gaussian approximation (nk >> 1) the probability
density curves are symmetrically placed with respect to the line ozc= %(ml+m2);
this threshold value for the decision consequently leads to equal error rates (Fig. 3-3).

Maximization of the rate of flow of information for given average transmitted
power, however, leads to an asymmetric signal, P(1) << P(0), unless the channel
is operating at nearly classical power levels. Under this condition also the receiver
threshold value should be simultaneously optimized, since otherwise the false alarm
errors would swamp the transmitted pulses, This optimization requires both a
complete quantitative solution of the detection problem and a working knowledge of
practically realizable coding procedures for asymmetric binary channels. In

the absence of both, we have to postpone further discussion of this subject.
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FIG. 3-3;: PROBABILITY DENSITIES OF CORRELATION OUTPUT
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Other essential steps in making the statistical detection analysis provide
practically valuable guide lines for the design of optical communications involve
the removal or reduction of some of the idealization and simplification of the
theoretical model analyzed. The first consideration should be to account for the
addition of noise in the processing of the output of the photocell, primarily amplifier
noise, Whether the photo current is amplified by an electron multiplier or by any
other type of amplifier, noise will necessarily be added, which will affect the
likelihood ratio and its distribution functions as seen from the amplifier output.
The performance of the receiver will consequently be poorer than indicated by the
idealized theory presented above. The resulting increase in error frequency may
necessitate operation at so much higher pulse energy that other types of receivers
such as superheterodynes, laser amplifier systems, etc. are preferable, since
theory indicates that they are more effective at a higher energy per sample (Gordon,

1962).

3.3 Quantum Statistics of Laser Amplifiers

3. 3. 1 Introduction

Quantum amplifiers have been studied by several authors (Shimoda, 1957: Louisell,
1961, Gordon 1963a,1963b). Shimoda et al (1957) have presented an analysis of the
amplification and fluctuations of the number of photons, Louisell et al (1961) have
studied the amplification and fluctuations of the field amplitude, as well as the
number of photons, and have derived expressions for the probability distribution of
the field amplitudes at the output, for various forms of input fields., The model
used by Louisell (1961) and Gordon (1963a) is constructed in analogy to the classical
model for parametric amplifiers. In their analyses of the statistics of the field
amplitude, the amplifier is characterized by a single parameter, namely the gain.

The present analysis is aimed particularly at the travelling-wave quantum
amplifier although the model can be easily adapted to other types of amplifiers.

For the sake of manipulative ease, we assume that the atoms of the amplifying
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medium (active material) have sharply defined energy levels, This restriction will be
relaxed in subsequent work. Both the radiation field and the active material are
described in terms of density operators. Thus, we are able to determine the field
density operator at the output for an arbitrary input. The amplifier is characterized
by two parameters; the gain and the population inversion. For quantum amplifiers
at infrared and optical frequencies, the lower level of the active material is not
empty. A ratio of the population of the upper level to that of the lower of the order
of 0.9 may not be atypical. It is of importance therefore, to take explicit account
of this fact. In addition, the case of an amplifier with time-dependent populations
of the levels of the active material can be studied by a straightforward generalization
of the present treatment,

In previous studies of a binary information channel (Hok et al 1964, 1965). with
a laser preamplifier, we have used the results of Shimoda (1957). In this respect
the present work constitutes a justification of those results which are also obtained
as a special case of this analysis. As long as an information channel is based on
detecting the number of quanta, the aforementioned considerations are justified.
However, for a channel based on measuring the field amplitude and its phase, one
would need to know the effect of the amplification process on these quantities. Due
to the quantum nature of the processes involved , the statistics of the output and the
noise performance of the device will depend on the particular variable to be measured,
the state of the input signal and the characteristics of the amplifier, By way of
contrast let it be mentioned that when quantum effects are negligible, the characteristics
of the device alone should determine the performance of the channel independently
of what is measured, Lastly, in the light of Glauber's work (1963a, 1963b) it is of
importance to examine the question of coherence in connection with information
channels and amplifiers.

3. 3.2 Formulation of Problem

The physical problem we wish to study can be represented schematically as

in Fig. 3-4. Electromagnetic energy carrying information enters the input of a
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—L=cT —¥
pR(to) ~~—> pR(t)

to T+t
(0]
t, t+T

FIG. 3-4

laser amplifier. The state of the input field is represented by a density operator
pR(to) and the state of the output by pR(T+t o)‘ The length of the amplifier is L.
The signal enters at time to and leaves the amplifier at time T+t . Neglecting

dispersion, we shall have
L=cT , (3.41)

where c is the speed of light. Knowing the density operator of the signal constitutes
as complete a knowledge of the state of the signal as is allowed by quantum theory.
Thus, the problem we wish to solve is to determine pR(T+to) in terms of pR(to)

and the characteristics of the amplifier. The latter is an assemblage of material
particles grouped in atoms (or molecules). It is assumed that the atoms do not
interact with each other although they may interact with external fields such as
pumping fields. Let HR be the hamiltonian of the radiation field, HA the hamiltonian
of the particles and V the interaction between the two. The total non-relativistic

hamiltonian then is

2
e e
gt T % p A% > =2 A% 19) | (3. 42)
v m C — — PN 2 —_ -
o — o 2mcc

where the index o refers to the oth particle, e and m_ are its charge and mass, and
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If , pcr its position and momentum operator respectively. _xA_x(I_‘) is the vector
poteIRial. (Here we need consider only transverse fields.) Let ! Uy (r) - be the
orthonormal, complete set of eigenvectors appropriate to the problem. These

vectors satisfy the equations

A gk(g) =0, (3.43a)
U2
&gk(z% -C—g gk(g) =0, (3. 43b)
where
w, =ck . (3. 43c¢)

k
For the applicational environment pertaining to the present study, the appropriate

set of eigenvectors will probably the the free space eigenvectors . These are

_3 il
U (r) =(27) /ngelk o (3.44)

where the index k is assumed to contain the polarization index as well. In terms
of these eigenvectors, A(g) can be written in the form

‘L

- 1 ( “:
Alm=c > (z%k)/ziakgk(z)ﬂ;gk(z)i , (3. 45)

where 2 and al'{" are the usual annihilation and creation operators, obeying the

commutation relations

EVEIEE (3. 46a)

and
o Lo ) 70 (5. 460)

Processes in which more than one photon are simultaneously emitted or absorbed,
or processes in which photons are scattered éo not have any importance in laser
amplifiers. At least one wishes to construct an amplifier satisfying this requirement.

Thus, we may dispense with the term 1}_2_ . The total hamiltonian now is
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R,
H=H +HA+‘ ) dk(ak+a_l"{') , (3. 47a)
where
B fw (ata + 3) (3.47b)
A S T :

k
and dk is a particle operator defined by
e 1
.~ o ,h /2 )
4= wm b)) B &) (3. 47)
o O

In defining dk we have used the dipole approximation and have replaced elk. B by 1.
Hence, dk is the dynamic electric dipole moment operator, Since the atoms are
uncorrelated, the operator d.k (which is the collective dipole moment) can be written

in the form

N, §))
4= > ko , (3. 48)
¢

where the summation is over all atoms. Strictly speaking, dk is the projection of
the dipole operator on the polarization vector & -

The problem has thus been reduced, as usual, to the interaction of an assemblage
of harmonic oscillator with an assemblage of atoms. To keep bookkeeping complexity
to a minimum we shall consider a single mode of the field and study its interaction
with the atoms. The generalization to more than one mode is straightforward .

Dropping the index k and the summation over k, we now have
R _A
H=H +H +d(at+a), (3. 49a)
and

HY= iy (ata+ % ) (3. 49b)

where (y is the frequency of the oscillator.
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3.3.3. Time Evolution of the Density Operator

Let p(t) be the density operator of the compound system (harmonic oscillator
plus atoms) at time t. The density operator at a later time (t+r) is given by

(Margenau and Murphy, 1963)
plt+r)= U(r) oYU () | (3. 50)

where U(7) is the time evolution operator for the system and is given by

- -;;1 Ht
U(r) = e . (3.51)
Introducing
A
n gl (3. 52a)
and N
V=d(a +a) (3.52b)
we have
H=H1%V . (3.52¢)
From usual perturbation theory (Messiah, 1964) we have
/,'r
U(7)=U(°)(-r)—ﬁ s U-s)v 1%g)-
"0
T SQS
- —;- dsj ds' 0 -5 v (s-sn vl - -
h 0 0 (3.53)

Retaining terms up to and including the second order in V will be sufficient for our
purposes. The operator U(o)(’r) is defined by

1) =6 BT (3.54)

For the sake of brevity let us also introduce the operators
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T
whn = -1 450" (r-s)vu's) | (3. 55a)
and 0
T /4S
wn) = - 155’ ds| ds'U(O)(T—s)VU(O)(s—s')VU(O)(S') , (3. 55b)
00
in terms of which we have
) =0 Wy ew ey (3.56)

where terms of order higher than the second in V have been neglected. Combining
now (3.50) and (3. 56), we obtain

(1)

(

) sy

(0)+(

o0 oW w Doy, 3.59)

where we have again neglected terms of order higher than the second in V.

The density operator p(t) represents the whole system. Now, as the wave
progresses from left to right in Fig.3-4, it finds itself in an environment of new
atoms each time. The populations of the various levels of the atoms are controlled
from outside by means of pumping. Of course, this is true only if the field is not
so strong as to saturate the amplifier. With this understanding the level populations

will be assumed constant throughout the amplifier. Then, we may write

o®=p" (O (1) . (3.58)

This does not mean that field and atoms are constantly uncoupled, In fact (3.57)
describes precisely the coupling between the two. The operator pR(t) describes the
field at time t, while pA(t) describes the state of that part of the amplifier that has
not interacted yet with the field.
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Our ultimate goal is to describe the field after a certain amount of amplification.

Thus, let us define the reduced density operator (Fano, 1957)
R
P (t)ETrAp(t) , (3.59)

where Tr A means that the trace with respect to atomdc variables is taken. This

A
definition is consistent with Eq. (3. 58) since Tr AP (t)=1. To calculate the operator
pR(trI-'r)=Tr Ap(t+'r) we shall use (3.57). To this end, we consider the representation

“'ny i, . where

a+afri() =n/n> , n=0,1,2,... (3. 60a)
and

H* i -E, i, . (3. 60b)

In a laser amplifier, the amplification is due to transitions between two particular
levels of the atoms. Let us assume therefore, that HA has only two eigenstates / 1>
and 2) where E_>> E_ . The frequency of the transition /2> > 1 1> will be denoted

271
by w . That is
0
EZ-E1
0 = - (3.61)

Let, furthermore, Nl’ N2, N be the number of atoms in the lower state, the number
of atoms in the upper state and the total number of atoms, respectively. Then, we
shall have N=N1+N2. It will be convenient to introduce the probabilities for an
atom to be found in the lower or upper state. These are given by the diagonal

matrix elements of the operator pA in the representation i/ 1>} . Thus we have

N N
A N A Ny
P11” N and = . (3. 62)

In the calculation that will follow, we shall neglect the off-diagonal matrix elements
of pA, This is the random phase approximation and will be satisfactory as long as

we to not have any appreciable correlation between atoms. Moreover, we assume

that the atoms do not exhibit a permanent electric dipole moment in either of the
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two energy eigenstates. This means that d, and therefore V, will not have diagonal
non-vanishing matrix elements in the representation e . When this fact is

A
combined with the neglect of the off-diagonal matrix elements of p , one finds

that the Tr, of the second and third terms in Eq. (3. 57) vanishes. Thus we have
o (tn)=Tr , ltir)=Tr, Uk 0 U e Py P oW )

©On ¥ oW wPim oo Ao v |

2 (3.63)
is an operator in radiation-field space.

Considering an arbitrary matrix element in the representation ‘ | n) * we obtain

+U

where we have used (3. 58). The operator pR

plljm(tﬁk {m )Tr Ap(t+'r) / n>= (m r"I‘rAi\U(O)(.T)pR(t) pA(t)U(O)'F(THw(l)(q—) pR(t) pA(t)W(l)"'('r)+

+0%n a0 ow e @neto oo™
(3. 64)

The calculation of the right-hand side of this equation is rather straightforward
although somewhat lengthy. It will be presented in a future report. The result is

pmn(t-f'r):e-i(m_n)wr (t)-'T i(m+1)K +(n+1)K)+c (mK+nK ) I

R ; -— R
pmn(t) +'7'b2~/mn p(m-l) (=) t)+rb / (m+1)( n+1) p(

m+1)( +1)
(3.65)
where
cj=p§ leI)Zﬁ'Z , j=1,2, (3. 66a)
b.=27c, §(w-w )=27rﬁ_2pj.-\, d l 6 (w- w) (3. 66Db)
il 0 ) %1
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and

K=1i +7 6(w—w0) ) (3. 66¢)

(o)

The symbol P denotes the Cauchy principal pact and K is the complex con jugate

of K The following relations, which will be useful to us, are obtained from (3. 66).

3
K+K = Zﬂé(w-wo) (3.67a)
b;
cheK=—2, j=1,2 (3. 67b)
cj(K+K"<) =b; . (3. 67c¢)

The appearance of §-function in (3. 65) is due to our having considered a single
mode of the radiation field and an atomic system with sharp energy levels. When
one considers broadened energy levels, the §-functions will be replaced by line
shape or density of states functions. Also when more than one mode is considered
one will have to sum (or integrate) over all modes. In any event Eq. (3. 65) will not
be modified except for the fact that the quantities bj’ cj and K which characterize the
coupling between field and atoms, will have different expressions. In this sense (3. 65)
contains essentially all the physics we are interested in the for time being.
We define now the derivative of pR(t) as follows:
R

r R\l
L (t+7)-p (tﬂ . (3. 68)

1

R 1
p (t) z
The time increment 7 is understood as macroscopically small, but large compared to
characterist times of the atomic transitions in consideration. With the above

definition in mind, we subtract pﬁm(t) from both sides of (3. 65) and divide by 7 .

Therny the following differential equation is obtained.
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»R ) b | k- . !
= - ! mK+ -n)w
pmn(t) c, (m+)K +(n+l)K +cl "mK nK + i(m-n)w

R

R _ v
pmn(t)+b2fﬁ'm (t)+o 1 (m+1)(n+1) p(m+1) (n+1)(t) :

. R
A(m-1)(n-1)
(3. 69)

The matrix elements of pR form a square infinite-dimensional matrix. Let us consider
that subset of matrix elements for which m-n={ where £ is a fixed integer. The

above equation shows that the matrix elements belonging to a subset corresponding

to a given £ are coupled with each other and are not coupled to matrix elements of

any other subset. This ‘introduces considerable simplification, and in order to

make use of this simplification we let

m=n+1{. (3.70a)

Substituting into (3. 69), rearranging somewhat, and introducing the symbols

VEW- (cz—cl) mK , (3. 70Db)

bz b2+21 (3.70c)

7= (i, (3. 70d)
and

cs b2+ T, (3. 70e)
we obtain

Ormtym D=~ CmEOp Ly (O Mg e ®
+b1\/(m+£+1)(m+1) Plmet4) (m+1)(t) . (3.71)

For a given £, we have a set of infinitely many, coupled differential equations. The
set corresponding to £ = 0 contains the diagonal matrix elements and by letting £=0
in (3. 71) we obtain the equation that Shimoda et al (1957) ahve obtained. By con-
sidering all the sets for £=0,1,2,..., we have the complete density matrix. The
solution of (3. 71) therefore, will provide the solution for the complete density

matrix. 34



THE UNIVERSITY OF MICHIGAN
6515-4-T

3. 3.4 Expectation Values of the Field Operators

Before discussing the solution of the differential equation for the matrix elements
of the density operator, we study the effect of the amplification process on the expecta-
tion values and fluctuations of certain field operators, It turns out that, in order to
calculate such quantities, one does not need the solutions of Eq, (3, 71), The reason is
that one can, with the help of Eq.(3,71), write and solve differential equations for the
expectation values and fluctuations themselves, This can probably be done for moments
higher than the second as well, However, the calculation of probability distributions
of field amplitudes, for example, will require the solution for the complete density
operator,

The energy operator is one of the operators of interest, Its expectation value
and fluctuations have been studied by Shimoda et al (1957), There is nothing to be
added here, We have used their results in previous work (Hok, 1964), Three other
quantities that are of particular interest to us here are the field coordinates (position
and momentum of the harmonic oscillator or equivalently, electric and magnetic

field) and their phase, We now turn to the sutdy of these quantities,

Expectation Values of Field Coordinates, The oscillator coordinate operators

are given by

q=\|— (aTJr a), (3.72a)

p=i@ (J-a). (3.72b)

It is convenient to introduce the dimensionless hermitian operators

and

QEaT+a s (3,73a)
and
Pzi(a -a), (3. 73b)
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which are related to q and p through the equation

q=Q 2 and pzpvﬁ—; . (3.74)

20

: 4
Let now <aT(t)>ETr{pR(t)a¥}' be the expectation value of a', The matrix ele-

ments of a  are given by

<nlJ|m>= ,]mﬂ by (3.75)

Using this relation we obtain

R
8t ['ROT . < —
— <a (D> Tr{p (t)a} - mZO P m(men® VML (3.76)
From Eq, (3, 22) we find that
R _. R b, R R
pm(m+1)(t) i pm(m+1)(t) B (b2+ 2 )pm(m+1)(t) bm pm(m+1)(t) *

"‘— R "" R .
+b2 m(m+1) p(m_l)r(ﬁ) + bl (m+l)(m+2) P(m+1)(m+2)(t) . (3. 77&)

Combining this with Eq, (3, 76) and after some rearrangement and simplification, we

arrive at the equation
;—t <aT(t)> = (K+iy) QT(tD , (3. 77p)

where K is defined by

b, -b
2 1
K= 5 . (3.77c)

Eq. (3. 76) has the obvious solution

1 t (K+iv)t

<a'(t)>=<a (0)>e (3.78)
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where <a1.(o)> is the expectation value at the initial time which, for our purpose,

is the time zero at which the signal enters the input, The time that the signal spends

inside the amplifier is related to the length of the amplifier through Eq, (3, 41).
Taking now the complex conjugate of Eq, (3. 78) we obtain the solution for <a(t)>,

namely,
<a(t>=<aloy>eE W (3.79)
Combining Egs. (3. 78) and (3, 79) we obtain
Q> =[QQ(0)> Cos vt + <P(0)> smutJ Kt (3. 80a)
<p(t)>= [ <Q(0)> Sinyt + <P(0)> Cos Vt] = (3. 80D)
The corresponding equations for the oscillator coordinates q and p are;
Lalt> ={<q(o)> Cost + = <plo)> Sinut] Kt (3. 81a)
<plt)> = [—w <q(o)> Sinpt +<plo)> Cosvt] et (3. 81b)

These equations are similar to those obtained by Louisell et al (1961), They differ
slightly because, here, we have accounted for a shift in the oscillator frequency

which will be discussed later, The equations of Louisell (1961) are obtained if we
replace v by w, which is equivalent to neglecting the shift represented by (cz-cl)ImK
(see Eq.(3.70b)). The exponential represents the gain which increases exponentially
with the difference (b2—b1) and the time that the signal travels inside the amplifier,
For future use we shall introduce the quantity

Gze2Kt (3. 82)

The field coordinates increase as the square root of G, Of course, the gain is larger

than unity only if the upper level is more populated than the lower i,e, if b2 > bl'
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This is understood to be the case throughout this treatment, since we are interested
in an amplifier and not an attenuator, It is interesting to note nevertheless, that the

case of the attenuator is implicit in this study.

Expectation Value of the Energy. As already mentioned, this question has

been answered by Shimoda et all (1957). Here, we shall simply give the result since
it will be needed in the following sections, It is convenient to define a photon number

operator

f= afa . (3, 83)
The expected number of photons then is

K> = <al() >, (3.84)

and the expected energy hw<f(t)>. To find an equation for <f(t)>, we. proceed
exactly as we did for QT(t)>. Thus, we obtain the equation

2 <i>= kLA +b, (3. 85)

whose solution is

b b
2 2Kt 2
<f(t)>= <<f(0)>+ bz-b1> e alaral (3, 86)

A more convenient form is

<H1)> = G<Ho) > + (G-D (3,87)
where we have introduced the quantity
x= el (3. 88)
= by=hy
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which characterizes the population inversion, For active materials, that is for

b2> bl’ we shall have A > 1, The equality is attained under complete inversion,
As far as amount of amplification is concerned, one would desire this extreme

case, For very large gain, i,e, for G>>1, Eq.(3,87) can be approximated by

<gv> = G[Q(o)> + x] . (3. 89)

This shows that there will be an output even if the number of input photons ( <f(0)>)

is zero, Clearly, this is due to spontaneous emission,

3.3.5 Fluctuations

In the previous section, the expected values of the field amplitudes were expressed
in terms of the expected values at the input and the gain, The outcomes of measure-
ments of these amplitudes at the output will fluctuate about the expected values, It
is desirable, therefore, to have a quantitative estimate of these fluctuations upon
which one can base a criterion for the usefulness of the amplifier, A rather conven-

tional measure of the fluctuation is given by the quantity

2
2 <AQ°”
Eo 2 (3. 90)
< Q)
where
CAQT> =" > -<Q 7. (3.91)
A similar quantity 612) measures the fluctuations of P, We now calculate
<Q4t> ana <PAH>.
From the definition of @ we have
Q- ala+al+2alatt ) (3. 92)
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which, upon using Eq, (3. 84) becomes
<QAD> =<aTal> +<av >+ 2 K>+ 1. (3.93)

The quantity < f(t)\ has been calculated in the preceding section, Observing that

<_a(t) a(t)> QT(t) a*(t)> (3.94)
we conclude that we only need to calculate the quantity <\/:J(t) J(t}/‘. Using Eq. (3, 75)
we obtain
al() aT(t5>= Tr{ aTanR(t)} - ::; pi(m_i_z)(t) \Jﬁ}n_ﬁ)—(;:é; , (3.95)
and therefore
L <aly a (0> - io bi(m+2)(t) [ (e Dme2) (3. 96)
e

Combining this with Eq, (3, 71) and performing some manipulations, one obtains the

following simple differential equation;
(;i—t <aT(t) a_T(tf“> = 2(K+ iy)\‘af(t) aJ‘r(t)\> , (3.97)
which has the solution
S ..;aT(t) a*(t)> :\/;(o) af(d)\/ eZ(KJ‘-iV)t . (3. 98)

From this and Eq. (3. 94) we obtain

2(K -iv)t (3. 99)

< a(t) a(t)> =_alo) alo) >e
Now, Eq.(3.93) becomes
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Z(K'IV)t+ 9. f(t)t>+ 1.

(3. 100)

/\/Qz(t)) = aT(o) a‘r—(ob ez(K_HV)t + \a(o) a(o) e

Writing the exponentials in terms of sines and cosines and using Eq. (3. 87) we obtain

<Q2(t)> = 2G~xf\;éiT (0) 2-(0) k>(r)Cos vt + 2G \5‘1'?(0) ai-(o)>(i)Sin vt +
+ 26~ fo)> + 2AG-1)A + 1, (3,101)

where the superscripts (r) and (i) indicate the real and imaginary parts, respectively,

of the quantity they qualify,

From the definition of P, we have
p?- ala —aa+2aa+1, (3.102)
and using the previous analysis we obtain
2 . - - .
P(t) >= -2G‘\\3}1L(0) aT(o)}(r) Cos 2t - 2G'\a\1’(o) a1(0)>(1)Sin2yt +
+ 2G< ‘f(O)\;>+ 2G-1)1+ 1. (3.103)
Taking the squares of Egs. (3, 80), we find
\Q(t)>2 = G<@(o)> ZCoszvt + G<P(o) >2 Sin2vt +
+ G'\‘_:Q(ob <P(o)>sm 2ut (3. 104a)
and
g 2 - 2 2 - N2 2
P> = GQ(o) > Sin“ vt + G Po) > Cos “wt -

- G<Q(o)><}3(o)> Sin 2ut (3, 104b)

To study the fluctuations of the field amplitudes, it suffices to consider the average
values and deviations at a particular time, In fact, this time should be the time T
at which the signal leaves the amplifier, Thereafter, the signal will be free and

evolve like a free harmonic oscillator, The phase of the output depends on the phase
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of the input and the length of the amplifier, Since we are not considering phases
at this point, we may assume that the time T that the signal spends inside the
amplifier is given by T=M %r where M is a large integer, This assumption
simplifies the equations somewhat without affecting the conclusion concerning

the statistics of the amplitudes, Thus, we have

Q0> - 26<al(0) a (0> + 26 <o) >+ 2G-1A+ 1, (3. 105a)
"P2(t)/"= -2G<\éT(o) J(o),\(r) +2G- flo) >+ 2(G-A+1, (3, 105b)
.2 =2 v
Q)77 = G\ Qlo) >, (3.106a)
<@l = a<pio) 3P (3. 106b)

Using the definitims of Q@ and P one can easily show that

2-.al(o) a (o> - % Q%> —\'§,}32(o)>}, (3. 107a)
and
-;-f‘ \ /+\P (o)) ? z\f(o)\+ 1. (3. 107D)

By virtue of these relations, the quantitiy 2<T(o) a (o)>( v can be eliminated from
Egs. (3.105) which become
<QH>- G<QAOP>+ (2A-1)(G-1) (3. 108a)
\Pz(t)>= G<PAO> + (2A-1)(G-1) . (3. 108b)

Combining these equations with Egs, (3, 106) and (3, 90), we obtain
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<AQ2(t> - G<AQ2(0>+ (2x-1(G-1) , (3. 1092)
<aPA> = 6 <A PHOD +(A-D(G-D) (3. 109b)
and therefore
-1) G-1
g2 =02 A : (3.110a)
Q Q <Q(o)>2 (G)
c2 2 (- (G-1) (3. 110h)
P Po <P(0)>2 ( )

Recalling the definition of X (Eq, (3, 88) and introducing the symbol u for the quantity
(2x-1), we have

+
b2 b1
b2--b1

u=22-1=

(3.111a)

If we characterize the population inversion by a maser temperature Tm’ then u

asssumes the form

ehwo/k 'Tml +1

ehwo/k [Tml -1

"= (3.111b)

For active materials, we shall have u> 1, the equality occuring when the lower level

is empty, In terms of u, we have

9 .2 " G-1

=00 + , (3.112a)
Q "Q @(0)>2 ( G )

g2 _¢2 L __H (G'I (3. 112b)
P PO 6’(0)>2 G >

. 2
The quantities 7 2 and ¢ p characterize the amplifier noise referring to measurements

Q

of Q and P, respectively, As discussed earlier, they are different, in general, The
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2
quantities € ¢ and

AN

refer to the input and depend on the state of the input
signal, The ot?ler terms 8epend on the parameter of the device, and the input field
amplitudes, They decrease as the field amplitudes at the input increase, These
terms are due to spontaneous omission, They will be present even when the gain of

the (ampliﬁer is unity that is when b2—b1= 0, To see this, one recalls that
by-b,)
2 "1

G=e It follows then that for b2=b 1 we have
, G-1 . Pytbi N\ /G-
lim M T = lim b -b ? = 2b2t .
(bz—bl) -0 (b2—b1)—>0 2 1

For large gain (G>>1), Egs, (3,112) can be approximated by

£2 _ Eé +—”-—-§- , (3.113a)
o <Qlo)>
£2_g?2 4 __H (3.113b)

P PO Q(°)>2 °

It is important to note that large gain does not imply b:2 >> b1 and therefore even

for large gain u will not be equal to unity, in general, The relative values of b2

and b1 are determined by the physical properties of the active material, while the

gain can be made as large as desired by increasing the length of the amplifier, From
Egs. (3.112), we conclude that the quantum mechanical fluctuations at the input (which
depend on the state of the input signal) go through the amplification process unchanged,

In addition, one has the spontaneous emission noise whose relative importance decreases
as the field amplitude of the input signal increases, The terms ééo and {,io are
due to what one might call quantum noise, They are a manifestation of the fact that

a quantum mechanical variable cannot be determined precisely unless the system is

in an eigenstate of the variable in question, The second term, in Egs, (3, 112), are

due to the internal noise of the amplifier which is spontaneous emission, One sees
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therefore, that the quantum amplifier does not change the quantum noise of the
signal, It only adds to it the noise of spontaneous emission, Recalling the relation-
ship between (Q,P) and (q,p) (see Egs,(3.74)) we can write Egs, (3, 112) in the

more familiar forms

1 = < + ( (3 1143—)
e © 2 2 .G/ y
b w ’\q(o)>
and
2 .2 % /G-1"
£ - f + [ s .
£,°6, ——7 4 G) (3. 114b)

Again the quantities {{2 and E’IZ) are dimensioﬂess, These equations indicate that
the effect of internal noise on a measurement of qz, for example, decreases as
wzﬂ'\:q(o) >2 increases in comparison to hw/2, and similarly for p, The significant
conclusion is that the effect of the spontaneous emission noise is determined pri-
marily by the state of the signal at the input, To see it more clearly, note that for
b1= 0 and large gain one may replace the quantity u(G-1/G) by 1. The weaker

the signal, therefore, the more it will be affected by spontaneous emission, This is

reminiscent of Gordon's (1962) conclusion about energy measurements,

3.3.6 Results for a Special Case

Let us consider now the case in which the input signal is in a pure coherent state
in the Glauber (1963) sense, Such a state is represented by / a/> and is defined by
a/ ;D = afa™ . Then we shall have

{\/Q(o)> - 2Reo, <P(o)> - 2Ima , (3.115)
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It is straightforward to show that
2 . 2
<Q (o) ~=4Rea) +1
and
'I'P2(o)x") = 4Im oz)z + 1,
Consequently
SR 2
< AQY0) >=< AP0 >= 1, (3. 116)
Then, Egs. (3, 109) give
o2
< AQUD> =< AP > = G+ (A-1(G-1) (3.117)

It is not surprising that the uncertainties associated with P and Q are equal because
this is a property of the coherent state, And the amplifier preserves this property.

If we consider the limiting case in which A=1 and G>> 1, and transform to q and

p, we find
g ~ /h
*~~\éq2(t),, =G, (3.118a)
and
2, o
~Ap (). =G, (3.118)b

Thus, we recapture the results that Louisell et al (1961) have obtained, as a special

case of ours,
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IV DISCUSSION OF FUTURE WORK

4,1 First Problem Area

In this chapter we shall try to look ahead into the future, to estimate the work
that can be completed under the present contract and covered by the Final Report,
as well as to enumerate a number of unsolved problems and incompletely investigated
phenomena which are related to the purpose of this project,

In the first problem area we shall collect and reorganize for the Final Report
the material presented in the Interim Reports on absorption by normal constituents
of the atmosphere as well as extinction by rain, clouds, fog, and haze, In order to
obtain quantitative conclusions in time for the Final Report, it has been necessary
to accept rather uncritically specifications published in the literature of such things
as droplet size, distributions associated with  various meteorological conditions,
although the literature does not imply that these are very accurately determined,

We plan to return to this question (from the electromagnetic rather than the meteorological
point of view) if time permits, by investigating the sensitivity of calculations of

attenuation to the existing degree of uncertainity in specification of weather conditions,

The result will indicate to what extent further research on this particular subject is
desirable,

As far as subjects for future investigations are concerned, it may be pointed out
that most calculations of attenuation by weather conditions have been based on the theory
of electromagnetic extinction by spheres, since it is comparitively tractable and it is
assumed that water droplets are involved, However, the possibility that elongated ice
crystals are present in high-altitude clouds.should be investigated, If so, a ''feasibility
study' related to the theoretical analysis of attenuation by an ensemble of such crystals
should be carried out, In case of encouraging results of this study, such an analysis
constitutes a worthwhile subject for future research,

Another related general area for future investigation is the source, generation
process and theoretical boundaries of the '"sky noise' discussed in the Introduction to

Chapter II of this Interim Report,
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4,2 Second Problem Area

In the final report on the second problem area we expect to begin with a critical
review of the theory of communication by means of electromagnetic radiation, This
will involve a discussion of the basic ideas of quantum field theory, coherent and
incoherent states of the field, the entropy concept in quantum statistical mechanics,
the basic uncertainties in field measurements and the maximum amount of measur-
able information carried by an electromagnetic radiation field of given frequency,
bandwidth and average intensity.

Subsequently, we then present a theoretical investigation of an optical communi-
cation channel employing optical means for discrimination against background radiation
and a photon counter for observing the incident radiation under the assumption of a
perfect filter and a perfect counter, the limits of received information and error
statistics will be estimated, the former from entropy calculations and the latter
from statistical decision theory, The statistical detection analysis presented in
Section 3, 2 of this report will presumably be extended in several directions; if it
is found feasible without lengthy computations, the distribution functions of the likeli-
hood ratio will be found, and the effects of additional noise sources will be investigated,
In order to approach the theoretical rate of transmission of information in actual
operation it is also necessary to solve the problem of finding an efficient way of coding
the signals, This problem will be analyzed and ways and means of reaching more and
more efficient solutions will be discussed, Because of the large error frequencies
and the peculiar statistical properties of the channel, it is not expected that more than
very crude solutions_can-be suggested within' the remaintng duration of.the contraet, As
we have pointed out before, coding for asymmetric binary channels is a largely unex-
plored field,

Since there are serious doubts that the photon-counter channel can be implemented
to give satisfactory communication at extremely low signal level, we have devoted con-

siderable attention in this and previous reports to an alternative type of channel, which
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uses a laser amplifier as the first receiver component, The fundamental study of an
idealized model of a laser amplifier given in Section 3, 3 of this report will be included
in the final report and developed in more realistic direetion  to account for broadened
energy levels in the active material resulting in an amplifier with nonzero bandwidth,
This will make it possible to consider a complex input wave form of relativity broad
spectrum and to evaluate the effectiveness of the amplifier as a filter for rejection

of background noise, The use of a laser amplifier as a filter and preamplifier for a
photon counter will be investigated; we hope that time will permit the inclusion of the
result in the final report, In a receiver of this type the laser provides both selectivity
and gain, at the cost of added noise from spontaneous emission, The study of such a
combination falls very neatly in line with the topics already covered under this contract
although not explicitly mentioned in the task statement,

This problem area offers many unsolved problems for future research, As
mentioned above, the efficient coding of channels using detectors with Poisson
statistics is a largely unexplored field, where a lot of work is required, Another
rich territory of investigation is the application and detailed properties of lasers in
communication, Both as oscillators and amplifiers lasers promise to make it
possible to extend ultra-high-frequency and microwave techniques into the optical
range as well as to create entirely new optical techniques, For this purpose, more
detailed knowledge of the behavior of lasers is desirable, in the linear as well as in
the nonlinear domain, The quantum-mechanical formalism presented in this report
can readily be extended to account for nonlinear effects as well, By considering a
reduced density operator for the active material (as was done for the field density
operator in this Interim Report) one can develop differential equations for the popu-
lation of the states of the active material, which are coupled to the field density
operator, The resulting system of nonlinear equations can be used to study the
behavior of a laser under a very wide range of conditions, The nonlinearity controls
the stability of amplitude and phase of an oscillator and causes the "phase-lock
phenomenon which has been successfully explored for communication over extremely

long distances at conventional frequencies, The performance of a laser with regard
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to added noise in various receiver applications such as heterodyne oscillator and

""phase-lock'" detector offers a wide variety of important problems for future research,

4.3, . Third Problem Area

The survey of principles for narrow-band tunable optical filters presented in
the first two interim reports will be included in the final report substantially as given
there,

There is certainly room for extensive work in this area, However, progress in
this area depends primarily on the following factors;

1. Discovery of new electro-optical effects and materials

2. Development of new materials and devices utilizing already
known phenomena,

It thus appears that the most fruitful efforts in this area would be along the lines
of developmental and inventive type of research rather than theoretical extension and

extrapolation,
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