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ABSTRACT

Graphs of slant-path transmittance versus wavenumber from various
altitudes are presented and discussed.

The relation between the channel capacity and bandwidth of an optical
channel is considered, and an upper bound for the practically useful bandwith
is suggested. The statistical theory of detection of coherent signals against
a background of thermal radiation is further discussed on the basis of results
derived in the previous report, Numerical calculations of some statistical
characteristics under various conditions are given in graphical form.
Similarities and differences in comparison with a classical communication
channel are discussed.

Error-reducing codes for binary asymmetric channels may be designed
on the basis of the permutation principle of Slepian, The analogy between the
redundancy structure of these codes and that of parity codes suggests extensions
to higher-order error-correcting codes. The design of such codes for channels
with extremely high error rate does not appear promising,

The bandpass-filter properties of a lagser amplifier is studied theoretically;
the nonzero width of the energy levels of the active material is introduced by

means of damping theory.
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I. INTRODUCTION

The three problem areas recommended for investigation under this
project were outlined in the introduction to the First Interim Report
(Barasch et al,1964), Detailed presentations of research carried out in these
areas have been included in the Interim Reports Nrs. 2-4 (Hok et al, 1964,
January 1965, April 1965). Work in one problem area concerned with narrow-
band, preferably tunable optical filters, was terminated with the presentation
of the Second Interim Report.

A second chapter of this report presents material in the first problem
area, which concerns propagation, scattering and absorption of visible and
infrared radiation between deep space and points on the earth, From tables
available in the recent literature data is presented in graphical form for the
transmittance of the atmosphere over slant paths of various kinds, . Salient
features of the graphs and conclusions drawn from them are discussed.

The third chapter reports work in the second problem area, which is
concerned with the operation of an optical communication channel under
conditions of very low signal level at the receiver. The development of a
statistical detection theory of square pulses, which began in Interim Report No, 4,
continues with presentation of some numerical computations of the relevant
statistical variables under various conditions of operation. The conclusion is
drawn, that a larger reduction of the error probability results from a reduction
of the bandwidth than from a corresponding lengthening of the pulse at constant
bandwidth; for comparison, these two alternatives are equivalent in a classical
channel. Another topic in this chapter is an error-reducing code; a "permutation
code' is found to have some attractive features, but it does not appear to be
adequate when the pre-decoding error rate is high.

The analysis of the properties of a laser amplifier as the first component
after the lens system at the receiving end of a communication channel continues

in this report, with emphasis on the selective properties of the amplifier.
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The purpose of this analysis is to indicate whether or not such an amplifier
can serve as an effective filter discriminating against a broad background
radiation without adversely affecting the signals within the frequency band

of the channel.
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II, FIRST PROBLEM AREA ATMOSPHERIC ATTENUATION

2.1 Introduction

Transmittance tables for slant paths from altitudes of 15, 25, 30, and
50 km have been prepared by Plass (1963). The effects of absorption by 002
in the wave number range 500 to 10, 000 cm-1 and water vapor (for wet and
dry stratosphere models) between 1, 000 and 10, 000 cm_1 are considered. In
this chapter we furnish some graphs based on these tables, so that implica-

tions may be more readily comprehended than from the tabulations.

2.2 Effect of CO2

In this section certain conclusions from the information contained in
Figs. 4 through 13 will be summarized. First of all, the conditions of rela-
tively low transmittance occur in isolated spectral regions, such as 550-750 cm
2200-2500 cm-l, 3400-3800 cm_l, 1450-1750 cm_l. At the centers of these
regions, essentially complete opacity may be encountered for near-horizontal
operation from an intt131 altitude of 15 km., One would conclude from those
figures such as 8, 9, 10, 11 and 12, on which curves of a given spectral region
for the same elevation angle but different transmitter altitudes are displayed,
that there is improvement in transmittance, but still some loss, even for
altitudes like 25 and 30 km, which might present practical difficulties as site
locations. Transmittance values typically fall below 50 percent near the band
centers. Although near-vertical transmittance is more dependable than low-

angle (see Fig. 7 for an indication), this is a fact of little significance unless

1

2

the trajectory of the object with which communication is desired can be controlled.

One might conjecture that use of finite bandwidth could improve transmit-
tance by averaging over narrow lines. It is possible in principle to construct
from Plass' tabulation a set of averages over any desired bandwidth, but such
a task should be deferred until consideration of other factors, such as channel
capacity, noise, equipment has indicated bandwidths for which computations are
needed.

Meanwhile, we have presented in Fig. 4 an example of averaging,
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taken from a table of Plass, in which the bandwidth is 50 cm'l, or 1500 KMec.
It appears that the transmittance is not improved at the band center, but the
region of poor transmittance is widened, and is less sharply bounded than for
the non-averaged curves. These conclusions are to be expected from the nature
of averaging with bandwidth comparable to the width of the absorption region.
Much larger bandwidths, if permitted by other considerations, might eliminate
the problem of regions of poor transmittance. Bandwidths smaller than the

1500 KMc of the example are expected to have even less influence on the trans-

mittance curves.

2.3 Water Vapor

The general character of the curves, as displayed in Figs. 1-3, is the
same as for COz. High altitude sites and near-vertical inclination improve
transmittance., We have chosen to base curves on the calculations made by
Plass for the '"dry atmosphere' model of Gutnick, since in any case the attenu-
ation should not be less than predicted by this model. Regions of poor trans-
mittance appear to exist for wave numbers 3570 - 3670 cm_l, 3700 - 3900 cm-l,

and 5300 -5400 cm

2.4 General Consideration on Absorption: Windows

We have seen that absorption within bands may be severe. In view of this
fact and the difficulty of computing absorption profiles, it is imperative to cir-
cumvent the difficulty by deciding to operate in 'windows' between the regions
of severe absorption. Such a decision is practical only if sufficient bandwidth
is available in the windows. But since the relation between frequency and

wavelength is

A=clv, (2.1)

one has for the relation between two descriptions of bandwidth

2
AX = c/vav x %Av , (2.2)



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



MISSING
PAGE



THE UNIVERSITY OF MICHIGAN
06515-5-T
so that, e.g., for a 1 KMc bandwidth at wavelength of N microns, the wave-

length interval required is given by
-5
2 0

ax = (N0 (2.3)
Thus, there is adequate bandwidth available in the windows, which are usually
determined from the solar spectrum to be (in microns) 0,95-1,05, 1.2-1.3,
1.,5-1.8, 3 -5. Some authors (Gaertner, 1957) list 8 -10 as a window, but
others (Howard and Garing, 1962) consider the O3 band at 9.6u to be a serious
obstacle to transmission through the atmosphere, and the astronomer Goldberg
(1954) refers to it as 'strong' so that 8 -10u should be rejected as a window
until further study. It is clear that the windows listed allow bandwidths in

excess of 1 KMc from application of criterion (2..3),

2.5 Rayleigh and Aerosol Attenuation

These two effects have been combined by Elterman (1963) into an 'optical
thickness for the turbid atmosphere, ! 'rfcx’(h) . In terms of this quantity, the
slant path transmittance at zenith angle 6 from altitude h to the edge of the
atmosphere, as reduced by Rayleigh scattering and clear atmosphere aerosol

attenuation, is given by

- - 7@ ) .4
Th—oo exp - | T, (h) secG] (2.4)

Elterman tabulates this quantity 'rtoo(h) for wavelengths between 0.4u and 4u ;
it should not exceed the values computed for 4u if larger wavelengths are
employed, Since the transmittance from ground to aerospace at angles only 50
above horizontal and 4u wavelength may be calculated to exceed 90 percent from
Elterman's tabulated value of 'rt°°(0) = (,0489 at 4u, there appears to be no
reason to consider the mechanism for attenuation further for A> 4u . For
smaller wavelengths, it can be significant at near-horizontal angles for trans-

mission from ground or low altitudes, and the tabulations are accordingly

reproduced here for A between 0.4u and 1.67u .

18
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TABLE I: TURBID OPTICAL THICKNESS

hkm) 72(h) 0.4u 7 P(h) 0.54 Ttm(h)o.ﬁu Ttm(h)o.'?u 7P (1) 0.9y Ttm(h)l.67u
0 0.4977 0.2661 0.1813 0.1394 0.1057 0.0771
1 0.3707 0.1771 0.1079 0.0761 0.0514 0.0338
2 0.2973 0.1312 0.0727 0.0468 0.0273 0.0151
3 0.2494 0.1051 0.0546 0.0328 0.0165 0.0071
4 0.2134 0.0877 0.0438 0.0250 0.0112 0.0035
5 0.1843 0.0747 0.0364 0.0202 0.0083 0.0019
6 0.1600 0.0645 0.0312 0.0171 0.0068 0.0013
7 0.1389 0.0559 0.0270 0.0148 0.0058 0.0010
8 0.0893 0.0484 0.0234 0.0128 0.005 0.0009
9 0.0765 0.0418 0.0202 0.0111 0.0044 0.0008

19
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III. SECOND PROBLEM AREA: INFORMATION EFFICIENCY AND CHOICE OF
DETECTION SYSTEM
3.1. Introduction

The second problem area concerns the possibility and the means for operating
an optical communication channel with an average signal power at the receiving
end of less than one energy quantum per sample of the modulated light wave. The
crucial points are the choice of systems of coding and modulation at the transmitter
and of detection and decoding at the receiver. First priority has been given to
the investigation of channels operating with a photon-counting detector.

The technical and economical drawbacks connected with attempting reliable
communication at such low signal levels has been emphasized in previous reports.
The basic uncertainty and error probability of such a channel requires very com-
plicated codes and expensive terminal equipment for coding and decoding, which
are yet to be developed.

In the Interim Report No. 4 (Hok et al, 1965) the analysis of an approach to
an effective code for such a channel was begun by breaking the error-reduction
problem up into two steps. The first step was to lump a number of the samples
into pulse digits; the error probability for the detection of such a digit by a photon
counter was shown to be obtainable by statistical decision theory. The result
showed some interesting similarities and dissimilarities with the classical
channel perturbed by white Gaussian noise.

In the present report this line of investigation is continued. Some numerical
calculations on an electric computer add some quantitative results. It is shown
that a reduction of the bandwidth of the channel is a more effective way of reducing
the error rate than an increase in the pulse length at constant bandwidth.

The choice of bandwidth is thus a basic compromise between channel capacity
and pre-decoding error probability. In this report an attempt is made to
find a rough upper bound for the channel bandwidth beyond which the channel

capacity increases too slowly for any reasonable application. At this extremum

20
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of the bandwidth and a background temperature of SOOOK, the marginal signal

level would be 10”22

and 0.3 photons per sample,respectively, at the wavelength
limits 0.4 and 20 microns.

The second step in the process of solving the coding problem is also con-
sidered in this chapter, i.e. the design of an error-correcting code for a highly
asymmetric binary channel. The coding-decoding procedure presented here is
a variation of the recently published permutation principle (Slepian, 1965).
However, it does not seem to offer any simple solution to the error reduction
of signals with the extremely high error rates at operation in the range of
a fraction of a photon per sample.

In the last section of this chapter we are continuing the study of a laser
amplifier as a component of an optical communication channel. The previous
calculations emphasized the amplifier gain and the fluctuations added to the
amplified signal. However, the approximations made excluded the consideration
of the variation of the gain of the amplifier over the signal bandwidth. In the
present report damping-theory techniques are used to obtain a finite amplitude
bandwidth and a continuous relation between gain and frequency, so that the

discrimination of the amplifier against broad background radiation can be

estimated.

21
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3.2 Channel Capacity and Bandwidth

It is intuitively obvious that the channel capacity for given average signal
power and white noise power density must be a monotone nondecreasing function
of the available bandwidth. Increasing the frequency band available for channel
use cannot very well reduce the maximum rate of transmission of information.
Nonetheless it is possible to discuss an "optimum' bandwidth, since the signal-
to-noise ratio decreases with increasing bandwidth; the processing of a larger
number of data per second, where each point has a broader error distribution,
requires a more complicated code and costlier terminal equipment.

The classical channel capacity in the presence of white Gaussian noise

S
C = Aflog(1+m) (3.1)
)
may be rewritten
N Af
0 Af m
 — s F o—_
C 5 " Afm log (1 Af) (3.2)

which approaches unity asymptotically with increasing bandwidth. The righthand side
of (3.2) has one single parameter Afm which is the bandwidth for which the signal -
to-noise ratio is unity. At this bandwidth this dimensionless capacity is » 2 = 0, 69
of the asymptotic value one.

The partially quantum-limited channel has a capacity with an additional parameter

o= NO/hw .

S+N Af

c-Afflog(1+ S )

0o
4 + +
f. N FEJAL - RwAf log (1

N
Aw 0 fw
g_*—;b??)- K—wlog (1+ﬁ;)}.(3.3)

Introducing a corresponding dimensionless variable
A
fg S

o= N " AwsAf

22
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we obtain
C _ﬁ_ﬁ) = _1._ log (1+ _E.—)+(p+0) log(1+—l--) -ulog (1+ 1—)‘/ (3.4)
S o 1+u p+ao pote )

This dimensionless channel capacity increases monotonically from
O at Af = 0(o = ) to log (1+ ‘-11—) for Af = w(c=0),

By algebraic manipulations (3. 4) may be transformed to

1
1+ )™ 1+ 2
C--f&)-lo (1+—1-—)+-1-lo Hto £
S J uto o J 1.1+u

1+ =)
L

(3.5)

Here the first term has the asymptotic values quoted above, while the second

term is zero at both limits. The first term reaches a value of half the asymptotic

limit
1 1 1
+ = + =
log (1 TS ) = 21og(1 u) (3. 6)
h
for the bandwidth
S -1 S S
Afh‘ ghw ’[“(lﬂ‘ﬂ /2 %‘J'-—_:::.—': (3.7
h ’ : (No(hw+N )

At this point the second term is not negligible; for u <1 it is positive and
reaches values up to about half the value of the first term. However, since the
first term is by far dominant and the sum is monotone, the bandwidth (3. 7) may be
taken as a rough indication of the point beyond which the payoff in channel capacity
will necessarily become small compared to the cost of coding complexity. Since
the measure it rough and of interest primarily in the strongly quantum-limited
frequency range where u is small, it may be more appropriate to write:

-1 s S
I .

Hiw JAwN
o

~

S
oh’hw

(3.8)

Afh:

23



THE UNIVERSITY OF MICHIGAN
06515-5-T

Since no known practical codes approach the channel capacity with negligible
error probability, it is necessary to settle for a rate of transmission of informa-
tion considerably below the ideal capacity. The discussion above suggests that
given a wide band channel the first unsophisticated coding operation that may be
performed is to reduce the bandwidth of the signal. Close to the asymptotic
capacity a substantial increase in signal-to-noise ratio and reduction in error
probability can be obtained with only a moderate loss in theoretical capacity.

If (3.7) is accepted as the upper limit of useful bandwidth, the number of

signal photons per sample in a marginal channel
no= p(lew). (3.9)

At the crossover point between noise-limited and quantum-limited channels
(4 = 1), which for a temperature of 290°K occurs in the infrared at a wavelength
of 12 u, n = 1.4. Inthe wavelength range of this prcijze:;t 0.4 to 20 4, the
marginal number of photons per sample varies from 10 to 0.3. The theoretical

channel capacity under these conditions varies approximately from 45.5 S/fiw to

1.1 S/fw bits, respectively, i.e. roughly fifty to one bit, respectively, multipliedby the

average number of received signal photons per second.
It is doubtful that it will be practically and economically justifiable to
design optical communication links for as large bandwidths and as small photon

numbers per sample as indicated by the marginal conditions discussed above.

3.3 Signal Detection and Error Statistics

In order to realize as nearly as possible without errors a rate of transmission
equal to the theoretical channel capacity, the following design problems have to
be solved:

1. The choice of methods of modulation and detection, as well as the
optimization of the components implementing them.

2, The design of an error-detecting code suitable for the channel, as well

as corresponding encoder and decoder.

24
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The analysis of the first-mentioned problem in the Interim Report No, 4
proceeded from the assumption that a binary modulation would be used, one digit
consisting of a specified combination of samples, the other digit being a space.
no signal at all. For each unit time interval equal to the duration of one digit,
the receiver then has to perform a binary decision, one or zero, signal or no
signal, The result is a quantum~-mechanical modification of the classical theory
of detection of a known signal in white Gaussian noise, While the classical theory
finds the logarithm of the likelihood ratio to be a monotone function of the (linear)
correlation between the receiver input and the known signal, the quantum theory
gives this logarithm as a monotone function of a certain ''nonlinear correlation'
between the output of a '"photon counter'' and the envelope of the known signal.
This nonlinear correlation index is the second summation in the expression for

the logarithm of the likelihood ratio (Eq, 3.21 in Interim Report No, 4),

log !rl(r)] - -p) wi+7,,.log L, () = -A+a’ (3.10)
| i i i

where the number i runs over all the envelope samples, {’r(x) is the Laguerre

polynomial of x of order r and

g
1

’Yi - NI (3.11)
Here Si is the ith sample of the known signal envelope, N = NOAf is the power
of the thermal background radiation within the frequency band Af occupied by the
signal, and finally

g (3.12)
is the ratio of the spectral density of the background radiation to the photon energy.
For simplicity we assumed in the previous report that the signal was a square

pulse, so that all the samples 2 =y, If n, is the number of samples in the

pulse, then

25
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L(S)u
A = unkuy = W (3.13)
k
ax ) log [ (-7) (3.14)
=1 1

and all the random variables r, have the same statistics; also all the terms in
the summation (3.14) are random variables with identical distributions, If n,
is reasonably large, the distributions of @ in the presence and in the absence of
a signal are approximately Gaussian with the same variance but different means,

It was shown in the previous interim report that the means m, in the absence of

a signal and m, in the presence of a signal are related to the variance 02 and
the quantity A in (3,13) by the equations
1 2
A- =
m, = 5 O
myxA+zo (3.16)

Since A is easily evaluated, one of the quantities m, , m,, 02 must be deter-

mined in order to specify the approximate distribution functions of @ , We have
m;

obtained numerical values of —=, by means of a digital computer

ml 1 (09} r

el Eso(a) - Z; a:“:‘)-rjr—l log [.(-1) . (3.17)
The result is plotted vs y for various values of u in Fig, 14, .

Except for the choice of a threshold value ac for the decision signal-no
signal the error probabilities depend on only one parameter o, provided that
n is large enough for the Gaussian approximation to be satisfactory. Fig, 15,
shows qualitatively the relationship between the two distribution functions in

terms of the normalized argument a/ o . The curves are displaced a distance o

from each other, The single parameter o is easily found from (3, 15)

26
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FIG. 15:: Distribution Functions of Ot/ o,
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P .
o = fZA(l--—A—-) = anyu (1-5;371) . (3.18)
The first factor
' 1/2
ok . |2L6)
- 2A = \Noﬂlw | (3.19)

corresponds very closely to the single parameter 2L / N0 in the classical detection
problem, the only difference being the Aw added in the denominator, The im-
portant qualitative difference between the classical and the quantum-controlled

detection problem is expressed by the second factor

my

A‘ ;
1-—;A_ = '1__..__. (3.20)’

-
\;

which severely reduces the distance between the two distributions for small values
of y. Fig., 16 gives the square of this factor for u =,05 and 1.0, respectively,
plotted vs . In Fig, 17 02 /2nk is shown as a function of y for a few values
of u.,

It is seen from Fig. 16 that the factor (3,20) is not very strongly affected
by the value of u except at very small values of vy .

When the Gaussian approximation is good enough, the above results make it
now possible to calculate, at least numerically, the error probabilities for any
chosen threshold value L(r) = )\c . The receiver operating characteristic
(Fig. 3-2 in Interim Report No, 4) is a convenient graph for presenting this
information in compact form. The coordinates in this diagram are the con-

ditional complementary distribution functions

. [u) 1 (afm1)2
x = Pg U2 =P (F)x 1-Fg Or) = exp(-—5 )do (3.21)

o ac \;2;;2\ 20
& ) | . ~Q0 1 ( (a_mz);
y =P {L(r)>X )=P_(H) =1-F (A)-] exp (- da , (3.22)
S1 ¢ 5 5 ¢ % szﬁ 202
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Because of the relations between m;,m and o , this diagram has one

2
single parameter o, which determines the error statistics for any chosen value

of )\c .

The optimization of the channel for given prior probabilities of a pulse of
given length or no pulse may use a minimum total error rate, i.e. false alarms
plus misses, as the criterion; a more satisfactory criterion for a communication

channel is the minimum equivocation

H_ = _Hn{mmkgMHH-h—MHHMgﬂ—pmf

- P(0) { F)ogp(F) + [1-p(F)] log [1-p(F)] (3.23)

-

obtained by varing the threshold value A o of the likelihood ratio.

dH
Setting the derivative a&-& = 0 leads to the following relation in terms of the
c
coordinates of the receiver operating characteristic:

y
1-x ®Ty gy, 1-P)

X 1-x dx P(1)
log =

log (3.24)

Numerically-graphically this equation may be solved by taking data point by
point from the graph, computing the left number and plotting it versus x. The
stationary points of the equivocation are found as the intersections of the plotted
curve with the horizontal line representing the right number of (3.24), The

intersection for which
0<x<0.5 (3.25)

0.5<y<1 (3.26

indicates the x-coordinate for which the minimum equivocation occurs. In this

interval the left memberof (3.24) has no singularities and is monotone increasing.
The primary purpose of the present analysis of the statistics of detection

of coherent optical signals with a thermal background radiation was to investigate

the reduction of error probability by introducing the simplest possible redundancy,
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i.e. by lengthening the signal digit pulse. The result was given by (3. 18),
indicating that the parameter o, which is a positive performance indicator,
increases with the square root of the number of samples in the pulse, just as in
the classical detection theory., However, o depends not only on the ratio of
the pulse energy to the total noise spectral density, as in the classical case.
The factor presented in (3. 20), which has no classical analog, introduces a
dependence on vy illustrated by Fig. 16 . Since vy is inversely proportional
to the bandwidth, it is more advantageous to reduce the bandwidth than to
increase the pulse length at constant bandwidth if vy is small.

For such wide-band low-power communication channels which require an
extremely small probability of error without appreciable loss of rate of transmission
of information, it is consequently necessary to start with a bandwidth of the order
of (3.7) and to apply a highly sophisticated coding and decoding system on the
basis of single-sample pulses.

When a moderate loss of rate of transmission can be tolerated, it is more
economical to start from a considerably smaller bandwidth, so that the pre-coding
error rate is reasonable and a rather simple code can be used for further error

reduction,

3.4 Error-Reducing Codes

The problem of devising an error-reducing code for a binary channel with
the general properties discussed in preceding sections is based on the following
postulates:

1) A binary channel with a fixed bandwidth, pulse length and noise back-

ground is given,

2) Both peak and average signal power is assumed known, so that the duty

factor or prior pulse probability P(1) is fixed.

3) A likelihood-ratio receiver is used.

On the basis of these postulates the two distribution functions for the

logarithm of the likelihood ratio, i.e. the receiver operating characteristic,
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is completely specified.

If the prior pulse probability is not determined by the characteristics of
the laser transmitter, it may be optimized by variational methods. For
single-sample pulses this subject has been treated by Gordon (1962) and
reviewed in our first interim report (Barasch et al, 1964).

It has been pointed out several times in the previous reports that since in
general P(1) << 1/2 the binary channel is highly asymmetric and that so far very
little work has been devoted to codes for such channels. However, since the
writing of the March interim report a new coding-decoding principle has been
presented in the literature (Slepian, 1965), which lends itself very well to the
coding of asymmetric binary channels. We shall here briefly discuss the general
principle involved in its binary ‘form1 and consider its application to optical
channels, as well as an extension of the principle for the purpose of reducing
further the error probability.

Slepian has named the principle "permutation modulation," since it may be
considered a generalization which includes as special cases some of the known
forms of pulse modulation codes.

When the "on" probability P(1) is given, any "word" or block of N independent
digits will contain on the average M = N- P(1) pulses. A code built on the permutation-

modulation principle uses words all of the same length N and with exactly M
pulses. The ensemble of words in the code is thus all possible permutations of M
pulses and N - M spaces. For large N the restriction of using only these words
is not a very severe one. The relation that the number of pulses in each group
is equal to M is analogous to the parity equation in a simple parity code but it
gives a more specific constraint on the digits of the word.

The first step in the decoding process is to assign pulses to the M unit

intervals in each word which show the largest likelihood ratios. This gives the

1)The code described here differs somewhat from the two variants Slepian discusses
because we are here concerned with envelope samples or pulse envelopes, which are
always positive , while Slepian's classical channel has both positive and negative samples.
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maximum-likelihood estimate of the transmitted word that produced each received
word. These estimates are all members of the word ensemble and can be decoded
on a one-to-one basis.

Because of the homogeneous structure of the code, the error probability is
the same for all words. The error probability may be evaluated in terms of a
multi-dimensional space with one dimension corresponding to each digit in a word.
A received signal produced by a transmitted code word can be ass ociated with
a point in this space. The coordinates may conveniently be the values of the

variable
n= — (3.27)

for each digit in the word. The variance of this variable is always unity; its mean
is zero if the digit is zero and o if the digit is one. There is a one-to-one cor-
respondence between the code words and those uniformly distributed points on a
sphere, which have N -M coordinates equal to zero and M coordinates equal to o. The
one of these points located within the shortest dis tance of the received-signal
point identifies the maximum likelihood estimate of the transmitted word, which
would be found by the decoding procedure described earlier in this section.
Integrating the probability density of the received point over the volume in
N-space, where no other word point is closer, we obtain the probability that

the estimate is correct, i.e. one minus the error probability. Since the
a-distribution has been assumed known, this probability can be calculated in this
way. In the case of an acceptable Gaussian approximation (multisample pulses),
the calculation procedure is exactly the same as in Slepian's classical channel,
which will not be discussed here at the present time.

It has been pointed out previously that the ""constraint equation' is somewhat
analagous to the parity equation of a simple parity-check code. This analogy
suggests immediately that the permutation code can be equipped to correct a larger
number of errors by imposing additional constraints of the same nature, according

to the same general patterns developed for parity codes. As an example, let us
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form a rectangular matrix from N  subsequent permutation code words stacked
w

vertically

(3.28)

and restrict the word sequences as well as the digits within each word by the

constraint equations

D. =M (3.29)

S D. =M (3. 30)

where

2

N
ﬁi = —M‘:lv (3.31)
Effectively the word length of this code is N 4 Nw. rather than N & and the rate
of transmission of information per digit has been considerably reduced by the added
constraints.
The first decoding step as described above now produces two digit matrices, one
by assigning Md pulses to the digits with highest likelihood ratio in each row and
one by assigning’ in the same way MW pulses to each column. Differences between

the two matrices indicate errors. The most likely error is a reversal of the order

36



THE UNIVERSITY OF MICHIGAN
06515-5-T

between the Mth

and the (M+1)th digit in a row or column, when the digits are
numbered in order to decreasing likelihood ratio. If the two matrices can be
brought to coincidence by interchange of such borderline digits, the result is
intuitively the maximum-likelihood estimate. If more than one result can be
obtained by this operation, the one involving the smallest differences in
likelihood-ratio at the interchanges is the preferred estimate.

This rather simple class of codes does not appear to be able to cope
with channels where the signal-to-noise ratio is low and the pre-decoding error
rate high, even if redundancy is increased by choosing rather small Ng and
by going to three-dimensional and higher matrices. Much more sophisticated
codes will have to be developed before reliable communication can be obtained

under such circumstances.

3.5 Gain Selectivity of Quantum Amplifiers
3.5.1 Introduction

In a previous Interim Report (Hok et al, April 1965), we developed the theory
of a quantum amplifier and studied the amplification of the energy as well as the
field amplitudes of a single mode of the radiation field. The active material was
assumed to have two sharply defined energy levels. Because of this assumption,
the gain, as a function of frequency, contains a §-function, This implies that
if the frequency of the signal does not coincide with the frequency of transition
between the two levels, the signal will not be affected by the amplifier. Of course,
this is true if all other processes by which the signal can be affected are
neglected. This idealization is not bad if we confine the signal inside a rela-
tively narrow bandwidth about an optical or infrared frequency. And it is a
better approximation for a gaseous material than it is for a solid state material,

The assumption of sharply defined energy levels is an idealization in itself
since the active material will always be in interaction with, if nothing else, the
vacuum radiation field, Such interactions give rise to broadening of the energy

levels of the active material, Thus, one expects the gain to be a more or less
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peaked function of frequency. If this is so, the laser preamplifier can presumably
be used as a filter to improve the signal to noise ratio whenever external noise is
present, This is the objective of the present study.

To account for broadening in a quantum mechanically consistent manner is
a rather intricate problem, and requires considerable formal development,
We have used the techniques of damping theory which has been proven to be very
useful in the study of line broadening phenomena (see e.g. Akcasu, 1963), The
details of the formal mathematical development are not presented here since they
will appear in the final report, We present only the basic steps and devote most
of the discussion to the analysis of the filtering properties of the laser preamplifier,
Finally, we present the solution of the equations for the matrix elements of the

density operator of the field mode.

3.5.2 Time Evolution of the Density Operator

As discussed in Interim Report 06515-4T, let HA be the Hamiltonian of the
active material, HR =Hw(ata +1/2) the Hamiltonian of the field mode, and
Vr = d(at+a) , the interaction between the two. Let, in addition, HP be the
Hamiltonian of a third system, which shall be referred to as "the perturber"
and V° the interaction between (A) and (P). It is assumed that the perturber
interacts with the active material only and not with the field mode. This inter-
action V° causes the broadening of the levels of HA. Later, we will indicate
how the interaction with the vacuum radiation field can be included in V° .

Now, we define

HBg HA + HP +v° (3.32)
and Ho m B +HY (3.33)
Then, the total Hamiltonian reads

HxH +V . (3.34)

The time evolution operator of the whole system is:
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g

uw = B (3.35)

and the time evolution of the total density operator is governed by
plt+) = U p (0 UHer) . (3.36)
Let |n>> be the eigenstates: of HR defined by
a’a|n> = n|n>, n=0,1,2... (3.37)

and | 3> the eigenstates of H],3 i.e.

H | B> = By 16> (3. 38)

To determine these eigenstates is a difficult problem in itself. What we
know is that HA is a two-level system with known eigenstates and that HP
has a continuous spectrum. It should be noted that HP may consist of several
parts. At least one of them must have a continuous spectrum. The eigenstates
of HP are also assumed to be known. Then, with Vc also known, one has to
solve the eigenvalue problem (3.38). In this study we will not need to know the
precise form  of the eigenstates | 8>. It will suffice to make use of some of
the properties that they are expected to have. This is possible because we are
not interested in the details of the line shape at this stage. If, however, one
wishes to find the precise form of the gain as a function of frequency for a
specific active material, knowledge of HP and Vc , as well as the solution
of (3.38) will be necessary.

We now define the reduced density operator

R oL
p = Trgp=) <Blol B>. (3.39)
B
Considering a specific matrix element of pR , we have
R < +
Pt ™ = ZB“<mBl U(n p () U (7) | nB>. (3. 40)
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B
Taking p(t) = pR(t) p (t) and after some manipulation we obtain

(t+-r) - p (® N <mBlU( mB> < ngl U ng

B BB
' R s i
Py <mB i U('r)ImB>p <m B, U (D, ng>. (3.41)
mlm2 BBI ok BIBl 21

The Dirac ket and the subscript notations for matrix elements will be used inter-
changeably and at convenience throughout this report. Note that terms containing
diagonal matrix elements of U combined with off-diagonal matrix elements of ut ,
and vice versa, do not appear in Eq. (3.41) since they vanish as we have seen in

the previous Interim Report. To simplify the discussion, let us introduée

A0 =, <mB| Ulr) [mB > p B <n8| Ut (08> (3.42)
B
and
L = L<mﬁ| Ul |mB > o B 8, <m231|U*(ﬁ |08 >. (3.43)
172 BBy

The primes on the summation symbols indicate that equal values of the dummy
indices are excluded. Thus, Eq. (3.41) becomes

pin(ﬁ n 4051 A"+ L B0 ) (3. 44)

m1“‘2 m1m2

Now, the problem is to compute A and C. In the previous report, we used
conventional perturbation theory to calculate the matrix elemeénts of U(r). Here,
we shall proceed differently, for two reasons. First, the conventional perturbation
theory has the unpleasant feature that it does not take into account the decay of the
initial state and this may lead to inconsistencies. Second, we wish to account for
broadening, and this cannot be ‘done by means of perturbation theory. Actually,

the two reasons are interrelated, Damping theory, as discussed in (Akcasu, 1963)
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or (Messiah, 1964) gives us expressions for the diagonal and off-diagonal matrix

elements of U(r). These expressions are:

—i(mw+wB+ SmB -il )7

<mB| Uln |[mp> = e mp ; (3.45)
and
T
<mB| Ulr) |[mB'> = L mb v lm'B'>[ dt <mB| U(r-t) | mB>
Jo
<m'g'| Uty |m'B'> (3. 46)
where
: 5 Vg
Spp =T <wpl Vo mp> + P 2, ——ERE L G
m'g'm=mB “mf m'g
NEEADS Ve | HE B ) (3. 48)
mg g m'8' fmp m'f', mB m8 m'g' ’
and E
w =L (3. 49)

Due to the fact that Vi o= d(af +a) and the known properties of al and a the
matrix element <m§j | 'al | mB.> appearing in Eq. (3.47) vanishes. The symbol [P
in that same equation indicates the Cauchy principal value. The quantity d has been
defined in the previous report. It represents the constant coupling the field

mode to the active material. For convenience, we shall use the quantity D defined

by D -‘ﬁ—l d. It will also be convenient to introduce the complex quantity

y . omS i . (3.50)

After a considerable amount of mathematical manipulation we obtain the following

equation:
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. r | iy -y )T
R -ilm -n) wr° R B “Tmg” g
pmn(t+ D = e ; pmn(t) ‘B,, pBB e
’ 2 (+
(m+1)61+1) p (t) p (7) +
(m+1)(n+1) ’31‘31 ’ l
,~. R 2 (-
Y ) £ pﬁﬁ 1Pgs | Tgp1 @ (3.51)
B8, 1
here th titi J(t) iven b
where the quantities Bﬂ! are given by

*
(".') -i( Y g Y BB) T

Bﬁ

(Nme

7
i

r
L-l(i-w-w +w +1)13I) 1_j Le (+w 2 Bl HB (n+1)31)7_1]
(tv-v *‘*’31 mg Ymenf) (F0-0g*ag - g

R
To develop a differential equation for pmn (t), we expand the exponential of
the first term of Eq..(3.51) and retain only the first two terms, i.e. )

i('y mg " * y7
- 1- iy B~y B)T . (3.53)

This is justified by the fact that we assume the amplification to be linear. Recall that

‘Ym 8 is proportional to |D|2 which is the coupling constant, The same exponentials

are involved in the expression for

&
J Bﬁl('r)

There, however, we shall retain only the term of zeroth order in v 7. That is, we

shall take
T

-i(y_ =y *)
e W W (3.54)
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The reason for doing so is that the factors J(i) (m appear in terms which are
already proportional to |D )2 and we must neglect terms of order higher than the
second in |D| , if our approximation scheme is to be consistent, We still have
v's occurring in the remaining factors of Eq, (3,52), When the summations
over f and Bl are performed, however, and the y's are replaced by their
averages, it can be argued that the y's cancel, to a certain approximation, Note
that this is rigorously so when the interaction with the perturber is switched off.
Subsequently we shall indicate how the summation over B, Bl is performed,
Before doing so, we give the differential equation that one obtains after all the

above-discussed approximations are made,

d R R . NN ]
% Pon® ™ Pt [-1(m—n)w-1 QB_,PBB (YmB 'ﬁ:ﬁ)‘ t

(+)
Nm+1)(nt1) () 'B iD in—B@L(ﬁ+
m n P 5
A (m+1)(n+1) /Bl BB, | B8,
, TP
ey 1
* B Py 1)“)Z "8, ‘Dﬁﬁl| - (3.59)

where the quantities are to be interpreted as independent of .

It is at this point that one must either specify HP and v° and then solve
the eigenvalue problem (3. 38) to determine | B> , or make suitable assumptions
which will be satisfied by a rather general class of perturbing interactions. We
will choose the second alternative since we are not considering a specific material.
Recall that the eigenstates |3>> are generated by the Hamiltonian HB = HA+HP+ Ve
where HA is the Hamiltonian of the two-level system. If the interaction
ve is switched off, the eigenstates | B> reduce to the eigenstates of HA

P
because the states of H do not come into play any more since it does not interact

with either (A) or the field mode. Then, the summations over B reduce to
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summations over the two states of HA and we obtain the results of the previous
report. The density operator pB will then reduce to the density operator pA
of the two-level system with matx;\ix elements pﬁ and pﬁz .

Now, we know that when H is in weak interaction with the perturber, the
levels of HA are not sharply defined anymore. Instead, we have levels around the
previous sharp levels, distributed according to a certain distribution determined by
the nature of HP and the interaction. If the interaction is not too strong, these
distributions are peaked around the levels of HA. Loosely speaking, we might say
that the two-level atoms can be found to have energies around the previously sharp

energy levels. Let us, therefore, assume that these distributions are characterized

by the functions Ol(wB, wl) and oz(wB, w2) . These are functions of wﬁ which are
assumed to be very peaked, the first about wl, and the second about w2. The fre-
quencies w0 and w, are defined by
E E
b = — andw = =2 (3.56)
1 il 2 4’ ’

A
where E 1 and E2 (E 1< EZ) are the eigenvalues of H . These distribution functions

o are to be used as follows: whenever we have a summation over B, we shall

replace it by

2

3 oo, waw (3.57)
v

For example, an expression of the form
<

\ B 2
‘éBJv Pgg .DBB'I F(wB,wB,) (3.58)

where F(wB, wB-') is some function of w, and wB, will be replaced by

B

pﬁ ID12 '2 :« ol(wB, wl)c’;2 (wB', wz) F(wB, wB,)de de' +
A 2
* 0y, [D21| ,r o‘z(wﬁ, ©y)0; (g, ©)) F(wB, wB') de de' . (3.59
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A A
Here, p . and p__ are the fractional populations of the lower and upper levels and

11 22
\Dl 2[2 = ID 51 l 2 the usual coupling matrix element. Now, one can make use of
the peaked character of the function 6 and simplify the results further, This is
possible because the functions F that appear in our integrals will themselves be
peaked (resonant) functions of wB and w, . Clearly, the function o depends
on the density of levels of HP and the interaction V¢, To actually determine
these functions, one has no other alternative but to solve the eigenvalue problem
(3.38). Here, we shall leave them completely general except for requiring that
they be peaked.
Using now the prescription (3.57), (3.58), and (3.59), we may proceed to
>ompute the summations appearing in Eq. (3.55). This calculation is extremely
sengthy and involved. We refrain from reproducing it here, and we simply give the

R
final result. The differential equation for Pn (t) turns out to be

-d—(': plin(t) = -i(m-n)wp:;n(t) -
) 3
- | ¢ {mHDK (W +(n+1)K(w)} to, (@KWK )| ot (0 +
+ b, [mn on M) +b, [(Hi)(a+l) oo (t) (3. 60)
2 N™" Am-1)@-1)"" 1 (m+1)(n+1)' " * .
where
A 2. -2 .
c; = pjj d°h ", j=1,2 (3.61)
2 A 2
b]. - 27 cjg(w,wo) = 27h pjj d"g(w, wo) , (3.62
K(w) = 7g(w, wo) +if(w, wo) , (3.63)
E_-E
271
W= , (3. 64)

and the functions g(w, wo), f(w, wo) are given by
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g(w, wo) - ol(w', wl)oz(w+w', wz) duw' (3.65)

and

1 11
ol(w , wl)qz (W', wz)

w|+w—wll

flw,w ) = P - dw' dw" . (3. 66)
0 J )

The form of Eq. (3. 60) is identical to that of the analogous equation we had
found in the previous Interim Report. The important thing, however, is that the
coefficients bl’ b2 and K now do not contain §-functions but the line shape
functions g(w and f(w) . Infact, we have expressed these functions in terms of
the functions @, and d. , as is seen from Eqgs. (3. 65) and (3. 66). Note that if

1 2

1 1 ! 1 s
we take ol(w, wl) 8 (w —wl) and 02(w, W) = §(w - w,) we shall obtain

glw, wo) = 6(w-wo) , (3.67)

and

P

Ww-w
(0]

fluw) = (3. 68)
0

and all results will reduce to those of the previous report. Of course, this is to be
expected since taking (Jl and 052 to be §-functions implies that the levels of HA
are sharply defined. It is also to be noted that Eq. (3. 66) does not have the
unpleasant feature of becoming infinite at w = wo. From the peaked character

of dl(w', w,) and caz(w'wz) follows that both (6 ) and f(,w) are peaked
about W ® W,-w , ascan be easily verified from Eqs. (3. 65) and (3. 66).
Nevertheless, f(w, wo) remains finite at w= wo provided ¢, and ¢, are smooth

functions, which is the case in practical problems. Moreoter, onezcan easily
convince himself that g{w, wo) is t(;\ be identified to the spectrum of spontaneous
emission from the upper level of H to the lower. Thus, we now have an equation
which describes the interaction of a field mode having frequency w with a two-level
system whose levels differ by w0 when they are unperturbed. The effect of broad-
ening is described by the functions g(w) and f(v) . The amplifier then has a

finite bandwidth and in the following section we study the gain selectivity of such

an amplifier.
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Up to this point we have left v© and HP unspecified. If we want to
account for natural and collision broadening HP should include the Hamiltonian
of the whole radiation field and the Hamiltonian of the system with which the
active material interacts through collisions. Similarly, V¢ should include the
corresponding interactions. Finally, in order to account for Doppler broadening,
one should separate the Hamiltonian of the center of mass motion of the active

P
material and include it in H .

3.5.3 Gain Selectivity of a Laser Preamplifier

Let now f(w, 0) be the number of photons of frequency w at the input of
the preamplifier. Note that, in the previous report, the same quantity was
denoted by <'f) . Here, we shall drop the angular brackets for the sake of
simplicity. We have found that after amplification, the number of photons at the

output is given by

f(yt) = Go,t) (w0 +(Glyb-1)1, (3. 69)
where
G(w,t) = e2k(w)t , (3.170)
bzw -, (o
k(w) g———z—— , (3.71)
oA
and A = T—Z—ZK" . (3.72)
Poo " P11

Note that the quantity A is a dimensionless number which depends on the population
inversion but not on frequency., Eq. (3. 69) is identical to the analogous equation
of the previous report except for one important difference. The quantities k(w)
and G(w) do not contain &-functions any more but are peaked functions of w.

Now let us consider the following problem: A signal with power spectral
density fis(w) enters the input of the amplifier. Noise with power spectral
density fin(w) accompanies the signal. The number of photons at the output will

be detected by a photodetector which is assumed to have a bandwidth Aw. Its
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efficiency will be taken to be unity over the whole bandwidth Aw, For frequencies
of the order of 1015 cps and bandwidths even up to 1012 cps, this is not a bad
assumption. We would then like to compare the signal to noise ratio at the input
with the signal to noise ratio at the output.

The signal power spectral density fiS (v is assumed to be appreciable
only inside a certain bandwidth 6w and negligible otherwise, The width 6w is
assumed to be smaller than Aw, One can easily convince himself that if this were
not the case, the preamplifier would deteriorate the signal to noise ratio. In
calculating the noise power, we shall include external noise, quantum noise (zero
point fluctuations), and amplifier noise (spontaneous emission).

Let us consider the input conditions first. The total signal power at the
input is:

!
H
s = | £, (Wdo, (3.73)

where wo denotes the carrier frequency which will be assumed to coincide with the
transition frequency of the two-level system of the laser material. As we have
discussed in previous reports, the zero-point fluctuations add one quantum of noise
per unit bandwidth, Consequently, the noise per unit bandwidth at the input will
be fin(w) +1. The total noise at the input will be

Aw
T
N = | (£ (@+1)dw . (3.74)
1 ! 1n
s - Qv
-0 2

The incident noise f; will presumably be thermal noise. For the frequency range
and bandwidths of interest in this contract, we may assume that fin is constant

to a very good approximation. Under this assumption, Eq. (3.74) gives

N, = (f +1)Aw, (3.75)
i in
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If we denote by r, the signal to noise ratio at the input, we shall have

ow
+

wr=g

f. (wdw

! oW

S W -
r, = ﬁl' = 2 ° . (3.76)
i (f. +1)Aw

1n

We now turn to the output conditions. From Eq. (3. 69) we find that the number
of photons per unit bandwidth at the output will be

f(ot) = G (f (W+E ° + GW-1)r . (3.77)
0 1S mn

This, however, contains the amplified external noise as well as the spontaneous
emission noise. The first is given by G(w) fin , while the second is given by
(G-DA . Thus if we denote by fos(w) the signal and by f on(w) the noise power

spe ctral densities at the output, we shall have
f (W= Gwf, (v (3.78)
08 is

and

f (0 = GE,_+{ Glw-1)A+1 (3.79)
on in

where we have also added the noise due to the zero-point fluctuations, As has been
noted by several authors, this quantum noise can be thought of as remaining
unaffected by the amplification process, Of course, this is only a pictorial way

of speaking since the zero-point fluctuations have to do with the uncertainty

principle. Now, the total output signal and noise will be, respectively,

. 6w 6w
(ot ot
S == f (Wdw = Glw f, (Wdw, (3.80)
0 f o sw 08 | s is
W = — W - =
-~ 0 2 Jo 2
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and
Aw Aw
W =
{w0+-2— w3 |
N m= '« f (wWdw = G, +(G(w)—1)k+1 dw. (3.81)
o | Aw 08 o - Aw In
') = —— Wo- =" - -
4o 2 S o 2

Then, if we denote by r, the signal to noise ratio after amplification we shall have

w +8v
o 2
G(wf. (wdw
o ew is
So YT T
r = ﬁ; = - +Z§2u_, (3.82)
(o) i
tdw) fin{"(ﬁ(w)—l)k+1§dw
} wo- zZ

Let us denote by R the ratio of the two signal to noise ratios. That is,

R = (3.83

""HloH

Now, we shall investigate the conditions under which R is greater than unity in which case
the preamplifier improves the signal to noise ratio.
We have already assumed that the signal power spectral density fis(w) is
appreciable only inside a bandwidth éw. Let us also assume that the amplifier is
chosen such that its gain is unity outside the band é6w. Then, we define the average

gain G given by

ot 88
_ 1 0 2
G = 5o Gwdw . (3.84
Iw—é_w
-0 2

Recalling that fin is constant inside the bandwidths of interest, and after some

straightforward manipulation we find
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N = (G~1)(fin+x ) 6w+(fin+1) Aw., (3.85)

Now let us define an effective gain Ge given by

6w
+ ==
wo 2
Gwf, (wWdw
is
oW
N
G m 0 (3.86)
e 6w
f (wdw
l 6w
Y93
Then, we have
6w
+—
(wo 2
S = G f, (Wdw . (3.87)
Q e is
w -8
o 2
Using (3. 83), (3.85) and (3. 87) we obtain
G
R = ° (3.88)
{’f +)‘\ /6w '
+
(G 1) f +1 Aw) 1
Let us, finally, define § by
, f A.\
" “in / &W
i \
§=\f +1/{\Aw> . (3.89)
Then (3. 88) becomes
Ge
R = ——-+——o (3.90)
(G-1D¢+1

Let us first investigate the order of magnitude of § . Since the external noise
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is assumed to be thermal noise we shall have

T
f, = LE . (3.91)

in AW
(o)
For the frequencies of interest to us and usual noise temperatures, we shall have
either fin =1 or fin <1. As we have discussed in the previous report, for almost
any practical active material we would have A <10. Therefore, the order of
6w

Aw
The bandwidth Aw depends on the photodetector while 6w will depend on the

magnitude of £ will be determined primarily by the order of magnitude of

amplifier., The latter could probably be as low as 50 Mcps, for solid state laser
amplifiers. As for Aw, one would expect it to be at least four orders of mag-
nitude larger than 6w. Thus, a rough estimate of { would be from 10_1 to 10-4 .
Of course, these limits are not intended to represent precise upper and lower bounds
but rather typical values of { . It is evident now that the magnitude of R will
depend substantially on the relative magnitudes of Ge and G. Since Ge depends

on the spectral shape fin(w) of the signal, so does R. There is a special case,
however, in which R is independent of the spectral shape of the signal. This happens

when G(w) has a square form and is the subject of the following section.

3.5.4 Results for a Special Case

Let us assume now that G(u) is given by

Gw) = G for w _ bw <w <w +ﬁ) (3.92)
0 o 2 0 2
4 = ] otherwise.

Then, from Eqgs.(3.84) and (3. 86) we obtain

G=G =G, (3.93)
e 0
and consequently G
0

R = -(Eo_—lrm . (3.94)
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If, in addition, ¢ is such that GOC <<1, we shall have
R= G .
- o (3.96)

For gain Go = 10, for example, we have an improvement of 10 dbs.

In the general case in which the conditions G0 >>1 and G0§’ <<1 are not
necessarily satisfied, one should investigate the behavior of R as a function of
G0 and § . The results of this investigation are given in Fig. 18 where we have
plotted R as a function of G0 for three values of the parameter {. From
this figure, it is evident that, for a given {, R increases rather fast as the gain
increases up to a certain point, Further increase of the gain does not give any
substantial improvement. One also sees that improvement of the order of 10 db
can be obtained with a rather low gain (approximately Go = 10) as long as ¢ is
smaller than 10_2. Values of £ much smaller than 10_2 should be easily
achievable so that one could have 20 db improvement with gain approximately 100,

Before closing this section, a comment should be made as to the actual shape
of G(w). Recall that

Bk(w)
e .

G(w) = (3.97)

In most practical cases, the shape of k(w) can be approximated by a Lorentzian,

i.e.
kW) ~ m , (3.98)
0

where B and vy are constants. Then G(w) will be the exponential of the Lorentzian.
In Fig.19 we have plotted k(w) normalized to unity.  We have also plotted G(w) for
maximum gain 20 and 150, again normalized to unity. As is seen from the figure,
considerable narrowing and hence selectivity results because of the exponential
form of G(w). That is, the selectivity of the material is enhanced as the gain is
increased. It should also be born in mind that additional selectivity results if the

signal itself is a function of w peaked around wo )
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3.5.5 Solution of the Equation for the Density Operator of a Mode of the

 In o provisus study (aterim Report 08515-4-T), we found that the matrix
cloments of the dunslly eporator p‘ of a field mode passing through & quamtum
amplifior chay the dibrential equation

PO = cbmtcly )+ VI B e @4 by e T D) a L ),

(3,99)

where the superscript R has been dropped and the matrix elements are calculasted
ia the photon aumber representation. The quantities .b’bl'bz and ¢ are known

~ constsnts depending on the parameter of the amplifier. Let it be mentioned that,
although enme ¢sa caloulate average values and fluctuations of operators without
knowing the solwtion of Eq.(3. 99), knowledge of the solution willbennecessary in order
to caloulste probability distributions of the vniuos of pertinent operators. Such
probability distributiens are needed in calculating, for example, the rate of false
alarms, misses, etc. The solution of Eq. (3. 99), therefore, is nota matter of pure
academic interest.

For £ =0, we obtain the subset of the disgonal matrix elements of p. The

corresponding set of differential equations (for m=0, 1,2 - -) has been solved by

: m.t al (1957) by means of an appropriate generating function. For ! $0 the
form of the equations is different (because of the presence of the square roots) snd
does not lend itself to direct use of the techniques of Shimoda et al. At this point,
wo'oboomtlnuvowom:mmdhmcnom an(t) defined by

. | m!
F ®=p_ () - (3.100)
and substitute into Eq.

v-;.‘}if’m - <tz +b, etz 0) + by 1) sﬂl«ﬁj (3. 101)
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where we have chaaged the notation slightly. That is, we have written !":’ instead
of F‘ ”)‘ﬁ). Thus, we have a family of sets of differential equations paremsetrised

by 4, where £20,1,2--.. From Eq. (3,100) we have

Pty * B\ (. 100

The preblem has now been reduced to solving the equation for Fr(:)(t). The advantage

of the transformation (3,100) is that the resulting equation far Fa)(t) {s similar to the
m

equation obtained from (3,99) by setting £=0, and can thereforebe solvedby using the
techniques of Shimoda et al [1957).
To this end, we introduce a generating function Ru)ﬁ(, t) defined by

Ry = i FO0x™, (3, 103)
m=0
We have a f;nily of generating functions parametrized by L. Again, for £=0 we

obtain the generating function pf Shimoda et al (1957). Taking the partial derivative -

@) '

of R with respect to time, and using Eq. (3. 101)

B+ (1-X)b,Xb)) g3+ (c-aX) R = 0, (3,100

where we have introduced
‘ a= b2(1+1).. (3.105)

The superscript ! has been dropped from Eq. (3, 104) for the sake of simplicity.

The dependence of R on the parameter ! is implicit in the coefficients a and c.

Note that for £=0, we have aﬂc-bz. The task now is to solve the partial differential
(3.,104) and express -the solution as a series in powers of X. Of course, the initial

| condition will be a given set of matrix elements pmn(o) and hence a known set of

. numbers l(:)(o).
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_To solve £a, (3,104), we consider the equivalent system of ordinary differential -

oot ax gt x pon ’ ‘ ‘ (3.106)
ll-ﬁwzx-bls aX-c)R '
Introducing 1
Y £ X L (3.107)
the first equation gives
9! = Ay-by | (3.108)
bg =by

where k stands for the quantity -T as in Interim Repert 08815=4=T. The

solution of Eq. (3.108)

2
yit) = y,e kt+k (3.109)
where b b
2 2
A -2-g b2 'bl (3.110)

Considering now the second differential equation and using the above expression for
y(t), one can solve for R. The result is

fodt Lkt -2kt )1+1

R(X,t) = Ce = e (e ty) o, ~ o (3.111)

where C is the constant of integration.

. Let now p(0) be the density operator of the field mode at t=0. Then,
" its matrix elements will be pmn(O) and from Eq.(3,102) we:-have

(m+!)

)= (3.112)

= Plm)m® -
Thus, the initial value of R(x,t) is | _
R = i o) . (3.113)
0 m 0
m .
' Now, setting t=0 in Eq. (3,111) and using Eq. (3, 113), we fimd
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C= (yoﬂ)'“ﬂ) Z; Fﬁ)ﬂ)!f: : (3.
m

This equation determines the constant of integration. Substihting iato
Eq. (3,111), we obtain

y l+l ‘
Rk, 1) = (i:o "’co)x‘ﬁ ’“‘"”‘( ) .

Now introduce the quantity

2kt

G=e |, (3.

as defined in Interim Report 06515=4=T. Then, from Eq.(3.109) we have

y ’yoG+l, (3'
from which we obtain
1 .
y, =& b=N. ‘ (3.

Using this relation and the fact that

X = 1-4, (3.
o Y,
we find
o y=2A .
Recalling the definition of y (see Eq.(3,107), we obtain
x = L-o+a(-X) "
0 1- Ah-ﬁ ’ .
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Similarly, using Ege. (3,115), (3.117), and (3.107), we find

-2kt
yo+ke

. 1
y ¥ X T TG

It will be more convenient to write Eqs.(3.121) and (3, 122) as follows:

G
. GH-1 1 -m X

Xo — s
A=-1 1 -m- X
Yo +)«.e-2kt 1 1
and = .
A(G-1)
yon 1+2G=-1) 1- B X

Now, for the sake of simplicity, introduce the parameters

(3.122)

(3.123)

(3.124)

(3.125a)

(3.125b)

(3. 125¢)

(3.126)

G=1
5
. Gh
"N el
o , .1
, H7 TAG-T
x P
Also, note that e where we have used Eq. (3.110). Finally, introduee the
1 0
parameter
. _AG-1)
1+MG-1)
Comparing this to Eq. (3, 125¢) one finds
z = u AG=-1) .

Using now Egs. (3. 125) and (3, 126), we obtain
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+ S '
Y, A 1-2X
Substituting into Eq.(3. 115) we have

@ b 141
R(X, 1) = oL &-IPM a Fg)(O)Em(l-nJQm(l-gg X
m

1 (1-3X) H

Using the identities

-n _ r n! r
- ]
a3 B
Eq. (3.129) becomes

REX, 1) = ul*! l(k-w)t

LLLE e

Making now the substitution

r.+j+q = M,
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l+l !&-&)t

R(X,t) =

(3.133)

Comparing this to Eq.(3. 103), that is considering a specific M, andusing Eq. (3.102), we
obtain the final result

M' l+1 l(k-iv)t

m+l£?£1. (m-1+1)'. f (+Q"
(m-1)' 2! (M=j~9! (mH+e=-M)'J'q"

, (3.134)

or in a slightly different from

M | M 241 L{k=1v)t m \(m#)'m!
p(MH)M(t) (=n) "\l M e ; p(mmm(o)& — T

+Hq (m=1H)! L+
;2:0 g .H)j ( )(ﬂ) ?;I-J " (m+H £l A (3.135)

AAlthough' the summations’ extend formally from gero to infinity, in fact they are
limited by the requirement that none of the factorials be negative. This restriction
‘stems from the initial Eq. (3.131)
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Letting £=0 in Eq. (3.135), we obtain the solution for the diagonal matrix

elements, that is,

pypag® = (o ,Z;o L™ z;: "1’M<7ﬁ" Jm’ﬁm”

(3.136)

This, however, is not Shimoda et al's (1857) result yet. These authers
assume that the field mode in the initial state has a precise number of photoms.
This meens that

pmm(o) = 5mm , (3.137)
0

where m is the initial number of photons. Therefore, by deleting the summation
over m in Eq, (3,136) and replacing m by m, we obtain a result equivalent to
that of Shimoda et al (1957). Note that all parameters appearing in Eqgs. (3, 135) and
(3.136) depend on the two parameters G(gain) and A (population inversion) of the

amplifier,
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