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ABSTRACT

This investigation is concerned primarily with a general, unified
approach to the solution of excitation problems in a compressible plasma which
may be anisotropic and inhomogeneous, and which may include different types
of sources, e.g. electric current sources, magnetic current sources, fluid
flux sources and mechanical body sources. A macroscopic, hydrodynamic
approach is chosen and is based on the linearized Euler equations of motion
and the Maxwell equations. The Maxwell-Euler equations are reformulated
through linear operator and generalized transform techniques into an equiva-
lent matrix integral equation. When the medium is homogeneous, this integral

equation has an ideal kernel and the explicit solution can be easily obtained.

A thorough study is given for the excitation of disturbances due to
different types of sources in a homogeneous electron plasma immersed in a
constant magnetic field. Collisional damping effects are neglected and an
adiabatic condition is assumed in the present study. As a preliminary require-
ment, the dispersion relation in the form of a cubic equation for the propagation
constant square is analyzed as exactly as possible. Some illuminating graphs
showing the propagation constants as functions of the normalized plasma frequency
are employed for the above analysis and they are explained in conjunction with
the so called Clemmow-Mullaly-Allis diagram. In due process, a proper termin-
ology is introduced for the three types of waves involved in an electron plasma.
The radiation field is then solved for both two- and three-dimensional excitation
problems. Exact solutions are obtained for two-dimensional problems, and
asymptotic solutions are obtained for three-dimensional problems by direct utili-

zation of the dispersion curves. Some dispersion curves and the radiation field
from a point current source oriented in the direction of a constant magnetic field

are presented in graphical form, which are obtained numerically by a computer.



A proper ionospheric model is used for this calculation, which indicates
comparatively strong excitation of modified plasma waves. Also, equivalence
relations between different types of sources are obtained, which can be em-
ployed to express the fields excited by one type of source in terms of the fields
excited by another type of source.

An illustration is given for the application of the operator transform
formulation employed in this report to a three fluid plasma problem, and its
application to the excitation problems in an inhomogeneous medium is also

discussed.



PREFACE

In this work, a general, unified investigation of the excitation problems,
considering different types of sources, in a compressible plasma with an ex-
ternally impressed constant magnetic field is presented. A macroscopic, hy-
drodynamic approach is chosen, and the linearized Maxwell-Euler's equations
are reformulated through linear operator and generalized transform techniques
into an equivalent matric integral equation.
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CHAPTER I
INTRODUCTION

This investigation is concerned primarily with the excitation of wave-
like disturbances in a plasma, and is based on the linearized, coupled Euler's
equations of motion and the Maxwell equations.

The propagation of plane waves in a plasma has been studied extensively

2

1 2
by many investigators (e.g. Spitzer( ), Ratcliffe( ), Oster (3), Ginzburg(

(5) (6)

7 8
Budden ', Pai ', Tanenbaum and Mintzer( ), and Denisse and Delcroix( )).
In these studies the dispersion relation for the various waves was of primary con-
cern and the excitation of these waves was not considered.
Recently, excitation problems in a plasma have attracted the attention of
) . . (9) .. (10) . .
many investigators. Ginzburg ° and Kolomenskii considered the special case

of the radiation of a point charge moving in a transparent anisotropic medium.

(11)

Bunkin studied the radiation field of a given distribution of external currents

in an infinite homogeneous anisotropic medium and seems to be the first investi-

12 13
gator to give a general solution to the excitation problem. Kogelnik( ), Arbel( ),

14 1 16 17 1
Kuehl( ), Mittra( 5), Mittra and Deschamps( ), Clemmow( ), Wu( 8)

(20) (21)

19
and Kogelnik( ), Arbel and Felsen °, and Chow ', analyzed similar radiation

, Motz

problems in an infinite homogeneous anisotropic medium. In all these works a single
fluid plasma was considered and was assumed to be incompressible and thus could

be characterized by a tensor dielectric constant.

With the assumption of incompressibility, the longitudinal plasma wave

(22)

does not appear. Whale discussed the importance of the radiation of energy as

an electron plasma wave, and has shown that the calculated power radiated by this



type of wave yielded results in good agreement with rocket observations. Hessel
and Shmoya(za) have considered the excitation by a point current source in a com-
pressible plasma in the absence of a static magnetic field, and found that most of
the power goes into the plasma wave. Suhadri(24) treated the radiation from a
line magnetic current source in a compressible plasma. However, a general, uni-
fied investigation of the excitation problem, considering different kinds of seurces
(e.g. electric current source, magnetic current source, fluid flux source, and
mechanical body source) in a compressible plasma with a constant magnetic field
is not available. The objective of the present investigation is to find this general
solution by using a unified and systematic formulation.

In principle, the linearized Euler equations of motion and the Maxwell
equations, including sources, may be considered as a linear operator relating
the field quantities to the sources. Due to the large number of variables involved,
the solution of the excitation problem, i.e., finding the inverse of the operator,
in a medium which may be anisotropic and inhomogeneous, is very involved. In
general, analytical solutions for such high-order systems can be obtained only in
special cases. In this work, the formal operator method is used as a systematic ap-
proach to the excitation problem. Operator methods are a well-known and potent tool
in quantum mechanics. The introduction of the operator method into electromagnetic

(25)(26), Moses(27)

fields has been explored by Bresler and Marcuvitz , and others.

Recently, Dlament(za) has introduced the formalism of an operator method com-
bined with a generalized transform method in obtaining the formal solutions of

Maxwell's equations for general linearized media. Because of the compact notation,



systematic approach and convenience for numerical analysis his formal operator
transform techniques are extended in the present work to the system of linearized
equations describing the excitation of disturbances in a plasma.

In Chapter II, the general operator transform formalism for the linearized
equations of plasma disturbances is developed and applied to a homogeneous, com-
pressible electron fluid plasma immersed in a uniform magnetic field.

In Chapter III, the propagation of the three types of waves involved in an
electron fluid plasma is studied carefully by analyzing the dispersion relation in
the form of a cubic equation in propagation constant square obtained from Chap-
ter II. Also, a consistent and general terminology for these three types of waves
is developed, since there is no standard terminology available.

In Chapter IV, the wave characteristics obtained from Chapter III are
utilized to solve the excitation problems in a compressible electron fluid plasma
with a constant magnetic field. Equivalence relations between different types of
sources are derived which can be applied to both two- and three-dimensional
problems.

In Chapter V, a proper ionospheric model is used to calculate the dis-
persion curves, and then the radiation fields in the forms of asymptotic solutions.
The numerical results are presented in graphical form.

The application of our formalism to a three-fluid plasma problem is illus-

trated in Appendix A,

Its application to the excitation problems in an inhomogeneous medium is
discussed in Appendix F. As far as perturbation problems and general numerical
solutions of the problems are concerned this method seems promising, but it does

not look too promising to obtain exact solutions by using this method.



CHAPTER II
GENERAL FORMULATION

2.1 Basic Equations

In this section the basic equations governing weak disturbances pro-
duced by various kinds of sources in a neutral plasma composed of electrons,
ions and neutral particles will be presented. The parameters and assumptions
applicable to the undisturbed plasma are as follows :

(a) The number densities of electrons, ions and neutral particles are

denoted by Ne’ Ni and N_, respectively. Assuming the ions are

1’
singly charged and a neutral plasma, the electron and ion number
densities are equal and will be denoted by No, i, e. Ne=Ni~No.
Negative ions are not considered in this investigation.

(b) The electron mass and the average mass for the ions and neutral
particles are, respectively, m,, m and m .

(¢) The effective collision frequencies for momentum transfer be-
tween different types of particles is denoted by v ab’ where the
subscripts a and b refer to the types of particles. It is to be noted
that these collision frequencies for momentum transfer satisfy the
relations: Namav aszbme ba’

(d) The acoustic velocities for ion, electron and neutral particle gas
under adiabatic conditions are Ui’ Ue and Un’ respectively.

(e) The plasma is constantly under the action of a d-c magnetic field Eo'

(f) The plasma as a whole is stationary.

(g) Each gas obeys the ideal gas law.



In addition to the preceeding assumptions, it will be assumed that the
sources of the disturbances are weak and thus the second order terms, such as
the products of the perturbation terms, and the thermal and viscous effect can
be neglected. In addition, it is assumed that the properties of the disturbed
medium are nearly the same as the properties of the ambient medium. In this
case, a set of linearized equations is usually considered to be adequate to re-
late the disturbances to their respective sources.

Considering just one Fourier component of the disturbances in the form
of e_iwt, and employing the rationalized mks system of units, this set of equa-

tions is the following linearized inhomogeneous Maxwell and Euler equations

(Oster(B), Tanenbaum and Mintzer(7), Watanabe(zg), Cohen(30)’ (31), (32), and
Pai(33));—
(a) The Maxwell equations:
VXE-]'quH=-E 2.1)
Vxhtie wE-eN_ (V.-V )=J (2.2)

(b) The momentum transport equation and the mass transport equa-
tion for the electron gas:
T2 —.c .=
-igNm V +m U Vn +eN [E+V xB]
oee ee e 0 e o

+Nmv (V-V)fNmv (V-V)=F (2.3)
0O e el e 1 O e en e n e

‘V +V - -1
NOV Ve Ve VN0 lwne=Qe (2.4)



(c) The momentum transport equation and the mass transport equa-

tion for the ion gas:
-— 2 — — —
. + -eN |E+V.xB
WN MV, Fm, U, Vn, -e 0[ Yi o]
+N my_ (V.-V )+N my. (V.-V )aF,
0O 111 1 (] O 1 1In 1 n 1

.V 4V VN -i
NOV Vi Vi N0 lwni-Qi

(c.9)

(2.6)

(d) The momentum transport equation and the mass transport equa-

tion for the neutral particle gas:

—-— 2 — -—
-i + + -
m)NlmnVn anmVnn Nlmnv ne(Vn Ve)

+N.mv (V -V )=F

l ' nni n i n
.V +- . -i

NlV Vn Vn VN1 lwnn=Qn

The following notation has been used in the above equations:

h: varying component of the magnetic field

60: dielectric constant of free space

E: varying component of the electric field (constant component
is not considered in this investigation)
\_/e ; n: fluid velocity of the electron, ion, or neutral particle gas

. electric current source

&~

uoz permeability of free space
K: magnetic current source
ne in varying component of the number density of the electron,

ion or neutral particle gas

e: absolute value of the charge of an electron

(2.7

(2.8)



mechanical body source for the electron, ion or neutral
particle gas

Q : fluid flux source for the electron, ion or neutral particle

gas

The set of Eqs. (2. 1) through (2. 8) represents a system of partial differential
equations relating 18 scalar functions. In the following section we shall pre-
sent a formal operator transform method, which is convenient to solve this set
of equations with source terms present.

2.2  Operator Transform Method

A formal solution to the set of Egs. (2.1) through (2. 8) can be obtained

by an operator transform method. This method is an extension of that used by
. (28) . o .

Diament for the formal solution of Maxwell's equations in general linear
media.

The procedure for obtaining the formal solution is as follows:
FIRST: For the purpose of exhibiting a general solution to a system of basic
equations, it is convenient to reformulate them in the following single operator

equation

W W(r)=p (r) | (2.9)
where Y(r) is a field vector composed of the field variables such as the electric
field E, the velocity field ;7, ete., [b (r) is the source vector containing various
excitation sources such as the electric current source 3, the mechanical source
i‘, etc., and 1/ is the system matrix differential operator relating the field to

the sources. 4,/contains all the properties of the medium and is a function of



the space coordinate r. In general, without loss of generality, @se system of
basic equations can be rearraaged so that some of the submatriagsof Wiare ;I
identity matrices.

SECOND: Here, we introduce the generalized trensform techiniqas, which
amounts to choosing some convenient basis of represeatation for the selution
and transforming the operater differeatial equation in real spase te an eperator
integral equation in transform space. The generic nmma‘uon symbol §, such

as used in Quantum Meclmuu‘u)

, will be used, whioh requires that the ex- ‘
’ |
pression fellowing this symbol be integrated or summed over the etire yange 4

of the repeated varisble. Formally, for any quantity a(r), we may intrdduce

o~
wgwns e

the following transform pair:
Transform  A(s) = § ds, r)alr) R
hverse;  mr) » foix.slAla) o E @.1¢
with the property that . . ‘; -
foir, s)dls, p) = Tir, p) S
and fala, r)dr, s) = T(u,8) ;' f (.11

The idomfaotorﬂu. s) comprises a Dirac deita funetion or & m ihlh I’A

& unit dyadic, as roqulrod.

To illustrate the trmbrm pair oonnldor [ u‘l&cnlar utdimh m-

tem. The real space variables are ooordlnui(!a.klﬂ

E 3 Tt

varisbles may be oemidorod as (ll. s, la). The range of the real spsog and ‘q

transform space variables is “ to +. In this case a Fourier transform is

c

appropriate and d(s, r) and efr, s) are

Flen, LS B



1 -ir:-s

e
(21)3

dls, r) =
(2.12)

ir-s
elr,8) =e

If the nature of the problem requires the cylindrical coordinate system, we can

apply a Fourier-Bessel transform given by

-inp + Bz) (ap)

d(s,r) =e
n

(2.13)

otr, 8) == P2 (qp)
(27)

The ranges of p and q are 0 to c, with weight functions p and q, respectively;
the range of § is O to 2#, and that of n is all integers; the ranges of z and B are
- to . The real space is expressed by the cylindrical coordinate system
(p.§. z), and the transform space is expressed by (q, n, B).

Now, we proceed to the transformation of the operator Eq. (2.9). Let

¥ (s) and ff (s) be the transforms of the vectors y (r) and f (r), respectively, i.e.,

7(s) = $d(s, rir)
V(r) = $olr, sNi(s) (2.14)
§(s) =g d(s, r)f(r) s
§ (r) = $olr, s)fi(s)
Also, we take the transformation law for the matrix operatorw/ as _
W (a,8) = gdu, r)welr, s) (2.16)

Premultiplying both sides of Eq. (2.9) by &u, r), and then substituting the ex-
pansion for y(r) as given by the transform pair in Eq. (2.14) and summing or

integrating over the complete r-space the operator Eq. (2. 9) in the real space



10

beceomes the operator integral equation in the transform space

paflu, 0)f(s) = § (u) (2.17)
This equation has the charaeter of a gemeralized integral equation of the first
kind, with fi(s) as dle forcing functien, Js) as the unknown function, and®/{u, s)
as the kernel. W/ (u, 8) is a function of two composite varisbles of the transform
space and retains all the pertinent information about the system.
THIRD: Because of the earlier rearrangement and diagonalization, the dyadic
kernel %/ (u, s) can be properly partitioned so that the order of the matrices to be
manipulated may be reduced, by introducing coupled integral equations of the
second kind, which in turn may be recombined into one integral equation of the

second kind. For example, we can have for Maxwell's equations

0 M, 8) -2u, 8)
Wi s)= | (2.18)
~Y(u, 8)1(u, 8)
Then, the partitioning of {s) and I(u) into two vectors
Vis) W(u)
He)= . Blo)e (2.19)
Ks) Ju) ‘
produces the following coupled integral equations
Vu)=W(u)§ Z(u, 8) I(s) (2.20)
T(u)=J(up+$ Y(u, 8)V(s) (2.21)
Let Vi(s) and K#) correspond, respectively, to the transform of the electric
field and the transform of the magnetic field, thén these Eqs. (2.20) and (2.21)
have the generalized formn of the telegraphist's equations of Bchelkunoff(ss) if

s is taken to indicate different modes in the waveguide.



11

The elimination of either the field vector V or I in the Eqs. (2.20) and
(2.21) gives the general form of the Fredholm integral equation of the second
kind, ©.§g.,
V(u)=Flup-$K(u, s)V(s) (2.22)
where
Flu)aW(u}+$ Z(u, sN(s)
K(u, s)s$ Z(u, v)Y(v, 8)

are both known functions. For homogeneous media the kernel has the ideal

(2.23)

form

K(u, 8)=N(8) 1 (u, 8) (3.24)

and the integral Eq. (2.22) can be explicitly solved as

Via) [1-N(e)] " Fto) (2.25)
Another degenerate case exists when the dyadic kernel can be expressed in
fictored form as

Ku, a)=A(ulB(s) (2.26)
and again we have explicit solutions. For inhomogeneous media, in general,
an oq)licit formal solution to the integral equation can be obtained recursively by
the application of the genersl theory studied by Diament(zs). If approximate solu-
tions are sufficient, a general kernel can be approximated by a degenerate kernel.
2.3 One-Fluid Plasma

The operatortransform method presénted in the previous section will

be applied to ohe-fluid plasma problems. Its application to three-fluid plasma

problems is very complicated, and is illustrated in Appendix A. By one-fluid
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plasma we will consider only the electron gas, and the motions of ions and

neutral particles will be neglected. Our intentionis to study the applicability

of our method to simpler problems thus paving the way to more difficult three—
fluid problems. Besides, there are many practical situations in which we can neg-
lect the effect of heavy particles, e.g., the ratio propagation in the most part of
the ionosphere except, maybe, D-region. Although electron fluid plasma prob-

(5) (11)

4
lems have been studied by many investigators (Ginzburg( ), Budden °, Bunkin
(13) : .
Arbel” "), there are still many important problems to be solved. One of such
problems is the excitation problem in the compressible electron fluid plasma
immersed in a constant magnetic field. This problem will be given a full treat-

ment in the subsequent chapters.

[A] Operator Form

The basic equations for the electron fluid plasma can be obtained from

Egs. (2.1), (2.2),(2.3) and (2. 4) as

VXE-iMO&E=-R 2.27)
VX§+ieowE+ eNOTf =J (2.28)
—inOm\—/+mU2Vn+ eN_ E+\7x§o} =F (2.29)
NOV- ;7+;7- VNO -lwn =Q (2.30)

where all subscripts e have been dropped, and also we have neglected the
collisional dissipation effects.

In order to be able to obtain a proper matrix form of the Eqgs. (2.27)
through (2. 30), we will express E and ;7 in terms of IT, n:I and i‘ by employing

Eqgs. (2.28) and (2.29). Firstly, E is eliminated between these two equations
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to get
2 2
Y _wg = = A e = U e 1 =
- V+w Vxb= = Vxh - Vn - - J+ F (2.31)
iw c iw Eom No iw Eom mNO

where/l\) is the unit vector in the direction of the externally applied constant mag-
netic field, and also use is made of the conventional electron cyclotron frequency,
wc=eB0/ m, and the electron plasma frequency, wp2=e2NO/ EOm. Secondly, Eq.
(2. 31) is explicitly solved for ;7 by taking scalar product and vector product of

A -
Eqg. (2.31) with b, and then E can be solved from Eq. (2.28). Their results are

A11h+A12n+E =8, (2.32)
A21h+A22n+V =82 (2.33)
where 2 . 9 9 9 |
upw/leo IRUA N O ‘\ o
All= 2 2.2 22 w bx(Vx1)+ —LZ Vx1 - 5 2bb-Vxl o
(Ww ") =w w « W W -w 4 o
p Y p
(2.34)
2 —
elU w/ie . ) (wz-wz) o iw 2 " U
A= Q W bx(Ve 1)+ —E v T+—}be(v-1)  (2.35)
12 2 2.2 2 2 c iw 2 2
(W-w ) -w w -— (W =w ) _
p Y p
o = €w
i iVxl o
= — ——
A® M1 e TeN (2.36)
L o - o)
eou
2-
B99™ A2 TeN (2.37)
, 2 .
_ w/ie . _ww ) ww
S, = 2 = » bxF+ F+ C bbb F
1 2.2 m. c iw 2 2
(W-w) -w w w -w )
p p
rw (W -w 2) W 2 "] -
v 2 S bxg+ Jo——h. Ty -1 (2. 38)
pl w 2 2 2 | ! €W
- W (w -wp) o)
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i - T €W
S i3 .. _d 10

2 "L e€ew . ieN
o 0

(2.39)

In the expressions given by Egs. (2. 34) through (2. 37) we have employed some

dyadic operations with their associated matrices as follows:

1 0 0
Tsxxtyy+zz—> |0 1 oi (2. 40)
0 0 1]

ox dy 0z _ o
T, L2 o
l’ oz dy (2.41)
) 9
_ = 0 -
| 0z ox
|0 0 — =
[ am— = 0
| : =
| dy  0X B ox
=_fan O A O AE)) AA  AA AA d
= —_ 4 —_—_tg ) + + —_— - 2.4:2
v-1 (Xax Yoy "% oz (ax +yy +22) dy (2.42)
9
0z

AN_ A A A A A
bb (xbx+yby+2bz) (xbx+yby+zbz)

b [b b b

—> b" x (2.43)

y

b

Z
%xis(ﬁbx+§by+%bz)x(§§+§§+22) I—o b b

|
—> b 0 -b (2. 44)
|
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Now the original Egs. (2.27) and (2. 30), together with the rearranged

Eqgs. (2.32) and (2. 33), can be put into the following desirable matrix form:

:’“ 3 i
= V1 | = =
| 1 j— i { -1
‘ 0 i ., 0 ! h K/ w
iNo =1 1 = H
0 1 0 —(V:1)+—W 1 |In L iQ/w
W (N} 0 ) = k (2.45)
All A12 1 0 E I S1
|
] = |-
o A O ¥ 1%
where (V- T)‘ is the transpose of the matrix given by Eq. (2. 42).
This matrix equation can, then, be put into an operator equation
w Y(r)=p(r) (2. 46)
ra C =
where oo —iK/qu
n iQ/w
Y(r)=| _ ) p(r)=]| _
E S1
P - 2.
v 3 (2.47)
L 2

Thus, the basic Maxwell-Euler's Egs. (2.27) through (2. 30) have been re-
formulated into a single abstract relation between the sources and the result-

ant fields. ¥(r) is a ten-vector containing the field quantities, f(r) is a ten-
vector representing the source quantities, and/ is the system matrix differential
operator relating the fields to the sources. Two identity submatrices of W/, as
can be seen from Eq. (2.45), are highly significant in deriving an integral equation

of the second kind in an inhomogeneous medium.
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~ T

LBf Generalized Telegraphist's Equations

Generalized Fourier transform as given by Egs. (2.10) and (2.11) will be
used to transform the operator Eq. (2.46). Then, Egs. (2.14) and (2. 15) give the
transform pairs for the field vector and the source vector given in Eq. (2.47),
and Eq. (2.16) gives the transform for the matrix differential operator, W,

The resultant integral equation of the first kind as given by Eq. (2.17) is

W (u,8) ¢ (s) = § (u) (2.48)
This equation may be put into the generalized forms of the telegraphist's equations
by partitioning the transform of the field vector, §(s), the transform of the source

vector, ﬁ (s), and the transform of the matrix differential operator,W/f (u, s), as

follows :
_ - - r—1( )_
t S
n V (s)
Is)=gds,r)} _ | =| °© (2. 49)
E V (s)
t
v I (s)
— o - e .
*-il_(/wu; E s) i
iQ/w W (s)
f(s)= ds,1) | _ = (2. 50)
S, W (s)
t
Sq Je(S)

where It(s)’ Ve(s), Vt(s) and Ie(s) are, respectively, the transform of the mag-
netic field, E, the transform of the density variation, n, the transform of the
electric field, E, and the transform of the fluid velocity, ;7, and also Jt(s), We(s),

Wt(s) and Je(s) correspond, respectively, to the transform of the magnetic current
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source, K, the transform of the fluid flux source, Q, the transform of the three-

vector source function, Sl’ and the transform of the three-vector source function,

Sz' Taking advantage of the orthonormality property of the transformation kernels

as given by Eq. (2.11), the ten-dyadic kernel,2f (u, s), can be partitioned as

I _
I(u,s) 0 -Yt(u,s) 0 T
0 1(u, s) 0 -7 (u, s)
w (u, 8)= ) €
-Z (u, s) -T (u,s) I(u, 8) 0
t te
-T (u,s) -Y (u,s) 0 i(u, s)
et e
- T (2.51)

where 1(u, s) is a Dirac or Kronecker delta function which is the same as the
scalar form of the idemfactor i(u, s). The three-dyadic immittance functions
Yt(u, s) and Zt(u, s); the three-dyadic transfer function Tet(u’ s); the three-row-
vector impedance function Ze(u, s); the three-column-vector admittance function

Ye(u, s); the three-column-vector transfer function T te(u’ s) are defined as:

-Y (u, s) =$d(u,r)iy£1'c(r,s) (2.52)
t wuo
—Zt(u,s) =8 d(u, ) A elr, ) (2.53)
-Tet(u,s) =8 d(u,r) A21c(r,s) (2.54)
iNo = i
—Ze(u, s) = $ d(u, I‘)l:T(V- )+ GVNO- T:\ e(r, s) (2.55)
-Ye(u,s) =8 d(u,r) Azzc(r,s) (2.56)
-Tte(u, s) =$ d(u, r) A, c(r, s). (2.57)

In Egs. (2.52), (2.53) and (2. 54) both transformation kernels, d(u, r), and inverse
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transformation kernels, ofr,s), are three-diagonal-dyadics; in Eq. (2.55)
&u, r) can be taken as a scalar and c(r, s) taken as a three-diagonal-dyadic;
in Eqs. (2.56) and (2.57), three-diagonal-dyadics can be used for &(u, r) and
scalars can be used for c(r, 8).

Substitution of the partitioned matrices as given by Eqs. (2. 48), (2.50)
and (2. 51) into the transform integral Eq. (2. 48) decomposes this equation into
the following set which, due to their form, will be called the generalized tele-

graphist's equations.

lt(u) =J t(u) +8Y t(u, s) Vt(l) (2.58)
Vt(u) n Wt(u) +¢ Zt(u. s) It") +8 Tu(“' s) ve(-) (2.59)
I‘(u) = Je(u) + 8 Tet(u’ 8) It(-) + lxe(u. 8) ve(-) (2. 60)
ve(u) = We(u) +$2 e(u.f s) le(n) (2.61)

Equations (2. 58) to (2. 61) contain in a compact form, in the transform space,
the laws governing the excitation and propagation of ''fields" in the linearized
medium. The set of immittanoces and transfer functions, which can be evaluated
from Egs. (2.52) through (2.57), contain all the intrinsie properties of the medium,
while four components of the source vector, Wt(u). J t(u). Je(u), We(u) repre-
sent all the sources. For Maxwell's equations only, if € and My in Eqgs. (2.58)
and (2. 59) are replaced by appropriate tensor permittivity and permeability, the
pertinent equations are

It(u) = Jt(u) +8 Yt(u, s)Vt(s) (2.62)

Vt(“) = Wt(u) +8 Zt(u, s)lt(s) . (2.63)
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2
This set of equations is the original form given by Diament( 8). They may be
. . . (35)
compared with the telegraphist's equations of Schelkunoff or the network
. ., (36) . i .
equations of Marcuvitz . Z ¢ may be interpreted as an impedance function
while Yt may be interpreted as an admittance function. Hessel, Marcuvitz and
(37 . Lo
Shmoys have explored some aspects of the application of transmission line
equations to a problem involving a compressible plasma and air and the associated
boundary between the plasma and air. However, they did not consider the effect
of a constant magnetic field. The results of their investigation yield some versions
of Egs. (2.58) to (2.61). Equations (2. 58) and (2.59) give the transmission line
system for the transverse electromagnetic wave, and Eqs. (2.60) and (2. 61) give

the transmission line system for the electron acoustic type of wave.

[C] Fredholm Integral Equation

The general Fredholm integral equation of the first kind, Eq. (2. 48),
which is equivalent to the original Maxwell-Euler's equations, will now be reformu-
lated into a general Fredholm integral equation of the second kind which is more
amenable to analysis. At the same time we have reduced the order of the matrices
to be manipulated from 10 x 10 to 4 x 4. This step can be easily performed for
Maxwell's equations in the form of Eqs. (2.62) and (2. 63), but for our Maxwell-
Euler's equations we can not directly reduce the generalized telegraphist's Equa-
tions (2. 58) through (2. 61) into the integral equation of the second kind. Thus, in
order to effect this reduction §/(s), f§ (s) and s (u, s) will be partitioned in the

following way.
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‘fﬂl(s)} ‘le(s)"1
Us)= } o fls)= | (2. 64)
| Uyf8) B,
where
It(s) vt(s)“% Jt(s) i[“wt(s)
g, (s)= , Tyls)=| 1 (o) RO
v (s) Lle(su W (s) Laés)_i
(2.65)
and
"1 (u,8) - le(u, s)
W (ws)s | | (2.66)
L-w21<u, s)  1(us)
where
!"Yt(u,s) 0 j i‘zt(u,s) Tte(u,s)’é
ety Wl
L0 Ze(u,s)J {_Tet(u,S) Ye(u,SLl
(2.67)

The introduction of these partitioned matrices into the integral Eq. (2. 48) gives

the following coupled integral equations

ﬂl(u)=fl(u)+$ 'u{z(u, S)QZ(S) (2. 68)

5@2(u)=§2(u)+$ W, (u, 8)F, (s) . (2. 69)
and the substitution of Eq. (2. 69) into Eq. (2. 68) gives rise to the desired integral
equation of the second kind

ﬁl(u)=F(u)+$ K(u, S)Il(s) (2.170)
where the compound source is

F(u)f, ()+§ W) y(u,8) () (2.71)
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and the four-dyadic kernel is

K(u, s)=§ ’u/lz(u, v) “uf21(v, s) (2.72)

[DWJ Formal Solution in A Homogeneous Plasma

The integral Eq. (2.70) can be easily solved for a homogeneous plasma
because the kernel has the ideal form K(u, s)=N(s) i (u, s).
Choosing a Fourier transform and thus using the transformation kernels

as given by Eq. (2.12), we can obtain from the defining Egs. (2.52) through (2.57)

¥ (4, 8)= -—— 1(u, 5) 2.73)
t Wy
(0]
NO
- = o — 1
Ze(u, s) s 1(u, s) (2.74)
wpz/ieo W, (wz-wz)
“Z(ws)* 5795 5| pPstiTg 8
(W~ ) Www W
P (]
wcz = -§
-i 3 bb' § l(u,s)+€w 1(u, s) : (2.75)
(w —wp )

Tl s 532 22

2, . 2 2
ewU /160\ o ww )
iw bs+——p-—s
c W
C(w =W ) -wcw

Wcz
- 55 bb's 1 (u, s) (2.76)
(W -w )
p
60(0 §
-Tet(u, s)= oN [-Zt(u, s) - P 1 (u, S)} - (2.77)
(0] (0]
eow
—Ye(u, g)=-—— Tte(u’ s) (2.78)

ieN
o}



where
0 -b b |
4 y
b b 0 -b
Z X
-b b 0
y X
81
s= 82 s s'=
L 53.

The kernel of the integral Eq. (2.70) is

22

3

K(u,s)=§ u/lz (u, v) Wo, (v,s)

—

il

¢ Yt(u, V)Zt(V, s) $Yt(u, V)Tte(v’ s) .

;j; Z (wWIT_(v,8)  $2Z (WY (v,5)]

with
$Yt(u, VIZ (v, s)
2 2
-c wp/w |’ _
= §|iw b+
2.2 22
(wz-w Vi o ©
p (¢
WW o
R 1{ §
9 2 bb ! sl(u, S)
(W-w) <
p
Y (u,v)T te(v, s)
i ieczU2 =1 -l—-)
2 22 22 °|%

(W-w)w w
P C

%9
s,
0
(2.79)
(2.80)
(2.81)
(2.82)
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$ Ze(u, V)Tet(V, s)

. 2 2
iw /e CL ey !
=57 g7 s Wp-—g g bbt §llus) (2.83)
(W-w ) -w w (W-wy
p c P
$7Z (u,v)Y (v,s)
€ €
B 2 2 2 B
U e ee
= t L35 h T_ '
2 22 232° |Wbt— T I-—5 g bbY sl(us)
(W -w ) —wc W (W -w")
P (2. 84)

where c=1/ / uoeo' is the velocity of light in free space. Thus, the kernel has

the ideal form

$ ‘uflz(u, v) ’uf21(v, s) = N(s) 1 (u, s) (2. 85)

where N(s) is a 4x4 matrix.
Substitution of this ideal form of the kernel given by Eq. (2. 85) into the

integral equation will produce the solution of the integral equation directly as

10s) .

| = [1-NGs) ] T F(s) (2. 86)
| V (s)|

C €

In real space the magnetic field and the density fluctuation field are given by

e -

hir) - -1 ir-s

= $[1Ne) ] T Fe)e (2.87)
n(r) |

which is usually evaluated by the method of residues at the zeros of the

determinant

det. [ 1-N(s)| =0 (2.88)
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Equation (2. 88) is the conventional dispersion relation when s is interpreted
as the propagation constant. Thus, the importance of the dispersion relation
in finding the excited fields is obvious.

_@_2(8), which is a six-column-vector composed of the transform of the

electric field, Vt(s), and the transform of the velocity field, Ie(s), can now

be obtained from Eq. (2.69).



CHAPTER III
WAVE PROPAGATION IN ONE-FLUID PLASMA

3.1 Introduction

The close relationship existing between the dispersion relation, which
describes the propagation characteristics of waves, and the excited fields is
apparent from the fact that various poles of the inverse transformation integrals

(38)

give the dispersion relations for the different types of waves. Lighthill and
Felsen(39), all stressed the importance of the direct application of wave sur-
faces obtained from the dispersion relation in finding radiation fields. Thus, in
this chapter we will analyze the dispersion relation and discuss the propagation
characteristics of those waves existing in an electron fluid plasma, which is

the preliminary requirement for solving the excitation problems. Collisional
dissipation effects are neglected in order to show the salient features. This
should be practically permissible for high frequencies and in higher iono-
spheric regions.

To facilitate the analysis it is convenient to give a proper terminology
to the waves whose propagation constant squares are given by the roots of the
dispersion relation. For an electron plasma a standard terminology has not
yet been established for the three waves corresponding to the three roots.
Judging waves by their frequency characteristics, Denisse and Delcroix(g)
have used the terms, ordinary waves, extraordinary waves and electron waves.
Allis, Buchsbaum and Bers(40) have adopted the optical criteria of judging

waves by their local characteristics, i.e., by the shapes of the phase velocity

25
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surface and the polarization, thus they have used the terms, ordinary waves,
extraordinary waves, right-handed circularly polarized waves, left-handed
circularly polarized waves, and plasma waves. The terminology used in this
work will be developed in a manner similar to that of Denisse and Delcroix(8)
However, since the motion of the ions has been neglected, a more exact analysis
of the roots is possible and the result can be related directly to the work of
Allis, Buchsbaum and Bers(40), and Stix(4l). Thus, the names, '""modified ordi-
nary wave', "modified extraordinary wave'" and "modified plasma wave' have been
associated with each branch of the root of the dispersion relation for the inter-
mediate inclination of the constant magnetic field to the propagation direction.
The point of view adopted here is that the ordinary and extraordinary electro-
magnetic waves in magnetoionic theory (Ratcliffe(z)) and the plasma wave are

coupled together and modified by each other due to the constant magnetic field.

3.2 Dispersion Relation

Without loss of generality, the coordinate axes can be chosen such that
the externally applied constant magnetic field is in the 3'1\ direction and given by
- A
=yB .
Bo Y%
(3.1)
Thus b =b =0, b =1.
Applying Eq. (3.1) to Eq. (2. 81) through (2. 84) the following matrix for the

kernel function N(s) is obtained:
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21 22 23 24 1
N(s) = XTS5 99 (3.2)
Ngp Nap o Nag Mgy (W) W
Na Ngo Nz Nyg
with 9 ( 9 (mz-wpz)z—wczw2 9 9 9 9
= + - -
N11 ¢ { 8g 5 o 82 (w wp wc) (3.3)
W W
p
(iw w 2
2 c 2 2 2
- —LP_ o 4 -
le % -C 82{ " s, s (w wp wc )} (3.4)
. 2 2 2.2 22
5 [mcw 5 (w -wp) w0 }
Nig®¢ |7y S "S53 2 2 (3.5)
W W
p
22 [ Y
N14 =jec U wcsz (8,53 I8 (3.6)
LT wo-w j
p
iw w
2 % 2 2 2%
N21 = c 321: T (w -wp 0, )J (3.7)
2 2 2.2 2 2
+ - .
N22 = c (s1 Sq ) (w —wp wc) (3.8)
(W w
2 2 2 2
- : + - - .
N23 =-cs, , 5, * s, (w wp w, )} (3.9)
2 2 2 2
- +
N24 = -ec U wc(sl 54 ) (3.10)
. 2 2 22 22,
fiw w 5 (w -wp) W W
-c ¢ + 3.11
Nyp #0175 %2 "51% 7 2 2 (3.11)
W W

p
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. 2
W w
2 cp 2 2 2
= < - - - ‘\
Ny, =€ 8y~ 8,8, (w Wy g )E

2 2.2 22
2(w-w)—ww
P

2 2 2 2
+ - -
Ngg =¢ )le 2 2 8y (W= w0
p
R S e
34 1€C b)csz Esl ) ) 153
L w-w
p
9
mcw Ww \
Nt T %% e iR
p
2
h)c(.d
a-—SE +
Nyo . (8 Ts5)
2
wcw {’ Ww
Ny ® e 89%8 3 7 "isq)
LW oWw J
p
wz-wz (0(02
L2 p 2 C 2
Nyg “’U{ w ST 2 2 Sz}
(d"(dp

2 2 2 2
wheres =s, +s_ +s,_ .

1

2 3

(3.

(3.

(3.

(3.

(3.

(3.

(3.

12)

13)

14)

15)

16)

17)

18)

The required dispersion relation is obtained from the determinant of the

four by four matrix E-N(Sﬂ as given by Eq. (2.88). After some manipulation

the dispersion relation can be expressed as
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To facilitate the analysis, the following notation will be used:

‘ 2
s, +s, =ssinf S, =S cos0
(| 3 ’ 2

W W wc v
_=B 2 —=B > _=Q) —R‘:w
] 0 U e w W o

where 6 is the angle between the direction of the magnetic field and the propa-
gation direction. Using this notation, the general three-dimensional dispersion

relation as given by Eq. (3. 19) becomes

6, 2 2 4r 2 2 2, 2,2 2 2 2 2 2 -
- - +2 -
s (Q cos 6-1)+s L(l W, )(Be+230 )2 (Be BO cos 6 Be W cos 6)

2,2 2.2 2 2 2 2 2 2 2 2 2 2 2
+s B L—(l—w ) (2B “+B )+ (2B “+B “cos“ 6 -B “w “cos” 6-B“w )]
) 0 e o e o e o e o -

2,4, 2 22 2
+B B (1-u) [(1-u )"0 ] = 0 . (3.20)

3.3 Basic Types of Waves

Simple systems are considered first, thus introducing plasma waves,
ordinary waves and extraordinary waves. Next, Cardan's solution for a cubic
equation will be used to obtain an exact solution to the dispersion relation,

Eq. (3.20), and these three roots are identified as modified plasma waves, mod-
ified ordinary waves and modified extraordinary waves.

[A] Waves in Absence of Magnetic Field

Since the externally applied constant magnetic field is the main reason
for complicating the nature of the waves, the case without magnetic field is consid-

ered first. The dispersion relation, Eq. (3.20) reduces to
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o -at1-0 )8 28 ErealB -0 ap e Yy 2t 0 )

This relation can be factored into

[sz-ﬁoz(l—woz):’z [sz-Bez(l-woz)] =0, (3.22)

=B ,’1-(.,02 , (3.23)

which is the propagation constant for the electromagnetic wave modified by the

This first factor yields

effect of space charge.
The second factor yields
2
s=8 \‘1—«) , (3.24)
e o
which is the propagation constant for the plane plasma wave.
Some authors would prefer using the terminologies, "electro-acoustic
' 8
wave'", "electron acoustic wave" or "electron wave" (Denisse and Delcrolx( ))
instead of '"'plasma wave", but we use the term "plasma wave'" which has more
historical importance. In the event that the fon motions can not be neglected, we
can still use the modified terms, "electron plasma wave" and ""ion plasma wave".
[B]  cold Plasma

The complicated effect of the static magnetic field is considered for the

simple system, where

. %— — 0. (3.25)

L
B

e
Physically this situation corresponds to the case that the electron gas tempera-

ture is 8o low as to be negligible, and the plasma wave does not propagate. In gen-

eral, the major effect in this system is to split the electromagnetic wave into two
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2
components which are well known in the field of Magnetoionic Theory (Ratcliffe( ),

(5)

Budden' ).

The dispersion relation, Eq. (3.20), reduces to a quadratic equation in s
4 2. 2 2 2 -
s [_(l—w )-Q2 (1-w cos 6) |
0 0 -
2,2 |- 22 2 2 2 2.7
+ -2(1- + - -
sBO (-2 ( wo) Q (2 wocosewo)_;
4 2, | 22 2
+Bo (l—wo) i_(l—wo) -Q:‘ = 0. (3.26)

2
This equation shows that s has one root equal to zero at

2 2

w = 1 s w = 1+ Q (3' 27)
0 0 -

and also one root goes to infinity at
2
2 1-Q

w =T 9 o . (3.28)

° 10cos" 6

The two roots which characterize the two components of the electromagnetic

wave are 9
W
2 2 0
s =B, |1 22 s 4 712 (3.29)
2 sin 6 + Q sin 6 2 2 |
1- 2 22 +Q cos 0 |
2(1--(,)0 ) (l—w0 )
- 0’ }
2 2 | 0 |
|- = RS o 6 |
2(1—(;)o ) 4(1—w0 ) —

These are the Appleton-Hartree formula for the collisionless case.
If the propagation direction is perpendicular to the direction of the con-

stant magnetic field, 6 = %, then the formula (3. 29) becomes

52=Boz [1-(002] , (3.31)
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and the formula (3. 30) becomes

S wk-ed)T
s“=p% 11- 2—2 (3.32)

© ‘- l—woz—ﬂz A

The wave characterized by Eq. (3. 31) yields the same propagation constant given
by Eq. (3.23) which is unaffected by the magnetic field, and is for this reason,
usually called the ordinary wave. The other wave chara cterized by Eq. (3. 32) is
usually called the extraordinary wave. Equations (3.31) and (3. 32) go to zero
and infinity at those points given by Eqgs. (3.27) and (3.28).

Conventionally (Ratcliffe(2 ),), for 6 5 %, the wave characterized by Eq. (3.29)
is also called the ordinary wave, and the wave characterized by Eq. (3. 30) is called
the extraordinary wave, but this definition breaks down at 8 =0, since for the propa-

gation parallel to the magnetic field, i.e. 6 = 0, the formula (3.29) yields

2
W
2 _,2 0
S —BO [1— 1+9} , (3.33)

and the formula (3. 30) yields

2
w
2 2 0 |
S BO [1_ 1-Q —J ) (3' 34)

which do not display the zero at w02= 1, nor the infinity which is given by (3.28)
also at wozll. This is because the process of obtaining Eqs. (3. 33) and (3. 34)
from Egs. (3.29) and (3. 30) by setting 6 =0 is not valid at wozll, since the dis-
persion relation (3. 26) has a common factor (l—woz) for 0 =0, Still, it is true that
Eq. (3.33) corresponds to the ordinary wave and Eq. (3. 34) corresponds to the

2
extraordinary wave for W, <1. What happens near 6 =0 is that the ordinary wave
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2
is taken over by the extraordinary wave completely at wo =1, and only the
2
extraordinary wave is present for W, > 1. The true state of affairs is illustrated
more clearly by Fig. 1 and Fig. 2.

[Cj Warm Plasma

The three roots of the dispersion relation, Eq. (3.20), will be expressed
by Cardan's formula. These three roots characterize three types of waves. Or,
more specifically, these three roots are the squares of the propagation constants
for three types of waves.

One of these roots will reduce to the propagation constant square of the
ordinary wave at 6 = %, thus, we will call the wave characterized by this special
root the ""modified ordinary wave". Another root will reduce to the propagation
constant square of the plasma wave at 6 =0, and we will call the wave characterized
by this root the "modified plasma wave'". Then, the wave characterized by the re-
maining third root should be called the "modified extraordinary wave'". Since the
electron plasma is assumed to be dissipationless, the three roots of Eq. (3.20),
that is the squares of the propagation constants, are either positive or negative
real numbers, corresponding to propagating or evanescent waves respectively.
This fact can also be proved from the original ten-by-ten system matrix obtained

from Eqgs. (2.27), (2.28), (2.29) and (2. 30) (Denisse and Delcroix(s))

The mathematical details follow next. The dispersion relation (3.20) can

be rewritten in the following standard form

6 4 2
s +ps +qs tr=0, (3.35)



35

where
2 2 2,2
2 2 Be (]-_Q )_Zwo BO
Qcos 6-1

B(1-Q")w "-212B "w "(1-00 W B “w (2-w )7
2 9 2 92 e 6] e o 0 0O O 0
qH‘Bo EBo _Be w0+

92 cos2 0 -1 - (3.37)

2,4 2,00 22 27
B BO (l-wo)i(l-wo) -
r= £ = ' (3.38)

Qz cos2 6 -1

The three wave propagation constants are given by the three roots of Eq. (3.35) as

2 p
kl = A+B- 3 (3.39)
2 A+B A-B p
k2 == + 5 -3 - 3 (3.40)
2 A+B A-B p
k3-— 5 "3 \/3-3 (3.41)
where
A .g“b+ b2+a3‘]1/3 3. 42
x - -2
2 4 27 (3.42)
Bx -5 -\ +27J (3.43)
1 2 1 3
a~§(3q-p ), b= E‘,}'(Zp -9pqt+27r) . (3.44)

Also, there is the relation 3AB=-a, which determines the choice of one of the
three roots for A and B to be used in order to make the function ""a" real. The
expressions for the three roots as given by Eqs. (3.39), (3.40) and (3.41) in terms

of the original coefficients of Eq. (3.20) are given in Appendix C.
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m

For the case of transverse propagation, 6= 5 and so we have

; [B 20--0 428 2(1-02)
e (0] 0 (0]

q!B()zB (l -0 )(l wz—Q )+(1- W ) Q]+B (1- A )

]

r= -B 4B 2(l-w 2) r(—1—92)-(41 2(2-(0 2) @
o'e o’ 0 o'

and

a-—42ﬁ B [(1 w2)2_ 2] _B2B2 2 2-,3 (1- Q2 v )-34(1-(002)2 |

1 . 9 4 2 2 22 4,2 292, 2 2
bx 57 {-36 B, (1-u "W1-Q"-w ")"-6B "B "(1-w ") (1-9"-w )

{

+ 2. 51- o, )-2B 6(1-a- -0, )+9B48292 2(1 -’ 2)

2 4 2 2 99 99
+9BO Be (1- -wo) [(1-w0) .szz:]rs

7 27 2 2
B~ =

(o) e

- 2.2 2.2
’2‘3 3 \F3828 %0 " | f‘(lw{?)(l-w)'x
:i+ ;_.1 4B 4,3 : + -802862[(1—0302)2-921

Thus we have
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Similarly we can obtain

N 2
1.1 \Llp2. 2 1,227 2 1 1 . &
B <'3+VC§/}<1280(1 wo) 4BOBG .(1 wo)(B2 +32 ) BZ]
(0] e 0
(-3 /1 el a1 1. £% 292 22 27l
+T\4—B03e L(l'“o)( 5t ) - 5 -BoBe:(l-wO)—Q R
B B B
(0} e (0]
Finally three propagation constants will be given by
2 P
sI==A+B-3
1,2,2 1, 2,1 1 @
'EBoBe !(l-wo)( 5t 2)- 5 |
- B™ B B
0 e (0]
1 ,4,4 ], 2, 1 1 92 222 2.2 2\
+ TBoBe L(l-wo X ) + ) ) - 2] _BoBe L(l-wo) -QJ (3.45)
B B B
e (0]
2 A+B A-B b
AT
1,2,2 2., 1 1 921
=55 B™ (l-w™X +=—) - 5
oe [ o BZ BZ Bz,)
(0} e (o}
) lB4B4Bl— 2 L, 1 )~_ QZﬁz_Bzﬁ.;x—(l 2)2-92 (3.46)
470 e wo B2 BZ le oeL—wo B *
(o] e (0]

p2_ 2 (3.47)
Bo (1 wo)
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Equation (3.47) gives the dispersion relation for the ordinary wave, and

(AfB _AB P

———

since Eq. (3.47) is obtained by applying the same formula 3 5 VT35
which is used to define k32 in Eq. (3.41), the wave with propagation constant k3
will be called the ""modified ordinary wave". Also, the Egs. (3.45), (3.46) and
(3.47) display all the zeros of the dispersion relation, (3.20), at w02=1 and
w02=1 +§. Thus, this process of defining the modified ordinary wave is similar
to that of defining ordinary wave in magnetoionic theory, and there is no contra-

diction of this process in obtaining Eq. (3.47) from Eq. (3.41).

In the case of propagation along the magnetic field, 6 =0, and we have

2 2
2 2 2 2‘80“’0
P ‘Be (l-wo )-2B +————2—
°  1-¢
2 wz w2
4 4 2° 4_9 2 1 B
aBl-plel —% -2 l0-u]) - e
1-Q B Bo(l-n)

2 2
4.9 9 W, (2—w0)]
r= -BO Be (1-w0 )[1- ——132—

2 N

T (l-Qz—wz) 3B4w4ﬂz ';

1 2 2 2 0 0 0 '

ax -Gl B Umu )-8 ——2 |+
Ve 1-Q - (1-927)
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2 2.1 2 22 2 47
(1-27-0 ) 1(1-Q -0 ) -9Q w !
6 o L 0 o

2
b= == -B (l W, )+B
* (1-¢)°
. (1-woz)[fl-nz-w02)2-392w04ﬂ§
_3'80 Be -

(1-6y
22 9 2
(1-0) " (1-Q"-w") )
+332134 = 5 °o_
o' e (1= ,

2
b_+?_3_ ‘W_tﬁ Qw [(1 2. o )—Q2w4 |
4 27 217 (1- 92)3 |

2 2 2 2
Qu (l—w W1-Q -w )
0 0

(1-09)

-9 BO4 Be2

Qu 2(l—wz)2 ]
(0] (0] T
(1-6°)

2 2

2 2
1-Q -w B Qu
(0] 0
2

1-§ J73(1-Qz)
2 2 9 2

1-Q -w B Qu
B’%@z(l_“’z)'ﬁz 20J+0 —
¢ 0 =3(1-0%)

1-Q
Thus, the three propagation constants for the three waves are given by

0

1,2 2 2
A3 [Be (105 )-F,

L= 1

2 p 2 2
s. = A+B -3 Be (1_%)

I (3.48)

2. AB A 19'2
Sm T 2B —B"—S“‘B( > (3.49)

p 2
SipT T2 T2 ﬁ'};’B (“_{TQ_B (3.50)
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The wave characterized by Eq. .(3. 48) is called the plasma wave as shown before,
and since Eq. (3.48) is obtained by applying the same formula, (A+B-§), which

has also been used to define kl2 in Eq. (3.39), the wave with propagation constant
equal to k1 will be called the "modified plasma wave''. The remaining propagation
constant k3, then, should be identified as the propagation constant for the '""modified
extraordinary wave''. The close relation between the wave characterized by

Eq. (3.39) and the plasma wave can also be shown by making 2 = 0 in Eq. (3.45).
This equation then reduces to the dispersion relation of the plasma wave as given

by Eq. (3.48).

3.4 Characteristics of Waves

In Part A some characteristics of two types of waves involved in mag-
netoionic theory will be reviewed briefly which will be helpful in discussing the
general case later. Magnetoionic theory has been investigated quite thoroughly by
various authors (Ratcliffe(z), Budden (5)), and liberal use will be made of their
results. In Part B the characteristics of the plasma wave have also been analyzed
carefully, which should be helpful in understanding the modified plasma wave which
is closely related to the plasma wave. In Part C a detailed analysis of the propa-
gation constants as a function of the normalized plasma frequency will be given and
the results presented in graphical form. The purpose of this analysis is to deter-
mine the conditions for which the various waves propagate and also to assist in
clarifying the terminology developed in Section 3.3. In Part D the surfaces showing
the variations of propagation constants with respect to propagation direction will be

sought. These surfaces will be used to obtain the asymptotic solution for the radia-

tion fields in the next chapter.
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[A] Electromagnetic Waves in a Cold Plasma

The ordinary wave as characterized by Eq. (3.31) does not depend on
the static magnetic field because it is linearly polarized with its electric field
parallel to the static magnetic field. Hence, the electrons are forced to move
only parallel to the static magnetic field, and the wave behaves as if the field
were absent. The extraordinary wave as given by Eq. (3.32) is affected by the
static magnetic field. For intermediate inclinations of the static magnetic field
with respect to the propagation direction, 6 is different from 0 or 12[’ and the
variations of the propagation constant as given by Egs. (3.29) and (3. 30) with
w02 are shown by Fig. 1 and Fig. 2 (Budden(s)). The dotted lines show the limiting
positions for #=0 and 6 = % , and the thick lines are typical curves which always |
lie in the shaded regions bounded by the dotted lines. The dotted lines are the curves

2
for Egs. (3.31), (3.32), (3.33) and (3. 34), and the line w = 1. The thick curve

marked 0 would deform continuously into the straight line for ordinary wave at

0= %, and the thick curve marked x would deform into extradordinary wave at
T 2
0= 7 One value of s is infinite when
2
2 1-Q2
Wt T g (3.51)
1-2 cos 6

Physically, both W, and s must be real, thus graphically, the region of interest
to wave propagation is confined to the first quadrant.
[B] Plasma Wave
The restoring force of the plasma wave is electrostatic, and the limiting
42)

case of very low electron temperature was studied by Tonks and Langmuir

They have derived the plasma frequency, wp, with which the electrons oscillate
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P

2
FIG. 1: (PROPAGATION CONSTANT)" VS, w2/w2

Q<1, 0<6<7/2, U>O
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2 2, 2
FIG. 2: (PROPAGATION CONSTANT) VS. wp/w
Q>1, 0<6<7/2, U0
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regardless of wavelength. Bohm and Gross(43) have given the microscopic
analysis of plasma oscillation and obtained the dispersion relation for the plane
plasma wave as given by Eq. (3.24). Or, more exactly, the sound velocity, U, in
Eq. (3.24) is given by the expression B%T/m] 1 2, where ~ is the ratio of the
specific heat at constant pressure to that at constant volume (v= 3 for electrom gas),
and kB is Boltzmann constant. The plasma wave is a longitudinal wave, in which
E and V are parallel to the direction of propagation. It resembles the sound
waves that propagate in a neutral gas, but there exists a fundamental difference

(8)). The former is supported by

between the two waves (Denisse and Delcroix
short range incoherent collisions, while the latter is supported by the coupling
between the charged particles provided by the electrostatic field. The range of
the forces due to the electrostatic field is} limited only by the Debye length.

Since the phase velocity vp of the plasma wave is given by

.2, 2y
s U/(l-wo) 2, (3.52)

and the group velocity Vg is given by

1 _
.@-- 2 /
vg - Ul “’o) 2, (3.53)

2
their variations as a function of A are given by Fig. 3. Both velocities will
approach the sound velocity in the electron gas, U, when the frequency w approaches
infinity. Also, the two velocities have the order of magnitude of the sound wave

in the electron gas, and are related by

vV Vv ==U2 (3.54)
P g
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2
-F1G. 3: PHASE VELOCITY AND GROUP VELOCITY V8. A

[C] Propagation Constants vs. woz- w:/ w2

In this part the dispersion relation will be analyzed as a function of the
normalized plasma frequency squared for various values of the normalized gyro-
frequency. =0 is considered first which corresponds to the situation where there
is no magnetic field. Q< 1 andQ2> | are considered next which corresponds re-

spectively to the case when the gyro-frequency is less than and larger than the
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angular frequency of the waves. Finally, Q=1 is considered which corresponds
to the case when the angular frequency is equal to the gyro-frequency.

The results of this analysis are presented in graphical form in Fig. 4
through Fig. 13. In these graphs the square of the propagation constants are

2
displayed as functions of wo . As explained with respect to Fig. 1 and Fig. 2,
we are interested in only the first quadrant in these graphs since only those waves,
whose propagation constants are in this region can propagate, and physically
2 . 2 2 2 .
there is no negative wo . We will plot and analyze k1 s k2 and k3 in a manner
similar to that used to obtain Fig. 1 and Fig. 2. Thus, the two limiting cases,
6=0and 0= %, corresponding respectively to longitudinal and transverse propa-
gation, will be analyzed first. The curves for these two limiting cases provide
. 2 2 2 .

the boundary lines for the shaded areas where k1 , k2 and k3 always lie.

a) Q=0:

Physically, this is the limiting case with no static magnetic field

which was discussed in Sec. 3.3, and the dispersion relation is given by Eq. (3.22)

as .
2 2 2 2 .2 2.~
s -B (1-w )] {s -B (l-w ) | =
o
2
2 2 Y
Variations of s with respect to w = -22— can be seen from Fig. 4.
W

Practically, the acoustic velocity is, of course, much less than the velocity

of light, thus

2 2 g
B ">>B". (3.55)
e (0]
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2
FIG. 4: (PROPAGATION CONSTANT)2VS. wp/wz, Q=0
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FIG. 5: (PROPAGATION CONSTANT)? v, wi/wz
Q>1, 6=0
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2 2
FIG. 6: (PROPAGATION CONSTANT) VS. wp/wz
Q<1, =0
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1+Q

2
FIG. 7: (PROPAGATION CONSTANT) VS. wﬁ/wz Q>1, 6=17/2
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FIG. 8: (PROPAGATION CONSTANT)" V8. wlz)/w2 Q<l1l, 6=7/2



53

2
\ ki Modified Plasma Wave
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\ e DEoOT00s k2 Modified Extraordinary Wave
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Modified Ordinary Wave

2
FIG. 9: (PROPAGATION CONSTANT) VS. wi/wz
Q<1, 0<6<7/2
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Modified Extraordinary Wave

Modified Ordinary Wave
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FIG. 10: (PROPAGATION CONSTANT)? vs. v Ju
Q>1, 0<6<7/2
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2
FIG. 11: (PROPAGATION CONSTANT) VS. wi/wz
Q=1 6=0
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on

2 2,2
FIG. 12: (PROPAGATION CONSTANT) VS. wp/w
Q=1, 6=17/2
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e Modified Plasma Wave
Modified Extraordinary Wave

Modified Ordinary Wave

FIG. 13: (PROPAGATION CONSTANT )2 Vs, /i
p

Q=1, 0<6<7/2
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However, in order to illustrate the important features of the analysis of the
2
waves propsgating in an electron gas on the graphs the value of Be will be

chosen such that

2

2
Be =10¢30 .

b) Q> 1andQ<1:
The two most general situstions are for 2> 1 and Q<1. The

three propagation constants for the modified plasma wave, modified ordinary
wave and modified extraordinary wave for these two situstion are shown in Fig. 9
and Fig. 10 respectively.

Two special cases will be discussed first. The third case is the general
case.
Case I: Propagation Along the Magnetic Field (6 = 0)

Three propagation constants are given by Eqs. (3.48), (3.49) and (3. 50).

Their graphs sre plotted in Fig. 5 and Fig. 6. s_is the propagation constant for

I

the plasms wave and 81 and T the propagation constants for the two electro-

magnetic waves. As mentioned in Sec. 3.3, the distinction between the ordinary

and extraordinary wave is not clear in this case, but in keeping with the definition

(8)) .

used in this work (Denisse and Delcroix is the propsagation constant for the

II

modified extraordinary wave and s__ the propagation constant for the modified

I
ordinary wave.

Case II: Propagation Across the Magnetic Field (6 = 72L)

The three propagation constants in this case are given by Egs. (3.45),

2 2
(3. 46) and (3.47). The two roots 5 and 8 given by Eqgs. (3. 45) and (3. 46) can
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2 2
be combined to yield an equation of second degree in s and W, which represents

a conical section. The equation is

2+ (82820 2+ 82820 +s” (B A1) -8
o e o o e o L.e 0}

2028282 8%8% - =0 . (3. 56)
0O O e 0O e

Equation (3. 56) can be analyzed by considering it as the general equation of
second degree

2
Ax2+Bxy+Cy +Dx+Ey+F=0 , (3.57)

2 2
where x= W and y=s . Since the following inequality

B2-4AC = (/802-682)2 >0

is satisfied, this conical section is a hyperbola.

2
Whenw =0, 9
0
B
2 2 0
B” when@ <1-—%—=1
2 | ° B
1 e .
B
2 2 2
(B (1-Q) whenQ > 1——02—?.1
e
B
e
2
B
22 2 °
B7(1-2) whenQ <1-——=1
e 2
9 B,
s. =
I 9
.2 2 Bo
‘B whenQ>l-T 1
0
Be

2 ) ) 2
Two points of intersection with the W - axis are obtained at wo =1+Q If

2
1-w =-Q,
0
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and we can see that

2
s_=0 whenQ2<1

II
. 2
2 Bo
s, =0 when§2>l+—--—2 ~1
1 8
e

The detailed analysis of the slope of the hyperbola, and the coordinate

transformation applied to Eq. (3. 56) in order to reduce it to the standard hyper-

bolic equation, is given in Appendix D.

The standard hyperbolic equation expressed in the new coordinate system

2 2
1 - 1 :
(wo s') is
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2
The transverse axis of the hyperbola is parallel to s' - axis when

2
B0
Qa>1 ——_2].
B

(S

2
and the transverse axis is parallel to wz) - axis when

2
9
2

e

™

~1
~

Q<1 -

o)

Additional descriptions of the hyperbola which can be seen from Eq. (3.58)

are itemized as follows: 9
B
2
(i) whenQ <1+ —%—zl , the center of the hyperbola translates
Be
" 2
to positive w:) -axis.
2
2 Bo
(ii) WhenQ > 1+ —2—21 , the center of the hyperbola translates
B
e

. 2
to positive s' - axis.

2 2
(iii) The slopes of the asymptotes in w'o -s' plane have the absolute

value
—_ 1
2,2 4,4 4,4
(148782 + /148 %8 2ep Hig 1/2
0 € 0O € o € > 1

2 2 /4.4 4 4!
~(1+ +V 1+ +8 T+ é
] (1 BOBe) V1 BOBe BO Be

The hyperbola constructed from the two propagation constants 51 and

2 2
Sy and the propagation constant for the ordinary wave sIII are plotted in Fig. 7

and Fig. 8.
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T

Case Ill: Intermediate Inclination {0 < 8§ < 5

The numerical values of three propagation constants given by Egs. (3.39),
(3. 40) and (3. 41) could, of course, be obtained directly from these equations.
However, such a procedure is tedious and the important features for this case
can be obtained by an approximate analysis using the well known results for the
two types of waves in cold plasma as shown in Fig. 1 and Fig. 2. The main diffi-
culty in this analysis is to determine the points of discontinuity for three propa-
gation constants, where the transition of modified plasma wave to modified extra-
ordinary wave takes place in Fig. 9 and the transition of modified plasma wave to
modified ordinary wave takes place in Fig. 10. These points can be found approxi-
mately from the fact that the appearance of modified plasma wave is associated
with the disappearance of the discontinuities in the graphs of Fig. 1 and Fig. 2

(Ginzburg(4)). Thus, these transition take place at

wz _ 1—92
- 2 2
° 1 cos 6

This result can also be found approximately from the original Eq. (3.20). Since it

is true that in most of the range of oA

k 2 >> 2
177k
2 2
k1 >> k3
2 . . .
and so k1 can be obtained approximately by first two terms of Eq. (3.20) as
2 2 2 2 2 2
9 (1 -w QW cos 6) Be
kl bt (3.59)

2 2
(1-Q2 cos 0)
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4 2 2
(the coefficient of s* is simplified by using the relation 'Be >> Bo ). The ex-

pression in Eq. (3.59) assumes the minimum number in the neighborhood of

2 2 2 2
l—QZ—wO+Q wo cos 6=0

or
L2 e
=T 9 2
° 1-0"cos 6

The bounding curves for the shaded areas in Fig. 9 and Fig. 10 are ob-

tained from Figs. 5, 6, 7 and 8. The curves for the three propagation constants,

klz, k22 and k32 always lie in these shaded areas.
c) Q=1

This condition is satisfied when the angular frequency of the wave

is equal to the electron gyrofrequency, and the Eq. (3.20) reduces to

6 4 2.2 2.2 2 2 2 2.2 22,2 2
s sin26+s (2w B "+w B sin 6-2B "sin 8)+s B Bl—w ) (28 "+B )
0O 0o o'e 0 ) 0 e o
2 2.4 2, 2 2
-(28 +B cos 9-8 W, cos 6 B j +B B (w —l)(w0 -2)=0
(3.60)
. 2 .
One propagation constant becomes zero at wo =0, 1 and 2, and also one propagation
constant becomes infinite at 6 =0.
Case I: Propagation Along the Magnetic Field (6= 0)
In this case Eq. (3.60) can be simplified to

as*+s’| 0 (28148 126 48 ) | +8 08 o) - Moy D=0 (3.60)

and the two roots of Eq. (3.61) are given by

s2=32(1—w2) , (3.62)
e (0]
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and

(3.63)
Equation (3. 62) gives the propagation constant for the plasma wave, and Eq. (3. 63)
characterizes one of the electromagnetic waves which can be reduced from

2 2 2 . .
Eq. (3.50). 51 and Sy Versus w - are plotted in Fig. 11.

Case II:  Propagation Across the Magnetic Field (6 = 900)

Equation (3. 60) will give

rstlop Pl 1+08 2 zﬂl— 2Pep 28 %) 20 )B
+8 23 4w 2'(w 2—ll)(w2-2) =0 (3.64)
e 0 0 O (o]
and
LiMa2, 2, 2,272, 2,2 2 |
a - S\L[Bou-wo)wose] w88
| —%E 2[B 20 pru 282 12 o0 210218 18 e o 48264§
4,4, 4
2 3 -wB’B 2
b2 a0 PoloPe |rp2, 2. 2,20 222
4 ¥ 27 4x27 [Bo (l-wo )+w0 Be } +4wo Bo Be \?
2 3

2
2 < 0 for all w , and so we have three real and unequal

Thus we have — 4 27

2
roots for all W, except at two negative points ;

, 82{welpPrs28 /28767 |

w
Ww =

o
62-82°
2 2 a3
and also at w = 0, where we have T + E = 0 which means at least two real

roots are equal.
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Actually, we can separate the ordinary electromagnetic wave from

Eq. (3.64) and obtain

\
}

r2 2. 271 4 2.2 2 9 91 2.2 2 2
s B (1-w’) ts+s B (W -1)+w B ]+3 B w (w -2)i=0
L 0 o L 0 O o'el "o e o o |
(3. 65)
which gives the propagation constants of the three waves as
2 1[ 2, 2 22] 17,2 2 . 2,272 ,2,2 2
= - = -1)H + /= -1) - +
51 2 Bo (wo b woBe 4LBO (wo 2 woBe ] BoBe “o
(3.66)
17,2, 2 997 fr.2 2 2272 .2.2 2
2=-'[ -1+ l}-—i -1)- +
SII 2 Bo (wo ) lL)o Be J4iBo (wo b wo Bej BoBe wo
(3.67)
2 2 2
= 1- 3.
S Bo( wo) (3.68)
Eq. (3.66) and Eq. (3.67) together give
4 2 2.2 2 4 2.2 2,2 2,2 2
stsw B+ )tw BB -sB -2 B w =0 (3.69)
o o0 ‘e o o' e 0 o e o

which represents a hyperbola. Equation (3. 69) can also be deduced from Eq. (3. 56),
and an analysis similar to that applied to Eq. (3.56) can be used for the analysis
of Eq. (3.69). Some of this analysis is given in Appendix D.

The standard form of the hyperbolic equation obtained by application of

coordinate transformation to Eq. (3. 69) is



1/2 s
!_(1+BZBZ)(1+B4B4+B4+B4) (R R A )| x
L o € o € [0} e
_ 12 -1 | . — 1/2
! 4.4 4 4 2 2( 2,2 z 14 4\
A I L AR g,

=1

— e - 1/2
+23023 (1+B [3 +v1+B B +B +B4 J(HB 3 +\/1+B 3 +B +B4 X

Jrﬁu 4 4 4 4'
RSO

/2 )2 -
4.4 4 .4
3 - (1+B0 Be +BO +Be )

1/217 1/2 -
ca+B %Y+t Y | 2048, tstep g ) W (s -
0O € o € 0 e i;‘

11/2

F o g /2
o2 2.2 4.4 .4 .4 1
i_Bo \—1+B0 Be + 1+‘B0 Be +Bo +Be >

+28 28 2<I—B 23 2+ \’1+B 4B 4+B 4+B4'>1 JX
O € O e 0O e o} e _

R . - -1/2
<\,f1+3 Y Y R 23 <2 /1+B B +B +B \ ?
0O e 0 e (6] “

2,2 7 4,2 2'21,

=BOBe il—Be (Bo -Be) } (3. 70)

The transverse axis of the hyperbola is always parallel to the s'2 -axis.
The center of the hyperbola translates to the positive wl)z -axis and s'2 -axis. It
can be shown that the absolute value of the slopes for the asymptotes is greater
than one. This hyperbola intersects the w02 -axis at w02= 0 and 2, and the sz—axis
at s2 =802 and 0. Figure 12 shows the graphs for Eqs. (3.66), (3.67) and (3. 68).
Case II:  Intermediate Inclination (0< 6 <)

This case is similar to the case given in Fig. 10. The three propagation

constants obtained from Eq. (3.60) are very tedious to plot directly, so some
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singular points are discussed first and the boundary lines for their variations are

introduced from Fig. 11 and Fig. 12.

2
Atw0=0,
;2
K
a 5 9.9 (3.71)
k(s -BO) =0
2
Atw =1,
0
4 2 2 2 2 2 .2 2,2 2 2 .2
[ s'sin"6+s (2B “cos 6+B “sin 9)-B (B “cos 6+B “sin"9) = 0
) 0 e 0" 0 e
b2 T
l\s =0 (3.72)
. . 2 2 2
which gives s =BO/2 ands =oat@ =0, and
2 [2 2 9
B+ +
2 Be— Be(Be 430) T
S - 2 -2
Atw2=2,
0
4 2 2,,2 .2 2
[ s sin"6+2s (B “+B “cos 6 +8 sin’9)
i o "o e
2,2 2 2 2 2
{ +B8°(B “sin“6 +28 “cos 9+28 ) = 0, (3.73)
l ) e e
|
2
s =0.
Rearrangement of (3. 73) gives
2,2 .2
-4 (s +Be)
tan 0 = 2 (3.74)

s*ra( 2e 875 p 28 2rap )
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Thus at
C 2 2
s=—Be
9=0:‘\ 2 >
s =
and at . 2
’ -28 "-B
e
9=Z2'r;)
T
N

Three propagation constants are plotted in Fig. 13. This is a limiting
case and the identifications as modified plasma waves, modified extraordinary
waves and modified ordinary waves can not be seen clearly from the graph. As
it stands, we do not know how the thick dotted curve for the modified extraordinary
wave changes to the straight line for the plasma wave. More elaborate analysis
is necessary in this case.

[D] Effect of Direction

In order to discuss the dependence of the propagation constant on direction,

2
tan 6 is derived from Eq. (3.20) as
{
2 i 6,2 4 2.,,2 2, 2
an’o <) (1) +s"| (=026 r28 )50 (gR e p 2 D) |
| o e o e o e o

rs8 ) (1m0 @8 [ +p )+ aPap Bep P2 2]

(o)

\
i

w828 200y -0 - o sest o PP Pa ) |

+s280 (1w )(ZB +B %) 9(23 B 0 ]

\
!

2.4 2.7 22 27 -l
_BeBO (1-w ) (1-0) —Q]{ (3.75)
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Equation (3. 75) can be factored as

2 2
- w h)
tan29=(92'1) s -8 (1 w ) s -B (l-m)' _sz—B (1_m) X
2 2
. 2 -1 BB 2
[-8%0-u) T i ) -
R B? 8% B -
‘ 0 e 0
| , 0
B B 2 3 T
vt '1(1 T L o e Rl G R
32 g2 g2
X s-oeJ(lw)( 12+12)_“22
B B B
(0} e [0}
T4 G I
gt 2 | |
;o (1-w02)( L. )_92] _BozBez (1-w02)2-92J
L Bo Be BO B - (3.76)

So , along the direction of magnetic field there are three waves as given by
Egs. (3.48), (3.49) and (3. 50), and at right angles to the magnetic field there
are three waves as given by Eqgs. (3.45), (3.46) and (3.47).

Now we want to investigate which values of the parameters woz, 92 and 6
give propagation, and which values give attenuation. The boundaries of these
regions are the lines along which s2= oo and sz= 0, which are called ""resonance'
(44).

and "cutoff'' respectively by Allis

The principal cutoffs are given by

2
(1—(,.)O )=0 (3.77)

2
w

(1-

) = (3.78)
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2
W

0 .\ _
(1'1+Q)'0 (3.179)

The principal resonances are given by
Q=+1 (3.80)

Resonance occurs also at the angle 6 which satisfies the condition

2 2
tan 6 = (Q -1) (3.81)
This can happen only for 2> 1 and is obtained from the original dispersion relation
2 2
(3.20) by setting the first coefficient equal to zero, i.e., 2 cos 6 -1= 0.

There is one more boundary line existing at
2 2
w +t2 =1 . (3.82)

In the case of a cold electron plasma this condition gives resonance for the extra-

ordinary wave as can be seen from the following expression:
2.2 2

5 (1-w) -9
0

=B . (3.83)

° 1-Q -w
0

This is also quite apparent from Fig. 9, where the transition between the modified

plasma wave and the modified extraordinary wave takes place at the angle satisfying

2
2 1-Q
wo =T 5 (3.84)
1-Q cos 8

Equation (3. 82) is the lower boundary of (3. 84) corresponding to 6 = 21 Equation
(3. 84) can be rewritten as
2 2
5 1-( tw )
cos 6= 55— (3.85)
-w
o

2
and so this transition angle exists only for §2 +w02 > 1.
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In Fig. 14 sample plots of (s-6) curves are given for eight regions in the
(wo2 —92) plane. These curves will be called dispersion curves. The surface of
revolution obtained by the rotation of the dispersion curve around the S axis is
known as the Fresnel phase surface. The boundaries of the eight regions in Fig. 14
are given by Egs. (3.77), (3.78), (3.79), (3.80) and (3.82). The direction of mag-
netic field is assumed to be in the Qz—axis direction. The propagation constant of

, is given by the dotted circle in the figure as a reference.

e lEe

light in free space, BO=

These dispersion curves are deduced from some wave normal surfaces calculated

(40)

by Allis, Buchsbaum and Bers , and also confirmed by our numerical results
in Chapter V. The wave normal surface shows the variation of the phase velocity
vp with respect to the direction in space, thus it has the inverse relation with the
Fresnel phase surface, which can be seen from the definition of the propagation

constant, i.e., v
s=— .

v

p

In region 1, corresponding to 0 < w02< 1-Q of Fig. 9, three distinct dis-
persion curves exist. In region 2, corresponding to 1-§2< w02< 1- Qz of Fig. 9,
only a modified ordinary wave and a modified plasma wave exist. In region 3,
corresponding to 1—92<w02< 1 of Fig. 9, the transition takes place between the
modified plasma wave and the modified extraordinary wave at the angle 6 ¢ satis-
fying Eq. (3.85). In region 4, corresponding to 1 < w02< 1+Qof Fig. 9, only a
modified extraordinary wave exists. In region 5, corresponding to w02> 1+Q of

Fig. 9, none of these waves exist.
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The dispersion curves in regions 6, 7 and 8 can be explained in con-
junction with Fig. 10. In region 6, corresponding to 0 < w02 <1 of Fig. 10,
there are three distinct dispersion curves. The resonance angle Br for the modi-
fied plasma wave is given by Eg. (3.81). In region 7, corresponding to the range
1< w02< 1+Qin Fig 10, the transition between the modified ordinary wave and the
modified plasma wave takes place at the angle 6 ¢ satisfying Eq. (3.85), and the
resonance angle Or for the modified plasma wave is given by Eq. (3.81). Between

6 ¢ and Gr there is the relation

e 2
-1 /727 -1/
9r=tan V@ -1 > 6t=tan ’(92-1) Q—%——) (3. 86)
) Q+w0-1

Region 8, corresponding to w02> 1+Qin Fig. 10, has the same features as region 7
except that the modified extraordinary wave does not exist.

In the limiting case of 2=1, it can be seen from Fig. 13 that there are two
waves which exist in the range between 0 < wo2< 1 with closed dispersion curves,
while there is only one wave in the range 1 < w02< 2 which alsé has a closed dis-
persion curve. No wave is possible for w02 > 2.

When Q2=0, only the plasma wave and the ordinary wave exist. Their
dispersion curves are circles.

In general, these three wave constants do not become equal except at the

transition angle Ot in regions 3, 7 and 8.



CHAPTER IV
WAVE EXCITATION IN ONE-FLUID PLASMA

4.1 troduction

In this chapter the general excitation problem in a homogeneous electron
fluid plasma, which is compressible and uniformly impressed by a constant mag-
netic field, will be treated by applying the formal solution obtained in Chapter II.
The dispersion relations analyzed in Chapter I will be utilized directly in cal-
culating the excited flelds. This type of problem, as far as is known, has never
been treated in the lltérature.

The excitation problems discussed in the literature so far maybe divided
into three categories:

(1) Cold plasma problems with a uniformly impressed constant magnetic

field. In this type of work the longitudinal plasma wave does not come into picture.
(13)

Typical examples of this type of problem are the works of Arbel’ ~, and Arbel
20

and Felsen( ). They start their formulation with "ordinary" and "extraordinary"

modes.

(2) Compressible plasma without an externally applied constant mag-
netic field. With these assumptions Cohen (30) has shown that the field can be sep-
arated into two types of modes; one mode is transverse in nature and has all the
fluctuating magnetic field, and another mode is longitudinal in nature and has all
the fluctuating density field. The radiation of this acoustic-type of wave has been
investigated by Hessel and Shmoys(za), Whale(zz), Chen(45) and Wait(46).

(3) Two-dimensional problems in a compressible plasma with externally

(24)

impressed constant magnetic field. Seshadri has investigated the radiation

75
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characteristics of a line magnetic current source in a homogeneous compressible
plasma of infinite extent with an externally impressed uniform magnetic field.

The problems studied in this chapter include and extend the problems of
the third category. First, the unified and systematic formulation developed in
Chapter II will be applied to two-dimensional problems, and Seshadri's solution
will emerge as a special case. Next, general three-dimensional problems will be
treated where Lighthill's (38) method will be used to obtain the agymptotic solu-
tions for the excited fields. The equivalence relations obtained between the various
types of sources, by means of which the fields excited by one type of source can be
expressed in terms of the fields excited by another type of source, are some of the

highlights of the unified operator transform method.

4.2  Two-Dimensional Problems

Here we consider those excitation problems where the fields are not vary-
ing in the direction of the constant magnetic field, which was assumed to be in

the y-direction.
[A] Field Solution in Trangform Space for All Types of Sourceg

The transforms of the magnetic field and the density fluctuation field are
given by Eq. (2.86), namely

It(s)

v (8)] = [1-Ns)] ™ Fie)

e

—

To find the explicit expressions for It(s) and Ve(s) we have to find the inverse of

the matrix [l-N(si] , and the Fourier transform of the general source function

5
Jt(s)+ o Wt(s)

Fls) =, () +8 W/, (5, V), (v) = N _ 4.1)

Lwe(8)+ -f;'- S'Je(S)_




7

The inverse matrix for the two-dimensional problem is given by

M 0 M 0

11 31
|
1N e oM He (4.2)
L TdetlINE o '
13 33
S0 M, 0 M44J

where det. 1-N(s) can be easily obtained from Eq. (3. 19) by setting 8,° 0 and is

2 2

: -, 2 2 221+ 2 22,2 2 22 2 2 227
det. ILl-N(s)5=(w v, -s ¢ )| (w -, -s ¢ w " —sU)-wC(w -s ¢ )|

< (wZ_w2)—1 [(wZ_w2)2_w2w2] -1
P p c

and

227 22,2 2 2 22 2 2 22
s, ¢ > s c (W -w —wc)+sU(w -wp-sc)
1...

- 1 D
TR 9 22 22 (4.3)
w-w /] (W-w ) -w w
p p ¢
2 22,2 2 2 222 2 227
ssc{ ScW-w w )sU(W-w -sc)
M :_13 11_ p C p t (44)
137" 2 2 2 22 22 | :
w-w [ (W-w)-ww ;
p p c _
o 2,2 2~
s U (w —wp) S202 ;
z L "
M= 1532 22 "2 2 (4.5)
v ) e e W
¢ L. p
2
wcwpsz/e : 2.2
Moy~ 3 22 22 "2 2 (4.6)
(W-w)-ww W W
¢ p
M_.=M

31 13 (4.7)
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22 - 22,2 2 2 22,2 2 22
s;¢ Sc(w—wp-wc)+sU(w—wp-sc)
Mgp= 1-5—— 1= 2 22 22 (4.8)
W W (W-w ) w w
p p c
2
chzws 2 2
M= 1- =< (4.9)
42 2 22 2 2 2 2 ‘
(w-w ) -ww W W
p
2 2 2. -
s c(w-w —wc)w’l s202
M44=1 5 99 22 'l—2 5 (4.10)
(W-w)-w w | W W
- B p
2

2 2
= +
Here s s1 s3 .

The four components of the four-vector general source function are found from

Eq. (4.1) to be

(4.11)

2
s._ec
Fl(s) = th(s) L e— f (s)
wm(w -w )
p
. 2 — 2 2 - 2
is, ¢ . lf (W -w ) o ww
— + s i + . .
+ 53 5 2 - Lwcfx(s) i _—Lw fz(s) | i _Lw ]X(s)
(W-w)-ww —
p c
. 2 ) 2.2 2 2
isqC is.c (w —wp -w )
t2 8 g s 39
W -W (wW=w ) w w
p p c
2 2
2 -
ic (W )

W
] e _ b’
Fyls) =J, (s)* 2 22 22 m \:“’c[‘ssfz(s)+S1fx(“”)]+ iw
p c

. 2 |
iw w

_cp[. re i)t 2y T ey i ()]
" S3JZ(S) Sle(s).; (w o wc) fij(s) sljz(s)_: {)

[s 3fx(s)-slfz(sﬂ

(4.12)
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2
s, ec
F.(s) =J (s)- f (s)
3 tz
wm(w -w )
p
.2 / ) A 2
is,c . (w -w ) Cip W
+ ~,—wf(s)+—Lf<s)+—-p—J<s>
2.2 2 2 im-
(W-w7)-w w
p c
is 02
2 2 2 1
+(w-w -w )j(s) ‘TTj (s) (4.13)
p c X y
W -w
p
_ 2
RN N
3 -— — — + ]

F4(s) We(s) 7 2| mfy(S) ” j (8)

W -w —
p
2 2
w/e eS| | W —wg N
2 22 22| m '[wcfz(s)+ iw fls)]

o "W, W -w es, [ W W ‘l
+s,w | i—]j (s)+—9—](s) +—§-wf(s)+-——Lf(s)
I'p | w 'z w2 |
2 2
2 _ % _p__
i == j (s)+ : :
+s3wp Ll " ]X(S) w j (sﬂ (4.14)

The transform of the electric current source, j(s)z§d(s, r)J, and the transform
of the mechanical body source, f(s)=$d(s, r)?‘, have been used in Egs. (4.11)
through (4.14). In deriving Egs. (4.11) through (4. 14), without loss of generality,
the constant magnetic field is assumed to be directed along the positive y-axis,
thus these equations may be used in three-dimensional problems.

After setting s,=0 in Egs. (4.11), (4.12), (4.13) and (4. 14) and using the

2

result in Eq. (2. 86), the three components of the transform of the magnetic field
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and the transform of the density fluctuation field may be expressed as follows :

2

1 9 9 ssec lssc ]
(8)z v———7—( (v w )[J (8)t ——— 1 (3)+ j_(s)
E wz-w 2-8202 Pl wm(wz-w 2) y wz—w 2%y
P p
22 2
-8 ¢ th(s)- 8 84¢ Jtz(s) (4.15)
lty(s) 2 Zl- [(wz-w:)(wz-wpz-atez) - wczwz] Fz(s)
eczuzwcsz ,/_Q esl uz-w 2
R e We(n)- 7 29 3 [Tn_ (w fz(s)+ ——Lw f (l)>

es
+ slwpz <1 - j (s)+ -;—2- j (s) =3 (-ucfx(sH —M-szh)

9 w, W -w2
+ sswp (—1 FJX“H _(,?‘-p_ jz(l9] (4.16)
8 ee2
1 1 2 2
Itz(s)' 2 2 23 ) o fy(s)-lslc jy(s)- B 8,0 th(s)
W W -sc
+ (wz-wpz-s 2cZ)J (8 (4.17)
-1 [ 2 2 2cz)-wc (w -3202)
ve(s)= )F (s)+ A We(l)

2 2
es W W -w
“/e 5 2[ ‘@f(m-——Lf(s))n wp2<1-512(s)+:5ljx(.)

(w—wp)—w W

N—~

es

+‘—§<~w £ (s)+—-—2-f (s 8,0 <1-—j (s)+——LJ (sb] (4.18)

2 2 22 92 2 2,2 22
whereAz(u-wp—sc)(w-w°SU)w(w-sc)
p
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‘B | Physical Interpretation

The types of waves excited by the different types of sources can be deter-
mined from the original Maxwell-Euler's Egs. (2.27) through (2.30), or from the
explicit solutions in transform space, Egs. (4.15) through (4.18).

Although it can be shown directly from Eq. (2.27) through (2. 30) that for
the magnetic field in the y-direction and no field variation in the y-direction the
fields can be separated into two independent sets of components, such a sepa-
ration can also be seen clearly by examination of Egs. (4.15) through (4. 18).

In particular, since -h- and n are the inverse transforms of It(S) and Ve(s) respec-
tively, their characteristics depend upon the two types of poles of It(s) and Ve(s).
The poles of Ity(s) and Ve(s) are determined by

2 2 2

2 22,2 2 2,2 2
A=(w -w s ¢c Nw w -s U)-w (0 -s
p p Y

02) =0 (4.19)

which is the dispersion relation for the coupled extraordinary wave and plasma

wave, or the modified extraordinary wave and the modified plasma wave. The
1 fI (s)andI (s) are givenb

poles o tx( ) tz( ) g y

2 2 22
w—wp -¢cs =0 (4.20)

which is the dispersion relation for the ordinary wave.
Thus the propagation constants determined by (4. 19) are given by Eq. (3.45)
and Eq. (3.46) and the corresponding field components are Ex’ Ez’ hy’ VX, VZ

and n. Similarly, the propagation constant determined by (4.20) is given by

Eq. (3.47) and the corresponding field components are Ey, hx, hZ and Vy.
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Explicitly, the results can be summarized as follows:

(a) A line magnetic current source K- §/\K05(x)5(z) will excite the modi-
fied extraordinary wave and the modified plasma wave, but not an ordinary wave.
This can be seen from the fact that the y-component of the transform of the mag-
netic current source, J ty(s), exists only in Fz(s), which will produce Ity(s) and
Ve(s) as given by Egs. (4.16) and (4.18).

(b) A line electric current source J = ?Joa(x)é(z) will excite only ordinary
waves, since only Itx(s) and Itz(s) are different from zero as can be seen from
Eqgs. (4.15) and (4.17).

(c) The transverse components of the electric current source will excite
the modified extraordinary wave and the modified plasma wave, but not the ordi-
nary wave, since jx(s) and jz(s) exist only in the Eqs. (4.16) and (4.18).

(d) The transverse components of the magnetic current source E will
excite only the ordinary wave, since th(s) and Jtz(s) exist only in the Egs. (4.15)
and (4. 17).

(e) The transverse components of the mechanical body source F will
excite the modified extraordinary wave and the modified plasma wave, and the
longitudinal component of E‘ will excite only the ordinary wave. This can be seen
from the existence of fx(s) and fz(s) in the Eqs. (4.16) and (4.18), and the exist-
ence of fy(s) in the Eqs. (4.15) and (4.17).

(f) The electron fluid flux source Q will excite only the modified extra-
ordinary wave and the modified plasma wave. Since We(S) exists only in the

Eqgs. (4.16) and (4.18).
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[C] Comparison of the Excitation Effects of Different Types of Sources
Applying the Eq. (2.69), and the transform of the magnetic field given
by Egs. (4.15) through (4.17), the transform of the density fluctuation field
given by Eq. (4.18), and also the expressions given by Egs. (2. 75) through
(2.78), the solutions to four typical, simple excitation problems will be pre-
sented in this section. The source terms are chosen such that only the modified
extraordinary wave and the modified plasma wave are excited. If necessary, we
can always superpose the ordinary wave which is decoupled from the other two
waves.
1. Electron Fluid Flux Source

Let Q = Qoé (x)é(z)(2t)2. then we can obtain its transform

iQ
W (s)= gd(s,r) 2 - —2 (4.21)
(-] W W
From Eqs. (4.15), (4.16), (4.17) and (4. 18) we have
1 () =0 (4.22)
e’ U0 W (a) (8 *+s.)
Ity(s) 2 - (4.23)
xtz(s) =0 (4.24)
Eszcz(wz_wz_wz)_wzw 2+(w2-w2)2]W (8)
L% < 2 £ (4.25)

Ve(s) : A

and then from Eq. (2.69) we can obtain
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2 2 22
2E1(w -UE -c 8 )+ WQ83] Wﬁ(l)

ie
vV, (s) = —U
tx €° A
vty(') =0 (4. 26)
2 2 22
v ) e 2E3(w -wL-c 8 )—iwcs We(l)
tz € A

o

2
2 [;2 a3iw 52 -8, (w —wpz-czuz)-iwclg
L (s) = 2w (s)
ex N e A
0
1 (8)=0 (4.27)
ey 2 2
-siws-s (w-wp-cs)+1w ]
-UU
lez(l) = No w ( ) n

In order to obtain the expressions for the fields in real space, the in-
verse of two different functions must be known. The details of the evaluation
of the inversion integrals are presented in Appendix B and the results given

in Eqs. (4.28) and (4.29), respectively.

@ 4,0

i(s, x+8,_2)
3 e 1"
1! A d81d83
-0 /-0
112 (1) (1)
"2 2 2 [Ho () - H, ('x’_)] (4.28)
c U (sn I)

< 21’ 53 {: ( (gnr) ()(s r)] (4.29)
-sx)
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Application of Eqs. (4.28) and (4. 29) to Eqs. (4.22) through (4.27) yield the

followmg field solutions :

o (1) 2. (1),
hy 2 2 )l: (s r) 8 Ho (srr)J (4. 30)
ﬂ l
2 2 2 2 22 2 2
AW ) [y Wl duN
BT 2 2 i~ "2 2 2 2 g
uU(ln-sI) ( )
(w2_w2)2 UZwZ
2 P j C (1)
’(‘x' —2—— )uo (s[rﬂ (4.31)
e (w -w -wc)
-eUzQ
0 2 208 34,2897
E - " ‘:-i(w o )5n d tay = Jl+1c =% (4. 32)
-eUzQ
0f_ .2 209 =9 20
Ez' eow E—x(w ""p)az ‘01 wc ox 01+ic oz \92] (4.33)
iQU2 w |
- N PR 99 229289
vx No [i(w -wp)‘dx ‘91+wcaz&l ¢ w 9z 2+ic ox 2 (4.34)
iQ U2 w
L0 |2 %9y _,, 2l 2 e d 2
V' N [““’ 0 Vg 4w 5 T o e &] “.35)

where II and sn are the propagation constants for the modified plasma wave and |
the modified extraordinary wave as given by Eqs. (3.45) and (3. 46), and Hou)‘
is the conventional Hankel function of first kind of order zero. Also it is clear

thath =h =E =V =0,
X z 'y Yy
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2. Mechanical Body Source

Let F= 2F_5 (6 (z) (20),

(s)=$ d(s, 1) F = XF

then its transform is

(4. 36)

Applying Egs. (4.15) through (4.18), the following expressions are obtained:

2_ .
ec F

1

_ (wz_ 2)__ 2 + U2 ( 2+ 2)
WS4 wp lw ws twl sls, *sg

Ity(S) = ( 5 O)

" mw

( Itx(s) = Itz(s) =0

AN

7 iF

A

1

2 2 22
s +iw s_(w -c s )
c3

V"

The transforms of the electric field and the fluid velocity field can then be

obtained from Eq. (2.69) as

/eF

2 2 2
) -slw(w -wp )+uwe s

A

2
w(w—cs )+1wCss-w(w +Us)

( Vtx(s) Ke mw

4

B

A

V. (s)=0
ty
2 . 2 2 2 2
/eF \ we sls3+1wc(w -C 85 )-wU 5,84
Vtz(s) i '\-\\eomw> A
3 2
2 2 2
9. i -w3sz+ww's‘+t-°-§(w 2)+wU2s (s - =
o ><1F0 \ p 3 c p cz
Iex(S) =<;E mN / A
I (s)=0
’ wwzs s, -iw w2s2+i 2‘iﬂ)Uz S (sz—ﬁ)
S e - “’ccz ®1%3 2
I z(s) g <__2> (mN> A

(4.37)

(4. 38)

(4.39)

(4. 40)
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By using the relations given by Eqgs. (4. 28) and (4.29), all the in-
verse transforms for Eqgs. (4.37), (4.38), (4.39) and (4. 40) can be obtained

as follows:

eN , F l 2 A2 2 "
oy\/ 0 L, 2 2 - 2 0 | 29\ 2 90 J
; = |l — )| — - - S —_—\ + - |
By (w€)<mN> R A i R P RS NS
- 0 o} ox 0Z -
<E =0 (4.41)
y
eN - F i
E=< 0\( )ww‘-p -wlc —U)—\Q+1wc-—\’J
Z (;.JE/ mN
o az
ceF ww-w ) .
_ | 9J . z_a_d wU a 4
b= | T oz 1% x 1t T (4.42)
W m
(h =h =0
X z

2 2

/~iF ww -w ) .

_ 0 20 | . p O0Q, e O _, 29
n°<\wm>_c“’ 5 VT ax 1 i Y B (4. 44)

3. A Line Magnetic Current Source

A line magnetic current source can be expressed as

K = §K06(x)6(z)(21)2 (4. 45)
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then its transform is

-iK 6(x)6(z)(21)2 —iKO

J (s)=¢d(s, r) — 2 (4. 46)
ty W

[0) wHO

As before, the application of Eqs. (4.15) through (4.18) gives

2 2 2 22 2 2
~iK (W -w )(w -w -s U)- W W
o) P p

‘/I (s)=|
y \

o e
ey

1
L

~.

/ A
’ (0]
(4.47)
)It (8) = I (8) =
§
/1K wcw 2> S2
oCp S 4,48
V (s) = \ A ( )
and then, the application of Eq. (2.69) gives
2 2 2 2 2 2 2
/Ac K\ -s, W (wz-w -w )tiw W s, tw Uzs s
(Vo) = (=2 = ¢ pep . 0
{ tx \2 A
W
Vty(s) =0 (4. 49)
|
/ 2 2
,Jic K\ 8 w2(w2-w2-w 2)+iww w2s -w U2s S
v ( ) = > 1 cC p cp 3 1
\ )= 2 A
-1 w€O
Iex(s) 8 ;N_ S3 Ity(s)_1 :a-I:I— Vtx(s)
0 0
I (8)=0 (4.50)
ey
) we
I (s) N 51 I (s)-1——V (s)

N eN
0 0
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The field solutions in the real space are obtained from Eqs. (4.47) through

(4.50) by applying the inverse transformation and using Eqs. (4.28) and (4.29) as

iK i
! ’ 29 ,2 22 22
th = 0‘(( )Ud-(w—w)—ww'ﬁ;\
\ y wuo p 2 p c 1
) (4.51)
'h_ =h =0
VX Tz
,xiKowcw \
n-l—2¢pP )}y (4.52)
\oeu W 2
0
2
{“”’ 2 d 2 9
(E =ic' K LB _é) +i(w -w -w )—Q -i =J ?
{ of 1 1 0 2J
E =0 (4.53)
y
2
/ N SN 2 8,22
- —— - - - —— + —
\Ez icK | = 5, i(w-w -w) (FiU 0V
2
K w —
!
__op t 0 ) 2 20 20
(x e,uNwmea ll(ww) 11U'dz ZJ
\ 00
)}
{V =0 (4.54)
‘; y
) 2
| Kw : _
\ =__p__0 I —\9 - - -—§0+ 2 a &J
\\Vz eu Nw vawc 0z 1(w w ) iU ox 2
4. Transverse Electric Current Source
Assume that the electric current source is given by
- 2
J = §J06(x)6(z)(21) , (4.55)

then, its transform is given by

i (s)= g dls, 1) 3 6(x6(2)C2x) =0 . (4. 56)
X (0] (0]
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The solution for the electric current source can be obtained by the same methods

used in the previous examples. The results in the transform space are

. 1 C 9 2.2 2 2 222
I (s)= S iww w +s,w (W -w -w )-s.8 Uw
ty S 177e¢p 3 c p 3
w A
(4.57)
. = =0
| Itx(s) Itz(s)
Jo 1 2 22 2 22 2-
V (s) = s, W (W -p)tiw w s tsscw (4.58)
e ewA ~1p p cp 3 1 p_

-iJ ¢ ) _
o1 2,2 2 2 2172, 2 2 22} 222 2.2 22
= —2 0w ) - 0 )- - + >
/Vtx(s) eowA \kw (w W, wp) s, |© (w wc) U wp |-Uws+cUs s
(V. (s)=0 (4.59)
oty
iJ !
0 | 2 -2.2 2. 227 22 2%
i = = i + - - -
'\Vtz(s) ol s\lwwcwp 5,5, Lc (W - )-U 9, J ¢ U's 8.8
Iy 2, 2 2...2/%\ 2 2. 22 22 2
( - [ - )+ict £ + + J
\ Iex(s) eNOA wp (wp w )+ic w) wp sS4t ¢C wp s, +U wp 54
|
{1 (s)=0 (4.60)
ey
‘ J w
j 0 2 2, 2 2 L2 c 2 27
! = i + - - — |
| Iez(s) N A [}wcwp W, (¢'-U')s, s -ic ( " ) 98
and in the real space
2 2
-iJ ¢ W W Pwiw?) od 22 ad
__o0 2 1 [ 1 Uw 2
h = W W + - — -
y w2 cp Ox i 0z i oz
h =h =0 (4°61)
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2 2 2
J w(iop—w) 8- N a&l ¢ aazi
= + + { .
1% ew i 16):4 wcwp 0z i [0):4 (4.62)
2\.
iJ IS
2 2 2 2
/E = -wTo(w(w—w -w )«'+c(w—w )-Uw
‘\\ X o - p p ‘ dX
\, 62
| -U W 2 5™ C U ;92 }
. ox J
{
Ly
. / 2& ~2J
Y 2y [0 21 22° 2,
LB, T Ge \1w Y ¢l )" wp—J oxoz ¢ U oxoz |
\\ 0 )
, 2\0 2 20
, Io [ 2 2 g ) 2.2 o], 0 12
(V=?\w(w—w) —1c — 5xos ~C Y —2-Uw 5
X e P P p dxz p ox p 0 |
\
(Vy=0 (4. 64)
\
i 2 2
ER\ 9
‘IV = 2 (i w J—wz( 2-U) 1+ 2<i—) 2 \91
‘\z- eN 1 1 ¢ 9x0z  C “vp .2
o 0x
[D] Equivalence Relations

Equivalence relations between different types of sources in real space
are obtained from the equivalence relations in transform space, which are de-
rived from Eqgs. (4.11), (4.12), (4.13) and (4.14). These relations can be used
to obtain the excited fields due to one type of source from the solutions obtained
for another type of source. In deriving Eqgs. (4.11) through (4. 14) for the four

d
components of the source function F(s), the assumption of a—y' = 0, was not used
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so the equivalence relations obtained from these equations can be applied to the
three-dimensional problems in an electron fluid plasma as well as to the two-
dimensional problem.

First Relations: In the transform space s, the magnetic current source

Jt(s) and the mechanical body source f(s) are related by the following equivalence

relations :

2 . 2 e 2 2
s3ec 1820 -I; o W -W
J (s) = —=——1(s)*+ wi(s)ti—L=1(s)| (4. 65)
tx 2 2,y 2.2 e'x W z |
wm(w ~w ) (W-w ) -w w
p p c
.2 e / 2
-ie — ' : - (w-w) - -
= + i +—-R— i -
Jty(s) 2 22 22 % %32(5) Slfx(s)_j iw 83t (s) Slfz(sﬂ
(w -wp) -0 W -

(4. 66)

-8 ec iszc Y (W -w ) -
Jtz(S) - f (s)+ 5 295 22 [wcfz(sH——Liw fx(slj\ (4.67)
wm (w —wp) (w —wp ) W, W

Second Relations: The following equivalence relations exist between the

magnetic current source Jt(s) and the electric current source j(s) in the trans-

form space:

is c2 ~ wwz
) 2 .. cp . 2 2 2
th(s) 73 17, JX(S) (w 9 wc)JZ(S)g
(w-w)-wuw - -

P (¢}
2
1830
t 55 1) (4.68)
y
W -Ww
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2
et A REVEREIER
- Lo , . + . - _ _ . e s b
Jty(s) 92 22 1o ;SSJZ(S) Sljx(S),f (w 9 wc) SSJX(S) leZ(S)‘,
(W-w ) -w w -
p c
(4. 69)
is c2 ) wz
2 . Cp . 2 2 2. 1
= + (0w -w -
Jtz(s) 2 22 22 ! W Jz(s) w wp wc)Jx(S)‘,
(W-w ) -w w - J
P c
.2
is ¢
-5 3 ]y(s) (4.70)
W W
p

Third Relation: In the transform space, the following equivalence rela-

tion exists between the electron fluid flux source We(s) and the mechanical body

source f(s):

is % wz-wz
Wels) = == L6 - 55 22 SlE’f(SHTLf(Sﬂ
m(w -w ) (W-w ) -ww
2 2 )
r W -w
+ s ‘:wcfx(s)+ 1_wL fz(sﬂ (4.171)

Fourth Relation: In the transform space, the following equivalence re-

lation exists between the electron fluid flux source We(s) and the electric current

source j(s):

2
W
Szwz _;L ( wz_w.? ~
We(s)= - 2 2 ]y(s) T2 2 22 381 Ewcjz(s)+ w Jx(S)J
ewlw -w ) (W w ) -w w /
p P c L

— wz-wz \
+s, -iwj (s)+ —E= (S)jf (4.72)
cX W Z

3 L
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Equivalence relations in the real space can now be obtained easily from

Egs. (4.65) through (4. 72) by applying the inverse transformation.

First Relation:

22
i = ec2 1wcw
-—K-= i(w-w )VxF+ yxVF
2 2 22 2 2
Ho me—w)‘wa (w-w ) y
~w §V-F+ i
y W dy
Second Relation:
2 2 2
- 2
g o w o’ %) vxd - o' $xvy
Ho Ew —w ) - 2} P (w2—w 2)
c - p
2, = 2 0J
—lww 'SIV- Jtiw w ol
cp cp 9y
Third Relation :
oF L oF w2—w2 oF
iQ _ 1 Y, m ; z, p X
W 2 2 0y 2 2 22 cox w o oX
m(w -w ) (w -w ) -wcw
oF wz-w oF
-iw X Z
c 0z W 0z
Fourth Relation:
w2
. w2 o 2 0 w-w’ 83
iQ _ p N € y Z i p X
) 2 2 - 22 22 ox
W e’ -0 %) ay (wz-w Y % c ox W ox
p p C
0d wz-wz od
X p z
-w -i

c 0z W o0z

(4.73)

(4.74)

(4.75)

(4.76)
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4,3 Three-Dimensional Problems

As can be seen from the two-dimensional problems treated in the last
section, any type of source excitation problem can be solved with equal ease
by using the formal solution derived in Chapter IL In order to show the salient
features of this technique when applied to a three-dimensional problem, the
radiation fields due to a point current source will be obtained.

{LA Basic Derivation and Analysis

The point electric current source can be expressed as
- A 3
J=y(27) J06(X)6(y)6(Z) (4.77)
and its transform given by
) 3
]y(S) =¢ d(s,r)(27) J o (x)6(y)6(z) = J0 (4. 78)

From Eqgs. (4.11), (4.12), (4.13) and (4.14), the source function can be ex-

pressed as 9
is_c
F ()= =3
/ 1 2 2
| W -W
! p
gin (s)=0
)} 5 (4.79)
A islc
EFB(S) TT 9 2 Jo
| W -
| P
| 2
szw
F (s) = - —=£ By
4 2 2
eww —wp )

-1
Next, the inverse matrix E-N(s):l is obtained by applying Egs. (3.2) through
(3.19). The transforms of the magnetic field and the density fluctuation field can

now be obtained from Eq. (2.86), and the transforms of the electric field and the
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fluid velocity field obtained from Eq. (2.69). In order to obtain solution in real
space from the resulting expression it is necessary to evaluate the following
integral

~00 »00 00 i(s

\IQ : L(s)e G dsldszds3 (4. 80)

f/—(I)

+g y+
1XT85y 33z)

n

Y- “-

The asymptotic solution to the integral (4.80) can be obtained by apply-

ing the principle of stationary phase. For the present problem it is convenient

38
to use the theorem developed by Lighthill( ). The solution of (4. 80) satisfying

the radiation condition is asymptotically given by

i +s y+
1(slx 8o¥ s3z)

2
J.4x YcLe + 0(i2) (4.81)

e r
as T—> . The summation is over all points (sl, 8o s3) of the surface
G(s) = det. {I-N(sﬂ = 0 where the normal to the surface is parallel to the direc-
tion of observation and (r- VG)/(0G/0w)< 0. At each of these summation points
the Gaussian curvature K can not be zero. C is ¥ i where K < 0 and VG is in
the direction of fr, and 1 where K > 0 and the surface is convex to the direction
of £ VG.

Usually, threefold Fourier integrals with axial symmetry are treated by
conversion into Hankel transforms, but such a conversion complicates the asymp-
totic evaluation and also loses sight of the close relation existing between the
radiation fields and the dispersion relation. Thus, we will use the asymptotic
solution given by Eq. (4.81), which is directly expressed in terms of the charac-

teristics of the phase surfaces.
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In the present problem the axis of symmetry is in the y-direction and

2 2 2
so the dispersion relation is a function of s, and (s1 +53 ), i.e.

2

2 2
+
53).

- 9
det. _l—N(s)J = f(s2 ) 8

2 2 2
Using the simple notations b=s, and cs, +s,_ the Gaussian curvature reduces

2 1 73

N £ {2 2 9t fi+4f £° £)

- + + +

CcL bc(fbbfc bcbe fcc b ) fbfc(bfb ¢ c)}
K = (4. 82)
(bt 2+ of 22
b cc

and

I 2

lva -2, bfb2+ of . (4.83)

If the surface of revolution can be expressed by

s, = @/ s12+s32 ) (4. 84)

the Gaussian curvature has the simple form

] "

K- —F
/ 2, 2 2.2
sl+s3 (1+¢")

Because of the axial symmetry, it is only necessary to find the field variation in

(4. 85)

a plane containing the y-axis. Stationary points will be given by the equation

' = -|tan p | (4. 86)

or equivalently by the equations

of of
— -|tn g | -0, =0 (4.87)
p 2

or

spfc-|tan¢| s,f, =0, =0 (4.88)
where

sz=s2+ 2

p -1 83 = C.
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At an inflexion point of the plane curve given by (4. 84) the Gaussian
curvature is zero and Eq. (4.81) can not be used. Instead of (4.81), the fol-

lowing expression for d must be used:

\9 (27) i(é—)l\/—fﬂj*—' oL 1T§f+%7rsgn!{p—_]
- 1.3 1 e
lva| () X 12 (4. 89)

where c'= 1t 1 depending on whether VG is in the direction of i;, and )\ is
oK

proportional to Kp is the principal curvature for the parallel section

m
os

P
and Km is the principal curvature for the meridian section.

On the surface of revolution the principal directions are on meridians

and parallels, and the principal curvatures are given by

2 '
K = . - X (4.90)
P 2, 2 273 2.5
[L1+4(s) 5,0 @ 5, (1 ¢'%)
2 2
20, ¥2 ¢, (5, *s,)] .
Km: c cc 1 3 . g - ’ (4.91)

3
— 2 2 -— 2 -_—
'_1+4(s1+s3)c()c 2 (1+ @7)2

where ({is given by (4.84). Equations (4. 90).and (4.91) are obtained as in-

verse of the two roots of Eq. (4.92) solved for the radius of curvature, R;

2 2, 2,1.2 3, 2, 2 2, 2
Dapc+8 q/ckpcc(sl +S3 )jR -|:4<‘oc+8 ch(sl +83)+4 (Pcc(lerSB )] x

/ 2 2, 2 [ 2, 2 2}
+ = 0 (4.92)
L+4(s, tsa) @, R+ 1+4 @ (s, +85)
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The product of (4. 90) and (4.91) gives the Gaussian curvature (4.85). As for

A, it is shown in Appendix E that

aKm
: cos (tan ]&Q 1) (4.93)

A=

O'JIP—‘

X B4 Actual Calculation

I
S

For the actual calculation of the stationary points it is very complicated
to solve either Eq. (4.87) or (4. 88) directly. Instead, we will find the radiation
direction f corresponding to each point on the dispersion curves in the following
way . First, the form given by Eq. (3.20) is used for the dispersion relation,

det. [l—N(s)] = 0. Then, for each dispersion surface

f(s, 6)=s-F(6)=0, (4. 94)

there are relations of the form

o _ . cosf ds
os_ on s do

P (4.95)
—;— =cosf + sing ds

Sq dé

an (6-9) =7 & . (4. 96)

From Eq. (3.20) the right hand side of the above equation can be expressed as

2 2
Qsin260 | s -s (23 B W, )+B (B B, w ]

- ’)
654A'+ 4szB'+ 2C!

(4.97)

w |~
&8

where Eq. (3.20) is written as
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A's6+B's4+ C's2+D' =0 (4.98)

with
A= Q2cos26 -1

B! E(1-w2)(3 2+25 2)—92(3 2+23 zcos29—3 2w 200326)
o e "o e "o e o

2 2.2 2 ,2 2 2 .2 2 2 2 2

c'=p {-(1%0 )" (28 "+B ")+ (2B +B “cos 6 -B w cos 9_32w2)
0 0 e o e "o e o e o
2,4 2 2.2 2

1z R - —w Y-

D'=B B (1w ) [(1-w)) -0

Then for each angle 6, corresponding to each point on the dispersion curves,
we can calculate f from Egs. (4.96) and (4. 97).
Next, the Gaussian curvature must be evaluated at each stationary phase

point from Eq. (4.85). The following two expressions will be used for this

purpose:
of
ds " 9s -8 9+cos0§
kel: 2 - L = de (4 99)
ds of o5 § + sinf ds ’ '
P ds2 cos de
and

do
Equation (4. 99) is obtained from (4. 95). Substitution of (4, 99) and (4. 100) into

’ 2
p < s g+ Sind g)
s
(4. 85) gives the following expression for the Gaussian curvature:

:/ cotf ds L ds\2 1 d2s—
\ S 1+2 SZ E - g —2
de
[ 1 (ds)zj 2 2
g2

(4.101)
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where
{
d2 4 2 2 ds [_ 4
—?2= (6s A'+4s B'+ZC') Qs1n2955'5s -3s (23 B W, )+B (B B o )i
do
2 2 2 ]; 2
+2sQ 00526 s -s (28 B W )+B (B Bewo ia—2sQ sin20 X

/

]
Ls4-s2(28 -B w )+B (B B W ] i(lzs A'+4sB')— -92s1n29 X

2 -2
Ess -2s (26 B W, )+B (B B w R (6s*A1+4s’B1420) . (4.102)
At the limiting angle 6 = 0, the Gaussian curvature is given by
/ 2 \ 2
2 1/ 1
K=(q =5 (1-1 d_~°é> (4.103)
de

At an inflexion point where ¢' = 0, Kp as given by (4. 90) and X as given

by (4.93) must be calculated. For this purpose it is necessary to know

oK

m QM (L+ gﬁ'z) —3(()'(‘{’")2 (4.104)
ds 2 p) . .
P (1+ @' )2'

@'"" is obtained from (4.100) as
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8
" d [1 s 5 d!.sﬁL,i"Q.!.)SJ
conO+!——Q- -(1'-)2 ds Ls d63 32 a6 d82 s3kd
s dé
! ‘_11)2 lﬁl 9" aino (lwlﬂ-%lha)
+[1+2?(d0 _:doz][g; (- ) q' 2
[
Q_Z _dd
(uho*-—oono) ds [ﬂﬁ‘%z ésﬂ
J Y] g,-_)a x
s d6
dds  ds ("‘“'g"mm |
"."".—- :i-;-‘l'&—; :,2 ‘ (4. 108)
where
do _owo-y'sing
, 8

Also, for the aotual caloulntion of the abseluts value of VG, use is made
of the following form tnsteed of Eq. (4.83):

Asympiotic sclutions in the form of Eq. (4. 81) can now be caloulated for

the eleotric fleld. After some manipulaticns, the inversion injegrais for the
electrio fisld are shown to be

@ L0 A0 EE-Q- .
Ex. L “—T—L-jt' ) 5 2 alu(c s +w -w)(c 5, +w )
c-m

2 2
cw 8
_m wzuzs +02u 8 - uz 2 I_Uz 2 2— 8.8 +.——L—2—— X
cp 3 172 p 2 281% "3 2 2
W w (w -wc) ,
1(8x+8ay+8a2)
{ul-iucsai o Of A dsldazds3 (4.107)»
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J ,
0
200 Q0 Q iwe g U
; 0 2 ‘ 2 2 2 2,2 2 2
E= ' | | = =4 - ‘sule s tw ~w)les tw )
/ / { N 2 2,
z o) det 11 N(S)J w5(w w?) 3 p P P
-0 - *-mw c
2 2 2 czwzs
+ + 202! (1- == 2)(1—— ) & + 2 X
ww ws, CwSBSpr) 5 Sy 5 8 ) 75898, T3y
W w (W -w")
c
. i(six+8yts,z)
+ XS 3 .1
%ws3 1wcsl% e dsldszds3 (4.108)
d
2 2
© OOJOO 1weo szU — 9
E = = w(2w—w-2cs)
. 1= 4
-0 %o -o
o 22 22 2 2 222 22
-cs(cs—w)} Lw (2w—w -c 8 -C ) Us (cstw -w)j
(w w ) p p p
> 2 ER
_—- —_— — |
+ (1 5 S )Ll (s +s )+ 4 s2s—; (4.109)
W

The sum of /}EEX and ﬁ‘EZ will be expressed in terms of two vectors in the direc-

N
tion of p and f by using the fact that

A A - A
+ = =
xs, + 28, sp |sp| [

4,110
and ( )
—x33+zs =s xy ]s|¢
These two vector components are
s-r 2 2 2 2.2
21Ce ° rw4(w2—w )/ d iww cs iww Us
E. = 47 Z c ( 0 ) S cp 2 _cp 2
2 4 i 32 2 3, 2
p T ]VG]\/|K| Uec We TP D —wc) W (w 0, )
c_. - 2
o | Ce e 2 2
- =L ; z 5,8 (¢ -U") (4.111)
VG| VK] Ue P
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and is 1 2 2 2
2 Ce (w —w ) J Cw S s. U
Ax \ b 2 2
E - D 4 c ) %) 22 2 &2 2
g ol VKT vt % W (W ) 0w )
2 2 2
2 2 2 2 27 2 2
Rczszﬂ) - )(czs +w )+ c2w s j—(l—p—s )(l—c—s ) E—s (4.112)
L p PP p 2 w2 2 w2 w2 2

A
3 and § are unit vectors in the cylindrical coordinate system with the y-direction
taken as the direction of the axis. The asymptotic solution for the component of

electric field in the y-direction is obtained from (4.109) as

2 2
E _41,2209 © b -wc) ( JO) Sz - I (2w w2 20 s )
B 2 4 i 2 2 ™
¥ T “va|/|k| U e/ 4 -w) E P
2 2,22 1 T 2 2 22 2 2
—cs(cs-w) ?Z—-'w@w-w —cs—cs)
P W (W -w )'—p p
(]
2 4
-Uzspz( 2s2+w2- 2)] +(1- )[1 —(s bs, 2y & g 222 (4.113)

Finally, it will be shown that the radiation condition expressed by the re-
quirement (r - VG)/ (8G/ 8w) < 0 is not essential to the calculation of amplitude
variations. First of all, it is easy to see from Eq.. (4. 88) that if the point (SZ’ sp)
satisfies this equation, its symmetrical point (—s2, -Sp) will also satisfy this
equation. r- VG of these two stationary points have different signs, and the radia-
tion requirement selects the one which has a sign opposite to that of G/ dw. But,
the amplitude of each stationary point contribution in Egs. (4.111), (4.112) and

(4.113) is the function of s, and Sp which appear only in the form of their product

2
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or squares, thus it is not necessary to select one of two stationary points, by

calculating VG and 0G/ 9w, in order to plot the amplitude variations.



CHAPTER V
NUMERICAL RESULTS IN THE IONOSPHERIC PLASMA

5.1 Ionospheric Model

Because of the great variations in ionospheric properties depending upon
time and geographic location, attempt is made to use those data corresponding

to day-time, mid-latitude and late 1962 ionosphere. For electron density pro-

(47)

files use is made of those ionograms utilized by Stone, Bird and Balser °, and

(48)

some topside sounding ionograms analyzed by Bauer and Blumle' . From these
profiles it seems convenient to divide the ionosphere into four regions: (i) Above
F-peak region; (ii) Around F-peak region; (iii) E region; and (iv) D region.

As for the electron temperature use is made of the United States Standard
Atmosphere, 1962, and it is assumed that thermal equilibrium condition prevails

throughout the ionosphere. Thermal non-equilibrium seems to be ascertained

(49)

in certain altitude regions by Spencer, Brace and Carignan' °, Nagy, Brace,

50)

Carignan and Kanal( , and others, but for our linearized treatment the as-
sumption of thermal equilibrium should be able to represent general characteristics.
The variation of the magnitude of the earth's magnetic field is rather s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>