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[
INTRODUCTION

The scattering of a plane wave by a sphere has been one of the riost widely
studied of all problems in diffraction theory. A knowledge of the solution is impor-
tant for many practical applications, but also relevant is the fact that the sphere is
one of the very few shapes for which an exact solution can be obtained. With other
and more general shapes it is necessary to resort to approximate techniques for the
estimation of the scattering, and several of these have had their inspiration in a
detailed and critical study of our small selection of exact results.

One of the most important features of the scattering from any smooth convex
body is the effect of creeping waves which are launched in the vicinity of the shadow
boundary and contribute to the back scattered field after having traversed the rear.
Although usually regarded as a high frequency phenomenon appropriate only when
the radii of curvature are all large in comparison with the wavelength (ka >> 1),
preliminary studies (Senior, 1965a) of data for the back scattering of a plane elec-
tromagnetic wave by a perfectly conducting sphere have suggested that the concept
is still valid for ka as small as unity. What is more, a relatively simple expres-
sion for the creeping wave component is accurate for all ka »1.

If the radii of curvature are not constant, the only method of calculating the
creeping wave contribution available at the moment is that proposed by Keller (1938)|
which treats the waves as scalar disturbances following geodesics on the surface
and, furthermore, assumes that the only relevant curvature is that in the direction
of travel. This has proved adequate for most computational purposes when ka is
large, but is somewhat less than satistactory when ka is of order 10 or less. Is
this evidence of a failure in the concept of creeping waves as ka gets smaller, or i3
it merely a reflection of the essentially high frequency character of the assumptions

made in the generalization from a sphere to a body of varying curvature?
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To throw some light on this question and, at the same time, to place the
earlier results for a metallic sphere on a firmer footing, a detailed analytical and
computational study of the back scattering of a plane acoustic wave by soft and hard
spheres, and of a plane electromagnetic wave by a perfectly conducting sphere, was
unde rtaken,  T.e analytical procedures used are, of course, not new, and the treat-
ment ditfers from those that can be found throughout the literature only in the uni-
lermity of approach and (in some instances) the derivation of more complete expres-
s1on~ than have previously been available,

With each of the three problems the starting point is the standard Mie series
representation.  Application of a Watson transformation then leads naturally to a
separation into creeping wave and optics components, the formulae for which are
evaluated asymptotically under the assumption ka >>1, Sufficient terms are re-
wiined 1o ensure a high degree of accuracy for ka 25, and the extent to which the
resulting expressions are still applicable at lower frequencies is determined by
comparison of computed values with those obtained by direct evaluation of the Mie
series torms,

‘i'he analyses for the soft and hard spheres are given in Sections 2 and 3
resneciivelv. ‘Whereas, for the soft sphere, relatively simple expressions for the
creeping wave and optics components are quite adequate for ka as small as unity,
the increased magnitude of the higher order terms in the hard body solution demand
somewhat more involved expressions which, even then, are significantly in error
when ka has decreased to 2, With the electromagnetic problem, however, the
cifectiveness of the asymptotic developments is truly astounding. A simple form
for the creeping wave component appears to retain its accuracy for ka at least as
<csatts 0! and with a twvo-term expression for the optics component, the result-

ing far fi=1Ld omplitude is in error by only 12 percentinlnoduluszHKIBO in phase

-y =

when ka = 0.7,
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There seems little doubt that the basic concept of a disturbance e cling
around the hack of the sphere and interfering with a specular return origing:.ng .
the front face is valid tor a much wider range of dimension-to-wavelon i viiios
than had been supposed. In the vector problem at least theve is no vidence: o any
coupling between these components even when the frequency is sucl: that rhe ii,-
Fresnel zone is limited by the shadow boundary, and the asymptotic ey o=ione for
these components continue to provide accurate information down through ka = 1.
For bodies ot non-constant curvature some possible implications of these results

are discussed in Section 3,

[
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AN ACOUSTICALLY SOFT SPHERE

The tirst problem to be considered is the scalar one in which a plane acoustic

wave is incident on a soft sphere at whose surface a Dirichlet boundary condition is
omposedd,

Far Field Amplitude
[n terms of spherical polar coordinates (R, 6, §) whose origin is at the center
v the spheve, the equation of the sphere is assumed to be R = a. Incident in the

direction 9 = 7 is the plane wave disturbance’

i e-ikR cosf

U = , | (1)
it since this can be written alternatively as
® .
i E 1, TPy
U = (n+ 5)e i (kR)P (cosH) (2)
n=0 f 1

(Stearton, 1941; p. 409), where jn(x) is the spherical Bessel function

. _ 12T .
]n(X) = \/—: Jn_+_1/2(X) s

the total (incident plus scattered) field is clearly

W T .
1 -1115 Jn(p) (1)
U = (n+=)e j (kR) - h (kR)$ P (cosf) (3)
- 2 n (1) n n
n=0 h' "' (p)
n
wnere 0 = &a. In particular, for the back scattering direction 4 = 0,
> -in? i (o)
_ 1 0y ()
L = (n+=<)e j (kRY- —— h (kR)¢. (4)
- 2 n (L) n
n=i hn (p)

o , iwt
A time factor e ig assumed and suppressed.

1
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The expression for the scattered field alone can be obtained from (4) by sub-
tracting the incident field series (2) with 6 = 0. In the far zone, the spherical
Hankel function h( )(kR) can then be replaced by the leading term of its asymptotic

expansmn for large kR to give

where

is the far field amplitude. This is the quantity of interest to us.

The above series representation of S is cpnvergent for all (real) p, but the
rapidity of convergence decreases with increasing p. If p <10, say, the first 15
terms are sufficient to compute S to about three-digit accuracy, and for p <1 we

can expand the first few Bessel function ratios in ascending powers of p to give
5 2 1 38 4 13 .5
S = - 1_ in- — + = + — + — +
p{ ip-3p *+3ip 5P T s ip + Olp i} (6)

(Senior, 1960). This is the low frequency expansion, whose radius of convergence
is determined by the zero of h:ll)(p) closest to the origin of the complex p plane,
and is |p| = 1.

The limited convergence of (6) is brought about by the expansion of the func-
tions ﬁl( ) } , and no such restriction exists with the original Mie series form
(5). We can therefore use this expression to compute S for any p and though it
would be a tedious process to do so by hand if p > 10, say, the advent of high speed
digital computers has made it reasonable and economic to determine S from (5)
even for values of p as large as 50.

Nevertheless, there is an alternative representation of S which is well

suited to the larger p. This is certainly more convenient for hand computation if p
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is large, and is desirable for its own sake because of the insight into the nature of

the scattered field that it provides.

2.2 Resolution into Creeping Wave and Optics Components

The resolution is a natural consequence of the application of a Watson trans-
formation, hut in order that the resulting path of integration be deformable in the
required manner, it is necessary to treat the total field U rather than the scattered
field U° (Franz, 1954).

Using the fact that
. (1) (2)
Jn(X) 3 {n (x) + h ( } ("

(2)

1 = 1 _m12r 2) ' b @)
= -Z-ZO'(H+§)6 hn (kR) - T hn (kR) p
n:

hn (p)

equation (4) becomes

and this can be written as

T (2) .
i= iv =
U = L e 4 (kR) - —1[2—- (1) (kR) 2 sec vt vdv
4 V" /2 V' /2

(D
C /( p) (8)

where C is a path which encloses in a clockwise sense the poles of secvm on the

positive real axis. For the integral over the lower portion of C we make the sub-

stitution
LT T LT
11/5 —311/5 -iv T
e = e +e + 2isinvm . (9)
Since
(1) ivr (1)
h (x) =e " h (x) ,
-v-1 v-1,
(2) -ivm (2)
h (x) = e (x)
’V"l/z /
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(Watson, 1948; p. 74), the integrand corresponding to the first term on the right
hand side of (9) is an odd function of v, and by reflecting the path in the origin of

the v plane, we obtain

I o +ie (2) iy]_r
U =- le 4 (kR) - ——[2— (1) (kR) 2 secvr vdy
4 V /2 (o) V' /2
-0+ ie /
iZ 0 ivz
- . -
+1 e 4 (kR) - U—A— () (kR) 2 tanvm vdy
4 V /2 (1) (0) V‘ %,
o - i€ u—l/2 (10)

where € is some positive number.

The first integrand in (10) is an exponentially decreasing function of v as
|1/ ‘ —> o0 with Im. v >0. We can therefore close the path in the upper half v plane
and express the integral as a sum of residues at the poles v = Vn’ n=1,2,3,....,
of 1 / h(yl_) 1 / (p). This constitutes the creeping wave portion of the field. The second
integral in2(10) can be evaluated by the steepest descents method, and contains the
optics portion of the field, including the incident field itself. To separate out the
scattered field and, in particular, to determine the far field amplitude, it is only
necessary to replace the radial functions by the leading terms of their asymptotic

expansions for large kR. The resulting expression for S is then

s =g%+g° (11)
where

el

()
¢ = iwz YET vsecum (12)

n ov Hv (o) V=V

and
0 H(2)
v
(1)
H (p)

(p) —ivg
tanvr e vdv . (13)

@ - i€
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The affices "c¢' and '"o'' denote the creeping wave and optics contributions respec-
tively, and for brevity we have here replaced the spherical Hankel functions by their

cylindrical equivalents.

2.3 Evaluation of the Creeping Wave Contribution

To find an asymptotic representation of the zeros v of the cylindrical
1
Hankel function Hf/ )(p), a convenient starting point is the contour integral expres-

sion

i sinhw - vw
- ep dw

(Watson, 1948; p. 178), where the path of integration is chosen as the series of
-1/2 -
straight line segments running from - -ir to (3 / -i)7 to (3 1/2+i)7r to c+im,

In terms of the large parameter p, let
x = 2-p) (14)
with 7= (p/2)1/3. Hence
Vv=pttx ,
and if we now write w = t/7, the above integral becomes

®
2n+3
i 13 -2n t
- exp(3 t - xt) exp{? E T (2n+3)'.} dt (15)

n=1

in which the path of integration is such that

exp(% S_oxthdt = 2ni {Ai(x)-iBi(xi}

where Ai(x) and Bi(x) are the Airy integrals defined by Miller (1946). Hence
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. n
t -xt)dt = 27ri(-1)n —d—[; {;\i(x)-iEi(x} ,
dx

and since all derivatives of Ai(x) and Bi(x) above the first can he eliminated using

the differential equation
" = xf (f = Ai or Bi) ,

it follows from equation (15) that

1 1 o2
Jv(p) = [Ai(x) - -(;-(:2- {4xAi(x) +'x Ai'(x)} +

+ L {(—7' x5+ 26x2) Ai(x) + (Gx3 + 18)Ai'(xE} + 0(7_6)]

252074 20

(16)
with a similar formula for Yy(p) in which Ai(x) and Ai'(x) are replaced by -Bi(x)
and -Bi'(x) respectively.

Equation (16) is equivalent to

9 9
J(p):l{- )(2+ 13x4+0(7—6> Ai{— x2
v T 15-° 12607 607

3
+45 - }
+ 8x 4: + 06 6)
63007

as can be seen by expanding the Airy integral using Taylor's theorem, and if we

now define

2 3
2 +45 -
Gy = x- X . 8x +45 £ 0l 6) (17)

6072 630074

2i7/3

where w = e is a cube root of unity, we have
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(1) 1 { X 13%° 6}{ 2 2 }
H (p) = = {1- -+ +0(r ) ¢ AW y) - iBi(w y) ¢ . (18)
v 15-2 12607
But
AWY) = - S o {Ai(y)HBi(y)}
Biy) = - 3w {Bily)+3iily)}

(Miller, 1946; p. B9), and hence

2w X 13x2

Hz/ (p) = - 1- + 2 + 0(7_6):} Ai(y) . - (19)

T 15:2 1260~

1
The zeros of the Hankel function Hf/ )(p) can therefore be expressed in terms of the
zeros y =a_ of the Airy integral Ai(y) using equations (14) and (17). If the second

ot these eyuations is inverted to give x as a function of y, the expansion for v

heromes
5 waz a3 + 10 _
& n n -9
v o= ptwra + oo - 3 +0(r 7). (20)
n n 1400~

The first 50 of the a have been tabulated by Miller (1946), and when

arranged in ascending order of magnitude they are

a, = -2.33810 741. ..

ay = -4,08794 944. ..

o

a, = -5.02055 983. ..

All are real and negative, and in order to emphasize the negative real character of

the creeping waie exponent, we shall follow the notation of Logan (1959) by writing

10
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The o are then positive and the corresponding formula for v is
n n

1—; -i% ai o’ - 10 |
Vn=p+e'-ron—e (gb—w+ L 3+(’)(:— o (21)
_ © 14007
N o 1/3 '3 -3 Tty . |
The coefficients of p e and p e ° in this expansion have been computed

for n = 1 through 5 by Franz (1954).

We now have to find an expression for

(2)
H
) (p)
(1)
87/ H (p)
v=v
n
Since H( (p) =0, this factor is equal to
“n
J
) V(p)
9 (1)
151% HU () v=v
n
- ) 2 -
(1- =+ 2 ) BiGy)
i 157 1260-
S 2 L3
——{1- + — 4+....)Ai(y}
157 12607 V=
n
_ ir | _Bily)
2 |3y ,.,
ox Al'ly) vy
n

where we have used the fact that

11
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9 _ 1oy o
ov T 0X 0y
Moreover,
oy 2 2 -6
Tz uql- S5 =0l
on 3077 5257
2 2
- wil- wé + ~1lwy4 +O(1-_6)
30T 126007
ined
. _ 1
n
Hencee
r )
Ca?) _}1 L il g 4T 348
v | T 6 3 n 3 n
'i’ “) | =-E;e 1+e +e 2
| (o) ! 307 14007
Ly Y
n
-6 1
o
{Ai'(-a )}
n
trom which it tollows that
- .
\ I/H(Z)(p) l 4 -iZ il g —1”
P T n
| =

N 6 3 -
0 Tre el Tgme ot }
L= (p)J ' 157 1707 {A }
v v v=1/n
(22)

Iiach of the zeros v corresponds to a single mode in the creeping wave

n
. C o€ L .
devciopment of 87, and to complete the representation in terms of physically mean-

ingtul aquantities, we expand secvr as
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which is convergent since Im. Un >0. Substituting from equations (21), (22) and (23)

into equation (12), we now have

T T T 2

it i— 8 -iT 4
Sc = —2749 & E %+e i o e 3 o +O(7_6):% R S ;
n {Ai'(-ozn)}

1572 175’r4
@ iz FEA
£ 3
y E (-1) exp[i(2l+l)7r {zﬁe ’ Ta - e L
n 60T
£=0
013 -10 _5
+— T +0lr E} . (24)
14007

The interpretation of the various factors in this expression is discussed in Section
2.5, where we also explore the extent to which equation (24) can be simplified with-

out loss of numerical accuracy.

2.4 Evaluation of the Optics Contribution

The optics portion of the far field amplitude is given by equation (13), and if

. . . . 0 .
tanym is replaced by its exponential form, the expression for S can be written as

S = — vdv . (25)
(1) 2ivw
. H (p) 1+e
-mtie v

To evaluate this integral we note that if the Hankel functions are approxi-
mated under the assumption that the order is less than the argument, with the latter
large compared with unity, a steepest descents analysis is appropriate and the sad-

dle point is ¥ = 0. This is evident from the Debye formula

v mp sinf

1

ip(sinB-BcosB)—ilr & (m- =) . m

H D) = 2 ! E 12 ( — ) A
m0 (-3)! o

(Watson, 1948; p. 244) in which

13
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v = pcosf.

2
The Am are functions of cot 3 only, and are real. In particular,

A =1
(0]
15 2
= - + -
A1 8(1 ;5 cot B)
o 154 2 385 4
Ay = Tgg BF g oot B+ S7 cot )

and using the scheme which Watson (1948; p. 242) describes for the generation of
the coefficients, it can be shown that

1

5 .
39 2 7-11-13-17 4 /9 2
- —_— 5 4= b —_— -
210 5 <5>cotB 5 cot B<5+cot B)}

A,
3

3

In terms of these coefficients,

ip(sinfB-Bcosf) - iz

3

A

E_ i
psinf o sinB)2

ii——g Ayt O(p_4)}
(o sinp)

Al-

+ (27)

from which it follows that

H(2)(p)
,(/1) - ie-zw(SlnB-BCOSAB){l‘L —:JI;HB A- —z—EAz
HV (p) P (p sinp)
-2 (al-3a A, +158) + —E— A (a°-6A A +304,)+0(™)
(o sin B) (p sinB) ! b2 ’
p sin P

(28)

. . -4
function ratio correct to p .

A knowledge of the Am through m =3 therefore serves to determine the Hankel

14
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In order to apply the method of steepest descents, it is necessary to expand
the right hand side of (28) in a neighborhood of v=0. Using the definition of 3, the

exponential factor can be written as

2 -1
exp {vw—ﬁp Vl— (v/p)” -2ivsin v/p}
1/2
=exp<iy7r—21p-i-5->{1+.....} (29)

where the terms represented by the dots are produced by the higher order terms in
the expansions of the square root and inverse sine. To achieve an expression for
s° correct to the first five orders in p, we have to include all terms of the form

V2mp—n for m2n-4, and the terms that then appear on the right hand side of (29)

are
. 4 6 /. 2
I_LL_LGLPLL>

12 3 5\40 ' 288 p

o0 P
_v_8(51+1_1£_ 11/_4>
7\.6
AV

JO<7i , 167 £§+ i s _f)
T 9\.7 Co1 5
2 32 223570 0 Bt P ol

where we have grouped them according to the powers of p produced. Similarly, by
expanding sinf and the Am to the required order, the bracketed terms on the right
hand side of (28) become

2 4

i 13 ) 69 13 (u) }
+—9<1+ + = ==
! 4,04:1 6( 24 ? { o

i 7187 67

= LT = . L .

7 { : <)} ’
2, 30 \p 21104

15
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and if the resulting expansion for the Hankel function ratio is now inserted into (25),

we have, after some simplification,

So:‘ge—zm BE+ZL' 12' 17713+ 16174}10
P39 27 27 )

B i3 {HZL’ 2;72 - 1755513} L
120 9% ol

L [ e,
40p P 9%.3%,

1 OTi 24623
o — + -
6 1'" 28 5 2} I

288p 2 :5'Tp
1 { 293} { 91931}
- —— {1+ I +——— {l+7— > I
480p8 72p 7 4 9 700p 6
i 1 -5
+ - 1I_+ I_+ Olp )] (30)
28'45‘)11 7 21135 8 .
where
- i€
. 2n+1
I A -11// — s dv . (31)
n o 2ivm
. l1+e
-+ i€

Scott (1949), in an appendix to his report, has considered the integral
iB

e 2 2n+l
u

¢ () = Pl (32)

-u
i 1+e
ooeB

16
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in which |8|< /2 and -7/2-arge <28 <7/2 -arge, and has shown that”

ot Z QAL ) 2j+mer
BE) = — - it(j+n+1) (-€) Biin+ (33)

2€ 7=0

where the B are Bernoulli numbers, i.e.
m

1 1 _ 1 1
Bi=% B30 BT BTz
Equation (32), however, can also be written as
i(5 +B) |
e
2, 2 2n+1
. \2nt2
¢n(€) = (2ir) o i e47T Ev _V-_Ew—w dv
1(5 +B) ‘ l+e
-e
and hence, by comparison with (31),
1 1
+
n 7rp(217r)2[11 n 4i7r2p
It now follows that
-2j-2n-1, B,
. \n n (1-2 ) j+n+1 a
I = (-ip) n! {1+(-—1) E : - , :} (35)
+ +
n 150 j'n!(j+n+1) (—ip)J+n 1
and for the first few values of n we have
L= - = Ty 5t g 3ok
P oag0p® 2'3%7 o0 2773% o

—
1]

| = i {H ! 5 +O(p-3)}
480p

Note the (—l)J error in Scott's formula.

17
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where the terms displayed are those required for use in equation (30). For n >2
‘e leading term in (33) is sufficient.
When the above formulae are inserted into equation (30), the expression for

. s 0
vhe optics contribution S™ reduces to

‘ L _ : - -
50:,36“19{1+-21—+ - 313-14+O(p o)} : (36)
ot 4 )

-
|

oo

In view of the large numbers appearing throughout the analysis, the simplicity of the
rinal result is gratifying, but even so there is no obvious relation between the coef-
ficients ot successive powers of p. The first three terms in (36) were previously

ohtained by Keller et al (1956) using the Kline- Luneberg expansion technique.

)

> Numerical Considerations

Although the expressions we have derived for s® and §° are only asymp-
totic tor large p, they (and the pseudo-physical theories which they inspire) are
generally our only means for predicting the scattering behavior of bodies whose
radii of curvature are comparable with the wavelength. It is therefore important to
have some feeling for the accuracy with which they reproduce the far field amplitude
not only for p >>1, but also for values as small as 3 or even 1.

Bearing in mind the phase origin of the incident field at the center of the
sphere, the phase of the optics component SO identifies it as a return from the front
face, and it is natural to regard the whole expression as a representation of the
“specular” contribution, The leading term in s° is that provided by geometrical
optics. The rise in the coefficients of the successive powers of p should be noted,
and whereas the second real term, l/2p2, produces a correction to the first
(unity) term exceeding 10 percent if » < 2,23, the third real term corrects the

second one by more than 10 percent if p < 5.

13



THE UNIVERSITY OF MICHIGAN
7030-1-T

The other component s® is made up of creeping wave returns, and to judge
from the phase of a typical term, the corresponding wave contributes to the back
scattered field after having traveled around the rear of the spherc. It is presumed
thaf the waves are launched in the vicinity of the shadow boundary and henceforth
travel independently, radiating energy in the tangeniial direction as they proceed.
As a consequence of the radiation, the amplitude of a wave decreases, and this de-
cay is evidenced by the negative real part of the exponent. When the wave reaches
the region of the shadow boundary diametrically opposite to that in which it was
launched, the radiated energy is in the back scattering direction and contributes to
Sc. The wave, however, continues to travel around the surface, passing through
the lit region and into the shadow once again, but it is not until it has traveled a fur-
ther 27 radians that it can once more radiate in the back scattering direction. Such
repeated contributions, produced by waves which have traveled more than the min-
imum distance around the surface, are represented by the summation over £.

Each individual creeping wave is generated by a zero u:vn of the Hankel
function Hil)(p). The rate of attenuation and, hence, the magnitude of the contribu-
tion to SC, are determined by Im.vn, and due to the manner in which the zeros
have been ordered, the dominant wave is that corresponding to n=1, the sub-dom-
inant one to n=2, and so on.

Because of the asymptotic nature of the analysis in Section 2.3, the expres-
sion for $° is "complete' only to the extent that the asymptotic formula for v is.
Nevertheless, it is seldom necessary to retain the full complexity of equation (24),
and for most numerical work a far simpler version is sufficient. In the first place,
the attenuation of all waves including the dominant one is large enough for us to omit
the contributions resulting from waves which have completed one or more circuits
of the sphere. Only the leading term (£ =0) in the second summation then remains.
We can also neglect all waves except the dominant one, and to illustrate the error
thereby incurred, the contribution of the sub-dominant wave is less than 1 percent

ot that for the dominant wave if p > 1,81,

19




THE UNIVERSITY OF MICHIGAN
7030-1-T

Both of the infinite sums in equation (24) have now been removed, leaving an
expression for s® based on a single wave alone, but even this can be simplified
without significant loss of accuracy. In the exponent, the term involving (a? -10)
does not contribute to the amplitude, and for p =10 its effect on the phase is only
i, UTO. Since the phase contribution is still less than 1O for p=1, the term cancer-
: tainly be neglected. The preceding term in the exponent is, however, more impor-
tant., When p =10 it produces a 13 percent variation in the amplitude of the creep-
inz wave component, and a 4. 8° change in phase. Both figures increase rapidly
with decreasing p and the term will therefore be retained, but we can omit the third]
term in the factor multiplying the exponential. For p =10 this contributes 0.3 per-
cent in amplitude and 0. 6° in phase, and the expression for s resulting from all

these simplifications is

. 1 -3 i
- exp{imTp-e M - e T0r +0(r ) (37)

where

@, = 2,33810 741, ..
Ai'(—al) = 0,70121 082....

This 1s an accurate approximation to (24) (if not to the "exact" expression for s°
shown in equation 12) for p greater than (about) unity, and is the formula that we
shall employ henceforth.

In terms of the far field amplitude S, the back scattering cross section o
i given by

A 2
- X sP .
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As p>®, |S [—-) p/2 (see equation 36), and for numerical purposes it is convenient
to normalize the cross section with respect to its high frequency limit 7ra2. We
therefore introduce a normalized far field amplitude G which is related to S by the

equation

Q

1
© N

wn

-

—~
(WN]
O

-

from which we have

g

2
Ta

I
2}

(40)

|G| is, in effect, a voltage gain factor.
The creeping wave and optics components of G are, from equations (37) and

(36) respectively,

iz iZ 8a
c° = —2re 3 {E+e 3 L +O(7'-41_} —1
2 2
157 {\i'(-al)}
-2 iZ 7ra2
6 6 1 -3
. : - _ —_ 4
exp{iwp e T - e e Ot } (41)
and
- . . . 5 _5
Go=—e2w 1+-1—+—1——'5—1-—+0(P ) (42)
2p 2 3 4
2p 40 p

whilst the Mie series representation of G is (see equation 5)

. i (p)
=2 Z(-l)n(2n+1) o - (43)
? ‘=0 h (o)

To provide data with which to asses the numerical effectiveness of the high

frequency approximations (41) and (42), the expression for G shown in equation (43)
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wus programmed for evaluation on the IBM 7090 computer of The University of
Michigan. Computations were carried out for p=0.1(0.1)10.0 using a maximum of
21 terms in the series, and in Table 1 the real and imaginary parts of G are listed,
along with the values of |G‘ and |G|2. The normalized cross section IGI2 is also
plotted as a function of p in Fig, 1. We observe that it exceeds unity throughout the
cntive range, increasing slowly as p decreases to about unity, and thereafter more
rapidly. As p—»0, |G|2—-)4 (see equations 6 and 39). For p >3 there is only the
harest trace of any oscillation, and since the presence of a significant creeping
wave contribution must inevitably produce an oscillation whose period (in p) is
approximately 1.2, it would appear that for most of the range G is dominated by its
optics component GO.

Although the concept of creeping waves is generally regarded as a high fre-
quency one, and certainly the expressions for G° and G° shown in equations (41)
and (42) cannot be presumed valid for p comparable with unity, it is nevertheless
ol interest to examine the numerical effectiveness of these formulae when p is not
large.

In Table 2 the amplitude and phase of Gc computed from equation (41) are
listed for selected values of p in the range 0.5 < p £10,0. The amplitude in-
creases by over two orders of magnitude as p decreases from 10 to 1 and though it
is still small compared with |GL it is sufficient to account for the oscillations in
Fig. 1. This can be seen by subtracting G° from G. For ease of comparison with
the optics component a factor é2ip is also removed, and in Table 3 the real and
imaginary parts of (G- Gc)eZi'o, computed from the data in Tables 1 and 2, are pre-
sented. These are plotted as functions of p in Fig. 2, and the feature to note is

that the curves are quite smooth,

By definition,

(G-G°) e21p = Goe21p , (44)
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Table 1: Exact F'ar Field Amplitude

2

p Re. G Im. G lG] ]GL
ol -1.966834 0.199328 1.976909 3.908169
.2 -1.869310 0. 394491 1.910483 3. 649045
.3 -1.713041 0.580755 1. 808808 3270780
.4 -1.506497 0. 752535 1.683996 2.830843
.0 -1.260030 0.903553 1.550511 2. 404084
.6 -0. 984965 1. 027322 1. 423217 2.025547
T -0. 692902 1,117785 1.315126 L. 728556
.8 -0. 395224 1.169920 1.234874 1.524914
.9 -0.102749 1.180216 1.184680 L. 405467
1.0 0.174531 1. 146995 1,160198 L. 346059
1.1 0. 427669 1.070575 1. 152837 1. 529033
1.2 0. 648955 0.953295 1.153219 1.329914
1.3 0. 832062 0.799426 1.153867 L3548
1.4 0.972175 0.614970 1,150353 15253512
1.5 1. 066070 0.407377 1.141255 1.302463
1.6 1.112159 0.185185 1. 127471 1.271191
L7 1.110493 -0. 042385 L. 111302 1,2344942
1.8 1, 062736 -0.265868 1. 095487 [.200092
1.9 0.972076 -0. 475985 1. 082356 1. 171495
2.0 0.843120 -0. 664069 1.073238 1. 151340
2.1 0.681726 -0. 822446 1,068254 L. 141167
2.2 0. 494805 -0. 944759 1. 066491 1. 137403
2.3 0.290092 -1. 026235 1. 066448 L. 137311
2.4 0. 075870 -1, 063867 1. 066569 1. 137569
2.5 -0..139309 -1. 056515 1. 065659 1. 135629
2.6 -0. 346939 -1. 004929 1.063132 1.130250
2.7 -0. 538860 -0.911690 1. 059032 L, 121549
2.8 -0. 707566 -0.781067 1. 053905 L.1107i6
2.9 -0. 846486 -0.618819 1. 048559 1.099476
3.0 -0. 950237 -0. 431935 1. 043800 1.089518
3.1 -1. 014836 -0.228327 1. 040204 1.082024
3.2 -1. 037854 -0. 016499 1, 037985 LoOT74L5S
3.3 -1.018524 0. 194805 1. 036986 L. 070340
3.4 -0.957768 0. 396959 1. 036772 L. 074896
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Table 1. (continued)
2
p Re. G Im. G |G| |G|
3.5 -0.858167 0.581791 1, 036789 1.,074931
3.6 -0. 723862 0.741907 1. 036533 1.07440!1
3.7 -0. 560383 0.870974 1. 035676 1,072625
3.8 -0. 374436 0.963959 1.034127 1,069419
3.9 -0,173621 1.017313 1.032022 1.065069
4.0 0. 033868 1.029100 1. 029657 1.060194
4,1 0.239584 0. 999057 1.027382 1.055514
4,2 0.435165 0. 928593 1, 025501 1.051652
4,3 0. 612682 0.820722 1.024190 1. 048965
4.4 0. 764958 0.679938 1.023462 1.047474
4.5 0.885857 0.512023 1,023186 1.046910
4.6 0.970538 0. 323820 1.023134 1.046803
4.7 1.015640 0. 122959 1. 023056 1. 046644
4.8 1.019423 -0. 0824538 1. 022752 1. 046022
4.9 0.981827 -0.284148 1.,022118 1.044725
5.0 0.904470 -0. 474027 1.021160 1.042768
9.1 0. 790578 -0. 644482 1.019985 1, 040369
5.2 0.644844 -0. 788695 1. 018756 1.037864
5.3 0.473238 -0.900913 1.017644 1. 035599
5.4 0.282756 -0. 976667 1. 016775 1, 033831
5.5 0.081136 -1.012963 1.016207 1.032677
2.6 -0.123458 -1.008386 1,015916 1.032085
5.7 -0. 322764 -0.963169 1,015810 1,031870
5.8 -0.508758 -0.879171 1.015764 1.031777
5.9 -0.673971 -0. 759812 1.015653 1.031551
6.0 -0.811790 -0.609928 1.015389 1,031015
6.1 -0.916718 -0. 435580 1.014939 1.030101
6.2 -0.984592 -0.243806 1.014328 1.028861
6.3 -1.012745 -0, 042342 1,013630 1. 027446
6.4 -1.000109 0.160694 1.012936 1.026039
6.5 -0, 947252 0.357126 1,012336 1.024824
6.6 -0. 856354 0. 539052 1.011889 1.023919
6.7 -0. 731114 0.699160 1.011609 1.023353
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Table 1. (continued)
2

p Re. G Im. G lG] |Gl
6.8 ~0.576602 0.831025 1. 011470 1. 023072
6.9 -0. 399053 0. 929361 1.011412 1. 022954
7.0 ~0.205612 0. 990239 1.011361 1. 02285!
7.1 -0. 004057 1.011243 1. 011251 1. 022629
7.2 0.197523 0.991558 1. 011041 1. 022204
7.3 0. 391041 0. 932012 1.010722 1.021559
7.4 0.568746 0. 835031 1. 010321 1. 020749
7.5 0.723521 0. 704545 1.009884 L. 019866
7.6 0.849176 0. 545826 1. 009468 1. 019026
7.7 0. 940692 0.365273 1.009121 1. 018325
7.8 0.994418 0.170154 1.008870 1.017819
7.9 1. 008220 -0, 031682 1.008717 1017510
8.0 0. 981566 -0,232130 1. 008640 1. 017355
8.1 0. 915542 -0,423146 1.008598 1. 017270
8.2 0.812814 -0.597076 1. 008547 1.OLT167
8.3 0. 677517 -0. 746954 1. 008449 i, 016969
8. 4 0.515089 -0, 866790 1.008286 1. 016641
8.5 0. 332054 -0. 951800 1. 008059 1. 016183
8.6 0.135758 -0, 998601 1.007787 1. 015635
8.7 -0. 065922 -1. 005342 1. 007501 1.015058
8.8 -0, 264899 -0.971781 1.007238 1. 014528
8.9 -0, 453195 -0. 899285 1.007024 1. 014097
9.0 -0, 623265 -0, 790781 1.006873 1. 013793
9.1 -0. 768299 -0. 650633 1.006780 1. 013606
9.2 -0. 882491 -0, 484473 1. 006729 1. 013503
9.3 -0.9612177 -0. 298965 1. 006694 1. 013433
9.4 ~1.001511 -0, 101546 1. 006645 1. 013334
9.5 -1. 001595 " 0.099876 1. 006562 1. 013167
9.6 -0, 961542 0. 297236 1.006436 1.012913
9.7 -0. 882974 0. 482636 1.006270 1.012579
9.8 -0. 769051 0. 648658 1. 006080 1.012197
9.9 -0. 624352 0. 788665 1. 005886 1. 011807

10,0 -0, 454685 0. 897059 1.005711 1. 011455
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Table 2;: Theoretical Creeping Wa.e Component

p iG!C arg G (degrees)
0.5 1. 1767510 136,170
0.6 9. 02871107 H61., 840
0.7 7. 19842+ 1072 L8,
0.8 5.775;7-10'2 D10, T
0.9 4.75916° 107 234,285
L0 3.98081+ 107 257,433
1.1 3.37156- 107 280,231
1.3 2.49285-10'2 | 324,985
1.5 1.90295-10‘2 368, 360
2.0 1.06908°10-2' 475,861
2.5 6.61027-10™° 580,256
3.0 4.36000- 107" 682, 849
3.5 3.01265- 107" 784,205
4.0 2. 15688107 884, 650
4.5 1.58813-10™° 984,252
5.0 1.19521-10 1083.221
5.5 9. 18489 107" 181,626
6.0 7.16587 107 1279, 530
6.5 5. 60845 107 1377, 134
7.0 " 4.53818- 107 1474, 334
7.5 3.67190- 10" 1571.223
3.0 2.99901- 107 1667, 821
8.5 2. 47008+ 10~} 1764. 188
9.0 2. 090+ 107 1860, 317
4.5 L 7iaTa 10T L1956, 250
10,0 L adtos 107 2051, 992
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Comparison of Optics Components

5 -term optics

3 -terin optics

7030-1-T
Table 3:
(G-G9)e*

Real Imag. Real
_1.52667  -0.54468  77.00000
[1.25710  -0.47601  36.19154
21534 -0.42156  18.80425
_1.:9882  -0.38045  10,42578
J1.16995  -0.34993  6.00351
1.15452 -0.32691  3.50000
_1.14054  -0.30863  2.00184
S.11497  -0.27887  0.45478
S1.09386  -0.25261  -0.23457
S1.06400  -0.20125  -0.81250
S 04T ~0.16973  -0.95200
S1.03568  -0.14572  -0.99383
-1, 284l ~0.12810  -1.00750
-1 02281 0.11400  -1.01172
S 01894 -0.10282  -1.01250
S1.01583  -0.09360  -L.01200
10349 -0.0858L  -1.01106
.0l160  -0.07927  -1.01003
.01008  -0.07358  -1.00903
-1.00885  -0.06868  -1.00812
1. 00781 -0.06437  -1.0073l
S1.00687  -0.06057  -1.00859
00623 -0.05718  -1.00596
-1, 00562 -0.05414  -1.00541
LUUUY -0.05141  -1.00493
L ~0.04893  -1.00450

28

Imag.

NN e ©

u—

. 00000
.95370
.93003
.81641
.15912
. 75000
. 48460
. 18434
. 03704
, 09375
.12000
.12037
.11370
. 10547
. 09739

. 09000

. 08340
. 07755
. 07237
.06778
. 06370
. 06006
. 05679
. 05384
L 05117
. 04875

Real Imag.
-3.00000 -1.00000
-2.38888 -0.83333
-2.02041 -0. 71429
-1,178125 -0.62500
-1.61728 -0. 55556
-1.50000 -0. 50000
-1.41322 -0, 45455
-1.29586 -0. 38462
-1,22222 -0. 33333
-1,12500 -0.25000
-1.08000 -0.20000
-1.05555 -0.16667
-1. 04082 -0.14286
-1.03125 -0. 12500
-1. 02469 -0.11111
-1.02000 -0.10000
-1.01653 -0. 09091
-1.01389 -0. 08333
-1.01183 -0. 07692
-1.01020 -0.07143
-1. 00889 -0. 06667
-1.00781 -0. 06250
-1.00692 -0. 05882
-1.00617 -0. 05556
-1. 00554 -0. 05263
-1, 00500 -0. 05000
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and from the absence of any oscillations in Fig. 2, even for p as small as unity (or
less), it seems reasonable to conclude that these curves provide a valid estimate of
the "actual" optics contribution for most (if not all) of the range considered. From

equation (42), however,

. . . 5 _ ]
Goe21p=_{+—21— +-——1—2-_._5.].'§_-—4+0(p 5% (45)
P 2p 4p p

and the real and imaginary parts of this expression are also included in Table 3
under the heading "5-term optics'. Since (45) is derived from the exact asymptotic
expansion of the optics component, it is not surprising that computations based on it
are accurate when p is large. For p=10 the agreement Between corresponding
columns in Table 3 are extremely good, and the real and imaginary parts of (45) are
in error by only 0.01 and 0.02 percent respec'tively. As p decreases, the errors
increase, with those for the imaginary part being greater. For p=5 the errors are
0.38 and 3.9 percent, rising to 9.1 and 29.3 percent when p=2.5. The expression
for the optics component given in (45) is now underestimating the real and imagin-
ary parts of the "actual" component by significant amounts, and if p is decreased
still further, the 5-term optics expression ceases to have any relevance. Indeed,
the imaginary part of (45) changes sign when p = 1.581; the real part suffers a sim-
ilar change when p = 1.414, and thereafter both increase without limit.

The main reason for the "failure" of (45) when p is less than (about) 3 is the
relatively large magnitude of the coefficients of the higher powers of p. These
terms provide little contribution for p ~ 10, but are disastrous for p ~ 1. Can we
therefore do better by ignoring them completely? To answer this question, the real
and imaginary parts of G0 e2ip were computed using only the first three terms on
the right hand side of (45), and the results are shown in Table 3 under the heading
"3-term optics". For the largest values of p, the agreement with the "actual" com-

ponent is somewhat poorer (errors of 0.04 and 2.2 percent in the real and imaginary
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parts respectively when p = 10), but as p decreases below (about) 6 the 3-term ex-
pression becomes progressively more superior. Even when p =1 the real and
imaginary parts are in error by only 29.9 and 52,9 percent, and for many purposes
the errors when p = 0.7 (66.2 and 69.4 percent) are not intolerable.

For the entire range of p, the 3-term expression overestimates the real
part of the optics component, and this suggests that the agreement could be im-
proved still further by using a 2-term expression instead. The values in the next
to the last column in Table 3 would then be replaced by -1 throughout. The error
inthe real part for p = 10 is thereby increased to 0.05 percent (a negligible change),
and from 0.41 to 1.6 percent at p = 5. For.p <2, however, the error is decreased
and is now only 13.4 percent at p = 1, rising to 17.7 percent at. p =0.7. Overall,
it would therefore seem that the 2-term expressior} for the optics component is

superior,

2.6 Remarks

Based on the fact that the real and imaginary parts of the quantity
(G-G9) eZip do not show any detectable oscillation as functions of p, it is concluded
that the expression for G° given in equation (41) is an accurate approximation to
the creeping wave component of the normalized far field amplitude for values of p
down to unity and, perhaps, smaller. The omission of any of the terms in (41) de-
creases the accuracy, and the retention of the term in 7 -1 in the exponent is par-
ticularly important when p is not large.

The 5-term expression for Go shown in equation (42) is extremely good for
large p, but its accuracy falls off rapidly with decreasing p. For p less than
(about) 2 it is entirely inappropriate. The 3-term expression obtained by omitting
the terms in p_3 and p -4 from (42) is not much inferior for large p, and is mark-

edly superior for p <2. Best of all, however, is the 2-term expression

Y . )
G = -e lp&*—2—1‘)+O(p } , (46)
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and until such time as a closed-form determination of G° is achieved, this probably
provides the greatest overall accuracy obtainable from a single representation. As
an illustration of the accuracy with which the normalized cross section can be esti-

" mated, equations (41) and (46) give [G‘2 =1.22314 for p=1 and 1.62503 for
p=0.7, whereas from Table 1, the exact values are 1,34606 and 1.72956. The

errors are 6.0 and 9.1 percent respectively.
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I
AN ACOUSTICALLY HARD SPHERE

The second scalar problem to be examined is the scattering of a plane acous
tic wave by a hard (or rigid) sphere at whose surface a Neumann boundary condition
is imposed. The general analysis, leading to a Mie series representation of the far
field amplitude and thence to a decomposition into creeping wave and optics compo-
nents, is similar in all respects to that for the soft sphere, and the details will be

omitted.

3.1 The Analysis ‘
If the plane wave (1) is incident on a hard sphere of radius a at whose sur-

face the boundary condition is

mlm
i
1l
o

the total field in the back scattering direction 6 = 0 is

® T
-in 7 it(p)
3 E 1 2 1. n (1)
U = o (n+ 2)e {En(kR)— h(l)v hn (kR) (47)
n

(p)

where the prime denotes differentiation with respect to p. The far field amplitude

is therefore

[00)
it(p)
S = iZ(—l)n(2n+1) o (48)
n=0 h (o)

(cf equation 5).

For sufficiently small p, S has the power series expansion

__53f 292 13,04
B=-%gP {1'450p —30p+0(p§ (49)
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(Senior, 1960), convergent for p <1, As regards the powers of p that occur, this
is similar to the low frequency expansion for the scattering of an electromagnetic
wave by a perfectly conducting sphere, and is quite distinct from the development
for a soft sphere (see equation 6).

Because of its limited convergence, the series in (49) is inappropriate to
the larger p, but there is an alternative representation of S which is well suited to
values of p >>1. This can be obtained by application of a Watson transformation to
(47), and leads naturally to a separation into creeping wave and optics components.
The procedure differs from that given in Section 2.2 only in having the spherical
Hankel function ratio replaced by a ratio of the first derivatives, and the resulting

expression for S is

s =s%¢°
where
9 -1/2 (2
- {p / H( )(p)}
SC = ix 9p v vsecvuT (50)
Zn 9 9 ‘1/23(1)(} ’
v dp P v P z/=vn
] -1
S L SR
S =1 P tanvm e vdy . (51)

A 9 f-1/2.(1)
o-i€ 9p ﬁ) Hv (p»

The symbol Vn now denotes the zeros of B/E)p {p-l/sz/l)(p)} , and to maintain the
analogy with the soft body formulae (12) and (13), the cylindrical equivalents of the

spherical Hankel functions have been employed.

3.2 Evaluation of the Creeping Wave Contribution

To find an asymptotic representation of the zeros Vn, we again start with an

expansion for the cylindrical functions in terms of Airy integrals. Since

a1

- T T
9 67
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and

where x is as defined in equation (14), it tollows from (16) that

(,% Jv(p) = - L2 [Ai'(x) - 5 {(XJ— 6)Ai(x)-4xAi'(x)} +
P T 607

L 5 {(%(Lh 42x)Ai(x) + (—7— x5- 19x2)Ai'(x{} + 0(7—6;} . (32)
- 4 20
25201
But
2 [ -1/2 _ -2fa o0 L
0p {) Ju(p§ - f {ap Jv(p) 20 Ju(p}
and hence

-1/2
9 {p-l/zJ (p)p = - [ Ai'(x) - L {SXB—ZI)Ai(x)—-’lei'(xg
op v 2 6072

T

+ L 2 {i 4 84x)A1(x)+(—x5— %9X2)A1 }+ O(t 6_]
25207 .

(53)
with a similar formula for 8/8p {p—l/zYU(p)} in which Ai(x) and Ai'(x) are re-
placed by -Bi(x) and -Bi'(x) respectively.

Equation (53) is equivalent to
-1/2
9 | -1/2 o X 1 37T 3
—_— = - + - + —
9 {% J;fpz} 2 {E 27 4 <6300 X 800 :}
T 157 T X
1 3 1 2 6 61 3
, A'l - - 21 + { - -
! {: 5 (x-21) 4:3(1575X 1200 % :}
607 x T X
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and if we now define

1 2 6 61 3 49 -6
w2y=x- L (x3—21)+ ( —)+O(T ),

60,2 4 3\1575 ° " 1200% " 800
T X T X (54)
we have
9 —1/2H(1)() __9'1/2 e X 1 (31 3 49\ . -6
o |P y PT 2 ~2 7 "4 \6300 800 T
T 157 T X

. {Ai'(wzy)-iBi'(wzy} ,
which reduces to '

-1/2
3 [ -1/2 (1) 2 p x- 1 (37 3 49)
< = + -
5 {p ", ("} W {1 2~ 4 \6300° " 800

T 1571 T X
-6 .
+ O(r } Ai'(y) (55)

by using the rotational relations for the Airy integral. The zeros v, can there-

fore be expressed in terms of the zeros y =bn of the Airy integral derivative
Ai'(y), and if equation (54) is inverted to give x as a function of y, the formula for
v becomes
n
6
W

b
2 3 1 (’n 9 .3 49 -5
= p*uw'r -21)- - =) 0 )
Vo T PTRTh T 60rb_ (b, -21) 73b3<1400 200 n 800> Ot )
n

(56)
The first 50 of the bn have been tabulated by Miller (1946) and when ar-

ranged in ascending order of magnitude they are

b1 = -1.01879 297
b2 = -3.24819 758
b, = -4.82009 921
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All are real and negative, but for convenience we shall again follow Logan (1959) by

| writing
bn =P n
The Bn are therefore positive and the corresponding expression for v is
. T -id
'3 e 5 3 1 6. _..3. 343 -5
= p+ - +21)+ —m— (B + +—)+
v, = pte B - gog (B +21) T3 (B +638 + =)+ 0 ) .
n 14007 Bn

. (57)
e '3 have been computed for n=1 through
5 by Franz (1954), and are listed in his Tables 1 and 5.

s _
The coefficients of pl/3 '3 and p 1/3

The next task is to find an expression for

5aE {p-1/2 Hf)(p;}

9 98 r-1/2.(1)
ov dp {p Hv (p)} v=vn
3

Since -a—p {p-l/ 2H§}1)(p;} = 0, this factor can be written as
n

8 [-1/2
2[ 5 0,0 _ ir|_Biy)
8 8 [-1/2.41) T 209y .,
l_av op {p Hv (p;_} V=1/n ox Ai"ly)

where we have used the fact that

8 _ 13y 38
v T 0Xx 9y
But
. _ 1
Bi'(y) = TAly)

* Note that the headings of the two columns in Franz's Table 5 are interchanged.
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Ai"(y) = yAily)

and, from equation (54),

2 Oy 1 1 (2 6 147> -6
=1- +21)+ + +
Yook 2 2 (2" 20+ 77 <525X s00) T O )
o007 x T X
W 3 W 41 6 7T 3 49 -6
= +21) + + S22 4
L- =5 @y 20+ 4<12600y 3007 800> Olr )
607y Ty
giving

2
- }a =W 1+ > 2(2y3+21) ———-—3‘”44<y6 3i3>+0(7 }
yIex 607"y 14007y

We now have

m

- 2 ) . i—
R : { 3 o
= - 1 2

3 0 [-1/2.(1) 21 © 22
ov ap P Hl/ (p} u:vn 607 B

4T
re 3 3 BG yg
44 \'n
14007 Bn

+ O(r }
2
{Al( B )}
from which it follows that

8 [.-1/2.(2) o iZ
Y o0 {p H (p} 4 -ig {i+ N (23 o
n

3 9 f-1/2 (1) } - 2.2
ov dp {p Hv (o) v=vn 607 Bn
.
—1—

3
e (4 6 14 -6 1
X (175 P 800) r ol } s faip v (58)
7 n ! n

n
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Each of the zeros v corresponds to a creeping wave mode, and if we also
n
expand secvT in a series of exponentials, convergent for Im.v >0, substitution

from equations (23), (57) and (58) into (50) leads to a representation of the creeping

C .
wave component S in the form

T il —ilr
i— 3 3
c 4322 3 (46147)
§ =2 e %+ 72 (B, 79~ 44 175 n T 300
n 60T 3 T B
n n
(D —
-6 3
+ O(r )} 3 (1) exp |i(2¢ +1)7 {p+e TBn
=
B {AI( Bn} 0
. T
—1'?: .
603 8 +21)+-——-—%—3(B +638 +3%:3)+0(-'0§ : (59)
14007 Bn

The extent to which this can be simplified without substantial loss of accuracy is ex-

plored in Section 3. 4.

3.3 Evaluation of the Optics Contribution

The optics contribution to the far field amplitude is given in equation (51),

and when tanv7 is replaced by its exponential equivalent, s° becomes

®- i€ i{—l/ZH(Z)()} -

0
S = 1/2 ( } . Sin v (60)
- - i€ 9p {p
From the Debye formula (26) for the Hankel function,
. T ® Ly
-1/2_(1) 1 [z llsinf-Boosfl-iy S m-phy o
o H "(p) = = — e A
v p ¥ 7sinf 1 p sinj3 m
m=0 (—5
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. 2 . s
where v = pcosf and the Am are real functions of cot 3 only. Differentiating with

respect to p and observing that

B _1
= = cot ,
ap P g

we have
i ip(sinB-Bcos ) +i~
_88_ {p-l/ZH(l)(p} _ 1ly[2sinB :
g v P T
1
(m- 5 m
2 -2i
m0  (-3): <PsinB> B, - (61
5"

The first few coefficients Bm are given in terms of the Am by the equations

B =A
0 o
1
B, =A -1-=<cotf
1 2
2 1 1 8A1
= - - - - 4+ - —_—
B2 A2 3A1 2Alcot B 3 cot 3 %
0A
3 1 _2
B3 = A3— 5A2 2Azcot B+ cotB Y
Hence, by analogy with (28)
9 -1/2 (2)
{ } _ -21p(smB BcosB){ B 2 BZ
1/2 (1) psmB 1 .
> o} (psinf)

2 (% 3B B_+15B)+ —2— B (B> -6B. B.+30B )+O(p-5}
. 12 . 1 12 3
(p sinB) (p sinp)

(62)
so that a knowledge of the Am (and therefore Bm) through m =3 again serves to

determine the Hankel function ratio correct to p-
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In order to apply the method of steepest descents, it is necessary to expand
the right hand side of (62) in a neighborhood of v =0. Using the expressions for the

A given in Section 2.4,
m

1 (1+ 1 cotZB)

B =-3l73
B, = - = 23+ 238 cot B+O(cot B)
2 7 3
2 +3
B.= - L 47+ 19811 —— cot B+O(cot B)
3 210 5 45

2 .
and if we also expand sinf3 and cot 3 near v =0, the bracketed terms on the right

hand side of (62) become

. 2 4 6 2 4
Lo 1+é(z)+z<z)+£(z) 49 1+§<y)+zz<y>
4p 6 \p 8\p 16 \p 322 3\p 9 \p

i 30733 )2 35-129

+ — + —
73 {247 } 11 4
2p p

)
where we have retained only those terms required to give S correct to the first
five orders in p. The expansion for the exponential factor in (62) was derived in

Section 2.4, and when this is multiplied by the above, we obtain, after some simpli-

fication,
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& g_e—2ip l:{l' % i 492 . 2;17; N 35111249}1
P39 297 27

35i {1 30733 }1
U 5
24p3 2 527 2] 1
i {1 039 165071}I
- 3 o1
12p 3 p 2 '3p3 2

i {1 2381 , __16009 }1
40pb 36p 25 32 50 2 3

1 { 41i 1643
RS S SR S O Lk S
6 28p 3292 4

where

If we now insert the asymptotic development for I

288p
1 91i i 77931
- {l- o p Lt (1t )
8 { 20 [ 5 7 {
180p o) 5, .34p9 7000 [ 6
i 1 -5
+ L+ - I+ 0 )} (63)
11 5212
B2 510 T Gl g5 1278

[n is as defined in equation (31).

shown in equation (35),

the expression for the optics component S finally reduces to

sozge‘z“?{}-;—i- S+ 22y %+O(p_5§ . (64)
P 4 )

'Ul

Once again the simplicity of the result we have obtained is gratifying, but it has not
proved possible to discover any systematic relationship between the coefficients of
successive powers of p. The first three terms in (64) were previously derived by

Keller et al (1956) using the Kline- Luneburg expansion technique.
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3.4 Numerical Considerations

As in the case of the soft sphere, the expression for s¢ and s” are only
asymptotic for large p and it is therefore presumptuous of us to seek to eniploy
them when p is as small as 3 or even unity. Nevertheless, they form the basis for
most predictions of the scattering behavior of bodies whose radii of curvature are
comparable to or greater than the wavelength, and the creeping wave component for
the hard body in particular is one of the cornerstones of the geometrical theory of
diffraction. It is therefore important to have some feel for the accuracy of (59) and
(64) not only when p is large compared with unity, but when it is near to unity as
well, |

The phase of the optics component s° identifies it as a return from the front
face of the sphere, and the whole expression can be regarded as a representation
of the specular contribution. The leading term is that produced by geometrical
optics, but somewhat surprisingly the obvious analogue to the physical optics meth-
od in electromagnetic scattering fails to predict the correct second term. The
coefficients of successive powers of p in the expansion for s° increase even more

rapidly than those for the soft sphere, and if we write equation (64) in the form

Y -ia \I
- gamfy ]
n=1 P

we have

a_ = 1,500,

) a2 = 1,581, a, = 1.842, a, = 2,166,

3 4

In effect, each an is a "convergence coefficient' (Senior, 1961) indicating the value
of p at which the corresponding term has a magnitude of unity. For the soft body,

on the other hand, the representation equivalent to (65) is

0 -2i -ia_\"
Szg-e p-1+g(—“-> , (66)
n=1 P
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and

a, = 0. 500, =0,707, = 1.077, = 1,49,

% 43 %
which illustrates quite dramatically the increased importance of the higher order
terms in equation (65) compared with those in (36). In fact, for the hard sphere the
second real term produces a correction to the first (unity) term exceeding 10 per-
cent if p<5, and the third real term corrects the second by more than 10 percent
if p <9.38. For the two imaginary terms shown, the appropriate value of p is
6.46, and such bahavior is certainly indicative of the asymptotic character of the
expansion, '

The other component s¢ is produced by the creeping waves and the phenom-
enological description of these is the same as for the soft 'sphere. Each wave, how-
ever, produces a much larger contribution than does the corresponding wave in (24).
Taking, for example, the dominant wave (n ='1), its contribution after having trav-
eled the minimum distance (£ =0) around the sphere is, when p =10, 2, 97)(10_1
for the hard sphere, but only 7.21x 10_4 for the soft sphere. The ratio is over
400, and every higher order hard body contribution exceeds the soft body one by a
similar amount.

As in the case of equation (24), it is seldom (if ever) necessary to retain the
full complexity of (59). For most numerical work a far simpler form is sufficient.
The attenuation of all the wéves, including the dominant one, is large enough for us
to ignore the contributions from waves which have completed one or more circuits
of the sphere, and we can therefore replace the second summation (over £) by its
first term (£ =0). We can also omit all waves except the dominant one, and to judge
from the leading term in the decay exponent, even the sub-dominant wave (n=2)
provides a contribution whose magnitude does not reach 1 percent of that produced

by the dominant wave until p has decreased to below 0.88. The effect of waves for

n >2 is, of course, still less,
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Both of the infinite sums have now been removed, leaving an expression for
s¢ based on a single wave alone, but this can be further simplified without signifi-
cant loss of accuracy. In the amplitude factor associated with the dominant creep-
ing wave the term 0(7-4) produces amplitude and phase corrections amounting to
only 0,13 percent and 0. 15° for p =10, rising to 0.85 percent and 1.2o for p=2.
We can therefore neglect the term in comparison with the preceding two. The term
0(7—2) is, however, of sufficient importance to warrant retention, and this is true
also of the term 0(7—3) in the exponent. We have already noted that the successive
terms in the expansion of s° for the hard sphere are larger than the corresponding
ones in the soft body expansion, and whereas the term 0(7_3) in the exponent of
equation (24) contributes only an amount 0, 07° to the phase for p =10, the analo-
gous term in (59) provides a phase correction 3.6°: for p =10, increasing to 18.70
for p =2, This is too large for us to ignore, but with the other simplifications to

equation (59) described above, the expression for s° becomes

LT ilr
c 43 el 3 9 -4 1
$°= c2r'e TH1+ S (o) r O )P ————
307 B Bl{Al(’Bl)}
-i i
3 i 6
. e{}rp- e 6'r7rBI— e 6 GOWB (Bl+21)+___1_2'_3_3 @1
Py 14007° ]
= 633f+ %§> + 0(7'5} (67)
where
B, = 1.01879 297....
Ai(-B,) = 0.53565 666. ...
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It is presumed that (67) is an accurate approximation to (59) (if not to the exact ex-
pression for s® shown in equation 50) for p greater than (about) unity, and is the
formula we shall henceforth employ.

The back scattering cross section ¢ is given in terms of the far field ampli-
tude S by equation (38). For numerical purposes, however, it is convenient to

normalize the cross section with respect to its high frequency limit, and since

, we shall again define a function G by equation (39).
The creeping wave and optics components of G are, from equations (67) and

(66) respectively,

i— 3 '
C_ . e 3.9 -4 | | 1
G = -27e {1+ 22(Bl+2)+0(7 E} Y
307 By . Bl{Al(—Bl)}

. T T
6 "6
. imo - - +
exp {rp e 77rB1 e 50r B (B 21)
# T (P reapds 224 o«{% (68)
14007 B
and
-2i 3i 5 251 2
G0=e21p{--2%-—'2'+-5—; —i +0lp } (69)
20 4o p
whilst the Mie series representation of G is, from equation (48) ,
@
9 Z Jn(p)
n=0 (p)
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In the course of a recent study (Senior, 1965b) of the effect of surface loading

on the acoustic scattering properties of a rigid sphere, the series

[0 0)

Z n J'I'l(p)
(-1)"(2n+1) ('

n=0 hn (p)

was programmed for evaluation on the IBM 7090 computer of The University of
Michigan. Reference to equation (48) shows that this is, in fact, -iS, and using a
maximum of 21 terms in the series, the real and imaginary parts and modulus were
determined for p = 0.3(0.1)10.0. For consistency with the soft sphere data given
in Table 1, the above values of -iS were converted to values of G by multiplying by
2i/p, and in Table 4 the real and imaginary parts of G are listed, along with the
values of |G| and |G|2. The results for p=0.1 and 0.2 were obtained by hand
computation.

The normalized cross section |G|2 is plotted as a function of p in Fig. 3.

For small p,

(see equations 39 and 49), leading to an initially rapid increase in cross section,
giving way to an oscillation of decreasing magnitude. The mean level increases
uniformly with p and is less than unity throughout. The levels of the maxima in-
crease through the fourth peak and thereafter decrease, whereas the levels of all
minima increase with p. As a consequence the depth of oscillation decreases, but
even when p is as large as 10 the depth is still around 110 percent, indicating that
the two contributors to the cross section are not too different in magnitude. In this
respect, the behavior is more akin to that for the scattering of an electromagnetic
wave by a perfectly conducting sphere than for the scattering of an acoustic wave by

a soft sphere (see Fig. 1).
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One of the most striking features of Fig. 3 is the regularity of the oscilla-
tions and the comparative uniformity of the spacing between successive maxima and
minima. The locations of the turning points in Fig. 3 can be obtained by graphical
interpolation of the data in Table 4, and these are listed in Table 5. Apart from the
first two or three, the separations between adjacent maxima and minima are almost
constant, reinforcing our belief that there are only two significant contributors to
the cross section. The maximum and minimum values of |G|2 are also given, and
by taking the adjacent turning points in pairs, the values G ! and G2 of the two
components can be determined on the assumption that they are constant over the

appropriate interval in p. As shown in Table 4, G, increases fairly uniformly

1
from 0.81 when p ~ 1.8 to 0.99 when p = 9.6, and from equation (69) it is obvi-

ous that G1 must correspond to the optics component GO. G2, on the other hand,

decreases from 0,18 to 0.065 over the same range, and though it is not quite so
uniform in behavior, it is (presumably) the creeping wave component G°. Fig. 4

| these values of G ) and G2 are denoted by the circled points placed at the mid-

points of the p-intervals for which they are appropriate,

Using equation (68) the amplitude and phase of the theoretical creeping wave
component G° have been computed for selected values of p in the range
| 0.5<p <£10.0. The results are given in Table 6 and the amplitude is shown as a

| solid line in Fig. 4. The agreement with the points representing G, is remarkably

2

good even down to p = 1.47 (the smallest p for which G, can be found). This sug-

2
| gests that at least the amplitude of the "actual" creeping wave component is closely

| approximated by the expression in (68) for all p >1.47, but it does not, of course,
give any check for smaller p, nor does it confirm the phase. As p decreases still
further, |Gcl increases to a local maximum of 0,207 at p=0.7 and thereafter de-

creases.

For the optics component it is convenient to remove the factor e_21p as we
2ip

did with the soft sphere, and to treat G e From equation (69)
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Table 4: Exact Far Field Amplitude

Re. G Im. G lc| |2

63821 - 1072 5.30179 -10”¢  1.65821- 1072  2.74966 .10~%

5.32062 + 102 1.57988 - 10-9 6.32062. 1072 3.99502 .107°

43271 - 1071 1.03841 - 1074 1.43271- 101 2.05267 .1072

.45694 . 10"1 3.61912 . 1074 2.45695. 1071 6.03660 . 102

66262 1071 8.89196 -10°%  3.66264- 1071  1.34149 -1071

97223 - 1071 1,79840 - 1073 4.97227- 101 2.47234 107!

5.29623 - 1071 3.36497 - 1075 6.29631 - 10~ 3.96436 - 1071

.53680 - 10-1 6.32778 - 1073 7.53708 - 10~ 5.68075 - 1071

. .59464 - 1071 1.22271 - 1072 8.59551- 10"} 7.38828.10!

1, .37826 - 10-1 2.35658 + 10™2 9.38122- 1071 8.80073 - 10-1

. 9.81453 - 10-1 4.35998 - 1072 9.82420- 10-1 9.65149 - 1071

1. .85707 - 1071 7.57330 - 102 9.88612- 107} 9.77353 - 1071

. .49025 - 10-1 1.22714 - 1071 9.56926+ 107} 9.15708 - 107

1. .72830 - 1071 1.85927 - 101 8.92413- 1071 7.96401 - 1071

1. 61115 + 10-1 2.64971 - 1071 8.05920- 10-1 6.49507 - 10~1

1. 5.19930 * 10-1 3.57545 - 1071 7.15648 - 10" 1 5.12151 - 107}

L. 4,56840 . 1071 4,59527 . 1071 6.47972 . 107} 4,19867 - 10~

1.8 2.80372 - 1071 5.65149 - 107} 6.30874 - 101 3. 98003 - 107!

1.9 4.93879 - 1072 6.67266 - 107} 6.74627 - 107 4,55122 - 1071

2.0 7.76204 - 1072 7.57781 - 10"+ 7.61746 - 1071 5.80257 - 1071

2.1 2,43200 * 1071 8.28279 - 10-1 8.63245 - 1071 7.45192 - 1071

2.2 3.91435 - 1071 8.70827 - 1071 9.54755 - 10! 9.11556 . 1071
2.3 5.18176 - 101 8.78809 - 107} 1.02020 1.04081
2.4 6.21001 - 107L 3,47642 - 10” 1,05078 1.10413
2.5 6.99018 - 1071 - 7.75235.10"1 1.04385 1.08962
2.6 7.52564 . 10-1 6.62278 . 107} 1,00248 1.00496

2.7 7.82881 - 10~} 5,12248 - 1071 9.35578 - 10! 8.75306 . 1071

2.5 7.91786 - 107! 3.31280 - 107 8.58293 . 107! 7.36667 . 1071

2.° 7.81255-10"1  1,27832-10"1 7.91641 - 107! 6.26696 - 1071

3.0 7.53133 - 10-1 -8.78513 - 10~2 7.58240 - 1071 5.74928 - 10-1

3.1 7.08832 - 101 -3.04452 - 10-1 7.71445 - 10°1 5.95128 - 10-1

3.2 6.49219 - 107} -5.10416 - 10~} 8.25838 . 1071 6.82008 - 10~!

3.3 5.74713 - 1071 -6.94788 . 101 9.01679 . 1071 8.13025. 1071

5. 4 4.85442 - 1071 -8.47947 - 107! 9.77071 - 1071 9.54667 - 10~1
3.5 3.81554 - 10-! -9.62229 - 1071 1.03512 1.07147
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Table 4: (continued)

MICHIGAN

ka Re. Im. G G| [012

3.6 2.63517 -107} -1.03233 1.06544 1.13516

3.7 1.32413 .107! -1.05558 1.06385 1.13179

5.8 -9.79653 . 10-3 -1.03198 1.03202 1.06507

3.9 -1.60064. 107! -9.64103 - 1071 9.77297 . 107! 9.35110 1071
4.0 -3.14148 . 1071 -8.36785 - 107! 9.12565 . 1071 3.2775 - 107}
4.1 -4.66647 . 10" -7.16663 - 10-1 8.53200 - 10~ 7.31367- 1071
4,2 -6.,11190 . 1071 -5.51586 . 1071 8.23286 - 10~} 6.77799 . 1071
4.3 -7.40791 + 10-1 ~3.70044 - 1071 8.28070 - 10! 6.85700* 10~
4.4 -8.48295- 107! -1.80616 - 1071 8.67314- 107! 7.52233+ 1)1
4.5 -9.26929 - 10-1 8.52498 - 10-3 9.26969 + 1071 8.59271 + 10-1
4.6 -9.70796 - 10-1 1.90000- 10-1°  g.89217-10"L  9.78551- 10!
4.7 -9.75421 - 1071 3.57501 - 1071 1.03887 1.07926

4.8 -9.38162 - 1071 5.05971 + 10~1 1.06591 1.13616

4.9 -8.58563 - 1071 6.31637- 10-1 1.06588 1.13610

5.0 -7.38540 - 10-1 7.31960 - 10-1 1.03981 1.08121 .
5.1 -5.82396 - 10~1 8.05451 - 10-1 9.93949 - 10-! 9.87935- 10-1
5.2 -3,96638 - 107! 8.51500 - 10-1 9.39350 - 1071 8.82378- 1071
3.3 -1.89657 - 1071 8.70151 - 10-! 8.90577 - 10-1 7.93128 - 107!
5.4 2.87974 - 10~2 8.61919- 107} 8.62400 - 107! 7.43734- 1071
5.5 2.48172 - 101 8.27676 - 10”1 8.64084 - 1071 7.46641 - 107}
5.6 4,57761 - 1071 7.68575+ 1071 8.94568 - 10~1 8.00252 - 1071
5.7 6.47337 - 10-! 6.86025 - 10-1 9.43225 1071 8.89673 - 1071
5.8 8.07786 - 1071 5.81724 - 1071 9.95452 + 101 9.90924 - 10°1
5.9 9.31620 - 10-1 4,57786 - 1071 1.03802 1.07748

6.0 1.01339. 3.16830 - 1071 1.06176 1.12733

6.1 1.04995 1.62124 - 107! 1.06239 1.12867

6.2 1.04055 -2,31787 - 1073 1.04055 1.08275

6.3 9.86771 - 1071 -1.71698 - 10-1 1.00160 1.00320

6.4 8.92303 - 10-1 -3.40481 * 10-1 9.55053+ 107} 9.12126 - 1071
6.5 7.62625+ 101 -5,02517 * 10-1 9.13302 - 10~! 8.34120+ 107!
6.6 6.04612 + 1071 -6.51273 - 10-1 8.88658 + 1071 7.89712 - 107!
6.7 4.26057 + 10-1 -7,80107 * 1071 8.8886¢ - 1071 7.90087 + 1071
6.8 2.35206 * 1071 -8.82638 * 101 9.13441 107! 8.34375 1071
6.9 4.03090 - 10-2 -9.53151 - 107! 3.54003 - 10-1 9.10122 - 1071
7.0 -1.50790 - 1071 -9.86991 - 1071 G, 08443 . 1071 9.96888 + 101
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Table 4: (continued)

ka Re. G Im. G (e lo?

7.1 -3.30963 -10~1 -9.80958 - 1071 1.03528 1.07181

7.2 -4,94033 - 10~} -9.33614- 1071 1.05627 1.11571

7.3 -6.34910- 107} -8.45510+ 10-1 1.05735 1.11800

7.4 -7.49646 - 1071 -7.19268 - 101 1.03890 1.07931

7.5 -8.35427 1071 -5.59549 - 107} 1.00550 1.01103

7.6 -8.90508 * 1071 -3.72889 - 1071 9.65429+ 107! 9.32053 - 10~1
7.7 -9.14122- 1071 -1,67382. 10"1 9.29322.10-1 8.63640. 10~1
7.8 -9.06369. 1071 4.77256 - 10™2 9.07623 - 10~1 8.23780. 107!
7.9 -8.68104 - 1071 2.62532 . 10-1 9.06932 - 1071 8.22525. 10~
8.0 ~8.00863 - 1071 4.67028 - 1071 9.27090 - 1071 8.59496 - 1071
8.1 -7.06810- 10-1 6.51669 +10-1 9.61383 1071 9,24257 107!
8.2 -5,88712- 1071 8.07905 - 10} 9,99644 1071 9.99288 - 1071
8.3 -4.49923. 107! 9.28627- 101 1.03188 1.06478

8.4 -2.94410. 101 1.00855 1.05065 1.10386

8.5 -1,26725. 1071 1.04448 1.05214 1.10700

8.6 4,79953 . 10-2 1.03539 1.03650 1.07434

8.7 2.24103 - 1071 9.82446 - 1071 1.00768 1.01542

8.8 3,95539 - 107! 8.88852 + 1071 9.72889* 1071 9.46512 1071
8.9 5.55987 . 10-1 7.59604 - 10~1 9.41342 - 10-1 8.86124- 10-1
9.0 6.99098 . 1071 6.01147 - 107} 9.22016- 101 8.50113 - 10~1
9.1 8.18749 . 1071 4.20971 - 107} 9.20633 - 1071 8.47565 1071
9.2 9.09354 . 10-1 2.27204 - 10~} 9.37307 - 10-1 8.78544 - 1071
9.3 9.66174 . 10-1 2.81710 - 1072 9.66585 - 10~1 9.34286 - 10~1
9.4 9.85638 - 101 -1.67984 - 1071 9.99851 - 101 9.99702 - 10-1
9.5 9.65615-10"1 -3.53548 - 10”1 1.02834 1.05748

9.6 9.05638 - 10~1 -5.22025-10"1 1.04532 1.09269

9.7 8.07041-10-1  -6.67334 1071 1.04721 1.09665

9.8 6.73020 - 1071 -7.84949 - 1071 1.03397 1.06910

9.9 5.08545 - 10~1 -8.71465 - 107! 1.00899 1.01807

0.0 3.20206 - 10-1 -9.24698 - 1071 9.78570 - 1071 9.57599 - 1071
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Table 5: Deductions from Table 4

Max/min P Se;gét*patlon ‘ G 2‘ G1 G2

M 1.16 0.982

m 1.78 0.62 0. 394 0,810 0.182
M 2.44 0, 66 1,112 0. 841 0,213
m 3,02 0.58 0,572 0,905 0,149
M 3.64 0.62 F. 149 0,914 0,158
m 4,24 0.60 0,671 0,946 0.126
M 4,85 0,61 1,148 0.946 0.126
m 5.45 0.60 0,736 0,965 0,107
M 6.05 0.60 1,138 0,962 0.104
m 6. 65 0,60 0, 782 0.975 0,109
M 7.25 0. 60 1,127 0,973 0, 089
m 7,85 0. 60 0, 816 0,983 0.079
M 8. 45 0. 60 1.113 0.979 0.076
m 9.05 0. 60 0, 844 0,987 0,068
M 9,65 0,60 1,102 0,985 0,065
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Table 6; Theoretical Creeping Wave Component

C

G arg Gt (degrees)
0.5 2.03393 - 107" 407,169
0.6 2.06178 . 1071 439,122
0.7 2.07118 - 10:% 452, 634
0.8 2.06825 - 10 467,877
0.9 2.05685 « 10~1 484,226
1.0 2.03955 + 1071 501. 311
L1 2.01810 - 107} 518.906
1.3 1,96733 - 107} 555. 078
1.5 1.91086 - 1071 | 592. 036
2.0 1,76388 . 107} 685. 954
2.5 1,62332 . 107} 780. 604
3.0 1,49505 + 10° 875. 333
3.5 1.37974. 1071 969. 935
4,0 1.27650 - 107! 1064, 346
15 1.18404 - 107} 1158, 551
3.0 1,10106 . 107L 1252, 556
5.5 1,02634 - 1071 1346, 375
6.0 9.58887 - 1072 1440, 020
6.5 8,97752 - 1072 1533.507
7.0 8, 42178 - 1072 1626. 850
7.5 7.91500 . 1072 1720. 060
8.0 7.45155 . 1072 1813.148
8.5 7.02655 « 1072 1906. 124
9.0 6. 63578 + 1072 1998. 998
9.5 6. 27564 + 1072 2091, 776
10.0 5.94294 « 1072 2184. 466
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Groe21p -1 3i 5 251 22 +O(p—5) ) (71)
2p 2 3 4
2p 4p p

The real and imaginary parts and modulus of this expression have been computed
for the same selected values of p, and the results are listed in Table 7 under the
heading "5-term optics'. In Fig. 4 the modulus is plotted as a broken line, and
for the large p (p 25, say) the agreement with the open circles representing G

1

is very good. G, , however, decreases more or less uniformly with p and does so

at a greater ratelas p gets smaller. The modulus of the optics component does not
show this behavior. It decreases relatively little, reaches a shallow minimum of
0.9353 at p = 4.57, and then increases without limit, becoming more than twice
G ) for p< 2.

The main reason for this "failure' on the part of equation (71) is the large
magnitude of the coefficients of the higher powers of p. These contribute little
when p is large (of order 10, say), but dominate the expression when p is small.

Can we therefore do better by omitting them? Since G, is less than unity, it is ob-

1
viously necessary to retain the terms through p_2 on the right hand side of (71)

L but if the terms in p-3 and p-4 are
ignored, the values of the real and imaginary parts and modulus of c° ezlp are as

if we are to have any hope of matching G

shown in Table 7 under the heading ''3-term optics'". In Fig. 4 the modulus appearg
as a dotted line and, as expected, is almost indistinguishable from the 5-term re-
sult for the large p (o 27, séy). As p decreases, however, the 3-term answer
falls progressively below the 5-term one, and remains in good agreement with G )
down to p =2, Ultimately, this also fails. The modulus of the 3-term expression
has a minimum value 0.8351 at p=2.13, and increases rapidly for p <2, Its
values then bear no resemblance to those of G_.

1

Because of the assumptions inherent in the derivation of G1 and G2 and the

resulting uncertainties associated with their values, the above comparisons are
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5-term optics

3-term optics

—

P Real Imag. Modulus Real Imag, Modulus
0.5 343, 00000 47,00000 346, 20514 -9, 00000 -3, 00000 9, 48683
0.6 163, 80865 26, 43519 165, 92798 -5, 94444 -2, 50000 6., 44875
0,7 87, 52645 16,07872 88.99103 -4, 10204 -2, 14286 4, 62802
0,8 50, 80469 10, 33203 ‘51, 84465 -2, 90625 -1, 87500 3. 45860
0,9 31, 44505 6. 90672 32, 19463 -2,08642 -1, 66667 2,67038
1,0 20, 50000 4, 75000 20, 60498 -1, 50000 -1, 50000 2,12132
1.1 13,96018 3. 33208 14, 35233 -1,06612 -1, 36364 1,73093
1.3 7,22352 1.69094 7,41880 -0, 47929 -1, 15385 1, 24943
1.5 4, 23457 0.85185 4, 31940 -0, 11111 -1, 00000 1,00615
2.0 1, 75000 0.03125 1,75028 0, 37500 -0, 75000 0. 83853
2,9 1,16320 -0, 20000 1, 18027 0. 60000 -0, 60000 0, 84853
3.0 0. 99383 -0, 26852 1. 02946 0, 72222 -0, 50000 0, 87841
3.5 0. 94252 -0, 28280 0, 98404 0, 79592 -0, 42857 0, 90397
4,0 0. 92969 -0, 27734 0,97017 0, 84375 -0, 37500 0. 92333
4,5 0.93019 -0, 26474 0.96714 0, 87654 -0, 33333 0,93778
5,0 0.93520 -0, 25000 0. 96804 0. 90000 -0, 30000 0. 94868
5,5 0. 94140 -0, 23516 0,97032 0,91736 -0, 27273 0, 95704
6.0 0,94753 -0, 22106 0.97298 0. 93056 -0, 25000 0, 96355
6.5 0.95315 -0, 20801 0. 97559 0.94083 -0, 23077 0.96872
7,0 0.95814 -0, 19606 0, 97800 0, 94898 -0, 21429 0.97287
7.5 0.96251 -0, 18519 0.98016 0. 95556 -0, 20000 0.97626
8.0 0,96631 -0, 17529 - 0,98208 0, 96094 -0, 18750 0, 97906
8.5 0, 96961 -0, 16629 0, 98377 0, 96540 -0, 17647 0,98139
9.0 0,97249 -0, 15809 0. 98526 0.96914 -0, 16667 0. 98336
9,5 0. 97500 -0, 15061 0. 98656 0,97230 -0, 15789 0. 98504
0.0 0. 97720 -0, 14375 0.98772 0. 97500 -0, 15000 0, 98647
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little more than suggestive of the probable accuracy of the expressions for G° and
GO. Though it appears indisputable that the 3-term optics expression is, on the
whole, numerically superior to the 5-term one, Fig. 4 provides no confirmation of
| the phase. The real test comes when G° and G° are combined with due account of
phase or, alternatively, when either G° or c° is subtracted from G, where this is
computed from the exact formula (70). Of these procedures, the most critical is
that used for the soft sphere. If the real and imaginary parts of (G- Gc) e2ip are
examined, the presence (or absence) of any oscillations of the same period as those
in Fig, 3 is an immediate éheck on the numerical effectiveness of the formula for
Gc, and a comparison with the real and imaginary parts of c° e2ip also serves as
a check on the optics expression,

Using the values for G obtained from'the exact Mie series (70) and listed in
Table 4, and the data for G° computed from the expression (68) and given in Table

2ip have been determined for selected

6, the real and imaginary parts of (G- c%e
values of p. These are shown in Table 8, and are plotted as functions of p in Figs.
5and 6. We observe that for large p there is only the slightest trace of an oscil-
lation, amounting to less than 1/2 percent in the real part and perhaps 3 percent in
the imaginary. As p decreases, the oscillation begins to assert itself and is quite
obvious for p <5, but when expressed as a percentage of the mean level the ampli-
tude is hardly significant. .The largest values are about 3 and 6 percent for the real
and imaginary parts respectively, and occur near p =2, Overall, the real part de-
creases with p and does so at an increasing rate as p gets smaller, It is negative
for p<0.62. In contrast, the imaginary part increases at an increasing rate,
reaching a maximum of 0.69 when p = 0,85, but falling off rapidly for p less than
this.

Bearing in mind the relatively large magnitude of the creeping wave contri-
bution to the far field amplitude, the suppression of the oscillations achieved by the

asymptotic representation (68) of G° is almost as effective as that previously found
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Table 8: (G-G e

p Real Imag, Modulus
0.5 -0, 14784 -0, 50466 0.52587
0.6 -0, 02232 -0, 56666 0.56710
0,7 0.09518 -0, 64682 0. 65379
0.8 0.21058 -0, 68433 0. 71600
0.9 0,32270 -0, 68846 0, 76034
1.0 0,41852 -0, 66476 0, 78553
1.1 0. 49025 _ -0, 62419 0, 79370
1.3 0. 56079 -0, 54030 0,77873
1.5 0,57847 -0, 50228 0.76611
2.0 0, 69302 -0, 50800 0. 85927
2.5 0, 78345 <0, 41412 0, 88617
3.0 0.81161 -0, 39266 0.90160
3.5 0. 87037 -0, 34595 0. 93660
4,0 0,87718 ' -0, 31276 0.93127
4.5 0.91028 -0, 29372 0. 95649
5.0 0.91852 -0, 25981 0. 95456
5.5 0,93122 -0, 25054 0. 96434
6.0 0, 94422 -0, 22497 0. 97065
6.5 0, 94582 -0, 21458 0, 96985
7.0 0.95859 -0, 20013 0. 97925
7.5 0, 95836 -0,18638 0.97631
8.0 0, 96602 -0, 17956 0, 98257
8.5 0,96877 -0, 16563 0, 98282
9,0 0.97073 -0, 16092 0, 98398
9.5 0, 97596 -0, 15080 0.98754
10,0 0.97527 -0, 14445 0, 98590
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in the case of the soft sphere. All of the terms in (68) are essential to obtain this
result. The omission of even the one involving 7—3 in the exponent greatly in-
creases the amplitude of oscillation for p near 10, and leads to quite large and
rapid variations for p near unity. Indeed, for p <2 the behavior of the "actual"
optics component is changed out of all recognition if this (or any other) term in (68)
is neglected.

To facilitate the comparison with Goezip, curves representing the real and
imaginary parts of both the 3- and 5-term optics expressions (see Table 7) have
been included in Figs. 5 and 6. Taking first the real parts (Fig. 5) we note that the
retention of the last two terms in (71) has only a negligible. effect for p > 7, a fact
which is otherwise obvious from Table 7. As p decreases, however, the values
obtained from the 3-term expression fall progressively below those of the "actual"
contribution, and though the trends are the same, the estimates are too small by
at least a factor 2 for all p <2, and become negative when p = 1.511. Neverthe-
less, the 3-term expression is superior to the 5-term one on the whole. The latter
tends to overestimate the actual contribution, and does so by a rapidly increasing
amount for p <3.5.

With the imaginary parts (see Fig. 6) the differences between the 3- and
o-term expressions are somewhat more apparent for the larger p, but are still
negligible if p > 7. The 5-term expression now underestimates the actual contribu-
tion when p <5, and the curve falls away rapidly for p <3.5. In contrast, the
curve based on the 3-term expression has the right qualitative behavior even down
to values of p in a neighborhood of 2. It also tends to overestimate the actual con-
tribution and because of this the modulus of the 3-term expression is, for p <7,
more accurate than either its real or imaginary part. This is evident from Fig. 7
and constitutes what is, perhaps, the clearest demonstration of the numerical su-
periority of the 3-term expression for GO. The modulus is within 10 percent of the

required value for p > 1.8,
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3.5 Remarks

The creeping wave contribution to the far field amplitude is considerably
greater for a hard sphere than for a soft sphere. The ratio of the two exceeds 100
if p >5.2, and it is not therefore surprising that the extent to which the oscillations
of G as a function of p can be suppressed is somewhat less for the hard body. In
addition, the higher order terms in the asymptotic expression for G° are more
important in the hard case, and have a larger effect on the resulting phase and amp-
litude, but by retaining the term involving 7_3 in the exponential factor on the right
hand side of (68), which term was negligible in the corresponding expression for a
soft sphere, the values obtained for the real and imaginary parts of G° are suffi-
cient to account for almost all of the oscillations of G. Only the slightest trace of
oscillation remains for p >>1, and though the amplitude does build up to a maxi-
mum of 5 to 10 percent for p near 2, it would seem that (68) is an accurate ap-
proximation to the actual creeping wave contribution if p 27, and an adequate
approximation (sufficient for most practical purposes) for p down to 2.5 or below.
Because of the comparatively regular behavior of (G- G% e2ip as a function of p,
it is even possible that (68) is applicable for p as small as unity, but there is no
obvious way in which this can be verified. What is more, the rapid variation of the
imaginary part near p = 0.9 (see Fig. 6) is almost certainly evidence of a failure
of (68). We also note that the sensibly linear variation of arg G° with p, charac-
teristic of the larger p, ceases to hold for p <0.9. By applying a least squares

analysis to the values of arg G listed in Table 6, we have

arg G° = 187.455p + 313,191 (degrees) (72)
for 1.0 p £10.0, The implied phase velocity of the surface wave is 0.9602c,
and for the above range of p, (72) is in error by no more than 3°. When p=0.6,
however, the error is 140.

Turning now to the optics component, the 5-term expression for G° shown

in equation (69) is quite accurate for values of p of order 10 or greater, and con-
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tinues to be in good agreement with the ""actual" contribution down to p = 5, but its
performance then falls off rapidly. It is inappropriate for p <3. The 3-term ex-
pression obtained by omitting the terms in p_3 and p_4 is not much inferior for

p 23, and is definitely superior for p <3. Nevertheless, even it ceases to have
any relevance for p <2. With the soft sphere the failure could be overcome, at
least in part, by reverting to a 2-term expression, but this does not work for the
hard sphere inasmuch as the modulus of the "actual' contribution is less than unity
for all p.

Our ability to accurately predict the optics component using a single, sim-
ple uniform expansion is therefore limited te p >2 (approx.), and this in turn leads
to a corresponding restriction on the values of p for which the cross settion can be
estimated satisfactorily. To illustrate the accuracy that can be achieved, equations
(68) and (69) give |G|2 =0.53784, 0,.67563 and 0.82280 for p=3.0, 2.0 and 1.5,
and these are in error by 7.3, 16.4 and 26.7 percent respectively.
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v
A PERFECTLY CONDUCTING SPHERE

The third and final problem to be investigated is the scattering of a plane
electromagnetic wave by a metallic sphere whose conductivity is assumed infinite.
This is, perhaps, the most widely treated of all problems in diffraction theory, and
as much of the analysis is quite similar to that which we have already given for the

soft and hard spheres, the details will be omitted wherever possible.

4.1 The Analysis

Consider a perfectly conducting sphere of radius a whose center is at the
origin of a Cartesian coordinate system (x,y, z). A plane electromagnetic wave is '
incident in the direction of the negative z axis, and since there is no loss of gener-

ality in taking its electric vector to be in the x direction, we have

-E-:l _ ie-lkz ’ L_Il _ —§'Ye_1kz (73)

where Y is the intrinsic admittance of free space.

In terms of the spherical polar coordinates (R, 6, §) previously defined, the
incident and scattered fields can be expressed as sums of spherical vector wave
functions, leading to the standard Mie series form of solution (Stratton, 1941). The
far field components are then obtained by replacing the radial functions by the first
terms of their asymptotic expansions for large kR, and for the particular case of

back scattering

E =8%8S=— |, H = §YS=— (74)

where the (scalar) far field amplitude S is given by
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In all directions other than back (6 = 0) and forward (6 = 7) scattering, the sphere
has a depolarizing effect and the resulting far field amplitude is a vector quantity.
For sufficiently small p, S has the power series expansion

3 3 5 2 i 3 17 4 2i 5
- 2 = + = + + +
S = 5P {1 AP T3P tgP TP O(p )} (76)

(see Goodrich et al, 1961, where the coefficients of the next four higher powers of
p are also shown). As with the series for the soft and hard sphere, the right hand
side of (76) is convergent for p <1. It is comparable to the hard body solution (49)
in the powers of p that occur, but is quite different from the series for the soft
body.

The above series is obviously inappropriate to the larger p. There is, how-
ever, an alternative representation of S which is well suited to values of p >>1,
and this can be obtained by application of a Watson transformation to (75). Though
the procedure is similar in most respects to that given in Section 2.2, there is one
major difference: whereas for the soft and hard spheres it was necessary to apply
the transform to the series representing the total (incident plus scattered) field with
the radial dependence included, the fact that the far field amplitude (75) is already
the difference of two series enables us to transform S directly.

Using the expression (7) for the spherical Bessel function as a sum of Hankel|

functions, equation (75) becomes

® (2) (2)
. [ph <p>] hn (p)}
S = (-1)*n+ —) = ,

n=1 hn (p)

which can be written as
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. [phfzz—)ll (p):] hl(jz_)%(p)
S = - 3 0 22— . O sec vt vdv (717)
b’y @] w6
C' V- /2 V- /2

| where C'is a path enclosing in a clockwise sense the poles of secvr for v >1/2,
As such, the contour differs from that in Section 2.2 in its exclusion of the pole at
v = 1/2. Providing due account is taken of the appropriate residue, the path can be

pulled over the pole, and since

B = - Ll
0
we have ,
P N S NN
s =14 = 2— - 2 secvr vdv , (78)
2 4 W @] 0 e
[p V- 1/z g V= 1/2 g

where C is as defined in Section 2. 2.
The original analysis is now applicable. For the lower portion of the path

we use the identity

ivr . -ivw
secyr = e secvr + 2ie tanyr (79)

(see equation 9). If this is inserted into (78), the integral corresponding to the first
term of (79) can have its path reflected in the origin of the v plane and combined
with the integral over the upper part of C. The resulting contour can then be closed

in the upper half plane, and the integral evaluated as a sum of residues from the
(1)
V—

1 !
zeros v=v_of ph( )1 (p):] and the zeros v=v of h
n v-1, s m
ing wave contribution @~ S~ to the far field amplitude. The remaining integral, ob-

" (p). This is the creep-
2

tained from the second term on the right hand side of (79), constitutes the optics

field SO, and hence

s = s°+¢°
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with
9 r1/2_(2)
SC=‘EZ ap{p HV (p)} vsecv
2 £ _a__a{l/zH(l)()} eevr
v op p v p 1/=1/n
2
i Hf/ )(p)
+ 5 m vsecuT (80)
m o v P v=v
m
and
0 9 g 1/2.(2) (2)
o i -2ip i Bp(o HV (p)) HV (o) -ivr
S = <Te + = - e tanvm vdv.
2 2 -a—{pl/zH(l)( )) H(l)( )
w-ie — dp v p‘ v P

(81)
For convenience and ease of comparison with the corresponding results for soft and
hard spheres, the spherical Hankel functions have again been replaced by their
cylindrical equivalents.

Expressions analogous to those of equations (80) and (81), but for a quantity

SI(O) = i8S, (82)

have been found by Senior and Goodrich (1964). The formula for s° given in equa-
tion (81) is identical (apart from the use of cylindrical functions) to that for -iS‘l)(O)
contained in equation (24) of this Reference, but it should be noted that the expres-
sions derived by Senior and Goodrich for S(;(B) in the immediate vicinity of 6=0
are in error by a minus sign. The correct results can be obtained by replacing
s‘;(e) by -s‘l’(e) in their equations (21) and (48), and sf(O) by -S(0) in (23 and (32).

1
Equation (23) is, for example, then equivalent to (80) above.

69



THE UNIVERSITY OF MICHIGAN
7030-1-T

4.2 Evaluation of the Creeping Wave and Optics Contributions

Most of the analysis involved in the derivation of asymptotic formulae for
s¢ and 8° is readily available in the literature and/or is so similar to that which
has gone before that only the barest details will suffice.

Starting with the creeping wave component, the second sum on the right hand
side of (80) differs only by a factor 2 from the soft sphere contribution (12), and we
can therefore take over directly the results of Section 2.2. The first series is also

-1/2 pl/2

in the differentiated functions does produce some differences in analysis which are

comparable to the hard sphere contribution (50), but the change from p

reflected in modifications to the higher order terms in the expansions. Since

—{1/2“)} 1/2{“ = U()},

we have, from (16) and (52),

1/2
8 { 12, ®) } [Ai'(x)— - (x3+9)Ai(x)-4xAi'(x)}
60r
p— 4{% x4A1(x)+ (% x5- 127x2> Ai'( )}+ 0(7_6)}

25207

(Scott, 1949), which can be written as

1/2
1/2 _p x _1_(37 3,9
Bp{ J(}”' 2 {”172' Y 6300X+800)+O(T )}

. X 3 1 2 6 3 3 9
- Ai {x- 2(x +9) + 43<1'575x+400x 800>+0( ;_}

Hence,
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1/2
9 J1/2. (1) L __2p L _X 1 (31 3. 9 N
Bp{) i, (pﬁ =W {1 Y (6300 * 800) + ol )}Al )

T 157 (83)
where
2 1 3 1 2 6 3 3 9 -6
Wy = x- —om (X 9+ <1575 X * %00 800>+O( ) (84)
607 x T X

and if this is now inverted to give x as a function of y, an expression for the zeros

V= Vn is obtained in the form

.
T -1
i— 3
3 e 3 1 3 63
=pte B - (B -9+ -———-—(B 7B+—)+O(7 (85)
n 60—;'Bn n 1400+ 363

where the Bn are, as before, the zeros of the Airy integral derivative Ai'(-y). The
first three terms on the right hand side of (85) have previously been found by Scott
(1949), Franz (1954) and others, and the first two terms are the same as for the
zeros in the hard body solution (see equation 57).

The asymptotic evaluation of the factor

9 1/2 (2)

op {p Hv (pﬁ
9 8 r1/2 (1)

ov op {p Hz/ (p{} v=vn

follows closely the procedure given in Section 3.2, the only essential difference be-

ing the change in the expression for y as a function of x. Differentiating (84)

$2 Lo 3 d () o
60- X AN 800x

giving
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2
1 2 [B) 3 ) 6 -6
= + - - —— - +
oy] % W {1 5 2 2y -9) - w (12y - 189)+0(r }

from which we have

1/2 (2) . iZ
8P{ i ) L 8, 3 (26°+9)
9 0 { 1/2H(1)(§ 21 © cor 22 D
ov 9p P v P v=vn T n
. T
_lg
s (1236-189)+o(7’6{} — 1 .
44 “n o [ 2
36007 B {ai-6 )}

The expression for the amplitude factor of the creeping waves is therefore

s
ui {pl/ 202} PRt { N
=-—ce 1+ —— (328 +9)
T 607232

1/2 (1) -
8 8 P 1/ (}IFUH

_15-
- -—3—-—4 (1233 +189)+

560074Bn } {Al( B )}2

and this is identical to the result obtained by Senior and Goodrich (1964).

(86)

Each of the zeros Vn corresponds to a creeping wave mode and if we also
expand secvr in a series of exponentials, convergent for Im.v >0, substitution
from equations (23), (85) and (86) into (80) leads to a representation of the creeping

c .
wave component S~ in the form
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(328 +9) -

s

+ 0(7_6)} )

2
60728

[00)

1
Bn{Ai(-Bn)}z 70 (
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5 e
-1) exp|i(2¢+1)7 <p+e TBn

(128[35+ 189)

5600
56007 Bn

. T

—ilT . T
3 1 6 .3, 63 -5 4 '3 3*
60 B (B —_—?5 <Bn‘7BnJr -4—> +Olr )} TTe £ !
a 14007°B “Tn
iér 8 —i-g 4a‘:‘n .
+e n21 -e 2 +0(r )
157 1757 {ai )}
) m
>, i3 i3 o o> =10 ;
: E (-1) exp (i(24+ )7 {ﬁe Ta -e Ton + 3 +0(r~ )}
1=0 7 14007
(87)
where the second set of terms has been taken directly from equation (24). This is

a more detailed version of the expression derived by Senior and Goodrich (1964),
and the extent to which it can be simplified without substantial loss of accuracy is
explored in the next section.

The optics contribution to the far field amplitude is given by equation (81),
and the asymptotic evaluation for large p is again based on the Debye formula (26)
for the Hankel function. In practice, either of two approaches can be used. In the
first of these the integral is split up into two parts, with one involving the differen-
tiated functions and the other the undifferentiated ones. The latter integral is iden-
tical to that which has already been evaluated in connection with the soft sphere.

For the former we note that
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op v

xh {plpr/l)(p)} = p_l/zHil)(pHp's; {p_l/zH(l)(p{}

and hence, from (26) and (61),

) ip(sinB-BcosB)Hz
2 {;1/23(1)@)}: EET 4
0 v Vs
®
(m- <) . \In A
. -2i m-1
2 1 (psinB) (Bm+ 2m—1> (68)

m=0 (- 2)'.

oo

providing the coefficient A _ is regarded as zero. An expression for the ratio of

-1
the differentiated functions then follows from equation (62) on replacing Bm by

B

m Tmo1’ and this enables us to make use of at least some of the expansions
developed for the hard sphere. Nevertheless, the time-consuming task of multi-
plying and collecting together long strings of terms still remains, The alternative
approach is to combine the expansions for the two Hankel function ratios before
multiplying by the exponential terms in (81), thereby enabling us to profit from
some cancellation of terms common to the two ratios. By and large, however,
there is little to choose between the methods, and since the required expression for
s° is available in the literature, we shall content ourselves with a mere statement
of results.

From the expansions which Logan (1960) has derived for the bistatic far
field components of the scattered electric vector, it can be shown that in the par-
ticular case of back scattering (6 =0)

=Ly L L fY (89)
2 2p 2p4

Logan is believed to the the only one who has carried out the expansion to this order

and the absence of terms O(p_z) and O(p-3) within the brackets is of particular
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-2
interest. The fact that there is no term in p ~ is confirmed by the work of Senior
and Goodrich (1964) and is in agreement with the results of a near-field analysis

(Weston, 1961).

4.3 Numerical Considerations

As in the case of soft and hard spheres, the above expressions for s¢ and
s° are only asymptotic for large p, and there is consequently no justification for
expecting them to provide accurate numerical answers for p as small as 3 or even
unity. The sphere problem, however, is fundamental to electromagnetic scattering
and many of the techniques for cross section prediction are based on its solution.
For lack of any other method it is often necessary to use these techniques when the
radii of curvature of the body are not, in fact, large compared with the wavelength,
and it is therefore desirable to have some feel for-the accuracy of (87) and (89) not
only for p >>1 but when it is near unity as well.

The phase of the optics component s° identifies it as the expected return
from the front face of the sphere, and tﬁe whole expression can be interpreted as
the specular contribution. The leading term is that predicted by geometrical optics,
and the first two terms can be obtained by the physical optics method. Since there

3 within the bracketed part of (89), it is obvious that the

are no terms in p_2 or p_
physical optics solution is extremely accurate for large p, and for all p >2.24 the
second real term (in p-4) corrects the first by less than 10 percent. The absence
of any terms in p—2 and p_3, and the relatively small magnitude of the coefficient
of p-4, are in marked distinction to the corresponding expressions for soft and
hard spheres.

The other component s® is attributable to creeping waves, and the phenom-
enological description of these is the same as in the scalar problems. In contrast

to these cases, however, there are now two types of waves present, and from a

consideration of the magnitudes of their contributions, it is appropriate to call the
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first set of waves "major' and the second set "minor'". The minor waves are rep-
resented by the second pair of sums in (87) and are identical to those supported by
a soft sphere. In an approximate sense we can regard the corresponding surface
field disturbances as being responsible for transporting the normal component of
the magnetic vector around the sphere. The major waves are represented by the
first pair of sums and can be associated with the normal component of the surface
electric” field. To a first order they are identical to the waves on a hard sphere,
but there are differences in the higher order terms that are important for the smal-
ler p.

Although the expression for ¢ tsa highly complicated one as it stands, a
drastically simplified version is sufficient for most numerical work. The attenua-
tion of all waves is large enough for us to ignore the contributions from waves whic
have completed one or more circuits of the sphere, and we can therefore replace
each summation over £ by its first term (£=0) alone. As indicated in the discus-
sion of the soft sphere, we can omit all minor waves except the dominant one (m =1),
and the same is also true of the major waves. A numerical comparison of the con-
tributions from the first and second major waves (n =1 and 2 respectively) and the
first and second minor waves has been given by Senior and Goodrich (1964) and from
the table that they present it is apparent that the minor waves can, in fact, be omit-
ted in their entirety. For p =5, for example, the contribution of the dominant
minor wave is less than 0.35 percent of that from the dominant major wave, and
the ratio decreases rapidly with increasing p.

Even with these simplifications we have not reached the limit of permissible
reductions in the expression for Sc. In the amplitude factor for the dominant major
wave, the term 0(7-'4) produces amplitude and phase corrections less than 1 per-

-3
cent and 1° respectively when p =5, and in the exponential the term in 7 = gives

*In recognition of this fact, Senior and Goodrich (1964) introduced the terms E-

and H- waves fo denote the major and minor ones respectively.
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only a 2.30 phase shift for p as small as unity. The preceding term in the exponen-
tial is, however, more important, but with the above modifications to equation (87)

the expression for the creeping wave component becomes

. T

iz 3
C 4 3
S =71"%¢ {H 22(326 +9)+0(7 }
bO/ ]31 {Al

. T

T i<
-1—6' 6 , _3
- exp %rp— e T7TB 60 B (B -9) + 0O(7 } (90)

where Bl and Ai(-8 1) are given in Section 3.4. This should be an accurate approx-
imation to (87) for p greater than (about) unity.

To facilitate the subsequent numerical investigation, it is convenient to intro-
duce a function G defined in terms of the far field amplitude S by equation (39).
G is, in effect, a voltage gain and is such that the back scattering cross section,
normalized to its high frequency limit 7132, is Isz With G° and G° defined in

a similar manner, the normalized creeping wave and optics components are

1
c% = re {H £ = (3282 +9) + o=}

S S
6078, 1 } 31{Ai('61)}2

T iz
1% 6 -3
explimp-e TWBl 608 9) + O(r ) (91)
and
o_ _ -2ip S =3
G = -e {-2p+ 4+O(p )} (92)

2p

The Mie series representation of G is
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00)
. pj_(p) J (p)
G:-2IE (_1)n(n+l) [n :]'_ n } (93)
n

and this (or some series quite closely related to it) has formed the basis for several
independent determinations of the back scattering behavior of spheres. One of the
earliest of the more comprehensive computations was made by the Scientific Com-
puting Service Ltd. in England using the expression for S shown in equation (75),
and Hey et al (1956) have tabulated the resulting values of S for p = 0(0.01)10.

Perhaps the most comprehensive of all, however, is the computation of

G::=e—21p

(the asterisk denotes the complex conjugate) carried out by the Cornell Aeronautical
Laboratory with a maximum of 70 terms in the expression for G, and Bechtel (1962}
has tabulated the real and imaginary parts, argument, modulus and modulus
squared (i.e. the normalized cross section) of this quantity for p = 0(0,02)50. It is
this data that we shall use to assess the numerical accuracy of the asymptotic for-
mulae for G° and GO.

In Fig. 8 the familiar curve of the normalized back scattering cross section
as a function of p is plotted for 0K p < 10. For small p we have, from equations
(39) and (76),

2 4
|

IG|]" ~ 97,

leading to an initial rise which is over three times as rapid as for the hard sphere
(see Fig. 3). The cross section rises to a maximum of 3.655 for p =1.03, and
thereafter oscillates with a decreasing amplitude about a mean level which, as p
increases, approaches unity from above.

One of the features of Fig. 8 that is most apparent is the extreme regularity

of the oscillatjons for almost all values of p, and though the depth of oscillation
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does, of course, decrease with increasing p, the separation between adjacent max-
ima and minima is remarkably unchanged. The locations of the turning points can
be estimated by graphical interpolation of the data tabulated by Bechtel (1962), and
these are listed in Table 9. If we ignore the first maximum, the separations are
almost” constant, averaging 0,602(7) with a standard deviation of only 0.0076 over
the 13 readings. This reinforces our belief that there are but two significant con-
tributors to the cross section and strongly suggests that over a range extending
from p = 10 down to the first minimum (or below) the physical mechanism respon-
sible for the scattering remains the same. At the larger values of p, however, the
back scattering is composed of a specular return and a creeping wave contribution,
with the interference between them producing the oscillations. It is without questio
that this picture is applicable for p near 10, .and the regularity of the behavior for
p down to (about) 1.8 may now indicate that the same phenomenological description
holds for the smaller p also. Were this so, the average phase velocity of the
creeping wave disturbance for the range 1.8 <p <10 would be 0.9779c.

The maximum and minimum values of |G]2 are also given in Table 9, and
by taking the adjacent turning points in pairs, the values of the two contributing

components, G 1 and G_, can be determined on the assumption that they are con-

stant from one turning joint to the next. It is seen that Gr1 decreases from 1.22
when p = 1,74 to unity when p = 9.58, with most of the decrease taking place for
the smaller p. There is some oscillation, but its amplitude decays quite rapidly,
and is less than 2 percent of the mean level for p greater than (about) 2. G2 also
decreases, and does so in a somewhat more uniform manner. It is less than 8 per-
cent of G, for p = 9.58. In Fig. 9 the values of G, and G, are denoted by circleq

1 1 2
placed at the mid-points of the appropriate p-intervals.

e 2.
“ The spacing is even more uniform if the cross section o/\" is plotted as a

function of p, since it avoids the "stretching' produced by the other normalization.
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Table 9: Deductions from Data for |G|2 (Bechtel, 1962)

Separation I2

Max/min P in p |G G, G,

M 1.028 3,655

m 1,744 0.716 0. 285 1,223 0. 689
M 2,334 0.590 1,969 0. 969 0.435
m 2,957 0.623 0. 506 1,057 0. 346
M 3.554 0.597 -1, 589 0. 986 0. 275
m 4,164 0.610 0.635 1,029 0.232
M 4,762 0.598 1,410 0.992 0.196
m 5,368 0. 606 0,717 1,017 0.171
M 5, 966 0.598 1,307 0.995 0, 148
m 6,572 0. 606 0,773 1,011 0.132
M 7,171 0.599 1,240 0.996 0,117
m 7.775 0.604 0,813 1,007 0. 106
M 8. 376 0.601 1,194 0. 997 0.095
m 8. 980 0. 604 0,844 1,006 0, 087
M 9.579 0.599 1,160 0.998 0.079
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Using equation (91) the amplitude and phase of the theoretical creeping wave
component G° have been computed for a series of values of p in the range
0.5<p £10.0. The results are given in Table 10 and the amplitude is shown as a

solid line in Fig. 9. The agreement with the points representing G_ is excellent,

2

and even for p = 1.386 (the smallest value for which Gr2 can be found) the discrep-

ancy is lessthan 7 percent. For the optics component it is again convenient to treat

9;
Goe ¥ which, from equation (92), has the asymptotic expansion

PP oL Lo, (94)
2p 2p4

The real and imaginary parts of this expression have been determined for the same
selected p, and are listed in Table 11 under the heading ''3-term optics'". The
modulus is plotted in Fig. 9 as a broken line, and égrees well with the open circles

representing G As p decreases, the modulus follows the mean of the gradually

1

increasing oscillations possessed by G_, and though it departs somewhat from this

1
mean for p less than (about) 2.5, it is almost identical to G, at the smallest value

1
of p, p =1.386, for which G1 is known,
The above comparisons are, at most, a test on the moduli of the creeping
wave and optics components, and because of the assumptions inherent in the deriva-

tion of G1 and G_, and the resulting uncertainties associated with their values, a

more stringent tyi)e of test is desirable. For the reasons given earlier, the most
critical of all procedures is to compare the real and imaginary parts of the theor-
etical optics component Go e2ip with those of the "actual" component (G - Gc)e2i'o,
where G is obtained from the exact Mie series (93). Using the values of G pro-

vided by Bechtel (1962), with those changes necessitated by his different definition
and time convention, and the data for Gc computed from equation (91) and listed in
Table 10, the real and imaginary parts of (G- Gc) e2ip have been determined for

selected values of p. These are shown in Table 11, and are plotted in Fig. 10. The

extent to which the oscillations have been suppressed is highly gratifying. For p
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Table 10; Theoretical Creeping Wave Component

‘ GCI arg e (degrees)
0.5 1.57835 265, 128
0.6 1. 34287 283,796
0.7 117107 302, 537
0.8 103970 322, 146
0.9 9.35709 - 107, 340, 136
1.0 8.51149 - 10_, 358, 963
11 7.80905 - 10, 371,802
1.3 6.70616 + 10_; 415,490
1.5 5.87663 - 10 453,178
1.7 5.22767 . 10, 490, 837
1.9 470479 - 107, 528, 481
2.0 447937 107 547, 295
2.5 3.60246 * 10 641, 232
3.0 2,99686 - 10, 734,981
3.5 2,55202 - 10, 828. 548
4.0 2.21091 * 10_, 921, 945
4.5 1.94092 - 10_, 1015. 195
5.0 1.72196 - 107, 1108, 302
5.5 1.54092 - 10_, 1201, 296
6.0 1.38887 - 107, 1294, 161
6.5 1.25950 - 10_, 1386, 923
7.0 1.14821 - 10 1479, 584
7.5 1.04436 - 10, 1572, 191
8.0 966983 1077 1664, 667
8.5 8.92401 - 107, 1757, 091
9.0 8.26233 * 10, 1849, 445
9.5 7.67202 - 10 1941, 730
10.0 7.14274 - 10 2033, 961
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Table 11, Comparison of Optics Components

(G-Gc)ele 3-term optics

Real Imag. Real Imag.
0,9 -0, 83060 1, 02476 -2, 00000 1, 00000
0.6 -1.05473 1,00152 -4, 85802 0, 83333
0.7 -1, 06412 0,87844 -3, 08247 0, 71424
N,8 -1,03637 0, 71561 -2, 22070 0.62500
0.3 -1, 05693 0.61885 -1,76208 0.23536
1.0 -1,06175 0.51293 -1, 50000 0. 30000
11 -1,03367 0, 42142 -1, 34151 0. 45455
1,3 -0, 95395 0,36137 -1, 17506 0. 38462
1,5 -0, 96194 0, 36082 -1, 09877 0, 33333
1.7 -0, 98882 0. 32669 -1, 05987 0,29412
1.9 -1,00835 0.29213 -1, 03837 0.26316
2, -1,01817 0,27002 - -1,03125 0. 25000
2,: -0, 99229 0, 19445 -1,01280 0.20000 *
3. -1,00034 0. 17200 -1,00617 0, 16667
3,7 -1, 00295 0, 13841 -1,00333 0, 14286
4, -0, 99560 0.12888 -1,00195 0, 12500
4, -1, 00415 0,11136 -1,00122 0,11111
3, -0, 99707 0,09890 -1,00080 0.10000
3, -1,00165 0.09330 -1, 00055 0,09091
6. -0, 99989 0.08123 -1,00039 0,08333
6.5 -0, 39936 0,07874 -1, 00028 0,07652
7.0 -1,00141 0.07036 -1, 00021 0,07143
7.9 -0, 99876 0,06617 -1,00016 0, 06667
8.0 -1.00117 0. 06304 -1,00012 0. 06250
8.2 -0, 99945 0.05806 -1,00010 0.05882
2.0 -1,00017 0. 05649 -1, 00008 0, 05536
9.5 -1. 00035 0,05195 -1, 00006 0, 05263
20,0 -0, 99948 0.050+44 -1, 00005 0. 05000
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near 10 the real part is oscillating with an amplitude of less than 7. percent, and

it is not until . has decreased to about 5 that the oscillation (now of amplitude 3
percent) has become visible in Fig. 10. As ;5 decreases still further. the amplitudg
builds up to a maximum of around 8 percent (for o ~ 1), and tor 5 <J.7 the neza-
tive real part itself decreases from its peak value of 1.06(approx.). The imaginary
part is also devoid of any significant oscillation until o has fallen to below . and
even then the variations are quite small. The only interval in which a systematic
departure from the uniform trend is obvious is 1 <p <2, and for 5 <1 any varia-
tions are swamped by the rapid increase in the imaginary part, which takes it up to
a value of 1.59 for p=0.5.

Superimposed on Fig. 10 are the curves representing the imaginarv and neg-
ative real parts of the 3-term optics expression, .taken from Table 11. The imag-
inary part is in almost perfect agreement down to (about) o =4, and a glance at
Table 11 shows that the discrepancy does not exceed ! percent unless p < 4.3,
Thereafter the theoretical curve follows the mean of the smalloscillations possessed
by the "actual” component, and is in error by as much as 10 percent for o in the
vicinity of 1.5. When p is less than unity, the curve has the right trend, but lags
behind the required values, leading to a progressively increasing percentage error
as p gets smaller. If anything, the real part of the 3-term expression is in even
better agreement' with the "actual'' component tor the larger p, and when o is near
10 the error is of order 0.05 percent. As o decreases, however, there is a ten-
dency for the asymptotic formula to overestimate the component. This is quite
noticeable tfor p<3.5 and gets worse as p gets smaller. For p less than (about) 2,
the theoretical expression is inadequate due to the rapid (and undesired) increase in
its negative real part.

Since the values of the negative real part of the"'actual" optics component
are still oscillating around unity for » as small as 0.7, it is obvious thatanexpres-

L0 2ip : NS S : .
sion for G e ' in which the term in p = is ignored will be numerically more

-1
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effective than the 3-term expression. The real part is then -1 independently of .,
and its negative is shown as the dotted line in Fig. 10, The modulus of the 2-term
expression is also represented by the dotted curve in Fig. 9, and though this does
not fit the values of Gl as well as does the 3-term one, it should be no.ed that for
small 5 the values of both G1 and G2 are somewhat suspect because of the assump-
tion of components which remain constant between turning points. A comparison of
the real and imaginary parts of G° eZip with those of (G- GC) e2ip is a much more
critical test, and Fig. 10 clearly shows the numerical superiority of the 2-term ex-
pression for G0 eZip when o is less than 4. To judge from Table 11, the omission
of the term in 5  also improves the agreement for the larger values of ».

To illustrate the accuracy with which the far field amplitude can be calcu-

. ¢ )
lated using the asymptotic formulae for G and G, the modulus and argument of

G =c%+¢g°

have been computed for specimen \'aiues of p using equations (91) and (92) with the
term in p-é omitted from the bracketed expression on the right hand side of (92).
The results are given in Table 12, along with the corresponding exact values de-
duced from Bechtel's tabulation, From the error columns (a negative sign indicates
that the estimate is too small), it would appear that the modulus is not in error by
more than 4 percent unless p is less than unity, but as p decreases further the
asymptotic formulae underestima.e the true modulus by an ever increasing amount.
More surprising, perhaps, is the accuracy with which the argument is predicted.

In most instances the errors are comparable to those involved in the numerical
evaluation of the expression for Gc, and it is only for p < 0.7 that there is any sign

of a large and progressive increase,
<.+ Remarks

Although the creeping wave contribution to the far field amplitude in scatter-

tering by a metallic sphere is comparable tothat inthe hard acoustic case for values
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Table 12: Comparison 6f Far Field Amplitudes

7030-1-T

Asymptotic Exact Error ‘

P Modulus Arg(degrees) | Modulus Arg(degrees) | Mod(%) Arg (°)
0.5 0, 50232 306, 985 0,72772 3,026 -30, 97 -56, 041
0.6 0.73791 354, 547 1.02230 5,535 -27, 82 -10, 988
0,7 1.16918 5, 848 1. 33066 9,091 -12, 14 - 3,243
0.8 1.51428 13,104 1.61122 13,533 - 6,02 - 0,429
0.9 1.73128 17. 815 1,81492" 18, 329 - 4,61 - 0,514
1.0 1.85337 21,718 1,90724 22,718 - 2,83 - 1.000"*
1.1 1. 86986 24,636 1. 88354 26, 026 - 0,73 - 1,390
1.3 1.61398 28,031 1, 56662 27,968 3.02 0,063
1.5 1.07810 21,092 1,03712 20,624 3.95 0. 468
1.7 0.56844 345, 285 0. 55815 341, 941 1.84 3,344
1.9 0, 74546 280, 277 0, 77042 281, 821 - 3.68 - 1,544
2.0 0,97729 271,180 1. 00406 270, 962 - 2,67 0,218
2.5 1,31933 252,111 1.31150 252,344 0.60 - 0,233
5.0 1, 08400 329, 738 1.08113 329, 803 0,27 - 0,065

10,0 0, 96449 114,793 0. 96397 114,767 0.05 0,026
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of o near unity, and is somewhat larger for p of order 10, the asymptotic formula
for G° is extremely effective in suppressing the oscillations in the back scattering
cross section for p > 5, and is more than adequate even down to p = 0.7. Based on
the behavior of the real and imaginary parts of (G- Gc) eZi‘0 as functions of p, it is
therefore concluded that the expression for G° given in equation (91) is an accurate
approximation to the true creeping wave component for values of p as small as unity
or less. It should be noted, however, that the omission of any term in (91) may sig-
nificantly decrease this accuracy, and the retention of the term in 'r-l in the expo-
nent is particularly important. We shall discuss this further in the next section.

We alsonote that the variation in arg G° as a function of p is remarkably uniform in|
view of the many terms contributing towards it. Based on the values of arg G° for
p =1.0(0.5)10.0 listed in Table 10, a least squares fit to a straight line behavior

gives

(186.033p + 176.327) degrees
7 (1.03352p + 0.97959) radians.

arg G°

The maximum discrepancies occur at the end points of the range and are less than

3°,

Since there are no terms in p-2 or p-3 in the expression for c° ezm, the
3-term expression is tantamount to a 5-term one as regards the highest power of

p occurring. This is very accurate numerically for p near 10, but as p decreases|
it has a tendency to overestimate the (negative) real part of the ""actual' component.
For p less than (about) 2, it is inadequate. The 2-term expression does not suffer
from this defect. It is in good agreement with the actual values even down to p =1

and is, in fact, somewhat better for larger values of p as well. The resulting for-

mula for the theoretical optics component is then

-2i ’ -
c° = -e lp{l--21—p+0(p 4} (95)
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(cf the corresponding equation 46 for the hard acoustic sphere) and, in combination
with (91), enables the far field amplitude to be computed with an accuracy of better

than 4 percent in modulus and 4% in argument for all p > 1.
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DISC I\J/SSION

In all of the sphere problems considered, the Mie series representations of
the far field amplitude have been recast into forms suitable for asymptotic evalua-
tion for p large compared with unity. The resulting expressions split naturally into
components whose phases identify them with a specular contribution from the front
face of the sphere and a creeping wave contribution due to a disturbance which has
traveled around the back of the sphere, and each of these is normally regarded as a
high frequency type of scattering. This is certainly true of a specular return, and
our philosophy of creeping waves is also.based on a study of bodies whose radii of
curvature are much larger than the wavelength. There is cbnsequently no reason to
expect that these concepts will continue to havg application when the sphere radius is
less than, say, one wavelength. Even if the conceptual picture were to remain un-
changed at the smaller values of p, one could hardly expect the formulae to continue
to provide accurate estimates of the scattering. Nevertheless, they appear to do so.
In the electromagnetic problem the errors are still insignificant when p =1, and for
0.7 <p <1.0 the high frequency approximation is superior to the Rayleigh formula
for cross section prediction purposes.

A comparison of high and low frequency data for scattering by a metallic
sphere is actually quite illurhinating, The Rayleigh formula is based on the dipole
terms in the low frequency expansion and, as such, is valid only for p << 1. In spite
of this it is often used to compute the scattering from objects whose characteristic
dimension, a, is near A/ 27 on the assumption that the resulting errors will be
less than if a high frequency expression were employed. From equation (39) and
(76) the Rayleigh approximation is

G = 3p2, (96)

and the phase is therefore in error to the extent that the argument of the actual far

field amplitude departs from zero. As evident from the middle columns in Table 12,
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the phase discrepancy increases from 3% for p=0.5 to 18° for p=0.9, and exceeds
the phase error associated with the high frequency approximation (91) for all

p 20.65. Turning now to the modulus, equation (96) gives IGl =0.75 for p=0.5,
increasing to 1.47 when p=0.7 and 2, 43 when p=0.9. The corresponding percent-
age errors are 3.06, 10.47 and 33.89 respectively, and exceed those of (91) for
all p >0.71. We should therefore use the asymptotic expansion for G in preference
to the Rayleigh formula whenever p is greater than (about) 0,7, and whereas the for-
mer tends to underestimate |G| throughout the interval 0.7<p < 10.0, the latter
overestimates it by an amount which increases with p.

It is, of course, obvious that the high frequency picture will ultimately fail
as p becomes small compared with unity, but the agreement that we obtained in
Section 4.3 would indicate that the portions of the surface field responsible for the
specular and creeping wave returns continue to scatter in a substantially independent
manner for values of p as small as, perhaps, 0.7. This is despite the fact that for
p= 7/2 the first Fresnel zone, which is often regarded as the minimum area neces-
sary for the generation of a specular contribution, has expanded to fill the whole of
the illuminated region. Any further reduction in p then decreases the zone size
accordingly, and the slight oscillation in the imaginary part of the "actual" optics
component near p =1.5, leading to a partial failure in the estimate for GO, could be
attributable to this. Numericaliy at least, the failure is only temporary, and it is
not until p has dropped to about 0.5 that the progressive errors of the high fre-
quency approximation have increased to such a point that its estimates of the scat-
tering are no longer valuable. As evidenced by the accuracy of the Rayleigh formula,
the electrical size of the sphere is now small enough for the scattering to be volume-
dominated, and no theory based on contributions from individual portions of the sur-
tace could then succeed.

As with any of the so-called canonical problems in scattering theory, one of

the main reasons for investigating the solution in extreme detail is to understand the
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nature of the scattering and, hopefully, to separate out those features wiich may
have application to other and more general shapes. The above analysis of sphere
scattering should be viewed in this context, and many of our approximate techniques
for cross section estimation have been derived in this manner.

Creeping waves are a case in point. They provide one of the two significant
contributions to the back scattering from a sphere, and the discussion that we have
given strongly suggests that they are not a purely high frequency phenomenon. It is
to be expected that they will be equally important with any smooth convex body, but
can we use the understanding gained from the sphere to compute the creeping wave
effect when the radii of curvature of the surface are not constant? Unfortunately
this has not yet proved possible. The one technique available at the moment is valid
only for radii large compared with the wavelength and its predictions are no longer
accurate when ka is of order unity.

In the course of developing the geometrical theory of diffraction, Keller
(1958) was led to a generalization of the work of Fock in which, for any ccnvex body
of large radius, a creeping wave is assumed to follow a geodesic on the surface
with characteristics which are functions only of the local curvature in the direction
of travel. Locally, therefore, the wave behaves as though on a circular cylinder of
the appropriate radius, with an attenuation which is an integrated function of the

distance { and is proportional to

A

ds
2/3
{R(s)} /

o)
where R(s) is the radius of curvature at the point s along the path. In the particu-
lar case of a soft sphere of radius a, the net contribution to the normalized far

field amplitude in the back scattering direction differs from (41) in the omission of

those terms which are not common to the cylinder. It is, in fact,
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I -
3 —i'é
G exp{}rp—e 77ra} (97
S 1
{Al - }

where the tilde is used to denote the Keller approximation, and the suffix "s" indi-

cates that the sphere is soft. Similarly, for a hard sphere

. T
13

T
—1—
Gh e 5 exp{}rp—e 6 77731} , (98)
RN

and if (97) and (98) are compared with (41) and (68) respectively, it is obvious that
they must be accurate when p is large. For the smaller p, however, the omission
of the higher order terms leads to significant discrepancies between the "actual”
creeping wave contributions and those predicted by (97) and (98), and the discrepan-
cies cannot be removed (or reduced) by retaining more terms in (97) and (98) inas-
much as these differ from the required terms for a sphere.

The scattering of an electromagnetic wave by a convex metallic shape is
treated by regarding the creeping waves as essentially scalar disturbances whose
properties can be ascertained from the solutions for scattering by the corresponding
soft and hard bodies. According to this theory, any electromagnetic ''ray' striking
the surface at grazing incidence excites two creeping waves with strengths propor-
tional to the normal components of the incident electric and magnetic vectors.
These travel independently along the geodesic as though they were hard and soft
body waves respectively, and the vector character of the scattering is then recov-
ered from the magnitudes of the two components at the point of launch. The result-
ing expression for the creeping wave contribution to the back scattering amplitude

for a sphere is
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G =1 60—5°> (99)
v 2\s "h

where éz and ’éﬁ are defined as above.
The existence of such a relation between the vector and scalar solutions, at

least to the first order in 1/p, is evident from the Mie series representations. In

the vector problem the complete far field amplitude (93) can be written alternatively

as

(00) '
- i [Pi )] i) }
G\. o) g {[ (1)(p)-J h(l)(p)

n

and the sum over the second term in braces is, simply half the soft body solution.

Hence
a) !
. . . Z pj (p)
% P s p n=0 [‘_)hn (p):l

and the last sum is obviously similar to the hard body solution. Formally at least

{ L] (p)}
. 1 s 1+ = —
[pJn(p):] ) it 0 i (o)
L, 7 . (1)
b)) v e { b <p>}
1+ - (1)1

J'I'I(P)

/\./_-__T—— + —_————
(1) 3 L), 2
hn ) » {hn (p)} .

giving

1
" Q. -
G, ~5(G-6) (101)
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where, to the first order in 1/p, we have neglected the leading term on the right
hand side of (100). Since this holds for the complete far field amplitude G, it pro-
vides an approximation to the optics component as well as to the creeping wave con-
tribution. Thus, from equations (42) and (69),
o 0 -2ip i 1 oi 17 -5
- = - otk dht Sedt
(GS Gh) e { 5 3 Olp )} (102)

2 4
pp 2p 2p

[N

which agrees with the expression for GS (see equation 92) through terms of order

1/p in the brackets. We also note that the "physical optics" approximations to G:

h 3
accurate to the first two orders when fed into (101).

and G. though accurate only to the first order, lead to an expression for Gz

The above representation of GV in terms of scalar solutions is only asymp-
totic for large p, but it is obvious from equation'(loo) that a precise representation
can be found. Instead of a rigid sphere, let us consider a body whose rigidity in-
creases with increasing p, and which does not become completely rigid until p has

become infinite. If the appropriate condition at its surface is

9 1
—+=-]JU=0 , 103
<8p p> (103)

the normalized far field amplitude in the back scattering direction under this mixed

boundary condition is

2i . n [:pjn(p):"
Gm = 'p—Z(-l) (2n+1) ——(IT—r s (104)
=0 E)hn (p)]
and thus
¢ =il g . (105)
v p 2 s m

97




THE UNIVERSITY OF MICHIGAN
7030-1-T

It is doubtful, however, if this has application to bodies more general than the
sphere, and any confidence in its physical implications is somewhat reduced by the
fact that it holds only in the back scattering direction. Away from 6 = 0, GV is
related to GS and Grn through an infinite and complicated series of vector differen-
tial operations as functions of 6.

To see the type of accuracy that can be achieved with the geometrical theory
of diffraction, let us consider the approximation (99) to the creeping wave contribu-
tion to the back scattering from a metallic sphere. For numerical purposes, EZ

is negligible compared with 6; and hence

As
G o~ -
\%

G

oo f—

c
h
where E; is as shown in equation (98). The modulus and argument of 53 have
been computed for selected values of p in the range 0.5 < p £10.0, and the results
are given in Table 13 along with a comparison with the more accurate data for the
vector creeping wave taken from Table 10. It will be observed that the argument
of the Keller approximation is in error by more than 30° for p £3.0, and the mod-
ulus by a factor 2 or more for p <2.3. Even more striking are the discrepancies,
particularly in the modulus, when p is of order 10. These are almost entirely due
to neglecting the term 0(7—1) in the exponent of (91), and reinforce the comments
made about this in Section 3.3. For the optics component, the Keller approximation
is identical to that in (94) and is therefore quite accurate. It is, in fact, more ac-
curate than for the hard sphere, and this is even more true” with the creeping wave
component.

Although this comparison is not meant to detract from Keller's theory which,

at the moment, provides our only means for determining the creeping wave contri-

"The considerable discrepancies between chl and 6; are evident on multiplying the
first column in Table 13 by a factor 2 (to get lé;b and comparing the resulting

values with the more accurate data in Table 6.
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Table 13:

~C

Comparison of Creeping Wave Components

71030-1-

T

Arg '('}‘C/ (degrees) i "é\C{I/IGzI

C ~
ArgG -Arg G
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OO NOUOUDUOUNO NO UNO Ul Wi O W ~10 U
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. 15939 -
.58092 .
. 41838 *
. 26992 .
.13381 -
.00852 -
. 89273 -
. 68542 -
. 50486 -
.13971 -
. 86083 *
. 64001 -
. 46052 -
.31162 -
.18612 *
.07894 *
. 86409 -
L05777 -
. 34955 -
L72317 -
. 16578 *
.66709 -
.21876 -
. 81395 -
. 44698 -
L11312

207,
229,
250,
271,
292,
312,
333.
373.
. 307
691 °

413

511,
608,
704,
800,
895,
990,
1084,
1178,
1272,
1365,
1459,
1552,
1645,
1738,
1831,
1924,
2016,

99

762
381
618
999
254
775
125
427

771
960
494
524
149
444
461
242
817
214
453
951
522
374
132
790

0.
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2382

. 2919

. 3349
. 3935
. 3704
. 4004
. 4262
L4777
. 0165
. 0472
. 0723
. 2932
L6111
. 6266
. 6401
. 6522
. 6629
. 6726
. 6861
. 6895
. 6969
. 7037
. 7100
. 7158

. 366
. 415
919
. 087
. 882
. 188
677
. 063
. 871
.604
. 461
.021
. 054
421
. 046
. 858
. 835
.919
. 106
. 370
.738
.116
. 969
. 066
.098
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bution for a general smooth convex body, it does show the necessity for an improved
treatment if the computations are to be accurate when the radii of curvature are not
large compared with the wavelength, What is required is some way of including the
effect of the curvature transverse to the plane of the geodesic, which will therefore
allow us to dispense with the simulation by a cylinder. An investigation having this

as its objective is now being carried out.
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