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ABSTRACT

The certain equations arising in the theory of acoustical scattering

theory are discussed. The Neumann problem is rigorously solved.
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I
INTRODUCTION

We consider a spherical coordinate system p = (r, 6, §) erected with
origin interior to a smooth, closed and bounded surface B, and let V de-
note the exterior volume. Then if GO is the static Dirichlet Green's
function for the surface B, and if G, is the Dirichlet Green's function

k
for the Helmholtz equation then it was shown by Kleinman [3] that

G (p,p,) -ikr
Wp,p) = -2k \ dv, =>—L 2 e 1(10 p)
+Py 1 r or, 1 %'Py: Py

v 1

-ikr_ +ikR( Py po)

1 e D 5 |
+ —— do- — .
41rS B R(p,.p ) on C'o(p P B)
B B’ "o

Here w is the regular part of G, and U = e-ikruk, R(p, pl) denotes the

k}

distance between points p and P dv, the volume element, do the sur-

face element, 3/3n the normal derivatlive directed out of V, and k is the
complex wave number.

An integral equation for the corresponding Neumann problem was given
by Ar and Kleinman [2_] , that is, if Go is the potential Neumann Green's
function for surface B and if Gk (with the regular part uk) is the Neumann

Green's function for the Helmholtz equation then
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. ' G o(p, pl) 5 »
u = -2ik dv : r. u(p il
p 1 ) 1 1 1

T or
v

] A A
+ o
ik ! dorB Go(p, pB) n rB u (pB)
B

-ikr ou

- do_ G (p,p,) e B (pi .
B o ''B on

B

with the same notation used above..

We write the above equation for the Neumann problem in the operator

form
Ulp) = Lo¥+ o ,
with
L=kL1=kO+kO1 ,
where
W —> O°w = -2i dv Go(p,pl) 9 [r w( ):I
1 1 or, L1 Py
A\
- . /\‘A
w —> O1 W= 1f doB Go(p,pB) nery w(pB) ,
B
and
-ikr_  du(p.)
(o) _ B_ B
u o= daB Go (p, pB) e ™

(o2



THE UNIVERSITY OF MICHIGAN
8136-1-T

With this notation it was shown by Ar [:1] that above equation can be
solved iteratively in the following function space W consisting of functions

w: V—QE1 such that
2
(a) weC (V),weC (VW ,

(b) w is analytic on the closed unit disc, in the complex z = 1/r plane,

having the expansion

00
w = Z f(6, 9 2" lz] <1,

n=0

(c) fn(9,¢) = 2 Ym(0,¢) , where Y is an m™® order spherical
m=n
harmonic, i.e.

m
_ ! ip
Ym(O,ﬁ) —X A‘,n? P_(cosf) e ",

1=-m

with the norm

lw|| = max lw(p)] + max Iu(O,¢, l/z)l ,
peV |4<1
for 0<8<m 0<P<2r
In what follows we shall define another norm on the space W. Then
we shall show that the operator L is bounded in this norm. The rest of
the anajysis for solving the main problem is the same as given in [1] .

We shall only do the analysis for the more complicated Neumann problem.

The analysis for‘the Dirichlet problem is essentially the same. Applications

and the consequences of the method have been indicated in [1] ) [-2] ) ;nd [3]

and therefore will not be repeated here.
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II

AN ALTERNATIVE SPACE FOR ITERATION

We recall that if w is in our space W, then

£(6.9)
, r>es=1
n+l -
r

where

03] m
, (n) (n) _ n ! iLg
= 2 Y (6,9) , Y - Z A, P (cosble .
m=n =-m

Implicit in this definition is the fact that the series converge abso-

lutely and uniformly and derivatives with respect to 8 and § also converge
absolutely and uniformly.

Thus, there exists a constant M such that

Y( n)
m

<M forall § and § .

Note, here and all that follows Yx(:) denote a mth order spherical

harmonic (depending on n). With this in mind, we define the following func-
tion mapping W into E1

(p) o
-
el o e 22 o
0<p<er
r>b

« max { max |u], max ffl o1}

peV e,¢ o0 fn b°t!

@. )
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where b is a constant such that b > 6 = 1.
Lemma 1 Function defined by (1) is a norm.
Proof
Since max (max i | X) > max| l for all x, and since max |u| > 0
peV pev peV
unless u = 0, it follows that
||u|| > 0 unless u=0.

We have Iar ul =| aI | ul for any complex number a. Therefore,

glea% IQ’ U.I =[Q/I ;njé u|

we also have

n=0 m=n r n=0 m=n r
Therefore,
(n) (n)
00 0] laY 00 Y
m “m
max 2 Z = la] ma 2 e —
6,0 n=0 m-=n bn+1 0,0 %’ ms=n bM-1
From (3) and (4), it follows that
n)l
max max , max Z Z
p€V n+1
J( (n)l
= [@] max{ max |uf, max ,
pev 0,¢ n+1
or
e = {ef 4]

(2)

(3)

(4

(5)
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For u and v in W let

DA L
n+1 , T26=1
n=0

u = =
(n)
® Z (6,9
ve ) 2 — , r26=1
n=0 m=n r
Since |u+ v| <|u| + [v] .
max [u+v|< max [u| + max |v]. (6)
peV peV pev
Also,
® ©
(o) () i- (n)
S o] o S 4 S .
m=n m=n m=n
From (7) it follows that
I 0 v a1 R 5 L1
6,6 | n=0 m=n p2 ! " 9, 1n=0 m=n 2t 1
(8)
+
6, o0 m-=n bn+1
From (6) and (8) it follows that
o+ vl <llul+lvl . (9

To justify the last step we must show that if A, B, C, D, are non-negative
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constants then

max (A+B, C+D) < max (A, C) + max(B, D) . (10)

Let max (A+B, C +D) = A +B.
Then since
A < max (A, C)
and
B < max (B, D) ,
we have

A+ B < pmx (A, C) + max (B, D)

This is sufficient to prove (10). The validity of (10) justifies the last step
(9). With (2), (5) and (9) it follows that (1) defines a norm, proving the lemma.
Lemma 2
IfueWthenlu-—-l 2" “ for all pe V, wherefoistlbﬂrst
coefficient in the expansion for u and C a positive constant.
Proof
We have for W e W

also,

B
3
=
it
B
"
Mg
e
AA
2
IN

0, w0 ! g o0 Ot m
r>b
© [Y(n)
< max m
- n+1

-3
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Hence, with the definition of our norm (1) it follows that

LL

0, pat+l < ““” ' (11)
It r% b, then since |f | <||uf|by (11
f f
-2 <l gl < 2 gyl

(12)

L a+ny .
L.

If r > b, then
Iu - .f_°.| - ‘ —Jf_n-l- < Em —J-f—EL =
T X n+l| - n+1
n=l 1 n=1 T

f () f
1 _J_n_l_ 1 _Ln.l_
yggdszgnd @

From (12) and (13) we conclude that

Iu--rgl < -% ”u” , forallpeV (19)
r

where C is a positive constant. Thus proving the lemma.
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Bounding the Operator L.
We recall that
L= kL1 = kO + kOl (15)
with
G (p.p )
w—>0m=-2[ dv [rlw(p )] (16)
\'4
and
- 4 2
w—> 01°w i 5 doBGo(p,pB) norBu(pB) . (17)

From (16) integrating by parts with respect to r, once we obtain

f
0
O%w = Zij‘ doBGo(p,pB) I:w(pB -3 ] +
B

B
(18)
o { \
+ 2i dv [lG (p, 1] [W(pl T :I = 2‘ w+03' w, A
thus splitting the operator O into two parts with
= .0
W —>02- w=2i dchGo(p,pB) [w(pB - ] (19)
B
B
and
1 9 fo
o opn( wy & opnl[ae-2] - o
v 1 1 1
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We now proseed to show in the following lemmas that the operators 01,

0, and O, aad theréfége L - O+ O = 0, +0,+0, is bounded in
norm (1).

Lemma 3

The operator O3 (Eq. (20) is bounded.

Proof

From the Eq. (20) and the estimate of the Lamma 2, it follows that

for some constant C > 0,

Il i S
jogeu] < ¢ @y, =5 | 5 &r1Go (p.p,D) -
v r1 1 )

1 r
R(p,p)) as R — 0, a-tof(r4)as

rl—-> o, hence for some constant C1 > 0. 1

The integrand is of O (

max [O3°w] < C1 Ilwll .
pev

Next, in order to show that ”03° wl < C "w” for some constant

C> 0 we must show (see definition of norm (1)) that if

o, g(6,0)

o b L -
®3w nz_ rn+1 , r>6=1

and

10

(21)

(22)

(23)

(29)
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then
l (nw
(25)

o S 27 tm oyl

. Note that O3o w has the expansion

for some constant 02 >0(M>6=1)
tndicated by (23), (24) and (25) because we have already shown that L

and all the other operators involved map the space W into itself
Now we proceed to carry out the quite tedious task of showing (25)

First, neglecting the constants

f
1
037 v > f o o (0] 3]
\'
(26)

11 2,1
f d"1r_ oy [r“o] 4 d1r1 (“”'—)ar(—)
v v

is the regular part of the static Green's function. Consider the

where u
0
=1

first 1ntégral. Forr> 6
f

i 0
g dvlr(w-r)
Vv

1
f 2, Y (6.0;p,)
l _ 9 9 _L_’_L_
Ul [r1 Z o+ J * (27

2 e
a (ruo)r

= dv
1
1 1 }
Vint =0
®
f Y (0,0;06.,
+ dvrl—(w-—g')i[r I P lp)]
1r T, 9 n+1
1 n=0 (rr,)

11
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where th is the volume exterior to the surface B and interior to the sphere
of radius 6 = 1, Vext is the volumg exterior to that sphere. The expansions
in spherical harmonics for the Static Green's function are given previously.

Since the integration with respect to P does not change the fact that
the integrals are still n th order spherical harmonics, we must show that

8

1 1 0
;napx g bn+1 dv1 r - r [r b (6 ﬁ,pl)}
Vint
Y 1 fO 0
oAy - Y (6.8:0,.8) (29
Q,,/ =01 1 r,
ext

g)' < K1 Hw” , some constant K1 > 0.

"

- g
8
7|~
[\']8

t.e.iTLyClearly,

f
i’ 1 1
n+1 dvl r - ) [r b (9 f pl)] )
n=0 b v 1
int
f Y (6,00,
IS o ¢91 ¢1) < ® { . B
1 T T n+1 - n+1 oL
1 1 T n= b . .
' 1 i
ext o
1 0 n ~
- -4 9 - l-<0
dv1 =197 |lor (rlY ) dv1 r = TS
1 1 1 1 1| r
v \'/ 1
int ext

12
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Note the Yrl in both integrals arise from the regular part of the static

Green's function. That is

2 Y (0, ¢;p1) o
% Z rn +1
n=0

v

o
"

—

(30)

forr,r > 6=1.

1

The fact that the series converges absolutely and remains absolutely

convergent after multiplying by r1 and differentiating with respect to r )

means that

<as®tl-n (31)

9 o)

[arl [rlYn(9‘¢’ plil
for some constant A independent of n, 6, ¢, and pl. Similarly, there is a
constant B such that

2n _

lYn(B. ¢;91, ¢1)‘ < B¢ B . (32)

Now using the estimate in the Lemma 2, Eqs. (31) and (32), we obtain

f
2

I

2

1
by é)r1

1

w-

(rlYn) dv1 < C"w"

vint

(33)
: 1
A o sin6 dr do df <D [u],

1
1
Vint

13
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for some constant D > 0. And, similarly

i |ve.00,.8)
8.2l L1l g <o
T T n+1l 1 -
1 1 by
1
ext
(34)
n
BS §n+4dv1 < E |o| .
Vot t
for some constant E > 0. With the help of (33) and (34) we obtain
< L
;napx Z bn+1 dvl;-(w——)“'[lY (9¢P:| -
’ n=0 v
int
- ® C3”w||
) dv) -7 7 Y, 0.450,.8))1 < n+1 (35)
1 lr b
v 1 n=0
ext
- el
- 2= -, ol

C3, C 4 are appropriate positive constants; we also recall that b > § = 1.
This completes the first part (for the regular part of static Green's
function).
Next we go on to the singular part of the static Green's fucntion (second

integral in (26)).

14
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r= or
v 1 1
(36)
n
f W T
N S (R SR T =
e g, 3 (W T arl r Z rnH P (cos v) dv1 ,
\' n=0 ">
where cos Y = cos cos§ +sinf sinf cos (9 - pl). Forr> 6§ = 1 this
becomes
’ f ® rn"'1
1 L0y 9¢ Z 1
4r g l"‘(w r )8r n+1 Pn(cos'r) *
v d 1 1 n=0 r
int
, r 2w T fo
b dr, d¢1 S @ r W -q)
1 0 0
n+1 (37)
®, T
. sinG1 or E mer] Pn( cosW) J +
1 T
n=0

(0} 27 T
1 fo 0 < x'nl
A dr1 d¢1 tﬂlrlsinel(w— ;)i)r_ Z Y Pn(cos 7
1771 T
0 0 n=0 1

15
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For r > 6 = 1, however,

® f(e ¢)

2! n+1

n=

86:(37) may be written as

1 & £ 1

o E : —I-(w-;:)rl Pn(cos'y) + y dr1 X
th 1 0vo
o f (91,¢1) ® r:

X sinelcﬂldﬂl E —m——'—m S i (n+1)Pn(cns M+ (38)

r r
=1 1 n=0
{ © 2 1 o) fm(Ol,pl) © 0
el W sin61d691d¢1 E —;—;— -(—nL-r 1 P, (cosn.
r 0vY0 m=1 1 n=0 1
Recall that

(04)
_ Z (m)
£=m
so that

27 T
g d¢1 SO &, sinb f (0, ¢1) P (cos 7) = 0, n<m.
0

N .

(m)
=1 Y, (6, §), md> m.

16
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Hence from (38) we have

f (04}
(nt+1) 1l o, n
47 Z n+1 dv1 l.1((.1 I‘l)ran(con{)+ dr1 2: X
1 m=

int
+
o Y,p ® Yflm’(e f)
X Z o+D) o+l (a+1) - i Z .
n=m m=1 n=m
(39)
nrn 1 oo n+l fo n
X mil a2y ari| Mi@p)rRlesd +
n r 1
n=0 \' s
int
® ® m n-m+1 ® o Y( 0, pur"
N Z 0, n+1 (r -1)
2 , 2n+1 n+1 (n-m+1) 2! 21 (2n+1)(n+m)
m=1 n=m m=1 n=m
Now we reorder the last two sums to put them into the "right" form.
These sums may be written as
(m)
3t
r™(2n+1) e
m=1 n=m ~
(40)
® o Y(m)(O,ﬁ)(n+ 1)
Z n +1
1 nem (2n + 1)(n-m +1)

The first term can be written, changing the roles of m and n and

starting the first sum at zero as

17
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(n+1)
S Ym ©.9 <m+1 _ !.l;_‘> -
Z Z n+l \m-1 n+m+V ~

a0 meatl (2m + 1)r
(41)
S (n+ 1 @, $)n+1)

Next, the second term in (40) can be handled similarly; thus

@ Y, p0+) -1 Y™, f)(a+1)

[00)
. (42)
m;' g; (2n+1)(n-m+1) Z T 1(2n+1)(m+1)

n=1 m=0

5

Thus, we can write the integral (36) involving the singular part of the static
Green's function, with the help of (41) and (42) as

f r ® '

1 1.2 2. 1 Jen|
4r g dv1 r, © T ) ar1 R; Z l_n+1 4r g dv1 X

\'A n=0 'V

int
Y £ yyia+ 1)
X -L(w-l)rnP (cos®) + m 43
r, T, l'n (m-n)n+m+1) ) (43)
m=irt+1

nel (“ ™o, Bn+ 1)
) Z (2n+ 1)(m+1) ’

m=0

where the last term is identically zero for n = 0.

Our task is to show that for some constant 05 >0,

18
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® ®
1 (n) ]
;na; 2 bn+ 1 2! Z m (6'¢) S Cs "(0" ’ (44)
! n=0 m=n
where
(n-m)
NN (S G SR U < 2 L
n 4 11‘1 r, 1" n 2n+l m+1
Vint m=0
and

@ Y$+ Do, g)n + 1)
VA = N m>n+1

m (m-0(m+n+1) -

Clearly
(n (n)

00 1 z(n) _ (3] Zn . (01] (3] YA w
i Bn-l-l m Z bn+1 Z Z B%‘m" =
n=0 m=n =0 n=0 m=n+l

® f ¢
i 1 o, n

< Z: e [ dvl(w-rl)r1 Pn(cos'y) +

n=0 int =

(45)
n-1 Yfln-m)(e, #)

N Z‘” o+l Z N
= (2n+1)bn+1 m+1l

n m=0

» | o Y$+1)(0,¢)(n+1)
*Zb?i' Z (m - o)(m+at 1)

19
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Consider the three terms on the right hand side of the inequality (45)
separately. Firstly,

f f
1 o, n 1 0 n
" (m—r )ran(cos 'Y)dvl < ol Gl B 9 Pn(cosy) dvl.
1 1 1 1
Vint Vint
But
fo C
w-— < 5 vl . ’Pn(cosv) <1, 0<r ;<=1
1 by
1
So
1 fo n
S dv, ;(w-q)tl Plcosy| < Q ol . (46)
Vint

where Q1 is a positive constant independent of w.
Notice that, with b>é = 1,

$ - B $e
4”bn+1 1 4rb bn
n=0 n=0
ol o
Q, |l ® lof 2
1 d 1 1 b
= — = <Qllv|, somegq, >o0.
ab ) Z prtl dmd o 2 =2 2
b n=0
Thus, with (47), (46) we have
04) f
ntl 1
Z ) g dvl;;-((‘o-;o-)rll1 Pn(cos'r) < Q2 “wll . (48)
s 47b v 1 1

int

20
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Secondly,

® n-1 Y(n-m) o n-1 (n+l)

(o41) n
mtl Z Z (2n+l)b

nH
(20+1)b m=0 n=1 m=0

(n m)

ol (m+1)

Q0

@
Z -Ln Z IY(mn)l (replacing n by n - 1) (49)
b

n=1 m=n

IN

252

n=0 m=n

IN

o
m

< b|lw| (by definition of our normk.

Thiedly,
nﬂ) I
(nH)

S o 1| (otD)
Z Z (m n)(m+n+1) SZV Z—bﬁ lYm !S

m=n+1 n=0 m=n+l1

(50)
n+l
(m-n)(m+n+1)

< bfjw] . ( since < 1) as above.

Combining (47), (49) and (50) we obtain the inequality (44) which com-
pletes the analysis for the singular part. Equation (44) with the inequalityl
for the regular part, (35), yield (25). Finally, combining (25) with: (22)

we obtain

oo < el . (51)

where C is an appropriate constant, proving the Lemma 3.

21
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Lemma 4

The operator O_, Eq. (19), is bounded.

2 3
Proof
From the Eq. (19) it follows, with the estimate of Lemma 2, that for

some constant C > 0,

IG (p, py)
’Ozow or B ___<>Cl|w|| X

< Cllwllg do

B

(52)

1 1
X S pr——TE doB + g [uo(p,pB)I ” doB
% B B Y B ‘

i

The first term on the right is the potential of a single layer distribution
of density 1/ 47rrB. Since s # 0 (the origin was taken with B) and the
surface is smooth, closed and finite, this density is uniformly Holder
continuous which means that the potential is continuously differentiable for
all points peV. The second term on the right hand side of (52) is the
integral of a bounded function over a finite surface and, hence, is bounded.
Thus, there exists a constant N1 > 0 such that

|o° I_ N : (53)
g};‘ R e

If

and

22
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then by exactly the same long procedure of Lemma 3 it can be shown that

(n)
max Z Z

S <l (59
n=0 m=n

for some constant N2 > 0.

From (53), (54) and the definition of our norm, it now follows that

ool < x ] s

for some constant N > 0, proving the lemma.

Lemma 5

The operator O , Eq. (17), is bounded.

1!
Proof

We have with Eq. (17)

o v]< { aog|aorg] |82 |uteg] - &
B

By definition

[oteg] < o] - (57
Also, 1 and GB are unit vectors,
<1, (58)

|ﬁ et

thus,

[olo W

< | g |Gg{p, po)} doy - (59)
B

23
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The surface integral is bounded by the same argument given in the

first part of Lemma 4 (Eq. (52) ). Hence, for some constant A1 >0

max lOl' W

< Al

Furthermore, if

o g0, ')

and

g (6. 9) = ‘25;7 Z

m=n

then, agmin; by exactly the same argument of Lemma 3, it follows that

[00) (00) lzg‘)
max 1 < Al
9,¢ B N b

n=0 m=n

for some constant A2 > 0.

From (60), (63) and the definition of the norm, it follows that

|

for some constant A > 0, proving the lemma.

|>< A [uf

01° w

It now follows immediately from the Lemmas 3, 4 and 5 that:

Corollary. The operator L = kL1 (Eq. (15) ) is bounded; and there

< 1.

exists a complex number k0> 0 such that for |k| < lkol , IILI

24
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