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ABSTRACT

An integral equation useful for computations of currents induced on a perturbed
conducting surface by an incident plane wave is developed, where the perturbation
is of stub or protuberance type. However unlike the usual approach, the free
space Gréén's function is not used. Instead a dyadic type Green's function whose
tangential components vanish everwhere on the unperturbed surface is employed.
In this way the resulting integral equation involves an integral taken only over the
perturbed surface. An explicit expression is developed for the kernal of the
integral equation for the case of the unperturbed surface being a sphere. A great
simplication is achieved in the integral equation approach for a special class of
perturbations on a sphere. For these cases, the vector field can be represented
in terms of two scalars; and the resulting vector integral equation reduced to two
sets of coupled scalar' integral equations, taken only over the sufface of the
perturbation,

iv
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I

INTEGRAL EQUATION FOR A GENERAL PERTURBED SURFACE

The integral equation for the currents on the perturbed portion of a general
perturbed surface will iae developed in this section. The surfaces under considera-
tion will be perfectly conducting, and the perturbations that are considered, will
be limited to protuberance types. Define the following:

So ¢ surface of unperturbed perfectly conducting shape

X surface of perturbation or protuberance

S : surface composed of S, and the unperturbed portioh of So .

1

~ Let (E, H) be the total Maxwellian field (harmonic time dependence exp (-iut)
assumed), which are generated by a plane wave (p_‘, l_-ll) incident upon the perfectly
conducting shape 8. The incident field will be given explicitly by the relation

+kz . )

J

and | > | @
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Let (E , ii') be the total Maxwellian fields which are generated by a magnetic
dipole at R in the presence of the unperturbed surface 80. The orientation
of the dipole will be given by the unit vector m. The component of this field,

due to the source only, has the form

i

=

. _V_x-e-r— m, where _r_-|g-go| (3)

and in the far field the total fleld (E, H) bas the form

‘\
ikR
~ e
E~v = £6,9; R) |
¢ w

Ho "’Ne1kR ALK
-E-—g R Bx£(0’¢’n) ¢
° J

Employing the well-known Lorentz lemma, the following integral relation
connecting the two fields, is obtained

’

p_'(_li;xg _f:_xﬂ)ds-o (5)

8485+

where the surface comprises three separate surfaces, S, 8 which is a sphere
of infinite radius, and Z a small sphere enclosing the dipole source at r .
The vector n is the unit outward normal to the surfaces. (See figure 1).

Since n xg vanishes on 8, and n x E vanishes on 8, the above
. integral reduces to

f&.

(8)

ey
ot
Iz
&
-
%
(|-
| Sy |
I
kR
o} ]
”t
&=
&



THE UNIVERSITY OF MICHIGAN
8432-1-F '

n

o\

S1 Perturbation

(Small Sphere Centered
at _I_lo)

1]

So Unperturbed Surface

FIG. 1: GEOMETRY OF SURFACE
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The integral taken over the sphere of infinite radius can be evaluated as follows.
Explicitly it is given by the relation

2r «
uO 2 ~ ~
- lim 8 - - d
"o ni—-mj. !R ina[E¢Ha+E¢Ha Eo +E H,] o dg

2 - lim f JI de dg [couﬁ; -'f; sln,¢] R 81n6 (1- cos@) exp [ﬂ(R(l‘H!OIO)]
0

R—>m® 0

[ocd

R—®

r T
= - lim :&'i dﬂ[(l-coso) [cosff'a +7¢am¢]dnxp}[lkn(l+coloz‘l
0

~

--% dag [coa¢'(: --f¢ linﬁ]a"

4xi A »
- 2 1e=mR) M

The integral taken over the small sphere of vanishlng radius r = I R-R l
centered at R is given by

lim i-[gxg -E‘xg]r n (8)
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where gt is given by Eq. (3). For r small it can be shown that

- 2 ’
r

. A
Eifv (r x m[

. A A
W 3 ‘T)-m
gl Bnime L m]

o- 3
r

in which case expression (8) reduces to the form

. Exm
lim | 7. [(gxm)xl_ﬁi " ] ..
r—0 o

To evaluate the integral local spherical polar coordinates (r, 0, ¢') are used,
with the z-axis being in the direction of the vector m . The fields at a point
(r, ', ¢') on the surface are expanded out in a Taylor type series about the origin.

It follows that 7 - (Exm) xH = -(H-m) +(z - m)(H- T)

= -(H-m) 816" + s1n6' cos 6' (ﬁx c:onsﬂ'/-l-ﬂl‘y sing')

where the components of H are those given at the origin fe: H= 1.1(50) :
S8imilarly
A Exm ging'

LS (cos ¢! Ey- sing' Ex)

. -’rl"i [cos' E (R)-sinf E (R )]

JE ) ) )
8in 6'cosg' [sino'cos ¢' =X+ 81ng'sing’ — + cosd' —!]
ox oy oz

' 1 ' aEx 1 aEx ot aEx

1 '
- — —_— — .
sin@ sing’ |sing' cosf o+ eind sing T, cosf ™ ]
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The above integral reduces to

y U 3 g i aEy aEX V
(s1n6)" do df '(ﬂ'-"-‘-“zwuo <3x - ay> “-4rHB)'m (@)
0 0

With these results the integral relation (6) reduces to

HR) m=-- "E®; R)xH®"ds' -2 1 (0=1; R) (10)
=% = 4 o r2i: I )x22 k x * o ‘
sl
It is evident that the above can be expressed in the form
0 1 ~ 1 ' 1 ' '
BR) m~E° () m+, f E(R:R)- [o xH(R)] ds (11)
5

for R outside surface S. go (I_{o) is the field generated at the point R by the
plane wave [glven by Eq. (1)] » in the presence of the unperturbed perfectly con-
ducting surface So . The above equation indicates that if the solutions are available
for the unperturbed surface (ie: go and E can be prescribed), then the field H

at a point Bo generated by a plane wave incident upon the perturbed surfaces is
given in terms of the current on the perturbed section.

An integral equation for this current is obtained by letting I_lo approach the
surface of the perturbation for tangential orientations of the dipole m. It can be
shown that when B-o is on Sl. the following equation is obtained
§(5°)°9;t-2§°(_fso)-m_t+;l; [ ER"; R; g‘)-[g'xg(g')] ds' (12)

S

1

where m ¢ is tangential to the surface.
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)14
APPLICATION TO A PERTURBATION ON A SPHERE

The special case will be considered, where the unperturbed surface So is
a sphere of radius a, . )

From Stratton (p.569, the value of I_jo (go) corresponding to the total field

generated at the point I_to by a plane wave incident on the perfectly conducting
sphere can be obtained immediately as follows

Ho

{ 2n+1 (3) (3). ikz
H ®) » n(n+1) n M'e1n+ . anNOI Z ¢ (13)
n=1
where
1 (o) (
14)
1
i o)
[p3 (pY) »,
n- —--—-—-—-(1) , (15) '
[ph (o)]
with p=ka .
To obtain an expression for the kernel of the integral Eq. (12), the electric
field generated by the dipole at Bo is decomposed into two parts
~n n 1 ~S8
E=E +E (16)
where Agli is the field of the dipole in free space, given by
~i eikr
E =V x m
2 ") r =2
and :ﬁ 8 is ghe scattered field due to the sphere. From Appendix A it is shown
that '_ﬁ_i can be expressed in the form
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~yq ~q ~~
E-YxYxRV +YxRY (17)
where
~q
Viem ¥ xR
ol 18)
X *m*-V xV xR «r
= =0 =0 o
and ,
(1) ~
. Z (2n+1) J (kR) b (R o)} P(cosy) R<R 9)
n(n+1) (1)
nml hn (kR) jn(kRO) R> Ro
with R- I_to 2 RRcos ¥ .
The scattered field can be written in a similar manner as follows:
E*-yxvxRrP°+yxpX" . (20)
The boundary condit.ion on_the total field
A ~ ~
Rx[E°+EY=0, R=a.
dati b8 Expressed in the form
X +%%=0 R=a (21)
9 o
R {R[W Ws]}'o (22)
It is immediately evident that
Y®ekm-V xV xR Z Zu+l ‘“(ka)h‘”(ka IP.(con ) (23)
° 7o n(n+l)
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e - 2t (D)o (D)
v - -lkg_-_V_oxgoZ Sy byby GR)BGR ) (cos ) (24)

n=1

where the constants a and bn are given by Eqs. (14) and (15) respectively.
The kernel of the integral Eq. (12) has the explicit form

E@ R)-¥xgxBE®+7)+TxRE°+X) (25)

where the scalar functions are given by Eqs. (18), (19), (23) and (24).

Explicit forms have now been found for I_io (R) and g(g; Bo) associated
with the integral equation for the currents n x H on the perturbation.

To complete the analysis the appropriate explicit expression for the far
field should be obtained from Eq. (11). In this case the value of E(I_{. go) for
‘ Ro-) o is needed. It can be shown that

ikRo-ichosw
~1 e A
E®.B) ™ - kR, x m, (26)
° R —® Ro o
T (m - a)k ‘(n_:-ll))_ ( 1)n<l»1 “’(kR)P‘ )(coa'y) -
R —®
° n=1
s 2ntl) o+l (1), (1)
v R :m n(or1) Pol By GR)E (o -'r) (28)
0 n=1
where - ﬁ acoslz ﬁ Bcosz
[To smg 3 "o
= sin ¥ (29)
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b gcosy 'Q" 8 cosy
=0 8inf 09 Fo 96
8 = o ‘o 20

siny

(30)

with

cosy = cosfcosf + sinf sin6_ cos (@ - ¢°)

When R T, E(_B, Ro) 1s essentially the total field produced at R by a '
plane wave incident on the conducting sphere R=a.

To obtain the far scattered field expansion (11) is used with R o—-> o and
the vector m taken to be in the é 0 °F Qo directions. The far scattered field
is comprised of two parts, the scattered field produced by a plane wave on
perfectly conducting ‘sphere given by the term _}}0 (30)- m, and the scattered
field due to the perturbation }_{p(B_o)- m where

HER) m = o= s ER, B ;m) - [ax HR)] ds

=p —o 4r
81

where E(R‘, Ro; m) for Ro—->oo is found from Eqs. (25), (26), (27) and (28).

10



THE UNIVERSITY OF MICHIGAN
8432-1-F

III
SPECIAL CLASSES OF PERTURBATION ON A SPHERE

Great simplication of the integral equation approach is achieved when the
perturbation on the sphere belongs to a special class. This special class of
perturbation is characterized by surfaces which are comprised of spherical caps
R = constant and c?nical sections f(6, @) = constant. Two examples of such surfaces
are

(1) the conical stub: withcap R =b, and conical side 6 = 90

(2) the flat plate: with cap R =b, and sides 6 = 6, 0=7+ 00, g-= ¢0 and
g = -9
For these types of perturbations, the total field (E, H) generated by the

plane wave (Ei, I_Ii) incident on the perturbed sphere, can be represented in

terms of two independent scalars as follows:

H=YxRy+ VYxYxRy (31)
1
-1 eo/uogsk—yxyxnw+yx_nxf . (32)
Using the relations
Vx Ux B = BPRy + ¥ (D),
VxRBRx = VxxR ,

it follows the boundary condition n x E = 0, applied to a spherical cap
. R = constant , ylelds the conditions

11
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ORY _
xya 0

1>

and  Vx -RR ¥x) = 0

Since both the opgrators ﬁx V' and [_Y - ﬁ(_ﬁ_ . Yi imply differentiation along
the surface, the ;.bove two conditions can be expressed in reduged form as
follows

?a—l;ib =0, and x=0 for R =constant .

In a similar manner it can be shown that the boundary condition n x E=0
applied to a conical portion £(6, @) = ¢ reduces to the conditions

_ ox _
v=0 and w =0

where -5% implies the normal derivative.

Thus, since the incident field can be decomposed in a similar form as
Eq. (31), namely

H = vxRy' + £ 9x vx Ry (33)

it follows that the vector problem can be reduced to the following two
scalar problems: |

(1) find ¢ = y* + ¢! such that

(a) wi is the given component of the incident field,

(b) Y8 satisfies the scalar Helmoltz equation and represents, an
outgoing wave

(c) with boundary conditions

SR Y _ -
3R 0 for R = constant

]
aand

(34)
v =0 for 1£(6,¢) = constant .

12
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(2) tofind x = xl + xs such that
(a) Xi is the given component of the incident field,

() x° satisfies the scalar Helmoltz equation and the outgoing
radiation condition, '

(c) with the boundary conditions

x =0 for R = constant,
(35)

%’l—i— =0 for £(6, §) = constant

The above decomposition of the vector field in two scalar quantities will result
in a simplication of the appropriate integral equation, the development of which

follows. Define the following:

So : the surface of the unperturbed perfectly conducting sphere R =a

Sl : the surface of the perturbation wheih will be comprised of two parts,

(a) C the sides given by the cone f (6,@) = constant, a< R <b, and

(b) T the cap givenby R = b,
S : the surface comprised of S1 and the unperturbed portion of S.
The scalar quantities x and ¢ associated with the total field (E; H

generated by the plane wave incident on S, must satisfy the following boundary

conditions
(-?-I-w-) = 0 x =0 for surface S
oR ‘a ' o
(37)
3R Y, . )

(—-—aR)b 0, x=0 forcap T

¢'=o 8X - 0 for sides C
- for sides

13
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In addition, the field (EC H°) (which s the total field generated by the plane
incident on the unperturbed surface SO(R = a)) and associated scalar quantitites

x° and ¢° will be introduced. It then follows that

0
SRy _ 0
(38)

OR . for R=a
0

x =0
To derive the appropriate integral equation for ¢, the Green's function

G, (R, R ) must be introduced, where

2 2
VG +k G, 476 (R-R ) (39)
and which satisfies the boundary condition
9RG,
-—a—R-’O for R=a . (40)

The Green's function has the explicit form

ikr
(1) (1)
Z (2n+ l)bnhn (kR) hn (kRo)Pn(cos'y)

e
6 B) = = kL
(41)

where r=|/R-R |, RR cosy=R'R , andthe constant b_is givenby
~ =o o =0 n

Eq. (15) .
Integrating the relationship

2 2
YV G -G, VY = 4ry 6 (_13-_1_10)
one obtains .
ve) = | B (470, -G, ¥¥)as (42)

S+8S
(00)

where Sm is an infinite sphere, and n is the inward normal to the enclosed

volume.
14
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Similarly it can be shown that

L

o
yom n- (Y VG

-6, vy’ ds . (43)

[}
v (R = 1

Iy s
0

1 and wo satisfy the same
boundary conditions on this surface. On combining Eqs. (42) and (43) one obtains

The integral over the surface So vanishes since G

!

]
g L _1_s 9
“Bo) v (Bo)+ 47 j‘S' W on Gl an)ds
' 1

1 0 0
+ ;—;IS o [w-v)ve, -6, vw-v)] as
0
The integral over the infinite sphere vanishes, since Y - d/o does not contain the
incident field, inwhichcaseboth G and ¢ - ¢/° satisfy the outgoing radiatton

condition. Hence the above reduces to
oG

= ¢° 1 1. s %
TSRy’ (30)+4”'[S W -0, Lyas. (a)
1
In a similar manner it can be shown that
oG
= 0 1 2 9x
x®) = x®) +4”L 55 -G, 3n)d8 (45)

1

where the Green's function GZ(I_I, _130) is given by the relation

ikr
_e Z ' (1) (1)
Gz(g, 50) == ik (2n+1) a hn (kRo) h

L a (kR) Pn(cos v)  (46)

15
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with the constant a given by Eq. (14) . The above integral representation can

be written as follows where use is made of boundary conditions (37)

G, G
P 6 2 ges [_1 &
d’@o) 'p(go) 41r[ Gl on dS+4”I 4 8n+ b]ds (46)
C T
oG
xy© 1 —_245--L x
.X(Bo) X(Bo)+41rjcx on ds 41rSTG2 on ds , (a7)

where n is the outward normal. A description of the surfaces are given in
Fig. 2. The fundamental problem remains to find g—g— and x on the side C
and ¢ and g—’é— on the cap T, for when these are known, the total fields x
and ¢ can be determined. The integral equations for those quantities can be

developed by letting )BO approach the surface, and taking the appropriate 1imit.
It thus follows that for Bo on the surface T

oG G
2040 _ 1 oy 1 1 1 -
w(Bo) 2y (.13.0) Zw[ CGI on ds + 27 ITW( on * b )ds (48)

. 2
9 o
KB) 2RY g p D0 yp 2% g 4s)
on on 27 onon 2 on n
o o C 0 T o

and for _Bo on the surface C

0
3V/(Ro)- 2oV (RO)-_LI a_(?_l_.a_'.p.ds-i-—l—j' w_é. l:.a.il...i.l]ds
C T

‘ano ano 2r Bno on 27 8n° on b
(50)
G
NPSY TSN N Ot U T WA
x(Bo) 2x (Bo) > ch - ds 2"ST02 3o ds . (51)

16
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Cap of Perturbation T
(R =b)

Side of Perturbation C
(Conical Surface)

Unperturbed Surface S
(Sphere Radius a)

FIG. 2: GEOMETRY OF SURFACE PERTURBATION.
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It is of particular importance to briefly investigate the behavior of the
scalar functions and their normal derivatives in the immediate vicinity of the
edge. The top edge formed by the intersection of the conical side C and cap
T, has an exterior wedge angle of 37/2 radians. From Maue (1949) it is seen
that the tangential component of the magnetic field which is parallel to the edge,
H K is finite whereas the other tangential component which is perpendicular to
the edge, H 1 must behave like s-l/ 3 where s is the distance from the edge.
In the local region of the wedge the leading term of x and ¢ are solutions of the
two-dimensional Laplace's equation, with solutions of the form

v ty
s cosv@d' , s sinv@',logs
where ' is the angle measured from the tbp face T. Applying the boundary’
conditions Eq. (37) on the wedge faces §' =0 and @' = 3r/2, it follows that
v=1/3,2/3, ....
However using relation (31) and the conditions that H" is finite and H 1 ~s-1/ ?
it can be shown that the lowest admissable solution is given by v = 5/3. This

implies that x , ¢, %%, and -g—'ﬁ are finite at the edge.
The far field expression (for Ro—ooo) can be easily obtained. Using the
relgtions,
lkRo |
GI(B" Bo) ~ _e—ﬁo— Fl(eo’ ¢o; R, (52)
and
1kR°
Gy(B, _13°>~3i:- Fyl0, 0 R) (53)

18
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where

F = e-ichos'r _

, 2. a1 (-9 nY

- N (kR) Pn(cos'r) . (54)

F = e-ikR cos Y _

n, (1)
9 ‘h

Z (2n+1)an(-i) o (kR) Pn(corr) ’ (55)

n=0
it follows that

ikR
0

0, v (2]
W(Bo) -y (B.o) ~ "—R-:- fl(eo’ ¢o)

ikRo
o e
w(Bo) -y (Bo) ~ T f2(9°. ¢0)

where
1

ORF
oy 1 U/} 1 ,
f(0,¢)=-——5 F ——dS+—I —[————] s (56)
10’70 41rC18n 47 Tb oR R=b

1 oF, 1 dx
1,06, 90" IC X 548 - WIT F,2X ds . (57)

The scattered far field due to the perturbation is given

8 e 0T 1 0 A 9
}—Ip@o)'v Ro 90 sineo 87f0 —¢05-§‘ f1(00'¢o) (58)

The total scattered field is obtained by adding to expression ( 58) the scattered

field produced by the plane wave incident upon the unperturbed conducting sphere
R=a. '

19
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v

SUMMARY

4.1 Geometry: The perfectly-conducting surface consists of a stub on a sphere
of radius a, with the surface of the stub described by a conical side C and cap T,

where

C: 6=F(f), agRgb
T: Ra=b, 6 and § contained in the cone C

Examples (1) oconical stub: C; 6=0°, agRgb, 0gPg2r
‘ T; R=b, 0<6<6,; 0KP<2r
(2) flat plate: C; surfaces 6=6, 0=7-0 , ¢'¢o"¢. -¢°

T; Rab.

4.2 Incident Field: The incident field is a plane wave. (harmonic time dependence),

of polarization e, and direction of incident given by -k . , where

1
k, =k (sing, cos¢1, sinolsin¢1, cosf, ) .

In particular, the incident field is described by the relation

E'=gexp(-ik, - B)

o R
where e=e g1+e211 .

20
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4.3 Fundamental Integral Equations: There are four unknown quantities to be

found, ¢ and %ﬁl which are associated with the surface T, and %ﬁ- and

which are associated with the surface C The resultant four integral equations

decouple into two sets of two The two integral equations involving ¢ and %;ﬂ

are as follows, for Bo on T,

| G, G
c20°® )- L ¥, 1| (1 _1)
W(Bo) 2¢ (Bo) 21[G (B'_B) +2 [‘”(an +R ds

C T

and R on C,
=0

WR) 2001R) 8G G, G
o IV 1 By o (Zh, %
[ on 9% ["’ <aa+n>d"
c T

on on 2r
o o

The Green's function G, (R, 1_10) has the precise form

G.(R, R ) L - > Gt b b cr)n M )P (cos )
1=’ =0 r D n n o 'n
n=0
and its derivative is given by | O A
aGl
TR NP AN IR

where n o is the unit outward normal to the surface (in this case the conical side C).

In the aboye expresgion for.the Green's function, the following relations are used,

21
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r=|R-R

R, -

c08 7 = cos 6 cos §_+ smesineocoa(¢-¢o) ,

T [P,Jn(p\)]' |

b F =——— Wiﬂlp"k&.

" lpby )]

The function d/o (go) is given by the relation (see Appendix B)

n(n+1)

€ n
o o (-1) (2n+1) (1) (1)
@) - ,“o (@-e) > SR eony ) G )-b b )]

n=]

where cosvy =cosf. cosf +sinf sind cos(f -¢.)
1 o 0 o'l

1 1

and N -
as 21 [—cosoosmel + smeocos 61 cos(¢°-¢lﬂ/ sin )

+al [sinoosm(¢1-¢o)]/sm§1 .

The two integral equations involving x and gﬁ are as follows for Bo onT

0

9 2

x(Ro)‘ 9x (I_{o) et N <ac;2) uol 862 éxds

on R 2r | Xan \&R 2r | 3R on
0 0 C 0 T 0

and for Bo on C
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The Green's function Gz(l_i , 50) is given explicitly by the relation

ikr ‘ .
G, (R, go) = e—r— -ik Z (2n+1) B hfll)(kR) hx(xl)(kno) Pn(cos';y)
n=0
where j (0) .
a_x e with p =ka .
n (1)(0)

The known function xo (R é) is given by the relation (from Appendix B)

(1) '
! ' (-i)n(2n+1)P (cos v,)
X (R ) =i Q. exk ) Z - (n+1)n 1 l:jn(kRo)-anhfll)(kRo)] .

n=1

4.4 The Far Field: The far scattered field is composed of two parts

B H+p

where I_ios is the scattered field due to the perfectly-conducting sphere R=a, and
ps

H" is the scattered field due to the stub. Since the expression for Eoe is well-
known, only the addition term Eps will be given here.
ikR0
Aol 9_ A~ 0 ]
5 H (B) [‘Qo sino op_ Lo 30 1,9 9
o o o o
ikR
o

e A9
tk3 [%aoo+osma a¢]f2(9 b

(o)
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with

-KRoos B (1) |
F = cosy _ Z (20+1)b_(~1)" b "'(<R) P (cosy)

n=0

F2 » e-ichos'y - Z (2n+1) an(-i)n h(l)(kR) Pn(cos ¥)

n
n=0
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APPENDIX
A

It is the purpose of this appendix to prove the relation

m .
Vx(3—t)= VxVxR(t-V xR 7)+VxR(t YV xV xR 7)
-7 'r = =T=T=12 20" %0 =T== =07 =0"%0 "
where (a.1)
_ (2n+1) (1)
. r=ik 3 2ot 1) jn(kR) hn (kRo) Pn(cos'y) R<Ro

In the above relation, t is a unit constant vector, r =R - Bo’ v is the angle
between the two vectors R and Eo’ and the subscript on the operator _Yo
indicates differentiation with respect to the variables (RO, 60, ¢o).

The vector field can be expressed in terms of the orthogonal set of spherical

vector wave functions

M =9xRy
g mn € mn
omn omn
where
. : cos mf
wgmn j(kR) PBcos 0) i mg
as follows
ikr
e 1 .
TR 2 T x @ e u) g Tx T x B2 h 4
ei.kr
TxTx (S0 - TxTx G a4 kD% @TRY)
The summation over v indicates summation over n = 1,2,3, ... .,
m=0,1,2, ...,n, andfor botheven e and odd o functions,
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From the orthogonal properties of the vector wave functions, integrated
over the surface of a sphere, it follows that

ikr
' ‘L' .e__.. = .
js(yxng) (Yx=—1)ds avj-s(yxng YxRY,)dS (A.2)

ikr
. e = E
s S(Yx Bwv) (Vx Vx - t)as bkaS(Yx Ry 'V x ljulzv) ds (A .3)

From Stratton ( p. 418)it is seen that

9 .
_ 27R” (n+m)" ' 2
Bv ISYX B'//v yx I—ij ds =(1+8) (20+1) (n-m)' oo+ I)Dn(kR)]
(A.4)
where 6 =0 if m»0, and 6 =1 if m=0 .
In order to compute the left-hand side of Eqs. (A.1) and (A.2) the °
following lemmas are needed.
Lemma I: if S is a closed spherical surface of radius R, then
ikr ikr
e e
Vy x R—dS = V st — ¢ ds (A.5)
g~ = r 0o

Proof: The left-hand side of (A.5) can be written in the form

ol , olkr
SY(-———-—w)xgds-J' A x RdS
s T S oo

Since S is a closed surface and R is the normal to the surface, then the first

integral vanishes leaving the second integral

eikr eikr e1kr
j'l/lyo_r—xgds = Iwyo.—r_xBOds-'-jwyoT xr dS .
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: ikr
The second integral vanishes since -Yo ( f-r— ) is parallel to r . This leaves

eikr ‘eikr
jyo(—r- VxR dS = ¥ x l:Bo j'-—r—w'ds

namely, the right-hand side of Eq. (A.5)

Lemma II;
eikr eikr '
jsyx (BW)YX —r—-}_ ds = t _YOX_VOX{QO ISVI Tds} (A.6)

Proof: The left-hand side can be written in the form

o Lkr
t j‘(_v_wxg)va ds

=_t.-

e e
Yo7 *(WxR =tV x| — VyxRdS

j ikr ikr
S

and using lemma I, this reduces to

e
t-V xV x {R J——-— wds}
= o0 -0 “oJ r

Lemma III:

eikr 9 eikr
S (YxRy)  (VxVx =—1t)dS =k“t* Vv x4JR jw——as (A.7)
g - - T - -0 o r
Proof: The left-hand side can be written in the form

9 eikr eikr
k j Vz//xR-t—dS+J (waB)-Q-V)y — dS
. = = r g = -0-0 r

=[k2t+(£'V)V] -va Riﬂids
- -0 —O v XL r

and in using lemma I, this reduces to
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2 e
[t v)v] v, {BOJW 2—ds
2 { eikr }
=k“t v x{R Jw ds p .
- (0] 0 r

The results of the above lemmas can now be used to evaluate the unknown

quantities av and bv' It follows that

It follows that

2 ¢l(5)=t VxV x(R T) (A.8)
i— b ¥ R) =t -V xR 7) | (A.9)
where
¥ (R) ikr '
[+ B e
T v (R") ds' (A.10)
2 S SR

and T =|R' - R \

= o
Simplification is achieved when the coordinate system is rotated lining the
z-axis up with the .direction _130. In this case |
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v (R MY (R,Y) ikr

, _ (20 + 1) eon eon '’ e IPT

T(R,R,7) = Z T Dar 5 P 3 m siny'dy' df
bt

2
“‘Z z(i?;li) '/! (R ) (2n+1)h(1)(kRo)j' [Pn(cos'y')] siny' dy'

- ) &l g h‘” (R ) P (cos?) . (A.11)

& n(n+1)

It follows immediately from (A.8), (A.9) and (A.11) that (A.1 is proved.
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APPENDIX
B

The problem is to find explicit expressions for ¢,° and xo associated
"with the field ( go, }_Io) generated by a plane wave Incident upon the perfectly-
conducting sphere R =a, by the relations

(B.1)
0 1
- TR . +
feohy E = £ YXVXRY +VxRx

From Section II, it was shown that that the total field generated by a magnetic

ﬂi’ eikr
E =yx*—m

in the presence of a perfectly conducting sphere of radius R =a, could be written

in the form

where

b= o/“o k m Yox-o

X .' -ivco/“o = —voxyox'1301r
with

~ b
7| Z\ (2n+1) (1) o (1)
1r} .ik m Pu (cos v) hn (kRo) l:]n(kR)-{a }hn (kR)] .

n
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i

A
Let R o—)(:) and m | I_{o in which case '}\_‘3’ becomes a plane wave

ikR
. o - A
~[ik e ] e ikR cos vy _H_IXBO

R
[

In this case we have

~ M€ 20+ 1
x~kvge °m- v, Z-:(i)n fl(l:l:l)) P (cos®) [j (kR) - a h )(kR)]

(B.2)
o IR, , _nen+1) )[ ]
v i R xm Yoznz;l( 0" STy Paleos M, OR) - b h ) ar)
(B.3)
The term v, P (cosv) can be written in the form
: 3P (cos¥)
.2 dcosy A dcosy n
Y Pn(cos'y) [—eo 36 ¢-o sin6 8¢] R dcosy
0 o "o 0
1 (1)
2P, (cos ) (B.4)
where
a = _6_9 Ecosesin9°+ 8in 6 cos §_ cos (f -’-¢o)] [siny (B.5)

+ 80 [slno sin(¢° -@)/ sin‘y:l

Normalize gi so that it represents a plane wave of unit amplitude, 1.e.

E = eoxp(-1k - R)
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. where

ko = 'ko (sin 60 OO?,O, aano sinﬂo, cos Bo)

—

and
A

.
&= g-oe‘l * Qo“z

Then it follows that the total field generated by the plane wave fncident ona
coudncﬂng sphero of radius a, can be expreued in terms of the two scalm x
and y° by relations (B. 1), where ’ .

V—“a nﬁ)z," 1) o) goe [0@-0 2]

UAC \[:— (a} G)Z % (1) (col‘Y) [j (kg);bihin@)].

=]
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