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FOREWORD

(U) This report, BSD-TR-67-232, was prepared by the Radiation Labora-
tory of the Department of Electrical Engineering of The University of Michigan
under the direction of Dr. Raymond F. Goodrich, Principal Investigator and
Burton A, Harrison, Contract Manager. The work was performed under Con-
tract F 04694-67-C-0055, 'Investigation of Re-entry Vehicle Surface Fields
(SURF)'". The work was administered under the direction of the Air Force
Headquarters, Space and Missile Systems Organization, Norton Air Force Base,
California 92409, by Capt. J. Wheatley, SMYSP, and was monitored by Mr,
H.J. Katzman of the Aerospace Corporation,

(U) The studies presented herein cover the period 18 March 1967 through
18 June 1967,

(U) In addition to security requirements which must be met, this document
is subject to special export controls and each transmittal to foreign governments
or foreign nationals may be made only with prior approval of SAMSO, SMSDI,
Air Force Station, Los Angeles, CA 90045,

(U) Information in this report is embargoed under the Department of State
International Traffic in Arms Regulations. This report may be released to
Foreign governments by departments or agencies of the U,S, Government sub-
ject to approval of Hq. Space and Missile Systems Organization (SMSDI), Air
Forse Station, Los Angeles, Calif., 90045 or higher authority within the De-
partment of the Air Force. Private individuals or firms require a Department
of State export license,

(U) The publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

SAMSO Approving Authority

William J, Schlerf BSYDR
Contracting Officer
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ABSTRACT

(S) This is the Second Quarterly Report on Contract F 04694-67-C-0055
and covers the period 18 March to 18 June 1967. The report discusses work
in progress on Project SURF and on a related short pulse investigation. Pro-
ject SURF is a continuing investigation of the radar cross section of metallic
cone-sphere shaped re-entry bodies and the effect on radar cross section of
absorber and ablative coatings, antenna and rocket nozzle perturbations, chang-
ing the shape of the rear spherical termination, and of the plasma re-entry
environment. The objective of the short pulse study is the determination of
methods of modifying the short pulse signature of cone-sphere shaped re-entry
bodies and of decoys. SURF investigations make use of experimental measure-
ments in surface field and backscatter ranges to aid in the analytical formulation
of mathematical expressions for the computation of radar cross section. A
computer program for determining the radar cross section of any rotationally

symmetric body is being developed.
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I
INTRODUCTION

(S) This is the Second Quarterly Report on Contract F 04694-67-C-0055,
"Investigation of Re-entry Vehicle Surface Fields (Backscatter) (SURF)", It
covers the period 18 March to 18 June 1967. Work under this program in-
cludes an investigation of methods to compute the radar cross section of cone-
sphere shaped re-entry vehicles and a method for changing the short pulse
discrimination characteristics of such re-entry vehicles and their decoys.

These studies are monitored by Capt. J. Wheatley for the Space and Missile
Systems Organization and by Mr. H. J. Katzman for the Aerospace Corporation.
(S) The approach adopted in the SURF investigation makes use of exper-
imental measurements of the surface fields induced on various scale models of
re-entry bodies and related shapes to aid in the construction of a theory to ex-
plain radar scattering behavior and the formulation of mathematical expressions

for the computation of radar cross section. In addition to the surface field
measurements, backscatter measurements are relied on to furnish substantiation
of the theory being developed or to guide the investigation in areas wherein
surface field measurements alone do not provide adequate data, A digital com-
puter program is being developed to aid in the study of cases of oblique in-
cidence on the target and to provide supplementary data in cases where the very]
low backscatter from the target is difficult to measure accurately.

(S) The SURF program is a comprehensive attempt to provide radar cross
section formulas for such practical situations as may be expected to arise.
They include formulas for the following:

(a) The metallic cone-sphere and the cone with non-spherical modif-
ications to the cap.
(b) Modifications of the cone-sphere due to the addition of antennas

and rocket nozzles.
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(c) The addition of absorbing materials to the cone-sphere surface, and
(d) The effect of the re-entry plasma environment,

(S) Short pulse discrimination methods permit one to distinguish between a
warhead and accompanying decoys by a simple numerical count of the pulses
returned by each body. The short pulse investigation has been undertaken to
determine methods for countering this discrimination method. The investigation
in its early stages is principally mathematical so that the basic theory of short
pulse scattering can be set forth. It application to re-entry shapes will follow.
Experimental data made available by Lincoln Laboratory to the Radiation Lab-
oratory via the Aerospace Corporation will be used as part of this analysis.

(S) During this quarter, surface field experiments were carried forward
with measurements on coated objects in which the flushmounted tip and rear
antenna were modeled. The measurements furnish data for analysis of both
nose-on and oblique radar incidence. The newly installed L-band backscatter
system was tested and data was obtained on indented rear models. Construction
was begun on additional models for the study of the effect on radar cross sec-
tion of the radius of curvature of the vehicle where the cone and spherical parts
join, The re-entry plasma experiments revealed the need for a deeper study of
curved surfaces so that the data to be obtained on cone-spheres could be mean-
ingfully interpreted.

(S) Two principal items of analytical work were completed as part of the
SURF theoretical investigation:

(a) The handbook section of the Final Report under Contract
AF 04(694)683, dealing with radar cross section formulas for the
computation of the radar return from metallic bodies with tip
and rear antenna, rocket nozzle, and Mk-12 perturbations was

completed.
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(b) The comparison of theoretical and measured radar cross sections
for re-entry shapes with rear concavity, with a ring type an-
tenna and with a coating has been completed.

This work was done as an Agreement Item suggested at the March 1967 Tech-
nical Discussion meeting.

(U) An item of analytical work which continues to provide difficulties
is the solution of the mathematical problems leading to the programming of the
radar cross section of the rotationally symmetric reentry body. However, a
new method is being incorporated in the programming and should provide sub-

stantial improvement in accuracy of the results.
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II

TASK 2: EXPERIMENTAL INVESTIGATIONS

2.1 Introduction

(S) The surface field measurements and backscatter measurements on
cone-sphere like objects continued with emphasis on obtaining data on coated
models. In addition, oblique angle of incidence measurements were made on
metallic models with annular antenna representations. These measurements are
described in the sections which follow. Some preliminary observations are
made of the data and the trends which appear. In support of the re-entry plas-
ma environment study, radar cross section measurements and surface field
measurements were made on flat plates covered by wire-grid representations of
the plasma to determine whether the physical optics analysis for the radar
cross section could be justified experimentally,

2.2 Surface Field Measurements for the Study of Flush Mounted Antenna Per-

turbations on Coated Cone-sphere, (Task 2.1.1 and 2.1.2)

(S) To furnish data to determine the effects of coatings on the surface
fields of perturbed cone-sphere models, a series of measurements was carried
out on models LSP and LSP, Model LSP, it will be recalled, is a cone-sphere
whose tip is isolated from the rest of the object by a lucite spacer, and Model
LSH contains a similar spacer just forward of the shadow boundary. The lu-
cite spacers produce the annular discontinuity in the metallic cone-sphere sur-
face which annular antennas would create at the same locations. These models,
and plain, unperturbed ones as well, were sheathed in jackets of LS-22, LS-24,
and LS-26 absorbing material and the surface fields thereon were measured
for ka values of 1,1, 3.0, 5.0 and 8,0, where ka is the electrical circum-
fexlence, in wavelengths, of the spherical base of the underlying metallic vehicle.

(S) Although the LS-22 coating was less effective than either LS-24 or LS-
26 materials, the coatings in general have three effects: 1) they reduce the in-

tensities of the forward and backward traveling waves on the conical portion of

4
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the models, 2) they reduce the amplitude of the creeping wave, and 3) they
either suppress or alter the perturbing effects of the lucite spacers underneath
the coatings. The effects of the coatings are less dramatic for low than for
high values of ka, and we have chosen ka = 5,0 for the purpose of illustration
in Figs. 2-1 and 2-2.

(S) In Fig. 2-1 a comparison is drawn between the surface field behavior
of the LSH cone-sphere model when bare and when coated with LS-26, The
bare object exhibits the characteristic standing wave pattern along the conical
surface, whose mean value arises to about the physical optics value of 2,0,
Just beyond the join, however, there is a significant jump in intensity due to
the spacer (thickness: 0,25 inch) and from there to the antipode the field decays
as usual, We note that the amplitude of the standing wave pattern on the cone
is substantial, suggesting a strong reflection arises near the join,

(S) When the coating is applied, the strong interference pattern is dras-
tically suppressed in addition to a general depression of the fields which de-
cays steadily as one advances from near the tip to the join. From the join
rearward there is evidence of a creeping wave (i.e., the small perturbations)
but its magnitude is substantially below that of the bare object. The sharp jump
in field intensity near the lucite spacer has been markedly reduced, but a very
small perturbation still exists.

(S) The fields shown in Fig, 2-2 are at once different from and similar to
those of Fig, 2-1, Here the spacer is located not far from the cone tip and
for the uncoated object there is a strong interference pattern between the tip
and the spacer. Beyond the spacer, however, the field intensity is identical
to that which would be measured on a plain cone-sphere having no spacers or
other perturbations. The amplitude of the standing wave pattern is much

smaller than that of the LSH Model in Fig, 2-1. When the model is coated,
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one finds practically the same rate of decay that occured for the LSH model
(and a plain cone-sphere) and around the base of the model one can still see
the creeping wave, Since there is no spacer near the join for this model, and
since we see the same field structure around the back as we saw for the LSH
model, we deduce that the small perturbations at the join in Fig. 2-1 were not
due to the spacer. In Fig, 2-2 there are distinct wobbles in the fields of the
coated model between tip and the spacer, but these are small, We conclude,
then, that for the LSP model having the spacer near the tip the absorber
coating does not totally remove the effect of the spacer, but that a marked
suppression does occur.

(S) In addition to coated object measurements, data have been collected
for the bare LSP model under conditions of oblique illumination. The data were
obtained for ka values of 3.0 and 5.0 and the angle of incidence was varied
from O degrees (nose-on) to 82.5 degrees in 7.5 degree intervals, Figures
2-3 through 2-5 are selections of data for incidence angles of 7.5, 45 and
82.5 degrees, respectively, Curves are sketched showing the field intensity on
both the lit and shadowed sides and the spacer clearly has a strong effect,
even in the shadow., Of interest is the interference pattern for the 82,5 de-
gree angle of incidence, Fig, 2-5, On the lit side, the perturbations are
spaced about A apart, suggesting that on this side a wave travels from tip to
join (or conversely); a wave of this kind, when added to the incident wave, pro-
duces a period of A, On the shadowed side, however, the interference pattern
shows a period of about X /2, suggesting two waves are present, traveling in
opposite directions. In the shadow, then, there is apparently a wave which

travels from tip to join and another which runs from join to tip.
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(S) In Fig. 2-4, the behavior is quite different (angle of incidence: 45 de-
grees). On the lit side the periodicity is about 2,2X, and on the shadowed
side there is no perturbation, save for those near the join or near the spacer,
The cyclic disturbance seen on the lit side has the period one would expect of
two waves propagating at an angle of 52,5 degrees from each other (45 + 7,5),
One wave is the incident wave and the other runs along the side of the cone
from tip to join.

(S) The perturbations of an indented base on the fields of a bare cone-
sphere were studied in the second year's effort, but coatings have not yet been
applied to these shapes. A series of experiments will soon be initiated in
which such models will be coated and measured, but we have not yet decided
how the coatings will be applied to the base,

2.3 Far Field Measurements (Backscatter) (Task 2,1, 3)

(S) This task provides for a limited number of far-field measurements on
coated perturbed shapes, but such targets have not yet been measured. How-
ever, a careful series of measurements were performed on a bare perturbed
shape, in which a newly acquired L-band system was tested, and some en-
lightening data obtained. The model had an indented base (ID-2) and back-
scattering measurements were obtained as a function of ka. The ka values
obtained were 1,2 < ka < 1,8 and 2.8 < ka < 4,5 in steps of 0.1, and were
split this way because the former values lay in L-band and the latter in S-band.

(S) Full 360 degree patterns were recorded with horizontal polarization,
but results for three particular aspects (nose-on, tail-on, and specular flash)
are presented in Fig, 2-6, The lines sketched in do not represent theory and
are inteded only to lead the eye through a group of associated points. Note
that the dip in the nose-on cross section occurs for ka = 3.3; the depth and

position of this null is more characteristic of flat-backed cones than of cone-

12
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spheres, It appears that the curvature of the radius near the join is small
enough to make the model behave as though there were no indentation in the
rear, We will refer to this observation again under Task 2.1.6.

2.4 Effect of Radius of Curvature Near Cone-sphere Join (Tasks 2.1.4 and 2.1, 6),

(S) This task requires experimental study of the effect of the local radius
of curvature near the join of the cone and spherical cap of a vehicle. The
models required for this task are under construction and no measurements have
been made., Four models are currently under construction which will permit
us to study the effect of the radius of curvature just beyond the join, Although
interest lies in shapes with indented bases, the study of the curvature in
question can take place with flat-backed models. The data of Fig, 2-6, for
example, suggest that the indented base model behaves much like one having a
flat back, Additional data are presented in Fig, 2-7 in the form of surface
field measurements, Here the probe trajectory was around the base of an in-
dented model and was straight across the base, as though the base were flat
and not indented. Two sets of data are presented; one is for a normal in-
dented base while the other is for a flat base simulation obtained by stretching
an aluminum foil disk across the indentation, The results show the fields are
nearly the same in both cases, except that at the rear dead center, the in-
tensity is slightly greater for the foil covered (flat base) model.

(S) Because of the minor role played by the concavity, as judged by
Fig, 2-6 and 2-7, we have selected four radii of curvature to be constructed on
four cone models with flat bases. The cone angle chosen was 18 degrees (total)
and a sketch of the models is shown in Fig, 2-8, Table 2-I lists the model
and full scale radii, and shows the available range in kr (r being the base

corner radius) the models will provide,

13
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FIG, 2-7: MEASURED INTENSITIES AROUND THE BACK OF FLAT AND

INDENTED BASE MODELS ARE NOT MUCH DIFFERENT FROM
EACH OTHER.
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FIG, 2-8: THE FINAL APPEARANCE OF THE MODELS IS SHOWN IN THE
SKETCHES. Beside each is the total model length, assuming
a perfect tip (a point) and perfect tolerance, Coneobase diameter
at point of tangency = 3,765" total cone angle = 18",
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TABLE 2-I:
Selected ' Simulated
f%d:((lii?lls, II::: :iliusscfale kr values for these ka:
inches inches
(r) ka=1 | ka=3 ka = 5 ka = 8
0,188 1,075 0.1 0.3 0.5 0.8
0.376 2.15 0.2 0.6 1.0 1.6
0. 564 3.22 0.3 0.9 1.5 2.4
0,751 4,30 0.4 1.2 2.0 3.2

2.5 Re-entry Plasma Experiments (Task 2.1,5)

2,5.1 Introduction

(S) Originally the experimental and the related analytical efforts for deter-
mining the RCS (radar cross section) of bodies covered by thin plasma sheaths
were to be limited to the analysis of flat plates and cones. During the detailed
investigation of the flat plate covered by a thin plasma sheath (simulated by a
plane of wires) both experimental and analytical difficulties were encountered.
Earlier, it had been anticipated that the flat plate problem would be straight-
forward and would be completed in a much shorter time,

(S) The investigation started with an examination to determine whether or
not surface waves could be supported by a plasma coated surface with an air
gap. It was found (J, R. Wait, 1960) that ordinary surface waves, which are
attenuated away from and propagate parallel to the plasma-air interface, can

indeed exist., In addition, when the air gap between the conducting plate and

sheath is large enough, it was found that wavequide modes can be supported as

17
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indicated by Wait (1960), A number of surface field measurements were made
in search of these waves and modes, but none appeared to be excited in our
experimental model. So far the measured surface fields show only an inter-
ference of the incident wave with the cylindrical waves scattered by the edges.
This type of interference was observed with and without the wire structure
present. The amplitude of the interference pattern was enhanced in the pre-
sence of the wires, but the periodic characteristics were constant and not
related to the expected surface wave period.

(S) Meanwhile the physical optics analysis for the far field monostatic
RCS was calculated and arrangements were made to measure it on the scattering
range, Results from the RCS tests indicate that more than the ordinary phy-
sical optics model is necessary to explain the behavior of the fields scattered
from the plasma coated plate, When the sheath is in the neighborhood of one
half wavelength from the plate, a large gain appears in the HH polarization
pattern (smaller gains in the VV polarization) in the aspect region between 30o
and 600 from broadside. The location and amplitude of the gain seem to be
related to the sheath surface impedance and the size of the air gap.

(S) Even though our first surface field measurements showed no sign of
surface waves, it seems possible that the large gain off-broadside in the RCS
patterns could be explained by the presence of leaky waves which are complex
surface waves., Extensive research conducted at the Polytechnic Institute of
Brooklyn during recent years indicates that over-dense plasma layers can sup-
port such waves, We are presently examining this problem and plan to make
further surface field measurements to determine the behavior of the near fields

which cause the gain in the RCS away from broadside.

18
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(S) Preliminary RCS tests made on the plasma cone borrowed from
Aerospace - El Segundo indicate that there is as much or more return from the
spacers that support the wire grid on the conducting cone as from the grid
itself. Since there is no mathematical analysis available for the coated cone
problem, it is difficult to know how accurate our simulation is, Besides the
effects of curvature, the coated cone also produces coupling between the two
polarizations, and these effects are not present in the flat plate problem., Due
to these preliminary cone difficulties and the nature of the flat plate problems,
it seems more desirable and practical to investigate a plasma-coated circular cyl-
inder of finite length before making any further measurements on the cone. Both
curvature and polarization coupling are produced in the coated cylinder problem,
but in this case, it is believed that an approximate mathematical model can be
formulated, Therefore, with the cylinder study it should be possible to check
our simulation as well as develop techniques for mounting wire grids on curved
surfaces, It is for these reasons that we propose to examine the cylinder in
detail before the cone, although design work regarding modal analysis on a
coated cone is still under-way. With the added knowledge from the cylinder
studies it should be easier to understand and follow the work on the cone, es-
pecially experimentally,

(U) In the next section some results from the monostatic RCS measurement
are discussed and typical patterns are presented for a flat plate covered with

a plane of wires.

2.5.2 Radar Cross Section Measurements

(U) The geometry related to the RCS measurements made on-large (com-

pared to a wavelength) flat aluminum plates with a plane of parallel wires set

a distance £ away is shown in Fig, 2-9, If the spacing h between adjacent

19
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X

)

Region

h

(a) Perpendicular or vertical polarization
y
[}

k() = - k ¥ sin&|]) + z cos &1 |)

H(I1)

/ &) i

\ Plasma sheath simulated by

a plane of wires

Ground plane

(b) Parallel or horizontal polarization

FIG, 2-9: GEOMETRY FOR RCS MEASUREMENTS,
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wires is less than A0/2 and the internal resistance of the wires is negligible,

the surface impedance is purely inductive

Z = jZ h/r_ M (b/7d) 2.1)

where )to is the free space wavelength, z, =1’u0/60 = 371, and d is the

wire diameter.

(U) All of our measurements are monostatic, that is, the transmitting and
receiving antennas are located together in the far field. Two polarizations VV
and HH are recorded and here V and H refer to the electric field being oriented
in the vertical and horizontal planes. VV and HH polarizations are also refered
to as perpendicular and parallel polarizations as indicated in Fig, 2-9, The
wave vectors k(L) and k (I|) show the propagation direction of the “incident fieldq
as a function of the incident angles L) and &Il), In the experiment the
wires are directed along the y axis and there is no electric field component
along the x axis, For the flat plate geometry no coupling is assumed between
the two polarizations and the VV and HH cases are examined separately,

(U) The boundary condition at the two surfaces z = 0 and z = £ are as

follows:

n
o

z x(E)=0 (2,2)

at z 9

zx(El-E2)=0

_ _ - _ (2.3)
z x(H1 - H2) Zs = Ell-(z' El)z]

where z is the unit vector normal to the surface, Zs is defined in Eq, (2,1),

1}
~

at z

and the subscript 1 and 2 refer to the field in regions 1 and 2 (Fig, 2-9),

An application of these conditions to the appropriate fields in the two regions

21
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yields the reflection coefficients [R(_L) and R(| IEI at the interface z = £ from
region 1 back into region 1 and the transmission coefficients EI‘(J.) and T( Il]

from region 1 into region 2 for both polarizations,

_L case

op | Z sinL -jZ_ cos 6(1) eI
R() = ¢ 0 g =~
Zo sin L - jZS cos &(L)
(2.4)
Z sin L -1
. jL l70 . jL
T = - -
(L) )e I_ZS cos &(L) )e
,,case
o1, Z0 cos &||) sinL - jZ e_]L
R(I]) = ¢ . —
Z cos &) sin L - jZ ¢’
| "o S
(2.5)
_
Z -1
- .
T(U1) = - je’ _Z—Q cos O(I]) sin L - j e]L
s
-

In Eqs. (2.4) and (2.5) L = kf cos 1) = kf cos &) depending on whether it
is the L or || case. R(1) and R(ll) are the same as the reflection coefficients
discussed in the last Quarterly Report, but are in a different form,

(U) In the physical optics approach to determining RCS expressions, the
Stratton-Chu equations, which are a vector form of the Kirchhoff-Huygens

principle, are used to evaluate the scattered fields, Assuming time dependence

of the form e]wt, the scattered electric and magnetic fields E° and H° can be

expressed in terms of tangential components of the fields E and H just outside

22

UNCLASSIFIED




UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-2-Q

the scattering surface, (Johnson, 1965)

E° = - Eéxi)xveﬂﬁ- E)VG-jkozoG(exﬁ ds (2.6)
k

B = - E&xﬁ)xvcuﬁ.mmﬂf(ﬁxtﬂ ds (2.7
(o]

+
where S is the surface at z =1, ko = 27 /Ao, and G is the free space Green's

function with the form

and in the far field
VG = - jk RG.

In the L case

f}(_l_) = % sin 6(L) + 2 cos (L)

and in the |/ case
A A A
R(|]) =y sin &) + z cos 6(1).

(U) Only one field component is necessary for each case if the solutions
are expressed in terms of E° for the vertical polarization and f° For the
horizontal polarization. After a considerable amount of algebra and scattered

fields may be represented as

23

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN

8525-2-Q
B oE
ES(L) = § jk cos (L) E - —¥| G(1)dxdy (2.8)
) y oz
B BHX
H( D) = % -jk cos O(II)H + -—:l G(I1) dx dy (2.9)
| " o X 0z

where

jk zcos (L) -ik zcos (L)) ., .
Ey =|} o +RDe  © ]ekasm 6(1) + Ep (2. 10)

X

jk cos &I ) ihkzcos O(|)] .. .
H E 0 + R e ]e’kysm"‘”)mp L @11)

The reflections coefficients are given in Eqs. (2.4) and (2.5) and the Green's

1
waves which can exist on coated conducting bodies such as the one being con-

functions are listed above, Ep and H_ represent possible complex surface

sidered here (Brekhovskikh, 1960). When the scattering body is a perfect
conductor Ep and Hp are zero (for electrically large plates). We are still in
the process of evaluating Ep and Hp for the problem at hand, These surface
waves are related to the complex poles in the reflection coefficients.

(U) It is a straight forward calculation to find the radar cross section o

for a perfectly conducting flat plate
2 |= —
o= 47R IEXH, . (2, 12)

For both polarizations Eqs. (2,8) and (2.9) lead to the same result when sub-
stituted into Eq. (2.12)

o = 47 _zﬁ 2 sin (ka sin 6) 2 cocZ 6 (2.13)
i X, ka sin 6 :
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where a is the length of the flat plate, In the upper part of Fig. 2-10 the peaks
and nulls of Eq. (2,12) are expressed as a function of (ka sin 6)/7 and in the
lower part cos29 is shown as a function of 6, The cos29 term can be neg-
lected in Eq. (2.12) for 6 < 45° with less than 3 db error. The purpose of
Fig, 2-10 is to determine the magnitude and position of peaks and nulls; it is
not intended to represent the complete pattern for Eq. (2,12),

(S) Eventhough our theoretical analysis is not complete for the geometry
shown in Fig, 2-19, a number of experimental patterns have been recorded in
the X and C frequency bands, Plates 18" x 18" and 9" x 9" have been tested
with and without wires. The normalized surface inductance has ranges between

X
0.4 < =2

Z
0

<1L2

while in all case Rs (related to collisions) has been zero. Air gap spacings
have been between X /6 and 3) /2,

(U) Examples of RCS patterns for VV and HH polarizations are given in
Figs. 2-11 and 2-12 for the 9" x 9" plate with £ = 0,66", h = 0,4", d = 0,007"
and f = 9,46 GHz, In both figures pattern (a) is for the flat alone, (b) flat
plate with foam spacers (£ = 0,66"), and (c) flat plate with spacers and wires.
The parameters £, h and d are explained in Fig, 2-9 and Eq, (2.1),

(S) A comparison between patterns (a) and (b) for both polarizations in-
dicates that the foam spacers, used to hold the wires a distance £ away from
the plate, cause no pattern disturbances., Also patterns (a) and (b) follow
closely the theory expressed in Fig., 2-10 upto 6 = 600. Beyond 60° the
effects due to the finite size of the plate begin to appear. Since the aspect

range greater than 60° is beyond the range of interest in our model (the effect
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Peaks and nulls for first 11

lobes of [sin (ka sin 6) :Iz
10 ka sin 6

-20 —

-30 —

Ein (ka sin6) /ka sin E] 2 ()

(ka sin 6) /7

0
-10-
g
< 204
[0
[a)]
)]
(o]
Q
=307
I I 7
0° 30° 5 60° 90°

FIG, 2-10: TWO CONSTITUENTS OF THE RCS PATTERN,
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of the wires is seen between 30° and 600) this slight departure from theory
should not cause trouble in our experiment., By general RSC range standards,
all the (a) and (b) patterns are considered to be clean and acceptable for re-
ference purposes.

(S) The effects of current sheath (plane of wires) is seen in Fig, 2-1lc
and 2-12¢ for VV and HH polarizations., The portion of the pattern centered
about 6 = 0° (the right half of the figure) is the return from the front of the
plate where the wires are set off a distance £ from the plate. The left side of
the pattern is the back return and can be used as a rough calabration reference
for aspect angles + 60° away from 0 = 1800. The HH pattern shows much
stronger sheath effects compared to the VV case., Notice that the sheath causes
little or no effect for 6 up to 30° off broadside and that the effects of the sheath
grow rapidly beyond 300. It is this behavior which leads us to believe that
leaky waves are causing these effects. Many different values of !Z/)Lo have been
measured and in all cases no pattern distortions were introduced near broad-
side (8 = 0°).

(U) Photographs of the experimental models for the flat plate and cone are
shown in Figs, (2-13) through (2-18), The first four photos depict an 18" x 18"
flat plate with an attached plane of wires and covered with varying amounts of
absorber. The last two figures are photos of the cone borrowed from Aero-
space's Plasma Research Laboratory, Courtesy of K,E, Golden,

(S) Figure (2-13) shows the 18" x 18" flat plate with wires and plexiglass
spacers totally exposed (no absorber). The wires are held taut by rubber bands
on the back side of the plate, Without any absorber, there is a great deal of
pattern distribution in the sidelobes away from broad side, with or without the

wires present, The 4" wide absorber frame in Fig, 2-14 was introduced to
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FIG, 2-13: 18" x 18" FLAT PLATE WITH PLEXIGLASS SPACERS
SUPPORTING THE WIRE GRID,
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FIG, 2-14: 18" x 18" FLAT PLATE SURROUNDED BY A 4"
ABSORBER FRAME TO REDUCE EDGE EFFECTS,
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FIG, 2-15: 18" x 18" FLAT PLATE WITH ENOUGH ABSORBER TO
ELIMINATE THE SCATTERING FROM THE PLEXIGLASS
SPACERS,
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FIG, 2-16: 18" x 18" FLAT PLATE COVERED WITH NO, AN73
ABSORBER AND A PLANE OF WIRES,
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FIG, 2-1T7: 140 HALF ANGLE CONE WITH FOUR SPONGE LIKE
SPACERS AND A RING OF ABSORBER AT THE CONE
BASE,
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FIG, 2-18: CONICAL WIRE GRID (14, 5° HALF CONE ANGLE)
MOUNTED ON CONDUCTING CONE, The wire grid

is supported by a mylar sheet,
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cover up (reduce) edge effects and was found to be successful, Further tests
with various amounts of absorber placed over different portions of the plate in
an effort to locate more precisely the major cause of the scattering pattern
distortions, The absorber scheme in Fig, 2-15 was found to eliminate nearly
all of the distortions and it was therefore concluded that scattering from the
plexiglass spacer was our major source of trouble. This discovery led us to
use Styrofoam material in place of the plexiglass for spacers and now no ab-
sorber is necessary as demonstrated in the results of Fig, 2-10 and 2-11 which
are RCS patterns for a 9" x 9" flat plate with Styrofoam spacers and no ab-
sorber., A few measurements were made with conducting plate completely
covered with No, AN-73 absorber (Fig. 2-16) to study the effect of the wires
alone,

(U) The 140 half angle aluminum cone is shown in Fig, 2-17 with 4 sponge
like spacers and an absorber ring at the cone base, Figure 2-18 is a photo of
the conical wire grid supported on the conducting cone by a sheet of mylar,
Only limited tests have been made on the cone to date.

2.5.3 Conclusion

(S) Although our progress on the experimental plasma sheath program has
been slower than originally expected, the RCS patterns presented here indicate
that more than a physical optics model is necessary to explain even the flat
plate results. It is one of the aims of this effort to determine the limitations
of physical optics model for coated bodies and we found them earlier than hoped.
At the present time it seems hopeful that we will be able to explain the flat

plate behavior shortly and then move on the the coated cylinder.
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I
TASK 3.0 THEORETICAL INVESTIGATIONS

3.1 Introduction

(U) In this section are reported the theoretical or analytic investigations
which lead to the construction of formulas for the computer of radar cross
section under a variety of conditions of interest. A discussion is given of the
scattering from a re-entry shape with a rear concavity, a circumstance with
direct practical importance. The analysis treats a metallic body. In order to
understand the scattering from coated shapes, a study was made of the surface
current on a curved surface, in this case a parabolic cylinder and a study was
made of the field on an imperfectly conducting wedge. In Section 3.4, the work
on the computer program for treating a general rotationally symmetric metallic
shape is discussed. The present stage of the work involves the evaluation of
several different approaches to a solution. In Section 3.5, the investigation of
plasma sheathed bodies is discussed. The final part of Section III deals with
a comparison of experimental theoretical data for shapes with indented rear
terminations.

3.2 Scattering From Re-entry Shape with Rear Concavity (Task 3.1.4)

(U) From the shadow boundary on back to the central point at the rear,
the profile of the body is composed of parts of two circles or radii b and ¢
smoothly joined as shown in Fig. 3-1. When a and 6 as indicated, the only
constraint on a, b, ¢ and § such that the two circles are smoothly joined is

provided by the relation

(a-Db)2 +(c+8)° =(c+b)?,
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=2

jl*— — —
N

FIG, 3-1: COORDINATE SYSTEM FOR INDENTED REAR,

implying

(a - §°

=5+
b=3 2(a +¢)

(U) H, now, the body is illuminated from the rear, the backscattering

cross section according to physical optics is

2ikz 9A 2
. 0A

32 dz

2
when z is measured in the direction of propagation and A = mp~. The inte-
gration is over the illuminated portion of the surface. Since the equation of the
central (lower) circular arc is

2 2 2
zZ +p =¢

and the equation of the upper arc is
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{z—(c+6)}2+{p-(a-b)}2 =b2

0A
it is convenient to break up the range of integration, with 5 taking the

following values:

- eté). 8A _ o,
2= &% C%e+p) bz Z

ctsd
P + - :
Gc+b’ c+é b)

(c+6-b,c+6):g—‘:=-27r<z—(c+6)}{1- . —
’v;Jz-(z-chS)z

Using integration by parts,

N
|

N
"

cA ct6-b cté
(=27 z)e21kzdz4+ + -2m {z -(c+ 6)} e21kZ dz

c cA ct6-b

) ic), 1 - 1 e2ikc ct$ eZikcA.+ 1 2ik(c + 8)
2ike c 2ike ©

where

The remaining integrals involving the factor (a - b) can be broken up as

ct6-b cA

ct+té ct+é
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To the first of these we put
z=c+6-Dbsinb
to get
T
ik(c + otlh i
27 b(a - b) e21k(c 2 sin 6 e 2ikb sin 6 a6,
0

and since the saddle point is 6 = 7 /2, as asymptotic calculation gives

27 (a - b) 1,’;—1’ oi7 /4 +2ik (c + 6-b).

Similarly,
cA 90
. + o -
- - _2nbla -b) e2K(C T O g o 2lKb sin 6 44
cté 0
where
. -lets _ . -1
Oo—sm c+b—sm A

and since the saddle point is again 6 = 7 /2 (which lies outside the range of

integration)
cA 9
- ~ - 2mb(a - b)eZik(c +o tan 60 0cos 6 e—2ikb sin 6 de
c+té 0
-2ikb sin 6 90
= - 27blc + o) eZik(c tol e

-2ikb
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2

. ikl + 91
%‘(c N 6){ . ik(c + ¢ e 1kcA}.

L4 g 2l (e +5){ Lo e —21kbA}

(U) Adding up all the contributions, we now have

2ikz A o don (1) 2ike
3z 2 2ike | ©

a4 )
+or (a-b) 1,1)_3' J7/4 + 2k (c+6-b)

2 .
{1 - 2ik (c + &) }eZ‘k (c +9)

A
8r
The last of these has a phase factor appropriate to the shadow boundary con-

tribution; as such the term is known to be in error and will be omitted, We

shall likewise omit the connection term in the first contribution, and thereby

< { k(a—b)}z(kb)
A

(U) The first (dominant) term is attributable to the specular return from

obtain

ei7r/4 +2ik b -8 |2

C
a-c¢ 24!7"—_‘

1 -

the annular ring provided by the upper circle, and we note that the result could
have been computed by using the cross section of theinfinite circular cylinder
Er = kbl2 :] and giving £ the value 27 (a - b) corresponding to the 'length" of the
ring. The second (smaller) term in the above cross section arises from the
lower circle in the profile.
(U) To illustrate the behavior of the above cross section, consider the case
c=a

b = a/4
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(implying 6 = 0), corresponding (approximately) to model ID-2, Then

Ca
5 9 s e17r/4 ika/2 | 2
2 g4 @ 3

A 7 ka

and some computed values are as follows:

ka | o) || ka | o/xdb)
? —

1 7.9 3 8.2

72 | -1.3 3.5 10, 4

2 2.3 4 12.2

2.5 5.6 3r/2 14,3

Note that ka = 7 /2 finds the two contributions in quadrature, whereas ka = 37 /2
finds then in-phase (and therefore corresponds to a local maximum in the cross
section). The above values are in excellent agreement with the measured tail-
on data discussed in Section 2,3 and illustrated in Fig, 2-6,

3.3 Absorber Coated Configuration (Task 3.1,2)

3.3.1 Introduction

(U) No suitable techniques exist for determining the surface field induced
on a coated cone-sphere, However, the problem can be approached by devel-
oping a method of solution for a similar shape which exhibits the same funda-
mental characteristics as the cone-sphere and then extending that solution to the
cone-sphere, The formula for the surface field and for radar cross section
which would result from such an approach can then be checked by experimental
methods., In section 3.3.2 the surface field on a cylindrical surface is studied

and in Section 3.3.3 and Appendix A the surface field on a wedge is studied.
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3.3.2 Surface Current in the Shadow Region on a Parabolic Cylinder

(U) A surface current in the shadow region excited by a plane wave on the
surface of a perfectly conducting parabolic cylinder is obtained when the focal
length is comparable to the incident wavelength, The current is expressed by
the residue series which represents creeping waves propagating along the sur-
face. Results are compared with those of the half-plane and large parabolic
cylinder,

(U) a) Integral Representation for the Surface Current. Let us consider a

perfectly conducting parabolic cylinder x2 = 4h(h - y) with the focal length h

and the focus at the origin of coordinates (Fig. 3-1). In parabolic coordinates

X = &n
(3.1)

<
"
N |
—
e}
]
oy

y
\“’<‘

v \}
(0,h

N
/

FIG, 3-1: THE SURFACE OF THE PARABOLIC
CYLINDER x = 4h(h - y).

3
"
o
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the given parabolic cylinder is a coordinate surface n =1/2h >0, Whenn=20
the cylinder reduces to the half-plane x = 0, y < 0. In the variables §, n the
wave equation takes the form

9 2
2
a—§+—8—l’ s 12 €%+ 9o (3.2)

o an

[\V]

By separation of variables in this equation, solutions are expressed in terms of
Hermite functions.
(U) Following Rice's (1954) notation, special solutions of (3.2) are de-

fined by contour integrals of the form

W= o e g, (3.3)
n 2mi
w
o1 £(t)
Un(z) ol e  dt, (3.4)
U
where
f(t) = £ + 22t - (0 + 1), (3.5)
The path of integration for Wn(z) runs for + o to - o where arg t = -7, and
the path for Un(z) comes in from - oo where arg t = -7, encircles the origin

counterclockwise and runs out to - o with arg t = 7 in the complex t-plane
shown in Fig, 3-2.

(U) The Wronskian of these functions is

n z
2 e
1 -U'W = ——————
WnUn Un n 7/ Ma+1) ° (3.6)
48
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t,
i
'}
t - plane
< U
cut MMM t
> W r
" /

FIG. 3-2: PATHS OF INTEGRA TION FOR THE FUNCTION
Un(z) AND v\’n(z).

(U) The Dirichlet problem and the Neumann problem will be solved for the
wave equation (3.2) by assuming an incident plane wave u = e—lk(xsng/ "y cosy)

i .
and omitting the time factor e wt. Then the solution takes the form u =u + u;
here ug is the wave scattered from the cylinder and satisfying the radiation con-

ditions. For the Dirichlet problem, the solution satisfies the boundary condtion

Uy © 0 on the cylinder, and it satisfies 'd‘u/anln_n = 0 for the Neumann
=1, =

o
problem.

(U) The expansion of the plane wave in Hermite functions is well known:

e-ik (x sinyy -y cos ¢)

®

n
ky ¢ .(i_ 54/) \ T
e " sec - n' 2tan2 Un(z)Un(z), O<|¢/|<2 (3.7

]

where

z =’Ii_k-‘S, z' = v—ik n (3.8)
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(U) Expressing the scattered field uS in the form of the superposition of

ik
the function e1 yU (Z)Wn(Z') satisfying the radiation conditions as n - ®, the
n

solution of the Dirichlet problem is obtained as

@
¥ 2 “
hd [ - 1
up = ¢ n' ( tan ) Un(z) I:Un(z)
n=
Un(Z'O)
- !
¥ @) Wn(z) (3.9)
n o
where
2 :1’—11{ n = -2ikh :{—_1' p . (3.10)
Similarly the solution for the Neumann problem is
00
ky ¥ i y\"
u._.=e “sec= n!{- = tan ) U (z) |U (2")
N 2 &= 2 2 n n
n=0
'Un(Z'O)
- —— !
"W (z') Wn(z ) (3.11)
n o

where

'W(z):-zW(z)+ﬁ- W (z)
n n 0z n

(3.12)

WD) =-2U(2)+2 U(2)
n n 0z n

Series in (3.9) and (3. 11) converge, if [tan %|< 1. Correspondingly, surface

currents are obtained for the Dirichlet problem as
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“Vn +§’
i n Un(z)
V (1 tan ) W) (3.13)
n=0 n o

and for the Neumann problem as

MFS

1kr < U (2)
= i Z (—1 tan ) W r(lz, ) (3.14)

n=0
where
1 ,.2 2 1,2
= = + == +
r =g (€ no) 5 (€ 2h)
(U) By Watson's transformation, the series can be converted into coritour

integrals with n as the complex veriable of integration. Thus expressions

(3.13) and (3. 14) are transformed respectively into

v n
-ikr itan ) U (2)

) ’ k e Y ( 2 n

JD T Yorri 2 Sec sinxtn Wn(z'o) dn (3.15)

C1
and
n
1 e—ikr " (i tan 5[25) U (z)
_le 2, 1
In = T 2 S¢Cg sinT n "W (z') dn . (3.16)

c n o
1

with the path of integration C. shown in Fig. 3-3.

1
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"
n - plane
Cy c,
-3 -2 -1 >
\ 2 i 0‘1 :2 ‘3 :4 > nr
zeros of W (z') :
N
l\\
’, \\ N - ikh
‘ C4
. 4
// C3

FIG. 3-3: PATHS OF INTEGRATION IN THE COMPLEX n-PLANE.

(U) Since all zeros of both functions Wn(z‘o) and 'Wn(z'o), are located in
the third quadrant of the n-plane, while the points n = -1, -2, -3, ... are not
singular (Rice, 1954), the contour C1 may be deformed into Cz. In the sha-
dow region the asymptote of the integral over C2 is defined by the poles of the
integrand located to the left of C2. In this case C2 may be deformed into C3.

For the shadow region we obtain

[
1]

D F EZ (1tan ) i (3.17)

s=1 smwn—W z'
on (o) n=nS

© n
B Y i -

s=0 | sinwn —-'W (z' )
on o n=n'S

. . :
here n_ and n ¢ are zeros of functions Wn(z'o) and 'Wn(z'o) respectively.
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(U) Now currents are expressed by the sum of the residues at the poles
which in turn represent creeping waves launched from the shadow boundary and.
traveling along the surface of the parabolic cylinder.

(U) b) The Saddle-point Method. The saddle-point method of approximate

integration is used to obtain asymptotic expressions for the functions Wn(z)

and Un(z). Let the integrand of the integral of (3.3) be
2
fit) = -t +2zt-mint, m =n+ 1, (3.19)

then we have

1 ef(t) dt.

Wn(Z) ey (3.20)

W

The saddle points of the integrand are located at points to and t, in the complex

1
t-plane where f'(t) = 0. Solving this equation we have

t =(1/2) <z+'Vz2 - 2m ) (3.21)
-'sz - 2m

t, =(1/2) (2 ) (3.22)
tf -t = - T (3.23)
to + i:1 =z (3.24)
2t t = m (3.25)

(U) Let the path of integration W of (3.20) be deformed so as to pass
through a saddle point to along a path of steepest descent. In the vicinity of

the saddle point, a Taylor expansion gives
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1 d2f 2
f(t)=f(t)+5—2— (t—to) + ... . (3.26)
° at’ =t
0
(O I
2
af =b # 0,
2
dt” |t=t
(o)

the main contribution to the value of the integral comes from the vicinity of

tO as expressed by

f(to)
W (z) & 2 (3.27)
n i -1/27rb
where
o 2(t0 - tl)
t
(0]

-1/2
The sign of (27D) / is chosen so that the argument of the right hand side of
(3.27) is equal to arg (dt) at t = to on the path of steepest descent. The

values of these quantities at the saddle point t, may be obtained by inter-

1
changing t0 and t E Similarly we can obtain the asymptotic expression of the
function Un(z) as (3.27).

(U) ¢) The Path of Steepest Descent. The path of steepest descent which

passes through t0 is that branch of the curve

m [0 - )] - o

and (3.28)

Re [f(t) - f(tozlg 0

for which tO is the highest point.
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(U) The path of steepest descent may be shown to have the following pro-
perties:
(1) f z is regarded as fixed and to’ t ] are functions of m defined

by (3.21) and (3.22), the equation

hn[f(to) - f(tl)]= 0 (3.29)

defines a critical boundary in the complex m-plane. On this boundary the
steepest descent contour passes through two saddle points, to and tl, in the
complex t-plane. In this case, both saddle points will contribute to the asymp-
totic expression of the functions Wn(z) and Un(z). In general, this critical
boundary defines a region in the complex m-plane within which a function is
approximately evaluated from two saddle points (Fig. 3-4).

(2) If m is such that the path of integration for a particular func-
tion, say Wn(Z)’ must be deformed along the steepest descent contour to pass
both saddle points, each one will contribute to the value of Wn(z). Furthermore,

if m is such that
Re I:f(to) ] f(tl)] - 0 (3.30)

to and t1 have the same height and the two contributions have a chance of
cancelling each other and giving a value of zero for Wn(z). Thus (3.30) defines
the line in the complex m-plane along which zeros of Wn(z) are asymptotically
distributed (Fig. 3-5).

(3) The lines in the complex m-plane defined by (3.29) and (3. 30)

may be obtained by the following transformation

w = Jln(to/tl) =u+iv . (3.31)

95

UNCLASSIFIED




UNCLASSIFIED
THE UNIVERSITY OF MICHIGAN
8525-2-Q

39 N
| N\
AN
\ -
2-: .)\\ argm = -7 w-plane
| / T w =u+tiv
1 //
| //
0 o _mmmecalz /2
i :“\Tw=0;m=-ip2/2
% I \
A \
> : \\ argm = 0
2+ | —
| ,//*
I /
Ry d arg m = 7 /2

—=—= Boundary
1 [f) -t)] = 0

—— Lines of zeros

R [f(to) - f(t 1)] =0

FIG, 3-4: THE w-PLANE WHEN z =94-i p; p =*V2kh .

56

UNCLASSIFIED



THE UNIVERSITY OF MICHIGAN

UNCLASSIFIED

8525-2-Q
m,
i
* m-plane
\ m-=n+1
\ /
\ /
\ /
\ /
\ /
\ /
AN # + m
\ 0 / b
\ /
\ /
\\ // 9
’/,/f m=-ip /2
-
-
/_/
——w  Zeros of Wn(z)
R, [f(t) - £(t) ] = 0
— T~ Boundary of
L [f(to) - f(tl)] =0
FIG, 3-5: LINE OF ZEROS FOR THE FUNCTION

Wn(z) WHEN z =v-i p.

57

UNCLASSIFI

ED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN

8525-2-Q
From this transformation we obtain
z2
z —_— (3.32)
m coshw+ 1

22 (sinh w - w)
coshw +1

f(to) - f(tl) = misinh w - w) = (3.33)

Since | tol 2 t1 andI argto -argtll <7 we have u > 0 and |v| <7 for map-
ping. The w-plane is shown in Fig. 3-4.
(4) For the special case =z =“/-2ikh qTp=pe " /4, (3.33) gives

(coshu + cos v - v sin v) sinh u = (coshu cos v + 1) u (3. 34)
(cos v+ coshu+usinhu) sinv = (coshucosv+1)v (3. 35)
respectively for Im f(to) - f(tlzl = 0 and Re [:f(to) - f(tl)]= 0. These equa-

tions are plotted in Fig., 3-4 and 3-5.

(U) d) Zeros of W (z'u). The zeros of Wn(z'o), regarded as function n,
II

occur when the contribution from two saddle points cancel each other. Thus
the zeros will distribute very nearly Re l:f(to) - f(tl)__l= 0 in the m-plane (Fig.
3-5).
W R T o . . .
(U) When z o ‘v ikh i p, the asymptotic expression of Wn(z o) for the
case in which the path of integration passes through two saddle points to and t1
is

wn(zvo) = A0 - A1 (3.36)

where
f(t )
o

° i (-ip _om)t/4
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f(tl)

tle

o7 (-ip? - 2m)/®
to = -;-[1/-_1‘ P +‘\/-ip2 - 2m]
t1 = -;-[ -ip - V-ip2 - 2m]

t
_m (. , m , o —
flt) = 5 (1 > -fn > +~[T‘pt0

4

t
m m 1
= = _ —_ _ —_ + «&f-3
f(tl) > (1 £n2 lnt ) letl

(0]

m-=-n+1
31 /2 < argm < 7 /2
.2

-3r /2 < arg (<ip” - 2m) < 7 /2

-3r /4 < arg t, < T[4

-57 [4 < arg t, < 3 [4
therefore zeros of Wn(ﬁ p) are located at

W (Ao =A-A =

n( i p) oA 0

or

expE(to) - f(tl)] = i‘\/lt_ol/_ti'

99
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(U) Using the transformation (3.31) and (3.33) we obtain
_ 12| sinhw -w
exp [f(to) - f(tl)] = exp {(z o) [———_coshw n 1] } (3.39)

and
L . L (3. 40)

i'\/t_o_/T1 _ eXp[i(g —2s7r{|ew/2

where s = 1, 2, 3, ...,

2
(21 ) = -ig°
(0]
w =u tiv

From (3.39) and (3.40), zeros are located by the following equation

2sinh w -w l w T I
-3 —_— - - T o -
cosh 1 5 1 2 (l 4s) (3.41)

By separating the real part and the imaginary part of (3.41), we obtain two

simultaneous equations

2
P Ecos v + cosh u +u sinh u) sin v - (cosh u cos v + l)v:]

2
u Ecosh ucos v+1) +(sinh u sin v)i-l (3.42)

N |—

2
P Ecos v + cosh u - v sin v) sinh u - (cosh u cos v + l)u:l =

: E/+ (1- 4s)7r:|[(cosh ucos v+ 1)2 + (sinh u sin v)2:l_(3.43)

2

Let (3.42) be divided by (3.43), we obtain
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(cos v + cosh u + u sinh u)sin v - (cosh ucos v + 1)v
(cos v + cosh u + v sin v)sinh u - (cosh u cos v + 1)u

B -u
v -Q - 48 (3.44)

This equation is independent of the parameter p. Setting s = 1, we calculate
the first zero as the following:

(U) Equation (3.44) may be approximated by a circle in the w-plane as

El (r—a)]2+Er—§:|2 =r2 (3.45)

32 + (7 {2)2

2a

i

where

a=ulV = 0.575, s =1

=7 /2
0<u<ax<l

For u < 1, (3.43) can be evaluated approximately by
2 1 2 2
-p uvsinv = E(V - 3m)|(cos v+ 1)” + (u sin v) ) (3.46)

The location of zeros may be obtained by graphical means. If we plot (3.45)
and (3.46) on the w-plane, the points of intersection between the two curves
determine the zeros of Wn(z'o). A typical plot is given in Fig. 3-6. Mapping
the zeros of Wn(z'o) from the auxilliary w-plane with the help of m = —ip2/
lcosh w + 1) gives the location of zeros on the m-plane. If we consider p as
the variable parameter, the locus of the first zero in the m-plane is expressed

approximately by
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w-plane

w=u+iy

FIG. 3-6: GRAPHICAL SOLUTION FOR ZEROS OF
Wn(z) WHEN z =Y p.
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mp = - % [(p +2,8) + i(p2 +p+ 1.4):| (3.47)

where we limit the range of p as 0 < p < 10. Re mp and Im mp are plotted
in Fig. 3-7. Similarly, loci for s = 2, 3, 4..., may be obtained by the
graphical method.
(U) e) Zeros of 'Wn(_z'o)_. In Neumann's problem we define the function
3
W(z')=-22W(z')+ == W(z') . (3.48)
n o on o n o

dz'
o}

Here
W (z') =
n o

az! Wn(z o)
o)

has the asymptotic expression

W' (z' ) 2= 2t E:ontribution oft to W (z )] +
n. o 0 0 n o

+ 2 contribution of tl to Wn(z’o)] (3.49)

g

from the saddle points to and t If the path of integration does not pass

I
through a particular saddle point, its contribution to (3.49) is zero. Upon

replacing to and t. by their expressions and subtracting the corresponding ex-

1
pression for z' W (z') we obtain
on o

"W (z' ) = «4[(z' )2 - Zm{E contribution to W (z' ZI -
n o v 0 0 n o

- | t. contribution to W (z' ):l ) (3.50)
1 n o

(U) When z'0 = 4/-2ikh =*/:? p, the asymptotic expression of ’Wn(z’o) for
the case that the path of integration passes through two saddle points to and ti

is
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'wn(z'o) =‘V—i02 - 2m E\O + A1:| , (3.51)

where AO and A1 are expressed by (3. 36).

(U) Therefore, the zeros of 'Wn(z) are located at

+ A =
A0 . 0 (3.52)

or

exp[f(to) - f(tl)_—J :\Vz/i_tl, ; (3.53)

here to’ tl, f(to) and f(tl) are also expressed by (3. 36),

(U) Using the transformation w = fn (to/tl) = u + iv, we obtain

2 sinhw-w T w
_3 = 7 - + - -
0 shwrl Sl (1 + 4s) 5 (3.54)
where s = 0, 1, 2, 3,.... By separating the real part and the imaginary part

of (3.54) we obtain two simultaneous equations

2
p Ecos v + cosh u + u sinh u) sin v - (cosh u cos v + 1)\]

N |—

u Ecosh ucosv+ 1)2 + (sinh u sin v)z:l (3.55)

2
p | (cos v+ cosh u - v sin v) sinh u - (cosh u cos v + l)u:]

1
=5|v- m(1+ 4sz| Ecosh u cos v + 1)2 + (sinh u sin V)ZJ (3.56)

Dividing (3.55) by (3.56) we have

(cos v + cosh u + u sinh u)sinv - (cosh u cos v+ 1)v
(cos v + cosh u + v sin v)sinhu - (cosh u cos v + 1)u

_ -u
S Y70+ 28) (3.57)
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Setting s = 0, (3.57) may be approximated by a circle in the w-plane

lzl-(r-a)]2 +[—-72£]2 - 12 (3.58)

2l f2)?

2a

where

0 <u<ax<l,
For u < 1, (3.56) may be approximated by

-02 uv sinv = ';‘ (v -m) [(cos v+ 1)2 + (u sin v)2J . (3.59)

The location of zeros are determined by the graphical methad from (3. 58)
and (3.59). A typical plot is shown in Fig. 3-8. Mapping the zeros from the

w-plane to m-plane gives approximately the locus of the first zero as

m' = -(lp+‘1‘

o1
" - 10 ) i plp + 1) (3. 60)

where p is limited in the range 0 < p < 10. Re m'p and Im m'p are plotted
in Fig. 3-9. Similarly, loci for s = 1, 2, 3,..., may be obtained by the
graphical method.
d 9
T ions — W (z' — W (z') E
(U) f) The Value of the Functions o _n(_z o) and - L?Vn(_z 0) valuated
at Zeros. The function Wn(z'o) is defined by

L ef(t) dt

71 (3.61)

W (z') =
n o

where

f(t) = -t2 + 2z'0t -(n+1) It . (3.62)
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w-plane

FIG. 3-8: GRAPHICAL SOLUTION FOR ZEROS OF
‘Wn(z) WHEN z ={-1 p.
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)
Differentiating (3.61) we obtain the function 51-1-Wn(z'o) as

a
—-W(z')=——1—. (fnt) e
n. o

£(t)
on 2mi dt
W

(3.63)

If we assume the path of integration W does not pass through the point t = 0,
the function fn(t) may be considered as a slowly varying function in comparison
with the integrand and put outside the integration sign at the saddle point.
Therefore the saddle-point method may be applied to evaluate the asymptotic
expression as the following

2 W (z' ) = - (int ) |contribution of t to W (zﬂ -
on n o 0 o n

- (Int 1) contribution of t 1 to Wn(Z)]

= - I_—(_Jznt ) A - (mt) A] (3.64)
0O o 1 1
where A0 and A1 are expressed by (3.36) and z'0 =1’—21kh’ =¢f-Ip.] At the
Zero, Ao - A1 = 0, the asymptotic expression gives
—a-w(z') =—En(t/t)]A (3.65)
on n o o' 1 o )
n=n

where nS is the sth zero of Wn(z) in the n-plane.

(U) Next let us consider the definition

'W(z')=—z’W(z')+"a—‘W(z'). (3.66)
n o O n o az'o n o

By a similar consideration as before, we obtain the asymptotic expression for

9 "W (z' ) as
on n o
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9 ' [ 1 _ o
on Wn(zo) = -z [(Ento)A0 + (Zntl)Al:I -
+2 [— (znto)tvo + (Int 1)t lAl ]
= —V(z'o) -2m IZZntO)AO + (ﬁntl)Alj (3.67)

At the zero, A0 + A1 = 0, we obtain

\ ’ 2
n=n' T (ZO) - 2m P En(to/tl)] AO (368)
S

where n'S is the sth zero of 'Wn(z) in the n-plane, and

z'0 =~1,—2ikh =\q/:T‘ o}

1 1 1
1 = - (p+ — -3 = + - 1+
mp (”p 10) 12p(p 1) n' 1.

—a-vW(Zv)
on n o

(U) g) Surface Currents in the Shadow Region. The asymptotic expression
tion U t f the functi W -i "W -i
of the function n(z) at zeros of the functions n“/—? p) and nw 1 p) was
obtained by Rice (1954) as

Uz = (1 -1 ar (3. 69)
n 1

where

t! f(t'
| _Jlexp (tl)

! ym (2 - 2m)1/4
z =Wik ‘£

2
1 = - {! + L + 1
flt 1) t1 2zt1 (n+1) fznt1

A (3.170)
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- e i o
tl = 2@8 ikE 2m] (3.71)

m=n+1
= mp for Dirichlet's problem

= m'p for Neumann's problem .

Substituting the asymptotic expressions from previous derivations into (3. 17)
and (3.18), we obtain surface currents expressed in the form of a residue
series. Assume a plane wave impinges upon the parabolic cylinder at an
angle y = 7 /2. If we consider the leading terms of the residue series, the
surface current for the Dirichlet problem becomes

A Any oy 2 1/4
le'ikr i)@a-i") tl(lp - 2m )

D kri

<y
R
-

exp E(t'l) - f(t 0]

: el 1/4
sin mn(ik&™ - 2mp) ln(to/tl)ﬂ

2
ﬁsm
: 'ivr{;g'\/ké"z*‘Zim +
»"—Zimp P

2

1 p +‘l’p - 2im 2

+(m _ E)ln 12 g‘/p - 2im (3.72)
P 1’—21mp p

1
exp (mp - 2)ln

where
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P =‘Vf§kh
= M- +¥ - -2
to vv—f'p 1p m /
r—
t1= v\[—l‘p- -1p - 2m /

B

mp=—'2- Ep+2.8)+i(p +p+1.4£|

(U) Similarly, we obtain the surface current for the Neumann problem as

following:
N
“ikr (i (1 - 1 t'1 exp f(t' ) - f(t )]
JN::/’ ‘\IZ_WI e 1/ 1/4
sin 7 nén(t /t )(1k§ -2m' ) (- 1p -2m' ) A[-(\)
o 2w2m 13/2
) 2 Dy o2 v |1/4
ﬁn(to/tl) (ike —2mp)( ip —2mp)
L WKE S ke + 2im’ e [
expq (m' -2 )n Bl B 'VkS +2im' +
P ‘\,—2im' p
p
1 P +!’p2 - 2im' 3
+ (m' - E)En Rl o+ g“Vp - 2im' (3.73)
P 1’—2im' P
p
where

n=m' -1

p
p =4 2kh
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-

2

t = —ip+‘\/-ip - 2m' /2

o |\ p

t, = 1{-1‘ o +‘\/ —ip2 - 2m' /2

I P
ik £ -1/11&52 -2m' | /2

1 p

m =-E +0.1)-i8(p+1)
p T 2

o+
1}

(U) The surface current density at the crest is plotted as a function of
p in Fig. 3-10. Since at the crest £ = 0, there are two numbers having the
same magnitude involved in subtraction in the exponent of (3.72) and (3. 73)
the accurate surface current density may be obtained by solving the location of
zeros of functions Wn(z) and 'Wn(z) exactly, otherwise the error is large. In
general, this is not necessary in obtaining the attenuation factor for the sur-
face current beyond the crest due to the fact of additions in the exponent. The
graphical solution is quite satisfactory in this case. Here the attenuation

factor is defined as:

e—a(E )

= A (3.74)

I [k

= 1
o] -

where A and A' express the surface current density at the crest & = 0; o€)

e_a'(g) (3.75)

and o'(§) are the attenuation factor as a function of the parabolic coordinate &.
(U) In Fig. 3-11a,b the attenuation factor is plotted as a function'\/T{‘ £.
From these figures we see that the attenuation factor of a large cylinder in-
creases more rapidly than for a small one in the deep shadow region, i.e. the
larger the cylinder the darker it is. In general it is much darker behind a

parabolic cylinder than behind a half-plane.
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(U) Figure 3-12 and 3-13 show the attenuation factor as a function of the
arc length along the parabolic cylinder. It is seen that the surface current
density in Dirichlet's problem attenuates more rapidly than does that in
Neumann's problem. For instance, for p = 7 in Dirichlet's problem, the
creeping wave will propagate one wavelength along the parabolic cylinder before
it is attenuated at 6 db, but it will propagate two wavelengths on the same
cylinder before it reaches 6 db attenuation in Neumann's problem.

(U) Figure 3-14 shows the constant attenuation contour on parabolic
cylinders. Once again it shows that the larger the cylinder the more wave-
lengths the creeping wave will propagate along the cylinder, but the larger the
cylinder the darker it is. The wavelength A of the incident plane wave is
plotted against parabolic cylinders for scaling.

(U) h) Results as Compared with Those of a Large Cylinder. The asymptotic

expressions obtained may be interpreted in terms of the '"geometric theory of
diffraction" (Keller, 1956). Let the length of the arc of the parabola between
the points §€ = 0 and £ = £ be

€
NErN
S - '\l§2+2hd§:§' £2 4 op + e [STLE F 2T g

2h

0

and the radius of curvature of the parabola at the point with coordinates (£, 2h)
is

2 3/2
R(§) = € +2n) (3.77)

wen'

Finally let us express the integral over the arc of the parabola as
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S €
) _ds _..\1/3 _d
D= @]2/3 = (2h) (&’2 +2h)1/3
0o L' 0

+v2+2h

3

= (2h)1/ in . (3.78)
-'VZh

Comparing these expressions with formulae (3.72) and (3.73), we obtain the

asymptotic surface current in the forms

J 1/3
D L Toeyl/6 Go KT
i ~A(p)«\/1_<? E{(‘g‘] exp{ -ikS - 5 E) +3.8) +
+1i(p+ 1.4El —2%'3— (3.79)
o

-1/6 1/3
JN~A'(p) R(El_] exp { -ikS -KZ— E%re +1.2) +

N
+ i é] p2/3 (3.80)

where A(p) and A'(p) express amplitude functions which are a function of p
only. Here p = 2kh.

(U) Formulae (3.79) and (3.80) have the same expression as the results
of Keller and Levy (1959). Therefore it is clear that the creeping wave theory
may be extended into the region where the radius of curvature is comparable to
the incident wavelength. The only place needing modification is the coefficient
of D in the exponent of (3.79) and (3.80) where the coefficient is expressed as
a function of the focal length p =A2kh, For large cylinders these coefficients

/6

blems respectively (Ivanov, 1960). In our case these coefficients are

. o 16
are equal to 2.338em and 1.0188em/ for Dirichlet's and Neumann's pro-
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Ep +3.8) +i(p+ 1.4)] /2;)2/3 and P%re +1.2) + ip /2;32/3 in Dirichlet's
and Neumann's problems respectively. -

(U) When the focal length of the parabolic cylinder is large compared to
an incident wavelength, the asymptote of the function Wn(z) may be expressed
by Fock type formulae, i.e. the function can be expressed in terms of the
Airy function (Rice, 1954; Ivanov, 1960). This is due to the fact that the
asymptotic expressions given by the saddle-point method fail when mp and m'p
are near - ikh, i.e. zeros of Wn(z) are very close to -(ikh + 1). In this case

two saddle points to and t. coincide, and f"(to) vanishes in (3,26), Taylor

expansion of the function 1f(t). Therefore the unvanished terms will start from
the third derivative of the function f(t), and the asymptotic formulae may be
expressed in terms of Airy integrals. In the case of the short focal length
compared to the incident wavelength, the locations of zeros of the function
Wn(z) are not closed to -(ikh + 1). Therefore the saddle-point method may be
applied to evaluate the asymptotic expressions. This is what we used to obtain
the asymptotic formulae for surface currents in (3.72) and (3. 73).

(U) For the large cylinder, Fock (1946) defined the width of the penumbra

region as

d =\ |- (3.81)

i
Y1 [ 3 ¢ (3.82)

where R is the radius of curvature of the cylinder by the plane of incidence,
and the distance £ is measured from the geometrical boundary of the shadow.
For large positive values of vy, the surface current density is proportional to

-a . ces
e Y. Here a is a positive constant.
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(U) From (3.79) and (3.80) we may obtain the similar quantities defined
by Fock by considering the region §< 2h or k § <p, within which D can be

approximated by

£ _ X k2/3 X
D~ 1/6 = 2/3 = 4/3 . (3.83)
(2h) (2n) p
For the Dirichlet problem, we obtain
+
oy = (L—TBQ) kx . (3.84)
2p
Similarly we have
E v
aln}/' = ———k kx (3o 85)

for the Neumann problem.

(U) From these expressions, we find the definition of the width of the

penumbra region as

S =
2R
d = _k for AJkR' >> 1
2 R
= K for ‘VkR > 1 (3. 86)

R forv—lgﬁ<1

From (3.86) it is interesting to see that d is proportional to the radius of the

curvature and almost independent of the incident wavelength when 1/12? <1.
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3.3.3 Tangential Magnetic Field on the Surface of an Imperfectly Con-

ducting Wedge.

(S) a) Introduction . The aim of this section is to investigate the tan-
gential magnetic field on the surface of an imperfectly conducting wedge. The
results and method then obtained is to be applied to the coated cone-sphere.
We assume that on that surface, the electromagnetic fields satisfy the boundary
condition

A A A
P_J'-(n._}?_,)n—nzonxl-l'. (3.87)

In Eq. (3.87) 7l denotes the outward normal of the wedge surface, Z0 is the free
space intrinsic impedance and n is related to the permeability and permittivity
of the material making up the wedge. For convenience of analysis, we employ
the cylindrical coordinates (p, ¢, z) where the z-axis coincides with the edge

of the wedge. The time convention e—jwt is assumed. We further assume that
the wedge occupies the space (a < p< o, e <P <271, -0 < z< ) and is
excited by a magnetic line source at a position (a, B, - @ < z < o) with 0 <
< a. From Maxwell's equations and the above geometrical configuration, one

can easily see that the non-zero field components will be Hz, Ep and E¢ , i.e.,

=2 H

J= =
-:

=

+

p JE 3.88
¢ ¢ ( )

/
where Q, 3, ¢ are the unit vectors along the respective coordinates,
(U) It has been shown (Den 1967, Appendix A) that if the tangential
electric field and magnetic field on a surface S of a scatterer satisfy Eq. (3. 87)

then one has

l 1) - ] = - ' 2
5 _F_"o(r_') (Vg0 p'e Eo) x ' ds ll,o(gr) X1 (3.89)
S
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and
2E@) -q) Ve x F) x B oas
2 " 0 ©
S
1 A A
= - n' x|V'x Vg xaxF ) ds |. (3.90)
ik 0 “n-1
S
F, F_... fined
Where Fo, Ty are defined by
2
- A -
E-—n><§-§0+77§14-n_§2+... (3.91)

l’lo(_r_") represents the incident magnetic field and go denotes the free space

Green's function

1 eﬂ|£'£1
g = 1r —|:—‘—£'_ . (3.92)

Moreover one may note that in (3.89) and (3.90) one integrates with respect to
the unprimed system.

(U) In the section b, recognizing the surface S in (3.89) and (3.90) as
the wedge surface and inserting (3.88) in (3.87), from (3.89) and (3.90) we
will obtain a set of integral equations for the surface magnetic field. In sections
¢ and d, solutions of the integral equations are obtained. In section e, we
discuss the possible ways that one may apply a similar method to a cone
diffraction problem.

(U) b) Formulation of the Integral Equations. To the two lateral surfaces

of the wedge, # = 0 and §§ = @, the unit normal 7 becomes

6f0r¢=0

1

-
n
and

—’(3 for

1
R

(3.93)

=?
1l
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a
Moreover, if one lets HZ and Hl; denote the tangential magnetic field on the

surface } = 0 and ¢ = o respectively, then from (3,91) one has
F=% Hz for § = 0

and

b

-7 H for g =a. (3.94)

F
=

b
Now we express Hz and HZ in perturbed form as indicated by

a a a 2 _a
= + + +
Hz HzO 1 Hzl n HzZ DR
and
b Hb 2 b
= + H H +...
HZ n . , (3.95)
and from Eq. (3.92) we obtain
F =t H  for ¢ =0,
~™n zn
= -f'Hb for § = a. (3.96)
zn

Upon substituting (3.93) to (3.96) in (3.89) and (3.90), on the surface §' = 0
the integral on the left had side of (3.89) and (3.90) becomes

wpo 8
Hzna
= v F o ds = T —
L (gox_'n)xn s=rT 5 o godzdp
S 0 J-m
+ — =
o 5§ % dzdp |, n=0,1,2,... (3.97)
0 -0

One may note that on the right hand side of (3.97), in the first integral we
integrate on the wall ¢ = 0 and in the second integral we integrate on the other

wall of the wedge ¢ = a. Since H_ is independent of z, we have
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f00) H:;,b . Hz;;lb ; 00
- = dz = — . .
o g & U o o g, dz (3.98)
- -0
But
©
i)
g g, dz = 4 HO (kaQ) (3.99)
-
where
2 2 !
Ppg WP TP - 2pp' cos (¢ - @#). (3. 100)

It has been shown (Oberhettinger, 1954) that

®

1 4i

Hg )(kaQ) = 7{—12 g Ki)k(yp) Ki)\(yp') cosh E(w -4 - ¢'|:| dx (3.101)
0

where ¥ = -ik and Ki>t (vp) is the modified Bessel function of second kind.

Applying the operator 8/8¢ to (3.101), for #' = 0, we have

()(kp )= -@‘K(P, p') when ¢ — 0,
8¢
T
= - 4-12 Kb (p,p") when ¢ - o |, (3.102)
T
where
@
a 1) = ' .
K (p, p" = g AKik('yp) Km'('yp) sinh 7 X dx» , (3.103)
0
and
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®
b
K (p, p") = A Kil('yp) Ki)t (yp') sinh X (7 -a) de. (3.104)
0
Similarly, for the case §' = «
2 1% ) =4 kP o) when ¢ > 0 (3.105)
8¢ 0 pPQ 7r2 p: p w n ) .105
4i a
=5 K%p, p') when § > o. (3.106)
T

For the convenience of further analysis, based on the integral representation

(3.101), we also introduce the notations

0 0]
Ga(p') = Kik('ya) Kik(yp') cosh A (r - B) dx , (3.107)
0
a
() = \ K, a) K, () cosh A (r -a+ B) ), (3.108)
0
(0 0]
M*(p, p) = K, &p) K fyp') cosh X 7 d, (3.109)
0
and
(0 0)
Mo, ) - K., (9 K, (0) cosh X (1 - ) ) . (3.110)
0

From (3.98) to (3.104), one may reduce I toa form as shown
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(0]
-+ p"1 H® K (p, p') dp +
1 7r2 zn
0
06
-1 b
+ 0 H:nK (o, p") dp| . (3.111)
0

Similarly on the other surface of the wedge, §' = @, following the same pro-
cedure and using formulas (3.105) and (3.106) the integral on the left hand
side of (3.89) can be reduced to

(0 0]
1 A, -1..a b
= - —— K 1]
L ,,Zr poH (p,p') dp

0

0 0]

-1..b a
+ p H K (p, p') dp . (3,112)

an

0

The primary field due to the magnetic line source can be written as

LIO(_I_'_") =72 H(l) <k%'2 + aB - 2ap' cos (§' - B)>

(0]

where (a,B) indicates the radial and azimuth coordinates of the source. On
the surfaces of the wedge, in terms of the notations given by (3.107) and

(3.108), the primary field is of the form

B () =7 4—12 GHp") for § =0
T
=7 4—12 Gb(p') for a = a. (3.113)
T
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Substituting (3.111), (3.112) and (3.113) in (3.89), on the surface §' = 0, the

integral equation can be reduced to the following form

00}
a 2 -1 ..a
H - = H " d
20 ”2 P 20 (p, p") dp
0
' 00
-1.b .b 8i
+ pTH K (p, o) dpp == Ga(p'), (3.114)
Zz0 T
0

Similarly, for the surface §' = o, one may obtain an integral equation as

shown
®
b 2 -1..a Kb .
Hzo 7{2 p Hzo (p, p) dp
0
©
-1 b ;
sl o E K, o0 dp o= B QP (3.115)
70 T
0

Equation (3.114) and (3.115) are coupled integral equations. We note that
their unknown functions H;io and HJ;O represent the magnetic fields on the sur-
faces ¢' = 0 and ¢' = a respectively when the surface impedance r;Zo approaches
to zero.

(U) Now we turn our attention to the right hand side of (3.90). Since

a,b

Vgox(ﬁx_F"n 1)=—Vgox EHzn—l

A
V= -V and Z = 2', we have
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1 4, .
= - = F
12 K n X[V@ Vgox(ﬁx_,n_l)ds:‘
S
w o

=—n' X V' x (V'g0 x 2 Hz e Ydz dp

1

v Q0 p O
+ v x (V'g x 2 Hb ) dz dp . (3.116)
o z,n-1

L

0 -

As we point out in the early paragraphs that Hazl’]rol-l are independent of z,

using the well known formula (3.99), I2 can be reduced to

®
= -l'—"t . ' 1 (1) P
I2 = b X v X[V H0 (kaQ)x z Hz,n-l dp
0

z,n-1

®
! (1)
+ 1 v A Hb .
\Y% x[ H (kaQ) Xz de (3.117)
0
where pPQ is given by (3. 100). It is of importance to recall that in the first
integral § = 0, and in the second one § = a. For the case ' = 0, i.e., on
the lower surface of wedge, employing Eq. (3.109), we may reduce (3.117) to

a form as shown
[60)
i 7 a Ay 1
= — v! ! 1 1
I, 5 g x x[V M (p,p") X Z Hz,n—l] dp
T k 0

w
+ V' x [V' Mb(p,p') x z' I—Ibz n—l] dp . (3.118)

0
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It can be shown that

V' x E' Ma’b(p, o x Z g—’] = - g kz £ MEL’b (p, 0') (3.119)

where £ is a scalar function of the unprimed system only. Substituting (3. 119

in (3.118), we immediately obtain

®
ik a a
- _ = %, 1
12 7r2r H nel M (p, p") dp
0
©
b b
+ M '
H g M (e p) dp : (3.120)
0

On the upper surface §' = o, employing (3.110) and (3.119) we have

00
_ &. o) a b 1
L="3r1 L
i
0
[0 0]
b b
+ 1]
Hz’n_1 M~ (p, p') dp . (3.121)
0

Thus for the surface §' = 0, if we substitute (3.111) and (3.120) in Eq. (3.90),

we obtain an integral equation of the form

(6 0) (00)
a 2 -1.a a -1.b b
- = K ' +
H 2 pH_Kp,p)dp p "H_ Kp,p') dp
0 0
[00) (00)
ik a a b b
= .= M 1 + 1
2 H M (e, p)dp H) oM (pp0do e, (3.122)
0 0
n =1, 2, ...
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Similarly for @' = o, one can obtain the following equation

© ©
- 2N\ o8 K0 do + \ 0TE K30, 00) do
n 7r2 7n 7n
0 0
@ ®
ik a b a
= - = M ' + .
.2 H, oM (o P)de Hl;,n_lM (p,p")dp », (3.123)
0 0
n=1, 2, ,

from (3.90). Equation (3.122) and (3.123) are also coupled integral equations
and their free terms depend on the solutions of previous order or integral
equations.

(U) In section ¢, method of solutions for (3.114) and (3.115) are investi-
gated. In section d, we will apply the method employed in the previous section
to (3.122) and (3.123) and obtain the solutions for the first order integral
equations, i.e., the case n = 1,

(U) ¢) Solutions for the Zeroth Order Equations. In a study of the form

(3.101) of the primary wave due to the magnetic line source, we may assume

that Ha and Hb are of the forms
ZO0 ZO

00
a _ 4i a
H = = Ki>t (vp) fo(h) dx (3.124)
T
0
and
(00}
b _ 4i a
H o= = Ki>t (yp) £ (\) dx (3.125)
T Jo

respectively., Substitution of (3.124) and (3.125) in (3.114) and (3.115), the
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later equations become
09) ™ ™
Kik(vp')fi(h)dk -;2—2 dpo” K%(p, p") Kik,(vp)fz()v)dx'
0 0 0
09) oo}
+ dp p—1 Kb(p, ") Kiw('yp) ft())()t') dx’
0 0
®
= 2 Kik(ya)KiA(w') cosh A (7 - B) dx, (3.126)
0
and
@ 09) @
K. (oo - ,,% ape 'K (p,0) | K ot )an
0 0 0
09) ©
+ do ™! K%, p) Kw(yp) fl;(h') dx
0 0
®
=2 Km(va) Kik(yp') cosh A (7 - o + B) dx (3.127)
0

where Ka(p, p') and Kb(p,p') are given by (3.103) and (3.104). If one inserts
the later equations in (3.126) and (3.127) and reverses the order of integration,

one arrives at
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(00
-1
K

dpp “K, (vp)
0
®

dpp‘lK (yp)

i

0

(ya) cosh x (7 -8)

a

0
[0 0)
-1
dep K (vp)
ix
0

-1
dep Ky

=2 Kik('ya) cosh X (1 -a+B)

(0 0]
a
Kik,('yp) £ () av
0

(0 0]
K. (o0 du
i 0
0

(vp) X

b
K 1
i)U(w)fo()x ) ax!

(3.128)

09)
a !
Km,(vp)fo(k )dx!
0

(3.129)

For the moment, we assume that in Eqs. (3.128) and (3.129), the order of
integration are interchangeable, then we reduce (3.128) and (3.129) to the

forms
f60)

fz(h)N(k, A
0

fa(l) -2 A sinh A7
o 7r2

®
+ X sinh M7 -0a) tl:)()t')NO\,)U)dk'
0

(3.130)

’

= 2 Ki)\ (ya) cosh X (1 - )
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o
b 2 ) a
fo(k) - A sinh M7 - @) fo()t) N, A1) du!
T 0
(0
FAsih AT\ L0 N A dv
0
=2 Kik(ya) cosh X (r - a + p) (3.131)
respectively where
(09)
-1
) = K
N, ) p Km(yp) P de (3.132)
0

One notes that the integral N(A,)') behaves as the kernel of the last two in-
tegral equations, therefore it deserves more investigation.

(U) It has been shown (Luke, 1962) that

(0 0]
Iu,v,E;a,b) = t-gKu (at) Kv(bt) dt
0
af-lawa(lvtu-E) o (1twpu-E) ~(l-vu-§yf1-v-u-§
=(2) (2)F(2'F\2 )F(zl/’(z )

8/ (1-¢)

1 - -u-
x2F1[:+V;'M & , S+y2H 5, 1—‘5;1'(1)/3)1 (3. 133)

if R1-&+ p+v)>0and Rla+b)>0. Weleta =b, g4 =i\ and v = i\’

then the last integral becomes
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. 13
I(ix, ir', &34, a) = (5)

-1 . . . _
/~,I\1+1>t2+1>t E)/-r(l 17\;1)\ j)

XF(1+i)L éik‘ -g)/_,(1 -ihz— ix! -s)
81 - ¢

(3.134)

Since Gamma function r (z) is analytic for all z except for z equal to zero and
negative integers where ["(z) has simple poles. Therefore from (3.134) we

observe that when £ - 1, for the case ' # X

I(ix, irx', & a,a) » 0 (3.135)
and for A' = A
i i) ! . 2m I'E
0ix, 0 Eaa) > o [ O (3.136)
R(2a) >0

The above properties (3.135) and (3.136) imply that I(ix, i)' 1 ; a,a) behaves
like a delta function divided by the function A' sinh A'm, i.e.,

C
m

N sinh A7 s(A1 - ) (3.137)

Iix, ix', 1;a,a) =

where Cm is a numerical constant to be determined. I we integrate
Eq. (3.137) with respect to A' then the right hand side is

© C C

. m _ — m
L' sinh A'm (' - 1) dx

Yemh w0 (313

0

and the left hand sides, upon interchanging the order of integration, becomes
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™ ® ®
1
s i)t B ' o= —_ !
I(iX, iX', E;a, a)dX [ﬂg‘ Ki>L (at) Kiw(at)d)u:] dt, (3.139)
0 0 0

E > 1.

By definition of Lebedev transform (Oberhettinger and Higgins, 1961), we

obtain
” 7r2 1
o iy q-. . 1
I(ix, ix', 17;a,a) dx 5 X smh a7 (3.140)
0
Equating (3.138) to (3.140), we can easily arrive at
2
C =n/2. (3.141)
m

(U) Returning to Eq. (3.132), if we assume that the medium in the
space between two wedge surfaces is slightly lossy, i.e., R(y)> 0, then we

may let v = a and

[\

1

T
N, A = 2 X' sinh A'm

st - Q). (3.142)

Upon substituting (3.142) and (3.141), one obtains immediately the following

results:
a,.y 2 sinh A7 cosh A (1 -a + B)
fa) = - TS — K, (3.143)
and
_ 2sinh A7 _cosh A (7 - B)
20 = - ST AT K, ba) . (3.144)
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The zeroth order solution for the tangential magnetic field on the surfaces

¢ = 0 and §' = o can be written as

®
a _ 8i sinhA 7 cosh M -a+3)
H = i K, (19K, (ya) = o= = ) (3. 145)
0
and
®
b 8i sinh A7 cosh A (7 -B)
Hzo T 7r2 Ki)\ (Yp)Ki)t (va) sinh A (7 - a) dx (3.146)
0
respectively. Using the identities
I (2)-1_(2)
T =X iA
K. (z) = =
i)\(Z) 2 isinh A7 ’ (3.147)
and
K_(2) =K (2) (3.148)
Egs. (3.145) and (3.146) can be transformed into the forms
™
a 4 cosh AM(m -a +p)
Hzo T Kih(yp)I-iX(’Ya) sinh A (7 - @) -, (3.149)
-0
and
®
b _ 4 cosh A (7 - B)
H., = Ky AL, (ra) oy (3.150)
-00

respectively if p > a and the origin is indented by a small semi-circle in the
upper half A -plane. Last two expressions are also valid for the case p < a

with p and a interchanged.
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(U) d) Solutions for the First Order Equations. Upon substituting Egs.

(3.109) and (3.110) in the free term of the integral equation (3.122) for the

case n = 1 and reversing the order of integration, then the free term will be

of the form

@ (o4}

ik . a

-5 Kik(yp ) [}os AT HZo Ki)‘ (vp) dp
T 0 0

@
b
+ cosh A (7 - @) HZo Ki)\ (vp) dpJ dx . (3.151)
0

Analogous to Egs. (3.124) and (3.125), we assume that Hzl and sz)l are of the

following integral representations

(0 0]
a _ 4i :1
H. o= Ky (yp") £ ) a (3.152)
T
0
and
(0 0]
b 4 NP
HZ1 =55 Kik ('yp)fl(k) dx (3.153)
4 0

respectively. If we substitute the last two expressions in the left hand side of

(3.122) we can write the integral equation in a new form as shown
© ®

a l : -1 Ay '
fl(K) - 7;2 X sinhAm dpp Kik('yp) Kix'('yp)fl(k ) dy

0 0
o 0

3 —1 1 1
+ A sinhx (7 -ap| dpp Kik('yp) Kik,(‘yp)fli(k ) dx
0 0
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®

..k coshA 7 H K (vp) d

4 z0 i P
0
®
b
+ - :
cosh A (1 - @) HZO Ki)t (vo) dp y . (3.154)

0

The left hand side of (3.154) has the same form as (3.128), therefore following
the steps from (3.128) to (3.144), we obtain

®
_k sinh Am a
ftl)(u " 4 sinh A (7 - @) cosh A Hzo Ki)\ (ve) dp
0
0
+ cosh A (1 - o) H K. (yp) do § . (3. 155)
zo 1A
0

Similarly, using (3.109), (3.110), (3.152) and (3.153), one may reduce Eq.
(3.123) to a form as shown

a., _k sinh A 7 a
(0 =3 = (oSt (1 -a) H K. (o) dp

®
+
cosh A 7 }I:o Ki>t (vp) dp
0

(3.156)

It is seen from last two equations that a knowledge of the integral

(00} (00}

AQ}) = H:OKiK(»yp) dp and B(\) =

b
HzoKiA (vp) dpo ,
0

0
will be crucial to the solutions of (3.155) and (3. 156).
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(U) Substituting (3.145) and (3.146) in the integrals A(A) and B(\) respec-
tively and reversing the order of integration, we have

®
_ 8i ' sinhA'7 cosh ' (1_- o+ B)
AR = - 2 'Ky, bra) sinh \' (7 - )
0
®
K
Koy tve) K (yp) do (3.157)
0
and
®
_ 8i ' sinh M' 7_cosh ' (- B)
B = -5 dr Ki)\'(ya) sinh A' (7 - @)
m
0
®

Ki)ﬂ (vp) Kik (yp) dp (3.158)
0

But from (3.133), one knows that

@
1 1 1
= - = 414 - 3
K v K,y (o) do = - [G +/76 - i
0
- /_'(% + iy)/-'(‘;' - iy) (3.159)
where x = (A +1)/2 and y = (' - 1)/2. Employing the well known formula
(Abramowitz and Stegun, 1964)
& +i0/¢ i - —2— (3.160)
2 2 cosh 7 z ’
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Eq. (3.159) yields to the form
@ ] 5 1
K K = -
i re) i (ve) dp 4y cosh 7x cosh Ty
0

Consequently, we arrive at

00}

|=i

1
2y cosh mA + cosh mA'

]

K.y (yp) Ky (vp) dp
0

Substituting the last equation in the integrals A(X) and B()), we obtain the

following forms

@
-+ S sinh X' 7
A = - sinh X' (7 - @)
0
cosh ' (1_-a+R) '
cosh 7 A + cosh 7 v Kp ra) @ (3.161)
and
(0 0]
4 sinh ' =
B0 = - sinh 1A' (7 -a)
0
cosh A' (m_- B) '
cosh 7 X + cosh 7 vt Epu(rd) @ (3.162)

Because of the identity (3.147),,we may transform A(X) and B(\) into two-side

integrals as shown

Iik'(va) cosh\' (1 - a+B)
sinh \'(r - @) cosh7\ + cosh 7\’
-0

AQ\) = 271 dx', (3.163)
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and
®
L, (va)
27 i cosh }' (1_-B)
B() = == '
W Y sinh X' (7 - @) coshm\ + cosh T\’ da (3.164)
-

respectively if the origin is indented by a small semicircle in the upper half
A -plane. Last two integrals can be written in series form if we close the
contour of integration in the upper half plane. From (3.163) and (3.164), one
observes that A(A) and B(X) are even functions of X and they are inversely
proportional to 7.

(U) Substituting (3.156) and (3.155) in (3.152) and (3.153) we have

®
a _ ki sinh A 7
HZ1 = =5 Soh X (7 — ) [A()\) cosh A (1 - @)
T
0
+ B(A) cosh A ﬂKiA('yp) dx |, (3.165)
and
®
b _ ki sinh A 7
Hz1 T2 sinh A (7t - a) [A(X) cosh A7
T
0
+ B(\) cosh X (1 - aElKix('yp) dx (3.166)

respectively. Last two integrals can be also transformed into two-sided inte-
grals as we obtain (3.163) from (3.161). The resulting integral representations

for Hazl and H: can be written as

1 1
. " @ I_m(’yp)
HZl = o S A 7 -~ a) E(A) cosh A (r -a) +
-
+ B(A) cosh >ur:| ., (3.167)
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©
I, (yp)
b _ k L-ix
HZ1 = 5 T O A(X) cosh A7
-
+ B(X) cosh A (7 - ail dXx (3.168)

respectively.
(U) e) Discussion and Suggestions for Further Work. In the last two

sections, the zeroth order and first order equations are solved. We represent
the results in integral forms. As we point out that those integral represent-
ations can be transformed into series forms if one carefully studies the nature
of the poles and the position of poles in the upper half A -plane. Examining
Egs. (3.149), (3.150), (3.163), (3.164), (3.167) and (3.168), it seems that

there are only simple poles occuring at
sinh X (7 - ) = 0,

(U) Although in this section, we only treat the zeroth order and first
order equations, however, the method developed in ¢ and d can be used to
tackle the equations of order higher than unity (n > 1). One may expect that

the solutions of nth order equations will be of the form

© I, (yo)
gt o X -iA [ ] o, (3. 169)

zn 2 sinh A (7 - a)
-0

where the expression inside the square bracket depends on A and a the same
as the expression inside square bracket of (3.167) and (3.168). However, it

will be much more complicated in comparison with that of (3,167) and (3. 168).
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(U) One may note that the sequence of thought in section c is the con-
junction with that of Magnus' work (1941) on the diffraction of electromagnetic
wave by a perfectly conducting half plane. He began with an integral equation
whose kernel a is Hankel function of zeroth order. The free term of that
equation is related to the incident wave. For the half plane, he expanded the
incident wave and kernel into a series of Bessel functions of integer order and
in the meantime, he assumed that the surface current is of a similar series
form. Then he reduced the original integral equation into a system of an in-
finite number of linear algebraic equations. Introducing an auxilliary function,
he solved the infinite system so that the orininal integral equation is solved.
Paralleling to Magnus' method, in section ¢ we choose an integral represent-
ation due to Oberhettinger (1954) for the Hankel function of zeroth order which
may be used with either incident wave and the kernel of the integral Eq. (3.89).
Denoting the surface current on the walls of the wedge by an integral form
similar to the incident wave we can reduce the original integral equations to a
new integral equation which corresponds to Magnus' linear algebraic equations.
It is shown that the kernel of the new integral equation behaves as the delta
function so that the solutions of the integral equations can be obtained immedi-
ately.

(U) It is of some practical interest to investigate the tangential magnetic
field on the surface of a coated cone. One may tackle the problem by using
the perturbation technique (Den, 1967, see Appendix A). As a result of the
applications of that technique, a set of integral equations which govern the
above tangential magnetic field will be obtained from (3.89) and (3.90). We may
wish to extend the ideal described in the last paragraph to solve this set of
integral equations. According to the previous discussions, one observes that

the crucial point will be the choice of a proper integral representation for the
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free space Green's function. It seems that

Q
e_YR 2 1
= £ P -
= - Vﬁ A tanh X iA—l/Z( cos 6)
0
. 1]
Kﬂ(w) Kih('yr )dx , 0<6<2m, (3.170)

will be the prospective form in which

)

2 2
R = Vr +r" -2rr' cos 0.
(U) In section ¢ and d, we assume that the source of excitation is a mag-
netic line source. If that source is replaced by an electric line source then

the non-zero field components becomes
E=2E

H

=

A
+
TH_ 6H¢ :
We may apply the method described in previous sections to determine the field

components Hr on the surfaces of the wedge.

3.4 Computer Program for Rotationally Symmetric Re-entry Body (Task 3.1.3)

(S) The objective of the development under this Task is to write a com-
puter program for computing the surface current and radar cross section of
rotationally symmetric re-entry bodies. The groundwork for this development
‘'was laid in the previous year's SURF study (Castellanos 1966). It was our in-
tention to write a computer program for a metallic cone-sphere and extend it
by theoretically feasible computations to coated cone spheres with antenna and
indented rear cap perturbations. The analytic development, which is simple in
conception, has proven to be difficult in execution and is taking considerably
longer to complete than had been supposed. In order to provide the required
accuracy, it has been found necessary to discard some of the earlier methods

for computing the matrix elements and to use a method of Gaussian quadratures.
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(U) The calculation has been completely recast using Gaussian quadratures
where we exploit the explicit form of the integrand incorporating all singular
behavior in weight functions. This results in the need to evaluate a number of

different schemes which are described below.

(U) a) Computation of the Matrix Elements Tij' The computation of the

matrix elements is done in terms of integrations over cells of the form

ath pbth
I = F(s,t) G (s,t) ds dt (3.171)
ab m
a b
where
g eikﬁ’
G = ——— cos m 6 db (3.172)
m
0
K- |e -2

2 2 2
[@2)® + ) + &) - 20(0) olt) cos 0] */
and F(s,t) is "well behaved". Using the parameterization

z(t)

n

f,(t) C

"

p(t) fl(t) C (3.173)
C = 1/2 circumference

Then

KK =/"{[E2<t) - f2(sﬂ 2 +ff(t> +ff(s) - 26, (0 (5) cos 6 }1/2 (3. 174)

where

[7- xc
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Let 6 - 2¢ then

)X =/ [at)? + e + 4t 1,00 sin’ g |1

2 2 .2 2
= /—'(R0 +4 R sin ¢)1/ (3.175)
and
TR iF(Ri + 4R? sin’ ¢)1/ 2
e
G =2 cos 2m@ d¢ (3.1176)
2
m [(®? + 4R° sin’ 95)1/2
0 0 1
Let
,
kK = —— andlet§ —-» 7/2-¢
2
R
- ”/2ei/-'R‘V1 % sin? ¢
G = 2(-i) = cos 2m{ d¢ (3.177)
\ / 2 2
m 0 /"R /1 -k sin )
where
R2 =R + 4R
On going to elliptic functions by the change in variable
¢
u = s (3.178)
0 Vl -k sin ¢
and noting that cos 2m@ is the Chebychev polynomial of the first kind
cos 2mf = Ty (cos @) , (3.179)

we find
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K
2 ,.m i/'dn u
Gm = /.,R( i) e sz (6nu) du (3.180)
0

where k = u(r /2) or on putting

u = Kx;
1
_2K ,.m i Mdn(Kx)
G == -0 e szEn(Kle dx . (3.181)

0

The function Gm now has its singularity explicit in the factor K(k). The nu-
merical problem at this stage is the valuation of

1

elr’dn Kx T (enKx) dx . (3.182)
m 2m

0
This evaluation will appear below (b) using a Gauss-Legendre method.
(U) In order to examine the singular behavior of Gm we note that for k~1
4
1 -k

K(k)~ fn

This obtains for RO~ 0 or for s~ t, indeed, for this case,

R = s - t| + o (s - t|3) . (3. 183)

In terms of the integration (3.171) this can occur for a =b or a = b + h,
Hence, in these cases the integration must take into account the logarithmic

singularity.
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(U) The second case of singular behavior occurs for R — O. This

obtains only in the two cells a =b = 0 and a =b = 1 -h since for a =b = 0,

R = (S+t)+OE+tﬂ ;

for a =b = 1-h,

R = E-(s+tﬂ+ O{E-(s +t£|2}

This behavior leads to singularities of the forms

1 s-t
!
s+t M osrt M T

where we put s =1 -s' andt =1-t'" in the case a =b =1 -h,

Therefore

the integration scheme used for these two cells must take into account these

singularities.

(U) We now develop general methods for treating the singular integrands

and then exhibit the explicit formulas for the computation of the matrix

elements.

(U) b) Gaussion Methods for the Singular Integrands.

integral
at+h
It = Xx F(s,t)lnls—tl ds dt
aa
a

and make the transformation
u-v

s=a+h/2+-",——2—-

utv
= + + —
t=a+h/2 5

so that with F(s,t) = Glu,v)
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0 v+h /2
o= S dv g du Glu,v) my2" |v|

-h 2 ~(v+h/¥?2)
2 hAZ -v
+ % dv du G(u, v) ln\/? |v|
0 -(h2'-v)
where
h u-v utv
Glu,v) = F(s +- + , t+ - 4+ )
2y B

In the first term of (3.186) we let v — - v and

W2 AnH2-v
Ir = X dv " du Glu,v) + G(u, -v) ln‘fZ.'v

aa

0 -(h A 2-v)
Now let
v = h/42 x
u= h/V2 (1-xy

and (3.187) becomes
1

(3.186)

(3.187)

(3.188)

1
2
1 h h h
L. =3 dx(l—x)lnhx& dy-{Gl__yi(l—x)y,@)El
-1

0

+ GE/%.(l—x)y, —V%.x]}
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1 1
2
1 h
Iaa = dx (1 - x) i hx dy {F E(x,y), t(x,y):l
0 -1

+ F E(x,y), s(x,y]} (3.189)

where

(1-x)(1+y)+a

N =

s(x,y) =
(3.190)

tx,y) = gEI—x)y+x+1 +a;_-l.

(U) The y-integration is to be done using a Gauss-Legendre scheme; the
x-integration using a Gauss scheme with the weight (1 - x) fn hx, The result
of the x-integration is of the form

j=M
i=N

2
h Z

11 = A E‘(s.., t.) + F(t., s..)] . (3.191)

aa 2 A ij iy’ ij ij° ij

(U) For b = a-h we need consider the integral
ath a

! ds dt F(s,t) fn |s - t| . (3.192)

I =
a,a-h

a a-h

we make the transformation

s= a+ =V t=a+ LIV (3.193)
W2 \z '
|s—t| =1/§' |v|
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FIG. 3-15: COORDINATE SYSTEM.

Hence,

0 v +V§‘ h
I1 & dv & du Glu, v) 1n1/-2-'lv|

-V

0 \%

h/¥Z _v#2'h
+ g dv & du Glu, v) m¥2 |v] (3.194)

In the first term of (3.194) we let v = -v;
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hAZ  pv+V2h
I;’ ah - dv du [G(u,v) + Glu, -ﬂ En‘V-Z.'v. (3.195)
0 -V
Now put
v = hW/2'x u = h/y2 El + X)y +£] (3.196)
so that
9 1 1
h h
™5 | &(+xmh dy{G (5 B1+x)y+ﬂ,%x)
0 -1
h
+ G kg El+x)y+ﬂ, - 'g' x)}
9 1 1
= 1-12— dx (1 +x) fn hx dy{ F E(x,y), t(x,}ﬂ
0 -1
+ F E(x,y), s(x,yzl } (3.197)
where

\
d&ﬁ=§%ﬂ+xb+ﬂ—ﬂ}+a

$ . (3.198)
t(x,y) = ‘121' (1+x)(1+y) +a

/
(U) As in the previous case, I;a, the y-integration is to be done using

a Gauss-Legendre scheme; the x-integration using a Gauss scheme with the

weight (1 + x)In hx (section e). The resulting approximation is then of the form
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j=M
1 hz i=N
R [Fe, t)+ me, s ] (3.199)
a,a-h 2 i1 ij ij’ ij ij° ij
j=1

(U) For a=b =0 or a=b=1-h we need consider integrals of the

h
- |s - 1l 1
I = “ F(s,t) P (s T1) s+p dsdt . (3.200)
0

On rotating 7 /4 about the origin,

form

- +
1-V t = =X (3.201)

h/&’2—' u
& V—' P (llud-) Glu, v)

S =

and

h-u
1 Vi
+ —_ AL
du dvﬁ. , P (u) Glu, v)
h/f2 -2 h-u)
= [, @ (3.202)
c c
(U) The first term in (3,202) we transform by
u=hHN2Z x , v=uy = h/f2 xy . (3.203)
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Hence,
1 1

dx dy P.(y) G &%x, %), (3.204)
0 -1

(1)

fed.
n
oo |

(U) Since in our case

Ply) = K (Y1 -y")

2
we use K (Y1 - y~ ) as the weight function in performing the y-integration in

section f. For the x-integration we use a Gauss-Legendre scheme. We find

j=M

i=N

I(l) = : : C._ [F(S..: t..) + F(t..’ S.-)] .
c e 1) g 1 1)

i=1

j=1

(U) ¢) Computation of the Fourier Coefficients of the Green's Function.

Given the expression form (3,181)

m

eiKR
G_ = Xy cosm ¢ d¢
0
1
2K iMdn(Kx) _ 2K
“Pr| ¢ Ty [on®¥)] dx = T° g
0

we need to compute the elliptic functions dn(Kx) and cn(Kx) at the Legendre
nodes x = X, Since the methods of computing the elliptic functions depends on
K(k) or k we need refer to the nodes of the subsequent integration in order to

choose the appropriate method.
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(U) The critical cases occur for the diagonal cells with the we.ght
(1 - xMnhx. The calculation of the nodes shows that k is sufticiently dif-
ferent from zero so that the Fourier series expansion of the elliptic functions

is applicable and, in fact, converges very rapidly. We have

a1 8 (u +Kk)
dnu = V;: —_—Q(u)

where
< 2
O =1+2 Z(_)n ¢ cos (nru/K)
1
= 2
O(u+K)=1+2 an cos (n7u/K)
1
and
q=e Kl ; K(k) = K(k') .

Using this expression for dnu and the identity

2 2
cn2u= —12' (dn"u - k')

k
we approximate the gm by a Gauss-Legendre scheme where the number of
terms will depend upon m.
(U) d) The Logarithmic Weight. Consider the integral
1
dw (1 - w) fn f(w) .

Let
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dw W (1 - w) fn hw

—
i

5
L =g mh-3¢
.1 1
L= hbh-T4
_ 1 9
L= 3% P -0

The polynomial for the Gaussian quadrature is of the form
2
P=w +bw +c
and the orthogonality condition is

I+bI+cIo=0 ) I, +bl, +cI =0,

2 1 3 2 1

Hence for
2
A = -
I1 1210

we find 5

- 1013 - 1112 ) 12 - 1113

- A ’ ¢= A

This gives the nodes

-b +9Yb” - 4c

2

w =
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and the weight
1
A = (1 - w)in hw Plw)
k (w-w,) Pw,)
k k
0
where
L
A = ——— I -w_. I
1 w1 - w2 1 2
1 [ ;]
A = ——— I, -w.I
2 w2 -w1 1 1
with
- -b - b2 - 4c
w1 2
- -b+ Vbz - 4c¢
W9 2
Io
+ A = - - =
At A v, - w, ) -wy) = 1)

(U) e) The Second Logarithmic Weight.  Consider the integral
1
I= dx (1 + x) fn hx F(x)
0

This is approximated just as in d, with the changed moments

I

o 1/2 mh + 3/4

!
! 1

1/2 tm h + 5/36
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I'. =1/12/m h + 7/144

2

'
IS

1/20 fn h + 9/400

(U) f) The Elliptic Integral Weight. Consider the integral
1
I dy K'(y) F(y) .
-1

The moments using the weight K'(y) are
1
I = yn K'(y) dy
-1

Since K'(y) is even only the even moments are non-vanishing

I =72 | - nlls 2

S I, =9/16 7

I
4
For a cubic polynomial approximation because of the even weight the function

the polynomial must be of the form

2 2
P=yl -a),
hence, the nodes occur at

y=0+ a

where

a =|L/1, = 2/3¢2"

The approximation weights are
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2
2 om
= + =
A1 1/a (I2 an) l

-1

2
2 or 1 2
= - - —— = + P
A 1/a (12 aIO) l 3 Y2

where

y =0 , y1=2/31’§‘, y,=-2/3V2 .

3.5 Plasma Re-entry Sheath (Task 3.1.5)

3.5.1 Introduction

(U) Work that has been completed under this task is given below. A
review of the assumptions and basic equations for a re-entry sheath is given
for the case of laminar flow. This study is a necessary preliminary to an
investigation to determine whether the velocity and other effects play an im-
portant role., Then the efforts of temperature are briefly examined for a
gradient type non-lossy sheath. The results indicate that temperature effects
are important, and much more analysis should be attempted.

(U) The integral equation approach (given in the first Quarterly Report)
was investigated. However, for simplification, the case of a non-homogeneous
planar sheath was treated. Practical results came out of the analysis. Further
work should be attempted to generalize the technique to curved surfaces.

(U) Surface wave modes were studied for a plasma sheathed cylinder.
These results are to be correlated with future experiments. Experimental
evidence based upon the flat plate type geometry indicate that the 'leaky wave"
type modes are important for a plasma, ablative-coated object, These types of

modes will have to be investigated for cylindrical and conical geometries.
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3.5.2 A Review of the Assumptions.

(U) The investigation of the re-entry problem involves the study of the
formation of a plasma layer around a re-entering vehicle. As the vehicle
speeds through the atmosphere, the shock wave generated around it heats up
the atmosphere sufficiently to cause ionization which forms the plasma. The
theory involved in this problem concerns several scientific disciplines, in-
cluding gas dynamics, chemical kinetics, statistical mechanics and electro-
dynamics. The properties of the boundary layer, chemical kinetics of a Ipulti—
component reacting gas such as air constitute a complex system of coupled
chemical reactions and reacting species that will require considerable sophis-
tication in the approach to a solution.

(U) The method used to solve this type of problem involves the applica-
tion of both the electrodynamic equation of electromagnetic theory and the
kinetic equations of particle interaction. The electrodynamic equations deter-
mine the fields exist within the plasma and therefore the forces acting upon the
particles of the plasma. Kinetic equations express the transport phenomena of
a plasma by considering the forces of interaction between its constituents.
Simultaneous solution of these sets of equations determines the properties of
waves in plasma. However, the mathematical difficulties involved in a multi-
component, nonequlibrium, hypersonic viscous flow over a re-entry vehicle
(boundary layer) could be so enormous that simplifying assumptions have to be
made to reduce the equations to manageable forms suitable for machine com-
putation. This section is intended to review the assumptions used in arriving

at the necessary equations.
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(U) a) The Transport Phenomena of a Plasma (Bird, et al 1960; Hayes

and Probstein, 1959; Hirschfelder, et al 1963). The phenomena of diffusion,
viscosity and thermal conductivity experienced in plasmas all involve the trans-
port of some physical property through the plasma. Ordinary diffusion is the
transfer of mass from one region to another because of a gradient in the con-
centration; viscosity is the transfer of momentum through the gas because of a
gradient in the velocity; and thermal conductivity is the transfer of thermal
energy resulting from the existence of thermal gradients in the gas. The trans-
port coefficients D, u and k are found to be functions of the gas mixture tem-
perture, gas-species molecular weights, and certain parameters of the inter-
particle force fields. They can best be described in terms of the kinetic theoryj
of gases or gas dynamics.

(U) A mathematical theory can be developed which describes the macro-
scopic feature of a gas mixture (which is not in thermodynamic or chemical
equilibrium) based upon a postulated microscopic behavior of the constituent gas
particles., The technique is to represent the state of an ensemble of particles
by a distribution function fN(gN, EN, t) in a phase space. Here r and p are
the position and momentum vectors respectively and N is the number of part-
icles. This distribution function is so chosen that averages over the ensemble
are in exact agreement with the incomplete knowledge of the state of the sys-
tem at some specific time. Then the probable behavior of the system at sub-
sequent times is taken to be the average behavior of members of the respective
ensemble., The variation of the distribution function fN(i N, EN, t) with time is
described by the Liouville equation. It involves 6N variables and is usually
difficult to solve. Fortunately, one is principally concerned with the lower-

(1) (2)

order distribution functions f =~ and f . For example, f(l) gives the proba-
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bility of finding one particular molecule with the specified position and momen-
tum and does not depend upon the relative positions of two or more molecules.
The level of information corresponding to the use of f(l) alone is, however,
sufficient for studying the behavior of a moderately dilute gas. One form of
the equation for f(l) is the Boltzmann equation which has been successfully
applied to plasma problems. The distribution f(z) should be written as

f(z)(g_l, 32, 21’ 92, t) and it is the distribution function of pairs of particles
in phase space. It applies to a system in which two-body forces can be
assumed and is therefore applicable to gases at higher density.

(U) b) The Boltzmann Equation (Hirschfelder, et al 1963). The macro-

scopic behavior of a dilute monatomic gas mixture in a nonequilibrium state is
usually described with sufficient accuracy by a distribution function of lower
order such as f:l). Here the subscript i indicates the ith constituent of the
gas mixture., The Boltzmann equation can be derived from the Liouville equa-
tion by integrating over the coordinates of (N - 1) molecules and introducing
the concept of "'molecular chaos'. The general form of the Boltzmann equation

is (omitting the superscript (1) on fi)

Bfi afi 1 afi E)fi

— ¢ =+ = == =

ot <li 8r> m, (2(1 8v,> ot ! (3.205)
= i =i coll

where Xi(r, t) is the external force, and (afi/at)co represents a term known

as the collision integral. The external force is u;111a11y assumed to be much
smaller than the forces which act on the molecules during an encounter. In
the collision integral, binary collisions only are assumed.

(U) The simplest version of Eq. (3.205) represents a gas of collisionless

states and with no external force. The velocity distribution function thus
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obtained reduces to the Maxwellian distribution function fi = ni(mi/2K T)3/ 2 exp
(-miviz/zlc T). Maxwellian distribution still prevails even if the gas is in a state
collisional equilibrium. This is because, even if the velocities of individual
particles continue to suffer abrupt changes due to collisions, in a state of
collisional equilibrium, the same number of particles enter a given volume of
phase space as leave it, so the distribution function is unchanged.

(U) Equation (3.205) in its most general form, is difficult to solve., How-
ever, one is usually interested in the properties of gases which are under con-
ditions only slightly different from equilibrium. In this limit the distribution
function is nearly Maxwellian, and the Boltzmann equation can be solved by a
perturbation method which provides a series approximation to the distribution
function such as

f, = fi[oj + efim+ ¢ fi[2]+ cee (3.206)
where the perturbation parameter € is chosen such that 1/€ represents a
measure of the frequency of collisions between particles of various kinds. The
square bracket used in the superscript is meant to differentiate with the ordef
of the distribution function introduced previously. The zeroth order approxi-
mation, which considers only the first term of the series, gives a distribution
function which is locally Maxwellian. The equations of change derived from
this approximation are the Euler equation of change. In the first-order ap-
proximation, one writes

f!rﬂ(z, v, t) = f.[O](L v, ) 4 (r, v.,t) ,
1 —1 1 -1 1 —1

where @ is a perturbation function. The resultant Boltzmann equation leads to

the Navier-Stokes equations. A second-order approximation leads to the
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Burnett equations. Higher order approximations contribute terms proportional
to higher derivatives and power of the lower derivatives of the physical quan-
tities and thus add to the complexity of the equations. Among the three ap-
proximations just mentioned, the Navier-Stokes equations are most widely used
for solving problems involving nonequilibrium plasmas.

(U) The assumptions used to derive the Navier-Stokes equation (Dorrance,
1962) can be summarized as follows:

1. The gradients of the physical quantities, the variables of states,
and the flow velocity are small. These equations are, strictly speaking, not
applicable to a gas mixture in the immediate regions of a strong shock wave.

2. Only binary collisions are considered. This is to say that the
gas density is moderately dilute. For high density gases where the three-body
and higher-order collisions are not negligible, this theory does not apply.

3. The effective range of intermolecular or inter-particle forces is
small compared with the mean free path.

4. Assume the gases have little or no internal degree of freedom.

5. The quantum mechanical effects are not important. The theory
is inadequate for gases with very low density and low temperature (typically
below 100°K).

6. The mean free path of the gas must be small compared with any
physical dimensions of the boundaries so that equilibrium conditions within the
gas are determined by gas-particle collisions.

(U) ¢) The Equations of Change. (Hirschfelder, et al 1963), The Boltz-

mann equation describes the time variation of the velocity distribution function.
The macroscopic equations of the gas can then be obtained from the equations

of change,
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(U) Ity (_1_'1, Yoo t) is any function, the average values of y can be ob-
tained by multiplying the distribution function by ¢ and integrating over the
velocity space, i.e.,

of of of
i of i 3 i 3
— 4y .= +X . — =
¥ (Bt v, or. X, ) d'v ) ( ) dv.(3.207)

; i
E v L

Moment equations are obtained by letting | take on values which are propor-
tional to increasing powers of the velocity Vi' It is seen that setting ¢ = 1
corresponding to taking the zeroth moment leads to the continuity equation; the
first moment, obtained by setting ¢ = mvj, leads to the momentum equation;
while setting ¢ = % mv&,2 leads to the energy equation,

(U) Thus far, the behavior of an individual species of a gas mixture has
been described. It is now desired to derive a set of equations that will de-
scribe the behavior of the gas mixture as a whole, i.e., regarding the gas
mixture as a fluid, Let vi be the individual velocity of the ith species, Tri is
the average of v, The mass average velocity of the fluid vo(g, t) is defined

as
1 3
v (r, t) = = m, \f v dv. (3.208)
0 P~ i i—i

where p is the mass density, mi is the mass of one particle, the ith species.
The peculiar velocity of the ith species is defined as Vi = vi -V, and is the
velocity of the ith species with respect to a coordinate system moving with the
mass velocity Vs of the fluid, and Vi = ’{r'i - v0 is the mean peculiar velocity.
Equations of change will be expressed in terms of these average velocities to

account for the gas dynamics in a gas mixture,
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(U) If the collisions in gas mixture result in a chemical reaction which
creates more particles, then other complications follow. The right-hand side
of the Boltzmann equation (3.205) (the collision integral), needs to be mod-
ified. Let Ki be the rate of change per unit volume of the number of particles
due to chemical reaction, then the collision integral may be replaced by Ki
provided that the mass is conserved throughtout the chemical reactions, i.e.,
iz Kimi = 0. For a multi-component gas mixture such as air, where many
chemical reactions can take place simultaneously, the calculation of Ki becomes
a formidable problem.

(U) With these changes, the equations of change can be rewritten, in
terms of the mean mass velocity and Ki in the following form. For example,

for the individual species, the equation of continuity becomes

o D =

_F |= . + =

ot |:8£ ni(vo Vi) K. . (3.209)
The equation of continuity for the entire system becomes

% , (2, ) ]

ot (8_1; pvo 0, (3.210)

where n, is the number density of the ith species and p is the mass density.

The equation for the conservation of momentum becomes

ov

= 0

=2 vV « TV -1 (i . P) +l§ :n,X, ,  (3.211)
ot ) ar —o p \or P =i

where P is a pressure tensor. The equation for the conservation of energy

becomes
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where

and is the average heat capacity per gram at constant volume.
N
Ui is the average internal energy per unit mass ,
q is the total head flux

-Z- z : o)
P: 2 v_ is a tensor product as P, — v.
or o : j ij Brj i

and

(U) Chemical reactions produce heat transfer. Internal energy may be
converted into heat in an exothermic reaction, while the external translational
energy may be converted into internal energy in endothermic reactions con-
currently with the formation of new species. In computing the energy equa-
tion, the enthalphy of the gas mixture, and the rate and the gradient of the heat
transfer have to be evaluated from the study of the thermo-chemistry processes

involved (Lenard, 1964; and Bortner, 1963).

(U) d) Reducing the Equations of Gas Dynamics to the Boundary Layer

Equations (Dorrance, 1962; Blottner, 1964; and Pallone etal, 1964). The equations
of change stated in the previous section may now be reduced to boundary layer

equations in order to apply to the re-entry plasma problem. It is postulated
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that the effects of the transport phenomena in a dilute gas mixture are confined
to a thin layer near the surface of the body over which the plasma ﬂuia flows.
It is also assumed that the head transfer from the boundary layer composed of
a mixture of dissociating gases is independent of the location of the reaction
zone within the boundary layer. Under this approximation, the transport pro-
perties are independent of the composition of the boundary-layer gas mixture.
In other words, the chemical reactions as assumed to occur at the surface

and the gas-phase reactions are frozen. Adopting Prandtl's boundary layer
concept that

2
6(x) << x and 6?

0(1/Re) ,

where 6(x) is the velocity boundary-layer thickness and Re = peuex/ue, the

component equations of the equations of change can be expressed in terms of

5, Re and a characteristic length L. By comparing the order or magnitude

of the individual terms in the resultant equations, it is found that many terms
can be neglected against the dominating terms. This order-of-magnitude an-
alysis simplifies the equations considerably. Further simplifications are

achieved by assuming that

All gas species considered behave as perfect gas species,
The flow is in a steady state,

The effects of radiation are neglected, and

[ S I R S R

The flow is two-dimensional or axially symmetric.

(U) e) Reduce the Boundary-Layer Partial Differential Equations to

Ordinary Differential Equations. (Dorrance, 1962; Blottner, 1964). The boun-

dary-layer equations stated in the previous sections are nonlinear partial dif-

ferential equations which are difficult to solve except under special circum-
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stances where enough terms can be dropped to reduce the equations to ordinary
differential equations. Another circumstance under which the equations can be
reduced to ordinary differential equations occurs where there exists a natural
coordinate system (x,n), related to the Cartesian coordinate system (x,y)
through appropriate transformation in which the derivatives of the dependent
variables become separable and ordinary differential equations result.

(U) To solve this set of differential equations for a particular boundary-
layer problem, the boundary conditions must be known or assumed. There are
two boundaries in this reduced two-dimensional problem: one at the wall of
the body and the other at the outer edge of the flow. At the wall, it is
assumed that both the normal and tangential velocities are zero, and that the
temperature and the mass fraction of the species are specified. At the outer
edge, a nonequilibrium inviscid flow condition is assumed. The boundary con-
ditions on the species concentration at the wall are dictated by a degree of
catalyticity of the wall material.

(U) Typical initial velocity and temperature profiles (Blottner, 1964) of a
frozen flow is shown in Figs. 3-16 and 3-17 respectively. These initial con-
ditions are used to calculate the nonequilibrium species density, temperature
and enthalpy profiles of the particular gas constituent at various altitudes. Re-
sults (Blottner, 1964; and Pallone, et al 1964) of these calculations indicate
that the temperature profile does not vary much along the body of the vehicle.
However, the electron density can vary several orders of magnitude along it.

(U) f) Waves in Plasma (Holt and Haskell, 1965; and Glick, 1962). To

study the interaction of electromagnetic waves and plasmas, Maxwell's equations
may be solved simultaneously with equations that describe the motion of plasma

particles. For plasmas involving multi-component gases, a complete descrip-
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tion of the particle motion can be obtained by writing oﬁt a Boltzmann equation
for each species. A typical example of this approach is given by the Vlasov
equation in which the plasma is considered to be collisionless and the ions are
considered motionless. Also used as an assumption is that in the external
force term in the Boltzmann equation, only the longitudinal component of the
electric field due to space charges is considered. The Boltzmann equation is
then linearized by neglecting the higher-order derivatives and products terms
introduced by perturbation function. On the other hand, the electron density and
the charge density can be defined in terms of the perturbed distribution function.
Upon substituting the charge density expression into the Poisson equation, the
electric field can then be expressed in terms of the distribution function. Now,
both the Boltzmann equation and the electric field equation containing the dis-
tribution function and the electric field can be solved to obtain a self-consistent
solution. The procedure leads to the dispersion equation from which the wave
phenomena in plasma can be investigated.

(U) For a chemically reacting multi-component plasma, severe difficulties
in mathematical handling arise. Simplifying models of plasmas are frequently used
for analysis. In the single-fluid model, only the motion of the electron is consid-
ered. In the two-fluid model, the motion of both the electrons and ions are consid-
ered. Likewise, a three-fluid model will consider the motion of electrons, ions and
neutral particles. The appropriate continuity and momentum equations for each
case are written. These equations are solved simultaneously with Maxwell's
equations. The results is again the dispersion relation.

(U) Another approach that is frequently used in studying the properties of
wave propagation in the ionosphere should also be mentioned. In this approach
one derives a wave equation from Maxwell's equationé as usual but characterizes
the plasma either as a conductive or dielectric medium whose conductivity or

dielectric constant (or complex tensor) is derived from the basic transport
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equations describing the plasma. For a weakly ionized medium a simple form
of the equation of motion, the Langevin equation, is used in conjunction with
Maxwell's equations to describe the dynamics of plasmas.

(U) g) Other Simplifying Assumptions. In the preceding sections, assump-

tions are specified as various basic equations are introduced. These are
general assumptions used to derive these basic equations. For a particular
problem, further simplifications can be achieved by introducing more specific
assumptions. For example, for a two-dimensional boundary-layer problem
discussed in a previous section, besides the assumptions already stated, fur-
ther simplifications in equations of momentum and energy can be made assum-

ing the following (Bird, et al 1960)

1. The flow is laminar,

2. In the transport phenomena, only diffusions due to concentration
and thermal gradients are considered,

3. A pressure gradient exists in the x-direction (along the vehicle
body) only,

4, A temperature gradient exists in the y-direction (perpendicular
to the surface of the vehicle body) only,

5. The external force is zero. Gravitational force applies equal

to all species in all direction.

Many other assumptions can be added in dealing with chemical kinetics such as

the following (Pallone et al, 1964)

1. A limited number of gas constituents.
2. Limited chemical reactions.

3. All gas species are coupled only at the wall,

135

UNCLASSIFIED




UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-2-Q

4, Ionization energy is negligible.

5. Concentrations of certain constituent gases (particularly that of
of N2 and O2 in atmospheric gas) at the wall and at the outer
edge of the boundary layer are the same.

6. The mass flux is balanced by recombination at the wall.

3.5.3 Fields in a Warm Inhomogeneous Plasma Near the Plasma Frequency.

(U) Scattering of plane waves from planar, inhomogeneous cold plasmas
has been studied at considerable length (Budden, K. G,, 1961) in connection with
ionospheric studies, and some interesting phenomena which are pertiment to
the study of scattering from plasma clad objects have been noted. Specifically,
incident plane waves with E polarized parallel to the plane of incidence (E-
waves) excite E-waves in the plasma region which show a singularity in that
region of the plasma where plasma frequency and incident wave frequency are
equal. These cold plasma results are derived in subsection a, where it is
shown that the x-component of the electric field goes as 1/x near x = 0, the
position in the plasma at which the frequency of the incident radiation and the
plasma frequency are equal, and that the y-component of the electric field goes
as Inx near x = 0. The large fields which occur at x = 0 indicate that a non-
linear analysis is required to adequately describe the behavior of the fields
there. Such analysis have been made (Forsterling and Wuster, 1951) and seem
to indicate that anomolous absorption and re-radiation of higher harmonics of
the incident waves may occur when the frequency is near the plasma frequency.
If such is the case, the determining factor in the scattering of E-waves from
plasma sheath clad objects could be the outer underdense edge of the plasma
sheath up to and including the neighborhood of the region in which the plasma
frequency and incident wave frequency are equal. (See Fig. 3-18) The bulk of

the plasma sheath and the wall region of the scatter may be largely shielded
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FIG, 3-18: THE PLASMA SHEATH

from incident radiation and, consequently, could play a secondary rather than
their current primary role in the scattering phenomena. An interesting result
would be an increase in the effective size of the scatterer for E-waves but not
for H-waves which are not as sensitive to the critical region about the plasma
frequency.

(U) The purpose of this study has been to re-examine the behavior of the
fields in the neighborhood of the plasma frequency in the context of the more
precise warm plasma model in an effort to determine whether or not singular-
ities in the fields occur in the neighborhood of the plasma frequency and
whether or not this region has a profound effect on the scattering of E-waves.
The problem is approached via the hydrodynamic equations (Maxwell's equations
and the first three moments of the Vlasov equation) which provide a good de-
scription of the warm plasma near the plasma frequency.;i< Static electric and

magnetic fields are neglected as are collisions and the effect of ions and neu-

>kThe validity of this approach in the general case - at arbitrary density for a
given frequency-has been a topic of much concern, at issue being the nature of
the error incurred by neglecting the heat flow tensor in the third moment equ-
ation, However, it is generally agreed, and there are a number of arguements
to demonstrate that the adiabatic assumption is a good approximation in the
vicinity of w = wp.
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tral particles except insofar as they maintain a charge balance in the unper-
turbed plasma. The extension to take collisions into account is straight for-
ward and does not have an essential effect on the results. In this report plasma
streaming is also neglected although progress has already been made on inclu-
sion of the effect of plasma flow in the analysis. Initially the equations will
be derived for arbitrary geometry but the solution will eventually be carried
out only for a two dimensional plasma (9/dz = 0) whose equilibrium properties
vary only in the x-direction. Finally, a small signal analysis is assumed,

(U) The appropriate hydrodynamic equations are:

3B

Vx E = - P (3.213)
vxd -7+ 2 (3.214)
ot
v. 7+ 22 _ 0 (3.215)
ot : :

oV 1 N =

- + v . v + - = -
N l:at F . v v] M Py T (3.216)
p = 3KTN ., (3.217)

These equations are linearized according to the following scheme:

E = E(F) e It
H = H(©) e_jwt
v = 95 e
N=NE +n@e ™
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and the linearized equations are:
VxE-=jul (3.218)
VxH=7 - jweof (3.219)
V.-J-jup=0 (3.220)
. 2 =
-jwd + aVp = wp €, E (3.221)

where

T=qNE T @E) M

o= qn(@e

wz _ 4 N(F)

It has been assumed in deriving equation (3.221) that the magnetic terms in the
Lorentz force are neglible compared to the electric force terms.
(U) In subsection b, the linearized set of equations (3.218) through (3.221)

are reduced to the following coupled set of second order partial differential

equations:
- - 2~
V2H - sz (i2) x(VxH +K'H = -.—a—K2 v(l—) xV (3.222)
jw 277 p
K K
2 —

aVop + aK2v(i2). Vp + 2Kp = ijzv(—lz) . (v x T) (3.223)

K K
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where

W
K% = ) [1 ] (—9>2]
C W

(U) Equations (3.222) and (3.223) are applicable to any geometry and to
both E-waves and H-waves (H polarized parallel to the plane of incidence).
However, to facilitate the solution, the problem will be specialized to that of
the scattering of E-waves from a plane, stratified plasma. That is 8/8z = 0
and the unperturbed plasma density, N, varies only in the direction perpendic-
ular to the plane of the plasma, N = N(x). For this model, the H-waves, as
is readily shown, do not couple to the plasma waves. Hence the solution for
the H-waves is substantially the same as that for a cold plasma, a problem
much discussed (Budden, 1961; Miller, G.F, 1962; and Taylor, L.S. 1961).

(U) From the boundary conditions on E and H it is obvious that 8/dy -
j (W/c) sin @ where 6 is the angle of incidence. Since interest is to be focussed
on the region about w = W , one may let this point occur at x = 0 and expand
K2V(1/K2) in a Maclaurinpseries. Keeping only the first non-zero terms
K2(0) =§ in the series and using 8/8y = j(w/c) sin 8, Egs. (3.222) and (3.223)

reduce to the following pair of coupled, ordinary linear differential equations:

2

H H 2 i
L8 Ly Qame’] n- 258, (3.224)
2 x dx c cX
dx
i ad 2 w 2 w* sin 6
a £ _2C8 E:Bx-a(—sine)]l):_ﬂn_'ﬂ (3.225)
2 x dx c cX
dx
where
5. 2K
T oox
x=0
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(U) Since the singularity that occurs at x = 0 appears to be regular, a

solution in the form of a power series is attempted. The solutions written

below are derived in subsection c.

2| 1 ,w 2 2 B 3
- + = (= : _
H Ax |1 6(0 sin 6)" x 15 X + .. ] +

a sin 6 3 1 ,w 2 2
+ = + = (= si
™ Bx [1 10 (c sin 6)” x +. .. I (3.226)

2
2 2 2
p, = Bx [1+'613‘(%)sin9)x—g;§x3+...]+

1
w2sin6 3 1 W 2 2
s 28507 + — (= si +
30 AX ll T (5 sin6)” x +. .. I (3.227)

A P I R R A ]
H2 C[l 5 X 24(cs1n9)x+... -

2 !
sin 6 1w . 22 B c,3
- 2o + =(= _ o
a = Dx|1 5 (T sin ) x" - (3 . )X +...|(3.228)

2
_ eB 3 1w .4 4
Py = D[l 3 * 24 (Tsind)” x +., .. -

2 2
W sinf 1w 2 2 B ,3c 3 :
— —— += (= qi _ —_—
o Cs ll 3 (c sin 6)"x 24( " Dx +. . ] . (3.229)
The complete solutions for H and p are:

= +
H c1 H1 Cy H2

= +
[y c3 pl c4 92
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2
rewritten in component form near x = 0 (i.e. K~ = Bx) as:

2 .

¢y | w sin 6

E - - | ==
X Bx| c

0x
awsin 0
c P

Substituting the power series solutions in for H and p one finds

2 .
E = - 2ua B - 24 |w sin6 Ax
X B B c

+ ( Terms of higher order in x)

. 2 .
E - k2 wsm({l D+%EZBD+w(wSZnG)SC]x

+ (Terms of higher order in x)

24 law sin 6 Bx
B c

+ (Terms of higher order in x)

B

C +j&w{BC+%(w—§in—9)3D} x

+ (Higher order terms in x)
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(U) A study of Egs. (3.230) through (3.233) indicates that neither of the
singularities that occur in the cold plasma are predicted by the warm plasma
theory. That none of the components of electric field go as 1/x is obvious up-
on inspection of Egs. (3.230) through (3.233) because there are no negative
powers of x involved. This is to be expected because a singularity which goes
as 1/x also leads to a singularity in the energy density and is, therefore, not
physically realizeable (Meixner, J., 1949). That no other type of singularity
exists at x = 0 is apparent from the form of the expressions for the compo-
nents of the electric field: Each component of E is in the form of a series of

the form

Consequently, as long as all of the bn are finite this series must converge at
x = 0. In particular, it can't be logarithmic at x = 0,

(U) At first glance all the bn appear to be bounded; however, this has
yet to be established rigorously and some problems are already apparent. In
particular, the coefficients, bn’ are not finite in the limit of zero temperature.
This is to be expected in order to provide the transition from the non-singular
warm plasma case (T # 0) to the singular cold plasma case (T = 0), but it
opens questions regarding the convergence of the solutions in the limit of low
temperture, The behavior of the series solutions in the limit of low temper-
ature is not transparent and it is not obvious that they converge to the proper

cold plasma result.
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(U) Hence continuing study is required. In particular the series must be
investigated more closely to prove rigorously that no singularity occurs in the
warm plasma fields and it must be shown that the warm plasma solutions re-
duce to the cold plasma solutions in the limit of zero temperature. Once this
has been done a final assesment of the importance of that portion.of the plas-
ma about w = W on the scattering of E-waves can be made and the analysis
can be extendedpto include such factors as plasma flow and collisions. If the
fields prove to be singular an extension of the investigation to include a non-
linear analysis will be required at x = 0,

(U) In the following subsections some of the details refered to in the
preceeding paragraphs are supplied. In the first part, subsection a, a brief
derivation of the pertinent cold plasma results is sketched., In subsectionb
the two coupled, partial differential equations for the magnetic field and plas-
ma density, Egs. (3.222) and (3.223) are derived from the hydromagnetic
equations. In the last part, subsection c, the power series solution of Egs.
(3.224) and (3,225) is derived.

(U) a) The fields in an inhomogeneous cold plasma are obtained from the

solution to the following equation:

2

Vi - kv (1/K2) x(VxH +KH =0 (3.234)

where
2 2
K - (w/e) [_l - (wp/w)]
2

2 q N
W =
p M(—.‘O

In the particular case of a two dimensional plasma whose density, N, varies
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only in the direction perpendicular to the plane of the plasma, the x~-direction,
w
one has 8/8z = 0, 8/dy = j 5 sin 6 which follows from the boundary condi-
0 2
tions, and V(l/Kz) = g(l/K ) &, Consequently, for E-waves Eq. (3.234) re-

duces to:

2

dcH .2 o 2008 [2 w . 2]
5 tK P (1/K)8x +E< -(c sm0)]H-0 . (3.235)

3

Letting x = 0 be the position at which w = wp one may expand K2 in a Mac-

laurin series to obtain the solution for H near x = 0. The resultant equation

is:
d2H 1 dH W 2
——2-..;-d—x+E3x—(gs1n9):|H=0 (3.236)
dx
where
s
T
x=0

It is interesting to note that although Eq. (3.236) is valid only near x = 0 for
general density gradients, it happens to be correct for all x for linear gra-
dients. If the slope is 1/L then B = (-wz/ch).

(U) Equation (3.236) is an ordinary linear differential with a regular

singular point at x = 0, Guessing a power series solution of form
+
H = E a xn p
1 n
n=0

leads to only one independent solution, The second is found by guessing
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n=0

Carrying out the algebra one obtains:

15

H1 x2 E+ % (":“ sin9)2x2-£x3+...] (3.237)

Ll g2 B3 _ 31 . gtk
H2—2(cs1n6) Hlfnx E 3 X -64(csm9)x :l (3.238)

and

= +
H AH1 BH2 .

(U) The electric fields are found from Maxwell's equations and in part-
icular from

Vxﬁ=-jweo E-(wp/w)z:l E .

Thus, near x = 0, one obtains

E= ¥ vyH

Bx
and
x px oy
y Bx ox

Keeping only first order terms in x one obtains
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w2 in 6 B
E = + —£8°% 2 (3.239)
X cB X
E = £ 14 + (%’sin o’ B Inx] (3. 240)
y B

Hence, both EX and Ey become very large at x = 0, Ex going as l/x and Ey
getting large as Inx. However, these results are not strictly valid at x = 0,
because the analysis that led to Eq. (3.234) was based on a small signal as-
sumption. Consequently, Eqs. (3.239) and (3.240) should be interpreted to
mean that a more precise non-linear analysis is required in the cold plasma
model at x = 0,

(U) b) In this subsection Eqs. (3.222) and (3.223) are derived from the
linearized hydromagnetic equations, Eqs. (3.218) through (3.221). These

equations are rewritten below in slightly modified form.

Vx E = juuH (3.241)
VxH=1J -jweoi (3.242)
V.-J =jup (3.243)

- 1 2 _
= - = E -3V
J W EJP € a p:l . (3.244)

Eliminating J from (3.242), the two Maxwell's equations (3,241) and (3,242)

become:
Vx E =juuH (3.245)
E - -—3-2 [.jwvx'ﬁ+an] (3.246)
K
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where . [%)]2 [ | 1—222] |

(U) An equation for H is found by taking the curl of Eq. (3.246) and
then using Eq. (3.245)

VxE=juuH=-uVx [% (—jwaﬁ+an)]
K

= jwu léVx Vx H
K

b jopV/K)x (VxH -pa v (1K) x Vo

and solving for H

viE-K’v (1/K2) x (v x ) + K°H

S-S AV SPR I (3.247)

(U) The equation for p is obtained by taking the divergence of Eq. (3.246)
and making used of V + E = p/e0 which can be derived from Egs. (3.246) and

(3.243)

V.E-= L =-uVv:. [j—l' (—jwaH+an)]
Eo K2

=jwuV(1/K2) . (V x H)

-auV (1/K2) - Vp -au (1/K2) v? p
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Solving for p on obtains:
aV2 p+aK2V(1/K2)- Vo +c2K2p
- ju K V(KD - (VxH) . (3.248)

(U) ¢) In this subsection the power series solution for the warm plasma
problem, Egs. (3.244) and (3.245) is derived. Equations (3.244) and (3.245)
are rewritten below where the substitutions = - Ew/c)sine:lz and 6 = (sin 8/c)

have been made:

2
£H 1 ogH _a
5 -xdx+(a+6x)H-xp (3.249)
dx
i 1d 2 a
a [ - 228) 4 ao + “BYp=-2H (3.250)
dx2 x dx 6x

and solution is attempted in the form of a power series

+

H = E a P (3.251)
+

p=§ bnxn P (3.252)

The multiplicative factor xp does not have to be the same for H and p but is
assumed so far convenience as choosing different factors eventually leads to the
same results. Substituting (3.251) and (3.252) into (3.249) and (3.250) one

obtains
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+p - +
E (n+p)n+p-2) anxn p 2+(oz+Bx) E anxn P
o 0
+p -
-aé E bnxn p-1 . 0 ,
o
+p - +
a E (n+p)(n+p—2)bnxn p 2+(aa+czﬁx)§ bnxn P
o o

+p -
+gE axnp1=0
6 n

o

which may be rewritten as:
-2 -
plp - 2) a P +l:(p+l)(p—l)a -aéb]xp L
0 1 0
p
+ + + -
E)(p 2)a2 @a aablj X

+2: +p+ +p+ +
{(n p+3)(n+p 1)::1n+3 @a .

o

nt+p+t+1

+ - =
Ban aébn+2}x 0

) p-2+[ _ a :Ip-l
ap (p 2)box a(p+1)p 1)b1+ s 2, | X

a p
+ + + + = I +
[ap(p 2)b2 a abo s 2 |%
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+Z{a(n+p+3)(n+p+l)bn+3

o

2 a n+tpt+l1
+ + + = =
aozbn_i_1 can 6an+2}x 0

Hence p = 0, 2 and one has the following sets of recursion relations:

Case I p =2
_ aé
a, = 3 b0 (3.253)
a_ = i Eéb —aa:l (3.254)
2 8 1 ) :
(n + 5)(n+3) an+3+aan+l+Ban—a6bn+2=O (3.255)
and
1 «
atb1 = T35 ao (3.256)
b --gl:b + 1 :] (3.257)
aby 8 L2% " s ™ .
aln+5)n+3)b +taab +023b += a =0
n+3 n+1 n 6 n+t2
Case II p=0
al = -3 6b0 (3.258)
a, = unspecified (3.259)
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(n+3)(n+1)an+3+a/an+1+Ban-a6bn+2=O .(3.260)
and
ab, = Sa (3.261)
b, = unspecified (3.262)
aln+ 3)n + 1)b taab + czﬁb +2, =0, (3.263)
nt3 n+1l n 6 n+2

(U) It is interesting to note that if one lets a = 0 in Egs, (3.253) through
(3.257) the resultant recursion relation for H is just the same as for the
cold plasma for p = 2 and reduces to the same relation for p = 0,

(U) When a # 0 one can solve the recursion relations to obtain the fol-

lowing independent series:

and
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2
_ B, 2 3 a4
pz—bo|:1—3(c/a)x—24x+...]
a a2 B [y.2 3
+aaa‘ox{l'sx " 24 ES(c/a)—l]x +}

The general solution for H and p are:

= +
H c1 H1 02 H2

= +
p= Cgh T eyl

3.5.4 The Integral Equation Approach

(U) In the last quarter, a general integral equation was developed for
the fields generated by a plane wave incident upon a plasma-sheathed body.
Before attempting to obtain analytical solutions based upon the principal of
local analysis it is best to consider simple special cases first, and from these
results attempt to find a generalization,

(U) The simplest case that should be considered first is of course the
non-homogeneous slab backed by a perfect conductor, with the variation in the
permittivity limited to a direction normal to the surface. This case is treated
here for the two polarizations. It will be as shown that non-homogeneous thin

sheaths of thickness 6 can be replaced by a homogeneous sheath of thickness
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6 and "mean" relative permittivity €. which is a function of the polarizdtion.

The results are important both from tlhe theoretical and experimental stand-
points, and would allow one to model a non-homogeneous thin slab by a homo-
geneous slab,

(U) In the following analysis, the Cartesian coordinate system is oriented
so that the positive z axis is normal to the sheath of thickness 6 with the
z = 0 plane being the conducting surface. The angle of incidence is denoted

by 6, with the plane of incidence being the x-z plane.

(U) a) Polarization Perpendicular to the Plane of Incidence. For this

polarization the electric intensity has the general form

E-$ elkX sin 6 g(z) .

Outside the slab (z > §), the field is comprised of the incident wave and the

reflected wave in which case Z(z) has the explicit form

Z(z) = exp (-ikz cos ) + R exp [ik (z -26) cos 9]

where R is the reflection coefficient, In the slab, the function é (z) must
satisfy the following differential equation which is derivable from Maxwell's
equations
2
2
de k™ (e - sin2 O)Z = 0, (3.264)

2
dz

Associated with the differential equation are the boundary conditionsg =0 at
z = 0, which follows from the vanishing of the tangential electric field on the

conducting surface, and Z and %zé continuous at z = § which follows from
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the continuity requirements on the tangential components of the field at the
interface z = 6, In order to express Eq. (3.264) in terms of an integral

equation, the constant € will be introduced. The actual value of € will not

be prescribed at this moment, however a criterion will be later introduced

which will specify €. as a "'mean" value of relative permittivity of the sheath,

1
(U) Equation (3.264) can be expressed in the form

2
Q + KZZ = k2 (e, - 6)5, (3.265)
2 1
dz
where
K2 = k2 (61 - sin29) , (3.266)

from which an integral equation satisfying the required boundary condition at

z = 0 can be obtained

&(z) = ﬁo sink z + % sin k (z - t) f(t) dt , (3.267)
0

f(z) = K2 [61 - 6(z__)_| X (2)

The employment of the two continuity conditions at z = § yields the following
two equations involving the two unknown quantities Zo and R,
6
G, sink o+ % sink (5 - t) £(t) dt

=e-ikécos9[l+fi‘|
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6
Kxocoslc6+ cos k (6 - t) f(t) dt
0
= e_lkécose[:—1+leikcos 6.

From these, the reflection coefficient R can be obtained as follows

)
- sin (k t) f(t) dt elk60086 =Ec cos K &

+ ik cos 6 sinK€I+R[K cos k § - ik cos 6sinl<6] . (3.268)

- The mean relative permittivity € , will be chosen so that the reflection coef-

ficient associated with a uniformlslab of thickness 6 and permittivity € will
be the same as the reflection coefficient given by Eq. (3.268) for the non-
uniform case. The expression corresponding to Eq. (3.268) for the uniform
case is identical to Eq. (3.268) except that the left-hand side will be zero.
Thus the constant 61 will be chosen so that the left-hand side of Eq. (3.268)
is zero, yielding
6 ~/
sin (k 1) [61 - e(tzl Wt =0 (3.269)

0

where Z (z) is normalized such that

&) - Zo Ezz) .
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~S
The appropriate form for Z (z) is found by iterating Eq. (3.267)

z
f(z) = sink z + K(z, t) sin k tdt
0
Z t
+ K(z, t) K(t,r) sink r dr dt + . . . (3.270)
0 0
with
k2
Kiz, 1) = == [61 - e(ﬂ sin k (z - 1) . (3.271)

Substitution of expression (3.270) into Eq. (3.269) will give a transcendental
equation which will determine the appropriate value of €
(U) A simple solution can be obtained for sheaths thin enough such that

lx 6| < 1, in which case g (t) will be given by the first approximation to Eq.
(3.270)

Eiymr s (3.272)

On applying the approximation (3.272) to Eq. (3.269) one obtains the relation

6

2

¢, = (3/8) £ et at (3.273)

which determins the "mean'" value € of relative permittivity of the sheath.
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(U) b) Polarization in the Plane of Incidence. For this polarization, the

magnetic field has the general form

H :/i e1kxs1n9 H(z) .

Outside the slab (z > §), the field is comprised of the incident and reflected

wave in which case H(z) has the explicit form

H(z) = exp[— ikzcos({]+ R expEk(z—ZcS) cos 9:]

In the slab the function H(z) must satisfy the following differential equation

d 1 dH 2 2
S I e e} o )
€ 4z [:e dz] k™ (e - sin” 6) H =0 (3.274)
subject to the boundary conditions gg =0atz=0 and H and _i_ g_H are
zZ

continuous at z = 6. Proceeding in a somewhat similar manner to that em-
ployed for the other polarization, Eq. (3.274) can be placed in the following

integral equation form

¢
H(z) = H0 cos k ¢+ % sin k (¢ - t) f(t) dt (3.275)
0
where
zZ
¢ = e(t) dt
0
5 k2 61 - sin 6
k© o= K 5
“
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.2
0 2
€ (z)

The application of the two continuity conditions at z = § yields the following
two equations
§’1
1 -ikécos 6
+ = i - =
Ho cos K §1 p sin l<(§’1 t) f(t)dt = e |:1+I—i|,
0
§’1
-k Hosink§1+ cos k (¢ - t) £(t) dt
0

= e-lkécoseikcos 6 [—1+1-2]

where §1 is the value of § at z = §. The reflection coefficient R can be

immediately obtained

3

cos k t f(t) dt elk 6 cos 9

= |k SinK§1 - ik cos BcosK§’1]

+R[K sinK§1+ikcos900s1<§l] .

The '"mean'" value El will be chosen so that the reflection coefficient is the

same as that of a homogeneous slab of thickness & and relative dielectric

constant 61. Thus it follows that
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6

t 2
cos (k ca)d et) k2 - K et - sin"d Hadt = 0. (3.276)
0 0 e(t)

0

H, the normalized version of H, is found by iterating Eq. (3.275) with HO =1,

yielding

H(z) = cosk ¢ +i‘ sink (€ -t) cosktdt+. .. . (3.277)
0

Substitution of expression (3.277) into Eq. (3.276) gives a transcendental equa-
tion that determines the ''mean" value €
(U) A simple solution can be obtained for thin slabs for which
6
(k §1) = |k ety dt | <1 ,

0

in which case a first approximation to H is given by
~ 2
H(z)~ 1 +0 (§) .

(U) In this case the appropriate equation for €_ derived from Eq. (3.276)

1
becomes

(e1 - sin29) elt) dt = ei

6
[1 - sin26/e(t)] dt (3.278)
0 0

which is a quadratic equation in € (except for normal incidence). Unlike the

other polarization, the first approximation to €. for this polarization is de-

1
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pendent upon the angle of incidence. However if

6
eft)dt | > 6
0
6
1
—— <
e(t) dt L
0

then the mean value of 61 is ideependent of angle of incidence and is given by

the relation
1
Gy e(t) dt
0

This will only hold if IK §1| <1, implying that ‘1'61' ké l < 1.
3.5.5 Mode Study for Simulated-Plasma Experiment

(U) As a prelude to the experimental investigation of simulated plasmas
on cylinders and cones we have begun a theoretical study of the surface-wave
modes that may be supported by such complicated guiding structures. In part-
icular, we are examining the wave modes that may be sustained by an infinite
conducting cylinder surrounded by a thin inductive sheath with an air gap sep-
arating the sheath from the conducting cylindrical core, The tangential fields

on the infinitesimally thin sheath are assumed to satisfy the following boundary

conditions:
Es(l) 3 E»(2) ’
tan tan
B qaal w®)
tan S tan tan
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where the affix (1) refers to the free-space region exterior to the cylindrical
structure and the affix (2) refers to the free-space air gap. The complex con-
stant ZS is a jump impedance describing the effect of the sheath and the unit
normal vector 1 is pointing into the exterior region (1). The time dependence
is taken as e-iwt and the impedance Zs will be assumed to be purely inductive,
ZS=—iXS, XS>0.

(U) Before entering into the details concerning the surface-wave behavior
of the inductive sheath structure above, let us review the mode theory for
scattering by long thin dielectric rods. The general approach, well known in
the literature, is to consider the elongated dielectric structure as a passive
traveling wave antenna in the manner suggested by Peters (1958) who derives

the radar cross section in the form

where G = G(6, ¢) is the gain function of the device operating as an antenna
and 72 is a power reflection coefficient describing the rear termination. Now
it has been found experimentally that a suitably proportioned dielectric rod can
act as an efficient end-fire antenna (see e.g. Kiely, 1953), and several inves-
tigators (Horton and Watson, 1954; Peters, 1958; Howard and Thomas, 1963)
have recognized that a dielectric rod antenna, properly shorted at the rear
termination, becomes an unusually effecient radar reflector. This is princi-
pally due to the surface-wave modes excited on the dielectric structure and an
understanding of the behavior of these modes is fundamental in order to assess

the properties of the device.
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(U) The surface wave on a dielectric rod carries its energy within a
small distance from the dielectric-air interface. The proportion of energy
flowing in the dielectric or in the external medium can be controlled by ad-
justing the physical parameters of the rod; however, radiation occurs in the
presence of bends and discontinuities. That is, if the surface wave structure
is curved in the direction of propagation, the surface-wave mode is perturbed
into a complex mode that loses some energy by radiation. On the other hand,
if the surface wave meets a discontinuity, such as the termination of the struc-
ture, radiation (and reflection) again takes place. This tendency toward radi-
ation in a dielectric waveguide is turned to advantage in the dielectric antenna.
By proper design, the dielectric guide produces a single lobe radiation pattern
directed along the axis of the antenna, and in this respect it behaves as an
end-fire array.

(U) In the case of the dielectric rod the cut-off frequency of the dominant

mode (which is the hybrid HE__ mode) is zero. All higher order modes, in-

11
cluding the symmetric HOl and EOl modes have non-zero cut-off frequencies.
For the HE 11 wave the electric field in a transverse plane normal to the axis

has the same phase and one preferred direction. It is this phase equality and
almost parallel nature of the field lines that make this mode in a dielectric
rod suitable for use as a directional radiator., Most of the higher-order modes,

including H_ and E_, possess a null in the end-fire direction in addition to

0 0’
multilobed patterns. Hence, from an antenna point of view, it is desirable to
cut-off the higher modes. Further, in a scattering problem the dominant HE11
mode is the one that will be excited for nose-on plane-wave incidence; it has

the correct azimuthal dependence.
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(U) When used as an end-fire antenna, the dielectric rod is generally
tapered in order to eleminate standing waves within the antenna and to suppress
the side lobes appearing in the radiation pattern., Indeed, some of the most
praé‘z'ical dielectric antennas are single taper structures that take the shape of
a cone, It is not difficult to see that such a tapered dielectric structure of
optimum design would behave as a good backscatterer if the base of the struc-
ture were electrically terminated in a short circuit by a conducting disc or
coating, Thus, in studing the nose-on return from a cone-sphere surrounded
by a plasma layer and perhaps by a dielectric ablative material, it is impor-
tant to investigate the possibility of cross section enhancement due to the sur-
face wave modes. There is also the possibility of cross section reduction if
higher order modes are excited since these modes generally contribute a null
in the end-fire direction,

(U) Let us now consider the modal behavior for the inductive sheath
structure. We seek the waveguide modes with exponential dependence of the
form e-iLhZ corresponding to propagation along the axis of the cylindrical struc-
ture. To find these modes we must choose solutions of the source-free Max-
well equations such that the fields are finite everywhere, zero at infinite radial
distance, and satisfy the boundary conditions at the sheath and at the conducting
core, Since the solutions have no source within a finite length of the structure,

we obtain an eigenvalue equation for the modes:

A(o)_A(l)__Zo (1 _1)'1+i_z_s_
n n iz A(O) B(l) Z0
n n
2
- 5 E +(ka/u)2] ,
u
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where
0k K'n(u)
n  u K ’
n
A(l) s I'n(u) Kn(pu) - In(pu) K'n(u)
n u In(u) Kn(pu) - In(pu) Kn(u) ’
B(l) a I'n(u) K'n(pu) - I'n(pu) K'n(u)
n u I (u) K' (pu) - I' (pu) K (w)
n n n n

with In and Kn representing the modified Bessel functions of order n. The
parameter a denotes the radius of the impedance sheath and p = b/a denotes
the ratio of the conducting core radius b to the sheath radius a, The unknown
in the equation is the eigenvalue u which is related to the axial propagation
constant h by the equation

2
u=a(h —k21/2-

Thus when u is found for a particular set of parameters, the guided wave-

length Kg may then be obtained from the relation

2

X -1
£ P - l:l + (ufka)’ ]
¥

(U) Consider first the symmetric modes corresponding to n = 0, The

eigenvalue equation then uncouples into two equations, one for the EO mode and

one for the H0 mode:
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izS u2 5 Io(u) Io(pu)

— - = |K -

7 a [ 0(u)] X () K (pu) (EO mode)
o o o

iZ . I(w I(pu)
s 2 1 1

— - K -

7 ka[ 1(uZ] K@~ Koo (H0 mode)
o 1 1

For an inductive sheath, ZS = - iXS, XS > 0; hence, the left-hand sides of

the equations are positive, Now the ratio In(u)/Kn(u) is a monotonically in-

creasing function with increasing u since, by use of the Wronskian relation,

I (u)
d —— ] 1
Rk [K <u>] {Knm) I (W - K () In(u)}

el

Thus, because u > (pu), the quantities in{ above are positive and roots can
exist only for the E0 mode. We have, then an EO mode possible but no HO
mode. This is in contrast with the ordinary dielectric rod waveguide for which

both modes are possible.

(U) The E0 mode here has no cut-off frequency. To show this, consider

the eigenvalue equation for this mode
I (u) I (pu)
ka _§. - E< (u:l _ 9
L K (u) Ko(pu)

As u - 0 we have
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-ulog (p), p# 0

k X log
—&—§~-ulogu - e IV
u Z log pu

° -u log (u), p = 0.
In either case the ratio (ka/u) goes to zero and therefore (Ag/h) - 0 along
with (ka) = 0. There is no cut-off for the E0 mode. This also is in con-
trast with the ordinary dielectric rod waveguide. ~

(U) The modes corresponding to n > 1 are coupled or hybrid EH modes.
For n > 1 the modes possess a cut-off frequency that can be determined by
taking the limit u —» O in the eigenvalue equation., In this limit the equation

may be put in the form
N X
2 )1 n [ 1 2n+2 S

— + — —_—
(ka) {2 5 1 L P } + (ka) 7

RN S A
X 4 P 2 P

and the positive root for ka determines the cut-off frequency. For n = 1 the

-\

cut-off frequency is zero as in the ordinary dielectric rod case.

(U) The general eigenvalue equation has been programmed for the com-
puter and the guided wavelengths have been determined for a variety of param-
eters. In Fig. 3-19, for example, we present ()\g/)\) versus (ka) for n = 0,
1, 2, 3 and for the choice of parameters X = (XS/ZO) =1, p=0.1, In this
figure we observe the cut-off behavior characteristic of the modes for n > 1,
while the modes for n = 0, 1 have no cut-off. To illustrate the behavior of
the n = 1 mode, which is the important mode for nose-on incidence, we pre-
sent in Fig, 3-20, the result for p = 0,5 and differing X, and in Fig, 3-21 the
results for X = 1 with differing p.
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(U) More complete numerical results are available; the results displayed
in the figures have been chosen merely to illustrate the general nature of the
model solutions. In the future these results will play an important role in de-
sign of the simulated plasma experiments concerning cylinders and cones. The
considerations involved will be similar to those involved in the design of dielec-
tric rod antennas; however, it is premature to enter into these considerations
until the plasma sheath experiments on flat surfaces have provided a positive
verification of the theoretical model.

3.6 Analysis of Experimental Data

(U) In this section, some of the experimental data is examined and some
comparisons are made with theoretically derived formulas.

3.6.1 Backscattering Characteristics of Models ID-1 and ID-2

! (S) Section 2.3 describes measurements of the backscattering patterns of

ga second metallic cone-sphere model with an indented back (Model ID-2),

~
N
\
A
a-b ~c

FIG. 3-22: CONE-SPHERE WITH CONCAVE INDENTATION
IN REAR CAP. '
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(S) For Models ID-1 and ID-2, three specific parameters: half-angle (o),
radius of original spherical cap (a) and radius of curvature (b) at join are id-
entical; only the radius of curvature (c) of the concave indentation serves to
distinguish them. For symmetric illumination the theoretical estimate of the
creeping wave contribution to the backscattering depends on the radius of cur-
vature (b) of the toroidal segment at the join but is independent of ¢. There-
fore, the nose-on cross sections of the two models should be the same. More-
over, a strong similarity should persist for all angles of incidence at least out
to the specular flash (6 = 90° - a).

(S) Since backscattering measurements of Model ID-1 are already available
it is of interest to compare them with those of Model ID-2, Figure 3-23 shows
the empirical curve for the radar cross section of Model ID-2, On it are also
displayed the corresponding measurements from ID-1 (which are listed in Table
3-I). The agreement is very good and thus provides a measure of confirmation
of the expected behavior.

(S) On the basis of theoretical estimates provided in 7741-4-T (Final Re-
port BSD-TR-67-140) the nose-on backscattering cross section for Model ID-2
(or ID-1) is given by

S+S+S2

2
o/n” = 1 7y T s

|~

where

2
i tan o -2ik (a cot @ cos @+ b sin @)

2
L 4 (1 - sec a)3/2

is the tip contribution,

g - L seczoz e-2ikb sin
2 4
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is the join contribution and the creeping wave contribution is given by

i ka RL 7rb+2(a-b)] N 1/3
% Y2k @D ' q[z tol ]

7/6 1/3 /3
+’/%,e1 2 Zexp{ie1 gas}

(kb)2/3 S

]2 [ /30) + (1/10¢@ ):I

[Al (-a)

in which

g = (kb/2)1/3

T
2
a. is a root of

2

 (0)

Ai'(—afs)=0, and Q&) =q (&)

is tabulated in Table T, pp. 8-18 of "General Research in Diffraction Theory"
by N. A, Logan, LMSD 288088,

(S) In the explicit expressions for the backscattering contributors it should
be noted that the shadow boundary was chosen as the phase origin. The cross
section estimate was computed for a selection of twenty-two values of ka in the
range 1 < ka < 7 and are listed in Table 3-II. Figure 3-24 shows the theoret-
ical extimate compared to the experimentally measured cross sections for

Model ID-2.
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TABLE 3-I: Model ID-1, Backscattering Data
'F;attern Freq. a Measured Cross Sections o/)\% (db)

No. GHz Nose-on Tail-on Specular Flash
3969 2.53 2.98 -11.8 9.0 14.2
3978 3.37 3.96 - 4.8 12,1 16.9
3980 3.83 4,51 - 3.6 14.0 18.5
3962 5.73 6.74 - 0.4 19.8 23.1

TABLE 3-II: Nose-on Backscattering Data for
Model ID-2 (Calculated).
2 2
ka o/X o/x¢ (db)
1.25 . 04749 -13.23
1.5 .03435 -14,64
1.8 . 06094 -12,.15

2.0 . 09605 -10.18

2.5 . 16797 - 1.75

2.8 . 17594 - 7.55

3.0 . 15960 - 7.98

3.2 . 12995 - 8.89

3.5 .07621 -11.18

3.8 . 02948 -15.31

4.0 .01181 -19. 28

4,15 .01015 -19,93

4.5 . 03438 -14, 64

4,75 . 06670 -11.176

5.0 . 09965 -10. 02

5.25 . 12497 - 9.03

5.5 . 12644 - 8.98

5.75 . 11033 - 9.57

6.0 . 08089 -10.92

6.3 .03993 - =13.99

6.55 . 01261 -18.99

6. 74 . 00368 -24, 32
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(S) It is observed that the theoretical estimates follow a curve which has
a shape similar to, but slightly displaced from, the empirical curve. The the-
oretical values also tend to lie below (on the order of 5 to 6 db) the measured
data — if a slight translation of the theoretical curve is permitted in order to
obtain agreement between the lobe structure of the empirical curve and theoret-
ical estimates.

(S) Both these features are not unexpected: In an earlier study (Senior,
1965) it was shown that, for a sphere, the geometrical theory of diffraction
gives estimates of the creeping wave contribution to the backscattering which
differ from the exact value., The amount of difference depends on ka. For
example, for ka = 3, the first order geometrical theory of diffraction underes-
timates the modulus of the creeping wave term by a factor of (about) two and it
differs in phase from the exact value by (about) 30°. Since it is the square of
the modulus which gives the cross section, the above factor of two would cor-
respond to a cross section augmented by 22 = 4 or 6 db which is of the same
order of magnitude as that observed.

(S) The displacement of the minima (or maxima) of the experimental rel-
ative to the theoretical is not as well covered by the 30° phase difference noted,
but within the limits that Fig. 3-24 can be read, the lobe structures seem to
be compatible. Table 3-III lists these locations and it is clear that the relative
shift (£ 0,65) is reasonably constant, although considerably larger than the
Alka) &' 7/12 = 0,26 obtained from a 30° phase shift. However, if it is the
curvature along the geodesic beyond the join rather than the radius of curvature
of the rear cap which is the more important for the determination of the phase
displacement, then, using kb rather than ka, the geometrical theory of diffrac-
tion differs in phase from the exact value by about 50° and this leads to the

estimate A(ka) = 0.45 for the relative shift.
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TABLE 3-III: Model ID-2 Cross Section Comparison

Description Location (ka) Displacement
Teor. M. 2 = 0.
?‘}}:g;)r?ﬁll\l’fin. igg A =0.70
e x5 5o

3.6.2 Cone-spheres with Concave Indentations and a Coating,

(S) A metallic cone-sphere of half angle @ = 7 1/2o and base radius a =
2.21" had its rear spherical cap reformed to exhibit a concave indentation of
radius ¢ so that the resulting form had a smooth tangent. Three indentations,
c, were used, A 1/4" coating of LS-26 was applied uniformly over the sur-
face, excluding the portion of the concave indentation where the coating did not

follow the concavity but a straight line as shown in the sketch below.

D
)/
f
/
f
/
f
/
f

LS-26 1/4"

J

FIG, 3-25: INDENTED VEHICLE SHOWING
COATING CONFIGURATION,
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(S) The azimuthal component of the magnetic field, H¢, was measured at
four frequencies: 0.935, 2.55, 4.25 and 6,799 GHz which correspond respec-
tively to ka = 1.1, 3.0, 5.0 and 8.0. In the four figures 3-26 to 3-29 which
follow, two conclusions are immediate. (1) The effect of the coating is to
mask the differences in the surface fields supported on each of the models and,
for all practical purposes, the surface fields are identical. This suggests that
the scattering from such coated perturbed cone-spheres should be very similar,
(2) As ka increases the effect of this thickness of coating is to modify the
fields in a way identical to that observed on metallic cone-spheres, i.e. for ka
small (say, less than 3) the fields are not substantially different from those
supported on uncoated models; for ka > 5 approximately the field is charac-
terized by a build-up away from the tip followed thereafter by a steady decay
out to the join,

(S) There are two areas in which the behavior is not completely regular:

in the immediate vicinity of the tip, and over the concave indentation.
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v
TASK 4,0 SHORT PULSE INVESTIGATION

4,1 Introduction

(S) In pursuing the objectives of the short pulse investigation, i.e. deter-
mining the utility of these techniques for discrimination among low cross sec-
tion targets, a vital requirement is a sufficiently accurate means of estimating
the response of the targets of interest to short incident pulses. The first
goal of this program is to provide theoretical methods of calculating the back
scattered response of perfectly conducting targets to realistic incident pulses.
This study includes evaluation of existing methods as well as the derivation of
new techniques.

(U) As outlined in the previous quarterly report, the investigation is pro-
ceeding along a number of lines in an attempt to provide approximate results
of necessarily limited validity as well as a rigorous description of pulse scat-
tering on which to base more refined approximations. In this way it is hoped
to develop theoretical methods which can not only be used to answer practical
questions in today's short pulse system but can also serve future needs. For
example, a secondary scattered pulse which is undetectable in today's system
may prove to be an effective key to discrimination with more refined measure-
ments. But while system capability may vary, the underlying theory does not.
The development and application of this theory is a principal concern of this
work,

(U) The effort has been divided into so-called direct methods, i.e. a
direct attack on the time-dependent scattering problem, and indirect methods
which involve the Fourier transform of solutions of scattering problems in the fre-
quency domain., Actually, this characterization is a matter of convenience and
is not precise since, as will be seen below, a "direct" method apparently leads|

into the frequency domain which requires a Fourier transform to return to the
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time domain. This is described in Section 4.2, which summarizes the progresd
to date on the attempt to characterize the pulse response as an expansion in
time around the pulse front. The incident and reflected rays admit of power
series expansions whereas the diffracted or creeping waves do not., How to
account for these contributions in the time domain is still under investigation.

(U) Work has begun on a second 'direct" method, this one directed to-
ward the derivation of integral equations, analogous to those available in the
frequency domain, governing the time-dependent field. The goal here is two-
fold since a tractable integral equation could be employed both analytically and
numerically to obtain the pulse scattering characteristics of a given target.
Work on this method, ‘describ'ed in Section 4.3, has been of an essentially pre-
liminary nature.

(U) As described in the previous quarterly report, the "indirect" method
involves taking the Fourier trénsform of the product of the spectral function
of the incident pulse and the field scattered by the target when illuminated by
a monochromatic time harmonic plane wave. The idea here is that while this
scattered field may not be known over the entire frequency range, for rela-
tively narrow banded incident pulses with high center frequency, it will be suf-
ficient to know the scattered field at high frequencies. Moreover, in this fre-
quency range, the large body of available asymptotic theory may be employed
to obtain sufficiently accurate estimates of the scattered field.

(U) The validity of this argument is being tested in a simple case where
the exact solution is available, The impulse response from a sphere has been
computed from the exact solution, This has been employed in a convolution
integral to obtain the response to a more realistic incident pulse. This same
response was also calculated using the Fourier transform method described

above and the results are in agreement. This provides a reliable control with
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which the results of the approximation may be compared. These calculations
and results are presented in detail in Section 4.4, Calculation of the approxi-
mate response for the same case where the exact response is available is now
under way. Additional calculations of the exact response for different incident
pulse characteristics are also being carried out.

4,2 Ray Optical Method

(U) The transient response ..u.s(r, t) due to a short pulse incident upon a
scatterer can be found from the CW solution us(r, w) by the integration
109)
S, 1) = Flo) o, o) e (4.1)

-

where Fi(w) is the Fourier transform of the incident pulse as a function of
time. If u (r,w) is known only for relatively high frequencies, (4.1) is still
useful if Fi(w) can be adequately described by the range of frequencies for which
the us(r, w) approximate expression is valid.

(U) An alternate use of the high frequency approximation to us(r,w) can
be made if one is only interested in ,us(r, t) for relatively short times after
the pulse reaches the observer, at, say, t = ti. One then connects these
quantities by appropriate Abelian or Tauberian theorems. For example, one
could use the theorem: If a one-sided original is represented asymptotically
as t & 0+ by some power series of not necessarily integral exponents ex-
ceeding -1, then the series obtained by transforming the original term repre-
sents the image asymptotically as s — .

(U) This section describes an approximation method which one can use
when u”(r,w) is not known, namely the generalized optical method of J.B,

Keller and coworkers. There remain quite a few unanswered questions and
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unfinished tasks before this approach will be usable; thus what follows is to be
taken simply as an interim or progress report.

4,.2.1 Incident Pulse

(U) In the problem under consideration, a plane short pulse is incident
upon a perfectly conducting, finite, three-dimensional convex body located in
free space. The incident pulse length T is such that ¢cT << d where d is
the maximum dimension of the scatterer in the direction of propagation. All
time derivatives of the incident pulse are assumed to exist in the range be-
tween the leading and trailing edge of the pulse. The discontinuities which
exist at the leading and trailing edges of the incident pulse are assumed finite
and known. For convenience the origin of the reference system is located
somewhere within the scattering body.

(U) A Taylor series expansion can be written for the incident pulse which
will be a valid description of the pulse for a short interval behind the pulse
front. Assuming a plane pulse traveling in the positive z-direction in the rec-

tangular coordinate reference frame we may write:

; ® nITZi(z 0 (t—ti)n
E(z,1) = Z:L—'— —— = , t-t >0
Btn n., 1
n=0 t=t,
1
=0, t-ti<0 (4.2)

where ti is the time that the pulse front passes the point of observation, and the
superscript i indicates the incident pulse. Similarly,

)n

® N—i (t-t
. . .
Alz,t) = Z: 8 Hizt) — ., t-t >0
atn n, 1
n=0 t=t.
1
=0 , t—ti<0. (4.3)

188

UNCLASSIFIED




UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN

8525-2-Q
Let
Nn=i n =i
—; E —i
Al(z) = 9 Efz,t) . Bl(z) = 0 _H{(zt) . (4.4)
n atn n 8tn
t=t. t=t.
i i

The derivatives are one-sided derivatives evaluated at the pulse front, the field
and all derivatives in front of the pulse front (t < ti) are assumed to be zero.
(U) In studying the scattering of this incident pulse we become interested
in how the derivatives, i.e. the coefficients Xn and En’ are affected by the
scattering process. Kline and Kay (1965) develop a transport equation which
governs the behavior of these coefficients as they propagate along a geometrical

optics ray. If the pulse fronts are described by
v(x,y,2) -ct=0 (4.5)

then the direction of the rays at each point of the pulse front is p = V. Let

distance along such a ray be represented by r; then the transport equations can

be written:
8Kn('r) 3 _
+ Ay A = A
o Ay A7) A1
(4.6)
aﬁn("r)
+ A B = A§
or d Bn(T) n-1
where n=0,1,2,...,andX_ =B . =0,

1 -1 .
(U) For the incident plane pulse traveling in the positive z-direction wl =

z and
94 (7) B’ (7)
n n

o =0 oy =0 (4.7)
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indicating that no change occurs in pulse shape along an incident ray at least
until the pulse strikes the scattering body. The shape of the scattered pulse
may be found in the following manner.

4,2,2 Reflected Pulses

(U) First recall that the scattered field can be decomposed into reflected
and diffracted protions and that an observer at a given point in space will see
reflected and/or diffracted pulse fronts pass him at different points in time,

A Taylor expansion may be written to describe the field )oul immediately be-

hind the reflected pulse front:

. o) A (S n, 7 0
TG oo t) = Z (t-t ) (4.8)

where tm is the time of arrival of the pulse front at the observation point, the
superscript r indicates the reflected pulse, and the _AII;(S, n, 7 are the coef-
ficients to be determined. The parameters £,n select the ray under consider-
ation since the rays are a two-parameter family of curves. The diffracted
pulse will be considered in Section 4.4,

(U) Consider now the determination of the reflected portion of the scat-
tered pulse along a given ray (&,1), i.e. find 7\1;1(7). This is an initial value

problem which requires:

(a) Knowing the reflected front wr(x, y, z) -ct = 0 and thus the
reflected rays,

(b) determining the initial values of the reflected coefficients on
the reflected rays,

(c) integration of the transport equation along the reflected ray to

the observation point.
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An expression for the reflected pulse front can be computed if the shape of the
scattering body is known. In the general case we will assume g//r(x, y, z) to
be known., The parametric equation for the ray under consideration is also

assumed known. For a given &,n the parametric equations of the ray become
x(7) , y(7, z(7) (4.9)

so that the transport Eq. (4.6) can be written explicitly in terms of r.
(U) The integration of the transport equation can be completed provided

the initial values of the coefficients are available,

AT () - 35(0) | B () = B'(0) . (4. 10)
n n n n
T= O T= 0

Beginning with the discontinuity conditions derived by Kline and Kay (1965), we

may write the initial values of the coefficients as:

— A — N
AI;I(O) =celpt . vxB )P+ alf Qo+ Bs S (4.11a)

n-1

=T AT — AT ra rA
- e . VA TN -
Bn(O) clp X n_l)p a BnS

AL —_ AT —_
- .V -cV
c(p X Bn-l) P -cVx Bn—l (4.11pb)
where the unit vectors are defined as follows:
i A A A
’S\=/f)1xNS=?)rxﬁS;Nr=Sx6r;

. (4.12)
I
N =Sxp ; N° = Normal to scattering surface,
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All of the quantities on the right-hand side of (4,11) are known except for a:;,
BI;I. Note that the determination of the nth coefficient depends upon knowing the
(n - 1)th coefficient, thus making an iterative procedure necessary in determen-
ing all of the coefficients for the expansion of the expansion of the reflected
field.

(U) To compute ozi, BII; we begin by composing the incident coefficients

A A
into components in the directions 6, N and S as shown in Fig. 4-1

FIG, 4-1: COORDINATE SYSTEM.,
where a:l, B:l are known, With the known boundary condition

A -—T ]
N x (E+E)=0 (4.14)
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we may write that
N° x E‘x;(o) + Kl;l(oﬂ: 0. (4.15)

Substitution of (4,11a) and (4.13) into (4. 15) leads to a system of equations
which can be solved for a;, B; and results in known initial conditions (4.11).

4.2.3 Diffracted Pulse

(U) a) The Special Problems. The diffracted pulse will not be expand-

able in a Taylor series in powers of t. One can verify this by considering the
knonw CW diffracted returns from edges, spheres and cylinders. For example,
a pulse which is a é-function in time at a source located on a sphere yields a
time variation elsewhere on the sphere which is of the form (see Levy and

Keller, 1958)

ud(t/T) ‘=’(T/t)3/2 exp 3{ [1 - (T/t)l/z:]} (4.16)

where T is a function of the angular separation between source and observa-
tion point. This is only the first term in an expansion for small t and was
determined by taking the Fourier transform of the dominant terms in the high
frequency expansion of the CW field. The corresponding function for more
general bodies has not been worked out nor have the higher order terms. The
function (4.16) has an essential singularity at the wavefront which causes all
of the time derivatives to vanish at that point. Thus in the time domain we
do not have the form of the time series to equation to (4.2) and hence no pre-
scription as to how to determine the coefficients as was done for the reflected

waves,
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(U) Since there is presently no technique for the analysis of this problem
in the time domain we shall make use of the Tauberian theorem and carry out
the analysis in the frequency domain. The problem is thus converted to con-
structing a series representation for the high frequency CW diffracted field on
the shadowed side of the diffracting object. The most general configuration of
body shape and direction polarization of the incident wave for which such a sol-
ution is available will be discussed in the following section, which is based on
the work of Hong (1966), To treat more general configurations one can use
Hong's results together with the method of diffracted rays presented by Lewis
and Keller (1964) with extensions as we shall discuss later. The method re-
quires determination of sets of ''scattering coefficients' which is done by com-
parison with known solutions. In the present analysis, we shall use Hong's
results; then the Lewis and Keller method can be applied to those more gen-
eral configurations for which Hong's configuration is a canonical form in a
sense to be described below,

(U) b) The "Hong Configuration'. The most general configuration of scat-

tering body and incident field for which the surface electromagnetic fields have
been determined by means of large k asymptotic expansion of the exact sol-
ution is the highly symmetric one where the object is symmetric about an axis
and irradiated by a plane wave directed along this symmetry axis. The results
in this case are given by Hong (1966) and from his results we can approximate
the lower order coefficients, Before doing this let us first summarize the
additional restrictions made on the anvalysis as well as point out in what sense
his results are general. To do this it is necessary to introduce a coordinate
system on the surface. The shadow boundary was taken by Hong as a co-
ordinate curve u = 0 and the geodesics on the surface which intersect the

shadow boundary orthogonally form one set of coordinate curves, v = constant.
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Their orthogonal trajectories, labeled u = constnat, form the other set of co-
ordinate curves. These curves are chosen, as is always possible when one

set are geodesics, so that a line element on the surface has length

ds =Elu2 + de2]1/2

In general, G would be a function of u and v but only the limited case where|
G depends on u alone was considered by Hong. Recall that by definition geo-
desics are curves of zero geodesic (tangential) curvature; their curvature
vector Kg therefore lies in the direction of + n where n is the surface nor-
mal,

(U) Hong did not explicitly require the high degree of symmetry men-
tioned above but restricted his work to cases where the geodesic curves also
have zero torsion from which one concludes immediately that the geodesics
- admitted are plane curves, each plane containing all the surface normals along
the geodesic in that plane. It is this property which forces the cylindrical
symmetry; the zero torsion requirement is thus an implicit way of requif‘ing
this symmetry. An additional result of the zero torsion requirement is that
G is a function of u only.

(U) Hong has also required a degree of fore and aft symmetry at the

shadow boundary; i.e.,

oK
g = 0
ou '

u=20

(This assumption is apparently not a fundamental restriction which implies his

derivation could be reworked without this condition in a straightforward way.)
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(U) The u = constant lines have both normal and tangential curvature com-

ponents, Let their curvature at a point be given by I—<'t; then

where t is the direction of the unit bi-normal of u = constant which is the dir-

ection of the tangential vector to the geodesic intersecting at that point, Hong

also assumed that the curvatures are "slowly varying" functions of u and v.
(U) The following additional notation is useful to describe the quantities

which will be needed; from Hong's results:
= 1/K =
Py 1/ ¢ P, = 1/K,
and

wip) = i 47 [:Ai(p) -1 B, (pZ, where Ai(p) and Bi(p)

are the Airy functions. In addition, the polarization angle 90 of the incident
plane wave H  is defined by 0 < 6 < 7/2 and sin 6 = n(0,0) x ﬁo'
(U) Because of the cylindrical symmetry one can consider any typical

plane through the symmetry axis and denote the geodesic in this plane by v =

0. Hong's results give the surface current density E(u, 0) = Ju a +Jvﬂ .

The tangential H field is f x J at the surface while the normal H field is zero.
Thus at the shadow boundary the field is Hu = Jvﬁ , HV = Ju?/. These com-
ponents are directly available from Hong's results. For the electric field one

must use Maxwell's equation

curl H = jw € E
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BHV
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E = — —
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oH oH
v

n ] ou 1YG7 oy

s

Thus determination of E on the surface requires a knowledge of H off the sur-
face. This will require considerable extension of Hong's results. We consider
therefore only Hu and HV in this report.

(U) ¢) The Diffracted Ray Method Applied to the Pulse Problem. The

incident pulse Elr, t) is given by Eq. (4.2). The Fourier transform of El(r, t)

is of the form

, ) o Al i
Tir,w) = A XV ~ E S (4.17)
(iw)nJrl

Here, F will represent either E or H.

(U) We consider the incident field as striking the object at point P and
launching creeping waves which travel through the shadow region along a geo-
desic or surface ray to the point Q where the diffracted field originates which
propagates along the diffracted ray to the point of observation (Fig. 4-2). We
will neglect creeping waves which travel all the way around the surface one or
more times since it can be verified that there is an exponential decay of the
amplitude of the creeping waves with path length which renders these contri-
butions negligible. The surface field engendered by a unit amplitude CW in-

cident wave is shown by Hong (1966) to behave as an infinite sum of creeping
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P
> N
1 w
Q
FIG. 4-2: COORDINATE SYSTEM
waves, Specifically, Hong showed that an incoming CW wave of polarization
Al A . A
H = -cos v +sin 6n (4.18)

and zero phase at the plane of the shadow boundary generates a surface field

AS A
HC - {:Ac o —L o —2 4+ o(1/w)]eiku . (4.19)
0 . \1/3 . 12/3
(iw) (iw)

Furthermore from his derivation one learns that to this accuracy the ¥-com-
ponent of a° is associated solely with the h-component of ﬁi, the ﬁ~component
of B with the 3—component of -}_ii. Thus if we assume linear (for fixed w)
relationships between induced and incident fields, one way to introduce launch-

ing coefficients dn and Drl is by

i c
- cos O d(w) ———An & Al
+
() ! ()13
A AC (4.20)
(w) n ~ C 2
-sin 8 D ——— 2 A% 4
n 2
() 1 ° (w23
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where
o cos 60 @ d
A = —SB
S0 = u e o(p) (4.21)
-
. i 21/ 3 cos 00 @ d
A0 = % —£ (4.22)
1 ! /3 V w(p)
g -
c 22/ 3 cos 60 @ d 9
A0 =< ———2 dp —p—{———
2 7 p2/3 w(p) 15
-00
d2p P 3
D R R AR RS
& @ Pin EJJ(pﬂ
2 2
p o, e (ﬁ_ﬁpﬁ‘)} ) mpﬁ{zp 96
3
g du2 15 5 E)(pﬂ 3 g du2
5
dp
3
) 4p [ putp)] b 5
el K = ’ (4.23)
tr 3 Lw(p) r=0
—
One notes that the launching coefficients depend only on the Gaussian curvature
of the body at the shadow boundary. Thus one can consider the Hong config-
uration as canonical in less symmetrical situations where the Gaussian cur-
vature changes only slowly along the shadow boundary and use the same launch-
ing coefficients. Thus for the canonical problem with known Arcl(O) the dn(p)‘
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and Dn(p) may be evaluated. The launching ciefficients dO and D0 give the
launching of the leading edge of the pulse discontinuity, d1 and D 1 the launch-
ing of the discontinuity in the first derivative, etc.

(U) The asymptotic expansion for the surface field, in cases where the
solution is not available via some other method, can be constructed for any
point u along a surface ray by integration of a surface transport equation
using the Afl(O) from (4.20) as an initial value. For the scalar case this equa-
tion is given in Lewis and Keller (1964) but is not valid near the focus of the
surface rays on the back; the behavior of t